1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::Builtin: 166 return bitc::ATTR_KIND_BUILTIN; 167 case Attribute::ByVal: 168 return bitc::ATTR_KIND_BY_VAL; 169 case Attribute::InAlloca: 170 return bitc::ATTR_KIND_IN_ALLOCA; 171 case Attribute::Cold: 172 return bitc::ATTR_KIND_COLD; 173 case Attribute::InlineHint: 174 return bitc::ATTR_KIND_INLINE_HINT; 175 case Attribute::InReg: 176 return bitc::ATTR_KIND_IN_REG; 177 case Attribute::JumpTable: 178 return bitc::ATTR_KIND_JUMP_TABLE; 179 case Attribute::MinSize: 180 return bitc::ATTR_KIND_MIN_SIZE; 181 case Attribute::Naked: 182 return bitc::ATTR_KIND_NAKED; 183 case Attribute::Nest: 184 return bitc::ATTR_KIND_NEST; 185 case Attribute::NoAlias: 186 return bitc::ATTR_KIND_NO_ALIAS; 187 case Attribute::NoBuiltin: 188 return bitc::ATTR_KIND_NO_BUILTIN; 189 case Attribute::NoCapture: 190 return bitc::ATTR_KIND_NO_CAPTURE; 191 case Attribute::NoDuplicate: 192 return bitc::ATTR_KIND_NO_DUPLICATE; 193 case Attribute::NoImplicitFloat: 194 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 195 case Attribute::NoInline: 196 return bitc::ATTR_KIND_NO_INLINE; 197 case Attribute::NonLazyBind: 198 return bitc::ATTR_KIND_NON_LAZY_BIND; 199 case Attribute::NonNull: 200 return bitc::ATTR_KIND_NON_NULL; 201 case Attribute::Dereferenceable: 202 return bitc::ATTR_KIND_DEREFERENCEABLE; 203 case Attribute::DereferenceableOrNull: 204 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 205 case Attribute::NoRedZone: 206 return bitc::ATTR_KIND_NO_RED_ZONE; 207 case Attribute::NoReturn: 208 return bitc::ATTR_KIND_NO_RETURN; 209 case Attribute::NoUnwind: 210 return bitc::ATTR_KIND_NO_UNWIND; 211 case Attribute::OptimizeForSize: 212 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 213 case Attribute::OptimizeNone: 214 return bitc::ATTR_KIND_OPTIMIZE_NONE; 215 case Attribute::ReadNone: 216 return bitc::ATTR_KIND_READ_NONE; 217 case Attribute::ReadOnly: 218 return bitc::ATTR_KIND_READ_ONLY; 219 case Attribute::Returned: 220 return bitc::ATTR_KIND_RETURNED; 221 case Attribute::ReturnsTwice: 222 return bitc::ATTR_KIND_RETURNS_TWICE; 223 case Attribute::SExt: 224 return bitc::ATTR_KIND_S_EXT; 225 case Attribute::StackAlignment: 226 return bitc::ATTR_KIND_STACK_ALIGNMENT; 227 case Attribute::StackProtect: 228 return bitc::ATTR_KIND_STACK_PROTECT; 229 case Attribute::StackProtectReq: 230 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 231 case Attribute::StackProtectStrong: 232 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 233 case Attribute::StructRet: 234 return bitc::ATTR_KIND_STRUCT_RET; 235 case Attribute::SanitizeAddress: 236 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 237 case Attribute::SanitizeThread: 238 return bitc::ATTR_KIND_SANITIZE_THREAD; 239 case Attribute::SanitizeMemory: 240 return bitc::ATTR_KIND_SANITIZE_MEMORY; 241 case Attribute::UWTable: 242 return bitc::ATTR_KIND_UW_TABLE; 243 case Attribute::ZExt: 244 return bitc::ATTR_KIND_Z_EXT; 245 case Attribute::EndAttrKinds: 246 llvm_unreachable("Can not encode end-attribute kinds marker."); 247 case Attribute::None: 248 llvm_unreachable("Can not encode none-attribute."); 249 } 250 251 llvm_unreachable("Trying to encode unknown attribute"); 252 } 253 254 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 255 BitstreamWriter &Stream) { 256 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 257 if (AttrGrps.empty()) return; 258 259 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 260 261 SmallVector<uint64_t, 64> Record; 262 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 263 AttributeSet AS = AttrGrps[i]; 264 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 265 AttributeSet A = AS.getSlotAttributes(i); 266 267 Record.push_back(VE.getAttributeGroupID(A)); 268 Record.push_back(AS.getSlotIndex(i)); 269 270 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 271 I != E; ++I) { 272 Attribute Attr = *I; 273 if (Attr.isEnumAttribute()) { 274 Record.push_back(0); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 } else if (Attr.isIntAttribute()) { 277 Record.push_back(1); 278 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 279 Record.push_back(Attr.getValueAsInt()); 280 } else { 281 StringRef Kind = Attr.getKindAsString(); 282 StringRef Val = Attr.getValueAsString(); 283 284 Record.push_back(Val.empty() ? 3 : 4); 285 Record.append(Kind.begin(), Kind.end()); 286 Record.push_back(0); 287 if (!Val.empty()) { 288 Record.append(Val.begin(), Val.end()); 289 Record.push_back(0); 290 } 291 } 292 } 293 294 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 295 Record.clear(); 296 } 297 } 298 299 Stream.ExitBlock(); 300 } 301 302 static void WriteAttributeTable(const ValueEnumerator &VE, 303 BitstreamWriter &Stream) { 304 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 305 if (Attrs.empty()) return; 306 307 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 308 309 SmallVector<uint64_t, 64> Record; 310 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 311 const AttributeSet &A = Attrs[i]; 312 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 313 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 314 315 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 319 Stream.ExitBlock(); 320 } 321 322 /// WriteTypeTable - Write out the type table for a module. 323 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 324 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 325 326 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 327 SmallVector<uint64_t, 64> TypeVals; 328 329 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 330 331 // Abbrev for TYPE_CODE_POINTER. 332 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 333 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 335 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 336 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 337 338 // Abbrev for TYPE_CODE_FUNCTION. 339 Abbv = new BitCodeAbbrev(); 340 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 344 345 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 346 347 // Abbrev for TYPE_CODE_STRUCT_ANON. 348 Abbv = new BitCodeAbbrev(); 349 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 353 354 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 355 356 // Abbrev for TYPE_CODE_STRUCT_NAME. 357 Abbv = new BitCodeAbbrev(); 358 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 361 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 362 363 // Abbrev for TYPE_CODE_STRUCT_NAMED. 364 Abbv = new BitCodeAbbrev(); 365 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 369 370 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 371 372 // Abbrev for TYPE_CODE_ARRAY. 373 Abbv = new BitCodeAbbrev(); 374 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 377 378 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 379 380 // Emit an entry count so the reader can reserve space. 381 TypeVals.push_back(TypeList.size()); 382 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 383 TypeVals.clear(); 384 385 // Loop over all of the types, emitting each in turn. 386 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 387 Type *T = TypeList[i]; 388 int AbbrevToUse = 0; 389 unsigned Code = 0; 390 391 switch (T->getTypeID()) { 392 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 393 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 394 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 395 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 396 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 397 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 398 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 399 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 400 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 401 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 402 case Type::IntegerTyID: 403 // INTEGER: [width] 404 Code = bitc::TYPE_CODE_INTEGER; 405 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 406 break; 407 case Type::PointerTyID: { 408 PointerType *PTy = cast<PointerType>(T); 409 // POINTER: [pointee type, address space] 410 Code = bitc::TYPE_CODE_POINTER; 411 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 412 unsigned AddressSpace = PTy->getAddressSpace(); 413 TypeVals.push_back(AddressSpace); 414 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 415 break; 416 } 417 case Type::FunctionTyID: { 418 FunctionType *FT = cast<FunctionType>(T); 419 // FUNCTION: [isvararg, retty, paramty x N] 420 Code = bitc::TYPE_CODE_FUNCTION; 421 TypeVals.push_back(FT->isVarArg()); 422 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 423 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 424 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 425 AbbrevToUse = FunctionAbbrev; 426 break; 427 } 428 case Type::StructTyID: { 429 StructType *ST = cast<StructType>(T); 430 // STRUCT: [ispacked, eltty x N] 431 TypeVals.push_back(ST->isPacked()); 432 // Output all of the element types. 433 for (StructType::element_iterator I = ST->element_begin(), 434 E = ST->element_end(); I != E; ++I) 435 TypeVals.push_back(VE.getTypeID(*I)); 436 437 if (ST->isLiteral()) { 438 Code = bitc::TYPE_CODE_STRUCT_ANON; 439 AbbrevToUse = StructAnonAbbrev; 440 } else { 441 if (ST->isOpaque()) { 442 Code = bitc::TYPE_CODE_OPAQUE; 443 } else { 444 Code = bitc::TYPE_CODE_STRUCT_NAMED; 445 AbbrevToUse = StructNamedAbbrev; 446 } 447 448 // Emit the name if it is present. 449 if (!ST->getName().empty()) 450 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 451 StructNameAbbrev, Stream); 452 } 453 break; 454 } 455 case Type::ArrayTyID: { 456 ArrayType *AT = cast<ArrayType>(T); 457 // ARRAY: [numelts, eltty] 458 Code = bitc::TYPE_CODE_ARRAY; 459 TypeVals.push_back(AT->getNumElements()); 460 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 461 AbbrevToUse = ArrayAbbrev; 462 break; 463 } 464 case Type::VectorTyID: { 465 VectorType *VT = cast<VectorType>(T); 466 // VECTOR [numelts, eltty] 467 Code = bitc::TYPE_CODE_VECTOR; 468 TypeVals.push_back(VT->getNumElements()); 469 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 470 break; 471 } 472 } 473 474 // Emit the finished record. 