1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 namespace { 90 91 /// These are manifest constants used by the bitcode writer. They do not need to 92 /// be kept in sync with the reader, but need to be consistent within this file. 93 enum { 94 // VALUE_SYMTAB_BLOCK abbrev id's. 95 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 96 VST_ENTRY_7_ABBREV, 97 VST_ENTRY_6_ABBREV, 98 VST_BBENTRY_6_ABBREV, 99 100 // CONSTANTS_BLOCK abbrev id's. 101 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 CONSTANTS_INTEGER_ABBREV, 103 CONSTANTS_CE_CAST_Abbrev, 104 CONSTANTS_NULL_Abbrev, 105 106 // FUNCTION_BLOCK abbrev id's. 107 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 FUNCTION_INST_BINOP_ABBREV, 109 FUNCTION_INST_BINOP_FLAGS_ABBREV, 110 FUNCTION_INST_CAST_ABBREV, 111 FUNCTION_INST_RET_VOID_ABBREV, 112 FUNCTION_INST_RET_VAL_ABBREV, 113 FUNCTION_INST_UNREACHABLE_ABBREV, 114 FUNCTION_INST_GEP_ABBREV, 115 }; 116 117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 118 /// file type. 119 class BitcodeWriterBase { 120 protected: 121 /// The stream created and owned by the client. 122 BitstreamWriter &Stream; 123 124 StringTableBuilder &StrtabBuilder; 125 126 public: 127 /// Constructs a BitcodeWriterBase object that writes to the provided 128 /// \p Stream. 129 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 130 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 131 132 protected: 133 void writeBitcodeHeader(); 134 void writeModuleVersion(); 135 }; 136 137 void BitcodeWriterBase::writeModuleVersion() { 138 // VERSION: [version#] 139 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 140 } 141 142 /// Base class to manage the module bitcode writing, currently subclassed for 143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 144 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 145 protected: 146 /// The Module to write to bitcode. 147 const Module &M; 148 149 /// Enumerates ids for all values in the module. 150 ValueEnumerator VE; 151 152 /// Optional per-module index to write for ThinLTO. 153 const ModuleSummaryIndex *Index; 154 155 /// Map that holds the correspondence between GUIDs in the summary index, 156 /// that came from indirect call profiles, and a value id generated by this 157 /// class to use in the VST and summary block records. 158 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 159 160 /// Tracks the last value id recorded in the GUIDToValueMap. 161 unsigned GlobalValueId; 162 163 /// Saves the offset of the VSTOffset record that must eventually be 164 /// backpatched with the offset of the actual VST. 165 uint64_t VSTOffsetPlaceholder = 0; 166 167 public: 168 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 169 /// writing to the provided \p Buffer. 170 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 171 BitstreamWriter &Stream, 172 bool ShouldPreserveUseListOrder, 173 const ModuleSummaryIndex *Index) 174 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 175 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 176 // Assign ValueIds to any callee values in the index that came from 177 // indirect call profiles and were recorded as a GUID not a Value* 178 // (which would have been assigned an ID by the ValueEnumerator). 179 // The starting ValueId is just after the number of values in the 180 // ValueEnumerator, so that they can be emitted in the VST. 181 GlobalValueId = VE.getValues().size(); 182 if (!Index) 183 return; 184 for (const auto &GUIDSummaryLists : *Index) 185 // Examine all summaries for this GUID. 186 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 187 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 188 // For each call in the function summary, see if the call 189 // is to a GUID (which means it is for an indirect call, 190 // otherwise we would have a Value for it). If so, synthesize 191 // a value id. 192 for (auto &CallEdge : FS->calls()) 193 if (!CallEdge.first.getValue()) 194 assignValueId(CallEdge.first.getGUID()); 195 } 196 197 protected: 198 void writePerModuleGlobalValueSummary(); 199 200 private: 201 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 202 GlobalValueSummary *Summary, 203 unsigned ValueID, 204 unsigned FSCallsAbbrev, 205 unsigned FSCallsProfileAbbrev, 206 const Function &F); 207 void writeModuleLevelReferences(const GlobalVariable &V, 208 SmallVector<uint64_t, 64> &NameVals, 209 unsigned FSModRefsAbbrev); 210 211 void assignValueId(GlobalValue::GUID ValGUID) { 212 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 213 } 214 215 unsigned getValueId(GlobalValue::GUID ValGUID) { 216 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 217 // Expect that any GUID value had a value Id assigned by an 218 // earlier call to assignValueId. 219 assert(VMI != GUIDToValueIdMap.end() && 220 "GUID does not have assigned value Id"); 221 return VMI->second; 222 } 223 224 // Helper to get the valueId for the type of value recorded in VI. 225 unsigned getValueId(ValueInfo VI) { 226 if (!VI.getValue()) 227 return getValueId(VI.getGUID()); 228 return VE.getValueID(VI.getValue()); 229 } 230 231 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 232 }; 233 234 /// Class to manage the bitcode writing for a module. 235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 236 /// Pointer to the buffer allocated by caller for bitcode writing. 237 const SmallVectorImpl<char> &Buffer; 238 239 /// True if a module hash record should be written. 240 bool GenerateHash; 241 242 /// If non-null, when GenerateHash is true, the resulting hash is written 243 /// into ModHash. 244 ModuleHash *ModHash; 245 246 SHA1 Hasher; 247 248 /// The start bit of the identification block. 249 uint64_t BitcodeStartBit; 250 251 public: 252 /// Constructs a ModuleBitcodeWriter object for the given Module, 253 /// writing to the provided \p Buffer. 254 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 255 StringTableBuilder &StrtabBuilder, 256 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 257 const ModuleSummaryIndex *Index, bool GenerateHash, 258 ModuleHash *ModHash = nullptr) 259 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 260 ShouldPreserveUseListOrder, Index), 261 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 262 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 263 264 /// Emit the current module to the bitstream. 265 void write(); 266 267 private: 268 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 269 270 size_t addToStrtab(StringRef Str); 271 272 void writeAttributeGroupTable(); 273 void writeAttributeTable(); 274 void writeTypeTable(); 275 void writeComdats(); 276 void writeValueSymbolTableForwardDecl(); 277 void writeModuleInfo(); 278 void writeValueAsMetadata(const ValueAsMetadata *MD, 279 SmallVectorImpl<uint64_t> &Record); 280 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev); 282 unsigned createDILocationAbbrev(); 283 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned &Abbrev); 285 unsigned createGenericDINodeAbbrev(); 286 void writeGenericDINode(const GenericDINode *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 288 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDIEnumerator(const DIEnumerator *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 void writeDIDerivedType(const DIDerivedType *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 296 void writeDICompositeType(const DICompositeType *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDISubroutineType(const DISubroutineType *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDICompileUnit(const DICompileUnit *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubprogram(const DISubprogram *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDILexicalBlock(const DILexicalBlock *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 310 SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 321 SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIGlobalVariable(const DIGlobalVariable *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDILocalVariable(const DILocalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDIExpression(const DIExpression *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIObjCProperty(const DIObjCProperty *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDIImportedEntity(const DIImportedEntity *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 unsigned createNamedMetadataAbbrev(); 342 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 343 unsigned createMetadataStringsAbbrev(); 344 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 345 SmallVectorImpl<uint64_t> &Record); 346 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 347 SmallVectorImpl<uint64_t> &Record, 348 std::vector<unsigned> *MDAbbrevs = nullptr, 349 std::vector<uint64_t> *IndexPos = nullptr); 350 void writeModuleMetadata(); 351 void writeFunctionMetadata(const Function &F); 352 void writeFunctionMetadataAttachment(const Function &F); 353 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 354 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 355 const GlobalObject &GO); 356 void writeModuleMetadataKinds(); 357 void writeOperandBundleTags(); 358 void writeSyncScopeNames(); 359 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 360 void writeModuleConstants(); 361 bool pushValueAndType(const Value *V, unsigned InstID, 362 SmallVectorImpl<unsigned> &Vals); 363 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 364 void pushValue(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void pushValueSigned(const Value *V, unsigned InstID, 367 SmallVectorImpl<uint64_t> &Vals); 368 void writeInstruction(const Instruction &I, unsigned InstID, 369 SmallVectorImpl<unsigned> &Vals); 370 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 371 void writeGlobalValueSymbolTable( 372 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 373 void writeUseList(UseListOrder &&Order); 374 void writeUseListBlock(const Function *F); 375 void 376 writeFunction(const Function &F, 377 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 378 void writeBlockInfo(); 379 void writeModuleHash(size_t BlockStartPos); 380 381 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 382 return unsigned(SSID); 383 } 384 }; 385 386 /// Class to manage the bitcode writing for a combined index. 387 class IndexBitcodeWriter : public BitcodeWriterBase { 388 /// The combined index to write to bitcode. 389 const ModuleSummaryIndex &Index; 390 391 /// When writing a subset of the index for distributed backends, client 392 /// provides a map of modules to the corresponding GUIDs/summaries to write. 393 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 394 395 /// Map that holds the correspondence between the GUID used in the combined 396 /// index and a value id generated by this class to use in references. 397 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 398 399 /// Tracks the last value id recorded in the GUIDToValueMap. 400 unsigned GlobalValueId = 0; 401 402 public: 403 /// Constructs a IndexBitcodeWriter object for the given combined index, 404 /// writing to the provided \p Buffer. When writing a subset of the index 405 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 406 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 407 const ModuleSummaryIndex &Index, 408 const std::map<std::string, GVSummaryMapTy> 409 *ModuleToSummariesForIndex = nullptr) 410 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 411 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 412 // Assign unique value ids to all summaries to be written, for use 413 // in writing out the call graph edges. Save the mapping from GUID 414 // to the new global value id to use when writing those edges, which 415 // are currently saved in the index in terms of GUID. 416 forEachSummary([&](GVInfo I) { 417 GUIDToValueIdMap[I.first] = ++GlobalValueId; 418 }); 419 } 420 421 /// The below iterator returns the GUID and associated summary. 422 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 423 424 /// Calls the callback for each value GUID and summary to be written to 425 /// bitcode. This hides the details of whether they are being pulled from the 426 /// entire index or just those in a provided ModuleToSummariesForIndex map. 427 template<typename Functor> 428 void forEachSummary(Functor Callback) { 429 if (ModuleToSummariesForIndex) { 430 for (auto &M : *ModuleToSummariesForIndex) 431 for (auto &Summary : M.second) 432 Callback(Summary); 433 } else { 434 for (auto &Summaries : Index) 435 for (auto &Summary : Summaries.second.SummaryList) 436 Callback({Summaries.first, Summary.get()}); 437 } 438 } 439 440 /// Calls the callback for each entry in the modulePaths StringMap that 441 /// should be written to the module path string table. This hides the details 442 /// of whether they are being pulled from the entire index or just those in a 443 /// provided ModuleToSummariesForIndex map. 444 template <typename Functor> void forEachModule(Functor Callback) { 445 if (ModuleToSummariesForIndex) { 446 for (const auto &M : *ModuleToSummariesForIndex) { 447 const auto &MPI = Index.modulePaths().find(M.first); 448 if (MPI == Index.modulePaths().end()) { 449 // This should only happen if the bitcode file was empty, in which 450 // case we shouldn't be importing (the ModuleToSummariesForIndex 451 // would only include the module we are writing and index for). 452 assert(ModuleToSummariesForIndex->size() == 1); 453 continue; 454 } 455 Callback(*MPI); 456 } 457 } else { 458 for (const auto &MPSE : Index.modulePaths()) 459 Callback(MPSE); 460 } 461 } 462 463 /// Main entry point for writing a combined index to bitcode. 464 void write(); 465 466 private: 467 void writeModStrings(); 468 void writeCombinedGlobalValueSummary(); 469 470 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 471 auto VMI = GUIDToValueIdMap.find(ValGUID); 472 if (VMI == GUIDToValueIdMap.end()) 473 return None; 474 return VMI->second; 475 } 476 477 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 478 }; 479 480 } // end anonymous namespace 481 482 static unsigned getEncodedCastOpcode(unsigned Opcode) { 483 switch (Opcode) { 484 default: llvm_unreachable("Unknown cast instruction!"); 485 case Instruction::Trunc : return bitc::CAST_TRUNC; 486 case Instruction::ZExt : return bitc::CAST_ZEXT; 487 case Instruction::SExt : return bitc::CAST_SEXT; 488 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 489 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 490 case Instruction::UIToFP : return bitc::CAST_UITOFP; 491 case Instruction::SIToFP : return bitc::CAST_SITOFP; 492 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 493 case Instruction::FPExt : return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 495 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 496 case Instruction::BitCast : return bitc::CAST_BITCAST; 497 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 498 } 499 } 500 501 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown binary instruction!"); 504 case Instruction::Add: 505 case Instruction::FAdd: return bitc::BINOP_ADD; 506 case Instruction::Sub: 507 case Instruction::FSub: return bitc::BINOP_SUB; 508 case Instruction::Mul: 509 case Instruction::FMul: return bitc::BINOP_MUL; 510 case Instruction::UDiv: return bitc::BINOP_UDIV; 511 case Instruction::FDiv: 512 case Instruction::SDiv: return bitc::BINOP_SDIV; 513 case Instruction::URem: return bitc::BINOP_UREM; 514 case Instruction::FRem: 515 case Instruction::SRem: return bitc::BINOP_SREM; 516 case Instruction::Shl: return bitc::BINOP_SHL; 517 case Instruction::LShr: return bitc::BINOP_LSHR; 518 case Instruction::AShr: return bitc::BINOP_ASHR; 519 case Instruction::And: return bitc::BINOP_AND; 520 case Instruction::Or: return bitc::BINOP_OR; 521 case Instruction::Xor: return bitc::BINOP_XOR; 522 } 523 } 524 525 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 526 switch (Op) { 527 default: llvm_unreachable("Unknown RMW operation!"); 528 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 529 case AtomicRMWInst::Add: return bitc::RMW_ADD; 530 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 531 case AtomicRMWInst::And: return bitc::RMW_AND; 532 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 533 case AtomicRMWInst::Or: return bitc::RMW_OR; 534 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 535 case AtomicRMWInst::Max: return bitc::RMW_MAX; 536 case AtomicRMWInst::Min: return bitc::RMW_MIN; 537 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 538 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 539 } 540 } 541 542 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 543 switch (Ordering) { 544 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 545 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 546 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 547 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 548 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 549 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 550 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 551 } 552 llvm_unreachable("Invalid ordering"); 553 } 554 555 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 556 StringRef Str, unsigned AbbrevToUse) { 557 SmallVector<unsigned, 64> Vals; 558 559 // Code: [strchar x N] 560 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 561 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 562 AbbrevToUse = 0; 563 Vals.push_back(Str[i]); 564 } 565 566 // Emit the finished record. 