1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/Program.h" 30 #include <cctype> 31 using namespace llvm; 32 33 /// These are manifest constants used by the bitcode writer. They do not need to 34 /// be kept in sync with the reader, but need to be consistent within this file. 35 enum { 36 CurVersion = 0, 37 38 // VALUE_SYMTAB_BLOCK abbrev id's. 39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 40 VST_ENTRY_7_ABBREV, 41 VST_ENTRY_6_ABBREV, 42 VST_BBENTRY_6_ABBREV, 43 44 // CONSTANTS_BLOCK abbrev id's. 45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 CONSTANTS_INTEGER_ABBREV, 47 CONSTANTS_CE_CAST_Abbrev, 48 CONSTANTS_NULL_Abbrev, 49 50 // FUNCTION_BLOCK abbrev id's. 51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 FUNCTION_INST_BINOP_ABBREV, 53 FUNCTION_INST_BINOP_FLAGS_ABBREV, 54 FUNCTION_INST_CAST_ABBREV, 55 FUNCTION_INST_RET_VOID_ABBREV, 56 FUNCTION_INST_RET_VAL_ABBREV, 57 FUNCTION_INST_UNREACHABLE_ABBREV 58 }; 59 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 } 77 } 78 79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 80 switch (Opcode) { 81 default: llvm_unreachable("Unknown binary instruction!"); 82 case Instruction::Add: 83 case Instruction::FAdd: return bitc::BINOP_ADD; 84 case Instruction::Sub: 85 case Instruction::FSub: return bitc::BINOP_SUB; 86 case Instruction::Mul: 87 case Instruction::FMul: return bitc::BINOP_MUL; 88 case Instruction::UDiv: return bitc::BINOP_UDIV; 89 case Instruction::FDiv: 90 case Instruction::SDiv: return bitc::BINOP_SDIV; 91 case Instruction::URem: return bitc::BINOP_UREM; 92 case Instruction::FRem: 93 case Instruction::SRem: return bitc::BINOP_SREM; 94 case Instruction::Shl: return bitc::BINOP_SHL; 95 case Instruction::LShr: return bitc::BINOP_LSHR; 96 case Instruction::AShr: return bitc::BINOP_ASHR; 97 case Instruction::And: return bitc::BINOP_AND; 98 case Instruction::Or: return bitc::BINOP_OR; 99 case Instruction::Xor: return bitc::BINOP_XOR; 100 } 101 } 102 103 static void WriteStringRecord(unsigned Code, const std::string &Str, 104 unsigned AbbrevToUse, BitstreamWriter &Stream) { 105 SmallVector<unsigned, 64> Vals; 106 107 // Code: [strchar x N] 108 for (unsigned i = 0, e = Str.size(); i != e; ++i) 109 Vals.push_back(Str[i]); 110 111 // Emit the finished record. 112 Stream.EmitRecord(Code, Vals, AbbrevToUse); 113 } 114 115 // Emit information about parameter attributes. 116 static void WriteAttributeTable(const ValueEnumerator &VE, 117 BitstreamWriter &Stream) { 118 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 119 if (Attrs.empty()) return; 120 121 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 122 123 SmallVector<uint64_t, 64> Record; 124 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 125 const AttrListPtr &A = Attrs[i]; 126 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 127 const AttributeWithIndex &PAWI = A.getSlot(i); 128 Record.push_back(PAWI.Index); 129 130 // FIXME: remove in LLVM 3.0 131 // Store the alignment in the bitcode as a 16-bit raw value instead of a 132 // 5-bit log2 encoded value. Shift the bits above the alignment up by 133 // 11 bits. 134 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 135 if (PAWI.Attrs & Attribute::Alignment) 136 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 137 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 138 139 Record.push_back(FauxAttr); 140 } 141 142 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 143 Record.clear(); 144 } 145 146 Stream.ExitBlock(); 147 } 148 149 /// WriteTypeTable - Write out the type table for a module. 150 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 151 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 152 153 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 154 SmallVector<uint64_t, 64> TypeVals; 155 156 // Abbrev for TYPE_CODE_POINTER. 157 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 158 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 160 Log2_32_Ceil(VE.getTypes().size()+1))); 161 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 162 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 163 164 // Abbrev for TYPE_CODE_FUNCTION. 165 Abbv = new BitCodeAbbrev(); 166 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 168 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 171 Log2_32_Ceil(VE.getTypes().size()+1))); 172 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 173 174 // Abbrev for TYPE_CODE_STRUCT. 175 Abbv = new BitCodeAbbrev(); 176 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 180 Log2_32_Ceil(VE.getTypes().size()+1))); 181 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 182 183 // Abbrev for TYPE_CODE_ARRAY. 184 Abbv = new BitCodeAbbrev(); 185 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 188 Log2_32_Ceil(VE.getTypes().size()+1))); 189 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 190 191 // Emit an entry count so the reader can reserve space. 192 TypeVals.push_back(TypeList.size()); 193 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 194 TypeVals.clear(); 195 196 // Loop over all of the types, emitting each in turn. 197 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 198 const Type *T = TypeList[i]; 199 int AbbrevToUse = 0; 200 unsigned Code = 0; 201 202 switch (T->getTypeID()) { 203 default: llvm_unreachable("Unknown type!"); 204 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 205 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 206 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 207 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 208 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 209 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 210 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 211 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 212 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 213 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 214 case Type::IntegerTyID: 215 // INTEGER: [width] 216 Code = bitc::TYPE_CODE_INTEGER; 217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 218 break; 219 case Type::PointerTyID: { 220 const PointerType *PTy = cast<PointerType>(T); 221 // POINTER: [pointee type, address space] 222 Code = bitc::TYPE_CODE_POINTER; 223 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 224 unsigned AddressSpace = PTy->getAddressSpace(); 225 TypeVals.push_back(AddressSpace); 226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 227 break; 228 } 229 case Type::FunctionTyID: { 230 const FunctionType *FT = cast<FunctionType>(T); 231 // FUNCTION: [isvararg, attrid, retty, paramty x N] 232 Code = bitc::TYPE_CODE_FUNCTION; 233 TypeVals.push_back(FT->isVarArg()); 234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 235 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 238 AbbrevToUse = FunctionAbbrev; 239 break; 240 } 241 case Type::StructTyID: { 242 const StructType *ST = cast<StructType>(T); 243 // STRUCT: [ispacked, eltty x N] 244 Code = bitc::TYPE_CODE_STRUCT; 245 TypeVals.push_back(ST->isPacked()); 246 // Output all of the element types. 