475 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 476 TypeVals.clear(); 477 } 478 479 Stream.ExitBlock(); 480 } 481 482 static unsigned getEncodedLinkage(const GlobalValue &GV) { 483 switch (GV.getLinkage()) { 484 case GlobalValue::ExternalLinkage: 485 return 0; 486 case GlobalValue::WeakAnyLinkage: 487 return 16; 488 case GlobalValue::AppendingLinkage: 489 return 2; 490 case GlobalValue::InternalLinkage: 491 return 3; 492 case GlobalValue::LinkOnceAnyLinkage: 493 return 18; 494 case GlobalValue::ExternalWeakLinkage: 495 return 7; 496 case GlobalValue::CommonLinkage: 497 return 8; 498 case GlobalValue::PrivateLinkage: 499 return 9; 500 case GlobalValue::WeakODRLinkage: 501 return 17; 502 case GlobalValue::LinkOnceODRLinkage: 503 return 19; 504 case GlobalValue::AvailableExternallyLinkage: 505 return 12; 506 } 507 llvm_unreachable("Invalid linkage"); 508 } 509 510 static unsigned getEncodedVisibility(const GlobalValue &GV) { 511 switch (GV.getVisibility()) { 512 case GlobalValue::DefaultVisibility: return 0; 513 case GlobalValue::HiddenVisibility: return 1; 514 case GlobalValue::ProtectedVisibility: return 2; 515 } 516 llvm_unreachable("Invalid visibility"); 517 } 518 519 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 520 switch (GV.getDLLStorageClass()) { 521 case GlobalValue::DefaultStorageClass: return 0; 522 case GlobalValue::DLLImportStorageClass: return 1; 523 case GlobalValue::DLLExportStorageClass: return 2; 524 } 525 llvm_unreachable("Invalid DLL storage class"); 526 } 527 528 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 529 switch (GV.getThreadLocalMode()) { 530 case GlobalVariable::NotThreadLocal: return 0; 531 case GlobalVariable::GeneralDynamicTLSModel: return 1; 532 case GlobalVariable::LocalDynamicTLSModel: return 2; 533 case GlobalVariable::InitialExecTLSModel: return 3; 534 case GlobalVariable::LocalExecTLSModel: return 4; 535 } 536 llvm_unreachable("Invalid TLS model"); 537 } 538 539 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 540 switch (C.getSelectionKind()) { 541 case Comdat::Any: 542 return bitc::COMDAT_SELECTION_KIND_ANY; 543 case Comdat::ExactMatch: 544 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 545 case Comdat::Largest: 546 return bitc::COMDAT_SELECTION_KIND_LARGEST; 547 case Comdat::NoDuplicates: 548 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 549 case Comdat::SameSize: 550 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 551 } 552 llvm_unreachable("Invalid selection kind"); 553 } 554 555 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 556 SmallVector<uint16_t, 64> Vals; 557 for (const Comdat *C : VE.getComdats()) { 558 // COMDAT: [selection_kind, name] 559 Vals.push_back(getEncodedComdatSelectionKind(*C)); 560 size_t Size = C->getName().size(); 561 assert(isUInt<16>(Size)); 562 Vals.push_back(Size); 563 for (char Chr : C->getName()) 564 Vals.push_back((unsigned char)Chr); 565 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 566 Vals.clear(); 567 } 568 } 569 570 // Emit top-level description of module, including target triple, inline asm, 571 // descriptors for global variables, and function prototype info. 572 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 573 BitstreamWriter &Stream) { 574 // Emit various pieces of data attached to a module. 575 if (!M->getTargetTriple().empty()) 576 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 577 0/*TODO*/, Stream); 578 const std::string &DL = M->getDataLayoutStr(); 579 if (!DL.empty()) 580 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 581 if (!M->getModuleInlineAsm().empty()) 582 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 583 0/*TODO*/, Stream); 584 585 // Emit information about sections and GC, computing how many there are. Also 586 // compute the maximum alignment value. 587 std::map<std::string, unsigned> SectionMap; 588 std::map<std::string, unsigned> GCMap; 589 unsigned MaxAlignment = 0; 590 unsigned MaxGlobalType = 0; 591 for (const GlobalValue &GV : M->globals()) { 592 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 593 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 594 if (GV.hasSection()) { 595 // Give section names unique ID's. 596 unsigned &Entry = SectionMap[GV.getSection()]; 597 if (!Entry) { 598 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 599 0/*TODO*/, Stream); 600 Entry = SectionMap.size(); 601 } 602 } 603 } 604 for (const Function &F : *M) { 605 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 606 if (F.hasSection()) { 607 // Give section names unique ID's. 608 unsigned &Entry = SectionMap[F.getSection()]; 609 if (!Entry) { 610 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 611 0/*TODO*/, Stream); 612 Entry = SectionMap.size(); 613 } 614 } 615 if (F.hasGC()) { 616 // Same for GC names. 617 unsigned &Entry = GCMap[F.getGC()]; 618 if (!Entry) { 619 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 620 0/*TODO*/, Stream); 621 Entry = GCMap.size(); 622 } 623 } 624 } 625 626 // Emit abbrev for globals, now that we know # sections and max alignment. 627 unsigned SimpleGVarAbbrev = 0; 628 if (!M->global_empty()) { 629 // Add an abbrev for common globals with no visibility or thread localness. 630 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 631 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 633 Log2_32_Ceil(MaxGlobalType+1))); 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 637 if (MaxAlignment == 0) // Alignment. 638 Abbv->Add(BitCodeAbbrevOp(0)); 639 else { 640 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 642 Log2_32_Ceil(MaxEncAlignment+1))); 643 } 644 if (SectionMap.empty()) // Section. 645 Abbv->Add(BitCodeAbbrevOp(0)); 646 else 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 648 Log2_32_Ceil(SectionMap.size()+1))); 649 // Don't bother emitting vis + thread local. 650 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 651 } 652 653 // Emit the global variable information. 654 SmallVector<unsigned, 64> Vals; 655 for (const GlobalVariable &GV : M->globals()) { 656 unsigned AbbrevToUse = 0; 657 658 // GLOBALVAR: [type, isconst, initid, 659 // linkage, alignment, section, visibility, threadlocal, 660 // unnamed_addr, externally_initialized, dllstorageclass, 661 // comdat] 662 Vals.push_back(VE.getTypeID(GV.getType())); 663 Vals.push_back(GV.isConstant()); 664 Vals.push_back(GV.isDeclaration() ? 0 : 665 (VE.getValueID(GV.getInitializer()) + 1)); 666 Vals.push_back(getEncodedLinkage(GV)); 667 Vals.push_back(Log2_32(GV.getAlignment())+1); 668 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 669 if (GV.isThreadLocal() || 670 GV.getVisibility() != GlobalValue::DefaultVisibility || 671 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 672 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 673 GV.hasComdat()) { 674 Vals.push_back(getEncodedVisibility(GV)); 675 Vals.push_back(getEncodedThreadLocalMode(GV)); 676 Vals.push_back(GV.hasUnnamedAddr()); 677 Vals.push_back(GV.isExternallyInitialized()); 678 Vals.push_back(getEncodedDLLStorageClass(GV)); 679 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 680 } else { 681 AbbrevToUse = SimpleGVarAbbrev; 682 } 683 684 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 685 Vals.clear(); 686 } 687 688 // Emit the function proto information. 689 for (const Function &F : *M) { 690 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 691 // section, visibility, gc, unnamed_addr, prologuedata, 692 // dllstorageclass, comdat, prefixdata] 693 Vals.push_back(VE.getTypeID(F.getFunctionType())); 694 Vals.push_back(F.getCallingConv()); 695 Vals.push_back(F.isDeclaration()); 696 Vals.push_back(getEncodedLinkage(F)); 697 Vals.push_back(VE.getAttributeID(F.getAttributes())); 698 Vals.push_back(Log2_32(F.getAlignment())+1); 699 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 700 Vals.push_back(getEncodedVisibility(F)); 701 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 702 Vals.push_back(F.hasUnnamedAddr()); 703 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 704 : 0); 705 Vals.push_back(getEncodedDLLStorageClass(F)); 706 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 707 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 708 : 0); 709 710 unsigned AbbrevToUse = 0; 711 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 712 Vals.clear(); 713 } 714 715 // Emit the alias information. 716 for (const GlobalAlias &A : M->aliases()) { 717 // ALIAS: [alias type, aliasee val#, linkage, visibility] 718 Vals.push_back(VE.getTypeID(A.getType())); 719 Vals.push_back(VE.getValueID(A.getAliasee())); 720 Vals.push_back(getEncodedLinkage(A)); 721 Vals.push_back(getEncodedVisibility(A)); 722 Vals.push_back(getEncodedDLLStorageClass(A)); 723 Vals.push_back(getEncodedThreadLocalMode(A)); 724 Vals.push_back(A.hasUnnamedAddr()); 725 unsigned AbbrevToUse = 0; 726 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 727 Vals.clear(); 728 } 729 } 730 731 static uint64_t GetOptimizationFlags(const Value *V) { 732 uint64_t Flags = 0; 733 734 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 735 if (OBO->hasNoSignedWrap()) 736 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 737 if (OBO->hasNoUnsignedWrap()) 738 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 739 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 740 if (PEO->isExact()) 741 Flags |= 1 << bitc::PEO_EXACT; 742 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 743 if (FPMO->hasUnsafeAlgebra()) 744 Flags |= FastMathFlags::UnsafeAlgebra; 745 if (FPMO->hasNoNaNs()) 746 Flags |= FastMathFlags::NoNaNs; 747 if (FPMO->hasNoInfs()) 748 Flags |= FastMathFlags::NoInfs; 749 if (FPMO->hasNoSignedZeros()) 750 Flags |= FastMathFlags::NoSignedZeros; 751 if (FPMO->hasAllowReciprocal()) 752 Flags |= FastMathFlags::AllowReciprocal; 753 } 754 755 return Flags; 756 } 757 758 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 759 const ValueEnumerator &VE, 760 BitstreamWriter &Stream, 761 SmallVectorImpl<uint64_t> &Record) { 762 // Mimic an MDNode with a value as one operand. 