1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitCodes.h" 28 #include "llvm/Bitcode/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev); 218 219 void assignValueId(GlobalValue::GUID ValGUID) { 220 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 221 } 222 223 unsigned getValueId(GlobalValue::GUID ValGUID) { 224 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 225 // Expect that any GUID value had a value Id assigned by an 226 // earlier call to assignValueId. 227 assert(VMI != GUIDToValueIdMap.end() && 228 "GUID does not have assigned value Id"); 229 return VMI->second; 230 } 231 232 // Helper to get the valueId for the type of value recorded in VI. 233 unsigned getValueId(ValueInfo VI) { 234 if (!VI.haveGVs() || !VI.getValue()) 235 return getValueId(VI.getGUID()); 236 return VE.getValueID(VI.getValue()); 237 } 238 239 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 240 }; 241 242 /// Class to manage the bitcode writing for a module. 243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 244 /// Pointer to the buffer allocated by caller for bitcode writing. 245 const SmallVectorImpl<char> &Buffer; 246 247 /// True if a module hash record should be written. 248 bool GenerateHash; 249 250 /// If non-null, when GenerateHash is true, the resulting hash is written 251 /// into ModHash. 252 ModuleHash *ModHash; 253 254 SHA1 Hasher; 255 256 /// The start bit of the identification block. 257 uint64_t BitcodeStartBit; 258 259 public: 260 /// Constructs a ModuleBitcodeWriter object for the given Module, 261 /// writing to the provided \p Buffer. 262 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 263 StringTableBuilder &StrtabBuilder, 264 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 265 const ModuleSummaryIndex *Index, bool GenerateHash, 266 ModuleHash *ModHash = nullptr) 267 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 268 ShouldPreserveUseListOrder, Index), 269 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 270 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 271 272 /// Emit the current module to the bitstream. 273 void write(); 274 275 private: 276 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 277 278 size_t addToStrtab(StringRef Str); 279 280 void writeAttributeGroupTable(); 281 void writeAttributeTable(); 282 void writeTypeTable(); 283 void writeComdats(); 284 void writeValueSymbolTableForwardDecl(); 285 void writeModuleInfo(); 286 void writeValueAsMetadata(const ValueAsMetadata *MD, 287 SmallVectorImpl<uint64_t> &Record); 288 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 unsigned createDILocationAbbrev(); 291 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned &Abbrev); 293 unsigned createGenericDINodeAbbrev(); 294 void writeGenericDINode(const GenericDINode *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 296 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDIEnumerator(const DIEnumerator *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIDerivedType(const DIDerivedType *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDICompositeType(const DICompositeType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDISubroutineType(const DISubroutineType *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDICompileUnit(const DICompileUnit *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDISubprogram(const DISubprogram *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDILexicalBlock(const DILexicalBlock *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICommonBlock(const DICommonBlock *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIGlobalVariable(const DIGlobalVariable *N, 337 SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDILocalVariable(const DILocalVariable *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDILabel(const DILabel *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDIExpression(const DIExpression *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIObjCProperty(const DIObjCProperty *N, 349 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 350 void writeDIImportedEntity(const DIImportedEntity *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 unsigned createNamedMetadataAbbrev(); 354 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 355 unsigned createMetadataStringsAbbrev(); 356 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 357 SmallVectorImpl<uint64_t> &Record); 358 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 359 SmallVectorImpl<uint64_t> &Record, 360 std::vector<unsigned> *MDAbbrevs = nullptr, 361 std::vector<uint64_t> *IndexPos = nullptr); 362 void writeModuleMetadata(); 363 void writeFunctionMetadata(const Function &F); 364 void writeFunctionMetadataAttachment(const Function &F); 365 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 366 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 367 const GlobalObject &GO); 368 void writeModuleMetadataKinds(); 369 void writeOperandBundleTags(); 370 void writeSyncScopeNames(); 371 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 372 void writeModuleConstants(); 373 bool pushValueAndType(const Value *V, unsigned InstID, 374 SmallVectorImpl<unsigned> &Vals); 375 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 376 void pushValue(const Value *V, unsigned InstID, 377 SmallVectorImpl<unsigned> &Vals); 378 void pushValueSigned(const Value *V, unsigned InstID, 379 SmallVectorImpl<uint64_t> &Vals); 380 void writeInstruction(const Instruction &I, unsigned InstID, 381 SmallVectorImpl<unsigned> &Vals); 382 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 383 void writeGlobalValueSymbolTable( 384 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 385 void writeUseList(UseListOrder &&Order); 386 void writeUseListBlock(const Function *F); 387 void 388 writeFunction(const Function &F, 389 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 390 void writeBlockInfo(); 391 void writeModuleHash(size_t BlockStartPos); 392 393 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 394 return unsigned(SSID); 395 } 396 }; 397 398 /// Class to manage the bitcode writing for a combined index. 399 class IndexBitcodeWriter : public BitcodeWriterBase { 400 /// The combined index to write to bitcode. 401 const ModuleSummaryIndex &Index; 402 403 /// When writing a subset of the index for distributed backends, client 404 /// provides a map of modules to the corresponding GUIDs/summaries to write. 405 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 406 407 /// Map that holds the correspondence between the GUID used in the combined 408 /// index and a value id generated by this class to use in references. 409 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 410 411 /// Tracks the last value id recorded in the GUIDToValueMap. 412 unsigned GlobalValueId = 0; 413 414 public: 415 /// Constructs a IndexBitcodeWriter object for the given combined index, 416 /// writing to the provided \p Buffer. When writing a subset of the index 417 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 418 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 419 const ModuleSummaryIndex &Index, 420 const std::map<std::string, GVSummaryMapTy> 421 *ModuleToSummariesForIndex = nullptr) 422 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 423 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 424 // Assign unique value ids to all summaries to be written, for use 425 // in writing out the call graph edges. Save the mapping from GUID 426 // to the new global value id to use when writing those edges, which 427 // are currently saved in the index in terms of GUID. 428 forEachSummary([&](GVInfo I, bool) { 429 GUIDToValueIdMap[I.first] = ++GlobalValueId; 430 }); 431 } 432 433 /// The below iterator returns the GUID and associated summary. 434 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 435 436 /// Calls the callback for each value GUID and summary to be written to 437 /// bitcode. This hides the details of whether they are being pulled from the 438 /// entire index or just those in a provided ModuleToSummariesForIndex map. 439 template<typename Functor> 440 void forEachSummary(Functor Callback) { 441 if (ModuleToSummariesForIndex) { 442 for (auto &M : *ModuleToSummariesForIndex) 443 for (auto &Summary : M.second) { 444 Callback(Summary, false); 445 // Ensure aliasee is handled, e.g. for assigning a valueId, 446 // even if we are not importing the aliasee directly (the 447 // imported alias will contain a copy of aliasee). 448 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 449 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 450 } 451 } else { 452 for (auto &Summaries : Index) 453 for (auto &Summary : Summaries.second.SummaryList) 454 Callback({Summaries.first, Summary.get()}, false); 455 } 456 } 457 458 /// Calls the callback for each entry in the modulePaths StringMap that 459 /// should be written to the module path string table. This hides the details 460 /// of whether they are being pulled from the entire index or just those in a 461 /// provided ModuleToSummariesForIndex map. 462 template <typename Functor> void forEachModule(Functor Callback) { 463 if (ModuleToSummariesForIndex) { 464 for (const auto &M : *ModuleToSummariesForIndex) { 465 const auto &MPI = Index.modulePaths().find(M.first); 466 if (MPI == Index.modulePaths().end()) { 467 // This should only happen if the bitcode file was empty, in which 468 // case we shouldn't be importing (the ModuleToSummariesForIndex 469 // would only include the module we are writing and index for). 470 assert(ModuleToSummariesForIndex->size() == 1); 471 continue; 472 } 473 Callback(*MPI); 474 } 475 } else { 476 for (const auto &MPSE : Index.modulePaths()) 477 Callback(MPSE); 478 } 479 } 480 481 /// Main entry point for writing a combined index to bitcode. 