567 Stream.EmitRecord(Code, Vals, AbbrevToUse); 568 } 569 570 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 571 switch (Kind) { 572 case Attribute::Alignment: 573 return bitc::ATTR_KIND_ALIGNMENT; 574 case Attribute::AllocSize: 575 return bitc::ATTR_KIND_ALLOC_SIZE; 576 case Attribute::AlwaysInline: 577 return bitc::ATTR_KIND_ALWAYS_INLINE; 578 case Attribute::ArgMemOnly: 579 return bitc::ATTR_KIND_ARGMEMONLY; 580 case Attribute::Builtin: 581 return bitc::ATTR_KIND_BUILTIN; 582 case Attribute::ByVal: 583 return bitc::ATTR_KIND_BY_VAL; 584 case Attribute::Convergent: 585 return bitc::ATTR_KIND_CONVERGENT; 586 case Attribute::InAlloca: 587 return bitc::ATTR_KIND_IN_ALLOCA; 588 case Attribute::Cold: 589 return bitc::ATTR_KIND_COLD; 590 case Attribute::InaccessibleMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 592 case Attribute::InaccessibleMemOrArgMemOnly: 593 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 594 case Attribute::InlineHint: 595 return bitc::ATTR_KIND_INLINE_HINT; 596 case Attribute::InReg: 597 return bitc::ATTR_KIND_IN_REG; 598 case Attribute::JumpTable: 599 return bitc::ATTR_KIND_JUMP_TABLE; 600 case Attribute::MinSize: 601 return bitc::ATTR_KIND_MIN_SIZE; 602 case Attribute::Naked: 603 return bitc::ATTR_KIND_NAKED; 604 case Attribute::Nest: 605 return bitc::ATTR_KIND_NEST; 606 case Attribute::NoAlias: 607 return bitc::ATTR_KIND_NO_ALIAS; 608 case Attribute::NoBuiltin: 609 return bitc::ATTR_KIND_NO_BUILTIN; 610 case Attribute::NoCapture: 611 return bitc::ATTR_KIND_NO_CAPTURE; 612 case Attribute::NoDuplicate: 613 return bitc::ATTR_KIND_NO_DUPLICATE; 614 case Attribute::NoImplicitFloat: 615 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 616 case Attribute::NoInline: 617 return bitc::ATTR_KIND_NO_INLINE; 618 case Attribute::NoRecurse: 619 return bitc::ATTR_KIND_NO_RECURSE; 620 case Attribute::NonLazyBind: 621 return bitc::ATTR_KIND_NON_LAZY_BIND; 622 case Attribute::NonNull: 623 return bitc::ATTR_KIND_NON_NULL; 624 case Attribute::Dereferenceable: 625 return bitc::ATTR_KIND_DEREFERENCEABLE; 626 case Attribute::DereferenceableOrNull: 627 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 628 case Attribute::NoRedZone: 629 return bitc::ATTR_KIND_NO_RED_ZONE; 630 case Attribute::NoReturn: 631 return bitc::ATTR_KIND_NO_RETURN; 632 case Attribute::NoUnwind: 633 return bitc::ATTR_KIND_NO_UNWIND; 634 case Attribute::OptimizeForSize: 635 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 636 case Attribute::OptimizeNone: 637 return bitc::ATTR_KIND_OPTIMIZE_NONE; 638 case Attribute::ReadNone: 639 return bitc::ATTR_KIND_READ_NONE; 640 case Attribute::ReadOnly: 641 return bitc::ATTR_KIND_READ_ONLY; 642 case Attribute::Returned: 643 return bitc::ATTR_KIND_RETURNED; 644 case Attribute::ReturnsTwice: 645 return bitc::ATTR_KIND_RETURNS_TWICE; 646 case Attribute::SExt: 647 return bitc::ATTR_KIND_S_EXT; 648 case Attribute::Speculatable: 649 return bitc::ATTR_KIND_SPECULATABLE; 650 case Attribute::StackAlignment: 651 return bitc::ATTR_KIND_STACK_ALIGNMENT; 652 case Attribute::StackProtect: 653 return bitc::ATTR_KIND_STACK_PROTECT; 654 case Attribute::StackProtectReq: 655 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 656 case Attribute::StackProtectStrong: 657 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 658 case Attribute::SafeStack: 659 return bitc::ATTR_KIND_SAFESTACK; 660 case Attribute::StrictFP: 661 return bitc::ATTR_KIND_STRICT_FP; 662 case Attribute::StructRet: 663 return bitc::ATTR_KIND_STRUCT_RET; 664 case Attribute::SanitizeAddress: 665 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 666 case Attribute::SanitizeThread: 667 return bitc::ATTR_KIND_SANITIZE_THREAD; 668 case Attribute::SanitizeMemory: 669 return bitc::ATTR_KIND_SANITIZE_MEMORY; 670 case Attribute::SwiftError: 671 return bitc::ATTR_KIND_SWIFT_ERROR; 672 case Attribute::SwiftSelf: 673 return bitc::ATTR_KIND_SWIFT_SELF; 674 case Attribute::UWTable: 675 return bitc::ATTR_KIND_UW_TABLE; 676 case Attribute::WriteOnly: 677 return bitc::ATTR_KIND_WRITEONLY; 678 case Attribute::ZExt: 679 return bitc::ATTR_KIND_Z_EXT; 680 case Attribute::EndAttrKinds: 681 llvm_unreachable("Can not encode end-attribute kinds marker."); 682 case Attribute::None: 683 llvm_unreachable("Can not encode none-attribute."); 684 } 685 686 llvm_unreachable("Trying to encode unknown attribute"); 687 } 688 689 void ModuleBitcodeWriter::writeAttributeGroupTable() { 690 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 691 VE.getAttributeGroups(); 692 if (AttrGrps.empty()) return; 693 694 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 695 696 SmallVector<uint64_t, 64> Record; 697 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 698 unsigned AttrListIndex = Pair.first; 699 AttributeSet AS = Pair.second; 700 Record.push_back(VE.getAttributeGroupID(Pair)); 701 Record.push_back(AttrListIndex); 702 703 for (Attribute Attr : AS) { 704 if (Attr.isEnumAttribute()) { 705 Record.push_back(0); 706 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 707 } else if (Attr.isIntAttribute()) { 708 Record.push_back(1); 709 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 710 Record.push_back(Attr.getValueAsInt()); 711 } else { 712 StringRef Kind = Attr.getKindAsString(); 713 StringRef Val = Attr.getValueAsString(); 714 715 Record.push_back(Val.empty() ? 3 : 4); 716 Record.append(Kind.begin(), Kind.end()); 717 Record.push_back(0); 718 if (!Val.empty()) { 719 Record.append(Val.begin(), Val.end()); 720 Record.push_back(0); 721 } 722 } 723 } 724 725 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 726 Record.clear(); 727 } 728 729 Stream.ExitBlock(); 730 } 731 732 void ModuleBitcodeWriter::writeAttributeTable() { 733 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 734 if (Attrs.empty()) return; 735 736 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 737 738 SmallVector<uint64_t, 64> Record; 739 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 740 AttributeList AL = Attrs[i]; 741 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 742 AttributeSet AS = AL.getAttributes(i); 743 if (AS.hasAttributes()) 744 Record.push_back(VE.getAttributeGroupID({i, AS})); 745 } 746 747 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 748 Record.clear(); 749 } 750 751 Stream.ExitBlock(); 752 } 753 754 /// WriteTypeTable - Write out the type table for a module. 755 void ModuleBitcodeWriter::writeTypeTable() { 756 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 757 758 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 759 SmallVector<uint64_t, 64> TypeVals; 760 761 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 762 763 // Abbrev for TYPE_CODE_POINTER. 764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 765 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 767 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 768 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 769 770 // Abbrev for TYPE_CODE_FUNCTION. 771 Abbv = std::make_shared<BitCodeAbbrev>(); 772 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 776 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 777 778 // Abbrev for TYPE_CODE_STRUCT_ANON. 779 Abbv = std::make_shared<BitCodeAbbrev>(); 780 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 784 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 785 786 // Abbrev for TYPE_CODE_STRUCT_NAME. 787 Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 791 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_STRUCT_NAMED. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 800 801 // Abbrev for TYPE_CODE_ARRAY. 802 Abbv = std::make_shared<BitCodeAbbrev>(); 803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 807 808 // Emit an entry count so the reader can reserve space. 809 TypeVals.push_back(TypeList.size()); 810 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 811 TypeVals.clear(); 812 813 // Loop over all of the types, emitting each in turn. 814 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 815 Type *T = TypeList[i]; 816 int AbbrevToUse = 0; 817 unsigned Code = 0; 818 819 switch (T->getTypeID()) { 820 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 821 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 822 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 823 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 824 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 825 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 826 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 827 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 828 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 829 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 830 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 831 case Type::IntegerTyID: 832 // INTEGER: [width] 833 Code = bitc::TYPE_CODE_INTEGER; 834 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 835 break; 836 case Type::PointerTyID: { 837 PointerType *PTy = cast<PointerType>(T); 838 // POINTER: [pointee type, address space] 839 Code = bitc::TYPE_CODE_POINTER; 840 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 841 unsigned AddressSpace = PTy->getAddressSpace(); 842 TypeVals.push_back(AddressSpace); 843 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 844 break; 845 } 846 case Type::FunctionTyID: { 847 FunctionType *FT = cast<FunctionType>(T); 848 // FUNCTION: [isvararg, retty, paramty x N] 849 Code = bitc::TYPE_CODE_FUNCTION; 850 TypeVals.push_back(FT->isVarArg()); 851 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 852 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 853 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 854 AbbrevToUse = FunctionAbbrev; 855 break; 856 } 857 case Type::StructTyID: { 858 StructType *ST = cast<StructType>(T); 859 // STRUCT: [ispacked, eltty x N] 860 TypeVals.push_back(ST->isPacked()); 861 // Output all of the element types. 862 for (StructType::element_iterator I = ST->element_begin(), 863 E = ST->element_end(); I != E; ++I) 864 TypeVals.push_back(VE.getTypeID(*I)); 865 866 if (ST->isLiteral()) { 867 Code = bitc::TYPE_CODE_STRUCT_ANON; 868 AbbrevToUse = StructAnonAbbrev; 869 } else { 870 if (ST->isOpaque()) { 871 Code = bitc::TYPE_CODE_OPAQUE; 872 } else { 873 Code = bitc::TYPE_CODE_STRUCT_NAMED; 874 AbbrevToUse = StructNamedAbbrev; 875 } 876 877 // Emit the name if it is present. 878 if (!ST->getName().empty()) 879 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 880 StructNameAbbrev); 881 } 882 break; 883 } 884 case Type::ArrayTyID: { 885 ArrayType *AT = cast<ArrayType>(T); 886 // ARRAY: [numelts, eltty] 887 Code = bitc::TYPE_CODE_ARRAY; 888 TypeVals.push_back(AT->getNumElements()); 889 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 890 AbbrevToUse = ArrayAbbrev; 891 break; 892 } 893 case Type::VectorTyID: { 894 VectorType *VT = cast<VectorType>(T); 895 // VECTOR [numelts, eltty] 896 Code = bitc::TYPE_CODE_VECTOR; 897 TypeVals.push_back(VT->getNumElements()); 898 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 899 break; 900 } 901 } 902 903 // Emit the finished record. 904 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 905 TypeVals.clear(); 906 } 907 908 Stream.ExitBlock(); 909 } 910 911 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 912 switch (Linkage) { 913 case GlobalValue::ExternalLinkage: 914 return 0; 915 case GlobalValue::WeakAnyLinkage: 916 return 16; 917 case GlobalValue::AppendingLinkage: 918 return 2; 919 case GlobalValue::InternalLinkage: 920 return 3; 921 case GlobalValue::LinkOnceAnyLinkage: 922 return 18; 923 case GlobalValue::ExternalWeakLinkage: 924 return 7; 925 case GlobalValue::CommonLinkage: 926 return 8; 927 case GlobalValue::PrivateLinkage: 928 return 9; 929 case GlobalValue::WeakODRLinkage: 930 return 17; 931 case GlobalValue::LinkOnceODRLinkage: 932 return 19; 933 case GlobalValue::AvailableExternallyLinkage: 934 return 12; 935 } 936 llvm_unreachable("Invalid linkage"); 937 } 938 939 static unsigned getEncodedLinkage(const GlobalValue &GV) { 940 return getEncodedLinkage(GV.getLinkage()); 941 } 942 943 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 944 uint64_t RawFlags = 0; 945 RawFlags |= Flags.ReadNone; 946 RawFlags |= (Flags.ReadOnly << 1); 947 RawFlags |= (Flags.NoRecurse << 2); 948 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 949 return RawFlags; 950 } 951 952 // Decode the flags for GlobalValue in the summary 953 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 954 uint64_t RawFlags = 0; 955 956 RawFlags |= Flags.NotEligibleToImport; // bool 957 RawFlags |= (Flags.Live << 1); 958 // Linkage don't need to be remapped at that time for the summary. Any future 959 // change to the getEncodedLinkage() function will need to be taken into 960 // account here as well. 961 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 962 963 return RawFlags; 964 } 965 966 static unsigned getEncodedVisibility(const GlobalValue &GV) { 967 switch (GV.getVisibility()) { 968 case GlobalValue::DefaultVisibility: return 0; 969 case GlobalValue::HiddenVisibility: return 1; 970 case GlobalValue::ProtectedVisibility: return 2; 971 } 972 llvm_unreachable("Invalid visibility"); 973 } 974 975 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 976 switch (GV.getDLLStorageClass()) { 977 case GlobalValue::DefaultStorageClass: return 0; 978 case GlobalValue::DLLImportStorageClass: return 1; 979 case GlobalValue::DLLExportStorageClass: return 2; 980 } 981 llvm_unreachable("Invalid DLL storage class"); 982 } 983 984 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 985 switch (GV.getThreadLocalMode()) { 986 case GlobalVariable::NotThreadLocal: return 0; 987 case GlobalVariable::GeneralDynamicTLSModel: return 1; 988 case GlobalVariable::LocalDynamicTLSModel: return 2; 989 case GlobalVariable::InitialExecTLSModel: return 3; 990 case GlobalVariable::LocalExecTLSModel: return 4; 991 } 992 llvm_unreachable("Invalid TLS model"); 993 } 994 995 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 996 switch (C.getSelectionKind()) { 997 case Comdat::Any: 998 return bitc::COMDAT_SELECTION_KIND_ANY; 999 case Comdat::ExactMatch: 1000 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1001 case Comdat::Largest: 1002 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1003 case Comdat::NoDuplicates: 1004 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1005 case Comdat::SameSize: 1006 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1007 } 1008 llvm_unreachable("Invalid selection kind"); 1009 } 1010 1011 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1012 switch (GV.getUnnamedAddr()) { 1013 case GlobalValue::UnnamedAddr::None: return 0; 1014 case GlobalValue::UnnamedAddr::Local: return 2; 1015 case GlobalValue::UnnamedAddr::Global: return 1; 1016 } 1017 llvm_unreachable("Invalid unnamed_addr"); 1018 } 1019 1020 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1021 if (GenerateHash) 1022 Hasher.update(Str); 1023 return StrtabBuilder.add(Str); 1024 } 1025 1026 void ModuleBitcodeWriter::writeComdats() { 1027 SmallVector<unsigned, 64> Vals; 1028 for (const Comdat *C : VE.getComdats()) { 1029 // COMDAT: [strtab offset, strtab size, selection_kind] 1030 Vals.push_back(addToStrtab(C->getName())); 1031 Vals.push_back(C->getName().size()); 1032 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1033 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1034 Vals.clear(); 1035 } 1036 } 1037 1038 /// Write a record that will eventually hold the word offset of the 1039 /// module-level VST. For now the offset is 0, which will be backpatched 1040 /// after the real VST is written. Saves the bit offset to backpatch. 1041 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1042 // Write a placeholder value in for the offset of the real VST, 1043 // which is written after the function blocks so that it can include 1044 // the offset of each function. The placeholder offset will be 1045 // updated when the real VST is written. 1046 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1047 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1048 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1049 // hold the real VST offset. Must use fixed instead of VBR as we don't 1050 // know how many VBR chunks to reserve ahead of time. 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1052 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1053 1054 // Emit the placeholder 1055 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1056 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1057 1058 // Compute and save the bit offset to the placeholder, which will be 1059 // patched when the real VST is written. We can simply subtract the 32-bit 1060 // fixed size from the current bit number to get the location to backpatch. 1061 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1062 } 1063 1064 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1065 1066 /// Determine the encoding to use for the given string name and length. 1067 static StringEncoding getStringEncoding(StringRef Str) { 1068 bool isChar6 = true; 1069 for (char C : Str) { 1070 if (isChar6) 1071 isChar6 = BitCodeAbbrevOp::isChar6(C); 1072 if ((unsigned char)C & 128) 1073 // don't bother scanning the rest. 1074 return SE_Fixed8; 1075 } 1076 if (isChar6) 1077 return SE_Char6; 1078 return SE_Fixed7; 1079 } 1080 1081 /// Emit top-level description of module, including target triple, inline asm, 1082 /// descriptors for global variables, and function prototype info. 1083 /// Returns the bit offset to backpatch with the location of the real VST. 1084 void ModuleBitcodeWriter::writeModuleInfo() { 1085 // Emit various pieces of data attached to a module. 1086 if (!M.getTargetTriple().empty()) 1087 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1088 0 /*TODO*/); 1089 const std::string &DL = M.getDataLayoutStr(); 1090 if (!DL.empty()) 1091 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1092 if (!M.getModuleInlineAsm().empty()) 1093 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1094 0 /*TODO*/); 1095 1096 // Emit information about sections and GC, computing how many there are. Also 1097 // compute the maximum alignment value. 