763 Value *V = MD->getValue(); 764 Record.push_back(VE.getTypeID(V->getType())); 765 Record.push_back(VE.getValueID(V)); 766 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 767 Record.clear(); 768 } 769 770 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 771 BitstreamWriter &Stream, 772 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 773 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 774 Metadata *MD = N->getOperand(i); 775 assert(!(MD && isa<LocalAsMetadata>(MD)) && 776 "Unexpected function-local metadata"); 777 Record.push_back(VE.getMetadataOrNullID(MD)); 778 } 779 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 780 : bitc::METADATA_NODE, 781 Record, Abbrev); 782 Record.clear(); 783 } 784 785 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 786 BitstreamWriter &Stream, 787 SmallVectorImpl<uint64_t> &Record, 788 unsigned Abbrev) { 789 Record.push_back(N->isDistinct()); 790 Record.push_back(N->getLine()); 791 Record.push_back(N->getColumn()); 792 Record.push_back(VE.getMetadataID(N->getScope())); 793 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 794 795 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 796 Record.clear(); 797 } 798 799 static void WriteGenericDebugNode(const GenericDebugNode *N, 800 const ValueEnumerator &VE, 801 BitstreamWriter &Stream, 802 SmallVectorImpl<uint64_t> &Record, 803 unsigned Abbrev) { 804 Record.push_back(N->isDistinct()); 805 Record.push_back(N->getTag()); 806 Record.push_back(0); // Per-tag version field; unused for now. 807 808 for (auto &I : N->operands()) 809 Record.push_back(VE.getMetadataOrNullID(I)); 810 811 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 812 Record.clear(); 813 } 814 815 static uint64_t rotateSign(int64_t I) { 816 uint64_t U = I; 817 return I < 0 ? ~(U << 1) : U << 1; 818 } 819 820 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 821 BitstreamWriter &Stream, 822 SmallVectorImpl<uint64_t> &Record, 823 unsigned Abbrev) { 824 Record.push_back(N->isDistinct()); 825 Record.push_back(N->getCount()); 826 Record.push_back(rotateSign(N->getLowerBound())); 827 828 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 829 Record.clear(); 830 } 831 832 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 833 BitstreamWriter &Stream, 834 SmallVectorImpl<uint64_t> &Record, 835 unsigned Abbrev) { 836 Record.push_back(N->isDistinct()); 837 Record.push_back(rotateSign(N->getValue())); 838 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 839 840 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 841 Record.clear(); 842 } 843 844 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 845 BitstreamWriter &Stream, 846 SmallVectorImpl<uint64_t> &Record, 847 unsigned Abbrev) { 848 Record.push_back(N->isDistinct()); 849 Record.push_back(N->getTag()); 850 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 851 Record.push_back(N->getSizeInBits()); 852 Record.push_back(N->getAlignInBits()); 853 Record.push_back(N->getEncoding()); 854 855 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 856 Record.clear(); 857 } 858 859 static void WriteMDDerivedType(const MDDerivedType *N, 860 const ValueEnumerator &VE, 861 BitstreamWriter &Stream, 862 SmallVectorImpl<uint64_t> &Record, 863 unsigned Abbrev) { 864 Record.push_back(N->isDistinct()); 865 Record.push_back(N->getTag()); 866 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 867 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 868 Record.push_back(N->getLine()); 869 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 870 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 871 Record.push_back(N->getSizeInBits()); 872 Record.push_back(N->getAlignInBits()); 873 Record.push_back(N->getOffsetInBits()); 874 Record.push_back(N->getFlags()); 875 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 876 877 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 878 Record.clear(); 879 } 880 881 static void WriteMDCompositeType(const MDCompositeType *N, 882 const ValueEnumerator &VE, 883 BitstreamWriter &Stream, 884 SmallVectorImpl<uint64_t> &Record, 885 unsigned Abbrev) { 886 Record.push_back(N->isDistinct()); 887 Record.push_back(N->getTag()); 888 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 889 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 890 Record.push_back(N->getLine()); 891 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 892 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 893 Record.push_back(N->getSizeInBits()); 894 Record.push_back(N->getAlignInBits()); 895 Record.push_back(N->getOffsetInBits()); 896 Record.push_back(N->getFlags()); 897 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 898 Record.push_back(N->getRuntimeLang()); 899 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 900 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 901 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 902 903 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 904 Record.clear(); 905 } 906 907 static void WriteMDSubroutineType(const MDSubroutineType *N, 908 const ValueEnumerator &VE, 909 BitstreamWriter &Stream, 910 SmallVectorImpl<uint64_t> &Record, 911 unsigned Abbrev) { 912 Record.push_back(N->isDistinct()); 913 Record.push_back(N->getFlags()); 914 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 915 916 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 917 Record.clear(); 918 } 919 920 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 921 BitstreamWriter &Stream, 922 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 923 Record.push_back(N->isDistinct()); 924 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 925 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 926 927 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 928 Record.clear(); 929 } 930 931 static void WriteMDCompileUnit(const MDCompileUnit *N, 932 const ValueEnumerator &VE, 933 BitstreamWriter &Stream, 934 SmallVectorImpl<uint64_t> &Record, 935 unsigned Abbrev) { 936 Record.push_back(N->isDistinct()); 937 Record.push_back(N->getSourceLanguage()); 938 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 939 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 940 Record.push_back(N->isOptimized()); 941 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 942 Record.push_back(N->getRuntimeVersion()); 943 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 944 Record.push_back(N->getEmissionKind()); 945 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 946 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 947 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 948 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 949 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 950 951 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 952 Record.clear(); 953 } 954 955 static void WriteMDSubprogram(const MDSubprogram *N, 956 const ValueEnumerator &VE, 957 BitstreamWriter &Stream, 958 SmallVectorImpl<uint64_t> &Record, 959 unsigned Abbrev) { 960 Record.push_back(N->isDistinct()); 961 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 963 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 964 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 965 Record.push_back(N->getLine()); 966 Record.push_back(VE.getMetadataOrNullID(N->getType())); 967 Record.push_back(N->isLocalToUnit()); 968 Record.push_back(N->isDefinition()); 969 Record.push_back(N->getScopeLine()); 970 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 971 Record.push_back(N->getVirtuality()); 972 Record.push_back(N->getVirtualIndex()); 973 Record.push_back(N->getFlags()); 974 Record.push_back(N->isOptimized()); 975 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 976 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 977 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 978 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 979 980 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 981 Record.clear(); 982 } 983 984 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 985 const ValueEnumerator &VE, 986 BitstreamWriter &Stream, 987 SmallVectorImpl<uint64_t> &Record, 988 unsigned Abbrev) { 989 Record.push_back(N->isDistinct()); 990 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 991 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 992 Record.push_back(N->getLine()); 993 Record.push_back(N->getColumn()); 994 995 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 996 Record.clear(); 997 } 998 999 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 1000 const ValueEnumerator &VE, 1001 BitstreamWriter &Stream, 1002 SmallVectorImpl<uint64_t> &Record, 1003 unsigned Abbrev) { 1004 Record.push_back(N->isDistinct()); 1005 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1006 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1007 Record.push_back(N->getDiscriminator()); 1008 1009 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1010 Record.clear(); 1011 } 1012 1013 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE, 1014 BitstreamWriter &Stream, 1015 SmallVectorImpl<uint64_t> &Record, 1016 unsigned Abbrev) { 1017 Record.push_back(N->isDistinct()); 1018 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1019 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1020 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1021 Record.push_back(N->getLine()); 1022 1023 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1024 Record.clear(); 1025 } 1026 1027 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N, 1028 const ValueEnumerator &VE, 1029 BitstreamWriter &Stream, 1030 SmallVectorImpl<uint64_t> &Record, 1031 unsigned Abbrev) { 1032 Record.push_back(N->isDistinct()); 1033 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1034 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1035 1036 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1037 Record.clear(); 1038 } 1039 1040 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N, 1041 const ValueEnumerator &VE, 1042 BitstreamWriter &Stream, 1043 SmallVectorImpl<uint64_t> &Record, 1044 unsigned Abbrev) { 1045 Record.push_back(N->isDistinct()); 1046 Record.push_back(N->getTag()); 1047 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1048 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1049 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1050 1051 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1052 Record.clear(); 1053 } 1054 1055 static void