482 void write(); 483 484 private: 485 void writeModStrings(); 486 void writeCombinedGlobalValueSummary(); 487 488 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 489 auto VMI = GUIDToValueIdMap.find(ValGUID); 490 if (VMI == GUIDToValueIdMap.end()) 491 return None; 492 return VMI->second; 493 } 494 495 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 496 }; 497 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::FNeg: return bitc::UNOP_NEG; 523 } 524 } 525 526 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Unknown binary instruction!"); 529 case Instruction::Add: 530 case Instruction::FAdd: return bitc::BINOP_ADD; 531 case Instruction::Sub: 532 case Instruction::FSub: return bitc::BINOP_SUB; 533 case Instruction::Mul: 534 case Instruction::FMul: return bitc::BINOP_MUL; 535 case Instruction::UDiv: return bitc::BINOP_UDIV; 536 case Instruction::FDiv: 537 case Instruction::SDiv: return bitc::BINOP_SDIV; 538 case Instruction::URem: return bitc::BINOP_UREM; 539 case Instruction::FRem: 540 case Instruction::SRem: return bitc::BINOP_SREM; 541 case Instruction::Shl: return bitc::BINOP_SHL; 542 case Instruction::LShr: return bitc::BINOP_LSHR; 543 case Instruction::AShr: return bitc::BINOP_ASHR; 544 case Instruction::And: return bitc::BINOP_AND; 545 case Instruction::Or: return bitc::BINOP_OR; 546 case Instruction::Xor: return bitc::BINOP_XOR; 547 } 548 } 549 550 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 551 switch (Op) { 552 default: llvm_unreachable("Unknown RMW operation!"); 553 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 554 case AtomicRMWInst::Add: return bitc::RMW_ADD; 555 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 556 case AtomicRMWInst::And: return bitc::RMW_AND; 557 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 558 case AtomicRMWInst::Or: return bitc::RMW_OR; 559 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 560 case AtomicRMWInst::Max: return bitc::RMW_MAX; 561 case AtomicRMWInst::Min: return bitc::RMW_MIN; 562 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 563 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 564 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 565 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 566 } 567 } 568 569 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 570 switch (Ordering) { 571 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 572 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 573 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 574 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 575 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 576 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 577 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 578 } 579 llvm_unreachable("Invalid ordering"); 580 } 581 582 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 583 StringRef Str, unsigned AbbrevToUse) { 584 SmallVector<unsigned, 64> Vals; 585 586 // Code: [strchar x N] 587 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 588 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 589 AbbrevToUse = 0; 590 Vals.push_back(Str[i]); 591 } 592 593 // Emit the finished record. 594 Stream.EmitRecord(Code, Vals, AbbrevToUse); 595 } 596 597 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 598 switch (Kind) { 599 case Attribute::Alignment: 600 return bitc::ATTR_KIND_ALIGNMENT; 601 case Attribute::AllocSize: 602 return bitc::ATTR_KIND_ALLOC_SIZE; 603 case Attribute::AlwaysInline: 604 return bitc::ATTR_KIND_ALWAYS_INLINE; 605 case Attribute::ArgMemOnly: 606 return bitc::ATTR_KIND_ARGMEMONLY; 607 case Attribute::Builtin: 608 return bitc::ATTR_KIND_BUILTIN; 609 case Attribute::ByVal: 610 return bitc::ATTR_KIND_BY_VAL; 611 case Attribute::Convergent: 612 return bitc::ATTR_KIND_CONVERGENT; 613 case Attribute::InAlloca: 614 return bitc::ATTR_KIND_IN_ALLOCA; 615 case Attribute::Cold: 616 return bitc::ATTR_KIND_COLD; 617 case Attribute::InaccessibleMemOnly: 618 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 619 case Attribute::InaccessibleMemOrArgMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 621 case Attribute::InlineHint: 622 return bitc::ATTR_KIND_INLINE_HINT; 623 case Attribute::InReg: 624 return bitc::ATTR_KIND_IN_REG; 625 case Attribute::JumpTable: 626 return bitc::ATTR_KIND_JUMP_TABLE; 627 case Attribute::MinSize: 628 return bitc::ATTR_KIND_MIN_SIZE; 629 case Attribute::Naked: 630 return bitc::ATTR_KIND_NAKED; 631 case Attribute::Nest: 632 return bitc::ATTR_KIND_NEST; 633 case Attribute::NoAlias: 634 return bitc::ATTR_KIND_NO_ALIAS; 635 case Attribute::NoBuiltin: 636 return bitc::ATTR_KIND_NO_BUILTIN; 637 case Attribute::NoCapture: 638 return bitc::ATTR_KIND_NO_CAPTURE; 639 case Attribute::NoDuplicate: 640 return bitc::ATTR_KIND_NO_DUPLICATE; 641 case Attribute::NoImplicitFloat: 642 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 643 case Attribute::NoInline: 644 return bitc::ATTR_KIND_NO_INLINE; 645 case Attribute::NoRecurse: 646 return bitc::ATTR_KIND_NO_RECURSE; 647 case Attribute::NonLazyBind: 648 return bitc::ATTR_KIND_NON_LAZY_BIND; 649 case Attribute::NonNull: 650 return bitc::ATTR_KIND_NON_NULL; 651 case Attribute::Dereferenceable: 652 return bitc::ATTR_KIND_DEREFERENCEABLE; 653 case Attribute::DereferenceableOrNull: 654 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 655 case Attribute::NoRedZone: 656 return bitc::ATTR_KIND_NO_RED_ZONE; 657 case Attribute::NoReturn: 658 return bitc::ATTR_KIND_NO_RETURN; 659 case Attribute::NoCfCheck: 660 return bitc::ATTR_KIND_NOCF_CHECK; 661 case Attribute::NoUnwind: 662 return bitc::ATTR_KIND_NO_UNWIND; 663 case Attribute::OptForFuzzing: 664 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 665 case Attribute::OptimizeForSize: 666 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 667 case Attribute::OptimizeNone: 668 return bitc::ATTR_KIND_OPTIMIZE_NONE; 669 case Attribute::ReadNone: 670 return bitc::ATTR_KIND_READ_NONE; 671 case Attribute::ReadOnly: 672 return bitc::ATTR_KIND_READ_ONLY; 673 case Attribute::Returned: 674 return bitc::ATTR_KIND_RETURNED; 675 case Attribute::ReturnsTwice: 676 return bitc::ATTR_KIND_RETURNS_TWICE; 677 case Attribute::SExt: 678 return bitc::ATTR_KIND_S_EXT; 679 case Attribute::Speculatable: 680 return bitc::ATTR_KIND_SPECULATABLE; 681 case Attribute::StackAlignment: 682 return bitc::ATTR_KIND_STACK_ALIGNMENT; 683 case Attribute::StackProtect: 684 return bitc::ATTR_KIND_STACK_PROTECT; 685 case Attribute::StackProtectReq: 686 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 687 case Attribute::StackProtectStrong: 688 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 689 case Attribute::SafeStack: 690 return bitc::ATTR_KIND_SAFESTACK; 691 case Attribute::ShadowCallStack: 692 return bitc::ATTR_KIND_SHADOWCALLSTACK; 693 case Attribute::StrictFP: 694 return bitc::ATTR_KIND_STRICT_FP; 695 case Attribute::StructRet: 696 return bitc::ATTR_KIND_STRUCT_RET; 697 case Attribute::SanitizeAddress: 698 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 699 case Attribute::SanitizeHWAddress: 700 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 701 case Attribute::SanitizeThread: 702 return bitc::ATTR_KIND_SANITIZE_THREAD; 703 case Attribute::SanitizeMemory: 704 return bitc::ATTR_KIND_SANITIZE_MEMORY; 705 case Attribute::SpeculativeLoadHardening: 706 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 707 case Attribute::SwiftError: 708 return bitc::ATTR_KIND_SWIFT_ERROR; 709 case Attribute::SwiftSelf: 710 return bitc::ATTR_KIND_SWIFT_SELF; 711 case Attribute::UWTable: 712 return bitc::ATTR_KIND_UW_TABLE; 713 case Attribute::WriteOnly: 714 return bitc::ATTR_KIND_WRITEONLY; 715 case Attribute::ZExt: 716 return bitc::ATTR_KIND_Z_EXT; 717 case Attribute::ImmArg: 718 return bitc::ATTR_KIND_IMMARG; 719 case Attribute::EndAttrKinds: 720 llvm_unreachable("Can not encode end-attribute kinds marker."); 721 case Attribute::None: 722 llvm_unreachable("Can not encode none-attribute."); 723 } 724 725 llvm_unreachable("Trying to encode unknown attribute"); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeGroupTable() { 729 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 730 VE.getAttributeGroups(); 731 if (AttrGrps.empty()) return; 732 733 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 734 735 SmallVector<uint64_t, 64> Record; 736 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 737 unsigned AttrListIndex = Pair.first; 738 AttributeSet AS = Pair.second; 739 Record.push_back(VE.getAttributeGroupID(Pair)); 740 Record.push_back(AttrListIndex); 741 742 for (Attribute Attr : AS) { 743 if (Attr.isEnumAttribute()) { 744 Record.push_back(0); 745 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 746 } else if (Attr.isIntAttribute()) { 747 Record.push_back(1); 748 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 749 Record.push_back(Attr.getValueAsInt()); 750 } else { 751 StringRef Kind = Attr.getKindAsString(); 752 StringRef Val = Attr.getValueAsString(); 753 754 Record.push_back(Val.empty() ? 3 : 4); 755 Record.append(Kind.begin(), Kind.end()); 756 Record.push_back(0); 757 if (!Val.empty()) { 758 Record.append(Val.begin(), Val.end()); 759 Record.push_back(0); 760 } 761 } 762 } 763 764 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 765 Record.clear(); 766 } 767 768 Stream.ExitBlock(); 769 } 770 771 void ModuleBitcodeWriter::writeAttributeTable() { 772 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 773 if (Attrs.empty()) return; 774 775 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 776 777 SmallVector<uint64_t, 64> Record; 778 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 779 AttributeList AL = Attrs[i]; 780 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 781 AttributeSet AS = AL.getAttributes(i); 782 if (AS.hasAttributes()) 783 Record.push_back(VE.getAttributeGroupID({i, AS})); 784 } 785 786 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 787 Record.clear(); 788 } 789 790 Stream.ExitBlock(); 791 } 792 793 /// WriteTypeTable - Write out the type table for a module. 794 void ModuleBitcodeWriter::writeTypeTable() { 795 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 796 797 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 798 SmallVector<uint64_t, 64> TypeVals; 799 800 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 801 802 // Abbrev for TYPE_CODE_POINTER. 803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 807 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 808 809 // Abbrev for TYPE_CODE_FUNCTION. 810 Abbv = std::make_shared<BitCodeAbbrev>(); 811 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 815 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 816 817 // Abbrev for TYPE_CODE_STRUCT_ANON. 818 Abbv = std::make_shared<BitCodeAbbrev>(); 819 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_STRUCT_NAME. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 830 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 831 832 // Abbrev for TYPE_CODE_STRUCT_NAMED. 833 Abbv = std::make_shared<BitCodeAbbrev>(); 834 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 838 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 839 840 // Abbrev for TYPE_CODE_ARRAY. 841 Abbv = std::make_shared<BitCodeAbbrev>(); 842 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 845 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 846 847 // Emit an entry count so the reader can reserve space. 