1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::ArgMemOnly: 166 return bitc::ATTR_KIND_ARGMEMONLY; 167 case Attribute::Builtin: 168 return bitc::ATTR_KIND_BUILTIN; 169 case Attribute::ByVal: 170 return bitc::ATTR_KIND_BY_VAL; 171 case Attribute::Convergent: 172 return bitc::ATTR_KIND_CONVERGENT; 173 case Attribute::InAlloca: 174 return bitc::ATTR_KIND_IN_ALLOCA; 175 case Attribute::Cold: 176 return bitc::ATTR_KIND_COLD; 177 case Attribute::InlineHint: 178 return bitc::ATTR_KIND_INLINE_HINT; 179 case Attribute::InReg: 180 return bitc::ATTR_KIND_IN_REG; 181 case Attribute::JumpTable: 182 return bitc::ATTR_KIND_JUMP_TABLE; 183 case Attribute::MinSize: 184 return bitc::ATTR_KIND_MIN_SIZE; 185 case Attribute::Naked: 186 return bitc::ATTR_KIND_NAKED; 187 case Attribute::Nest: 188 return bitc::ATTR_KIND_NEST; 189 case Attribute::NoAlias: 190 return bitc::ATTR_KIND_NO_ALIAS; 191 case Attribute::NoBuiltin: 192 return bitc::ATTR_KIND_NO_BUILTIN; 193 case Attribute::NoCapture: 194 return bitc::ATTR_KIND_NO_CAPTURE; 195 case Attribute::NoDuplicate: 196 return bitc::ATTR_KIND_NO_DUPLICATE; 197 case Attribute::NoImplicitFloat: 198 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 199 case Attribute::NoInline: 200 return bitc::ATTR_KIND_NO_INLINE; 201 case Attribute::NonLazyBind: 202 return bitc::ATTR_KIND_NON_LAZY_BIND; 203 case Attribute::NonNull: 204 return bitc::ATTR_KIND_NON_NULL; 205 case Attribute::Dereferenceable: 206 return bitc::ATTR_KIND_DEREFERENCEABLE; 207 case Attribute::DereferenceableOrNull: 208 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 209 case Attribute::NoRedZone: 210 return bitc::ATTR_KIND_NO_RED_ZONE; 211 case Attribute::NoReturn: 212 return bitc::ATTR_KIND_NO_RETURN; 213 case Attribute::NoUnwind: 214 return bitc::ATTR_KIND_NO_UNWIND; 215 case Attribute::OptimizeForSize: 216 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 217 case Attribute::OptimizeNone: 218 return bitc::ATTR_KIND_OPTIMIZE_NONE; 219 case Attribute::ReadNone: 220 return bitc::ATTR_KIND_READ_NONE; 221 case Attribute::ReadOnly: 222 return bitc::ATTR_KIND_READ_ONLY; 223 case Attribute::Returned: 224 return bitc::ATTR_KIND_RETURNED; 225 case Attribute::ReturnsTwice: 226 return bitc::ATTR_KIND_RETURNS_TWICE; 227 case Attribute::SExt: 228 return bitc::ATTR_KIND_S_EXT; 229 case Attribute::StackAlignment: 230 return bitc::ATTR_KIND_STACK_ALIGNMENT; 231 case Attribute::StackProtect: 232 return bitc::ATTR_KIND_STACK_PROTECT; 233 case Attribute::StackProtectReq: 234 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 235 case Attribute::StackProtectStrong: 236 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 237 case Attribute::SafeStack: 238 return bitc::ATTR_KIND_SAFESTACK; 239 case Attribute::StructRet: 240 return bitc::ATTR_KIND_STRUCT_RET; 241 case Attribute::SanitizeAddress: 242 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 243 case Attribute::SanitizeThread: 244 return bitc::ATTR_KIND_SANITIZE_THREAD; 245 case Attribute::SanitizeMemory: 246 return bitc::ATTR_KIND_SANITIZE_MEMORY; 247 case Attribute::UWTable: 248 return bitc::ATTR_KIND_UW_TABLE; 249 case Attribute::ZExt: 250 return bitc::ATTR_KIND_Z_EXT; 251 case Attribute::EndAttrKinds: 252 llvm_unreachable("Can not encode end-attribute kinds marker."); 253 case Attribute::None: 254 llvm_unreachable("Can not encode none-attribute."); 255 } 256 257 llvm_unreachable("Trying to encode unknown attribute"); 258 } 259 260 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 261 BitstreamWriter &Stream) { 262 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 263 if (AttrGrps.empty()) return; 264 265 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 266 267 SmallVector<uint64_t, 64> Record; 268 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 269 AttributeSet AS = AttrGrps[i]; 270 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 271 AttributeSet A = AS.getSlotAttributes(i); 272 273 Record.push_back(VE.getAttributeGroupID(A)); 274 Record.push_back(AS.getSlotIndex(i)); 275 276 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 277 I != E; ++I) { 278 Attribute Attr = *I; 279 if (Attr.isEnumAttribute()) { 280 Record.push_back(0); 281 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 282 } else if (Attr.isIntAttribute()) { 283 Record.push_back(1); 284 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 285 Record.push_back(Attr.getValueAsInt()); 286 } else { 287 StringRef Kind = Attr.getKindAsString(); 288 StringRef Val = Attr.getValueAsString(); 289 290 Record.push_back(Val.empty() ? 3 : 4); 291 Record.append(Kind.begin(), Kind.end()); 292 Record.push_back(0); 293 if (!Val.empty()) { 294 Record.append(Val.begin(), Val.end()); 295 Record.push_back(0); 296 } 297 } 298 } 299 300 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 301 Record.clear(); 302 } 303 } 304 305 Stream.ExitBlock(); 306 } 307 308 static void WriteAttributeTable(const ValueEnumerator &VE, 309 BitstreamWriter &Stream) { 310 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 311 if (Attrs.empty()) return; 312 313 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 314 315 SmallVector<uint64_t, 64> Record; 316 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 317 const AttributeSet &A = Attrs[i]; 318 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 319 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 320 321 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 322 Record.clear(); 323 } 324 325 Stream.ExitBlock(); 326 } 327 328 /// WriteTypeTable - Write out the type table for a module. 329 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 330 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 331 332 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 333 SmallVector<uint64_t, 64> TypeVals; 334 335 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 336 337 // Abbrev for TYPE_CODE_POINTER. 338 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 342 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_FUNCTION. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_ANON. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 359 360 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 361 362 // Abbrev for TYPE_CODE_STRUCT_NAME. 363 Abbv = new BitCodeAbbrev(); 364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 367 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_STRUCT_NAMED. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Abbrev for TYPE_CODE_ARRAY. 379 Abbv = new BitCodeAbbrev(); 380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 383 384 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 385 386 // Emit an entry count so the reader can reserve space. 387 TypeVals.push_back(TypeList.size()); 388 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 389 TypeVals.clear(); 390 391 // Loop over all of the types, emitting each in turn. 392 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 393 Type *T = TypeList[i]; 394 int AbbrevToUse = 0; 395 unsigned Code = 0; 396 397 switch (T->getTypeID()) { 398 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 399 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 400 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 401 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 402 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 403 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 404 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 405 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 406 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 407 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 408 case Type::IntegerTyID: 409 // INTEGER: [width] 410 Code = bitc::TYPE_CODE_INTEGER; 411 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 412 break; 413 case Type::PointerTyID: { 414 PointerType *PTy = cast<PointerType>(T); 415 // POINTER: [pointee type, address space] 416 Code = bitc::TYPE_CODE_POINTER; 417 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 418 unsigned AddressSpace = PTy->getAddressSpace(); 419 TypeVals.push_back(AddressSpace); 420 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 421 break; 422 } 423 case Type::FunctionTyID: { 424 FunctionType *FT = cast<FunctionType>(T); 425 // FUNCTION: [isvararg, retty, paramty x N] 426 Code = bitc::TYPE_CODE_FUNCTION; 427 TypeVals.push_back(FT->isVarArg()); 428 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 429 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 430 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 431 AbbrevToUse = FunctionAbbrev; 432 break; 433 } 434 case Type::StructTyID: { 435 StructType *ST = cast<StructType>(T); 436 // STRUCT: [ispacked, eltty x N] 437 TypeVals.push_back(ST->isPacked()); 438 // Output all of the element types. 439 for (StructType::element_iterator I = ST->element_begin(), 440 E = ST->element_end(); I != E; ++I) 441 TypeVals.push_back(VE.getTypeID(*I)); 442 443 if (ST->isLiteral()) { 444 Code = bitc::TYPE_CODE_STRUCT_ANON; 445 AbbrevToUse = StructAnonAbbrev; 446 } else { 447 if (ST->isOpaque()) { 448 Code = bitc::TYPE_CODE_OPAQUE; 449 } else { 450 Code = bitc::TYPE_CODE_STRUCT_NAMED; 451 AbbrevToUse = StructNamedAbbrev; 452 } 453 454 // Emit the name if it is present. 455 if (!ST->getName().empty()) 456 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 457 StructNameAbbrev, Stream); 458 } 459 break; 460 } 461 case Type::ArrayTyID: { 462 ArrayType *AT = cast<ArrayType>(T); 463 // ARRAY: [numelts, eltty] 464 Code = bitc::TYPE_CODE_ARRAY; 465 TypeVals.push_back(AT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 467 AbbrevToUse = ArrayAbbrev; 468 break; 469 } 470 case Type::VectorTyID: { 471 VectorType *VT = cast<VectorType>(T); 472 // VECTOR [numelts, eltty] 473 Code = bitc::TYPE_CODE_VECTOR; 474 TypeVals.push_back(VT->getNumElements()); 475 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 476 break; 477 } 478 } 479 480 // Emit the finished record. 