WriteMDGlobalVariable(const MDGlobalVariable *N, 1056 const ValueEnumerator &VE, 1057 BitstreamWriter &Stream, 1058 SmallVectorImpl<uint64_t> &Record, 1059 unsigned Abbrev) { 1060 Record.push_back(N->isDistinct()); 1061 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1062 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1063 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1064 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1065 Record.push_back(N->getLine()); 1066 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1067 Record.push_back(N->isLocalToUnit()); 1068 Record.push_back(N->isDefinition()); 1069 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1070 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1071 1072 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1073 Record.clear(); 1074 } 1075 1076 static void WriteMDLocalVariable(const MDLocalVariable *N, 1077 const ValueEnumerator &VE, 1078 BitstreamWriter &Stream, 1079 SmallVectorImpl<uint64_t> &Record, 1080 unsigned Abbrev) { 1081 Record.push_back(N->isDistinct()); 1082 Record.push_back(N->getTag()); 1083 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1084 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1085 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1086 Record.push_back(N->getLine()); 1087 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1088 Record.push_back(N->getArg()); 1089 Record.push_back(N->getFlags()); 1090 1091 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1092 Record.clear(); 1093 } 1094 1095 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &, 1096 BitstreamWriter &Stream, 1097 SmallVectorImpl<uint64_t> &Record, 1098 unsigned Abbrev) { 1099 Record.reserve(N->getElements().size() + 1); 1100 1101 Record.push_back(N->isDistinct()); 1102 Record.append(N->elements_begin(), N->elements_end()); 1103 1104 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1105 Record.clear(); 1106 } 1107 1108 static void WriteMDObjCProperty(const MDObjCProperty *N, 1109 const ValueEnumerator &VE, 1110 BitstreamWriter &Stream, 1111 SmallVectorImpl<uint64_t> &Record, 1112 unsigned Abbrev) { 1113 Record.push_back(N->isDistinct()); 1114 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1115 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1116 Record.push_back(N->getLine()); 1117 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1119 Record.push_back(N->getAttributes()); 1120 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1121 1122 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1123 Record.clear(); 1124 } 1125 1126 static void WriteMDImportedEntity(const MDImportedEntity *N, 1127 const ValueEnumerator &VE, 1128 BitstreamWriter &Stream, 1129 SmallVectorImpl<uint64_t> &Record, 1130 unsigned Abbrev) { 1131 Record.push_back(N->isDistinct()); 1132 Record.push_back(N->getTag()); 1133 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1134 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1135 Record.push_back(N->getLine()); 1136 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1137 1138 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1139 Record.clear(); 1140 } 1141 1142 static void WriteModuleMetadata(const Module *M, 1143 const ValueEnumerator &VE, 1144 BitstreamWriter &Stream) { 1145 const auto &MDs = VE.getMDs(); 1146 if (MDs.empty() && M->named_metadata_empty()) 1147 return; 1148 1149 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1150 1151 unsigned MDSAbbrev = 0; 1152 if (VE.hasMDString()) { 1153 // Abbrev for METADATA_STRING. 1154 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1155 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1158 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1159 } 1160 1161 // Initialize MDNode abbreviations. 1162 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1163 #include "llvm/IR/Metadata.def" 1164 1165 if (VE.hasMDLocation()) { 1166 // Abbrev for METADATA_LOCATION. 1167 // 1168 // Assume the column is usually under 128, and always output the inlined-at 1169 // location (it's never more expensive than building an array size 1). 1170 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1171 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1177 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1178 } 1179 1180 if (VE.hasGenericDebugNode()) { 1181 // Abbrev for METADATA_GENERIC_DEBUG. 1182 // 1183 // Assume the column is usually under 128, and always output the inlined-at 1184 // location (it's never more expensive than building an array size 1). 1185 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1186 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1193 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1194 } 1195 1196 unsigned NameAbbrev = 0; 1197 if (!M->named_metadata_empty()) { 1198 // Abbrev for METADATA_NAME. 1199 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1200 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1203 NameAbbrev = Stream.EmitAbbrev(Abbv); 1204 } 1205 1206 SmallVector<uint64_t, 64> Record; 1207 for (const Metadata *MD : MDs) { 1208 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1209 assert(N->isResolved() && "Expected forward references to be resolved"); 1210 1211 switch (N->getMetadataID()) { 1212 default: 1213 llvm_unreachable("Invalid MDNode subclass"); 1214 #define HANDLE_MDNODE_LEAF(CLASS) \ 1215 case Metadata::CLASS##Kind: \ 1216 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1217 continue; 1218 #include "llvm/IR/Metadata.def" 1219 } 1220 } 1221 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1222 WriteValueAsMetadata(MDC, VE, Stream, Record); 1223 continue; 1224 } 1225 const MDString *MDS = cast<MDString>(MD); 1226 // Code: [strchar x N] 1227 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1228 1229 // Emit the finished record. 1230 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1231 Record.clear(); 1232 } 1233 1234 // Write named metadata. 1235 for (const NamedMDNode &NMD : M->named_metadata()) { 1236 // Write name. 1237 StringRef Str = NMD.getName(); 1238 Record.append(Str.bytes_begin(), Str.bytes_end()); 1239 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1240 Record.clear(); 1241 1242 // Write named metadata operands. 1243 for (const MDNode *N : NMD.operands()) 1244 Record.push_back(VE.getMetadataID(N)); 1245 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1246 Record.clear(); 1247 } 1248 1249 Stream.ExitBlock(); 1250 } 1251 1252 static void WriteFunctionLocalMetadata(const Function &F, 1253 const ValueEnumerator &VE, 1254 BitstreamWriter &Stream) { 1255 bool StartedMetadataBlock = false; 1256 SmallVector<uint64_t, 64> Record; 1257 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1258 VE.getFunctionLocalMDs(); 1259 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1260 assert(MDs[i] && "Expected valid function-local metadata"); 1261 if (!StartedMetadataBlock) { 1262 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1263 StartedMetadataBlock = true; 1264 } 1265 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1266 } 1267 1268 if (StartedMetadataBlock) 1269 Stream.ExitBlock(); 1270 } 1271 1272 static void WriteMetadataAttachment(const Function &F, 1273 const ValueEnumerator &VE, 1274 BitstreamWriter &Stream) { 1275 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1276 1277 SmallVector<uint64_t, 64> Record; 1278 1279 // Write metadata attachments 1280 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1281 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1282 F.getAllMetadata(MDs); 1283 if (!MDs.empty()) { 1284 for (const auto &I : MDs) { 1285 Record.push_back(I.first); 1286 Record.push_back(VE.getMetadataID(I.second)); 1287 } 1288 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1289 Record.clear(); 1290 } 1291 1292 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1293 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1294 I != E; ++I) { 1295 MDs.clear(); 1296 I->getAllMetadataOtherThanDebugLoc(MDs); 1297 1298 // If no metadata, ignore instruction. 1299 if (MDs.empty()) continue; 1300 1301 Record.push_back(VE.getInstructionID(I)); 1302 1303 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1304 Record.push_back(MDs[i].first); 1305 Record.push_back(VE.getMetadataID(MDs[i].second)); 1306 } 1307 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1308 Record.clear(); 1309 } 1310 1311 Stream.ExitBlock(); 1312 } 1313 1314 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1315 SmallVector<uint64_t, 64> Record; 1316 1317 // Write metadata kinds 1318 // METADATA_KIND - [n x [id, name]] 1319 SmallVector<StringRef, 8> Names; 1320 M->getMDKindNames(Names); 1321 1322 if (Names.empty()) return; 1323 1324 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1325 1326 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1327 Record.push_back(MDKindID); 1328 StringRef KName = Names[MDKindID]; 1329 Record.append(KName.begin(), KName.end()); 1330 1331 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1332 Record.clear(); 1333 } 1334 1335 Stream.ExitBlock(); 1336 } 1337 1338 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1339 if ((int64_t)V >= 0) 1340 Vals.push_back(V << 1); 1341 else 1342 Vals.push_back((-V << 1) | 1); 1343 } 1344 1345 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1346 const ValueEnumerator &VE, 1347 BitstreamWriter &Stream, bool isGlobal) { 1348 if (FirstVal == LastVal) return; 1349 1350 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1351 1352 unsigned AggregateAbbrev = 0; 1353 unsigned String8Abbrev = 0; 1354 unsigned CString7Abbrev = 0; 1355 unsigned CString6Abbrev = 0; 1356 // If this is a constant pool for the module, emit module-specific abbrevs. 1357 if (isGlobal) { 1358 // Abbrev for CST_CODE_AGGREGATE. 1359 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1360 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1363 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1364 1365 // Abbrev for CST_CODE_STRING. 1366 Abbv = new BitCodeAbbrev(); 1367 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1370 String8Abbrev = Stream.EmitAbbrev(Abbv); 1371 // Abbrev for CST_CODE_CSTRING. 