848 TypeVals.push_back(TypeList.size()); 849 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 850 TypeVals.clear(); 851 852 // Loop over all of the types, emitting each in turn. 853 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 854 Type *T = TypeList[i]; 855 int AbbrevToUse = 0; 856 unsigned Code = 0; 857 858 switch (T->getTypeID()) { 859 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 860 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 861 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 862 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 863 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 864 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 865 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 866 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 867 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 868 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 869 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 870 case Type::IntegerTyID: 871 // INTEGER: [width] 872 Code = bitc::TYPE_CODE_INTEGER; 873 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 874 break; 875 case Type::PointerTyID: { 876 PointerType *PTy = cast<PointerType>(T); 877 // POINTER: [pointee type, address space] 878 Code = bitc::TYPE_CODE_POINTER; 879 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 880 unsigned AddressSpace = PTy->getAddressSpace(); 881 TypeVals.push_back(AddressSpace); 882 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 883 break; 884 } 885 case Type::FunctionTyID: { 886 FunctionType *FT = cast<FunctionType>(T); 887 // FUNCTION: [isvararg, retty, paramty x N] 888 Code = bitc::TYPE_CODE_FUNCTION; 889 TypeVals.push_back(FT->isVarArg()); 890 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 891 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 892 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 893 AbbrevToUse = FunctionAbbrev; 894 break; 895 } 896 case Type::StructTyID: { 897 StructType *ST = cast<StructType>(T); 898 // STRUCT: [ispacked, eltty x N] 899 TypeVals.push_back(ST->isPacked()); 900 // Output all of the element types. 901 for (StructType::element_iterator I = ST->element_begin(), 902 E = ST->element_end(); I != E; ++I) 903 TypeVals.push_back(VE.getTypeID(*I)); 904 905 if (ST->isLiteral()) { 906 Code = bitc::TYPE_CODE_STRUCT_ANON; 907 AbbrevToUse = StructAnonAbbrev; 908 } else { 909 if (ST->isOpaque()) { 910 Code = bitc::TYPE_CODE_OPAQUE; 911 } else { 912 Code = bitc::TYPE_CODE_STRUCT_NAMED; 913 AbbrevToUse = StructNamedAbbrev; 914 } 915 916 // Emit the name if it is present. 917 if (!ST->getName().empty()) 918 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 919 StructNameAbbrev); 920 } 921 break; 922 } 923 case Type::ArrayTyID: { 924 ArrayType *AT = cast<ArrayType>(T); 925 // ARRAY: [numelts, eltty] 926 Code = bitc::TYPE_CODE_ARRAY; 927 TypeVals.push_back(AT->getNumElements()); 928 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 929 AbbrevToUse = ArrayAbbrev; 930 break; 931 } 932 case Type::VectorTyID: { 933 VectorType *VT = cast<VectorType>(T); 934 // VECTOR [numelts, eltty] 935 Code = bitc::TYPE_CODE_VECTOR; 936 TypeVals.push_back(VT->getNumElements()); 937 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 938 break; 939 } 940 } 941 942 // Emit the finished record. 943 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 944 TypeVals.clear(); 945 } 946 947 Stream.ExitBlock(); 948 } 949 950 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 951 switch (Linkage) { 952 case GlobalValue::ExternalLinkage: 953 return 0; 954 case GlobalValue::WeakAnyLinkage: 955 return 16; 956 case GlobalValue::AppendingLinkage: 957 return 2; 958 case GlobalValue::InternalLinkage: 959 return 3; 960 case GlobalValue::LinkOnceAnyLinkage: 961 return 18; 962 case GlobalValue::ExternalWeakLinkage: 963 return 7; 964 case GlobalValue::CommonLinkage: 965 return 8; 966 case GlobalValue::PrivateLinkage: 967 return 9; 968 case GlobalValue::WeakODRLinkage: 969 return 17; 970 case GlobalValue::LinkOnceODRLinkage: 971 return 19; 972 case GlobalValue::AvailableExternallyLinkage: 973 return 12; 974 } 975 llvm_unreachable("Invalid linkage"); 976 } 977 978 static unsigned getEncodedLinkage(const GlobalValue &GV) { 979 return getEncodedLinkage(GV.getLinkage()); 980 } 981 982 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 983 uint64_t RawFlags = 0; 984 RawFlags |= Flags.ReadNone; 985 RawFlags |= (Flags.ReadOnly << 1); 986 RawFlags |= (Flags.NoRecurse << 2); 987 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 988 RawFlags |= (Flags.NoInline << 4); 989 return RawFlags; 990 } 991 992 // Decode the flags for GlobalValue in the summary 993 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 994 uint64_t RawFlags = 0; 995 996 RawFlags |= Flags.NotEligibleToImport; // bool 997 RawFlags |= (Flags.Live << 1); 998 RawFlags |= (Flags.DSOLocal << 2); 999 RawFlags |= (Flags.CanAutoHide << 3); 1000 1001 // Linkage don't need to be remapped at that time for the summary. Any future 1002 // change to the getEncodedLinkage() function will need to be taken into 1003 // account here as well. 1004 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1005 1006 return RawFlags; 1007 } 1008 1009 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1010 uint64_t RawFlags = Flags.ReadOnly; 1011 return RawFlags; 1012 } 1013 1014 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1015 switch (GV.getVisibility()) { 1016 case GlobalValue::DefaultVisibility: return 0; 1017 case GlobalValue::HiddenVisibility: return 1; 1018 case GlobalValue::ProtectedVisibility: return 2; 1019 } 1020 llvm_unreachable("Invalid visibility"); 1021 } 1022 1023 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1024 switch (GV.getDLLStorageClass()) { 1025 case GlobalValue::DefaultStorageClass: return 0; 1026 case GlobalValue::DLLImportStorageClass: return 1; 1027 case GlobalValue::DLLExportStorageClass: return 2; 1028 } 1029 llvm_unreachable("Invalid DLL storage class"); 1030 } 1031 1032 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1033 switch (GV.getThreadLocalMode()) { 1034 case GlobalVariable::NotThreadLocal: return 0; 1035 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1036 case GlobalVariable::LocalDynamicTLSModel: return 2; 1037 case GlobalVariable::InitialExecTLSModel: return 3; 1038 case GlobalVariable::LocalExecTLSModel: return 4; 1039 } 1040 llvm_unreachable("Invalid TLS model"); 1041 } 1042 1043 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1044 switch (C.getSelectionKind()) { 1045 case Comdat::Any: 1046 return bitc::COMDAT_SELECTION_KIND_ANY; 1047 case Comdat::ExactMatch: 1048 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1049 case Comdat::Largest: 1050 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1051 case Comdat::NoDuplicates: 1052 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1053 case Comdat::SameSize: 1054 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1055 } 1056 llvm_unreachable("Invalid selection kind"); 1057 } 1058 1059 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1060 switch (GV.getUnnamedAddr()) { 1061 case GlobalValue::UnnamedAddr::None: return 0; 1062 case GlobalValue::UnnamedAddr::Local: return 2; 1063 case GlobalValue::UnnamedAddr::Global: return 1; 1064 } 1065 llvm_unreachable("Invalid unnamed_addr"); 1066 } 1067 1068 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1069 if (GenerateHash) 1070 Hasher.update(Str); 1071 return StrtabBuilder.add(Str); 1072 } 1073 1074 void ModuleBitcodeWriter::writeComdats() { 1075 SmallVector<unsigned, 64> Vals; 1076 for (const Comdat *C : VE.getComdats()) { 1077 // COMDAT: [strtab offset, strtab size, selection_kind] 1078 Vals.push_back(addToStrtab(C->getName())); 1079 Vals.push_back(C->getName().size()); 1080 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1081 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1082 Vals.clear(); 1083 } 1084 } 1085 1086 /// Write a record that will eventually hold the word offset of the 1087 /// module-level VST. For now the offset is 0, which will be backpatched 1088 /// after the real VST is written. Saves the bit offset to backpatch. 1089 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1090 // Write a placeholder value in for the offset of the real VST, 1091 // which is written after the function blocks so that it can include 1092 // the offset of each function. The placeholder offset will be 1093 // updated when the real VST is written. 1094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1095 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1096 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1097 // hold the real VST offset. Must use fixed instead of VBR as we don't 1098 // know how many VBR chunks to reserve ahead of time. 1099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1100 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1101 1102 // Emit the placeholder 1103 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1104 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1105 1106 // Compute and save the bit offset to the placeholder, which will be 1107 // patched when the real VST is written. We can simply subtract the 32-bit 1108 // fixed size from the current bit number to get the location to backpatch. 1109 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1110 } 1111 1112 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1113 1114 /// Determine the encoding to use for the given string name and length. 1115 static StringEncoding getStringEncoding(StringRef Str) { 1116 bool isChar6 = true; 1117 for (char C : Str) { 1118 if (isChar6) 1119 isChar6 = BitCodeAbbrevOp::isChar6(C); 1120 if ((unsigned char)C & 128) 1121 // don't bother scanning the rest. 1122 return SE_Fixed8; 1123 } 1124 if (isChar6) 1125 return SE_Char6; 1126 return SE_Fixed7; 1127 } 1128 1129 /// Emit top-level description of module, including target triple, inline asm, 1130 /// descriptors for global variables, and function prototype info. 1131 /// Returns the bit offset to backpatch with the location of the real VST. 1132 void ModuleBitcodeWriter::writeModuleInfo() { 1133 // Emit various pieces of data attached to a module. 1134 if (!M.getTargetTriple().empty()) 1135 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1136 0 /*TODO*/); 1137 const std::string &DL = M.getDataLayoutStr(); 1138 if (!DL.empty()) 1139 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1140 if (!M.getModuleInlineAsm().empty()) 1141 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1142 0 /*TODO*/); 1143 1144 // Emit information about sections and GC, computing how many there are. Also 1145 // compute the maximum alignment value. 1146 std::map<std::string, unsigned> SectionMap; 1147 std::map<std::string, unsigned> GCMap; 1148 unsigned MaxAlignment = 0; 1149 unsigned MaxGlobalType = 0; 1150 for (const GlobalValue &GV : M.globals()) { 1151 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1152 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1153 if (GV.hasSection()) { 1154 // Give section names unique ID's. 1155 unsigned &Entry = SectionMap[GV.getSection()]; 1156 if (!Entry) { 1157 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1158 0 /*TODO*/); 1159 Entry = SectionMap.size(); 1160 } 1161 } 1162 } 1163 for (const Function &F : M) { 1164 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1165 if (F.hasSection()) { 1166 // Give section names unique ID's. 1167 unsigned &Entry = SectionMap[F.getSection()]; 1168 if (!Entry) { 1169 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1170 0 /*TODO*/); 1171 Entry = SectionMap.size(); 1172 } 1173 } 1174 if (F.hasGC()) { 1175 // Same for GC names. 