481 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 482 TypeVals.clear(); 483 } 484 485 Stream.ExitBlock(); 486 } 487 488 static unsigned getEncodedLinkage(const GlobalValue &GV) { 489 switch (GV.getLinkage()) { 490 case GlobalValue::ExternalLinkage: 491 return 0; 492 case GlobalValue::WeakAnyLinkage: 493 return 16; 494 case GlobalValue::AppendingLinkage: 495 return 2; 496 case GlobalValue::InternalLinkage: 497 return 3; 498 case GlobalValue::LinkOnceAnyLinkage: 499 return 18; 500 case GlobalValue::ExternalWeakLinkage: 501 return 7; 502 case GlobalValue::CommonLinkage: 503 return 8; 504 case GlobalValue::PrivateLinkage: 505 return 9; 506 case GlobalValue::WeakODRLinkage: 507 return 17; 508 case GlobalValue::LinkOnceODRLinkage: 509 return 19; 510 case GlobalValue::AvailableExternallyLinkage: 511 return 12; 512 } 513 llvm_unreachable("Invalid linkage"); 514 } 515 516 static unsigned getEncodedVisibility(const GlobalValue &GV) { 517 switch (GV.getVisibility()) { 518 case GlobalValue::DefaultVisibility: return 0; 519 case GlobalValue::HiddenVisibility: return 1; 520 case GlobalValue::ProtectedVisibility: return 2; 521 } 522 llvm_unreachable("Invalid visibility"); 523 } 524 525 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 526 switch (GV.getDLLStorageClass()) { 527 case GlobalValue::DefaultStorageClass: return 0; 528 case GlobalValue::DLLImportStorageClass: return 1; 529 case GlobalValue::DLLExportStorageClass: return 2; 530 } 531 llvm_unreachable("Invalid DLL storage class"); 532 } 533 534 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 535 switch (GV.getThreadLocalMode()) { 536 case GlobalVariable::NotThreadLocal: return 0; 537 case GlobalVariable::GeneralDynamicTLSModel: return 1; 538 case GlobalVariable::LocalDynamicTLSModel: return 2; 539 case GlobalVariable::InitialExecTLSModel: return 3; 540 case GlobalVariable::LocalExecTLSModel: return 4; 541 } 542 llvm_unreachable("Invalid TLS model"); 543 } 544 545 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 546 switch (C.getSelectionKind()) { 547 case Comdat::Any: 548 return bitc::COMDAT_SELECTION_KIND_ANY; 549 case Comdat::ExactMatch: 550 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 551 case Comdat::Largest: 552 return bitc::COMDAT_SELECTION_KIND_LARGEST; 553 case Comdat::NoDuplicates: 554 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 555 case Comdat::SameSize: 556 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 557 } 558 llvm_unreachable("Invalid selection kind"); 559 } 560 561 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 562 SmallVector<uint16_t, 64> Vals; 563 for (const Comdat *C : VE.getComdats()) { 564 // COMDAT: [selection_kind, name] 565 Vals.push_back(getEncodedComdatSelectionKind(*C)); 566 size_t Size = C->getName().size(); 567 assert(isUInt<16>(Size)); 568 Vals.push_back(Size); 569 for (char Chr : C->getName()) 570 Vals.push_back((unsigned char)Chr); 571 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 572 Vals.clear(); 573 } 574 } 575 576 // Emit top-level description of module, including target triple, inline asm, 577 // descriptors for global variables, and function prototype info. 578 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 579 BitstreamWriter &Stream) { 580 // Emit various pieces of data attached to a module. 581 if (!M->getTargetTriple().empty()) 582 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 583 0/*TODO*/, Stream); 584 const std::string &DL = M->getDataLayoutStr(); 585 if (!DL.empty()) 586 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 587 if (!M->getModuleInlineAsm().empty()) 588 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 589 0/*TODO*/, Stream); 590 591 // Emit information about sections and GC, computing how many there are. Also 592 // compute the maximum alignment value. 593 std::map<std::string, unsigned> SectionMap; 594 std::map<std::string, unsigned> GCMap; 595 unsigned MaxAlignment = 0; 596 unsigned MaxGlobalType = 0; 597 for (const GlobalValue &GV : M->globals()) { 598 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 599 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 600 if (GV.hasSection()) { 601 // Give section names unique ID's. 602 unsigned &Entry = SectionMap[GV.getSection()]; 603 if (!Entry) { 604 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 605 0/*TODO*/, Stream); 606 Entry = SectionMap.size(); 607 } 608 } 609 } 610 for (const Function &F : *M) { 611 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 612 if (F.hasSection()) { 613 // Give section names unique ID's. 614 unsigned &Entry = SectionMap[F.getSection()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 617 0/*TODO*/, Stream); 618 Entry = SectionMap.size(); 619 } 620 } 621 if (F.hasGC()) { 622 // Same for GC names. 623 unsigned &Entry = GCMap[F.getGC()]; 624 if (!Entry) { 625 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 626 0/*TODO*/, Stream); 627 Entry = GCMap.size(); 628 } 629 } 630 } 631 632 // Emit abbrev for globals, now that we know # sections and max alignment. 633 unsigned SimpleGVarAbbrev = 0; 634 if (!M->global_empty()) { 635 // Add an abbrev for common globals with no visibility or thread localness. 636 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 637 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxGlobalType+1))); 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 641 //| explicitType << 1 642 //| constant 643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 645 if (MaxAlignment == 0) // Alignment. 646 Abbv->Add(BitCodeAbbrevOp(0)); 647 else { 648 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 650 Log2_32_Ceil(MaxEncAlignment+1))); 651 } 652 if (SectionMap.empty()) // Section. 653 Abbv->Add(BitCodeAbbrevOp(0)); 654 else 655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 656 Log2_32_Ceil(SectionMap.size()+1))); 657 // Don't bother emitting vis + thread local. 658 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 659 } 660 661 // Emit the global variable information. 662 SmallVector<unsigned, 64> Vals; 663 for (const GlobalVariable &GV : M->globals()) { 664 unsigned AbbrevToUse = 0; 665 666 // GLOBALVAR: [type, isconst, initid, 667 // linkage, alignment, section, visibility, threadlocal, 668 // unnamed_addr, externally_initialized, dllstorageclass, 669 // comdat] 670 Vals.push_back(VE.getTypeID(GV.getValueType())); 671 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 672 Vals.push_back(GV.isDeclaration() ? 0 : 673 (VE.getValueID(GV.getInitializer()) + 1)); 674 Vals.push_back(getEncodedLinkage(GV)); 675 Vals.push_back(Log2_32(GV.getAlignment())+1); 676 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 677 if (GV.isThreadLocal() || 678 GV.getVisibility() != GlobalValue::DefaultVisibility || 679 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 680 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 681 GV.hasComdat()) { 682 Vals.push_back(getEncodedVisibility(GV)); 683 Vals.push_back(getEncodedThreadLocalMode(GV)); 684 Vals.push_back(GV.hasUnnamedAddr()); 685 Vals.push_back(GV.isExternallyInitialized()); 686 Vals.push_back(getEncodedDLLStorageClass(GV)); 687 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 688 } else { 689 AbbrevToUse = SimpleGVarAbbrev; 690 } 691 692 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 693 Vals.clear(); 694 } 695 696 // Emit the function proto information. 697 for (const Function &F : *M) { 698 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 699 // section, visibility, gc, unnamed_addr, prologuedata, 700 // dllstorageclass, comdat, prefixdata, personalityfn] 701 Vals.push_back(VE.getTypeID(F.getFunctionType())); 702 Vals.push_back(F.getCallingConv()); 703 Vals.push_back(F.isDeclaration()); 704 Vals.push_back(getEncodedLinkage(F)); 705 Vals.push_back(VE.getAttributeID(F.getAttributes())); 706 Vals.push_back(Log2_32(F.getAlignment())+1); 707 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 708 Vals.push_back(getEncodedVisibility(F)); 709 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 710 Vals.push_back(F.hasUnnamedAddr()); 711 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 712 : 0); 713 Vals.push_back(getEncodedDLLStorageClass(F)); 714 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 715 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 716 : 0); 717 Vals.push_back( 718 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 719 720 unsigned AbbrevToUse = 0; 721 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 722 Vals.clear(); 723 } 724 725 // Emit the alias information. 726 for (const GlobalAlias &A : M->aliases()) { 727 // ALIAS: [alias type, aliasee val#, linkage, visibility] 728 Vals.push_back(VE.getTypeID(A.getType())); 729 Vals.push_back(VE.getValueID(A.getAliasee())); 730 Vals.push_back(getEncodedLinkage(A)); 731 Vals.push_back(getEncodedVisibility(A)); 732 Vals.push_back(getEncodedDLLStorageClass(A)); 733 Vals.push_back(getEncodedThreadLocalMode(A)); 734 Vals.push_back(A.hasUnnamedAddr()); 735 unsigned AbbrevToUse = 0; 736 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 737 Vals.clear(); 738 } 739 } 740 741 static uint64_t GetOptimizationFlags(const Value *V) { 742 uint64_t Flags = 0; 743 744 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 745 if (OBO->hasNoSignedWrap()) 746 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 747 if (OBO->hasNoUnsignedWrap()) 748 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 749 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 750 if (PEO->isExact()) 751 Flags |= 1 << bitc::PEO_EXACT; 752 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 753 if (FPMO->hasUnsafeAlgebra()) 754 Flags |= FastMathFlags::UnsafeAlgebra; 755 if (FPMO->hasNoNaNs()) 756 Flags |= FastMathFlags::NoNaNs; 757 if (FPMO->hasNoInfs()) 758 Flags |= FastMathFlags::NoInfs; 759 if (FPMO->hasNoSignedZeros()) 760 Flags |= FastMathFlags::NoSignedZeros; 761 if (FPMO->hasAllowReciprocal()) 762 Flags |= FastMathFlags::AllowReciprocal; 763 } 764 765 return Flags; 766 } 767 768 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 769 const ValueEnumerator &VE, 770 BitstreamWriter &Stream, 771 SmallVectorImpl<uint64_t> &Record) { 772 // Mimic an MDNode with a value as one operand. 773 Value *V = MD->getValue(); 774 Record.push_back(VE.getTypeID(V->getType())); 775 Record.push_back(VE.getValueID(V)); 776 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 777 Record.clear(); 778 } 779 780 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 781 BitstreamWriter &Stream, 782 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 783 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 784 Metadata *MD = N->getOperand(i); 785 assert(!