1098 std::map<std::string, unsigned> SectionMap; 1099 std::map<std::string, unsigned> GCMap; 1100 unsigned MaxAlignment = 0; 1101 unsigned MaxGlobalType = 0; 1102 for (const GlobalValue &GV : M.globals()) { 1103 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1104 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1105 if (GV.hasSection()) { 1106 // Give section names unique ID's. 1107 unsigned &Entry = SectionMap[GV.getSection()]; 1108 if (!Entry) { 1109 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1110 0 /*TODO*/); 1111 Entry = SectionMap.size(); 1112 } 1113 } 1114 } 1115 for (const Function &F : M) { 1116 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1117 if (F.hasSection()) { 1118 // Give section names unique ID's. 1119 unsigned &Entry = SectionMap[F.getSection()]; 1120 if (!Entry) { 1121 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1122 0 /*TODO*/); 1123 Entry = SectionMap.size(); 1124 } 1125 } 1126 if (F.hasGC()) { 1127 // Same for GC names. 1128 unsigned &Entry = GCMap[F.getGC()]; 1129 if (!Entry) { 1130 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1131 0 /*TODO*/); 1132 Entry = GCMap.size(); 1133 } 1134 } 1135 } 1136 1137 // Emit abbrev for globals, now that we know # sections and max alignment. 1138 unsigned SimpleGVarAbbrev = 0; 1139 if (!M.global_empty()) { 1140 // Add an abbrev for common globals with no visibility or thread localness. 1141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1142 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1146 Log2_32_Ceil(MaxGlobalType+1))); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1148 //| explicitType << 1 1149 //| constant 1150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1152 if (MaxAlignment == 0) // Alignment. 1153 Abbv->Add(BitCodeAbbrevOp(0)); 1154 else { 1155 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1157 Log2_32_Ceil(MaxEncAlignment+1))); 1158 } 1159 if (SectionMap.empty()) // Section. 1160 Abbv->Add(BitCodeAbbrevOp(0)); 1161 else 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1163 Log2_32_Ceil(SectionMap.size()+1))); 1164 // Don't bother emitting vis + thread local. 1165 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1166 } 1167 1168 SmallVector<unsigned, 64> Vals; 1169 // Emit the module's source file name. 1170 { 1171 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1172 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1173 if (Bits == SE_Char6) 1174 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1175 else if (Bits == SE_Fixed7) 1176 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1177 1178 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1179 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1180 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1182 Abbv->Add(AbbrevOpToUse); 1183 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1184 1185 for (const auto P : M.getSourceFileName()) 1186 Vals.push_back((unsigned char)P); 1187 1188 // Emit the finished record. 1189 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1190 Vals.clear(); 1191 } 1192 1193 // Emit the global variable information. 1194 for (const GlobalVariable &GV : M.globals()) { 1195 unsigned AbbrevToUse = 0; 1196 1197 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1198 // linkage, alignment, section, visibility, threadlocal, 1199 // unnamed_addr, externally_initialized, dllstorageclass, 1200 // comdat, attributes, DSO_Local] 1201 Vals.push_back(addToStrtab(GV.getName())); 1202 Vals.push_back(GV.getName().size()); 1203 Vals.push_back(VE.getTypeID(GV.getValueType())); 1204 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1205 Vals.push_back(GV.isDeclaration() ? 0 : 1206 (VE.getValueID(GV.getInitializer()) + 1)); 1207 Vals.push_back(getEncodedLinkage(GV)); 1208 Vals.push_back(Log2_32(GV.getAlignment())+1); 1209 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1210 if (GV.isThreadLocal() || 1211 GV.getVisibility() != GlobalValue::DefaultVisibility || 1212 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1213 GV.isExternallyInitialized() || 1214 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1215 GV.hasComdat() || 1216 GV.hasAttributes() || 1217 GV.isDSOLocal()) { 1218 Vals.push_back(getEncodedVisibility(GV)); 1219 Vals.push_back(getEncodedThreadLocalMode(GV)); 1220 Vals.push_back(getEncodedUnnamedAddr(GV)); 1221 Vals.push_back(GV.isExternallyInitialized()); 1222 Vals.push_back(getEncodedDLLStorageClass(GV)); 1223 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1224 1225 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1226 Vals.push_back(VE.getAttributeListID(AL)); 1227 1228 Vals.push_back(GV.isDSOLocal()); 1229 } else { 1230 AbbrevToUse = SimpleGVarAbbrev; 1231 } 1232 1233 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1234 Vals.clear(); 1235 } 1236 1237 // Emit the function proto information. 1238 for (const Function &F : M) { 1239 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1240 // linkage, paramattrs, alignment, section, visibility, gc, 1241 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1242 // prefixdata, personalityfn, DSO_Local] 1243 Vals.push_back(addToStrtab(F.getName())); 1244 Vals.push_back(F.getName().size()); 1245 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1246 Vals.push_back(F.getCallingConv()); 1247 Vals.push_back(F.isDeclaration()); 1248 Vals.push_back(getEncodedLinkage(F)); 1249 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1250 Vals.push_back(Log2_32(F.getAlignment())+1); 1251 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1252 Vals.push_back(getEncodedVisibility(F)); 1253 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1254 Vals.push_back(getEncodedUnnamedAddr(F)); 1255 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1256 : 0); 1257 Vals.push_back(getEncodedDLLStorageClass(F)); 1258 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1259 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1260 : 0); 1261 Vals.push_back( 1262 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1263 1264 Vals.push_back(F.isDSOLocal()); 1265 unsigned AbbrevToUse = 0; 1266 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1267 Vals.clear(); 1268 } 1269 1270 // Emit the alias information. 1271 for (const GlobalAlias &A : M.aliases()) { 1272 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1273 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1274 // DSO_Local] 1275 Vals.push_back(addToStrtab(A.getName())); 1276 Vals.push_back(A.getName().size()); 1277 Vals.push_back(VE.getTypeID(A.getValueType())); 1278 Vals.push_back(A.getType()->getAddressSpace()); 1279 Vals.push_back(VE.getValueID(A.getAliasee())); 1280 Vals.push_back(getEncodedLinkage(A)); 1281 Vals.push_back(getEncodedVisibility(A)); 1282 Vals.push_back(getEncodedDLLStorageClass(A)); 1283 Vals.push_back(getEncodedThreadLocalMode(A)); 1284 Vals.push_back(getEncodedUnnamedAddr(A)); 1285 Vals.push_back(A.isDSOLocal()); 1286 1287 unsigned AbbrevToUse = 0; 1288 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1289 Vals.clear(); 1290 } 1291 1292 // Emit the ifunc information. 1293 for (const GlobalIFunc &I : M.ifuncs()) { 1294 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1295 // val#, linkage, visibility] 1296 Vals.push_back(addToStrtab(I.getName())); 1297 Vals.push_back(I.getName().size()); 1298 Vals.push_back(VE.getTypeID(I.getValueType())); 1299 Vals.push_back(I.getType()->getAddressSpace()); 1300 Vals.push_back(VE.getValueID(I.getResolver())); 1301 Vals.push_back(getEncodedLinkage(I)); 1302 Vals.push_back(getEncodedVisibility(I)); 1303 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1304 Vals.clear(); 1305 } 1306 1307 writeValueSymbolTableForwardDecl(); 1308 } 1309 1310 static uint64_t getOptimizationFlags(const Value *V) { 1311 uint64_t Flags = 0; 1312 1313 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1314 if (OBO->hasNoSignedWrap()) 1315 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1316 if (OBO->hasNoUnsignedWrap()) 1317 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1318 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1319 if (PEO->isExact()) 1320 Flags |= 1 << bitc::PEO_EXACT; 1321 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1322 if (FPMO->hasUnsafeAlgebra()) 1323 Flags |= FastMathFlags::UnsafeAlgebra; 1324 if (FPMO->hasNoNaNs()) 1325 Flags |= FastMathFlags::NoNaNs; 1326 if (FPMO->hasNoInfs()) 1327 Flags |= FastMathFlags::NoInfs; 1328 if (FPMO->hasNoSignedZeros()) 1329 Flags |= FastMathFlags::NoSignedZeros; 1330 if (FPMO->hasAllowReciprocal()) 1331 Flags |= FastMathFlags::AllowReciprocal; 1332 if (FPMO->hasAllowContract()) 1333 Flags |= FastMathFlags::AllowContract; 1334 } 1335 1336 return Flags; 1337 } 1338 1339 void ModuleBitcodeWriter::writeValueAsMetadata( 1340 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1341 // Mimic an MDNode with a value as one operand. 1342 Value *V = MD->getValue(); 1343 Record.push_back(VE.getTypeID(V->getType())); 1344 Record.push_back(VE.getValueID(V)); 1345 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1346 Record.clear(); 1347 } 1348 1349 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1350 SmallVectorImpl<uint64_t> &Record, 1351 unsigned Abbrev) { 1352 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1353 Metadata *MD = N->getOperand(i); 1354 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1355 "Unexpected function-local metadata"); 1356 Record.push_back(VE.getMetadataOrNullID(MD)); 1357 } 1358 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1359 : bitc::METADATA_NODE, 1360 Record, Abbrev); 1361 Record.clear(); 1362 } 1363 1364 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1365 // Assume the column is usually under 128, and always output the inlined-at 1366 // location (it's never more expensive than building an array size 1). 1367 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1368 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1374 return Stream.EmitAbbrev(std::move(Abbv)); 1375 } 1376 1377 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1378 SmallVectorImpl<uint64_t> &Record, 1379 unsigned &Abbrev) { 1380 if (!Abbrev) 1381 Abbrev = createDILocationAbbrev(); 1382 1383 Record.push_back(N->isDistinct()); 1384 Record.push_back(N->getLine()); 1385 Record.push_back(N->getColumn()); 1386 Record.push_back(VE.getMetadataID(N->getScope())); 1387 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1388 1389 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1390 Record.clear(); 1391 } 1392 1393 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1394 // Assume the column is usually under 128, and always output the inlined-at 1395 // location (it's never more expensive than building an array size 1). 1396 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1397 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1404 return Stream.EmitAbbrev(std::move(Abbv)); 1405 } 1406 1407 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1408 SmallVectorImpl<uint64_t> &Record, 1409 unsigned &Abbrev) { 1410 if (!Abbrev) 1411 Abbrev = createGenericDINodeAbbrev(); 1412 1413 Record.push_back(N->isDistinct()); 1414 Record.push_back(N->getTag()); 1415 Record.push_back(0); // Per-tag version field; unused for now. 1416 1417 for (auto &I : N->operands()) 1418 Record.push_back(VE.getMetadataOrNullID(I)); 1419 1420 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1421 Record.clear(); 1422 } 1423 1424 static uint64_t rotateSign(int64_t I) { 1425 uint64_t U = I; 1426 return I < 0 ? ~(U << 1) : U << 1; 1427 } 1428 1429 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1430 SmallVectorImpl<uint64_t> &Record, 1431 unsigned Abbrev) { 1432 Record.push_back(N->isDistinct()); 1433 Record.push_back(N->getCount()); 1434 Record.push_back(rotateSign(N->getLowerBound())); 1435 1436 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1437 Record.clear(); 1438 } 1439 1440 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1441 SmallVectorImpl<uint64_t> &Record, 1442 unsigned Abbrev) { 1443 Record.push_back(N->isDistinct()); 1444 Record.push_back(rotateSign(N->getValue())); 1445 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1446 1447 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1448 Record.clear(); 1449 } 1450 1451 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1452 SmallVectorImpl<uint64_t> &Record, 1453 unsigned Abbrev) { 1454 Record.push_back(N->isDistinct()); 1455 Record.push_back(N->getTag()); 1456 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1457 Record.push_back(N->getSizeInBits()); 1458 Record.push_back(N->getAlignInBits()); 1459 Record.push_back(N->getEncoding()); 1460 1461 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1462 Record.clear(); 1463 } 1464 1465 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1466 SmallVectorImpl<uint64_t> &Record, 1467 unsigned Abbrev) { 1468 Record.push_back(N->isDistinct()); 1469 Record.push_back(N->getTag()); 1470 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1471 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1472 Record.push_back(N->getLine()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1475 Record.push_back(N->getSizeInBits()); 1476 Record.push_back(N->getAlignInBits()); 1477 Record.push_back(N->getOffsetInBits()); 1478 Record.push_back(N->getFlags()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1480 1481 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1482 // that there is no DWARF address space associated with DIDerivedType. 1483 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1484 Record.push_back(*DWARFAddressSpace + 1); 1485 else 1486 Record.push_back(0); 1487 1488 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1489 Record.clear(); 1490 } 1491 1492 void ModuleBitcodeWriter::writeDICompositeType( 1493 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1494 unsigned Abbrev) { 1495 const unsigned IsNotUsedInOldTypeRef = 0x2; 1496 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1497 Record.push_back(N->getTag()); 1498 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1499 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1500 Record.push_back(N->getLine()); 1501 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1502 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1503 Record.push_back(N->getSizeInBits()); 1504 Record.push_back(N->getAlignInBits()); 1505 Record.push_back(N->getOffsetInBits()); 1506 Record.push_back(N->getFlags()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1508 Record.push_back(N->getRuntimeLang()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1511 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1512 1513 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 void ModuleBitcodeWriter::writeDISubroutineType( 1518 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1519 unsigned Abbrev) { 1520 const unsigned HasNoOldTypeRefs = 0x2; 1521 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1522 Record.push_back(N->getFlags()); 1523 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1524 Record.push_back(N->getCC()); 1525 1526 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 Record.push_back(N->isDistinct()); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1536 Record.push_back(N->getChecksumKind()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1538 1539 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1540 Record.clear(); 1541 } 1542 1543 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1544 SmallVectorImpl<uint64_t> &Record, 1545 unsigned Abbrev) { 1546 assert(N->isDistinct() && "Expected distinct compile units"); 1547 Record.push_back(/* IsDistinct */ true); 1548 Record.push_back(N->getSourceLanguage()); 1549 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1550 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1551 Record.push_back(N->isOptimized()); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1553 Record.push_back(N->getRuntimeVersion()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1555 Record.push_back(N->getEmissionKind()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1558 Record.push_back(/* subprograms */ 0); 1559 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1561 Record.push_back(N->getDWOId()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1563 Record.push_back(N->getSplitDebugInlining()); 1564 Record.push_back(N->getDebugInfoForProfiling()); 1565 Record.push_back(N->getGnuPubnames()); 1566 1567 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1568 Record.clear(); 1569 } 1570 1571 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1572 SmallVectorImpl<uint64_t> &Record, 1573 unsigned Abbrev) { 1574 uint64_t HasUnitFlag = 1 << 1; 1575 Record.push_back(N->isDistinct() | HasUnitFlag); 1576 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1580 Record.push_back(N->getLine()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1582 Record.push_back(N->isLocalToUnit()); 1583 Record.push_back(N->isDefinition()); 1584 Record.push_back(N->getScopeLine()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1586 Record.push_back(N->getVirtuality()); 1587 Record.push_back(N->getVirtualIndex()); 1588 Record.push_back(N->getFlags()); 1589 Record.push_back(N->isOptimized()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1594 Record.push_back(N->getThisAdjustment()); 1595 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1596 1597 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1602 SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 Record.push_back(N->isDistinct()); 1605 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1607 Record.push_back(N->getLine()); 1608 Record.push_back(N->getColumn()); 1609 1610 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1611 Record.clear(); 1612 } 1613 1614 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1615 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1616 unsigned Abbrev) { 1617 Record.push_back(N->isDistinct()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1620 Record.push_back(N->getDiscriminator()); 1621 1622 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1623 Record.clear(); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1630 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1632 1633 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(N->getMacinfoType()); 1642 Record.push_back(N->getLine()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1645 1646 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.push_back(N->isDistinct()); 1654 Record.push_back(N->getMacinfoType()); 1655 Record.push_back(N->getLine()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1658 1659 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1660 Record.clear(); 1661 } 1662 1663 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1664 SmallVectorImpl<uint64_t> &Record, 1665 unsigned Abbrev) { 1666 Record.push_back(N->isDistinct()); 1667 for (auto &I : N->operands()) 1668 Record.push_back(VE.getMetadataOrNullID(I)); 1669 1670 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1675 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1680 1681 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1686 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 Record.push_back(N->isDistinct()); 1689 Record.push_back(N->getTag()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1693 1694 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDIGlobalVariable( 1699 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 const uint64_t Version = 1 << 1; 1702 Record.push_back((uint64_t)N->isDistinct() | Version); 1703 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1707 Record.push_back(N->getLine()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1709 Record.push_back(N->isLocalToUnit()); 1710 Record.push_back(N->isDefinition()); 1711 Record.push_back(/* expr */ 0); 1712 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1713 Record.push_back(N->getAlignInBits()); 1714 1715 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 void ModuleBitcodeWriter::writeDILocalVariable( 1720 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1721 unsigned Abbrev) { 1722 // In order to support all possible bitcode formats in BitcodeReader we need 1723 // to distinguish the following cases: 1724 // 1) Record has no artificial tag (Record[1]), 1725 // has no obsolete inlinedAt field (Record[9]). 