247 for (StructType::element_iterator I = ST->element_begin(), 248 E = ST->element_end(); I != E; ++I) 249 TypeVals.push_back(VE.getTypeID(*I)); 250 AbbrevToUse = StructAbbrev; 251 break; 252 } 253 case Type::ArrayTyID: { 254 const ArrayType *AT = cast<ArrayType>(T); 255 // ARRAY: [numelts, eltty] 256 Code = bitc::TYPE_CODE_ARRAY; 257 TypeVals.push_back(AT->getNumElements()); 258 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 259 AbbrevToUse = ArrayAbbrev; 260 break; 261 } 262 case Type::VectorTyID: { 263 const VectorType *VT = cast<VectorType>(T); 264 // VECTOR [numelts, eltty] 265 Code = bitc::TYPE_CODE_VECTOR; 266 TypeVals.push_back(VT->getNumElements()); 267 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 268 break; 269 } 270 } 271 272 // Emit the finished record. 273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 274 TypeVals.clear(); 275 } 276 277 Stream.ExitBlock(); 278 } 279 280 static unsigned getEncodedLinkage(const GlobalValue *GV) { 281 switch (GV->getLinkage()) { 282 default: llvm_unreachable("Invalid linkage!"); 283 case GlobalValue::ExternalLinkage: return 0; 284 case GlobalValue::WeakAnyLinkage: return 1; 285 case GlobalValue::AppendingLinkage: return 2; 286 case GlobalValue::InternalLinkage: return 3; 287 case GlobalValue::LinkOnceAnyLinkage: return 4; 288 case GlobalValue::DLLImportLinkage: return 5; 289 case GlobalValue::DLLExportLinkage: return 6; 290 case GlobalValue::ExternalWeakLinkage: return 7; 291 case GlobalValue::CommonLinkage: return 8; 292 case GlobalValue::PrivateLinkage: return 9; 293 case GlobalValue::WeakODRLinkage: return 10; 294 case GlobalValue::LinkOnceODRLinkage: return 11; 295 case GlobalValue::AvailableExternallyLinkage: return 12; 296 case GlobalValue::LinkerPrivateLinkage: return 13; 297 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 298 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 299 } 300 } 301 302 static unsigned getEncodedVisibility(const GlobalValue *GV) { 303 switch (GV->getVisibility()) { 304 default: llvm_unreachable("Invalid visibility!"); 305 case GlobalValue::DefaultVisibility: return 0; 306 case GlobalValue::HiddenVisibility: return 1; 307 case GlobalValue::ProtectedVisibility: return 2; 308 } 309 } 310 311 // Emit top-level description of module, including target triple, inline asm, 312 // descriptors for global variables, and function prototype info. 313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 314 BitstreamWriter &Stream) { 315 // Emit the list of dependent libraries for the Module. 316 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 317 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 318 319 // Emit various pieces of data attached to a module. 320 if (!M->getTargetTriple().empty()) 321 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 322 0/*TODO*/, Stream); 323 if (!M->getDataLayout().empty()) 324 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 325 0/*TODO*/, Stream); 326 if (!M->getModuleInlineAsm().empty()) 327 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 328 0/*TODO*/, Stream); 329 330 // Emit information about sections and GC, computing how many there are. Also 331 // compute the maximum alignment value. 332 std::map<std::string, unsigned> SectionMap; 333 std::map<std::string, unsigned> GCMap; 334 unsigned MaxAlignment = 0; 335 unsigned MaxGlobalType = 0; 336 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 337 GV != E; ++GV) { 338 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 339 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 340 341 if (!GV->hasSection()) continue; 342 // Give section names unique ID's. 343 unsigned &Entry = SectionMap[GV->getSection()]; 344 if (Entry != 0) continue; 345 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 346 0/*TODO*/, Stream); 347 Entry = SectionMap.size(); 348 } 349 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 350 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 351 if (F->hasSection()) { 352 // Give section names unique ID's. 353 unsigned &Entry = SectionMap[F->getSection()]; 354 if (!Entry) { 355 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 356 0/*TODO*/, Stream); 357 Entry = SectionMap.size(); 358 } 359 } 360 if (F->hasGC()) { 361 // Same for GC names. 362 unsigned &Entry = GCMap[F->getGC()]; 363 if (!Entry) { 364 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 365 0/*TODO*/, Stream); 366 Entry = GCMap.size(); 367 } 368 } 369 } 370 371 // Emit abbrev for globals, now that we know # sections and max alignment. 372 unsigned SimpleGVarAbbrev = 0; 373 if (!M->global_empty()) { 374 // Add an abbrev for common globals with no visibility or thread localness. 375 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 378 Log2_32_Ceil(MaxGlobalType+1))); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 382 if (MaxAlignment == 0) // Alignment. 383 Abbv->Add(BitCodeAbbrevOp(0)); 384 else { 385 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 387 Log2_32_Ceil(MaxEncAlignment+1))); 388 } 389 if (SectionMap.empty()) // Section. 390 Abbv->Add(BitCodeAbbrevOp(0)); 391 else 392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 393 Log2_32_Ceil(SectionMap.size()+1))); 394 // Don't bother emitting vis + thread local. 395 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 396 } 397 398 // Emit the global variable information. 399 SmallVector<unsigned, 64> Vals; 400 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 401 GV != E; ++GV) { 402 unsigned AbbrevToUse = 0; 403 404 // GLOBALVAR: [type, isconst, initid, 405 // linkage, alignment, section, visibility, threadlocal, 406 // unnamed_addr] 407 Vals.push_back(VE.getTypeID(GV->getType())); 408 Vals.push_back(GV->isConstant()); 409 Vals.push_back(GV->isDeclaration() ? 0 : 410 (VE.getValueID(GV->getInitializer()) + 1)); 411 Vals.push_back(getEncodedLinkage(GV)); 412 Vals.push_back(Log2_32(GV->getAlignment())+1); 413 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 414 if (GV->isThreadLocal() || 415 GV->getVisibility() != GlobalValue::DefaultVisibility || 416 GV->hasUnnamedAddr()) { 417 Vals.push_back(getEncodedVisibility(GV)); 418 Vals.push_back(GV->isThreadLocal()); 419 Vals.push_back(GV->hasUnnamedAddr()); 420 } else { 421 AbbrevToUse = SimpleGVarAbbrev; 422 } 423 424 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 425 Vals.clear(); 426 } 427 428 // Emit the function proto information. 429 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 430 // FUNCTION: [type, callingconv, isproto, paramattr, 431 // linkage, alignment, section, visibility, gc, unnamed_addr] 432 Vals.push_back(VE.getTypeID(F->getType())); 433 Vals.push_back(F->getCallingConv()); 434 Vals.push_back(F->isDeclaration()); 435 Vals.push_back(getEncodedLinkage(F)); 436 Vals.push_back(VE.getAttributeID(F->getAttributes())); 437 Vals.push_back(Log2_32(F->getAlignment())+1); 438 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 439 Vals.push_back(getEncodedVisibility(F)); 440 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 441 Vals.push_back(F->hasUnnamedAddr()); 442 443 unsigned AbbrevToUse = 0; 444 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 445 Vals.clear(); 446 } 447 448 // Emit the alias information. 