(MD && isa<LocalAsMetadata>(MD)) && 786 "Unexpected function-local metadata"); 787 Record.push_back(VE.getMetadataOrNullID(MD)); 788 } 789 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 790 : bitc::METADATA_NODE, 791 Record, Abbrev); 792 Record.clear(); 793 } 794 795 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 796 BitstreamWriter &Stream, 797 SmallVectorImpl<uint64_t> &Record, 798 unsigned Abbrev) { 799 Record.push_back(N->isDistinct()); 800 Record.push_back(N->getLine()); 801 Record.push_back(N->getColumn()); 802 Record.push_back(VE.getMetadataID(N->getScope())); 803 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 804 805 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 806 Record.clear(); 807 } 808 809 static void WriteGenericDINode(const GenericDINode *N, 810 const ValueEnumerator &VE, 811 BitstreamWriter &Stream, 812 SmallVectorImpl<uint64_t> &Record, 813 unsigned Abbrev) { 814 Record.push_back(N->isDistinct()); 815 Record.push_back(N->getTag()); 816 Record.push_back(0); // Per-tag version field; unused for now. 817 818 for (auto &I : N->operands()) 819 Record.push_back(VE.getMetadataOrNullID(I)); 820 821 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 822 Record.clear(); 823 } 824 825 static uint64_t rotateSign(int64_t I) { 826 uint64_t U = I; 827 return I < 0 ? ~(U << 1) : U << 1; 828 } 829 830 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 831 BitstreamWriter &Stream, 832 SmallVectorImpl<uint64_t> &Record, 833 unsigned Abbrev) { 834 Record.push_back(N->isDistinct()); 835 Record.push_back(N->getCount()); 836 Record.push_back(rotateSign(N->getLowerBound())); 837 838 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 839 Record.clear(); 840 } 841 842 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 843 BitstreamWriter &Stream, 844 SmallVectorImpl<uint64_t> &Record, 845 unsigned Abbrev) { 846 Record.push_back(N->isDistinct()); 847 Record.push_back(rotateSign(N->getValue())); 848 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 849 850 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 851 Record.clear(); 852 } 853 854 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 855 BitstreamWriter &Stream, 856 SmallVectorImpl<uint64_t> &Record, 857 unsigned Abbrev) { 858 Record.push_back(N->isDistinct()); 859 Record.push_back(N->getTag()); 860 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 861 Record.push_back(N->getSizeInBits()); 862 Record.push_back(N->getAlignInBits()); 863 Record.push_back(N->getEncoding()); 864 865 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 866 Record.clear(); 867 } 868 869 static void WriteDIDerivedType(const DIDerivedType *N, 870 const ValueEnumerator &VE, 871 BitstreamWriter &Stream, 872 SmallVectorImpl<uint64_t> &Record, 873 unsigned Abbrev) { 874 Record.push_back(N->isDistinct()); 875 Record.push_back(N->getTag()); 876 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 877 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 878 Record.push_back(N->getLine()); 879 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 880 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 881 Record.push_back(N->getSizeInBits()); 882 Record.push_back(N->getAlignInBits()); 883 Record.push_back(N->getOffsetInBits()); 884 Record.push_back(N->getFlags()); 885 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 886 887 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 888 Record.clear(); 889 } 890 891 static void WriteDICompositeType(const DICompositeType *N, 892 const ValueEnumerator &VE, 893 BitstreamWriter &Stream, 894 SmallVectorImpl<uint64_t> &Record, 895 unsigned Abbrev) { 896 Record.push_back(N->isDistinct()); 897 Record.push_back(N->getTag()); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 899 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 900 Record.push_back(N->getLine()); 901 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 902 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 903 Record.push_back(N->getSizeInBits()); 904 Record.push_back(N->getAlignInBits()); 905 Record.push_back(N->getOffsetInBits()); 906 Record.push_back(N->getFlags()); 907 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 908 Record.push_back(N->getRuntimeLang()); 909 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 910 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 911 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 912 913 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 914 Record.clear(); 915 } 916 917 static void WriteDISubroutineType(const DISubroutineType *N, 918 const ValueEnumerator &VE, 919 BitstreamWriter &Stream, 920 SmallVectorImpl<uint64_t> &Record, 921 unsigned Abbrev) { 922 Record.push_back(N->isDistinct()); 923 Record.push_back(N->getFlags()); 924 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 925 926 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 927 Record.clear(); 928 } 929 930 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 931 BitstreamWriter &Stream, 932 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 933 Record.push_back(N->isDistinct()); 934 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 935 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 936 937 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 938 Record.clear(); 939 } 940 941 static void WriteDICompileUnit(const DICompileUnit *N, 942 const ValueEnumerator &VE, 943 BitstreamWriter &Stream, 944 SmallVectorImpl<uint64_t> &Record, 945 unsigned Abbrev) { 946 assert(N->isDistinct() && "Expected distinct compile units"); 947 Record.push_back(/* IsDistinct */ true); 948 Record.push_back(N->getSourceLanguage()); 949 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 950 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 951 Record.push_back(N->isOptimized()); 952 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 953 Record.push_back(N->getRuntimeVersion()); 954 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 955 Record.push_back(N->getEmissionKind()); 956 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 957 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 958 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 959 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 960 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 961 Record.push_back(N->getDWOId()); 962 963 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 964 Record.clear(); 965 } 966 967 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 968 BitstreamWriter &Stream, 969 SmallVectorImpl<uint64_t> &Record, 970 unsigned Abbrev) { 971 Record.push_back(N->isDistinct()); 972 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 973 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 974 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 975 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 976 Record.push_back(N->getLine()); 977 Record.push_back(VE.getMetadataOrNullID(N->getType())); 978 Record.push_back(N->isLocalToUnit()); 979 Record.push_back(N->isDefinition()); 980 Record.push_back(N->getScopeLine()); 981 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 982 Record.push_back(N->getVirtuality()); 983 Record.push_back(N->getVirtualIndex()); 984 Record.push_back(N->getFlags()); 985 Record.push_back(N->isOptimized()); 986 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 987 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 988 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 989 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 990 991 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 992 Record.clear(); 993 } 994 995 static void WriteDILexicalBlock(const DILexicalBlock *N, 996 const ValueEnumerator &VE, 997 BitstreamWriter &Stream, 998 SmallVectorImpl<uint64_t> &Record, 999 unsigned Abbrev) { 1000 Record.push_back(N->isDistinct()); 1001 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1002 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1003 Record.push_back(N->getLine()); 1004 Record.push_back(N->getColumn()); 1005 1006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1007 Record.clear(); 1008 } 1009 1010 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1011 const ValueEnumerator &VE, 1012 BitstreamWriter &Stream, 1013 SmallVectorImpl<uint64_t> &Record, 1014 unsigned Abbrev) { 1015 Record.push_back(N->isDistinct()); 1016 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1017 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1018 Record.push_back(N->getDiscriminator()); 1019 1020 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1021 Record.clear(); 1022 } 1023 1024 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1025 BitstreamWriter &Stream, 1026 SmallVectorImpl<uint64_t> &Record, 1027 unsigned Abbrev) { 1028 Record.push_back(N->isDistinct()); 1029 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1030 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1032 Record.push_back(N->getLine()); 1033 1034 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1035 Record.clear(); 1036 } 1037 1038 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1039 BitstreamWriter &Stream, 1040 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1041 Record.push_back(N->isDistinct()); 1042 for (auto &I : N->operands()) 1043 Record.push_back(VE.getMetadataOrNullID(I)); 1044 1045 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1046 Record.clear(); 1047 } 1048 1049 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1050 const ValueEnumerator &VE, 1051 BitstreamWriter &Stream, 1052 SmallVectorImpl<uint64_t> &Record, 1053 unsigned Abbrev) { 1054 Record.push_back(N->isDistinct()); 1055 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1056 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1057 1058 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1059 Record.clear(); 1060 } 1061 1062 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1063 const ValueEnumerator &VE, 1064 BitstreamWriter &Stream, 1065 SmallVectorImpl<uint64_t> &Record, 1066 unsigned Abbrev) { 1067 Record.push_back(N->isDistinct()); 1068 Record.push_back(N->getTag()); 1069 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1070 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1071 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1072 1073 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1074 Record.clear(); 1075 } 1076 1077 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1078 const ValueEnumerator &VE, 1079 BitstreamWriter &Stream, 1080 SmallVectorImpl<uint64_t> &Record, 1081 unsigned Abbrev) { 1082 Record.push_back(N->isDistinct()); 1083 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1084 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1085 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1086 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1087 Record.push_back(N->getLine()); 1088 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1089 Record.push_back(N->isLocalToUnit()); 1090 Record.push_back(N->isDefinition()); 1091 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1092 