1726 // In this case Record size will be 8, HasAlignment flag is false. 1727 // 2) Record has artificial tag (Record[1]), 1728 // has no obsolete inlignedAt field (Record[9]). 1729 // In this case Record size will be 9, HasAlignment flag is false. 1730 // 3) Record has both artificial tag (Record[1]) and 1731 // obsolete inlignedAt field (Record[9]). 1732 // In this case Record size will be 10, HasAlignment flag is false. 1733 // 4) Record has neither artificial tag, nor inlignedAt field, but 1734 // HasAlignment flag is true and Record[8] contains alignment value. 1735 const uint64_t HasAlignmentFlag = 1 << 1; 1736 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1737 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1740 Record.push_back(N->getLine()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1742 Record.push_back(N->getArg()); 1743 Record.push_back(N->getFlags()); 1744 Record.push_back(N->getAlignInBits()); 1745 1746 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1751 SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.reserve(N->getElements().size() + 1); 1754 const uint64_t Version = 3 << 1; 1755 Record.push_back((uint64_t)N->isDistinct() | Version); 1756 Record.append(N->elements_begin(), N->elements_end()); 1757 1758 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1759 Record.clear(); 1760 } 1761 1762 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1763 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1764 unsigned Abbrev) { 1765 Record.push_back(N->isDistinct()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1768 1769 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1770 Record.clear(); 1771 } 1772 1773 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1774 SmallVectorImpl<uint64_t> &Record, 1775 unsigned Abbrev) { 1776 Record.push_back(N->isDistinct()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1779 Record.push_back(N->getLine()); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1782 Record.push_back(N->getAttributes()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1784 1785 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDIImportedEntity( 1790 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 Record.push_back(N->isDistinct()); 1793 Record.push_back(N->getTag()); 1794 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1796 Record.push_back(N->getLine()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1799 1800 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1801 Record.clear(); 1802 } 1803 1804 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1805 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1806 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1809 return Stream.EmitAbbrev(std::move(Abbv)); 1810 } 1811 1812 void ModuleBitcodeWriter::writeNamedMetadata( 1813 SmallVectorImpl<uint64_t> &Record) { 1814 if (M.named_metadata_empty()) 1815 return; 1816 1817 unsigned Abbrev = createNamedMetadataAbbrev(); 1818 for (const NamedMDNode &NMD : M.named_metadata()) { 1819 // Write name. 1820 StringRef Str = NMD.getName(); 1821 Record.append(Str.bytes_begin(), Str.bytes_end()); 1822 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1823 Record.clear(); 1824 1825 // Write named metadata operands. 1826 for (const MDNode *N : NMD.operands()) 1827 Record.push_back(VE.getMetadataID(N)); 1828 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1829 Record.clear(); 1830 } 1831 } 1832 1833 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1834 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1835 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1839 return Stream.EmitAbbrev(std::move(Abbv)); 1840 } 1841 1842 /// Write out a record for MDString. 1843 /// 1844 /// All the metadata strings in a metadata block are emitted in a single 1845 /// record. The sizes and strings themselves are shoved into a blob. 1846 void ModuleBitcodeWriter::writeMetadataStrings( 1847 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1848 if (Strings.empty()) 1849 return; 1850 1851 // Start the record with the number of strings. 1852 Record.push_back(bitc::METADATA_STRINGS); 1853 Record.push_back(Strings.size()); 1854 1855 // Emit the sizes of the strings in the blob. 1856 SmallString<256> Blob; 1857 { 1858 BitstreamWriter W(Blob); 1859 for (const Metadata *MD : Strings) 1860 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1861 W.FlushToWord(); 1862 } 1863 1864 // Add the offset to the strings to the record. 1865 Record.push_back(Blob.size()); 1866 1867 // Add the strings to the blob. 1868 for (const Metadata *MD : Strings) 1869 Blob.append(cast<MDString>(MD)->getString()); 1870 1871 // Emit the final record. 1872 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1873 Record.clear(); 1874 } 1875 1876 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1877 enum MetadataAbbrev : unsigned { 1878 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1879 #include "llvm/IR/Metadata.def" 1880 LastPlusOne 1881 }; 1882 1883 void ModuleBitcodeWriter::writeMetadataRecords( 1884 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1885 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1886 if (MDs.empty()) 1887 return; 1888 1889 // Initialize MDNode abbreviations. 1890 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1891 #include "llvm/IR/Metadata.def" 1892 1893 for (const Metadata *MD : MDs) { 1894 if (IndexPos) 1895 IndexPos->push_back(Stream.GetCurrentBitNo()); 1896 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1897 assert(N->isResolved() && "Expected forward references to be resolved"); 1898 1899 switch (N->getMetadataID()) { 1900 default: 1901 llvm_unreachable("Invalid MDNode subclass"); 1902 #define HANDLE_MDNODE_LEAF(CLASS) \ 1903 case Metadata::CLASS##Kind: \ 1904 if (MDAbbrevs) \ 1905 write##CLASS(cast<CLASS>(N), Record, \ 1906 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1907 else \ 1908 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1909 continue; 1910 #include "llvm/IR/Metadata.def" 1911 } 1912 } 1913 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1914 } 1915 } 1916 1917 void ModuleBitcodeWriter::writeModuleMetadata() { 1918 if (!VE.hasMDs() && M.named_metadata_empty()) 1919 return; 1920 1921 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1922 SmallVector<uint64_t, 64> Record; 1923 1924 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1925 // block and load any metadata. 1926 std::vector<unsigned> MDAbbrevs; 1927 1928 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1929 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1930 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1931 createGenericDINodeAbbrev(); 1932 1933 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1934 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1937 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1938 1939 Abbv = std::make_shared<BitCodeAbbrev>(); 1940 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1943 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1944 1945 // Emit MDStrings together upfront. 1946 writeMetadataStrings(VE.getMDStrings(), Record); 1947 1948 // We only emit an index for the metadata record if we have more than a given 1949 // (naive) threshold of metadatas, otherwise it is not worth it. 1950 if (VE.getNonMDStrings().size() > IndexThreshold) { 1951 // Write a placeholder value in for the offset of the metadata index, 1952 // which is written after the records, so that it can include 1953 // the offset of each entry. The placeholder offset will be 1954 // updated after all records are emitted. 1955 uint64_t Vals[] = {0, 0}; 1956 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1957 } 1958 1959 // Compute and save the bit offset to the current position, which will be 1960 // patched when we emit the index later. We can simply subtract the 64-bit 1961 // fixed size from the current bit number to get the location to backpatch. 1962 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1963 1964 // This index will contain the bitpos for each individual record. 1965 std::vector<uint64_t> IndexPos; 1966 IndexPos.reserve(VE.getNonMDStrings().size()); 1967 1968 // Write all the records 1969 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1970 1971 if (VE.getNonMDStrings().size() > IndexThreshold) { 1972 // Now that we have emitted all the records we will emit the index. But 1973 // first 1974 // backpatch the forward reference so that the reader can skip the records 1975 // efficiently. 1976 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1977 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1978 1979 // Delta encode the index. 1980 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1981 for (auto &Elt : IndexPos) { 1982 auto EltDelta = Elt - PreviousValue; 1983 PreviousValue = Elt; 1984 Elt = EltDelta; 1985 } 1986 // Emit the index record. 1987 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1988 IndexPos.clear(); 1989 } 1990 1991 // Write the named metadata now. 1992 writeNamedMetadata(Record); 1993 1994 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1995 SmallVector<uint64_t, 4> Record; 1996 Record.push_back(VE.getValueID(&GO)); 1997 pushGlobalMetadataAttachment(Record, GO); 1998 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1999 }; 2000 for (const Function &F : M) 2001 if (F.isDeclaration() && F.hasMetadata()) 2002 AddDeclAttachedMetadata(F); 2003 // FIXME: Only store metadata for declarations here, and move data for global 2004 // variable definitions to a separate block (PR28134). 2005 for (const GlobalVariable &GV : M.globals()) 2006 if (GV.hasMetadata()) 2007 AddDeclAttachedMetadata(GV); 2008 2009 Stream.ExitBlock(); 2010 } 2011 2012 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2013 if (!VE.hasMDs()) 2014 return; 2015 2016 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2017 SmallVector<uint64_t, 64> Record; 2018 writeMetadataStrings(VE.getMDStrings(), Record); 2019 writeMetadataRecords(VE.getNonMDStrings(), Record); 2020 Stream.ExitBlock(); 2021 } 2022 2023 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2024 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2025 // [n x [id, mdnode]] 2026 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2027 GO.getAllMetadata(MDs); 2028 for (const auto &I : MDs) { 2029 Record.push_back(I.first); 2030 Record.push_back(VE.getMetadataID(I.second)); 2031 } 2032 } 2033 2034 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2035 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2036 2037 SmallVector<uint64_t, 64> Record; 2038 2039 if (F.hasMetadata()) { 2040 pushGlobalMetadataAttachment(Record, F); 2041 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2042 Record.clear(); 2043 } 2044 2045 // Write metadata attachments 2046 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2047 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2048 for (const BasicBlock &BB : F) 2049 for (const Instruction &I : BB) { 2050 MDs.clear(); 2051 I.getAllMetadataOtherThanDebugLoc(MDs); 2052 2053 // If no metadata, ignore instruction. 2054 if (MDs.empty()) continue; 2055 2056 Record.push_back(VE.getInstructionID(&I)); 2057 2058 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2059 Record.push_back(MDs[i].first); 2060 Record.push_back(VE.getMetadataID(MDs[i].second)); 2061 } 2062 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2063 Record.clear(); 2064 } 2065 2066 Stream.ExitBlock(); 2067 } 2068 2069 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2070 SmallVector<uint64_t, 64> Record; 2071 2072 // Write metadata kinds 2073 // METADATA_KIND - [n x [id, name]] 2074 SmallVector<StringRef, 8> Names; 2075 M.getMDKindNames(Names); 2076 2077 if (Names.empty()) return; 2078 2079 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2080 2081 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2082 Record.push_back(MDKindID); 2083 StringRef KName = Names[MDKindID]; 2084 Record.append(KName.begin(), KName.end()); 2085 2086 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2087 Record.clear(); 2088 } 2089 2090 Stream.ExitBlock(); 2091 } 2092 2093 void ModuleBitcodeWriter::writeOperandBundleTags() { 2094 // Write metadata kinds 2095 // 2096 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2097 // 2098 // OPERAND_BUNDLE_TAG - [strchr x N] 2099 2100 SmallVector<StringRef, 8> Tags; 2101 M.getOperandBundleTags(Tags); 2102 2103 if (Tags.empty()) 2104 return; 2105 2106 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2107 2108 SmallVector<uint64_t, 64> Record; 2109 2110 for (auto Tag : Tags) { 2111 Record.append(Tag.begin(), Tag.end()); 2112 2113 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2114 Record.clear(); 2115 } 2116 2117 Stream.ExitBlock(); 2118 } 2119 2120 void ModuleBitcodeWriter::writeSyncScopeNames() { 2121 SmallVector<StringRef, 8> SSNs; 2122 M.getContext().getSyncScopeNames(SSNs); 2123 if (SSNs.empty()) 2124 return; 2125 2126 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2127 2128 SmallVector<uint64_t, 64> Record; 2129 for (auto SSN : SSNs) { 2130 Record.append(SSN.begin(), SSN.end()); 2131 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2132 Record.clear(); 2133 } 2134 2135 Stream.ExitBlock(); 2136 } 2137 2138 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2139 if ((int64_t)V >= 0) 2140 Vals.push_back(V << 1); 2141 else 2142 Vals.push_back((-V << 1) | 1); 2143 } 2144 2145 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2146 bool isGlobal) { 2147 if (FirstVal == LastVal) return; 2148 2149 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2150 2151 unsigned AggregateAbbrev = 0; 2152 unsigned String8Abbrev = 0; 2153 unsigned CString7Abbrev = 0; 2154 unsigned CString6Abbrev = 0; 2155 // If this is a constant pool for the module, emit module-specific abbrevs. 2156 if (isGlobal) { 2157 // Abbrev for CST_CODE_AGGREGATE. 2158 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2159 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2162 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2163 2164 // Abbrev for CST_CODE_STRING. 2165 Abbv = std::make_shared<BitCodeAbbrev>(); 2166 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2169 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2170 // Abbrev for CST_CODE_CSTRING. 2171 Abbv = std::make_shared<BitCodeAbbrev>(); 2172 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2175 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2176 // Abbrev for CST_CODE_CSTRING. 2177 Abbv = std::make_shared<BitCodeAbbrev>(); 2178 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2181 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2182 } 2183 2184 SmallVector<uint64_t, 64> Record; 2185 2186 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2187 Type *LastTy = nullptr; 2188 for (unsigned i = FirstVal; i != LastVal; ++i) { 2189 const Value *V = Vals[i].first; 2190 // If we need to switch types, do so now. 2191 if (V->getType() != LastTy) { 2192 LastTy = V->getType(); 2193 Record.push_back(VE.getTypeID(LastTy)); 2194 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2195 CONSTANTS_SETTYPE_ABBREV); 2196 Record.clear(); 2197 } 2198 2199 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2200 Record.push_back(unsigned(IA->hasSideEffects()) | 2201 unsigned(IA->isAlignStack()) << 1 | 2202 unsigned(IA->getDialect()&1) << 2); 2203 2204 // Add the asm string. 