449 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 450 AI != E; ++AI) { 451 Vals.push_back(VE.getTypeID(AI->getType())); 452 Vals.push_back(VE.getValueID(AI->getAliasee())); 453 Vals.push_back(getEncodedLinkage(AI)); 454 Vals.push_back(getEncodedVisibility(AI)); 455 unsigned AbbrevToUse = 0; 456 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 457 Vals.clear(); 458 } 459 } 460 461 static uint64_t GetOptimizationFlags(const Value *V) { 462 uint64_t Flags = 0; 463 464 if (const OverflowingBinaryOperator *OBO = 465 dyn_cast<OverflowingBinaryOperator>(V)) { 466 if (OBO->hasNoSignedWrap()) 467 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 468 if (OBO->hasNoUnsignedWrap()) 469 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 470 } else if (const PossiblyExactOperator *PEO = 471 dyn_cast<PossiblyExactOperator>(V)) { 472 if (PEO->isExact()) 473 Flags |= 1 << bitc::PEO_EXACT; 474 } 475 476 return Flags; 477 } 478 479 static void WriteMDNode(const MDNode *N, 480 const ValueEnumerator &VE, 481 BitstreamWriter &Stream, 482 SmallVector<uint64_t, 64> &Record) { 483 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 484 if (N->getOperand(i)) { 485 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 486 Record.push_back(VE.getValueID(N->getOperand(i))); 487 } else { 488 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 489 Record.push_back(0); 490 } 491 } 492 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 : 493 bitc::METADATA_NODE2; 494 Stream.EmitRecord(MDCode, Record, 0); 495 Record.clear(); 496 } 497 498 static void WriteModuleMetadata(const Module *M, 499 const ValueEnumerator &VE, 500 BitstreamWriter &Stream) { 501 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 502 bool StartedMetadataBlock = false; 503 unsigned MDSAbbrev = 0; 504 SmallVector<uint64_t, 64> Record; 505 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 506 507 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 508 if (!N->isFunctionLocal() || !N->getFunction()) { 509 if (!StartedMetadataBlock) { 510 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 511 StartedMetadataBlock = true; 512 } 513 WriteMDNode(N, VE, Stream, Record); 514 } 515 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 516 if (!StartedMetadataBlock) { 517 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 518 519 // Abbrev for METADATA_STRING. 520 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 521 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 524 MDSAbbrev = Stream.EmitAbbrev(Abbv); 525 StartedMetadataBlock = true; 526 } 527 528 // Code: [strchar x N] 529 Record.append(MDS->begin(), MDS->end()); 530 531 // Emit the finished record. 532 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 533 Record.clear(); 534 } 535 } 536 537 // Write named metadata. 538 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 539 E = M->named_metadata_end(); I != E; ++I) { 540 const NamedMDNode *NMD = I; 541 if (!StartedMetadataBlock) { 542 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 543 StartedMetadataBlock = true; 544 } 545 546 // Write name. 547 StringRef Str = NMD->getName(); 548 for (unsigned i = 0, e = Str.size(); i != e; ++i) 549 Record.push_back(Str[i]); 550 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 551 Record.clear(); 552 553 // Write named metadata operands. 554 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 555 Record.push_back(VE.getValueID(NMD->getOperand(i))); 556 Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0); 557 Record.clear(); 558 } 559 560 if (StartedMetadataBlock) 561 Stream.ExitBlock(); 562 } 563 564 static void WriteFunctionLocalMetadata(const Function &F, 565 const ValueEnumerator &VE, 566 BitstreamWriter &Stream) { 567 bool StartedMetadataBlock = false; 568 SmallVector<uint64_t, 64> Record; 569 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 570 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 571 if (const MDNode *N = Vals[i]) 572 if (N->isFunctionLocal() && N->getFunction() == &F) { 573 if (!StartedMetadataBlock) { 574 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 575 StartedMetadataBlock = true; 576 } 577 WriteMDNode(N, VE, Stream, Record); 578 } 579 580 if (StartedMetadataBlock) 581 Stream.ExitBlock(); 582 } 583 584 static void WriteMetadataAttachment(const Function &F, 585 const ValueEnumerator &VE, 586 BitstreamWriter &Stream) { 587 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 588 589 SmallVector<uint64_t, 64> Record; 590 591 // Write metadata attachments 592 // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]] 593 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 594 595 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 596 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 597 I != E; ++I) { 598 MDs.clear(); 599 I->getAllMetadataOtherThanDebugLoc(MDs); 600 601 // If no metadata, ignore instruction. 602 if (MDs.empty()) continue; 603 604 Record.push_back(VE.getInstructionID(I)); 605 606 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 607 Record.push_back(MDs[i].first); 608 Record.push_back(VE.getValueID(MDs[i].second)); 609 } 610 Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0); 611 Record.clear(); 612 } 613 614 Stream.ExitBlock(); 615 } 616 617 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 618 SmallVector<uint64_t, 64> Record; 619 620 // Write metadata kinds 621 // METADATA_KIND - [n x [id, name]] 622 SmallVector<StringRef, 4> Names; 623 M->getMDKindNames(Names); 624 625 if (Names.empty()) return; 626 627 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 628 629 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 630 Record.push_back(MDKindID); 631 StringRef KName = Names[MDKindID]; 632 Record.append(KName.begin(), KName.end()); 633 634 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 635 Record.clear(); 636 } 637 638 Stream.ExitBlock(); 639 } 640 641 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 642 const ValueEnumerator &VE, 643 BitstreamWriter &Stream, bool isGlobal) { 644 if (FirstVal == LastVal) return; 645 646 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 647 648 unsigned AggregateAbbrev = 0; 649 unsigned String8Abbrev = 0; 650 unsigned CString7Abbrev = 0; 651 unsigned CString6Abbrev = 0; 652 // If this is a constant pool for the module, emit module-specific abbrevs. 653 if (isGlobal) { 654 // Abbrev for CST_CODE_AGGREGATE. 655 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 656 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 659 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 660 661 // Abbrev for CST_CODE_STRING. 662 Abbv = new BitCodeAbbrev(); 663 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 666 String8Abbrev = Stream.EmitAbbrev(Abbv); 667 // Abbrev for CST_CODE_CSTRING. 668 Abbv = new BitCodeAbbrev(); 669 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 672 CString7Abbrev = Stream.EmitAbbrev(Abbv); 673 // Abbrev for CST_CODE_CSTRING. 