1372 Abbv = new BitCodeAbbrev(); 1373 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1376 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1377 // Abbrev for CST_CODE_CSTRING. 1378 Abbv = new BitCodeAbbrev(); 1379 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1382 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1383 } 1384 1385 SmallVector<uint64_t, 64> Record; 1386 1387 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1388 Type *LastTy = nullptr; 1389 for (unsigned i = FirstVal; i != LastVal; ++i) { 1390 const Value *V = Vals[i].first; 1391 // If we need to switch types, do so now. 1392 if (V->getType() != LastTy) { 1393 LastTy = V->getType(); 1394 Record.push_back(VE.getTypeID(LastTy)); 1395 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1396 CONSTANTS_SETTYPE_ABBREV); 1397 Record.clear(); 1398 } 1399 1400 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1401 Record.push_back(unsigned(IA->hasSideEffects()) | 1402 unsigned(IA->isAlignStack()) << 1 | 1403 unsigned(IA->getDialect()&1) << 2); 1404 1405 // Add the asm string. 1406 const std::string &AsmStr = IA->getAsmString(); 1407 Record.push_back(AsmStr.size()); 1408 Record.append(AsmStr.begin(), AsmStr.end()); 1409 1410 // Add the constraint string. 1411 const std::string &ConstraintStr = IA->getConstraintString(); 1412 Record.push_back(ConstraintStr.size()); 1413 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1414 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1415 Record.clear(); 1416 continue; 1417 } 1418 const Constant *C = cast<Constant>(V); 1419 unsigned Code = -1U; 1420 unsigned AbbrevToUse = 0; 1421 if (C->isNullValue()) { 1422 Code = bitc::CST_CODE_NULL; 1423 } else if (isa<UndefValue>(C)) { 1424 Code = bitc::CST_CODE_UNDEF; 1425 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1426 if (IV->getBitWidth() <= 64) { 1427 uint64_t V = IV->getSExtValue(); 1428 emitSignedInt64(Record, V); 1429 Code = bitc::CST_CODE_INTEGER; 1430 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1431 } else { // Wide integers, > 64 bits in size. 1432 // We have an arbitrary precision integer value to write whose 1433 // bit width is > 64. However, in canonical unsigned integer 1434 // format it is likely that the high bits are going to be zero. 1435 // So, we only write the number of active words. 1436 unsigned NWords = IV->getValue().getActiveWords(); 1437 const uint64_t *RawWords = IV->getValue().getRawData(); 1438 for (unsigned i = 0; i != NWords; ++i) { 1439 emitSignedInt64(Record, RawWords[i]); 1440 } 1441 Code = bitc::CST_CODE_WIDE_INTEGER; 1442 } 1443 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1444 Code = bitc::CST_CODE_FLOAT; 1445 Type *Ty = CFP->getType(); 1446 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1447 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1448 } else if (Ty->isX86_FP80Ty()) { 1449 // api needed to prevent premature destruction 1450 // bits are not in the same order as a normal i80 APInt, compensate. 1451 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1452 const uint64_t *p = api.getRawData(); 1453 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1454 Record.push_back(p[0] & 0xffffLL); 1455 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1456 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1457 const uint64_t *p = api.getRawData(); 1458 Record.push_back(p[0]); 1459 Record.push_back(p[1]); 1460 } else { 1461 assert (0 && "Unknown FP type!"); 1462 } 1463 } else if (isa<ConstantDataSequential>(C) && 1464 cast<ConstantDataSequential>(C)->isString()) { 1465 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1466 // Emit constant strings specially. 1467 unsigned NumElts = Str->getNumElements(); 1468 // If this is a null-terminated string, use the denser CSTRING encoding. 1469 if (Str->isCString()) { 1470 Code = bitc::CST_CODE_CSTRING; 1471 --NumElts; // Don't encode the null, which isn't allowed by char6. 1472 } else { 1473 Code = bitc::CST_CODE_STRING; 1474 AbbrevToUse = String8Abbrev; 1475 } 1476 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1477 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1478 for (unsigned i = 0; i != NumElts; ++i) { 1479 unsigned char V = Str->getElementAsInteger(i); 1480 Record.push_back(V); 1481 isCStr7 &= (V & 128) == 0; 1482 if (isCStrChar6) 1483 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1484 } 1485 1486 if (isCStrChar6) 1487 AbbrevToUse = CString6Abbrev; 1488 else if (isCStr7) 1489 AbbrevToUse = CString7Abbrev; 1490 } else if (const ConstantDataSequential *CDS = 1491 dyn_cast<ConstantDataSequential>(C)) { 1492 Code = bitc::CST_CODE_DATA; 1493 Type *EltTy = CDS->getType()->getElementType(); 1494 if (isa<IntegerType>(EltTy)) { 1495 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1496 Record.push_back(CDS->getElementAsInteger(i)); 1497 } else if (EltTy->isFloatTy()) { 1498 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1499 union { float F; uint32_t I; }; 1500 F = CDS->getElementAsFloat(i); 1501 Record.push_back(I); 1502 } 1503 } else { 1504 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1505 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1506 union { double F; uint64_t I; }; 1507 F = CDS->getElementAsDouble(i); 1508 Record.push_back(I); 1509 } 1510 } 1511 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1512 isa<ConstantVector>(C)) { 1513 Code = bitc::CST_CODE_AGGREGATE; 1514 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1515 Record.push_back(VE.getValueID(C->getOperand(i))); 1516 AbbrevToUse = AggregateAbbrev; 1517 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1518 switch (CE->getOpcode()) { 1519 default: 1520 if (Instruction::isCast(CE->getOpcode())) { 1521 Code = bitc::CST_CODE_CE_CAST; 1522 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1523 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1524 Record.push_back(VE.getValueID(C->getOperand(0))); 1525 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1526 } else { 1527 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1528 Code = bitc::CST_CODE_CE_BINOP; 1529 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1530 Record.push_back(VE.getValueID(C->getOperand(0))); 1531 Record.push_back(VE.getValueID(C->getOperand(1))); 1532 uint64_t Flags = GetOptimizationFlags(CE); 1533 if (Flags != 0) 1534 Record.push_back(Flags); 1535 } 1536 break; 1537 case Instruction::GetElementPtr: { 1538 Code = bitc::CST_CODE_CE_GEP; 1539 const auto *GO = cast<GEPOperator>(C); 1540 if (GO->isInBounds()) 1541 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1542 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1543 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1544 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1545 Record.push_back(VE.getValueID(C->getOperand(i))); 1546 } 1547 break; 1548 } 1549 case Instruction::Select: 1550 Code = bitc::CST_CODE_CE_SELECT; 1551 Record.push_back(VE.getValueID(C->getOperand(0))); 1552 Record.push_back(VE.getValueID(C->getOperand(1))); 1553 Record.push_back(VE.getValueID(C->getOperand(2))); 1554 break; 1555 case Instruction::ExtractElement: 1556 Code = bitc::CST_CODE_CE_EXTRACTELT; 1557 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1558 Record.push_back(VE.getValueID(C->getOperand(0))); 1559 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1560 Record.push_back(VE.getValueID(C->getOperand(1))); 1561 break; 1562 case Instruction::InsertElement: 1563 Code = bitc::CST_CODE_CE_INSERTELT; 1564 Record.push_back(VE.getValueID(C->getOperand(0))); 1565 Record.push_back(VE.getValueID(C->getOperand(1))); 1566 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1567 Record.push_back(VE.getValueID(C->getOperand(2))); 1568 break; 1569 case Instruction::ShuffleVector: 1570 // If the return type and argument types are the same, this is a 1571 // standard shufflevector instruction. If the types are different, 1572 // then the shuffle is widening or truncating the input vectors, and 1573 // the argument type must also be encoded. 1574 if (C->getType() == C->getOperand(0)->getType()) { 1575 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1576 } else { 1577 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1578 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1579 } 1580 Record.push_back(VE.getValueID(C->getOperand(0))); 1581 Record.push_back(VE.getValueID(C->getOperand(1))); 1582 Record.push_back(VE.getValueID(C->getOperand(2))); 1583 break; 1584 case Instruction::ICmp: 1585 case Instruction::FCmp: 1586 Code = bitc::CST_CODE_CE_CMP; 1587 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1588 Record.push_back(VE.getValueID(C->getOperand(0))); 1589 Record.push_back(VE.getValueID(C->getOperand(1))); 1590 Record.push_back(CE->getPredicate()); 1591 break; 1592 } 1593 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1594 Code = bitc::CST_CODE_BLOCKADDRESS; 1595 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1596 Record.push_back(VE.getValueID(BA->getFunction())); 1597 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1598 } else { 1599 #ifndef NDEBUG 1600 C->dump(); 1601 #endif 1602 llvm_unreachable("Unknown constant!"); 1603 } 1604 Stream.EmitRecord(Code, Record, AbbrevToUse); 1605 Record.clear(); 1606 } 1607 1608 Stream.ExitBlock(); 1609 } 1610 1611 static void WriteModuleConstants(const ValueEnumerator &VE, 1612 BitstreamWriter &Stream) { 1613 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1614 1615 // Find the first constant to emit, which is the first non-globalvalue value. 1616 // We know globalvalues have been emitted by WriteModuleInfo. 1617 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1618 if (!isa<GlobalValue>(Vals[i].first)) { 1619 WriteConstants(i, Vals.size(), VE, Stream, true); 1620 return; 1621 } 1622 } 1623 } 1624 1625 /// PushValueAndType - The file has to encode both the value and type id for 1626 /// many values, because we need to know what type to create for forward 1627 /// references. However, most operands are not forward references, so this type 1628 /// field is not needed. 1629 /// 1630 /// This function adds V's value ID to Vals. If the value ID is higher than the 1631 /// instruction ID, then it is a forward reference, and it also includes the 1632 /// type ID. The value ID that is written is encoded relative to the InstID. 