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1093 1094 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1095 Record.clear(); 1096 } 1097 1098 static void WriteDILocalVariable(const DILocalVariable *N, 1099 const ValueEnumerator &VE, 1100 BitstreamWriter &Stream, 1101 SmallVectorImpl<uint64_t> &Record, 1102 unsigned Abbrev) { 1103 Record.push_back(N->isDistinct()); 1104 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1105 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1107 Record.push_back(N->getLine()); 1108 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1109 Record.push_back(N->getArg()); 1110 Record.push_back(N->getFlags()); 1111 1112 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1113 Record.clear(); 1114 } 1115 1116 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1117 BitstreamWriter &Stream, 1118 SmallVectorImpl<uint64_t> &Record, 1119 unsigned Abbrev) { 1120 Record.reserve(N->getElements().size() + 1); 1121 1122 Record.push_back(N->isDistinct()); 1123 Record.append(N->elements_begin(), N->elements_end()); 1124 1125 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1126 Record.clear(); 1127 } 1128 1129 static void WriteDIObjCProperty(const DIObjCProperty *N, 1130 const ValueEnumerator &VE, 1131 BitstreamWriter &Stream, 1132 SmallVectorImpl<uint64_t> &Record, 1133 unsigned Abbrev) { 1134 Record.push_back(N->isDistinct()); 1135 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1136 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1137 Record.push_back(N->getLine()); 1138 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1139 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1140 Record.push_back(N->getAttributes()); 1141 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1142 1143 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1144 Record.clear(); 1145 } 1146 1147 static void WriteDIImportedEntity(const DIImportedEntity *N, 1148 const ValueEnumerator &VE, 1149 BitstreamWriter &Stream, 1150 SmallVectorImpl<uint64_t> &Record, 1151 unsigned Abbrev) { 1152 Record.push_back(N->isDistinct()); 1153 Record.push_back(N->getTag()); 1154 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1155 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1156 Record.push_back(N->getLine()); 1157 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1158 1159 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1160 Record.clear(); 1161 } 1162 1163 static void WriteModuleMetadata(const Module *M, 1164 const ValueEnumerator &VE, 1165 BitstreamWriter &Stream) { 1166 const auto &MDs = VE.getMDs(); 1167 if (MDs.empty() && M->named_metadata_empty()) 1168 return; 1169 1170 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1171 1172 unsigned MDSAbbrev = 0; 1173 if (VE.hasMDString()) { 1174 // Abbrev for METADATA_STRING. 1175 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1176 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1179 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1180 } 1181 1182 // Initialize MDNode abbreviations. 1183 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1184 #include "llvm/IR/Metadata.def" 1185 1186 if (VE.hasDILocation()) { 1187 // Abbrev for METADATA_LOCATION. 1188 // 1189 // Assume the column is usually under 128, and always output the inlined-at 1190 // location (it's never more expensive than building an array size 1). 1191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1192 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1198 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1199 } 1200 1201 if (VE.hasGenericDINode()) { 1202 // Abbrev for METADATA_GENERIC_DEBUG. 1203 // 1204 // Assume the column is usually under 128, and always output the inlined-at 1205 // location (it's never more expensive than building an array size 1). 1206 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1207 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1214 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1215 } 1216 1217 unsigned NameAbbrev = 0; 1218 if (!M->named_metadata_empty()) { 1219 // Abbrev for METADATA_NAME. 1220 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1221 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1224 NameAbbrev = Stream.EmitAbbrev(Abbv); 1225 } 1226 1227 SmallVector<uint64_t, 64> Record; 1228 for (const Metadata *MD : MDs) { 1229 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1230 assert(N->isResolved() && "Expected forward references to be resolved"); 1231 1232 switch (N->getMetadataID()) { 1233 default: 1234 llvm_unreachable("Invalid MDNode subclass"); 1235 #define HANDLE_MDNODE_LEAF(CLASS) \ 1236 case Metadata::CLASS##Kind: \ 1237 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1238 continue; 1239 #include "llvm/IR/Metadata.def" 1240 } 1241 } 1242 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1243 WriteValueAsMetadata(MDC, VE, Stream, Record); 1244 continue; 1245 } 1246 const MDString *MDS = cast<MDString>(MD); 1247 // Code: [strchar x N] 1248 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1249 1250 // Emit the finished record. 1251 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1252 Record.clear(); 1253 } 1254 1255 // Write named metadata. 1256 for (const NamedMDNode &NMD : M->named_metadata()) { 1257 // Write name. 1258 StringRef Str = NMD.getName(); 1259 Record.append(Str.bytes_begin(), Str.bytes_end()); 1260 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1261 Record.clear(); 1262 1263 // Write named metadata operands. 1264 for (const MDNode *N : NMD.operands()) 1265 Record.push_back(VE.getMetadataID(N)); 1266 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1267 Record.clear(); 1268 } 1269 1270 Stream.ExitBlock(); 1271 } 1272 1273 static void WriteFunctionLocalMetadata(const Function &F, 1274 const ValueEnumerator &VE, 1275 BitstreamWriter &Stream) { 1276 bool StartedMetadataBlock = false; 1277 SmallVector<uint64_t, 64> Record; 1278 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1279 VE.getFunctionLocalMDs(); 1280 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1281 assert(MDs[i] && "Expected valid function-local metadata"); 1282 if (!StartedMetadataBlock) { 1283 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1284 StartedMetadataBlock = true; 1285 } 1286 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1287 } 1288 1289 if (StartedMetadataBlock) 1290 Stream.ExitBlock(); 1291 } 1292 1293 static void WriteMetadataAttachment(const Function &F, 1294 const ValueEnumerator &VE, 1295 BitstreamWriter &Stream) { 1296 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1297 1298 SmallVector<uint64_t, 64> Record; 1299 1300 // Write metadata attachments 1301 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1302 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1303 F.getAllMetadata(MDs); 1304 if (!MDs.empty()) { 1305 for (const auto &I : MDs) { 1306 Record.push_back(I.first); 1307 Record.push_back(VE.getMetadataID(I.second)); 1308 } 1309 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1310 Record.clear(); 1311 } 1312 1313 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1314 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1315 I != E; ++I) { 1316 MDs.clear(); 1317 I->getAllMetadataOtherThanDebugLoc(MDs); 1318 1319 // If no metadata, ignore instruction. 1320 if (MDs.empty()) continue; 1321 1322 Record.push_back(VE.getInstructionID(I)); 1323 1324 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1325 Record.push_back(MDs[i].first); 1326 Record.push_back(VE.getMetadataID(MDs[i].second)); 1327 } 1328 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1329 Record.clear(); 1330 } 1331 1332 Stream.ExitBlock(); 1333 } 1334 1335 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1336 SmallVector<uint64_t, 64> Record; 1337 1338 // Write metadata kinds 1339 // METADATA_KIND - [n x [id, name]] 1340 SmallVector<StringRef, 8> Names; 1341 M->getMDKindNames(Names); 1342 1343 if (Names.empty()) return; 1344 1345 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1346 1347 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1348 Record.push_back(MDKindID); 1349 StringRef KName = Names[MDKindID]; 1350 Record.append(KName.begin(), KName.end()); 1351 1352 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1353 Record.clear(); 1354 } 1355 1356 Stream.ExitBlock(); 1357 } 1358 1359 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1360 if ((int64_t)V >= 0) 1361 Vals.push_back(V << 1); 1362 else 1363 Vals.push_back((-V << 1) | 1); 1364 } 1365 1366 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1367 const ValueEnumerator &VE, 1368 BitstreamWriter &Stream, bool isGlobal) { 1369 if (FirstVal == LastVal) return; 1370 1371 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1372 1373 unsigned AggregateAbbrev = 0; 1374 unsigned String8Abbrev = 0; 1375 unsigned CString7Abbrev = 0; 1376 unsigned CString6Abbrev = 0; 1377 // If this is a constant pool for the module, emit module-specific abbrevs. 1378 if (isGlobal) { 1379 // Abbrev for CST_CODE_AGGREGATE. 1380 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1384 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1385 1386 // Abbrev for CST_CODE_STRING. 1387 Abbv = new BitCodeAbbrev(); 1388 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1391 String8Abbrev = Stream.EmitAbbrev(Abbv); 1392 // Abbrev for CST_CODE_CSTRING. 1393 Abbv = new BitCodeAbbrev(); 1394 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1397 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1398 // Abbrev for CST_CODE_CSTRING. 1399 Abbv = new BitCodeAbbrev(); 1400 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1403 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1404 } 1405 1406 SmallVector<uint64_t, 64> Record; 1407 1408 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1409 Type *LastTy = nullptr; 1410 for (unsigned i = FirstVal; i != LastVal; ++i) { 1411 const Value *V = Vals[i].first; 1412 // If we need to switch types, do so now. 1413 if (V->getType() != LastTy) { 1414 LastTy = V->getType(); 1415 Record.push_back(VE.getTypeID(LastTy)); 1416 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1417 CONSTANTS_SETTYPE_ABBREV); 1418 Record.clear(); 1419 } 1420 1421 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1422 Record.push_back(unsigned(IA->hasSideEffects()) | 1423 unsigned(IA->isAlignStack()) << 1 | 1424 unsigned(IA->getDialect()&1) << 2); 1425 1426 // Add the asm string. 1427 const std::string &AsmStr = IA->getAsmString(); 1428 Record.push_back(AsmStr.size()); 1429 Record.append(AsmStr.begin(), AsmStr.end()); 1430 1431 // Add the constraint string. 