2205 const std::string &AsmStr = IA->getAsmString(); 2206 Record.push_back(AsmStr.size()); 2207 Record.append(AsmStr.begin(), AsmStr.end()); 2208 2209 // Add the constraint string. 2210 const std::string &ConstraintStr = IA->getConstraintString(); 2211 Record.push_back(ConstraintStr.size()); 2212 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2213 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2214 Record.clear(); 2215 continue; 2216 } 2217 const Constant *C = cast<Constant>(V); 2218 unsigned Code = -1U; 2219 unsigned AbbrevToUse = 0; 2220 if (C->isNullValue()) { 2221 Code = bitc::CST_CODE_NULL; 2222 } else if (isa<UndefValue>(C)) { 2223 Code = bitc::CST_CODE_UNDEF; 2224 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2225 if (IV->getBitWidth() <= 64) { 2226 uint64_t V = IV->getSExtValue(); 2227 emitSignedInt64(Record, V); 2228 Code = bitc::CST_CODE_INTEGER; 2229 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2230 } else { // Wide integers, > 64 bits in size. 2231 // We have an arbitrary precision integer value to write whose 2232 // bit width is > 64. However, in canonical unsigned integer 2233 // format it is likely that the high bits are going to be zero. 2234 // So, we only write the number of active words. 2235 unsigned NWords = IV->getValue().getActiveWords(); 2236 const uint64_t *RawWords = IV->getValue().getRawData(); 2237 for (unsigned i = 0; i != NWords; ++i) { 2238 emitSignedInt64(Record, RawWords[i]); 2239 } 2240 Code = bitc::CST_CODE_WIDE_INTEGER; 2241 } 2242 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2243 Code = bitc::CST_CODE_FLOAT; 2244 Type *Ty = CFP->getType(); 2245 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2246 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2247 } else if (Ty->isX86_FP80Ty()) { 2248 // api needed to prevent premature destruction 2249 // bits are not in the same order as a normal i80 APInt, compensate. 2250 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2251 const uint64_t *p = api.getRawData(); 2252 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2253 Record.push_back(p[0] & 0xffffLL); 2254 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2255 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2256 const uint64_t *p = api.getRawData(); 2257 Record.push_back(p[0]); 2258 Record.push_back(p[1]); 2259 } else { 2260 assert(0 && "Unknown FP type!"); 2261 } 2262 } else if (isa<ConstantDataSequential>(C) && 2263 cast<ConstantDataSequential>(C)->isString()) { 2264 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2265 // Emit constant strings specially. 2266 unsigned NumElts = Str->getNumElements(); 2267 // If this is a null-terminated string, use the denser CSTRING encoding. 2268 if (Str->isCString()) { 2269 Code = bitc::CST_CODE_CSTRING; 2270 --NumElts; // Don't encode the null, which isn't allowed by char6. 2271 } else { 2272 Code = bitc::CST_CODE_STRING; 2273 AbbrevToUse = String8Abbrev; 2274 } 2275 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2276 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2277 for (unsigned i = 0; i != NumElts; ++i) { 2278 unsigned char V = Str->getElementAsInteger(i); 2279 Record.push_back(V); 2280 isCStr7 &= (V & 128) == 0; 2281 if (isCStrChar6) 2282 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2283 } 2284 2285 if (isCStrChar6) 2286 AbbrevToUse = CString6Abbrev; 2287 else if (isCStr7) 2288 AbbrevToUse = CString7Abbrev; 2289 } else if (const ConstantDataSequential *CDS = 2290 dyn_cast<ConstantDataSequential>(C)) { 2291 Code = bitc::CST_CODE_DATA; 2292 Type *EltTy = CDS->getType()->getElementType(); 2293 if (isa<IntegerType>(EltTy)) { 2294 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2295 Record.push_back(CDS->getElementAsInteger(i)); 2296 } else { 2297 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2298 Record.push_back( 2299 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2300 } 2301 } else if (isa<ConstantAggregate>(C)) { 2302 Code = bitc::CST_CODE_AGGREGATE; 2303 for (const Value *Op : C->operands()) 2304 Record.push_back(VE.getValueID(Op)); 2305 AbbrevToUse = AggregateAbbrev; 2306 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2307 switch (CE->getOpcode()) { 2308 default: 2309 if (Instruction::isCast(CE->getOpcode())) { 2310 Code = bitc::CST_CODE_CE_CAST; 2311 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2312 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2313 Record.push_back(VE.getValueID(C->getOperand(0))); 2314 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2315 } else { 2316 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2317 Code = bitc::CST_CODE_CE_BINOP; 2318 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2319 Record.push_back(VE.getValueID(C->getOperand(0))); 2320 Record.push_back(VE.getValueID(C->getOperand(1))); 2321 uint64_t Flags = getOptimizationFlags(CE); 2322 if (Flags != 0) 2323 Record.push_back(Flags); 2324 } 2325 break; 2326 case Instruction::GetElementPtr: { 2327 Code = bitc::CST_CODE_CE_GEP; 2328 const auto *GO = cast<GEPOperator>(C); 2329 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2330 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2331 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2332 Record.push_back((*Idx << 1) | GO->isInBounds()); 2333 } else if (GO->isInBounds()) 2334 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2335 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2336 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2337 Record.push_back(VE.getValueID(C->getOperand(i))); 2338 } 2339 break; 2340 } 2341 case Instruction::Select: 2342 Code = bitc::CST_CODE_CE_SELECT; 2343 Record.push_back(VE.getValueID(C->getOperand(0))); 2344 Record.push_back(VE.getValueID(C->getOperand(1))); 2345 Record.push_back(VE.getValueID(C->getOperand(2))); 2346 break; 2347 case Instruction::ExtractElement: 2348 Code = bitc::CST_CODE_CE_EXTRACTELT; 2349 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2350 Record.push_back(VE.getValueID(C->getOperand(0))); 2351 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2352 Record.push_back(VE.getValueID(C->getOperand(1))); 2353 break; 2354 case Instruction::InsertElement: 2355 Code = bitc::CST_CODE_CE_INSERTELT; 2356 Record.push_back(VE.getValueID(C->getOperand(0))); 2357 Record.push_back(VE.getValueID(C->getOperand(1))); 2358 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2359 Record.push_back(VE.getValueID(C->getOperand(2))); 2360 break; 2361 case Instruction::ShuffleVector: 2362 // If the return type and argument types are the same, this is a 2363 // standard shufflevector instruction. If the types are different, 2364 // then the shuffle is widening or truncating the input vectors, and 2365 // the argument type must also be encoded. 2366 if (C->getType() == C->getOperand(0)->getType()) { 2367 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2368 } else { 2369 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2370 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2371 } 2372 Record.push_back(VE.getValueID(C->getOperand(0))); 2373 Record.push_back(VE.getValueID(C->getOperand(1))); 2374 Record.push_back(VE.getValueID(C->getOperand(2))); 2375 break; 2376 case Instruction::ICmp: 2377 case Instruction::FCmp: 2378 Code = bitc::CST_CODE_CE_CMP; 2379 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2380 Record.push_back(VE.getValueID(C->getOperand(0))); 2381 Record.push_back(VE.getValueID(C->getOperand(1))); 2382 Record.push_back(CE->getPredicate()); 2383 break; 2384 } 2385 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2386 Code = bitc::CST_CODE_BLOCKADDRESS; 2387 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2388 Record.push_back(VE.getValueID(BA->getFunction())); 2389 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2390 } else { 2391 #ifndef NDEBUG 2392 C->dump(); 2393 #endif 2394 llvm_unreachable("Unknown constant!"); 2395 } 2396 Stream.EmitRecord(Code, Record, AbbrevToUse); 2397 Record.clear(); 2398 } 2399 2400 Stream.ExitBlock(); 2401 } 2402 2403 void ModuleBitcodeWriter::writeModuleConstants() { 2404 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2405 2406 // Find the first constant to emit, which is the first non-globalvalue value. 2407 // We know globalvalues have been emitted by WriteModuleInfo. 2408 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2409 if (!isa<GlobalValue>(Vals[i].first)) { 2410 writeConstants(i, Vals.size(), true); 2411 return; 2412 } 2413 } 2414 } 2415 2416 /// pushValueAndType - The file has to encode both the value and type id for 2417 /// many values, because we need to know what type to create for forward 2418 /// references. However, most operands are not forward references, so this type 2419 /// field is not needed. 2420 /// 2421 /// This function adds V's value ID to Vals. If the value ID is higher than the 2422 /// instruction ID, then it is a forward reference, and it also includes the 2423 /// type ID. The value ID that is written is encoded relative to the InstID. 2424 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2425 SmallVectorImpl<unsigned> &Vals) { 2426 unsigned ValID = VE.getValueID(V); 2427 // Make encoding relative to the InstID. 2428 Vals.push_back(InstID - ValID); 2429 if (ValID >= InstID) { 2430 Vals.push_back(VE.getTypeID(V->getType())); 2431 return true; 2432 } 2433 return false; 2434 } 2435 2436 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2437 unsigned InstID) { 2438 SmallVector<unsigned, 64> Record; 2439 LLVMContext &C = CS.getInstruction()->getContext(); 2440 2441 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2442 const auto &Bundle = CS.getOperandBundleAt(i); 2443 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2444 2445 for (auto &Input : Bundle.Inputs) 2446 pushValueAndType(Input, InstID, Record); 2447 2448 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2449 Record.clear(); 2450 } 2451 } 2452 2453 /// pushValue - Like pushValueAndType, but where the type of the value is 2454 /// omitted (perhaps it was already encoded in an earlier operand). 2455 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2456 SmallVectorImpl<unsigned> &Vals) { 2457 unsigned ValID = VE.getValueID(V); 2458 Vals.push_back(InstID - ValID); 2459 } 2460 2461 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2462 SmallVectorImpl<uint64_t> &Vals) { 2463 unsigned ValID = VE.getValueID(V); 2464 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2465 emitSignedInt64(Vals, diff); 2466 } 2467 2468 /// WriteInstruction - Emit an instruction to the specified stream. 2469 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2470 unsigned InstID, 2471 SmallVectorImpl<unsigned> &Vals) { 2472 unsigned Code = 0; 2473 unsigned AbbrevToUse = 0; 2474 VE.setInstructionID(&I); 2475 switch (I.getOpcode()) { 2476 default: 2477 if (Instruction::isCast(I.getOpcode())) { 2478 Code = bitc::FUNC_CODE_INST_CAST; 2479 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2480 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2481 Vals.push_back(VE.getTypeID(I.getType())); 2482 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2483 } else { 2484 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2485 Code = bitc::FUNC_CODE_INST_BINOP; 2486 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2487 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2488 pushValue(I.getOperand(1), InstID, Vals); 2489 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2490 uint64_t Flags = getOptimizationFlags(&I); 2491 if (Flags != 0) { 2492 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2493 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2494 Vals.push_back(Flags); 2495 } 2496 } 2497 break; 2498 2499 case Instruction::GetElementPtr: { 2500 Code = bitc::FUNC_CODE_INST_GEP; 2501 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2502 auto &GEPInst = cast<GetElementPtrInst>(I); 2503 Vals.push_back(GEPInst.isInBounds()); 2504 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2505 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2506 pushValueAndType(I.getOperand(i), InstID, Vals); 2507 break; 2508 } 2509 case Instruction::ExtractValue: { 2510 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2511 pushValueAndType(I.getOperand(0), InstID, Vals); 2512 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2513 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2514 break; 2515 } 2516 case Instruction::InsertValue: { 2517 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2518 pushValueAndType(I.getOperand(0), InstID, Vals); 2519 pushValueAndType(I.getOperand(1), InstID, Vals); 2520 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2521 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2522 break; 2523 } 2524 case Instruction::Select: 2525 Code = bitc::FUNC_CODE_INST_VSELECT; 2526 pushValueAndType(I.getOperand(1), InstID, Vals); 2527 pushValue(I.getOperand(2), InstID, Vals); 2528 pushValueAndType(I.getOperand(0), InstID, Vals); 2529 break; 2530 case Instruction::ExtractElement: 2531 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2532 pushValueAndType(I.getOperand(0), InstID, Vals); 2533 pushValueAndType(I.getOperand(1), InstID, Vals); 2534 break; 2535 case Instruction::InsertElement: 2536 Code = bitc::FUNC_CODE_INST_INSERTELT; 2537 pushValueAndType(I.getOperand(0), InstID, Vals); 2538 pushValue(I.getOperand(1), InstID, Vals); 2539 pushValueAndType(I.getOperand(2), InstID, Vals); 2540 break; 2541 case Instruction::ShuffleVector: 2542 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2543 pushValueAndType(I.getOperand(0), InstID, Vals); 2544 pushValue(I.getOperand(1), InstID, Vals); 2545 pushValue(I.getOperand(2), InstID, Vals); 2546 break; 2547 case Instruction::ICmp: 2548 case Instruction::FCmp: { 2549 // compare returning Int1Ty or vector of Int1Ty 2550 Code = bitc::FUNC_CODE_INST_CMP2; 2551 pushValueAndType(I.getOperand(0), InstID, Vals); 2552 pushValue(I.getOperand(1), InstID, Vals); 2553 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2554 uint64_t Flags = getOptimizationFlags(&I); 2555 if (Flags != 0) 2556 Vals.push_back(Flags); 2557 break; 2558 } 2559 2560 case Instruction::Ret: 2561 { 2562 Code = bitc::FUNC_CODE_INST_RET; 2563 unsigned NumOperands = I.getNumOperands(); 2564 if (NumOperands == 0) 2565 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2566 else if (NumOperands == 1) { 2567 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2568 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2569 } else { 2570 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2571 pushValueAndType(I.getOperand(i), InstID, Vals); 2572 } 2573 } 2574 break; 2575 case Instruction::Br: 2576 { 2577 Code = bitc::FUNC_CODE_INST_BR; 2578 const BranchInst &II = cast<BranchInst>(I); 2579 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2580 if (II.isConditional()) { 2581 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2582 pushValue(II.getCondition(), InstID, Vals); 2583 } 2584 } 2585 break; 2586 case Instruction::Switch: 2587 { 2588 Code = bitc::FUNC_CODE_INST_SWITCH; 2589 const SwitchInst &SI = cast<SwitchInst>(I); 2590 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2591 pushValue(SI.getCondition(), InstID, Vals); 2592 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2593 for (auto Case : SI.cases()) { 2594 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2595 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2596 } 2597 } 2598 break; 2599 case Instruction::IndirectBr: 2600 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2601 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2602 // Encode the address operand as relative, but not the basic blocks. 2603 pushValue(I.getOperand(0), InstID, Vals); 2604 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2605 Vals.push_back(VE.getValueID(I.getOperand(i))); 2606 break; 2607 2608 case Instruction::Invoke: { 2609 const InvokeInst *II = cast<InvokeInst>(&I); 2610 const Value *Callee = II->getCalledValue(); 2611 FunctionType *FTy = II->getFunctionType(); 2612 2613 if (II->hasOperandBundles()) 2614 writeOperandBundles(II, InstID); 2615 2616 Code = bitc::FUNC_CODE_INST_INVOKE; 2617 2618 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2619 Vals.push_back(II->getCallingConv() | 1 << 13); 2620 Vals.push_back(VE.getValueID(II->getNormalDest())); 2621 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2622 Vals.push_back(VE.getTypeID(FTy)); 2623 pushValueAndType(Callee, InstID, Vals); 2624 2625 // Emit value #'s for the fixed parameters. 2626 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2627 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2628 2629 // Emit type/value pairs for varargs params. 