1176 unsigned &Entry = GCMap[F.getGC()]; 1177 if (!Entry) { 1178 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1179 0 /*TODO*/); 1180 Entry = GCMap.size(); 1181 } 1182 } 1183 } 1184 1185 // Emit abbrev for globals, now that we know # sections and max alignment. 1186 unsigned SimpleGVarAbbrev = 0; 1187 if (!M.global_empty()) { 1188 // Add an abbrev for common globals with no visibility or thread localness. 1189 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1190 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1194 Log2_32_Ceil(MaxGlobalType+1))); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1196 //| explicitType << 1 1197 //| constant 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1200 if (MaxAlignment == 0) // Alignment. 1201 Abbv->Add(BitCodeAbbrevOp(0)); 1202 else { 1203 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1205 Log2_32_Ceil(MaxEncAlignment+1))); 1206 } 1207 if (SectionMap.empty()) // Section. 1208 Abbv->Add(BitCodeAbbrevOp(0)); 1209 else 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1211 Log2_32_Ceil(SectionMap.size()+1))); 1212 // Don't bother emitting vis + thread local. 1213 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1214 } 1215 1216 SmallVector<unsigned, 64> Vals; 1217 // Emit the module's source file name. 1218 { 1219 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1220 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1221 if (Bits == SE_Char6) 1222 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1223 else if (Bits == SE_Fixed7) 1224 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1225 1226 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1228 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1230 Abbv->Add(AbbrevOpToUse); 1231 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1232 1233 for (const auto P : M.getSourceFileName()) 1234 Vals.push_back((unsigned char)P); 1235 1236 // Emit the finished record. 1237 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1238 Vals.clear(); 1239 } 1240 1241 // Emit the global variable information. 1242 for (const GlobalVariable &GV : M.globals()) { 1243 unsigned AbbrevToUse = 0; 1244 1245 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1246 // linkage, alignment, section, visibility, threadlocal, 1247 // unnamed_addr, externally_initialized, dllstorageclass, 1248 // comdat, attributes, DSO_Local] 1249 Vals.push_back(addToStrtab(GV.getName())); 1250 Vals.push_back(GV.getName().size()); 1251 Vals.push_back(VE.getTypeID(GV.getValueType())); 1252 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1253 Vals.push_back(GV.isDeclaration() ? 0 : 1254 (VE.getValueID(GV.getInitializer()) + 1)); 1255 Vals.push_back(getEncodedLinkage(GV)); 1256 Vals.push_back(Log2_32(GV.getAlignment())+1); 1257 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1258 if (GV.isThreadLocal() || 1259 GV.getVisibility() != GlobalValue::DefaultVisibility || 1260 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1261 GV.isExternallyInitialized() || 1262 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1263 GV.hasComdat() || 1264 GV.hasAttributes() || 1265 GV.isDSOLocal()) { 1266 Vals.push_back(getEncodedVisibility(GV)); 1267 Vals.push_back(getEncodedThreadLocalMode(GV)); 1268 Vals.push_back(getEncodedUnnamedAddr(GV)); 1269 Vals.push_back(GV.isExternallyInitialized()); 1270 Vals.push_back(getEncodedDLLStorageClass(GV)); 1271 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1272 1273 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1274 Vals.push_back(VE.getAttributeListID(AL)); 1275 1276 Vals.push_back(GV.isDSOLocal()); 1277 } else { 1278 AbbrevToUse = SimpleGVarAbbrev; 1279 } 1280 1281 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1282 Vals.clear(); 1283 } 1284 1285 // Emit the function proto information. 1286 for (const Function &F : M) { 1287 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1288 // linkage, paramattrs, alignment, section, visibility, gc, 1289 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1290 // prefixdata, personalityfn, DSO_Local, addrspace] 1291 Vals.push_back(addToStrtab(F.getName())); 1292 Vals.push_back(F.getName().size()); 1293 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1294 Vals.push_back(F.getCallingConv()); 1295 Vals.push_back(F.isDeclaration()); 1296 Vals.push_back(getEncodedLinkage(F)); 1297 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1298 Vals.push_back(Log2_32(F.getAlignment())+1); 1299 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1300 Vals.push_back(getEncodedVisibility(F)); 1301 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1302 Vals.push_back(getEncodedUnnamedAddr(F)); 1303 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1304 : 0); 1305 Vals.push_back(getEncodedDLLStorageClass(F)); 1306 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1307 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1308 : 0); 1309 Vals.push_back( 1310 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1311 1312 Vals.push_back(F.isDSOLocal()); 1313 Vals.push_back(F.getAddressSpace()); 1314 1315 unsigned AbbrevToUse = 0; 1316 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1317 Vals.clear(); 1318 } 1319 1320 // Emit the alias information. 1321 for (const GlobalAlias &A : M.aliases()) { 1322 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1323 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1324 // DSO_Local] 1325 Vals.push_back(addToStrtab(A.getName())); 1326 Vals.push_back(A.getName().size()); 1327 Vals.push_back(VE.getTypeID(A.getValueType())); 1328 Vals.push_back(A.getType()->getAddressSpace()); 1329 Vals.push_back(VE.getValueID(A.getAliasee())); 1330 Vals.push_back(getEncodedLinkage(A)); 1331 Vals.push_back(getEncodedVisibility(A)); 1332 Vals.push_back(getEncodedDLLStorageClass(A)); 1333 Vals.push_back(getEncodedThreadLocalMode(A)); 1334 Vals.push_back(getEncodedUnnamedAddr(A)); 1335 Vals.push_back(A.isDSOLocal()); 1336 1337 unsigned AbbrevToUse = 0; 1338 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1339 Vals.clear(); 1340 } 1341 1342 // Emit the ifunc information. 1343 for (const GlobalIFunc &I : M.ifuncs()) { 1344 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1345 // val#, linkage, visibility, DSO_Local] 1346 Vals.push_back(addToStrtab(I.getName())); 1347 Vals.push_back(I.getName().size()); 1348 Vals.push_back(VE.getTypeID(I.getValueType())); 1349 Vals.push_back(I.getType()->getAddressSpace()); 1350 Vals.push_back(VE.getValueID(I.getResolver())); 1351 Vals.push_back(getEncodedLinkage(I)); 1352 Vals.push_back(getEncodedVisibility(I)); 1353 Vals.push_back(I.isDSOLocal()); 1354 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1355 Vals.clear(); 1356 } 1357 1358 writeValueSymbolTableForwardDecl(); 1359 } 1360 1361 static uint64_t getOptimizationFlags(const Value *V) { 1362 uint64_t Flags = 0; 1363 1364 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1365 if (OBO->hasNoSignedWrap()) 1366 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1367 if (OBO->hasNoUnsignedWrap()) 1368 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1369 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1370 if (PEO->isExact()) 1371 Flags |= 1 << bitc::PEO_EXACT; 1372 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1373 if (FPMO->hasAllowReassoc()) 1374 Flags |= bitc::AllowReassoc; 1375 if (FPMO->hasNoNaNs()) 1376 Flags |= bitc::NoNaNs; 1377 if (FPMO->hasNoInfs()) 1378 Flags |= bitc::NoInfs; 1379 if (FPMO->hasNoSignedZeros()) 1380 Flags |= bitc::NoSignedZeros; 1381 if (FPMO->hasAllowReciprocal()) 1382 Flags |= bitc::AllowReciprocal; 1383 if (FPMO->hasAllowContract()) 1384 Flags |= bitc::AllowContract; 1385 if (FPMO->hasApproxFunc()) 1386 Flags |= bitc::ApproxFunc; 1387 } 1388 1389 return Flags; 1390 } 1391 1392 void ModuleBitcodeWriter::writeValueAsMetadata( 1393 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1394 // Mimic an MDNode with a value as one operand. 1395 Value *V = MD->getValue(); 1396 Record.push_back(VE.getTypeID(V->getType())); 1397 Record.push_back(VE.getValueID(V)); 1398 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1399 Record.clear(); 1400 } 1401 1402 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1403 SmallVectorImpl<uint64_t> &Record, 1404 unsigned Abbrev) { 1405 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1406 Metadata *MD = N->getOperand(i); 1407 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1408 "Unexpected function-local metadata"); 1409 Record.push_back(VE.getMetadataOrNullID(MD)); 1410 } 1411 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1412 : bitc::METADATA_NODE, 1413 Record, Abbrev); 1414 Record.clear(); 1415 } 1416 1417 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1418 // Assume the column is usually under 128, and always output the inlined-at 1419 // location (it's never more expensive than building an array size 1). 1420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1421 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1428 return Stream.EmitAbbrev(std::move(Abbv)); 1429 } 1430 1431 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1432 SmallVectorImpl<uint64_t> &Record, 1433 unsigned &Abbrev) { 1434 if (!Abbrev) 1435 Abbrev = createDILocationAbbrev(); 1436 1437 Record.push_back(N->isDistinct()); 1438 Record.push_back(N->getLine()); 1439 Record.push_back(N->getColumn()); 1440 Record.push_back(VE.getMetadataID(N->getScope())); 1441 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1442 Record.push_back(N->isImplicitCode()); 1443 1444 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1445 Record.clear(); 1446 } 1447 1448 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1449 // Assume the column is usually under 128, and always output the inlined-at 1450 // location (it's never more expensive than building an array size 1). 