1633 static bool PushValueAndType(const Value *V, unsigned InstID, 1634 SmallVectorImpl<unsigned> &Vals, 1635 ValueEnumerator &VE) { 1636 unsigned ValID = VE.getValueID(V); 1637 // Make encoding relative to the InstID. 1638 Vals.push_back(InstID - ValID); 1639 if (ValID >= InstID) { 1640 Vals.push_back(VE.getTypeID(V->getType())); 1641 return true; 1642 } 1643 return false; 1644 } 1645 1646 /// pushValue - Like PushValueAndType, but where the type of the value is 1647 /// omitted (perhaps it was already encoded in an earlier operand). 1648 static void pushValue(const Value *V, unsigned InstID, 1649 SmallVectorImpl<unsigned> &Vals, 1650 ValueEnumerator &VE) { 1651 unsigned ValID = VE.getValueID(V); 1652 Vals.push_back(InstID - ValID); 1653 } 1654 1655 static void pushValueSigned(const Value *V, unsigned InstID, 1656 SmallVectorImpl<uint64_t> &Vals, 1657 ValueEnumerator &VE) { 1658 unsigned ValID = VE.getValueID(V); 1659 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1660 emitSignedInt64(Vals, diff); 1661 } 1662 1663 /// WriteInstruction - Emit an instruction to the specified stream. 1664 static void WriteInstruction(const Instruction &I, unsigned InstID, 1665 ValueEnumerator &VE, BitstreamWriter &Stream, 1666 SmallVectorImpl<unsigned> &Vals) { 1667 unsigned Code = 0; 1668 unsigned AbbrevToUse = 0; 1669 VE.setInstructionID(&I); 1670 switch (I.getOpcode()) { 1671 default: 1672 if (Instruction::isCast(I.getOpcode())) { 1673 Code = bitc::FUNC_CODE_INST_CAST; 1674 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1675 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1676 Vals.push_back(VE.getTypeID(I.getType())); 1677 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1678 } else { 1679 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1680 Code = bitc::FUNC_CODE_INST_BINOP; 1681 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1682 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1683 pushValue(I.getOperand(1), InstID, Vals, VE); 1684 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1685 uint64_t Flags = GetOptimizationFlags(&I); 1686 if (Flags != 0) { 1687 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1688 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1689 Vals.push_back(Flags); 1690 } 1691 } 1692 break; 1693 1694 case Instruction::GetElementPtr: { 1695 Code = bitc::FUNC_CODE_INST_GEP; 1696 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1697 auto &GEPInst = cast<GetElementPtrInst>(I); 1698 Vals.push_back(GEPInst.isInBounds()); 1699 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1700 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1701 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1702 break; 1703 } 1704 case Instruction::ExtractValue: { 1705 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1706 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1707 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1708 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1709 break; 1710 } 1711 case Instruction::InsertValue: { 1712 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1713 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1714 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1715 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1716 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1717 break; 1718 } 1719 case Instruction::Select: 1720 Code = bitc::FUNC_CODE_INST_VSELECT; 1721 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1722 pushValue(I.getOperand(2), InstID, Vals, VE); 1723 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1724 break; 1725 case Instruction::ExtractElement: 1726 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1727 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1728 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1729 break; 1730 case Instruction::InsertElement: 1731 Code = bitc::FUNC_CODE_INST_INSERTELT; 1732 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1733 pushValue(I.getOperand(1), InstID, Vals, VE); 1734 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1735 break; 1736 case Instruction::ShuffleVector: 1737 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1738 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1739 pushValue(I.getOperand(1), InstID, Vals, VE); 1740 pushValue(I.getOperand(2), InstID, Vals, VE); 1741 break; 1742 case Instruction::ICmp: 1743 case Instruction::FCmp: 1744 // compare returning Int1Ty or vector of Int1Ty 1745 Code = bitc::FUNC_CODE_INST_CMP2; 1746 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1747 pushValue(I.getOperand(1), InstID, Vals, VE); 1748 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1749 break; 1750 1751 case Instruction::Ret: 1752 { 1753 Code = bitc::FUNC_CODE_INST_RET; 1754 unsigned NumOperands = I.getNumOperands(); 1755 if (NumOperands == 0) 1756 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1757 else if (NumOperands == 1) { 1758 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1759 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1760 } else { 1761 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1762 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1763 } 1764 } 1765 break; 1766 case Instruction::Br: 1767 { 1768 Code = bitc::FUNC_CODE_INST_BR; 1769 const BranchInst &II = cast<BranchInst>(I); 1770 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1771 if (II.isConditional()) { 1772 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1773 pushValue(II.getCondition(), InstID, Vals, VE); 1774 } 1775 } 1776 break; 1777 case Instruction::Switch: 1778 { 1779 Code = bitc::FUNC_CODE_INST_SWITCH; 1780 const SwitchInst &SI = cast<SwitchInst>(I); 1781 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1782 pushValue(SI.getCondition(), InstID, Vals, VE); 1783 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1784 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1785 i != e; ++i) { 1786 Vals.push_back(VE.getValueID(i.getCaseValue())); 1787 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1788 } 1789 } 1790 break; 1791 case Instruction::IndirectBr: 1792 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1793 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1794 // Encode the address operand as relative, but not the basic blocks. 1795 pushValue(I.getOperand(0), InstID, Vals, VE); 1796 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1797 Vals.push_back(VE.getValueID(I.getOperand(i))); 1798 break; 1799 1800 case Instruction::Invoke: { 1801 const InvokeInst *II = cast<InvokeInst>(&I); 1802 const Value *Callee = II->getCalledValue(); 1803 FunctionType *FTy = II->getFunctionType(); 1804 Code = bitc::FUNC_CODE_INST_INVOKE; 1805 1806 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1807 Vals.push_back(II->getCallingConv() | 1 << 13); 1808 Vals.push_back(VE.getValueID(II->getNormalDest())); 1809 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1810 Vals.push_back(VE.getTypeID(FTy)); 1811 PushValueAndType(Callee, InstID, Vals, VE); 1812 1813 // Emit value #'s for the fixed parameters. 1814 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1815 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1816 1817 // Emit type/value pairs for varargs params. 1818 if (FTy->isVarArg()) { 1819 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1820 i != e; ++i) 1821 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1822 } 1823 break; 1824 } 1825 case Instruction::Resume: 1826 Code = bitc::FUNC_CODE_INST_RESUME; 1827 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1828 break; 1829 case Instruction::Unreachable: 1830 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1831 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1832 break; 1833 1834 case Instruction::PHI: { 1835 const PHINode &PN = cast<PHINode>(I); 1836 Code = bitc::FUNC_CODE_INST_PHI; 1837 // With the newer instruction encoding, forward references could give 1838 // negative valued IDs. This is most common for PHIs, so we use 1839 // signed VBRs. 1840 SmallVector<uint64_t, 128> Vals64; 1841 Vals64.push_back(VE.getTypeID(PN.getType())); 1842 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1843 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1844 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1845 } 1846 // Emit a Vals64 vector and exit. 1847 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1848 Vals64.clear(); 1849 return; 1850 } 1851 1852 case Instruction::LandingPad: { 1853 const LandingPadInst &LP = cast<LandingPadInst>(I); 1854 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1855 Vals.push_back(VE.getTypeID(LP.getType())); 1856 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1857 Vals.push_back(LP.isCleanup()); 1858 Vals.push_back(LP.getNumClauses()); 1859 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1860 if (LP.isCatch(I)) 1861 Vals.push_back(LandingPadInst::Catch); 1862 else 1863 Vals.push_back(LandingPadInst::Filter); 1864 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1865 } 1866 break; 1867 } 1868 1869 case Instruction::Alloca: { 1870 Code = bitc::FUNC_CODE_INST_ALLOCA; 1871 Vals.push_back(VE.getTypeID(I.getType())); 1872 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1873 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1874 const AllocaInst &AI = cast<AllocaInst>(I); 1875 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1876 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1877 "not enough bits for maximum alignment"); 1878 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1879 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1880 Vals.push_back(AlignRecord); 1881 break; 1882 } 1883 1884 case Instruction::Load: 1885 if (cast<LoadInst>(I).isAtomic()) { 1886 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1887 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1888 } else { 1889 Code = bitc::FUNC_CODE_INST_LOAD; 1890 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1891 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1892 } 1893 Vals.push_back(VE.getTypeID(I.getType())); 1894 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1895 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1896 