674 Abbv = new BitCodeAbbrev(); 675 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 678 CString6Abbrev = Stream.EmitAbbrev(Abbv); 679 } 680 681 SmallVector<uint64_t, 64> Record; 682 683 const ValueEnumerator::ValueList &Vals = VE.getValues(); 684 const Type *LastTy = 0; 685 for (unsigned i = FirstVal; i != LastVal; ++i) { 686 const Value *V = Vals[i].first; 687 // If we need to switch types, do so now. 688 if (V->getType() != LastTy) { 689 LastTy = V->getType(); 690 Record.push_back(VE.getTypeID(LastTy)); 691 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 692 CONSTANTS_SETTYPE_ABBREV); 693 Record.clear(); 694 } 695 696 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 697 Record.push_back(unsigned(IA->hasSideEffects()) | 698 unsigned(IA->isAlignStack()) << 1); 699 700 // Add the asm string. 701 const std::string &AsmStr = IA->getAsmString(); 702 Record.push_back(AsmStr.size()); 703 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 704 Record.push_back(AsmStr[i]); 705 706 // Add the constraint string. 707 const std::string &ConstraintStr = IA->getConstraintString(); 708 Record.push_back(ConstraintStr.size()); 709 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 710 Record.push_back(ConstraintStr[i]); 711 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 712 Record.clear(); 713 continue; 714 } 715 const Constant *C = cast<Constant>(V); 716 unsigned Code = -1U; 717 unsigned AbbrevToUse = 0; 718 if (C->isNullValue()) { 719 Code = bitc::CST_CODE_NULL; 720 } else if (isa<UndefValue>(C)) { 721 Code = bitc::CST_CODE_UNDEF; 722 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 723 if (IV->getBitWidth() <= 64) { 724 uint64_t V = IV->getSExtValue(); 725 if ((int64_t)V >= 0) 726 Record.push_back(V << 1); 727 else 728 Record.push_back((-V << 1) | 1); 729 Code = bitc::CST_CODE_INTEGER; 730 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 731 } else { // Wide integers, > 64 bits in size. 732 // We have an arbitrary precision integer value to write whose 733 // bit width is > 64. However, in canonical unsigned integer 734 // format it is likely that the high bits are going to be zero. 735 // So, we only write the number of active words. 736 unsigned NWords = IV->getValue().getActiveWords(); 737 const uint64_t *RawWords = IV->getValue().getRawData(); 738 for (unsigned i = 0; i != NWords; ++i) { 739 int64_t V = RawWords[i]; 740 if (V >= 0) 741 Record.push_back(V << 1); 742 else 743 Record.push_back((-V << 1) | 1); 744 } 745 Code = bitc::CST_CODE_WIDE_INTEGER; 746 } 747 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 748 Code = bitc::CST_CODE_FLOAT; 749 const Type *Ty = CFP->getType(); 750 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 751 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 752 } else if (Ty->isX86_FP80Ty()) { 753 // api needed to prevent premature destruction 754 // bits are not in the same order as a normal i80 APInt, compensate. 755 APInt api = CFP->getValueAPF().bitcastToAPInt(); 756 const uint64_t *p = api.getRawData(); 757 Record.push_back((p[1] << 48) | (p[0] >> 16)); 758 Record.push_back(p[0] & 0xffffLL); 759 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 760 APInt api = CFP->getValueAPF().bitcastToAPInt(); 761 const uint64_t *p = api.getRawData(); 762 Record.push_back(p[0]); 763 Record.push_back(p[1]); 764 } else { 765 assert (0 && "Unknown FP type!"); 766 } 767 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 768 const ConstantArray *CA = cast<ConstantArray>(C); 769 // Emit constant strings specially. 770 unsigned NumOps = CA->getNumOperands(); 771 // If this is a null-terminated string, use the denser CSTRING encoding. 772 if (CA->getOperand(NumOps-1)->isNullValue()) { 773 Code = bitc::CST_CODE_CSTRING; 774 --NumOps; // Don't encode the null, which isn't allowed by char6. 775 } else { 776 Code = bitc::CST_CODE_STRING; 777 AbbrevToUse = String8Abbrev; 778 } 779 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 780 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 781 for (unsigned i = 0; i != NumOps; ++i) { 782 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 783 Record.push_back(V); 784 isCStr7 &= (V & 128) == 0; 785 if (isCStrChar6) 786 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 787 } 788 789 if (isCStrChar6) 790 AbbrevToUse = CString6Abbrev; 791 else if (isCStr7) 792 AbbrevToUse = CString7Abbrev; 793 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 794 isa<ConstantVector>(V)) { 795 Code = bitc::CST_CODE_AGGREGATE; 796 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 797 Record.push_back(VE.getValueID(C->getOperand(i))); 798 AbbrevToUse = AggregateAbbrev; 799 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 800 switch (CE->getOpcode()) { 801 default: 802 if (Instruction::isCast(CE->getOpcode())) { 803 Code = bitc::CST_CODE_CE_CAST; 804 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 805 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 806 Record.push_back(VE.getValueID(C->getOperand(0))); 807 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 808 } else { 809 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 810 Code = bitc::CST_CODE_CE_BINOP; 811 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 812 Record.push_back(VE.getValueID(C->getOperand(0))); 813 Record.push_back(VE.getValueID(C->getOperand(1))); 814 uint64_t Flags = GetOptimizationFlags(CE); 815 if (Flags != 0) 816 Record.push_back(Flags); 817 } 818 break; 819 case Instruction::GetElementPtr: 820 Code = bitc::CST_CODE_CE_GEP; 821 if (cast<GEPOperator>(C)->isInBounds()) 822 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 823 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 824 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 825 Record.push_back(VE.getValueID(C->getOperand(i))); 826 } 827 break; 828 case Instruction::Select: 829 Code = bitc::CST_CODE_CE_SELECT; 830 Record.push_back(VE.getValueID(C->getOperand(0))); 831 Record.push_back(VE.getValueID(C->getOperand(1))); 832 Record.push_back(VE.getValueID(C->getOperand(2))); 833 break; 834 case Instruction::ExtractElement: 835 Code = bitc::CST_CODE_CE_EXTRACTELT; 836 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 837 Record.push_back(VE.getValueID(C->getOperand(0))); 838 Record.push_back(VE.getValueID(C->getOperand(1))); 839 break; 840 case Instruction::InsertElement: 841 Code = bitc::CST_CODE_CE_INSERTELT; 842 Record.push_back(VE.getValueID(C->getOperand(0))); 843 Record.push_back(VE.getValueID(C->getOperand(1))); 844 Record.push_back(VE.getValueID(C->getOperand(2))); 845 break; 846 case Instruction::ShuffleVector: 847 // If the return type and argument types are the same, this is a 848 // standard shufflevector instruction. If the types are different, 849 // then the shuffle is widening or truncating the input vectors, and 850 // the argument type must also be encoded. 