1451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1452 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1459 return Stream.EmitAbbrev(std::move(Abbv)); 1460 } 1461 1462 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1463 SmallVectorImpl<uint64_t> &Record, 1464 unsigned &Abbrev) { 1465 if (!Abbrev) 1466 Abbrev = createGenericDINodeAbbrev(); 1467 1468 Record.push_back(N->isDistinct()); 1469 Record.push_back(N->getTag()); 1470 Record.push_back(0); // Per-tag version field; unused for now. 1471 1472 for (auto &I : N->operands()) 1473 Record.push_back(VE.getMetadataOrNullID(I)); 1474 1475 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1476 Record.clear(); 1477 } 1478 1479 static uint64_t rotateSign(int64_t I) { 1480 uint64_t U = I; 1481 return I < 0 ? ~(U << 1) : U << 1; 1482 } 1483 1484 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1485 SmallVectorImpl<uint64_t> &Record, 1486 unsigned Abbrev) { 1487 const uint64_t Version = 1 << 1; 1488 Record.push_back((uint64_t)N->isDistinct() | Version); 1489 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1490 Record.push_back(rotateSign(N->getLowerBound())); 1491 1492 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1493 Record.clear(); 1494 } 1495 1496 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1497 SmallVectorImpl<uint64_t> &Record, 1498 unsigned Abbrev) { 1499 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1500 Record.push_back(rotateSign(N->getValue())); 1501 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1502 1503 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1504 Record.clear(); 1505 } 1506 1507 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned Abbrev) { 1510 Record.push_back(N->isDistinct()); 1511 Record.push_back(N->getTag()); 1512 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1513 Record.push_back(N->getSizeInBits()); 1514 Record.push_back(N->getAlignInBits()); 1515 Record.push_back(N->getEncoding()); 1516 Record.push_back(N->getFlags()); 1517 1518 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1523 SmallVectorImpl<uint64_t> &Record, 1524 unsigned Abbrev) { 1525 Record.push_back(N->isDistinct()); 1526 Record.push_back(N->getTag()); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1529 Record.push_back(N->getLine()); 1530 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1532 Record.push_back(N->getSizeInBits()); 1533 Record.push_back(N->getAlignInBits()); 1534 Record.push_back(N->getOffsetInBits()); 1535 Record.push_back(N->getFlags()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1537 1538 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1539 // that there is no DWARF address space associated with DIDerivedType. 1540 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1541 Record.push_back(*DWARFAddressSpace + 1); 1542 else 1543 Record.push_back(0); 1544 1545 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void ModuleBitcodeWriter::writeDICompositeType( 1550 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 const unsigned IsNotUsedInOldTypeRef = 0x2; 1553 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1554 Record.push_back(N->getTag()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1557 Record.push_back(N->getLine()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1559 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1560 Record.push_back(N->getSizeInBits()); 1561 Record.push_back(N->getAlignInBits()); 1562 Record.push_back(N->getOffsetInBits()); 1563 Record.push_back(N->getFlags()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1565 Record.push_back(N->getRuntimeLang()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1570 1571 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeDISubroutineType( 1576 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 const unsigned HasNoOldTypeRefs = 0x2; 1579 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1580 Record.push_back(N->getFlags()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1582 Record.push_back(N->getCC()); 1583 1584 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1589 SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 Record.push_back(N->isDistinct()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1594 if (N->getRawChecksum()) { 1595 Record.push_back(N->getRawChecksum()->Kind); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1597 } else { 1598 // Maintain backwards compatibility with the old internal representation of 1599 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1600 Record.push_back(0); 1601 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1602 } 1603 auto Source = N->getRawSource(); 1604 if (Source) 1605 Record.push_back(VE.getMetadataOrNullID(*Source)); 1606 1607 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1612 SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 assert(N->isDistinct() && "Expected distinct compile units"); 1615 Record.push_back(/* IsDistinct */ true); 1616 Record.push_back(N->getSourceLanguage()); 1617 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1619 Record.push_back(N->isOptimized()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1621 Record.push_back(N->getRuntimeVersion()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1623 Record.push_back(N->getEmissionKind()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1626 Record.push_back(/* subprograms */ 0); 1627 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1629 Record.push_back(N->getDWOId()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1631 Record.push_back(N->getSplitDebugInlining()); 1632 Record.push_back(N->getDebugInfoForProfiling()); 1633 Record.push_back((unsigned)N->getNameTableKind()); 1634 1635 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 const uint64_t HasUnitFlag = 1 << 1; 1643 const uint64_t HasSPFlagsFlag = 1 << 2; 1644 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1645 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1649 Record.push_back(N->getLine()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1651 Record.push_back(N->getScopeLine()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1653 Record.push_back(N->getSPFlags()); 1654 Record.push_back(N->getVirtualIndex()); 1655 Record.push_back(N->getFlags()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1660 Record.push_back(N->getThisAdjustment()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1662 1663 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1673 Record.push_back(N->getLine()); 1674 Record.push_back(N->getColumn()); 1675 1676 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1681 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1686 Record.push_back(N->getDiscriminator()); 1687 1688 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1693 SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 Record.push_back(N->isDistinct()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1700 Record.push_back(N->getLineNo()); 1701 1702 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1707 SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1710 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1712 1713 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1714 Record.clear(); 1715 } 1716 1717 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1718 SmallVectorImpl<uint64_t> &Record, 1719 unsigned Abbrev) { 1720 Record.push_back(N->isDistinct()); 1721 Record.push_back(N->getMacinfoType()); 1722 Record.push_back(N->getLine()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1725 1726 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1731 SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 Record.push_back(N->isDistinct()); 1734 Record.push_back(N->getMacinfoType()); 1735 Record.push_back(N->getLine()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1738 1739 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.push_back(N->isDistinct()); 1747 for (auto &I : N->operands()) 1748 Record.push_back(VE.getMetadataOrNullID(I)); 1749 1750 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1755 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 Record.push_back(N->isDistinct()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1760 1761 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1766 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1767 unsigned Abbrev) { 1768 Record.push_back(N->isDistinct()); 1769 Record.push_back(N->getTag()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1773 1774 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDIGlobalVariable( 1779 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 const uint64_t Version = 2 << 1; 1782 Record.push_back((uint64_t)N->isDistinct() | Version); 1783 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1787 Record.push_back(N->getLine()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1789 Record.push_back(N->isLocalToUnit()); 1790 Record.push_back(N->isDefinition()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1793 Record.push_back(N->getAlignInBits()); 1794 1795 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1796 Record.clear(); 1797 } 1798 1799 void ModuleBitcodeWriter::writeDILocalVariable( 1800 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1801 unsigned Abbrev) { 1802 // In order to support all possible bitcode formats in BitcodeReader we need 1803 // to distinguish the following cases: 1804 // 1) Record has no artificial tag (Record[1]), 1805 // has no obsolete inlinedAt field (Record[9]). 1806 // In this case Record size will be 8, HasAlignment flag is false. 1807 // 2) Record has artificial tag (Record[1]), 1808 // has no obsolete inlignedAt field (Record[9]). 1809 // In this case Record size will be 9, HasAlignment flag is false. 1810 // 3) Record has both artificial tag (Record[1]) and 1811 // obsolete inlignedAt field (Record[9]). 1812 // In this case Record size will be 10, HasAlignment flag is false. 1813 // 4) Record has neither artificial tag, nor inlignedAt field, but 1814 // HasAlignment flag is true and Record[8] contains alignment value. 1815 const uint64_t HasAlignmentFlag = 1 << 1; 1816 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1817 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1820 Record.push_back(N->getLine()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1822 Record.push_back(N->getArg()); 1823 Record.push_back(N->getFlags()); 1824 Record.push_back(N->getAlignInBits()); 1825 1826 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDILabel( 1831 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 Record.push_back((uint64_t)N->isDistinct()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1837 Record.push_back(N->getLine()); 1838 1839 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1844 SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 Record.reserve(N->getElements().size() + 1); 1847 const uint64_t Version = 3 << 1; 1848 Record.push_back((uint64_t)N->isDistinct() | Version); 1849 Record.append(N->elements_begin(), N->elements_end()); 1850 1851 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1852 Record.clear(); 1853 } 1854 1855 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1856 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1857 unsigned Abbrev) { 1858 Record.push_back(N->isDistinct()); 1859 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1861 1862 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1863 Record.clear(); 1864 } 1865 1866 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1867 SmallVectorImpl<uint64_t> &Record, 1868 unsigned Abbrev) { 1869 Record.push_back(N->isDistinct()); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1871 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1872 Record.push_back(N->getLine()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1875 Record.push_back(N->getAttributes()); 1876 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1877 1878 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1879 Record.clear(); 1880 } 1881 1882 void ModuleBitcodeWriter::writeDIImportedEntity( 1883 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1884 unsigned Abbrev) { 1885 Record.push_back(N->isDistinct()); 1886 Record.push_back(N->getTag()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1889 Record.push_back(N->getLine()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1892 1893 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1898 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1899 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1902 return Stream.EmitAbbrev(std::move(Abbv)); 1903 } 1904 1905 void ModuleBitcodeWriter::writeNamedMetadata( 1906 SmallVectorImpl<uint64_t> &Record) { 1907 if (M.named_metadata_empty()) 1908 return; 1909 1910 unsigned Abbrev = createNamedMetadataAbbrev(); 1911 for (const NamedMDNode &NMD : M.named_metadata()) { 1912 // Write name. 1913 StringRef Str = NMD.getName(); 1914 Record.append(Str.bytes_begin(), Str.bytes_end()); 1915 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1916 Record.clear(); 1917 1918 // Write named metadata operands. 