2630 if (FTy->isVarArg()) { 2631 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2632 i != e; ++i) 2633 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2634 } 2635 break; 2636 } 2637 case Instruction::Resume: 2638 Code = bitc::FUNC_CODE_INST_RESUME; 2639 pushValueAndType(I.getOperand(0), InstID, Vals); 2640 break; 2641 case Instruction::CleanupRet: { 2642 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2643 const auto &CRI = cast<CleanupReturnInst>(I); 2644 pushValue(CRI.getCleanupPad(), InstID, Vals); 2645 if (CRI.hasUnwindDest()) 2646 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2647 break; 2648 } 2649 case Instruction::CatchRet: { 2650 Code = bitc::FUNC_CODE_INST_CATCHRET; 2651 const auto &CRI = cast<CatchReturnInst>(I); 2652 pushValue(CRI.getCatchPad(), InstID, Vals); 2653 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2654 break; 2655 } 2656 case Instruction::CleanupPad: 2657 case Instruction::CatchPad: { 2658 const auto &FuncletPad = cast<FuncletPadInst>(I); 2659 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2660 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2661 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2662 2663 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2664 Vals.push_back(NumArgOperands); 2665 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2666 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2667 break; 2668 } 2669 case Instruction::CatchSwitch: { 2670 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2671 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2672 2673 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2674 2675 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2676 Vals.push_back(NumHandlers); 2677 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2678 Vals.push_back(VE.getValueID(CatchPadBB)); 2679 2680 if (CatchSwitch.hasUnwindDest()) 2681 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2682 break; 2683 } 2684 case Instruction::Unreachable: 2685 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2686 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2687 break; 2688 2689 case Instruction::PHI: { 2690 const PHINode &PN = cast<PHINode>(I); 2691 Code = bitc::FUNC_CODE_INST_PHI; 2692 // With the newer instruction encoding, forward references could give 2693 // negative valued IDs. This is most common for PHIs, so we use 2694 // signed VBRs. 2695 SmallVector<uint64_t, 128> Vals64; 2696 Vals64.push_back(VE.getTypeID(PN.getType())); 2697 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2698 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2699 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2700 } 2701 // Emit a Vals64 vector and exit. 2702 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2703 Vals64.clear(); 2704 return; 2705 } 2706 2707 case Instruction::LandingPad: { 2708 const LandingPadInst &LP = cast<LandingPadInst>(I); 2709 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2710 Vals.push_back(VE.getTypeID(LP.getType())); 2711 Vals.push_back(LP.isCleanup()); 2712 Vals.push_back(LP.getNumClauses()); 2713 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2714 if (LP.isCatch(I)) 2715 Vals.push_back(LandingPadInst::Catch); 2716 else 2717 Vals.push_back(LandingPadInst::Filter); 2718 pushValueAndType(LP.getClause(I), InstID, Vals); 2719 } 2720 break; 2721 } 2722 2723 case Instruction::Alloca: { 2724 Code = bitc::FUNC_CODE_INST_ALLOCA; 2725 const AllocaInst &AI = cast<AllocaInst>(I); 2726 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2727 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2728 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2729 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2730 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2731 "not enough bits for maximum alignment"); 2732 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2733 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2734 AlignRecord |= 1 << 6; 2735 AlignRecord |= AI.isSwiftError() << 7; 2736 Vals.push_back(AlignRecord); 2737 break; 2738 } 2739 2740 case Instruction::Load: 2741 if (cast<LoadInst>(I).isAtomic()) { 2742 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2743 pushValueAndType(I.getOperand(0), InstID, Vals); 2744 } else { 2745 Code = bitc::FUNC_CODE_INST_LOAD; 2746 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2747 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2748 } 2749 Vals.push_back(VE.getTypeID(I.getType())); 2750 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2751 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2752 if (cast<LoadInst>(I).isAtomic()) { 2753 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2754 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2755 } 2756 break; 2757 case Instruction::Store: 2758 if (cast<StoreInst>(I).isAtomic()) 2759 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2760 else 2761 Code = bitc::FUNC_CODE_INST_STORE; 2762 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2763 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2764 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2765 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2766 if (cast<StoreInst>(I).isAtomic()) { 2767 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2768 Vals.push_back( 2769 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2770 } 2771 break; 2772 case Instruction::AtomicCmpXchg: 2773 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2774 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2775 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2776 pushValue(I.getOperand(2), InstID, Vals); // newval. 2777 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2778 Vals.push_back( 2779 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2780 Vals.push_back( 2781 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2782 Vals.push_back( 2783 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2784 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2785 break; 2786 case Instruction::AtomicRMW: 2787 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2788 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2789 pushValue(I.getOperand(1), InstID, Vals); // val. 2790 Vals.push_back( 2791 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2792 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2793 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2794 Vals.push_back( 2795 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2796 break; 2797 case Instruction::Fence: 2798 Code = bitc::FUNC_CODE_INST_FENCE; 2799 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2800 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2801 break; 2802 case Instruction::Call: { 2803 const CallInst &CI = cast<CallInst>(I); 2804 FunctionType *FTy = CI.getFunctionType(); 2805 2806 if (CI.hasOperandBundles()) 2807 writeOperandBundles(&CI, InstID); 2808 2809 Code = bitc::FUNC_CODE_INST_CALL; 2810 2811 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2812 2813 unsigned Flags = getOptimizationFlags(&I); 2814 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2815 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2816 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2817 1 << bitc::CALL_EXPLICIT_TYPE | 2818 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2819 unsigned(Flags != 0) << bitc::CALL_FMF); 2820 if (Flags != 0) 2821 Vals.push_back(Flags); 2822 2823 Vals.push_back(VE.getTypeID(FTy)); 2824 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2825 2826 // Emit value #'s for the fixed parameters. 2827 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2828 // Check for labels (can happen with asm labels). 2829 if (FTy->getParamType(i)->isLabelTy()) 2830 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2831 else 2832 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2833 } 2834 2835 // Emit type/value pairs for varargs params. 2836 if (FTy->isVarArg()) { 2837 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2838 i != e; ++i) 2839 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2840 } 2841 break; 2842 } 2843 case Instruction::VAArg: 2844 Code = bitc::FUNC_CODE_INST_VAARG; 2845 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2846 pushValue(I.getOperand(0), InstID, Vals); // valist. 2847 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2848 break; 2849 } 2850 2851 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2852 Vals.clear(); 2853 } 2854 2855 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2856 /// to allow clients to efficiently find the function body. 2857 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2858 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2859 // Get the offset of the VST we are writing, and backpatch it into 2860 // the VST forward declaration record. 2861 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2862 // The BitcodeStartBit was the stream offset of the identification block. 2863 VSTOffset -= bitcodeStartBit(); 2864 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2865 // Note that we add 1 here because the offset is relative to one word 2866 // before the start of the identification block, which was historically 2867 // always the start of the regular bitcode header. 2868 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2869 2870 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2871 2872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2873 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2876 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2877 2878 for (const Function &F : M) { 2879 uint64_t Record[2]; 2880 2881 if (F.isDeclaration()) 2882 continue; 2883 2884 Record[0] = VE.getValueID(&F); 2885 2886 // Save the word offset of the function (from the start of the 2887 // actual bitcode written to the stream). 2888 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2889 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2890 // Note that we add 1 here because the offset is relative to one word 2891 // before the start of the identification block, which was historically 2892 // always the start of the regular bitcode header. 2893 Record[1] = BitcodeIndex / 32 + 1; 2894 2895 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2896 } 2897 2898 Stream.ExitBlock(); 2899 } 2900 2901 /// Emit names for arguments, instructions and basic blocks in a function. 2902 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2903 const ValueSymbolTable &VST) { 2904 if (VST.empty()) 2905 return; 2906 2907 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2908 2909 // FIXME: Set up the abbrev, we know how many values there are! 2910 // FIXME: We know if the type names can use 7-bit ascii. 2911 SmallVector<uint64_t, 64> NameVals; 2912 2913 for (const ValueName &Name : VST) { 2914 // Figure out the encoding to use for the name. 2915 StringEncoding Bits = getStringEncoding(Name.getKey()); 2916 2917 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2918 NameVals.push_back(VE.getValueID(Name.getValue())); 2919 2920 // VST_CODE_ENTRY: [valueid, namechar x N] 2921 // VST_CODE_BBENTRY: [bbid, namechar x N] 2922 unsigned Code; 2923 if (isa<BasicBlock>(Name.getValue())) { 2924 Code = bitc::VST_CODE_BBENTRY; 2925 if (Bits == SE_Char6) 2926 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2927 } else { 2928 Code = bitc::VST_CODE_ENTRY; 2929 if (Bits == SE_Char6) 2930 AbbrevToUse = VST_ENTRY_6_ABBREV; 2931 else if (Bits == SE_Fixed7) 2932 AbbrevToUse = VST_ENTRY_7_ABBREV; 2933 } 2934 2935 for (const auto P : Name.getKey()) 2936 NameVals.push_back((unsigned char)P); 2937 2938 // Emit the finished record. 2939 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2940 NameVals.clear(); 2941 } 2942 2943 Stream.ExitBlock(); 2944 } 2945 2946 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2947 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2948 unsigned Code; 2949 if (isa<BasicBlock>(Order.V)) 2950 Code = bitc::USELIST_CODE_BB; 2951 else 2952 Code = bitc::USELIST_CODE_DEFAULT; 2953 2954 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2955 Record.push_back(VE.getValueID(Order.V)); 2956 Stream.EmitRecord(Code, Record); 2957 } 2958 2959 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2960 assert(VE.shouldPreserveUseListOrder() && 2961 "Expected to be preserving use-list order"); 2962 2963 auto hasMore = [&]() { 2964 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2965 }; 2966 if (!hasMore()) 2967 // Nothing to do. 2968 return; 2969 2970 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2971 while (hasMore()) { 2972 writeUseList(std::move(VE.UseListOrders.back())); 2973 VE.UseListOrders.pop_back(); 2974 } 2975 Stream.ExitBlock(); 2976 } 2977 2978 /// Emit a function body to the module stream. 2979 void ModuleBitcodeWriter::writeFunction( 2980 const Function &F, 2981 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2982 // Save the bitcode index of the start of this function block for recording 2983 // in the VST. 2984 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2985 2986 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2987 VE.incorporateFunction(F); 2988 2989 SmallVector<unsigned, 64> Vals; 2990 2991 // Emit the number of basic blocks, so the reader can create them ahead of 2992 // time. 2993 Vals.push_back(VE.getBasicBlocks().size()); 2994 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2995 Vals.clear(); 2996 2997 // If there are function-local constants, emit them now. 2998 unsigned CstStart, CstEnd; 2999 VE.getFunctionConstantRange(CstStart, CstEnd); 3000 writeConstants(CstStart, CstEnd, false); 3001 3002 // If there is function-local metadata, emit it now. 3003 writeFunctionMetadata(F); 3004 3005 // Keep a running idea of what the instruction ID is. 3006 unsigned InstID = CstEnd; 3007 3008 bool NeedsMetadataAttachment = F.hasMetadata(); 3009 3010 DILocation *LastDL = nullptr; 3011 // Finally, emit all the instructions, in order. 3012 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3013 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3014 I != E; ++I) { 3015 writeInstruction(*I, InstID, Vals); 3016 3017 if (!I->getType()->isVoidTy()) 3018 ++InstID; 3019 3020 // If the instruction has metadata, write a metadata attachment later. 3021 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3022 3023 // If the instruction has a debug location, emit it. 3024 DILocation *DL = I->getDebugLoc(); 3025 if (!DL) 3026 continue; 3027 3028 if (DL == LastDL) { 3029 // Just repeat the same debug loc as last time. 3030 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3031 continue; 3032 } 3033 3034 Vals.push_back(DL->getLine()); 3035 Vals.push_back(DL->getColumn()); 3036 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3037 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3038 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3039 Vals.clear(); 3040 3041 LastDL = DL; 3042 } 3043 3044 // Emit names for all the instructions etc. 3045 if (auto *Symtab = F.getValueSymbolTable()) 3046 writeFunctionLevelValueSymbolTable(*Symtab); 3047 3048 if (NeedsMetadataAttachment) 3049 writeFunctionMetadataAttachment(F); 3050 if (VE.shouldPreserveUseListOrder()) 3051 writeUseListBlock(&F); 3052 VE.purgeFunction(); 3053 Stream.ExitBlock(); 3054 } 3055 3056 // Emit blockinfo, which defines the standard abbreviations etc. 3057 void ModuleBitcodeWriter::writeBlockInfo() { 3058 // We only want to emit block info records for blocks that have multiple 3059 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3060 // Other blocks can define their abbrevs inline. 3061 Stream.EnterBlockInfoBlock(); 3062 3063 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3064 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3069 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3070 VST_ENTRY_8_ABBREV) 3071 llvm_unreachable("Unexpected abbrev ordering!"); 3072 } 3073 3074 { // 7-bit fixed width VST_CODE_ENTRY strings. 3075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3076 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3080 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3081 VST_ENTRY_7_ABBREV) 3082 llvm_unreachable("Unexpected abbrev ordering!"); 3083 } 3084 { // 6-bit char6 VST_CODE_ENTRY strings. 3085 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3086 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3090 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3091 VST_ENTRY_6_ABBREV) 3092 llvm_unreachable("Unexpected abbrev ordering!"); 3093 } 3094 { // 6-bit char6 VST_CODE_BBENTRY strings. 3095 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3096 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3100 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3101 VST_BBENTRY_6_ABBREV) 3102 llvm_unreachable("Unexpected abbrev ordering!"); 3103 } 3104 3105 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3106 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3107 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3109 VE.computeBitsRequiredForTypeIndicies())); 3110 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3111 CONSTANTS_SETTYPE_ABBREV) 3112 llvm_unreachable("Unexpected abbrev ordering!"); 3113 } 3114 3115 { // INTEGER abbrev for CONSTANTS_BLOCK. 3116 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3117 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3119 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3120 CONSTANTS_INTEGER_ABBREV) 3121 llvm_unreachable("Unexpected abbrev ordering!"); 3122 } 3123 3124 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3126 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3129 VE.computeBitsRequiredForTypeIndicies())); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3131 3132 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3133 CONSTANTS_CE_CAST_Abbrev) 3134 llvm_unreachable("Unexpected abbrev ordering!"); 3135 } 3136 { // NULL abbrev for CONSTANTS_BLOCK. 3137 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3138 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3139 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3140 CONSTANTS_NULL_Abbrev) 3141 llvm_unreachable("Unexpected abbrev ordering!"); 3142 } 3143 3144 // FIXME: This should only use space for first class types! 3145 3146 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3148 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3151 VE.computeBitsRequiredForTypeIndicies())); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3154 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3155 FUNCTION_INST_LOAD_ABBREV) 3156 llvm_unreachable("Unexpected abbrev ordering!"); 3157 } 3158 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3159 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3160 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3164 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3165 FUNCTION_INST_BINOP_ABBREV) 3166 llvm_unreachable("Unexpected abbrev ordering!"); 3167 } 3168 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3169 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3170 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3175 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3176 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3177 llvm_unreachable("Unexpected abbrev ordering!"); 3178 } 3179 { // INST_CAST abbrev for FUNCTION_BLOCK. 