851 if (C->getType() == C->getOperand(0)->getType()) { 852 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 853 } else { 854 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 855 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 856 } 857 Record.push_back(VE.getValueID(C->getOperand(0))); 858 Record.push_back(VE.getValueID(C->getOperand(1))); 859 Record.push_back(VE.getValueID(C->getOperand(2))); 860 break; 861 case Instruction::ICmp: 862 case Instruction::FCmp: 863 Code = bitc::CST_CODE_CE_CMP; 864 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 865 Record.push_back(VE.getValueID(C->getOperand(0))); 866 Record.push_back(VE.getValueID(C->getOperand(1))); 867 Record.push_back(CE->getPredicate()); 868 break; 869 } 870 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 871 Code = bitc::CST_CODE_BLOCKADDRESS; 872 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 873 Record.push_back(VE.getValueID(BA->getFunction())); 874 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 875 } else { 876 #ifndef NDEBUG 877 C->dump(); 878 #endif 879 llvm_unreachable("Unknown constant!"); 880 } 881 Stream.EmitRecord(Code, Record, AbbrevToUse); 882 Record.clear(); 883 } 884 885 Stream.ExitBlock(); 886 } 887 888 static void WriteModuleConstants(const ValueEnumerator &VE, 889 BitstreamWriter &Stream) { 890 const ValueEnumerator::ValueList &Vals = VE.getValues(); 891 892 // Find the first constant to emit, which is the first non-globalvalue value. 893 // We know globalvalues have been emitted by WriteModuleInfo. 894 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 895 if (!isa<GlobalValue>(Vals[i].first)) { 896 WriteConstants(i, Vals.size(), VE, Stream, true); 897 return; 898 } 899 } 900 } 901 902 /// PushValueAndType - The file has to encode both the value and type id for 903 /// many values, because we need to know what type to create for forward 904 /// references. However, most operands are not forward references, so this type 905 /// field is not needed. 906 /// 907 /// This function adds V's value ID to Vals. If the value ID is higher than the 908 /// instruction ID, then it is a forward reference, and it also includes the 909 /// type ID. 910 static bool PushValueAndType(const Value *V, unsigned InstID, 911 SmallVector<unsigned, 64> &Vals, 912 ValueEnumerator &VE) { 913 unsigned ValID = VE.getValueID(V); 914 Vals.push_back(ValID); 915 if (ValID >= InstID) { 916 Vals.push_back(VE.getTypeID(V->getType())); 917 return true; 918 } 919 return false; 920 } 921 922 /// WriteInstruction - Emit an instruction to the specified stream. 923 static void WriteInstruction(const Instruction &I, unsigned InstID, 924 ValueEnumerator &VE, BitstreamWriter &Stream, 925 SmallVector<unsigned, 64> &Vals) { 926 unsigned Code = 0; 927 unsigned AbbrevToUse = 0; 928 VE.setInstructionID(&I); 929 switch (I.getOpcode()) { 930 default: 931 if (Instruction::isCast(I.getOpcode())) { 932 Code = bitc::FUNC_CODE_INST_CAST; 933 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 934 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 935 Vals.push_back(VE.getTypeID(I.getType())); 936 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 937 } else { 938 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 939 Code = bitc::FUNC_CODE_INST_BINOP; 940 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 941 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 942 Vals.push_back(VE.getValueID(I.getOperand(1))); 943 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 944 uint64_t Flags = GetOptimizationFlags(&I); 945 if (Flags != 0) { 946 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 947 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 948 Vals.push_back(Flags); 949 } 950 } 951 break; 952 953 case Instruction::GetElementPtr: 954 Code = bitc::FUNC_CODE_INST_GEP; 955 if (cast<GEPOperator>(&I)->isInBounds()) 956 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 957 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 958 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 959 break; 960 case Instruction::ExtractValue: { 961 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 962 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 963 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 964 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 965 Vals.push_back(*i); 966 break; 967 } 968 case Instruction::InsertValue: { 969 Code = bitc::FUNC_CODE_INST_INSERTVAL; 970 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 971 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 972 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 973 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 974 Vals.push_back(*i); 975 break; 976 } 977 case Instruction::Select: 978 Code = bitc::FUNC_CODE_INST_VSELECT; 979 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 980 Vals.push_back(VE.getValueID(I.getOperand(2))); 981 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 982 break; 983 case Instruction::ExtractElement: 984 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 985 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 986 Vals.push_back(VE.getValueID(I.getOperand(1))); 987 break; 988 case Instruction::InsertElement: 989 Code = bitc::FUNC_CODE_INST_INSERTELT; 990 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 991 Vals.push_back(VE.getValueID(I.getOperand(1))); 992 Vals.push_back(VE.getValueID(I.getOperand(2))); 993 break; 994 case Instruction::ShuffleVector: 995 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 996 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 997 Vals.push_back(VE.getValueID(I.getOperand(1))); 998 Vals.push_back(VE.getValueID(I.getOperand(2))); 999 break; 1000 case Instruction::ICmp: 1001 case Instruction::FCmp: 1002 // compare returning Int1Ty or vector of Int1Ty 1003 Code = bitc::FUNC_CODE_INST_CMP2; 1004 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1005 Vals.push_back(VE.getValueID(I.getOperand(1))); 1006 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1007 break; 1008 1009 case Instruction::Ret: 1010 { 1011 Code = bitc::FUNC_CODE_INST_RET; 1012 unsigned NumOperands = I.getNumOperands(); 1013 if (NumOperands == 0) 1014 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1015 else if (NumOperands == 1) { 1016 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1017 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1018 } else { 1019 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1020 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1021 } 1022 } 1023 break; 1024 case Instruction::Br: 1025 { 1026 Code = bitc::FUNC_CODE_INST_BR; 1027 BranchInst &II = cast<BranchInst>(I); 1028 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1029 if (II.isConditional()) { 1030 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1031 Vals.push_back(VE.getValueID(II.getCondition())); 1032 } 1033 } 1034 break; 1035 case Instruction::Switch: 1036 Code = bitc::FUNC_CODE_INST_SWITCH; 1037 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1038 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1039 Vals.push_back(VE.getValueID(I.getOperand(i))); 1040 break; 1041 case Instruction::IndirectBr: 1042 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1043 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1044 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1045 Vals.push_back(VE.getValueID(I.getOperand(i))); 1046 break; 1047 1048 case Instruction::Invoke: { 1049 const InvokeInst *II = cast<InvokeInst>(&I); 1050 const Value *Callee(II->getCalledValue()); 1051 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1052 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1053 Code = bitc::FUNC_CODE_INST_INVOKE; 1054 1055 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1056 Vals.push_back(II->getCallingConv()); 1057 Vals.push_back(VE.getValueID(II->getNormalDest())); 1058 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1059 PushValueAndType(Callee, InstID, Vals, VE); 1060 1061 // Emit value #'s for the fixed parameters. 