1432 const std::string &ConstraintStr = IA->getConstraintString(); 1433 Record.push_back(ConstraintStr.size()); 1434 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1435 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1436 Record.clear(); 1437 continue; 1438 } 1439 const Constant *C = cast<Constant>(V); 1440 unsigned Code = -1U; 1441 unsigned AbbrevToUse = 0; 1442 if (C->isNullValue()) { 1443 Code = bitc::CST_CODE_NULL; 1444 } else if (isa<UndefValue>(C)) { 1445 Code = bitc::CST_CODE_UNDEF; 1446 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1447 if (IV->getBitWidth() <= 64) { 1448 uint64_t V = IV->getSExtValue(); 1449 emitSignedInt64(Record, V); 1450 Code = bitc::CST_CODE_INTEGER; 1451 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1452 } else { // Wide integers, > 64 bits in size. 1453 // We have an arbitrary precision integer value to write whose 1454 // bit width is > 64. However, in canonical unsigned integer 1455 // format it is likely that the high bits are going to be zero. 1456 // So, we only write the number of active words. 1457 unsigned NWords = IV->getValue().getActiveWords(); 1458 const uint64_t *RawWords = IV->getValue().getRawData(); 1459 for (unsigned i = 0; i != NWords; ++i) { 1460 emitSignedInt64(Record, RawWords[i]); 1461 } 1462 Code = bitc::CST_CODE_WIDE_INTEGER; 1463 } 1464 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1465 Code = bitc::CST_CODE_FLOAT; 1466 Type *Ty = CFP->getType(); 1467 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1468 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1469 } else if (Ty->isX86_FP80Ty()) { 1470 // api needed to prevent premature destruction 1471 // bits are not in the same order as a normal i80 APInt, compensate. 1472 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1473 const uint64_t *p = api.getRawData(); 1474 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1475 Record.push_back(p[0] & 0xffffLL); 1476 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1477 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1478 const uint64_t *p = api.getRawData(); 1479 Record.push_back(p[0]); 1480 Record.push_back(p[1]); 1481 } else { 1482 assert (0 && "Unknown FP type!"); 1483 } 1484 } else if (isa<ConstantDataSequential>(C) && 1485 cast<ConstantDataSequential>(C)->isString()) { 1486 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1487 // Emit constant strings specially. 1488 unsigned NumElts = Str->getNumElements(); 1489 // If this is a null-terminated string, use the denser CSTRING encoding. 1490 if (Str->isCString()) { 1491 Code = bitc::CST_CODE_CSTRING; 1492 --NumElts; // Don't encode the null, which isn't allowed by char6. 1493 } else { 1494 Code = bitc::CST_CODE_STRING; 1495 AbbrevToUse = String8Abbrev; 1496 } 1497 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1498 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1499 for (unsigned i = 0; i != NumElts; ++i) { 1500 unsigned char V = Str->getElementAsInteger(i); 1501 Record.push_back(V); 1502 isCStr7 &= (V & 128) == 0; 1503 if (isCStrChar6) 1504 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1505 } 1506 1507 if (isCStrChar6) 1508 AbbrevToUse = CString6Abbrev; 1509 else if (isCStr7) 1510 AbbrevToUse = CString7Abbrev; 1511 } else if (const ConstantDataSequential *CDS = 1512 dyn_cast<ConstantDataSequential>(C)) { 1513 Code = bitc::CST_CODE_DATA; 1514 Type *EltTy = CDS->getType()->getElementType(); 1515 if (isa<IntegerType>(EltTy)) { 1516 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1517 Record.push_back(CDS->getElementAsInteger(i)); 1518 } else if (EltTy->isFloatTy()) { 1519 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1520 union { float F; uint32_t I; }; 1521 F = CDS->getElementAsFloat(i); 1522 Record.push_back(I); 1523 } 1524 } else { 1525 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1526 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1527 union { double F; uint64_t I; }; 1528 F = CDS->getElementAsDouble(i); 1529 Record.push_back(I); 1530 } 1531 } 1532 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1533 isa<ConstantVector>(C)) { 1534 Code = bitc::CST_CODE_AGGREGATE; 1535 for (const Value *Op : C->operands()) 1536 Record.push_back(VE.getValueID(Op)); 1537 AbbrevToUse = AggregateAbbrev; 1538 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1539 switch (CE->getOpcode()) { 1540 default: 1541 if (Instruction::isCast(CE->getOpcode())) { 1542 Code = bitc::CST_CODE_CE_CAST; 1543 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1544 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1545 Record.push_back(VE.getValueID(C->getOperand(0))); 1546 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1547 } else { 1548 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1549 Code = bitc::CST_CODE_CE_BINOP; 1550 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1551 Record.push_back(VE.getValueID(C->getOperand(0))); 1552 Record.push_back(VE.getValueID(C->getOperand(1))); 1553 uint64_t Flags = GetOptimizationFlags(CE); 1554 if (Flags != 0) 1555 Record.push_back(Flags); 1556 } 1557 break; 1558 case Instruction::GetElementPtr: { 1559 Code = bitc::CST_CODE_CE_GEP; 1560 const auto *GO = cast<GEPOperator>(C); 1561 if (GO->isInBounds()) 1562 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1563 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1564 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1565 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1566 Record.push_back(VE.getValueID(C->getOperand(i))); 1567 } 1568 break; 1569 } 1570 case Instruction::Select: 1571 Code = bitc::CST_CODE_CE_SELECT; 1572 Record.push_back(VE.getValueID(C->getOperand(0))); 1573 Record.push_back(VE.getValueID(C->getOperand(1))); 1574 Record.push_back(VE.getValueID(C->getOperand(2))); 1575 break; 1576 case Instruction::ExtractElement: 1577 Code = bitc::CST_CODE_CE_EXTRACTELT; 1578 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1579 Record.push_back(VE.getValueID(C->getOperand(0))); 1580 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1581 Record.push_back(VE.getValueID(C->getOperand(1))); 1582 break; 1583 case Instruction::InsertElement: 1584 Code = bitc::CST_CODE_CE_INSERTELT; 1585 Record.push_back(VE.getValueID(C->getOperand(0))); 1586 Record.push_back(VE.getValueID(C->getOperand(1))); 1587 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1588 Record.push_back(VE.getValueID(C->getOperand(2))); 1589 break; 1590 case Instruction::ShuffleVector: 1591 // If the return type and argument types are the same, this is a 1592 // standard shufflevector instruction. If the types are different, 1593 // then the shuffle is widening or truncating the input vectors, and 1594 // the argument type must also be encoded. 1595 if (C->getType() == C->getOperand(0)->getType()) { 1596 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1597 } else { 1598 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1599 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1600 } 1601 Record.push_back(VE.getValueID(C->getOperand(0))); 1602 Record.push_back(VE.getValueID(C->getOperand(1))); 1603 Record.push_back(VE.getValueID(C->getOperand(2))); 1604 break; 1605 case Instruction::ICmp: 1606 case Instruction::FCmp: 1607 Code = bitc::CST_CODE_CE_CMP; 1608 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1609 Record.push_back(VE.getValueID(C->getOperand(0))); 1610 Record.push_back(VE.getValueID(C->getOperand(1))); 1611 Record.push_back(CE->getPredicate()); 1612 break; 1613 } 1614 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1615 Code = bitc::CST_CODE_BLOCKADDRESS; 1616 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1617 Record.push_back(VE.getValueID(BA->getFunction())); 1618 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1619 } else { 1620 #ifndef NDEBUG 1621 C->dump(); 1622 #endif 1623 llvm_unreachable("Unknown constant!"); 1624 } 1625 Stream.EmitRecord(Code, Record, AbbrevToUse); 1626 Record.clear(); 1627 } 1628 1629 Stream.ExitBlock(); 1630 } 1631 1632 static void WriteModuleConstants(const ValueEnumerator &VE, 1633 BitstreamWriter &Stream) { 1634 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1635 1636 // Find the first constant to emit, which is the first non-globalvalue value. 1637 // We know globalvalues have been emitted by WriteModuleInfo. 1638 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1639 if (!isa<GlobalValue>(Vals[i].first)) { 1640 WriteConstants(i, Vals.size(), VE, Stream, true); 1641 return; 1642 } 1643 } 1644 } 1645 1646 /// PushValueAndType - The file has to encode both the value and type id for 1647 /// many values, because we need to know what type to create for forward 1648 /// references. However, most operands are not forward references, so this type 1649 /// field is not needed. 1650 /// 1651 /// This function adds V's value ID to Vals. If the value ID is higher than the 1652 /// instruction ID, then it is a forward reference, and it also includes the 1653 /// type ID. The value ID that is written is encoded relative to the InstID. 1654 static bool PushValueAndType(const Value *V, unsigned InstID, 1655 SmallVectorImpl<unsigned> &Vals, 1656 ValueEnumerator &VE) { 1657 unsigned ValID = VE.getValueID(V); 1658 // Make encoding relative to the InstID. 1659 Vals.push_back(InstID - ValID); 1660 if (ValID >= InstID) { 1661 Vals.push_back(VE.getTypeID(V->getType())); 1662 return true; 1663 } 1664 return false; 1665 } 1666 1667 /// pushValue - Like PushValueAndType, but where the type of the value is 1668 /// omitted (perhaps it was already encoded in an earlier operand). 1669 static void pushValue(const Value *V, unsigned InstID, 1670 SmallVectorImpl<unsigned> &Vals, 1671 ValueEnumerator &VE) { 1672 unsigned ValID = VE.getValueID(V); 1673 Vals.push_back(InstID - ValID); 1674 } 1675 1676 static void pushValueSigned(const Value *V, unsigned InstID, 1677 SmallVectorImpl<uint64_t> &Vals, 1678 ValueEnumerator &VE) { 1679 unsigned ValID = VE.getValueID(V); 1680 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1681 emitSignedInt64(Vals, diff); 1682 } 1683 1684 /// WriteInstruction - Emit an instruction to the specified stream. 