if (cast<LoadInst>(I).isAtomic()) { 1897 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1898 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1899 } 1900 break; 1901 case Instruction::Store: 1902 if (cast<StoreInst>(I).isAtomic()) 1903 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1904 else 1905 Code = bitc::FUNC_CODE_INST_STORE; 1906 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1907 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1908 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1909 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1910 if (cast<StoreInst>(I).isAtomic()) { 1911 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1912 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1913 } 1914 break; 1915 case Instruction::AtomicCmpXchg: 1916 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1917 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1918 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1919 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1920 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1921 Vals.push_back(GetEncodedOrdering( 1922 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1923 Vals.push_back(GetEncodedSynchScope( 1924 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1925 Vals.push_back(GetEncodedOrdering( 1926 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1927 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1928 break; 1929 case Instruction::AtomicRMW: 1930 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1931 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1932 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1933 Vals.push_back(GetEncodedRMWOperation( 1934 cast<AtomicRMWInst>(I).getOperation())); 1935 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1936 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1937 Vals.push_back(GetEncodedSynchScope( 1938 cast<AtomicRMWInst>(I).getSynchScope())); 1939 break; 1940 case Instruction::Fence: 1941 Code = bitc::FUNC_CODE_INST_FENCE; 1942 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1943 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1944 break; 1945 case Instruction::Call: { 1946 const CallInst &CI = cast<CallInst>(I); 1947 FunctionType *FTy = CI.getFunctionType(); 1948 1949 Code = bitc::FUNC_CODE_INST_CALL; 1950 1951 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1952 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1953 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 1954 Vals.push_back(VE.getTypeID(FTy)); 1955 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1956 1957 // Emit value #'s for the fixed parameters. 1958 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1959 // Check for labels (can happen with asm labels). 1960 if (FTy->getParamType(i)->isLabelTy()) 1961 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1962 else 1963 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1964 } 1965 1966 // Emit type/value pairs for varargs params. 1967 if (FTy->isVarArg()) { 1968 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1969 i != e; ++i) 1970 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1971 } 1972 break; 1973 } 1974 case Instruction::VAArg: 1975 Code = bitc::FUNC_CODE_INST_VAARG; 1976 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1977 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1978 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1979 break; 1980 } 1981 1982 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1983 Vals.clear(); 1984 } 1985 1986 // Emit names for globals/functions etc. 1987 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1988 const ValueEnumerator &VE, 1989 BitstreamWriter &Stream) { 1990 if (VST.empty()) return; 1991 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1992 1993 // FIXME: Set up the abbrev, we know how many values there are! 1994 // FIXME: We know if the type names can use 7-bit ascii. 1995 SmallVector<unsigned, 64> NameVals; 1996 1997 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1998 SI != SE; ++SI) { 1999 2000 const ValueName &Name = *SI; 2001 2002 // Figure out the encoding to use for the name. 2003 bool is7Bit = true; 2004 bool isChar6 = true; 2005 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2006 C != E; ++C) { 2007 if (isChar6) 2008 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2009 if ((unsigned char)*C & 128) { 2010 is7Bit = false; 2011 break; // don't bother scanning the rest. 2012 } 2013 } 2014 2015 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2016 2017 // VST_ENTRY: [valueid, namechar x N] 2018 // VST_BBENTRY: [bbid, namechar x N] 2019 unsigned Code; 2020 if (isa<BasicBlock>(SI->getValue())) { 2021 Code = bitc::VST_CODE_BBENTRY; 2022 if (isChar6) 2023 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2024 } else { 2025 Code = bitc::VST_CODE_ENTRY; 2026 if (isChar6) 2027 AbbrevToUse = VST_ENTRY_6_ABBREV; 2028 else if (is7Bit) 2029 AbbrevToUse = VST_ENTRY_7_ABBREV; 2030 } 2031 2032 NameVals.push_back(VE.getValueID(SI->getValue())); 2033 for (const char *P = Name.getKeyData(), 2034 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2035 NameVals.push_back((unsigned char)*P); 2036 2037 // Emit the finished record. 2038 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2039 NameVals.clear(); 2040 } 2041 Stream.ExitBlock(); 2042 } 2043 2044 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2045 BitstreamWriter &Stream) { 2046 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2047 unsigned Code; 2048 if (isa<BasicBlock>(Order.V)) 2049 Code = bitc::USELIST_CODE_BB; 2050 else 2051 Code = bitc::USELIST_CODE_DEFAULT; 2052 2053 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2054 Record.push_back(VE.getValueID(Order.V)); 2055 Stream.EmitRecord(Code, Record); 2056 } 2057 2058 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2059 BitstreamWriter &Stream) { 2060 assert(VE.shouldPreserveUseListOrder() && 2061 "Expected to be preserving use-list order"); 2062 2063 auto hasMore = [&]() { 2064 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2065 }; 2066 if (!hasMore()) 2067 // Nothing to do. 2068 return; 2069 2070 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2071 while (hasMore()) { 2072 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2073 VE.UseListOrders.pop_back(); 2074 } 2075 Stream.ExitBlock(); 2076 } 2077 2078 /// WriteFunction - Emit a function body to the module stream. 2079 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2080 BitstreamWriter &Stream) { 2081 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2082 VE.incorporateFunction(F); 2083 2084 SmallVector<unsigned, 64> Vals; 2085 2086 // Emit the number of basic blocks, so the reader can create them ahead of 2087 // time. 2088 Vals.push_back(VE.getBasicBlocks().size()); 2089 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2090 Vals.clear(); 2091 2092 // If there are function-local constants, emit them now. 2093 unsigned CstStart, CstEnd; 2094 VE.getFunctionConstantRange(CstStart, CstEnd); 2095 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2096 2097 // If there is function-local metadata, emit it now. 2098 WriteFunctionLocalMetadata(F, VE, Stream); 2099 2100 // Keep a running idea of what the instruction ID is. 2101 unsigned InstID = CstEnd; 2102 2103 bool NeedsMetadataAttachment = F.hasMetadata(); 2104 2105 MDLocation *LastDL = nullptr; 2106 2107 // Finally, emit all the instructions, in order. 2108 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2109 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2110 I != E; ++I) { 2111 WriteInstruction(*I, InstID, VE, Stream, Vals); 2112 2113 if (!I->getType()->isVoidTy()) 2114 ++InstID; 2115 2116 // If the instruction has metadata, write a metadata attachment later. 2117 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2118 2119 // If the instruction has a debug location, emit it. 2120 MDLocation *DL = I->getDebugLoc(); 2121 if (!DL) 2122 continue; 2123 2124 if (DL == LastDL) { 2125 // Just repeat the same debug loc as last time. 2126 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2127 continue; 2128 } 2129 2130 Vals.push_back(DL->getLine()); 2131 Vals.push_back(DL->getColumn()); 2132 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2133 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2134 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2135 Vals.clear(); 2136 } 2137 2138 // Emit names for all the instructions etc. 2139 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2140 2141 if (NeedsMetadataAttachment) 2142 WriteMetadataAttachment(F, VE, Stream); 2143 if (VE.shouldPreserveUseListOrder()) 2144 WriteUseListBlock(&F, VE, Stream); 2145 VE.purgeFunction(); 2146 Stream.ExitBlock(); 2147 } 2148 2149 // Emit blockinfo, which defines the standard abbreviations etc. 2150 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2151 // We only want to emit block info records for blocks that have multiple 2152 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2153 // Other blocks can define their abbrevs inline. 2154 Stream.EnterBlockInfoBlock(2); 2155 2156 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2157 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2162 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2163 Abbv) != VST_ENTRY_8_ABBREV) 2164 llvm_unreachable("Unexpected abbrev ordering!"); 2165 } 2166 2167 { // 7-bit fixed width VST_ENTRY strings. 2168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2169 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2173 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2174 Abbv) != VST_ENTRY_7_ABBREV) 2175 llvm_unreachable("Unexpected abbrev ordering!"); 2176 } 2177 { // 6-bit char6 VST_ENTRY strings. 2178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2183 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2184 Abbv) != VST_ENTRY_6_ABBREV) 2185 llvm_unreachable("Unexpected abbrev ordering!"); 2186 } 2187 { // 6-bit char6 VST_BBENTRY strings. 