1919 for (const MDNode *N : NMD.operands()) 1920 Record.push_back(VE.getMetadataID(N)); 1921 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1922 Record.clear(); 1923 } 1924 } 1925 1926 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1927 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1928 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1932 return Stream.EmitAbbrev(std::move(Abbv)); 1933 } 1934 1935 /// Write out a record for MDString. 1936 /// 1937 /// All the metadata strings in a metadata block are emitted in a single 1938 /// record. The sizes and strings themselves are shoved into a blob. 1939 void ModuleBitcodeWriter::writeMetadataStrings( 1940 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1941 if (Strings.empty()) 1942 return; 1943 1944 // Start the record with the number of strings. 1945 Record.push_back(bitc::METADATA_STRINGS); 1946 Record.push_back(Strings.size()); 1947 1948 // Emit the sizes of the strings in the blob. 1949 SmallString<256> Blob; 1950 { 1951 BitstreamWriter W(Blob); 1952 for (const Metadata *MD : Strings) 1953 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1954 W.FlushToWord(); 1955 } 1956 1957 // Add the offset to the strings to the record. 1958 Record.push_back(Blob.size()); 1959 1960 // Add the strings to the blob. 1961 for (const Metadata *MD : Strings) 1962 Blob.append(cast<MDString>(MD)->getString()); 1963 1964 // Emit the final record. 1965 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1966 Record.clear(); 1967 } 1968 1969 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1970 enum MetadataAbbrev : unsigned { 1971 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1972 #include "llvm/IR/Metadata.def" 1973 LastPlusOne 1974 }; 1975 1976 void ModuleBitcodeWriter::writeMetadataRecords( 1977 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1978 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1979 if (MDs.empty()) 1980 return; 1981 1982 // Initialize MDNode abbreviations. 1983 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1984 #include "llvm/IR/Metadata.def" 1985 1986 for (const Metadata *MD : MDs) { 1987 if (IndexPos) 1988 IndexPos->push_back(Stream.GetCurrentBitNo()); 1989 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1990 assert(N->isResolved() && "Expected forward references to be resolved"); 1991 1992 switch (N->getMetadataID()) { 1993 default: 1994 llvm_unreachable("Invalid MDNode subclass"); 1995 #define HANDLE_MDNODE_LEAF(CLASS) \ 1996 case Metadata::CLASS##Kind: \ 1997 if (MDAbbrevs) \ 1998 write##CLASS(cast<CLASS>(N), Record, \ 1999 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2000 else \ 2001 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2002 continue; 2003 #include "llvm/IR/Metadata.def" 2004 } 2005 } 2006 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2007 } 2008 } 2009 2010 void ModuleBitcodeWriter::writeModuleMetadata() { 2011 if (!VE.hasMDs() && M.named_metadata_empty()) 2012 return; 2013 2014 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2015 SmallVector<uint64_t, 64> Record; 2016 2017 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2018 // block and load any metadata. 2019 std::vector<unsigned> MDAbbrevs; 2020 2021 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2022 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2023 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2024 createGenericDINodeAbbrev(); 2025 2026 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2027 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2030 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2031 2032 Abbv = std::make_shared<BitCodeAbbrev>(); 2033 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2036 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2037 2038 // Emit MDStrings together upfront. 2039 writeMetadataStrings(VE.getMDStrings(), Record); 2040 2041 // We only emit an index for the metadata record if we have more than a given 2042 // (naive) threshold of metadatas, otherwise it is not worth it. 2043 if (VE.getNonMDStrings().size() > IndexThreshold) { 2044 // Write a placeholder value in for the offset of the metadata index, 2045 // which is written after the records, so that it can include 2046 // the offset of each entry. The placeholder offset will be 2047 // updated after all records are emitted. 2048 uint64_t Vals[] = {0, 0}; 2049 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2050 } 2051 2052 // Compute and save the bit offset to the current position, which will be 2053 // patched when we emit the index later. We can simply subtract the 64-bit 2054 // fixed size from the current bit number to get the location to backpatch. 2055 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2056 2057 // This index will contain the bitpos for each individual record. 2058 std::vector<uint64_t> IndexPos; 2059 IndexPos.reserve(VE.getNonMDStrings().size()); 2060 2061 // Write all the records 2062 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2063 2064 if (VE.getNonMDStrings().size() > IndexThreshold) { 2065 // Now that we have emitted all the records we will emit the index. But 2066 // first 2067 // backpatch the forward reference so that the reader can skip the records 2068 // efficiently. 2069 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2070 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2071 2072 // Delta encode the index. 2073 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2074 for (auto &Elt : IndexPos) { 2075 auto EltDelta = Elt - PreviousValue; 2076 PreviousValue = Elt; 2077 Elt = EltDelta; 2078 } 2079 // Emit the index record. 2080 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2081 IndexPos.clear(); 2082 } 2083 2084 // Write the named metadata now. 2085 writeNamedMetadata(Record); 2086 2087 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2088 SmallVector<uint64_t, 4> Record; 2089 Record.push_back(VE.getValueID(&GO)); 2090 pushGlobalMetadataAttachment(Record, GO); 2091 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2092 }; 2093 for (const Function &F : M) 2094 if (F.isDeclaration() && F.hasMetadata()) 2095 AddDeclAttachedMetadata(F); 2096 // FIXME: Only store metadata for declarations here, and move data for global 2097 // variable definitions to a separate block (PR28134). 2098 for (const GlobalVariable &GV : M.globals()) 2099 if (GV.hasMetadata()) 2100 AddDeclAttachedMetadata(GV); 2101 2102 Stream.ExitBlock(); 2103 } 2104 2105 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2106 if (!VE.hasMDs()) 2107 return; 2108 2109 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2110 SmallVector<uint64_t, 64> Record; 2111 writeMetadataStrings(VE.getMDStrings(), Record); 2112 writeMetadataRecords(VE.getNonMDStrings(), Record); 2113 Stream.ExitBlock(); 2114 } 2115 2116 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2117 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2118 // [n x [id, mdnode]] 2119 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2120 GO.getAllMetadata(MDs); 2121 for (const auto &I : MDs) { 2122 Record.push_back(I.first); 2123 Record.push_back(VE.getMetadataID(I.second)); 2124 } 2125 } 2126 2127 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2128 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2129 2130 SmallVector<uint64_t, 64> Record; 2131 2132 if (F.hasMetadata()) { 2133 pushGlobalMetadataAttachment(Record, F); 2134 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2135 Record.clear(); 2136 } 2137 2138 // Write metadata attachments 2139 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2140 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2141 for (const BasicBlock &BB : F) 2142 for (const Instruction &I : BB) { 2143 MDs.clear(); 2144 I.getAllMetadataOtherThanDebugLoc(MDs); 2145 2146 // If no metadata, ignore instruction. 2147 if (MDs.empty()) continue; 2148 2149 Record.push_back(VE.getInstructionID(&I)); 2150 2151 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2152 Record.push_back(MDs[i].first); 2153 Record.push_back(VE.getMetadataID(MDs[i].second)); 2154 } 2155 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2156 Record.clear(); 2157 } 2158 2159 Stream.ExitBlock(); 2160 } 2161 2162 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2163 SmallVector<uint64_t, 64> Record; 2164 2165 // Write metadata kinds 2166 // METADATA_KIND - [n x [id, name]] 2167 SmallVector<StringRef, 8> Names; 2168 M.getMDKindNames(Names); 2169 2170 if (Names.empty()) return; 2171 2172 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2173 2174 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2175 Record.push_back(MDKindID); 2176 StringRef KName = Names[MDKindID]; 2177 Record.append(KName.begin(), KName.end()); 2178 2179 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2180 Record.clear(); 2181 } 2182 2183 Stream.ExitBlock(); 2184 } 2185 2186 void ModuleBitcodeWriter::writeOperandBundleTags() { 2187 // Write metadata kinds 2188 // 2189 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2190 // 2191 // OPERAND_BUNDLE_TAG - [strchr x N] 2192 2193 SmallVector<StringRef, 8> Tags; 2194 M.getOperandBundleTags(Tags); 2195 2196 if (Tags.empty()) 2197 return; 2198 2199 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2200 2201 SmallVector<uint64_t, 64> Record; 2202 2203 for (auto Tag : Tags) { 2204 Record.append(Tag.begin(), Tag.end()); 2205 2206 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2207 Record.clear(); 2208 } 2209 2210 Stream.ExitBlock(); 2211 } 2212 2213 void ModuleBitcodeWriter::writeSyncScopeNames() { 2214 SmallVector<StringRef, 8> SSNs; 2215 M.getContext().getSyncScopeNames(SSNs); 2216 if (SSNs.empty()) 2217 return; 2218 2219 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2220 2221 SmallVector<uint64_t, 64> Record; 2222 for (auto SSN : SSNs) { 2223 Record.append(SSN.begin(), SSN.end()); 2224 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2225 Record.clear(); 2226 } 2227 2228 Stream.ExitBlock(); 2229 } 2230 2231 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2232 if ((int64_t)V >= 0) 2233 Vals.push_back(V << 1); 2234 else 2235 Vals.push_back((-V << 1) | 1); 2236 } 2237 2238 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2239 bool isGlobal) { 2240 if (FirstVal == LastVal) return; 2241 2242 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2243 2244 unsigned AggregateAbbrev = 0; 2245 unsigned String8Abbrev = 0; 2246 unsigned CString7Abbrev = 0; 2247 unsigned CString6Abbrev = 0; 2248 // If this is a constant pool for the module, emit module-specific abbrevs. 