1685 static void WriteInstruction(const Instruction &I, unsigned InstID, 1686 ValueEnumerator &VE, BitstreamWriter &Stream, 1687 SmallVectorImpl<unsigned> &Vals) { 1688 unsigned Code = 0; 1689 unsigned AbbrevToUse = 0; 1690 VE.setInstructionID(&I); 1691 switch (I.getOpcode()) { 1692 default: 1693 if (Instruction::isCast(I.getOpcode())) { 1694 Code = bitc::FUNC_CODE_INST_CAST; 1695 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1696 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1697 Vals.push_back(VE.getTypeID(I.getType())); 1698 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1699 } else { 1700 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1701 Code = bitc::FUNC_CODE_INST_BINOP; 1702 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1703 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1704 pushValue(I.getOperand(1), InstID, Vals, VE); 1705 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1706 uint64_t Flags = GetOptimizationFlags(&I); 1707 if (Flags != 0) { 1708 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1709 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1710 Vals.push_back(Flags); 1711 } 1712 } 1713 break; 1714 1715 case Instruction::GetElementPtr: { 1716 Code = bitc::FUNC_CODE_INST_GEP; 1717 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1718 auto &GEPInst = cast<GetElementPtrInst>(I); 1719 Vals.push_back(GEPInst.isInBounds()); 1720 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1721 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1722 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1723 break; 1724 } 1725 case Instruction::ExtractValue: { 1726 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1727 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1728 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1729 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1730 break; 1731 } 1732 case Instruction::InsertValue: { 1733 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1734 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1735 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1736 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1737 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1738 break; 1739 } 1740 case Instruction::Select: 1741 Code = bitc::FUNC_CODE_INST_VSELECT; 1742 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1743 pushValue(I.getOperand(2), InstID, Vals, VE); 1744 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1745 break; 1746 case Instruction::ExtractElement: 1747 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1748 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1749 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1750 break; 1751 case Instruction::InsertElement: 1752 Code = bitc::FUNC_CODE_INST_INSERTELT; 1753 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1754 pushValue(I.getOperand(1), InstID, Vals, VE); 1755 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1756 break; 1757 case Instruction::ShuffleVector: 1758 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1759 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1760 pushValue(I.getOperand(1), InstID, Vals, VE); 1761 pushValue(I.getOperand(2), InstID, Vals, VE); 1762 break; 1763 case Instruction::ICmp: 1764 case Instruction::FCmp: { 1765 // compare returning Int1Ty or vector of Int1Ty 1766 Code = bitc::FUNC_CODE_INST_CMP2; 1767 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1768 pushValue(I.getOperand(1), InstID, Vals, VE); 1769 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1770 uint64_t Flags = GetOptimizationFlags(&I); 1771 if (Flags != 0) 1772 Vals.push_back(Flags); 1773 break; 1774 } 1775 1776 case Instruction::Ret: 1777 { 1778 Code = bitc::FUNC_CODE_INST_RET; 1779 unsigned NumOperands = I.getNumOperands(); 1780 if (NumOperands == 0) 1781 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1782 else if (NumOperands == 1) { 1783 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1784 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1785 } else { 1786 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1787 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1788 } 1789 } 1790 break; 1791 case Instruction::Br: 1792 { 1793 Code = bitc::FUNC_CODE_INST_BR; 1794 const BranchInst &II = cast<BranchInst>(I); 1795 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1796 if (II.isConditional()) { 1797 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1798 pushValue(II.getCondition(), InstID, Vals, VE); 1799 } 1800 } 1801 break; 1802 case Instruction::Switch: 1803 { 1804 Code = bitc::FUNC_CODE_INST_SWITCH; 1805 const SwitchInst &SI = cast<SwitchInst>(I); 1806 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1807 pushValue(SI.getCondition(), InstID, Vals, VE); 1808 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1809 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1810 i != e; ++i) { 1811 Vals.push_back(VE.getValueID(i.getCaseValue())); 1812 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1813 } 1814 } 1815 break; 1816 case Instruction::IndirectBr: 1817 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1818 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1819 // Encode the address operand as relative, but not the basic blocks. 1820 pushValue(I.getOperand(0), InstID, Vals, VE); 1821 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1822 Vals.push_back(VE.getValueID(I.getOperand(i))); 1823 break; 1824 1825 case Instruction::Invoke: { 1826 const InvokeInst *II = cast<InvokeInst>(&I); 1827 const Value *Callee = II->getCalledValue(); 1828 FunctionType *FTy = II->getFunctionType(); 1829 Code = bitc::FUNC_CODE_INST_INVOKE; 1830 1831 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1832 Vals.push_back(II->getCallingConv() | 1 << 13); 1833 Vals.push_back(VE.getValueID(II->getNormalDest())); 1834 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1835 Vals.push_back(VE.getTypeID(FTy)); 1836 PushValueAndType(Callee, InstID, Vals, VE); 1837 1838 // Emit value #'s for the fixed parameters. 1839 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1840 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1841 1842 // Emit type/value pairs for varargs params. 1843 if (FTy->isVarArg()) { 1844 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1845 i != e; ++i) 1846 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1847 } 1848 break; 1849 } 1850 case Instruction::Resume: 1851 Code = bitc::FUNC_CODE_INST_RESUME; 1852 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1853 break; 1854 case Instruction::CleanupRet: { 1855 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 1856 const auto &CRI = cast<CleanupReturnInst>(I); 1857 Vals.push_back(CRI.hasReturnValue()); 1858 Vals.push_back(CRI.hasUnwindDest()); 1859 if (CRI.hasReturnValue()) 1860 PushValueAndType(CRI.getReturnValue(), InstID, Vals, VE); 1861 if (CRI.hasUnwindDest()) 1862 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 1863 break; 1864 } 1865 case Instruction::CatchRet: { 1866 Code = bitc::FUNC_CODE_INST_CATCHRET; 1867 const auto &CRI = cast<CatchReturnInst>(I); 1868 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 1869 break; 1870 } 1871 case Instruction::CatchPad: { 1872 Code = bitc::FUNC_CODE_INST_CATCHPAD; 1873 const auto &CPI = cast<CatchPadInst>(I); 1874 Vals.push_back(VE.getTypeID(CPI.getType())); 1875 Vals.push_back(VE.getValueID(CPI.getNormalDest())); 1876 Vals.push_back(VE.getValueID(CPI.getUnwindDest())); 1877 unsigned NumArgOperands = CPI.getNumArgOperands(); 1878 Vals.push_back(NumArgOperands); 1879 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1880 PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE); 1881 break; 1882 } 1883 case Instruction::TerminatePad: { 1884 Code = bitc::FUNC_CODE_INST_TERMINATEPAD; 1885 const auto &TPI = cast<TerminatePadInst>(I); 1886 Vals.push_back(TPI.hasUnwindDest()); 1887 if (TPI.hasUnwindDest()) 1888 Vals.push_back(VE.getValueID(TPI.getUnwindDest())); 1889 unsigned NumArgOperands = TPI.getNumArgOperands(); 1890 Vals.push_back(NumArgOperands); 1891 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1892 PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE); 1893 break; 1894 } 1895 case Instruction::CleanupPad: { 1896 Code = bitc::FUNC_CODE_INST_CLEANUPPAD; 1897 const auto &CPI = cast<CleanupPadInst>(I); 1898 Vals.push_back(VE.getTypeID(CPI.getType())); 1899 unsigned NumOperands = CPI.getNumOperands(); 1900 Vals.push_back(NumOperands); 1901 for (unsigned Op = 0; Op != NumOperands; ++Op) 1902 PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE); 1903 break; 1904 } 1905 case Instruction::CatchEndPad: { 1906 Code = bitc::FUNC_CODE_INST_CATCHENDPAD; 1907 const auto &CEPI = cast<CatchEndPadInst>(I); 1908 if (CEPI.hasUnwindDest()) 1909 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1910 break; 1911 } 1912 case Instruction::Unreachable: 1913 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1914 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1915 break; 1916 1917 case Instruction::PHI: { 1918 const PHINode &PN = cast<PHINode>(I); 1919 Code = bitc::FUNC_CODE_INST_PHI; 1920 // With the newer instruction encoding, forward references could give 1921 // negative valued IDs. This is most common for PHIs, so we use 1922 // signed VBRs. 1923 SmallVector<uint64_t, 128> Vals64; 1924 Vals64.push_back(VE.getTypeID(PN.getType())); 1925 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1926 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1927 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1928 } 1929 // Emit a Vals64 vector and exit. 1930 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1931 Vals64.clear(); 1932 return; 1933 } 1934 1935 case Instruction::LandingPad: { 1936 const LandingPadInst &LP = cast<LandingPadInst>(I); 1937 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1938 Vals.push_back(VE.getTypeID(LP.getType())); 1939 Vals.push_back(LP.isCleanup()); 1940 Vals.push_back(LP.getNumClauses()); 1941 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1942 if (LP.isCatch(I)) 1943 Vals.push_back(LandingPadInst::Catch); 1944 else 1945 Vals.push_back(LandingPadInst::Filter); 1946 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1947 } 1948 break; 1949 } 1950 1951 case Instruction::Alloca: { 1952 Code = bitc::FUNC_CODE_INST_ALLOCA; 1953 const AllocaInst &AI = cast<AllocaInst>(I); 1954 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1955 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1956 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1957 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1958 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1959 "not enough bits for maximum alignment"); 1960 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1961 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1962 AlignRecord |= 1 << 6; 1963 // Reserve bit 