3180 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3181 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3184 VE.computeBitsRequiredForTypeIndicies())); 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3186 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3187 FUNCTION_INST_CAST_ABBREV) 3188 llvm_unreachable("Unexpected abbrev ordering!"); 3189 } 3190 3191 { // INST_RET abbrev for FUNCTION_BLOCK. 3192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3193 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3194 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3195 FUNCTION_INST_RET_VOID_ABBREV) 3196 llvm_unreachable("Unexpected abbrev ordering!"); 3197 } 3198 { // INST_RET abbrev for FUNCTION_BLOCK. 3199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3202 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3203 FUNCTION_INST_RET_VAL_ABBREV) 3204 llvm_unreachable("Unexpected abbrev ordering!"); 3205 } 3206 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3208 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3209 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3210 FUNCTION_INST_UNREACHABLE_ABBREV) 3211 llvm_unreachable("Unexpected abbrev ordering!"); 3212 } 3213 { 3214 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3215 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3218 Log2_32_Ceil(VE.getTypes().size() + 1))); 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3221 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3222 FUNCTION_INST_GEP_ABBREV) 3223 llvm_unreachable("Unexpected abbrev ordering!"); 3224 } 3225 3226 Stream.ExitBlock(); 3227 } 3228 3229 /// Write the module path strings, currently only used when generating 3230 /// a combined index file. 3231 void IndexBitcodeWriter::writeModStrings() { 3232 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3233 3234 // TODO: See which abbrev sizes we actually need to emit 3235 3236 // 8-bit fixed-width MST_ENTRY strings. 3237 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3238 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3242 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3243 3244 // 7-bit fixed width MST_ENTRY strings. 3245 Abbv = std::make_shared<BitCodeAbbrev>(); 3246 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3250 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3251 3252 // 6-bit char6 MST_ENTRY strings. 3253 Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3258 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3259 3260 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3261 Abbv = std::make_shared<BitCodeAbbrev>(); 3262 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3269 3270 SmallVector<unsigned, 64> Vals; 3271 forEachModule( 3272 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3273 StringRef Key = MPSE.getKey(); 3274 const auto &Value = MPSE.getValue(); 3275 StringEncoding Bits = getStringEncoding(Key); 3276 unsigned AbbrevToUse = Abbrev8Bit; 3277 if (Bits == SE_Char6) 3278 AbbrevToUse = Abbrev6Bit; 3279 else if (Bits == SE_Fixed7) 3280 AbbrevToUse = Abbrev7Bit; 3281 3282 Vals.push_back(Value.first); 3283 Vals.append(Key.begin(), Key.end()); 3284 3285 // Emit the finished record. 3286 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3287 3288 // Emit an optional hash for the module now 3289 const auto &Hash = Value.second; 3290 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3291 Vals.assign(Hash.begin(), Hash.end()); 3292 // Emit the hash record. 3293 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3294 } 3295 3296 Vals.clear(); 3297 }); 3298 Stream.ExitBlock(); 3299 } 3300 3301 /// Write the function type metadata related records that need to appear before 3302 /// a function summary entry (whether per-module or combined). 3303 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3304 FunctionSummary *FS) { 3305 if (!FS->type_tests().empty()) 3306 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3307 3308 SmallVector<uint64_t, 64> Record; 3309 3310 auto WriteVFuncIdVec = [&](uint64_t Ty, 3311 ArrayRef<FunctionSummary::VFuncId> VFs) { 3312 if (VFs.empty()) 3313 return; 3314 Record.clear(); 3315 for (auto &VF : VFs) { 3316 Record.push_back(VF.GUID); 3317 Record.push_back(VF.Offset); 3318 } 3319 Stream.EmitRecord(Ty, Record); 3320 }; 3321 3322 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3323 FS->type_test_assume_vcalls()); 3324 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3325 FS->type_checked_load_vcalls()); 3326 3327 auto WriteConstVCallVec = [&](uint64_t Ty, 3328 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3329 for (auto &VC : VCs) { 3330 Record.clear(); 3331 Record.push_back(VC.VFunc.GUID); 3332 Record.push_back(VC.VFunc.Offset); 3333 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3334 Stream.EmitRecord(Ty, Record); 3335 } 3336 }; 3337 3338 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3339 FS->type_test_assume_const_vcalls()); 3340 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3341 FS->type_checked_load_const_vcalls()); 3342 } 3343 3344 // Helper to emit a single function summary record. 3345 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3346 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3347 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3348 const Function &F) { 3349 NameVals.push_back(ValueID); 3350 3351 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3352 writeFunctionTypeMetadataRecords(Stream, FS); 3353 3354 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3355 NameVals.push_back(FS->instCount()); 3356 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3357 NameVals.push_back(FS->refs().size()); 3358 3359 for (auto &RI : FS->refs()) 3360 NameVals.push_back(VE.getValueID(RI.getValue())); 3361 3362 bool HasProfileData = F.getEntryCount().hasValue(); 3363 for (auto &ECI : FS->calls()) { 3364 NameVals.push_back(getValueId(ECI.first)); 3365 if (HasProfileData) 3366 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3367 } 3368 3369 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3370 unsigned Code = 3371 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3372 3373 // Emit the finished record. 3374 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3375 NameVals.clear(); 3376 } 3377 3378 // Collect the global value references in the given variable's initializer, 3379 // and emit them in a summary record. 3380 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3381 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3382 unsigned FSModRefsAbbrev) { 3383 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3384 if (!VI || VI.getSummaryList().empty()) { 3385 // Only declarations should not have a summary (a declaration might however 3386 // have a summary if the def was in module level asm). 3387 assert(V.isDeclaration()); 3388 return; 3389 } 3390 auto *Summary = VI.getSummaryList()[0].get(); 3391 NameVals.push_back(VE.getValueID(&V)); 3392 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3393 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3394 3395 unsigned SizeBeforeRefs = NameVals.size(); 3396 for (auto &RI : VS->refs()) 3397 NameVals.push_back(VE.getValueID(RI.getValue())); 3398 // Sort the refs for determinism output, the vector returned by FS->refs() has 3399 // been initialized from a DenseSet. 3400 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3401 3402 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3403 FSModRefsAbbrev); 3404 NameVals.clear(); 3405 } 3406 3407 // Current version for the summary. 3408 // This is bumped whenever we introduce changes in the way some record are 3409 // interpreted, like flags for instance. 3410 static const uint64_t INDEX_VERSION = 4; 3411 3412 /// Emit the per-module summary section alongside the rest of 3413 /// the module's bitcode. 3414 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3415 // By default we compile with ThinLTO if the module has a summary, but the 3416 // client can request full LTO with a module flag. 3417 bool IsThinLTO = true; 3418 if (auto *MD = 3419 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3420 IsThinLTO = MD->getZExtValue(); 3421 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3422 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3423 4); 3424 3425 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3426 3427 if (Index->begin() == Index->end()) { 3428 Stream.ExitBlock(); 3429 return; 3430 } 3431 3432 for (const auto &GVI : valueIds()) { 3433 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3434 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3435 } 3436 3437 // Abbrev for FS_PERMODULE. 3438 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3439 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3445 // numrefs x valueid, n x (valueid) 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3448 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3449 3450 // Abbrev for FS_PERMODULE_PROFILE. 3451 Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3458 // numrefs x valueid, n x (valueid, hotness) 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3462 3463 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3464 Abbv = std::make_shared<BitCodeAbbrev>(); 3465 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3470 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3471 3472 // Abbrev for FS_ALIAS. 3473 Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3478 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3479 3480 SmallVector<uint64_t, 64> NameVals; 3481 // Iterate over the list of functions instead of the Index to 3482 // ensure the ordering is stable. 3483 for (const Function &F : M) { 3484 // Summary emission does not support anonymous functions, they have to 3485 // renamed using the anonymous function renaming pass. 3486 if (!F.hasName()) 3487 report_fatal_error("Unexpected anonymous function when writing summary"); 3488 3489 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3490 if (!VI || VI.getSummaryList().empty()) { 3491 // Only declarations should not have a summary (a declaration might 3492 // however have a summary if the def was in module level asm). 3493 assert(F.isDeclaration()); 3494 continue; 3495 } 3496 auto *Summary = VI.getSummaryList()[0].get(); 3497 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3498 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3499 } 3500 3501 // Capture references from GlobalVariable initializers, which are outside 3502 // of a function scope. 3503 for (const GlobalVariable &G : M.globals()) 3504 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3505 3506 for (const GlobalAlias &A : M.aliases()) { 3507 auto *Aliasee = A.getBaseObject(); 3508 if (!Aliasee->hasName()) 3509 // Nameless function don't have an entry in the summary, skip it. 3510 continue; 3511 auto AliasId = VE.getValueID(&A); 3512 auto AliaseeId = VE.getValueID(Aliasee); 3513 NameVals.push_back(AliasId); 3514 auto *Summary = Index->getGlobalValueSummary(A); 3515 AliasSummary *AS = cast<AliasSummary>(Summary); 3516 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3517 NameVals.push_back(AliaseeId); 3518 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3519 NameVals.clear(); 3520 } 3521 3522 Stream.ExitBlock(); 3523 } 3524 3525 /// Emit the combined summary section into the combined index file. 3526 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3527 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3528 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3529 3530 for (const auto &GVI : valueIds()) { 3531 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3532 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3533 } 3534 3535 // Abbrev for FS_COMBINED. 3536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3544 // numrefs x valueid, n x (valueid) 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3547 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3548 3549 // Abbrev for FS_COMBINED_PROFILE. 3550 Abbv = std::make_shared<BitCodeAbbrev>(); 3551 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3558 // numrefs x valueid, n x (valueid, hotness) 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3561 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3562 3563 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3564 Abbv = std::make_shared<BitCodeAbbrev>(); 3565 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3571 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3572 3573 // Abbrev for FS_COMBINED_ALIAS. 3574 Abbv = std::make_shared<BitCodeAbbrev>(); 3575 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3580 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3581 3582 // The aliases are emitted as a post-pass, and will point to the value 3583 // id of the aliasee. Save them in a vector for post-processing. 3584 SmallVector<AliasSummary *, 64> Aliases; 3585 3586 // Save the value id for each summary for alias emission. 3587 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3588 3589 SmallVector<uint64_t, 64> NameVals; 3590 3591 // For local linkage, we also emit the original name separately 3592 // immediately after the record. 3593 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3594 if (!GlobalValue::isLocalLinkage(S.linkage())) 3595 return; 3596 NameVals.push_back(S.getOriginalName()); 3597 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3598 NameVals.clear(); 3599 }; 3600 3601 forEachSummary([&](GVInfo I) { 3602 GlobalValueSummary *S = I.second; 3603 assert(S); 3604 3605 auto ValueId = getValueId(I.first); 3606 assert(ValueId); 3607 SummaryToValueIdMap[S] = *ValueId; 3608 3609 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3610 // Will process aliases as a post-pass because the reader wants all 3611 // global to be loaded first. 3612 Aliases.push_back(AS); 3613 return; 3614 } 3615 3616 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3617 NameVals.push_back(*ValueId); 3618 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3619 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3620 for (auto &RI : VS->refs()) { 3621 auto RefValueId = getValueId(RI.getGUID()); 3622 if (!RefValueId) 3623 continue; 3624 NameVals.push_back(*RefValueId); 3625 } 3626 3627 // Emit the finished record. 3628 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3629 FSModRefsAbbrev); 3630 NameVals.clear(); 3631 MaybeEmitOriginalName(*S); 3632 return; 3633 } 3634 3635 auto *FS = cast<FunctionSummary>(S); 3636 writeFunctionTypeMetadataRecords(Stream, FS); 3637 3638 NameVals.push_back(*ValueId); 3639 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3640 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3641 NameVals.push_back(FS->instCount()); 3642 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3643 // Fill in below 3644 NameVals.push_back(0); 3645 3646 unsigned Count = 0; 3647 for (auto &RI : FS->refs()) { 3648 auto RefValueId = getValueId(RI.getGUID()); 3649 if (!RefValueId) 3650 continue; 3651 NameVals.push_back(*RefValueId); 3652 Count++; 3653 } 3654 NameVals[5] = Count; 3655 3656 bool HasProfileData = false; 3657 for (auto &EI : FS->calls()) { 3658 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3659 if (HasProfileData) 3660 break; 3661 } 3662 3663 for (auto &EI : FS->calls()) { 3664 // If this GUID doesn't have a value id, it doesn't have a function 3665 // summary and we don't need to record any calls to it. 3666 GlobalValue::GUID GUID = EI.first.getGUID(); 3667 auto CallValueId = getValueId(GUID); 3668 if (!CallValueId) { 3669 // For SamplePGO, the indirect call targets for local functions will 3670 // have its original name annotated in profile. We try to find the 3671 // corresponding PGOFuncName as the GUID. 3672 GUID = Index.getGUIDFromOriginalID(GUID); 3673 if (GUID == 0) 3674 continue; 3675 CallValueId = getValueId(GUID); 3676 if (!CallValueId) 3677 continue; 3678 // The mapping from OriginalId to GUID may return a GUID 3679 // that corresponds to a static variable. Filter it out here. 3680 // This can happen when 3681 // 1) There is a call to a library function which does not have 3682 // a CallValidId; 3683 // 2) There is a static variable with the OriginalGUID identical 3684 // to the GUID of the library function in 1); 3685 // When this happens, the logic for SamplePGO kicks in and 3686 // the static variable in 2) will be found, which needs to be 3687 // filtered out. 3688 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3689 if (GVSum && 3690 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3691 continue; 3692 } 3693 NameVals.push_back(*CallValueId); 3694 if (HasProfileData) 3695 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3696 } 3697 3698 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3699 unsigned Code = 3700 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3701 3702 // Emit the finished record. 3703 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3704 NameVals.clear(); 3705 MaybeEmitOriginalName(*S); 3706 }); 3707 3708 for (auto *AS : Aliases) { 3709 auto AliasValueId = SummaryToValueIdMap[AS]; 3710 assert(AliasValueId); 3711 NameVals.push_back(AliasValueId); 3712 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3713 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3714 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3715 assert(AliaseeValueId); 3716 NameVals.push_back(AliaseeValueId); 3717 3718 // Emit the finished record. 