1062 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1063 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1064 1065 // Emit type/value pairs for varargs params. 1066 if (FTy->isVarArg()) { 1067 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1068 i != e; ++i) 1069 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1070 } 1071 break; 1072 } 1073 case Instruction::Unwind: 1074 Code = bitc::FUNC_CODE_INST_UNWIND; 1075 break; 1076 case Instruction::Unreachable: 1077 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1078 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1079 break; 1080 1081 case Instruction::PHI: 1082 Code = bitc::FUNC_CODE_INST_PHI; 1083 Vals.push_back(VE.getTypeID(I.getType())); 1084 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1085 Vals.push_back(VE.getValueID(I.getOperand(i))); 1086 break; 1087 1088 case Instruction::Alloca: 1089 Code = bitc::FUNC_CODE_INST_ALLOCA; 1090 Vals.push_back(VE.getTypeID(I.getType())); 1091 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1092 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1093 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1094 break; 1095 1096 case Instruction::Load: 1097 Code = bitc::FUNC_CODE_INST_LOAD; 1098 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1099 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1100 1101 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1102 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1103 break; 1104 case Instruction::Store: 1105 Code = bitc::FUNC_CODE_INST_STORE2; 1106 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1107 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1108 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1109 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1110 break; 1111 case Instruction::Call: { 1112 const CallInst &CI = cast<CallInst>(I); 1113 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1114 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1115 1116 Code = bitc::FUNC_CODE_INST_CALL2; 1117 1118 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1119 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1120 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1121 1122 // Emit value #'s for the fixed parameters. 1123 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1124 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1125 1126 // Emit type/value pairs for varargs params. 1127 if (FTy->isVarArg()) { 1128 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1129 i != e; ++i) 1130 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1131 } 1132 break; 1133 } 1134 case Instruction::VAArg: 1135 Code = bitc::FUNC_CODE_INST_VAARG; 1136 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1137 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1138 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1139 break; 1140 } 1141 1142 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1143 Vals.clear(); 1144 } 1145 1146 // Emit names for globals/functions etc. 1147 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1148 const ValueEnumerator &VE, 1149 BitstreamWriter &Stream) { 1150 if (VST.empty()) return; 1151 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1152 1153 // FIXME: Set up the abbrev, we know how many values there are! 1154 // FIXME: We know if the type names can use 7-bit ascii. 1155 SmallVector<unsigned, 64> NameVals; 1156 1157 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1158 SI != SE; ++SI) { 1159 1160 const ValueName &Name = *SI; 1161 1162 // Figure out the encoding to use for the name. 1163 bool is7Bit = true; 1164 bool isChar6 = true; 1165 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1166 C != E; ++C) { 1167 if (isChar6) 1168 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1169 if ((unsigned char)*C & 128) { 1170 is7Bit = false; 1171 break; // don't bother scanning the rest. 1172 } 1173 } 1174 1175 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1176 1177 // VST_ENTRY: [valueid, namechar x N] 1178 // VST_BBENTRY: [bbid, namechar x N] 1179 unsigned Code; 1180 if (isa<BasicBlock>(SI->getValue())) { 1181 Code = bitc::VST_CODE_BBENTRY; 1182 if (isChar6) 1183 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1184 } else { 1185 Code = bitc::VST_CODE_ENTRY; 1186 if (isChar6) 1187 AbbrevToUse = VST_ENTRY_6_ABBREV; 1188 else if (is7Bit) 1189 AbbrevToUse = VST_ENTRY_7_ABBREV; 1190 } 1191 1192 NameVals.push_back(VE.getValueID(SI->getValue())); 1193 for (const char *P = Name.getKeyData(), 1194 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1195 NameVals.push_back((unsigned char)*P); 1196 1197 // Emit the finished record. 1198 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1199 NameVals.clear(); 1200 } 1201 Stream.ExitBlock(); 1202 } 1203 1204 /// WriteFunction - Emit a function body to the module stream. 1205 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1206 BitstreamWriter &Stream) { 1207 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1208 VE.incorporateFunction(F); 1209 1210 SmallVector<unsigned, 64> Vals; 1211 1212 // Emit the number of basic blocks, so the reader can create them ahead of 1213 // time. 1214 Vals.push_back(VE.getBasicBlocks().size()); 1215 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1216 Vals.clear(); 1217 1218 // If there are function-local constants, emit them now. 1219 unsigned CstStart, CstEnd; 1220 VE.getFunctionConstantRange(CstStart, CstEnd); 1221 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1222 1223 // If there is function-local metadata, emit it now. 1224 WriteFunctionLocalMetadata(F, VE, Stream); 1225 1226 // Keep a running idea of what the instruction ID is. 1227 unsigned InstID = CstEnd; 1228 1229 bool NeedsMetadataAttachment = false; 1230 1231 DebugLoc LastDL; 1232 1233 // Finally, emit all the instructions, in order. 1234 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1235 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1236 I != E; ++I) { 1237 WriteInstruction(*I, InstID, VE, Stream, Vals); 1238 1239 if (!I->getType()->isVoidTy()) 1240 ++InstID; 1241 1242 // If the instruction has metadata, write a metadata attachment later. 