7 for SwiftError flag. 1964 // AlignRecord |= AI.isSwiftError() << 7; 1965 Vals.push_back(AlignRecord); 1966 break; 1967 } 1968 1969 case Instruction::Load: 1970 if (cast<LoadInst>(I).isAtomic()) { 1971 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1972 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1973 } else { 1974 Code = bitc::FUNC_CODE_INST_LOAD; 1975 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1976 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1977 } 1978 Vals.push_back(VE.getTypeID(I.getType())); 1979 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1980 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1981 if (cast<LoadInst>(I).isAtomic()) { 1982 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1983 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1984 } 1985 break; 1986 case Instruction::Store: 1987 if (cast<StoreInst>(I).isAtomic()) 1988 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1989 else 1990 Code = bitc::FUNC_CODE_INST_STORE; 1991 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1992 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1993 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1994 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1995 if (cast<StoreInst>(I).isAtomic()) { 1996 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1997 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1998 } 1999 break; 2000 case Instruction::AtomicCmpXchg: 2001 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2002 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2003 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2004 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2005 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2006 Vals.push_back(GetEncodedOrdering( 2007 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2008 Vals.push_back(GetEncodedSynchScope( 2009 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2010 Vals.push_back(GetEncodedOrdering( 2011 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2012 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2013 break; 2014 case Instruction::AtomicRMW: 2015 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2016 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2017 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2018 Vals.push_back(GetEncodedRMWOperation( 2019 cast<AtomicRMWInst>(I).getOperation())); 2020 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2021 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2022 Vals.push_back(GetEncodedSynchScope( 2023 cast<AtomicRMWInst>(I).getSynchScope())); 2024 break; 2025 case Instruction::Fence: 2026 Code = bitc::FUNC_CODE_INST_FENCE; 2027 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2028 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2029 break; 2030 case Instruction::Call: { 2031 const CallInst &CI = cast<CallInst>(I); 2032 FunctionType *FTy = CI.getFunctionType(); 2033 2034 Code = bitc::FUNC_CODE_INST_CALL; 2035 2036 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2037 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2038 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2039 Vals.push_back(VE.getTypeID(FTy)); 2040 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2041 2042 // Emit value #'s for the fixed parameters. 2043 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2044 // Check for labels (can happen with asm labels). 2045 if (FTy->getParamType(i)->isLabelTy()) 2046 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2047 else 2048 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2049 } 2050 2051 // Emit type/value pairs for varargs params. 2052 if (FTy->isVarArg()) { 2053 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2054 i != e; ++i) 2055 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2056 } 2057 break; 2058 } 2059 case Instruction::VAArg: 2060 Code = bitc::FUNC_CODE_INST_VAARG; 2061 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2062 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2063 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2064 break; 2065 } 2066 2067 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2068 Vals.clear(); 2069 } 2070 2071 // Emit names for globals/functions etc. 2072 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 2073 const ValueEnumerator &VE, 2074 BitstreamWriter &Stream) { 2075 if (VST.empty()) return; 2076 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2077 2078 // FIXME: Set up the abbrev, we know how many values there are! 2079 // FIXME: We know if the type names can use 7-bit ascii. 2080 SmallVector<unsigned, 64> NameVals; 2081 2082 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 2083 SI != SE; ++SI) { 2084 2085 const ValueName &Name = *SI; 2086 2087 // Figure out the encoding to use for the name. 2088 bool is7Bit = true; 2089 bool isChar6 = true; 2090 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2091 C != E; ++C) { 2092 if (isChar6) 2093 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2094 if ((unsigned char)*C & 128) { 2095 is7Bit = false; 2096 break; // don't bother scanning the rest. 2097 } 2098 } 2099 2100 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2101 2102 // VST_ENTRY: [valueid, namechar x N] 2103 // VST_BBENTRY: [bbid, namechar x N] 2104 unsigned Code; 2105 if (isa<BasicBlock>(SI->getValue())) { 2106 Code = bitc::VST_CODE_BBENTRY; 2107 if (isChar6) 2108 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2109 } else { 2110 Code = bitc::VST_CODE_ENTRY; 2111 if (isChar6) 2112 AbbrevToUse = VST_ENTRY_6_ABBREV; 2113 else if (is7Bit) 2114 AbbrevToUse = VST_ENTRY_7_ABBREV; 2115 } 2116 2117 NameVals.push_back(VE.getValueID(SI->getValue())); 2118 for (const char *P = Name.getKeyData(), 2119 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2120 NameVals.push_back((unsigned char)*P); 2121 2122 // Emit the finished record. 2123 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2124 NameVals.clear(); 2125 } 2126 Stream.ExitBlock(); 2127 } 2128 2129 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2130 BitstreamWriter &Stream) { 2131 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2132 unsigned Code; 2133 if (isa<BasicBlock>(Order.V)) 2134 Code = bitc::USELIST_CODE_BB; 2135 else 2136 Code = bitc::USELIST_CODE_DEFAULT; 2137 2138 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2139 Record.push_back(VE.getValueID(Order.V)); 2140 Stream.EmitRecord(Code, Record); 2141 } 2142 2143 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2144 BitstreamWriter &Stream) { 2145 assert(VE.shouldPreserveUseListOrder() && 2146 "Expected to be preserving use-list order"); 2147 2148 auto hasMore = [&]() { 2149 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2150 }; 2151 if (!hasMore()) 2152 // Nothing to do. 2153 return; 2154 2155 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2156 while (hasMore()) { 2157 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2158 VE.UseListOrders.pop_back(); 2159 } 2160 Stream.ExitBlock(); 2161 } 2162 2163 /// WriteFunction - Emit a function body to the module stream. 2164 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2165 BitstreamWriter &Stream) { 2166 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2167 VE.incorporateFunction(F); 2168 2169 SmallVector<unsigned, 64> Vals; 2170 2171 // Emit the number of basic blocks, so the reader can create them ahead of 2172 // time. 2173 Vals.push_back(VE.getBasicBlocks().size()); 2174 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2175 Vals.clear(); 2176 2177 // If there are function-local constants, emit them now. 2178 unsigned CstStart, CstEnd; 2179 VE.getFunctionConstantRange(CstStart, CstEnd); 2180 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2181 2182 // If there is function-local metadata, emit it now. 2183 WriteFunctionLocalMetadata(F, VE, Stream); 2184 2185 // Keep a running idea of what the instruction ID is. 2186 unsigned InstID = CstEnd; 2187 2188 bool NeedsMetadataAttachment = F.hasMetadata(); 2189 2190 DILocation *LastDL = nullptr; 2191 2192 // Finally, emit all the instructions, in order. 2193 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2194 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2195 I != E; ++I) { 2196 WriteInstruction(*I, InstID, VE, Stream, Vals); 2197 2198 if (!I->getType()->isVoidTy()) 2199 ++InstID; 2200 2201 // If the instruction has metadata, write a metadata attachment later. 2202 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2203 2204 // If the instruction has a debug location, emit it. 2205 DILocation *DL = I->getDebugLoc(); 2206 if (!DL) 2207 continue; 2208 2209 if (DL == LastDL) { 2210 // Just repeat the same debug loc as last time. 2211 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2212 continue; 2213 } 2214 2215 Vals.push_back(DL->getLine()); 2216 Vals.push_back(DL->getColumn()); 2217 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2218 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2219 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2220 Vals.clear(); 2221 2222 LastDL = DL; 2223 } 2224 2225 // Emit names for all the instructions etc. 2226 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2227 2228 if (NeedsMetadataAttachment) 2229 WriteMetadataAttachment(F, VE, Stream); 2230 if (VE.shouldPreserveUseListOrder()) 2231 WriteUseListBlock(&F, VE, Stream); 2232 VE.purgeFunction(); 2233 Stream.ExitBlock(); 2234 } 2235 2236 // Emit blockinfo, which defines the standard abbreviations etc. 2237 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2238 // We only want to emit block info records for blocks that have multiple 2239 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2240 // Other blocks can define their abbrevs inline. 2241 Stream.EnterBlockInfoBlock(2); 2242 2243 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2244 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2249 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2250 Abbv) != VST_ENTRY_8_ABBREV) 2251 llvm_unreachable("Unexpected abbrev ordering!"); 2252 } 2253 2254 { // 7-bit fixed width VST_ENTRY strings. 2255 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2256 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2260 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2261 Abbv) != VST_ENTRY_7_ABBREV) 2262 llvm_unreachable("Unexpected abbrev ordering!"); 2263 } 2264 { // 6-bit char6 VST_ENTRY strings. 