2249 if (isGlobal) { 2250 // Abbrev for CST_CODE_AGGREGATE. 2251 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2252 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2255 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2256 2257 // Abbrev for CST_CODE_STRING. 2258 Abbv = std::make_shared<BitCodeAbbrev>(); 2259 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2262 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2263 // Abbrev for CST_CODE_CSTRING. 2264 Abbv = std::make_shared<BitCodeAbbrev>(); 2265 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2268 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2269 // Abbrev for CST_CODE_CSTRING. 2270 Abbv = std::make_shared<BitCodeAbbrev>(); 2271 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2274 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2275 } 2276 2277 SmallVector<uint64_t, 64> Record; 2278 2279 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2280 Type *LastTy = nullptr; 2281 for (unsigned i = FirstVal; i != LastVal; ++i) { 2282 const Value *V = Vals[i].first; 2283 // If we need to switch types, do so now. 2284 if (V->getType() != LastTy) { 2285 LastTy = V->getType(); 2286 Record.push_back(VE.getTypeID(LastTy)); 2287 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2288 CONSTANTS_SETTYPE_ABBREV); 2289 Record.clear(); 2290 } 2291 2292 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2293 Record.push_back(unsigned(IA->hasSideEffects()) | 2294 unsigned(IA->isAlignStack()) << 1 | 2295 unsigned(IA->getDialect()&1) << 2); 2296 2297 // Add the asm string. 2298 const std::string &AsmStr = IA->getAsmString(); 2299 Record.push_back(AsmStr.size()); 2300 Record.append(AsmStr.begin(), AsmStr.end()); 2301 2302 // Add the constraint string. 2303 const std::string &ConstraintStr = IA->getConstraintString(); 2304 Record.push_back(ConstraintStr.size()); 2305 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2306 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2307 Record.clear(); 2308 continue; 2309 } 2310 const Constant *C = cast<Constant>(V); 2311 unsigned Code = -1U; 2312 unsigned AbbrevToUse = 0; 2313 if (C->isNullValue()) { 2314 Code = bitc::CST_CODE_NULL; 2315 } else if (isa<UndefValue>(C)) { 2316 Code = bitc::CST_CODE_UNDEF; 2317 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2318 if (IV->getBitWidth() <= 64) { 2319 uint64_t V = IV->getSExtValue(); 2320 emitSignedInt64(Record, V); 2321 Code = bitc::CST_CODE_INTEGER; 2322 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2323 } else { // Wide integers, > 64 bits in size. 2324 // We have an arbitrary precision integer value to write whose 2325 // bit width is > 64. However, in canonical unsigned integer 2326 // format it is likely that the high bits are going to be zero. 2327 // So, we only write the number of active words. 2328 unsigned NWords = IV->getValue().getActiveWords(); 2329 const uint64_t *RawWords = IV->getValue().getRawData(); 2330 for (unsigned i = 0; i != NWords; ++i) { 2331 emitSignedInt64(Record, RawWords[i]); 2332 } 2333 Code = bitc::CST_CODE_WIDE_INTEGER; 2334 } 2335 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2336 Code = bitc::CST_CODE_FLOAT; 2337 Type *Ty = CFP->getType(); 2338 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2339 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2340 } else if (Ty->isX86_FP80Ty()) { 2341 // api needed to prevent premature destruction 2342 // bits are not in the same order as a normal i80 APInt, compensate. 2343 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2344 const uint64_t *p = api.getRawData(); 2345 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2346 Record.push_back(p[0] & 0xffffLL); 2347 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2348 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2349 const uint64_t *p = api.getRawData(); 2350 Record.push_back(p[0]); 2351 Record.push_back(p[1]); 2352 } else { 2353 assert(0 && "Unknown FP type!"); 2354 } 2355 } else if (isa<ConstantDataSequential>(C) && 2356 cast<ConstantDataSequential>(C)->isString()) { 2357 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2358 // Emit constant strings specially. 2359 unsigned NumElts = Str->getNumElements(); 2360 // If this is a null-terminated string, use the denser CSTRING encoding. 2361 if (Str->isCString()) { 2362 Code = bitc::CST_CODE_CSTRING; 2363 --NumElts; // Don't encode the null, which isn't allowed by char6. 2364 } else { 2365 Code = bitc::CST_CODE_STRING; 2366 AbbrevToUse = String8Abbrev; 2367 } 2368 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2369 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2370 for (unsigned i = 0; i != NumElts; ++i) { 2371 unsigned char V = Str->getElementAsInteger(i); 2372 Record.push_back(V); 2373 isCStr7 &= (V & 128) == 0; 2374 if (isCStrChar6) 2375 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2376 } 2377 2378 if (isCStrChar6) 2379 AbbrevToUse = CString6Abbrev; 2380 else if (isCStr7) 2381 AbbrevToUse = CString7Abbrev; 2382 } else if (const ConstantDataSequential *CDS = 2383 dyn_cast<ConstantDataSequential>(C)) { 2384 Code = bitc::CST_CODE_DATA; 2385 Type *EltTy = CDS->getType()->getElementType(); 2386 if (isa<IntegerType>(EltTy)) { 2387 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2388 Record.push_back(CDS->getElementAsInteger(i)); 2389 } else { 2390 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2391 Record.push_back( 2392 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2393 } 2394 } else if (isa<ConstantAggregate>(C)) { 2395 Code = bitc::CST_CODE_AGGREGATE; 2396 for (const Value *Op : C->operands()) 2397 Record.push_back(VE.getValueID(Op)); 2398 AbbrevToUse = AggregateAbbrev; 2399 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2400 switch (CE->getOpcode()) { 2401 default: 2402 if (Instruction::isCast(CE->getOpcode())) { 2403 Code = bitc::CST_CODE_CE_CAST; 2404 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2405 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2406 Record.push_back(VE.getValueID(C->getOperand(0))); 2407 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2408 } else { 2409 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2410 Code = bitc::CST_CODE_CE_BINOP; 2411 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2412 Record.push_back(VE.getValueID(C->getOperand(0))); 2413 Record.push_back(VE.getValueID(C->getOperand(1))); 2414 uint64_t Flags = getOptimizationFlags(CE); 2415 if (Flags != 0) 2416 Record.push_back(Flags); 2417 } 2418 break; 2419 case Instruction::FNeg: { 2420 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2421 Code = bitc::CST_CODE_CE_UNOP; 2422 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2423 Record.push_back(VE.getValueID(C->getOperand(0))); 2424 uint64_t Flags = getOptimizationFlags(CE); 2425 if (Flags != 0) 2426 Record.push_back(Flags); 2427 break; 2428 } 2429 case Instruction::GetElementPtr: { 2430 Code = bitc::CST_CODE_CE_GEP; 2431 const auto *GO = cast<GEPOperator>(C); 2432 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2433 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2434 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2435 Record.push_back((*Idx << 1) | GO->isInBounds()); 2436 } else if (GO->isInBounds()) 2437 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2438 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2439 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2440 Record.push_back(VE.getValueID(C->getOperand(i))); 2441 } 2442 break; 2443 } 2444 case Instruction::Select: 2445 Code = bitc::CST_CODE_CE_SELECT; 2446 Record.push_back(VE.getValueID(C->getOperand(0))); 2447 Record.push_back(VE.getValueID(C->getOperand(1))); 2448 Record.push_back(VE.getValueID(C->getOperand(2))); 2449 break; 2450 case Instruction::ExtractElement: 2451 Code = bitc::CST_CODE_CE_EXTRACTELT; 2452 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2453 Record.push_back(VE.getValueID(C->getOperand(0))); 2454 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2455 Record.push_back(VE.getValueID(C->getOperand(1))); 2456 break; 2457 case Instruction::InsertElement: 2458 Code = bitc::CST_CODE_CE_INSERTELT; 2459 Record.push_back(VE.getValueID(C->getOperand(0))); 2460 Record.push_back(VE.getValueID(C->getOperand(1))); 2461 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2462 Record.push_back(VE.getValueID(C->getOperand(2))); 2463 break; 2464 case Instruction::ShuffleVector: 2465 // If the return type and argument types are the same, this is a 2466 // standard shufflevector instruction. If the types are different, 2467 // then the shuffle is widening or truncating the input vectors, and 2468 // the argument type must also be encoded. 2469 if (C->getType() == C->getOperand(0)->getType()) { 2470 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2471 } else { 2472 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2473 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2474 } 2475 Record.push_back(VE.getValueID(C->getOperand(0))); 2476 Record.push_back(VE.getValueID(C->getOperand(1))); 2477 Record.push_back(VE.getValueID(C->getOperand(2))); 2478 break; 2479 case Instruction::ICmp: 2480 case Instruction::FCmp: 2481 Code = bitc::CST_CODE_CE_CMP; 2482 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2483 Record.push_back(VE.getValueID(C->getOperand(0))); 2484 Record.push_back(VE.getValueID(C->getOperand(1))); 2485 Record.push_back(CE->getPredicate()); 2486 break; 2487 } 2488 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2489 Code = bitc::CST_CODE_BLOCKADDRESS; 2490 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2491 Record.push_back(VE.getValueID(BA->getFunction())); 2492 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2493 } else { 2494 #ifndef NDEBUG 2495 C->dump(); 2496 #endif 2497 llvm_unreachable("Unknown constant!"); 2498 } 2499 Stream.EmitRecord(Code, Record, AbbrevToUse); 2500 Record.clear(); 2501 } 2502 2503 Stream.ExitBlock(); 2504 } 2505 2506 void ModuleBitcodeWriter::writeModuleConstants() { 2507 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2508 2509 // Find the first constant to emit, which is the first non-globalvalue value. 