1243 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1244 1245 // If the instruction has a debug location, emit it. 1246 DebugLoc DL = I->getDebugLoc(); 1247 if (DL.isUnknown()) { 1248 // nothing todo. 1249 } else if (DL == LastDL) { 1250 // Just repeat the same debug loc as last time. 1251 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1252 } else { 1253 MDNode *Scope, *IA; 1254 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1255 1256 Vals.push_back(DL.getLine()); 1257 Vals.push_back(DL.getCol()); 1258 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1259 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1260 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals); 1261 Vals.clear(); 1262 1263 LastDL = DL; 1264 } 1265 } 1266 1267 // Emit names for all the instructions etc. 1268 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1269 1270 if (NeedsMetadataAttachment) 1271 WriteMetadataAttachment(F, VE, Stream); 1272 VE.purgeFunction(); 1273 Stream.ExitBlock(); 1274 } 1275 1276 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1277 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1278 const ValueEnumerator &VE, 1279 BitstreamWriter &Stream) { 1280 if (TST.empty()) return; 1281 1282 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1283 1284 // 7-bit fixed width VST_CODE_ENTRY strings. 1285 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1286 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1288 Log2_32_Ceil(VE.getTypes().size()+1))); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1291 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1292 1293 SmallVector<unsigned, 64> NameVals; 1294 1295 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1296 TI != TE; ++TI) { 1297 // TST_ENTRY: [typeid, namechar x N] 1298 NameVals.push_back(VE.getTypeID(TI->second)); 1299 1300 const std::string &Str = TI->first; 1301 bool is7Bit = true; 1302 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1303 NameVals.push_back((unsigned char)Str[i]); 1304 if (Str[i] & 128) 1305 is7Bit = false; 1306 } 1307 1308 // Emit the finished record. 1309 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1310 NameVals.clear(); 1311 } 1312 1313 Stream.ExitBlock(); 1314 } 1315 1316 // Emit blockinfo, which defines the standard abbreviations etc. 1317 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1318 // We only want to emit block info records for blocks that have multiple 1319 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1320 // blocks can defined their abbrevs inline. 1321 Stream.EnterBlockInfoBlock(2); 1322 1323 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1324 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1329 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1330 Abbv) != VST_ENTRY_8_ABBREV) 1331 llvm_unreachable("Unexpected abbrev ordering!"); 1332 } 1333 1334 { // 7-bit fixed width VST_ENTRY strings. 1335 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1336 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1340 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1341 Abbv) != VST_ENTRY_7_ABBREV) 1342 llvm_unreachable("Unexpected abbrev ordering!"); 1343 } 1344 { // 6-bit char6 VST_ENTRY strings. 1345 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1346 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1350 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1351 Abbv) != VST_ENTRY_6_ABBREV) 1352 llvm_unreachable("Unexpected abbrev ordering!"); 1353 } 1354 { // 6-bit char6 VST_BBENTRY strings. 1355 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1356 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1360 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1361 Abbv) != VST_BBENTRY_6_ABBREV) 1362 llvm_unreachable("Unexpected abbrev ordering!"); 1363 } 1364 1365 1366 1367 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1368 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1369 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1371 Log2_32_Ceil(VE.getTypes().size()+1))); 1372 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1373 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1374 llvm_unreachable("Unexpected abbrev ordering!"); 1375 } 1376 1377 { // INTEGER abbrev for CONSTANTS_BLOCK. 1378 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1379 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1381 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1382 Abbv) != CONSTANTS_INTEGER_ABBREV) 1383 llvm_unreachable("Unexpected abbrev ordering!"); 1384 } 1385 1386 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1387 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1388 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1391 Log2_32_Ceil(VE.getTypes().size()+1))); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1393 1394 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1395 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1396 llvm_unreachable("Unexpected abbrev ordering!"); 1397 } 1398 { // NULL abbrev for CONSTANTS_BLOCK. 1399 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1400 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1401 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1402 Abbv) != CONSTANTS_NULL_Abbrev) 1403 llvm_unreachable("Unexpected abbrev ordering!"); 1404 } 1405 1406 // FIXME: This should only use space for first class types! 1407 1408 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1409 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1410 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1414 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1415 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1416 llvm_unreachable("Unexpected abbrev ordering!"); 1417 } 1418 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1419 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1420 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1424 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1425 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1426 llvm_unreachable("Unexpected abbrev ordering!"); 1427 } 1428 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1429 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1430 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1435 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1436 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1437 llvm_unreachable("Unexpected abbrev ordering!"); 1438 } 1439 { // INST_CAST abbrev for FUNCTION_BLOCK. 1440 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1441 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1444 Log2_32_Ceil(VE.getTypes().size()+1))); 1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1446 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1447 Abbv) != FUNCTION_INST_CAST_ABBREV) 1448 llvm_unreachable("Unexpected abbrev ordering!"); 1449 } 1450 1451 { // INST_RET abbrev for FUNCTION_BLOCK. 1452 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1453 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1454 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1455 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1456 llvm_unreachable("Unexpected abbrev ordering!"); 1457 } 1458 { // INST_RET abbrev for FUNCTION_BLOCK. 