2265 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2266 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2270 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2271 Abbv) != VST_ENTRY_6_ABBREV) 2272 llvm_unreachable("Unexpected abbrev ordering!"); 2273 } 2274 { // 6-bit char6 VST_BBENTRY strings. 2275 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2280 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2281 Abbv) != VST_BBENTRY_6_ABBREV) 2282 llvm_unreachable("Unexpected abbrev ordering!"); 2283 } 2284 2285 2286 2287 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2288 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2289 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2291 VE.computeBitsRequiredForTypeIndicies())); 2292 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2293 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2294 llvm_unreachable("Unexpected abbrev ordering!"); 2295 } 2296 2297 { // INTEGER abbrev for CONSTANTS_BLOCK. 2298 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2299 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2301 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2302 Abbv) != CONSTANTS_INTEGER_ABBREV) 2303 llvm_unreachable("Unexpected abbrev ordering!"); 2304 } 2305 2306 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2307 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2308 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2311 VE.computeBitsRequiredForTypeIndicies())); 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2313 2314 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2315 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2316 llvm_unreachable("Unexpected abbrev ordering!"); 2317 } 2318 { // NULL abbrev for CONSTANTS_BLOCK. 2319 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2320 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2321 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2322 Abbv) != CONSTANTS_NULL_Abbrev) 2323 llvm_unreachable("Unexpected abbrev ordering!"); 2324 } 2325 2326 // FIXME: This should only use space for first class types! 2327 2328 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2330 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2333 VE.computeBitsRequiredForTypeIndicies())); 2334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2336 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2337 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2338 llvm_unreachable("Unexpected abbrev ordering!"); 2339 } 2340 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2341 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2342 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2346 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2347 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2348 llvm_unreachable("Unexpected abbrev ordering!"); 2349 } 2350 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2351 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2352 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2357 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2358 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2359 llvm_unreachable("Unexpected abbrev ordering!"); 2360 } 2361 { // INST_CAST abbrev for FUNCTION_BLOCK. 2362 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2363 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2366 VE.computeBitsRequiredForTypeIndicies())); 2367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2368 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2369 Abbv) != FUNCTION_INST_CAST_ABBREV) 2370 llvm_unreachable("Unexpected abbrev ordering!"); 2371 } 2372 2373 { // INST_RET abbrev for FUNCTION_BLOCK. 2374 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2375 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2376 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2377 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2378 llvm_unreachable("Unexpected abbrev ordering!"); 2379 } 2380 { // INST_RET abbrev for FUNCTION_BLOCK. 2381 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2382 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2384 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2385 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2386 llvm_unreachable("Unexpected abbrev ordering!"); 2387 } 2388 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2389 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2390 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2391 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2392 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2393 llvm_unreachable("Unexpected abbrev ordering!"); 2394 } 2395 { 2396 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2397 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2400 Log2_32_Ceil(VE.getTypes().size() + 1))); 2401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2403 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2404 FUNCTION_INST_GEP_ABBREV) 2405 llvm_unreachable("Unexpected abbrev ordering!"); 2406 } 2407 2408 Stream.ExitBlock(); 2409 } 2410 2411 /// WriteModule - Emit the specified module to the bitstream. 2412 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2413 bool ShouldPreserveUseListOrder) { 2414 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2415 2416 SmallVector<unsigned, 1> Vals; 2417 unsigned CurVersion = 1; 2418 Vals.push_back(CurVersion); 2419 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2420 2421 // Analyze the module, enumerating globals, functions, etc. 2422 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2423 2424 // Emit blockinfo, which defines the standard abbreviations etc. 2425 WriteBlockInfo(VE, Stream); 2426 2427 // Emit information about attribute groups. 2428 WriteAttributeGroupTable(VE, Stream); 2429 2430 // Emit information about parameter attributes. 2431 WriteAttributeTable(VE, Stream); 2432 2433 // Emit information describing all of the types in the module. 2434 WriteTypeTable(VE, Stream); 2435 2436 writeComdats(VE, Stream); 2437 2438 // Emit top-level description of module, including target triple, inline asm, 2439 // descriptors for global variables, and function prototype info. 2440 WriteModuleInfo(M, VE, Stream); 2441 2442 // Emit constants. 2443 WriteModuleConstants(VE, Stream); 2444 2445 // Emit metadata. 2446 WriteModuleMetadata(M, VE, Stream); 2447 2448 // Emit metadata. 2449 WriteModuleMetadataStore(M, Stream); 2450 2451 // Emit names for globals/functions etc. 2452 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2453 2454 // Emit module-level use-lists. 2455 if (VE.shouldPreserveUseListOrder()) 2456 WriteUseListBlock(nullptr, VE, Stream); 2457 2458 // Emit function bodies. 2459 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2460 if (!F->isDeclaration()) 2461 WriteFunction(*F, VE, Stream); 2462 2463 Stream.ExitBlock(); 2464 } 2465 2466 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2467 /// header and trailer to make it compatible with the system archiver. To do 2468 /// this we emit the following header, and then emit a trailer that pads the 2469 /// file out to be a multiple of 16 bytes. 2470 /// 2471 /// struct bc_header { 2472 /// uint32_t Magic; // 0x0B17C0DE 2473 /// uint32_t Version; // Version, currently always 0. 2474 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2475 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2476 /// uint32_t CPUType; // CPU specifier. 2477 /// ... potentially more later ... 2478 /// }; 2479 enum { 2480 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2481 DarwinBCHeaderSize = 5*4 2482 }; 2483 2484 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2485 uint32_t &Position) { 2486 support::endian::write32le(&Buffer[Position], Value); 2487 Position += 4; 2488 } 2489 2490 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2491 const Triple &TT) { 2492 unsigned CPUType = ~0U; 2493 2494 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2495 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2496 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2497 // specific constants here because they are implicitly part of the Darwin ABI. 2498 enum { 2499 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2500 DARWIN_CPU_TYPE_X86 = 7, 2501 DARWIN_CPU_TYPE_ARM = 12, 2502 DARWIN_CPU_TYPE_POWERPC = 18 2503 }; 2504 2505 Triple::ArchType Arch = TT.getArch(); 2506 if (Arch == Triple::x86_64) 2507 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2508 else if (Arch == Triple::x86) 2509 CPUType = DARWIN_CPU_TYPE_X86; 2510 else if (Arch == Triple::ppc) 2511 CPUType = DARWIN_CPU_TYPE_POWERPC; 2512 else if (Arch == Triple::ppc64) 2513 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2514 else if (Arch == Triple::arm || Arch == Triple::thumb) 2515 CPUType = DARWIN_CPU_TYPE_ARM; 2516 2517 // Traditional Bitcode starts after header. 2518 assert(Buffer.size() >= DarwinBCHeaderSize && 2519 "Expected header size to be reserved"); 2520 unsigned BCOffset = DarwinBCHeaderSize; 2521 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2522 2523 // Write the magic and version. 2524 unsigned Position = 0; 2525 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2526 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2527 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2528 WriteInt32ToBuffer(BCSize , Buffer, Position); 2529 WriteInt32ToBuffer(CPUType , Buffer, Position); 2530 2531 // If the file is not a multiple of 16 bytes, insert dummy padding. 2532 while (Buffer.size() & 15) 2533 Buffer.push_back(0); 2534 } 2535 2536 /// WriteBitcodeToFile - Write the specified module to the specified output 2537 /// stream. 2538 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2539 bool ShouldPreserveUseListOrder) { 2540 SmallVector<char, 0> Buffer; 2541 Buffer.reserve(256*1024); 2542 2543 // If this is darwin or another generic macho target, reserve space for the 2544 // header. 2545 Triple TT(M->getTargetTriple()); 2546 if (TT.isOSDarwin()) 2547 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2548 2549 // Emit the module into the buffer. 2550 { 2551 BitstreamWriter Stream(Buffer); 2552 2553 // Emit the file header. 2554 Stream.Emit((unsigned)'B', 8); 2555 Stream.Emit((unsigned)'C', 8); 2556 Stream.Emit(0x0, 4); 2557 Stream.Emit(0xC, 4); 2558 Stream.Emit(0xE, 4); 2559 Stream.Emit(0xD, 4); 2560 2561 // Emit the module. 2562 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2563 } 2564 2565 if (TT.isOSDarwin()) 2566 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2567 2568 // Write the generated bitstream to "Out". 2569 Out.write((char*)&Buffer.front(), Buffer.size()); 2570 } 2571