2188 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2189 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2193 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2194 Abbv) != VST_BBENTRY_6_ABBREV) 2195 llvm_unreachable("Unexpected abbrev ordering!"); 2196 } 2197 2198 2199 2200 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2201 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2202 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2204 VE.computeBitsRequiredForTypeIndicies())); 2205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2206 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2207 llvm_unreachable("Unexpected abbrev ordering!"); 2208 } 2209 2210 { // INTEGER abbrev for CONSTANTS_BLOCK. 2211 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2212 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2214 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2215 Abbv) != CONSTANTS_INTEGER_ABBREV) 2216 llvm_unreachable("Unexpected abbrev ordering!"); 2217 } 2218 2219 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2220 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2221 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2224 VE.computeBitsRequiredForTypeIndicies())); 2225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2226 2227 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2228 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2229 llvm_unreachable("Unexpected abbrev ordering!"); 2230 } 2231 { // NULL abbrev for CONSTANTS_BLOCK. 2232 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2233 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2234 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2235 Abbv) != CONSTANTS_NULL_Abbrev) 2236 llvm_unreachable("Unexpected abbrev ordering!"); 2237 } 2238 2239 // FIXME: This should only use space for first class types! 2240 2241 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2246 VE.computeBitsRequiredForTypeIndicies())); 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2249 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2250 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2251 llvm_unreachable("Unexpected abbrev ordering!"); 2252 } 2253 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2254 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2255 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2259 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2260 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2261 llvm_unreachable("Unexpected abbrev ordering!"); 2262 } 2263 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2264 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2265 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2271 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2272 llvm_unreachable("Unexpected abbrev ordering!"); 2273 } 2274 { // INST_CAST abbrev for FUNCTION_BLOCK. 2275 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2279 VE.computeBitsRequiredForTypeIndicies())); 2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2281 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2282 Abbv) != FUNCTION_INST_CAST_ABBREV) 2283 llvm_unreachable("Unexpected abbrev ordering!"); 2284 } 2285 2286 { // INST_RET abbrev for FUNCTION_BLOCK. 2287 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2288 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2289 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2290 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2291 llvm_unreachable("Unexpected abbrev ordering!"); 2292 } 2293 { // INST_RET abbrev for FUNCTION_BLOCK. 2294 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2295 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2297 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2298 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2299 llvm_unreachable("Unexpected abbrev ordering!"); 2300 } 2301 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2302 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2303 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2304 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2305 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2306 llvm_unreachable("Unexpected abbrev ordering!"); 2307 } 2308 { 2309 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2310 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2313 Log2_32_Ceil(VE.getTypes().size() + 1))); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2316 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2317 FUNCTION_INST_GEP_ABBREV) 2318 llvm_unreachable("Unexpected abbrev ordering!"); 2319 } 2320 2321 Stream.ExitBlock(); 2322 } 2323 2324 /// WriteModule - Emit the specified module to the bitstream. 2325 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2326 bool ShouldPreserveUseListOrder) { 2327 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2328 2329 SmallVector<unsigned, 1> Vals; 2330 unsigned CurVersion = 1; 2331 Vals.push_back(CurVersion); 2332 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2333 2334 // Analyze the module, enumerating globals, functions, etc. 2335 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2336 2337 // Emit blockinfo, which defines the standard abbreviations etc. 2338 WriteBlockInfo(VE, Stream); 2339 2340 // Emit information about attribute groups. 2341 WriteAttributeGroupTable(VE, Stream); 2342 2343 // Emit information about parameter attributes. 2344 WriteAttributeTable(VE, Stream); 2345 2346 // Emit information describing all of the types in the module. 2347 WriteTypeTable(VE, Stream); 2348 2349 writeComdats(VE, Stream); 2350 2351 // Emit top-level description of module, including target triple, inline asm, 2352 // descriptors for global variables, and function prototype info. 2353 WriteModuleInfo(M, VE, Stream); 2354 2355 // Emit constants. 2356 WriteModuleConstants(VE, Stream); 2357 2358 // Emit metadata. 2359 WriteModuleMetadata(M, VE, Stream); 2360 2361 // Emit metadata. 2362 WriteModuleMetadataStore(M, Stream); 2363 2364 // Emit names for globals/functions etc. 2365 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2366 2367 // Emit module-level use-lists. 2368 if (VE.shouldPreserveUseListOrder()) 2369 WriteUseListBlock(nullptr, VE, Stream); 2370 2371 // Emit function bodies. 2372 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2373 if (!F->isDeclaration()) 2374 WriteFunction(*F, VE, Stream); 2375 2376 Stream.ExitBlock(); 2377 } 2378 2379 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2380 /// header and trailer to make it compatible with the system archiver. To do 2381 /// this we emit the following header, and then emit a trailer that pads the 2382 /// file out to be a multiple of 16 bytes. 2383 /// 2384 /// struct bc_header { 2385 /// uint32_t Magic; // 0x0B17C0DE 2386 /// uint32_t Version; // Version, currently always 0. 2387 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2388 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2389 /// uint32_t CPUType; // CPU specifier. 2390 /// ... potentially more later ... 2391 /// }; 2392 enum { 2393 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2394 DarwinBCHeaderSize = 5*4 2395 }; 2396 2397 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2398 uint32_t &Position) { 2399 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2400 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2401 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2402 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2403 Position += 4; 2404 } 2405 2406 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2407 const Triple &TT) { 2408 unsigned CPUType = ~0U; 2409 2410 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2411 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2412 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2413 // specific constants here because they are implicitly part of the Darwin ABI. 2414 enum { 2415 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2416 DARWIN_CPU_TYPE_X86 = 7, 2417 DARWIN_CPU_TYPE_ARM = 12, 2418 DARWIN_CPU_TYPE_POWERPC = 18 2419 }; 2420 2421 Triple::ArchType Arch = TT.getArch(); 2422 if (Arch == Triple::x86_64) 2423 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2424 else if (Arch == Triple::x86) 2425 CPUType = DARWIN_CPU_TYPE_X86; 2426 else if (Arch == Triple::ppc) 2427 CPUType = DARWIN_CPU_TYPE_POWERPC; 2428 else if (Arch == Triple::ppc64) 2429 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2430 else if (Arch == Triple::arm || Arch == Triple::thumb) 2431 CPUType = DARWIN_CPU_TYPE_ARM; 2432 2433 // Traditional Bitcode starts after header. 2434 assert(Buffer.size() >= DarwinBCHeaderSize && 2435 "Expected header size to be reserved"); 2436 unsigned BCOffset = DarwinBCHeaderSize; 2437 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2438 2439 // Write the magic and version. 2440 unsigned Position = 0; 2441 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2442 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2443 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2444 WriteInt32ToBuffer(BCSize , Buffer, Position); 2445 WriteInt32ToBuffer(CPUType , Buffer, Position); 2446 2447 // If the file is not a multiple of 16 bytes, insert dummy padding. 2448 while (Buffer.size() & 15) 2449 Buffer.push_back(0); 2450 } 2451 2452 /// WriteBitcodeToFile - Write the specified module to the specified output 2453 /// stream. 2454 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2455 bool ShouldPreserveUseListOrder) { 2456 SmallVector<char, 0> Buffer; 2457 Buffer.reserve(256*1024); 2458 2459 // If this is darwin or another generic macho target, reserve space for the 2460 // header. 2461 Triple TT(M->getTargetTriple()); 2462 if (TT.isOSDarwin()) 2463 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2464 2465 // Emit the module into the buffer. 2466 { 2467 BitstreamWriter Stream(Buffer); 2468 2469 // Emit the file header. 2470 Stream.Emit((unsigned)'B', 8); 2471 Stream.Emit((unsigned)'C', 8); 2472 Stream.Emit(0x0, 4); 2473 Stream.Emit(0xC, 4); 2474 Stream.Emit(0xE, 4); 2475 Stream.Emit(0xD, 4); 2476 2477 // Emit the module. 2478 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2479 } 2480 2481 if (TT.isOSDarwin()) 2482 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2483 2484 // Write the generated bitstream to "Out". 2485 Out.write((char*)&Buffer.front(), Buffer.size()); 2486 } 2487