1459 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1460 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1462 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1463 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1464 llvm_unreachable("Unexpected abbrev ordering!"); 1465 } 1466 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1467 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1468 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1469 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1470 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1471 llvm_unreachable("Unexpected abbrev ordering!"); 1472 } 1473 1474 Stream.ExitBlock(); 1475 } 1476 1477 1478 /// WriteModule - Emit the specified module to the bitstream. 1479 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1480 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1481 1482 // Emit the version number if it is non-zero. 1483 if (CurVersion) { 1484 SmallVector<unsigned, 1> Vals; 1485 Vals.push_back(CurVersion); 1486 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1487 } 1488 1489 // Analyze the module, enumerating globals, functions, etc. 1490 ValueEnumerator VE(M); 1491 1492 // Emit blockinfo, which defines the standard abbreviations etc. 1493 WriteBlockInfo(VE, Stream); 1494 1495 // Emit information about parameter attributes. 1496 WriteAttributeTable(VE, Stream); 1497 1498 // Emit information describing all of the types in the module. 1499 WriteTypeTable(VE, Stream); 1500 1501 // Emit top-level description of module, including target triple, inline asm, 1502 // descriptors for global variables, and function prototype info. 1503 WriteModuleInfo(M, VE, Stream); 1504 1505 // Emit constants. 1506 WriteModuleConstants(VE, Stream); 1507 1508 // Emit metadata. 1509 WriteModuleMetadata(M, VE, Stream); 1510 1511 // Emit function bodies. 1512 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1513 if (!F->isDeclaration()) 1514 WriteFunction(*F, VE, Stream); 1515 1516 // Emit metadata. 1517 WriteModuleMetadataStore(M, Stream); 1518 1519 // Emit the type symbol table information. 1520 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1521 1522 // Emit names for globals/functions etc. 1523 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1524 1525 Stream.ExitBlock(); 1526 } 1527 1528 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1529 /// header and trailer to make it compatible with the system archiver. To do 1530 /// this we emit the following header, and then emit a trailer that pads the 1531 /// file out to be a multiple of 16 bytes. 1532 /// 1533 /// struct bc_header { 1534 /// uint32_t Magic; // 0x0B17C0DE 1535 /// uint32_t Version; // Version, currently always 0. 1536 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1537 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1538 /// uint32_t CPUType; // CPU specifier. 1539 /// ... potentially more later ... 1540 /// }; 1541 enum { 1542 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1543 DarwinBCHeaderSize = 5*4 1544 }; 1545 1546 /// isARMTriplet - Return true if the triplet looks like: 1547 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1548 static bool isARMTriplet(const std::string &TT) { 1549 size_t Pos = 0; 1550 size_t Size = TT.size(); 1551 if (Size >= 6 && 1552 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1553 TT[3] == 'm' && TT[4] == 'b') 1554 Pos = 5; 1555 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1556 Pos = 3; 1557 else 1558 return false; 1559 1560 if (TT[Pos] == '-') 1561 return true; 1562 else if (TT[Pos] == 'v') { 1563 if (Size >= Pos+4 && 1564 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1565 return true; 1566 else if (Size >= Pos+4 && 1567 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1568 return true; 1569 } else 1570 return false; 1571 while (++Pos < Size && TT[Pos] != '-') { 1572 if (!isdigit(TT[Pos])) 1573 return false; 1574 } 1575 return true; 1576 } 1577 1578 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1579 const std::string &TT) { 1580 unsigned CPUType = ~0U; 1581 1582 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1583 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1584 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1585 // specific constants here because they are implicitly part of the Darwin ABI. 1586 enum { 1587 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1588 DARWIN_CPU_TYPE_X86 = 7, 1589 DARWIN_CPU_TYPE_ARM = 12, 1590 DARWIN_CPU_TYPE_POWERPC = 18 1591 }; 1592 1593 if (TT.find("x86_64-") == 0) 1594 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1595 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1596 TT[4] == '-' && TT[1] - '3' < 6) 1597 CPUType = DARWIN_CPU_TYPE_X86; 1598 else if (TT.find("powerpc-") == 0) 1599 CPUType = DARWIN_CPU_TYPE_POWERPC; 1600 else if (TT.find("powerpc64-") == 0) 1601 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1602 else if (isARMTriplet(TT)) 1603 CPUType = DARWIN_CPU_TYPE_ARM; 1604 1605 // Traditional Bitcode starts after header. 1606 unsigned BCOffset = DarwinBCHeaderSize; 1607 1608 Stream.Emit(0x0B17C0DE, 32); 1609 Stream.Emit(0 , 32); // Version. 1610 Stream.Emit(BCOffset , 32); 1611 Stream.Emit(0 , 32); // Filled in later. 1612 Stream.Emit(CPUType , 32); 1613 } 1614 1615 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1616 /// finalize the header. 1617 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1618 // Update the size field in the header. 1619 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1620 1621 // If the file is not a multiple of 16 bytes, insert dummy padding. 1622 while (BufferSize & 15) { 1623 Stream.Emit(0, 8); 1624 ++BufferSize; 1625 } 1626 } 1627 1628 1629 /// WriteBitcodeToFile - Write the specified module to the specified output 1630 /// stream. 1631 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1632 std::vector<unsigned char> Buffer; 1633 BitstreamWriter Stream(Buffer); 1634 1635 Buffer.reserve(256*1024); 1636 1637 WriteBitcodeToStream( M, Stream ); 1638 1639 // Write the generated bitstream to "Out". 1640 Out.write((char*)&Buffer.front(), Buffer.size()); 1641 } 1642 1643 /// WriteBitcodeToStream - Write the specified module to the specified output 1644 /// stream. 1645 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1646 // If this is darwin or another generic macho target, emit a file header and 1647 // trailer if needed. 1648 bool isMacho = 1649 M->getTargetTriple().find("-darwin") != std::string::npos || 1650 M->getTargetTriple().find("-macho") != std::string::npos; 1651 if (isMacho) 1652 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1653 1654 // Emit the file header. 1655 Stream.Emit((unsigned)'B', 8); 1656 Stream.Emit((unsigned)'C', 8); 1657 Stream.Emit(0x0, 4); 1658 Stream.Emit(0xC, 4); 1659 Stream.Emit(0xE, 4); 1660 Stream.Emit(0xD, 4); 1661 1662 // Emit the module. 1663 WriteModule(M, Stream); 1664 1665 if (isMacho) 1666 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1667 } 1668