3719 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3720 NameVals.clear(); 3721 MaybeEmitOriginalName(*AS); 3722 } 3723 3724 if (!Index.cfiFunctionDefs().empty()) { 3725 for (auto &S : Index.cfiFunctionDefs()) { 3726 NameVals.push_back(StrtabBuilder.add(S)); 3727 NameVals.push_back(S.size()); 3728 } 3729 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3730 NameVals.clear(); 3731 } 3732 3733 if (!Index.cfiFunctionDecls().empty()) { 3734 for (auto &S : Index.cfiFunctionDecls()) { 3735 NameVals.push_back(StrtabBuilder.add(S)); 3736 NameVals.push_back(S.size()); 3737 } 3738 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3739 NameVals.clear(); 3740 } 3741 3742 Stream.ExitBlock(); 3743 } 3744 3745 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3746 /// current llvm version, and a record for the epoch number. 3747 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3748 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3749 3750 // Write the "user readable" string identifying the bitcode producer 3751 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3752 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3755 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3756 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3757 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3758 3759 // Write the epoch version 3760 Abbv = std::make_shared<BitCodeAbbrev>(); 3761 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3763 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3764 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3765 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3766 Stream.ExitBlock(); 3767 } 3768 3769 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3770 // Emit the module's hash. 3771 // MODULE_CODE_HASH: [5*i32] 3772 if (GenerateHash) { 3773 uint32_t Vals[5]; 3774 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3775 Buffer.size() - BlockStartPos)); 3776 StringRef Hash = Hasher.result(); 3777 for (int Pos = 0; Pos < 20; Pos += 4) { 3778 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3779 } 3780 3781 // Emit the finished record. 3782 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3783 3784 if (ModHash) 3785 // Save the written hash value. 3786 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3787 } 3788 } 3789 3790 void ModuleBitcodeWriter::write() { 3791 writeIdentificationBlock(Stream); 3792 3793 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3794 size_t BlockStartPos = Buffer.size(); 3795 3796 writeModuleVersion(); 3797 3798 // Emit blockinfo, which defines the standard abbreviations etc. 3799 writeBlockInfo(); 3800 3801 // Emit information about attribute groups. 3802 writeAttributeGroupTable(); 3803 3804 // Emit information about parameter attributes. 3805 writeAttributeTable(); 3806 3807 // Emit information describing all of the types in the module. 3808 writeTypeTable(); 3809 3810 writeComdats(); 3811 3812 // Emit top-level description of module, including target triple, inline asm, 3813 // descriptors for global variables, and function prototype info. 3814 writeModuleInfo(); 3815 3816 // Emit constants. 3817 writeModuleConstants(); 3818 3819 // Emit metadata kind names. 3820 writeModuleMetadataKinds(); 3821 3822 // Emit metadata. 3823 writeModuleMetadata(); 3824 3825 // Emit module-level use-lists. 3826 if (VE.shouldPreserveUseListOrder()) 3827 writeUseListBlock(nullptr); 3828 3829 writeOperandBundleTags(); 3830 writeSyncScopeNames(); 3831 3832 // Emit function bodies. 3833 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3834 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3835 if (!F->isDeclaration()) 3836 writeFunction(*F, FunctionToBitcodeIndex); 3837 3838 // Need to write after the above call to WriteFunction which populates 3839 // the summary information in the index. 3840 if (Index) 3841 writePerModuleGlobalValueSummary(); 3842 3843 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3844 3845 writeModuleHash(BlockStartPos); 3846 3847 Stream.ExitBlock(); 3848 } 3849 3850 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3851 uint32_t &Position) { 3852 support::endian::write32le(&Buffer[Position], Value); 3853 Position += 4; 3854 } 3855 3856 /// If generating a bc file on darwin, we have to emit a 3857 /// header and trailer to make it compatible with the system archiver. To do 3858 /// this we emit the following header, and then emit a trailer that pads the 3859 /// file out to be a multiple of 16 bytes. 3860 /// 3861 /// struct bc_header { 3862 /// uint32_t Magic; // 0x0B17C0DE 3863 /// uint32_t Version; // Version, currently always 0. 3864 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3865 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3866 /// uint32_t CPUType; // CPU specifier. 3867 /// ... potentially more later ... 3868 /// }; 3869 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3870 const Triple &TT) { 3871 unsigned CPUType = ~0U; 3872 3873 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3874 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3875 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3876 // specific constants here because they are implicitly part of the Darwin ABI. 3877 enum { 3878 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3879 DARWIN_CPU_TYPE_X86 = 7, 3880 DARWIN_CPU_TYPE_ARM = 12, 3881 DARWIN_CPU_TYPE_POWERPC = 18 3882 }; 3883 3884 Triple::ArchType Arch = TT.getArch(); 3885 if (Arch == Triple::x86_64) 3886 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3887 else if (Arch == Triple::x86) 3888 CPUType = DARWIN_CPU_TYPE_X86; 3889 else if (Arch == Triple::ppc) 3890 CPUType = DARWIN_CPU_TYPE_POWERPC; 3891 else if (Arch == Triple::ppc64) 3892 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3893 else if (Arch == Triple::arm || Arch == Triple::thumb) 3894 CPUType = DARWIN_CPU_TYPE_ARM; 3895 3896 // Traditional Bitcode starts after header. 3897 assert(Buffer.size() >= BWH_HeaderSize && 3898 "Expected header size to be reserved"); 3899 unsigned BCOffset = BWH_HeaderSize; 3900 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3901 3902 // Write the magic and version. 3903 unsigned Position = 0; 3904 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3905 writeInt32ToBuffer(0, Buffer, Position); // Version. 3906 writeInt32ToBuffer(BCOffset, Buffer, Position); 3907 writeInt32ToBuffer(BCSize, Buffer, Position); 3908 writeInt32ToBuffer(CPUType, Buffer, Position); 3909 3910 // If the file is not a multiple of 16 bytes, insert dummy padding. 3911 while (Buffer.size() & 15) 3912 Buffer.push_back(0); 3913 } 3914 3915 /// Helper to write the header common to all bitcode files. 3916 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3917 // Emit the file header. 3918 Stream.Emit((unsigned)'B', 8); 3919 Stream.Emit((unsigned)'C', 8); 3920 Stream.Emit(0x0, 4); 3921 Stream.Emit(0xC, 4); 3922 Stream.Emit(0xE, 4); 3923 Stream.Emit(0xD, 4); 3924 } 3925 3926 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3927 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3928 writeBitcodeHeader(*Stream); 3929 } 3930 3931 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3932 3933 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3934 Stream->EnterSubblock(Block, 3); 3935 3936 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3937 Abbv->Add(BitCodeAbbrevOp(Record)); 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3939 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3940 3941 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3942 3943 Stream->ExitBlock(); 3944 } 3945 3946 void BitcodeWriter::writeSymtab() { 3947 assert(!WroteStrtab && !WroteSymtab); 3948 3949 // If any module has module-level inline asm, we will require a registered asm 3950 // parser for the target so that we can create an accurate symbol table for 3951 // the module. 3952 for (Module *M : Mods) { 3953 if (M->getModuleInlineAsm().empty()) 3954 continue; 3955 3956 std::string Err; 3957 const Triple TT(M->getTargetTriple()); 3958 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3959 if (!T || !T->hasMCAsmParser()) 3960 return; 3961 } 3962 3963 WroteSymtab = true; 3964 SmallVector<char, 0> Symtab; 3965 // The irsymtab::build function may be unable to create a symbol table if the 3966 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3967 // table is not required for correctness, but we still want to be able to 3968 // write malformed modules to bitcode files, so swallow the error. 3969 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3970 consumeError(std::move(E)); 3971 return; 3972 } 3973 3974 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3975 {Symtab.data(), Symtab.size()}); 3976 } 3977 3978 void BitcodeWriter::writeStrtab() { 3979 assert(!WroteStrtab); 3980 3981 std::vector<char> Strtab; 3982 StrtabBuilder.finalizeInOrder(); 3983 Strtab.resize(StrtabBuilder.getSize()); 3984 StrtabBuilder.write((uint8_t *)Strtab.data()); 3985 3986 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3987 {Strtab.data(), Strtab.size()}); 3988 3989 WroteStrtab = true; 3990 } 3991 3992 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3993 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3994 WroteStrtab = true; 3995 } 3996 3997 void BitcodeWriter::writeModule(const Module *M, 3998 bool ShouldPreserveUseListOrder, 3999 const ModuleSummaryIndex *Index, 4000 bool GenerateHash, ModuleHash *ModHash) { 4001 assert(!WroteStrtab); 4002 4003 // The Mods vector is used by irsymtab::build, which requires non-const 4004 // Modules in case it needs to materialize metadata. But the bitcode writer 4005 // requires that the module is materialized, so we can cast to non-const here, 4006 // after checking that it is in fact materialized. 4007 assert(M->isMaterialized()); 4008 Mods.push_back(const_cast<Module *>(M)); 4009 4010 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4011 ShouldPreserveUseListOrder, Index, 4012 GenerateHash, ModHash); 4013 ModuleWriter.write(); 4014 } 4015 4016 void BitcodeWriter::writeIndex( 4017 const ModuleSummaryIndex *Index, 4018 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4019 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4020 ModuleToSummariesForIndex); 4021 IndexWriter.write(); 4022 } 4023 4024 /// WriteBitcodeToFile - Write the specified module to the specified output 4025 /// stream. 4026 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4027 bool ShouldPreserveUseListOrder, 4028 const ModuleSummaryIndex *Index, 4029 bool GenerateHash, ModuleHash *ModHash) { 4030 SmallVector<char, 0> Buffer; 4031 Buffer.reserve(256*1024); 4032 4033 // If this is darwin or another generic macho target, reserve space for the 4034 // header. 4035 Triple TT(M->getTargetTriple()); 4036 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4037 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4038 4039 BitcodeWriter Writer(Buffer); 4040 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4041 ModHash); 4042 Writer.writeSymtab(); 4043 Writer.writeStrtab(); 4044 4045 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4046 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4047 4048 // Write the generated bitstream to "Out". 4049 Out.write((char*)&Buffer.front(), Buffer.size()); 4050 } 4051 4052 void IndexBitcodeWriter::write() { 4053 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4054 4055 writeModuleVersion(); 4056 4057 // Write the module paths in the combined index. 4058 writeModStrings(); 4059 4060 // Write the summary combined index records. 4061 writeCombinedGlobalValueSummary(); 4062 4063 Stream.ExitBlock(); 4064 } 4065 4066 // Write the specified module summary index to the given raw output stream, 4067 // where it will be written in a new bitcode block. This is used when 4068 // writing the combined index file for ThinLTO. When writing a subset of the 4069 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4070 void llvm::WriteIndexToFile( 4071 const ModuleSummaryIndex &Index, raw_ostream &Out, 4072 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4073 SmallVector<char, 0> Buffer; 4074 Buffer.reserve(256 * 1024); 4075 4076 BitcodeWriter Writer(Buffer); 4077 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4078 Writer.writeStrtab(); 4079 4080 Out.write((char *)&Buffer.front(), Buffer.size()); 4081 } 4082 4083 namespace { 4084 4085 /// Class to manage the bitcode writing for a thin link bitcode file. 4086 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4087 /// ModHash is for use in ThinLTO incremental build, generated while writing 4088 /// the module bitcode file. 4089 const ModuleHash *ModHash; 4090 4091 public: 4092 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4093 BitstreamWriter &Stream, 4094 const ModuleSummaryIndex &Index, 4095 const ModuleHash &ModHash) 4096 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4097 /*ShouldPreserveUseListOrder=*/false, &Index), 4098 ModHash(&ModHash) {} 4099 4100 void write(); 4101 4102 private: 4103 void writeSimplifiedModuleInfo(); 4104 }; 4105 4106 } // end anonymous namespace 4107 4108 // This function writes a simpilified module info for thin link bitcode file. 4109 // It only contains the source file name along with the name(the offset and 4110 // size in strtab) and linkage for global values. For the global value info 4111 // entry, in order to keep linkage at offset 5, there are three zeros used 4112 // as padding. 4113 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4114 SmallVector<unsigned, 64> Vals; 4115 // Emit the module's source file name. 4116 { 4117 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4118 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4119 if (Bits == SE_Char6) 4120 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4121 else if (Bits == SE_Fixed7) 4122 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4123 4124 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4126 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4128 Abbv->Add(AbbrevOpToUse); 4129 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4130 4131 for (const auto P : M.getSourceFileName()) 4132 Vals.push_back((unsigned char)P); 4133 4134 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4135 Vals.clear(); 4136 } 4137 4138 // Emit the global variable information. 4139 for (const GlobalVariable &GV : M.globals()) { 4140 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4141 Vals.push_back(StrtabBuilder.add(GV.getName())); 4142 Vals.push_back(GV.getName().size()); 4143 Vals.push_back(0); 4144 Vals.push_back(0); 4145 Vals.push_back(0); 4146 Vals.push_back(getEncodedLinkage(GV)); 4147 4148 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4149 Vals.clear(); 4150 } 4151 4152 // Emit the function proto information. 4153 for (const Function &F : M) { 4154 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4155 Vals.push_back(StrtabBuilder.add(F.getName())); 4156 Vals.push_back(F.getName().size()); 4157 Vals.push_back(0); 4158 Vals.push_back(0); 4159 Vals.push_back(0); 4160 Vals.push_back(getEncodedLinkage(F)); 4161 4162 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4163 Vals.clear(); 4164 } 4165 4166 // Emit the alias information. 4167 for (const GlobalAlias &A : M.aliases()) { 4168 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4169 Vals.push_back(StrtabBuilder.add(A.getName())); 4170 Vals.push_back(A.getName().size()); 4171 Vals.push_back(0); 4172 Vals.push_back(0); 4173 Vals.push_back(0); 4174 Vals.push_back(getEncodedLinkage(A)); 4175 4176 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4177 Vals.clear(); 4178 } 4179 4180 // Emit the ifunc information. 4181 for (const GlobalIFunc &I : M.ifuncs()) { 4182 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4183 Vals.push_back(StrtabBuilder.add(I.getName())); 4184 Vals.push_back(I.getName().size()); 4185 Vals.push_back(0); 4186 Vals.push_back(0); 4187 Vals.push_back(0); 4188 Vals.push_back(getEncodedLinkage(I)); 4189 4190 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4191 Vals.clear(); 4192 } 4193 } 4194 4195 void ThinLinkBitcodeWriter::write() { 4196 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4197 4198 writeModuleVersion(); 4199 4200 writeSimplifiedModuleInfo(); 4201 4202 writePerModuleGlobalValueSummary(); 4203 4204 // Write module hash. 4205 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4206 4207 Stream.ExitBlock(); 4208 } 4209 4210 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4211 const ModuleSummaryIndex &Index, 4212 const ModuleHash &ModHash) { 4213 assert(!WroteStrtab); 4214 4215 // The Mods vector is used by irsymtab::build, which requires non-const 4216 // Modules in case it needs to materialize metadata. But the bitcode writer 4217 // requires that the module is materialized, so we can cast to non-const here, 4218 // after checking that it is in fact materialized. 4219 assert(M->isMaterialized()); 4220 Mods.push_back(const_cast<Module *>(M)); 4221 4222 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4223 ModHash); 4224 ThinLinkWriter.write(); 4225 } 4226 4227 // Write the specified thin link bitcode file to the given raw output stream, 4228 // where it will be written in a new bitcode block. This is used when 4229 // writing the per-module index file for ThinLTO. 4230 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4231 const ModuleSummaryIndex &Index, 4232 const ModuleHash &ModHash) { 4233 SmallVector<char, 0> Buffer; 4234 Buffer.reserve(256 * 1024); 4235 4236 BitcodeWriter Writer(Buffer); 4237 Writer.writeThinLinkBitcode(M, Index, ModHash); 4238 Writer.writeSymtab(); 4239 Writer.writeStrtab(); 4240 4241 Out.write((char *)&Buffer.front(), Buffer.size()); 4242 } 4243