2510 // We know globalvalues have been emitted by WriteModuleInfo. 2511 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2512 if (!isa<GlobalValue>(Vals[i].first)) { 2513 writeConstants(i, Vals.size(), true); 2514 return; 2515 } 2516 } 2517 } 2518 2519 /// pushValueAndType - The file has to encode both the value and type id for 2520 /// many values, because we need to know what type to create for forward 2521 /// references. However, most operands are not forward references, so this type 2522 /// field is not needed. 2523 /// 2524 /// This function adds V's value ID to Vals. If the value ID is higher than the 2525 /// instruction ID, then it is a forward reference, and it also includes the 2526 /// type ID. The value ID that is written is encoded relative to the InstID. 2527 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2528 SmallVectorImpl<unsigned> &Vals) { 2529 unsigned ValID = VE.getValueID(V); 2530 // Make encoding relative to the InstID. 2531 Vals.push_back(InstID - ValID); 2532 if (ValID >= InstID) { 2533 Vals.push_back(VE.getTypeID(V->getType())); 2534 return true; 2535 } 2536 return false; 2537 } 2538 2539 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2540 unsigned InstID) { 2541 SmallVector<unsigned, 64> Record; 2542 LLVMContext &C = CS.getInstruction()->getContext(); 2543 2544 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2545 const auto &Bundle = CS.getOperandBundleAt(i); 2546 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2547 2548 for (auto &Input : Bundle.Inputs) 2549 pushValueAndType(Input, InstID, Record); 2550 2551 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2552 Record.clear(); 2553 } 2554 } 2555 2556 /// pushValue - Like pushValueAndType, but where the type of the value is 2557 /// omitted (perhaps it was already encoded in an earlier operand). 2558 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2559 SmallVectorImpl<unsigned> &Vals) { 2560 unsigned ValID = VE.getValueID(V); 2561 Vals.push_back(InstID - ValID); 2562 } 2563 2564 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2565 SmallVectorImpl<uint64_t> &Vals) { 2566 unsigned ValID = VE.getValueID(V); 2567 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2568 emitSignedInt64(Vals, diff); 2569 } 2570 2571 /// WriteInstruction - Emit an instruction to the specified stream. 2572 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2573 unsigned InstID, 2574 SmallVectorImpl<unsigned> &Vals) { 2575 unsigned Code = 0; 2576 unsigned AbbrevToUse = 0; 2577 VE.setInstructionID(&I); 2578 switch (I.getOpcode()) { 2579 default: 2580 if (Instruction::isCast(I.getOpcode())) { 2581 Code = bitc::FUNC_CODE_INST_CAST; 2582 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2583 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2584 Vals.push_back(VE.getTypeID(I.getType())); 2585 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2586 } else { 2587 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2588 Code = bitc::FUNC_CODE_INST_BINOP; 2589 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2590 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2591 pushValue(I.getOperand(1), InstID, Vals); 2592 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2593 uint64_t Flags = getOptimizationFlags(&I); 2594 if (Flags != 0) { 2595 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2596 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2597 Vals.push_back(Flags); 2598 } 2599 } 2600 break; 2601 case Instruction::FNeg: { 2602 Code = bitc::FUNC_CODE_INST_UNOP; 2603 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2604 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2605 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2606 uint64_t Flags = getOptimizationFlags(&I); 2607 if (Flags != 0) { 2608 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2609 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2610 Vals.push_back(Flags); 2611 } 2612 break; 2613 } 2614 case Instruction::GetElementPtr: { 2615 Code = bitc::FUNC_CODE_INST_GEP; 2616 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2617 auto &GEPInst = cast<GetElementPtrInst>(I); 2618 Vals.push_back(GEPInst.isInBounds()); 2619 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2620 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2621 pushValueAndType(I.getOperand(i), InstID, Vals); 2622 break; 2623 } 2624 case Instruction::ExtractValue: { 2625 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2626 pushValueAndType(I.getOperand(0), InstID, Vals); 2627 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2628 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2629 break; 2630 } 2631 case Instruction::InsertValue: { 2632 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2633 pushValueAndType(I.getOperand(0), InstID, Vals); 2634 pushValueAndType(I.getOperand(1), InstID, Vals); 2635 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2636 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2637 break; 2638 } 2639 case Instruction::Select: 2640 Code = bitc::FUNC_CODE_INST_VSELECT; 2641 pushValueAndType(I.getOperand(1), InstID, Vals); 2642 pushValue(I.getOperand(2), InstID, Vals); 2643 pushValueAndType(I.getOperand(0), InstID, Vals); 2644 break; 2645 case Instruction::ExtractElement: 2646 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2647 pushValueAndType(I.getOperand(0), InstID, Vals); 2648 pushValueAndType(I.getOperand(1), InstID, Vals); 2649 break; 2650 case Instruction::InsertElement: 2651 Code = bitc::FUNC_CODE_INST_INSERTELT; 2652 pushValueAndType(I.getOperand(0), InstID, Vals); 2653 pushValue(I.getOperand(1), InstID, Vals); 2654 pushValueAndType(I.getOperand(2), InstID, Vals); 2655 break; 2656 case Instruction::ShuffleVector: 2657 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2658 pushValueAndType(I.getOperand(0), InstID, Vals); 2659 pushValue(I.getOperand(1), InstID, Vals); 2660 pushValue(I.getOperand(2), InstID, Vals); 2661 break; 2662 case Instruction::ICmp: 2663 case Instruction::FCmp: { 2664 // compare returning Int1Ty or vector of Int1Ty 2665 Code = bitc::FUNC_CODE_INST_CMP2; 2666 pushValueAndType(I.getOperand(0), InstID, Vals); 2667 pushValue(I.getOperand(1), InstID, Vals); 2668 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2669 uint64_t Flags = getOptimizationFlags(&I); 2670 if (Flags != 0) 2671 Vals.push_back(Flags); 2672 break; 2673 } 2674 2675 case Instruction::Ret: 2676 { 2677 Code = bitc::FUNC_CODE_INST_RET; 2678 unsigned NumOperands = I.getNumOperands(); 2679 if (NumOperands == 0) 2680 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2681 else if (NumOperands == 1) { 2682 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2683 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2684 } else { 2685 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2686 pushValueAndType(I.getOperand(i), InstID, Vals); 2687 } 2688 } 2689 break; 2690 case Instruction::Br: 2691 { 2692 Code = bitc::FUNC_CODE_INST_BR; 2693 const BranchInst &II = cast<BranchInst>(I); 2694 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2695 if (II.isConditional()) { 2696 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2697 pushValue(II.getCondition(), InstID, Vals); 2698 } 2699 } 2700 break; 2701 case Instruction::Switch: 2702 { 2703 Code = bitc::FUNC_CODE_INST_SWITCH; 2704 const SwitchInst &SI = cast<SwitchInst>(I); 2705 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2706 pushValue(SI.getCondition(), InstID, Vals); 2707 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2708 for (auto Case : SI.cases()) { 2709 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2710 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2711 } 2712 } 2713 break; 2714 case Instruction::IndirectBr: 2715 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2716 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2717 // Encode the address operand as relative, but not the basic blocks. 2718 pushValue(I.getOperand(0), InstID, Vals); 2719 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2720 Vals.push_back(VE.getValueID(I.getOperand(i))); 2721 break; 2722 2723 case Instruction::Invoke: { 2724 const InvokeInst *II = cast<InvokeInst>(&I); 2725 const Value *Callee = II->getCalledValue(); 2726 FunctionType *FTy = II->getFunctionType(); 2727 2728 if (II->hasOperandBundles()) 2729 writeOperandBundles(II, InstID); 2730 2731 Code = bitc::FUNC_CODE_INST_INVOKE; 2732 2733 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2734 Vals.push_back(II->getCallingConv() | 1 << 13); 2735 Vals.push_back(VE.getValueID(II->getNormalDest())); 2736 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2737 Vals.push_back(VE.getTypeID(FTy)); 2738 pushValueAndType(Callee, InstID, Vals); 2739 2740 // Emit value #'s for the fixed parameters. 2741 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2742 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2743 2744 // Emit type/value pairs for varargs params. 2745 if (FTy->isVarArg()) { 2746 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2747 i != e; ++i) 2748 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2749 } 2750 break; 2751 } 2752 case Instruction::Resume: 2753 Code = bitc::FUNC_CODE_INST_RESUME; 2754 pushValueAndType(I.getOperand(0), InstID, Vals); 2755 break; 2756 case Instruction::CleanupRet: { 2757 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2758 const auto &CRI = cast<CleanupReturnInst>(I); 2759 pushValue(CRI.getCleanupPad(), InstID, Vals); 2760 if (CRI.hasUnwindDest()) 2761 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2762 break; 2763 } 2764 case Instruction::CatchRet: { 2765 Code = bitc::FUNC_CODE_INST_CATCHRET; 2766 const auto &CRI = cast<CatchReturnInst>(I); 2767 pushValue(CRI.getCatchPad(), InstID, Vals); 2768 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2769 break; 2770 } 2771 case Instruction::CleanupPad: 2772 case Instruction::CatchPad: { 2773 const auto &FuncletPad = cast<FuncletPadInst>(I); 2774 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2775 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2776 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2777 2778 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2779 Vals.push_back(NumArgOperands); 2780 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2781 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2782 break; 2783 } 2784 case Instruction::CatchSwitch: { 2785 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2786 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2787 2788 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2789 2790 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2791 Vals.push_back(NumHandlers); 2792 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2793 Vals.push_back(VE.getValueID(CatchPadBB)); 2794 2795 if (CatchSwitch.hasUnwindDest()) 2796 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2797 break; 2798 } 2799 case Instruction::CallBr: { 2800 const CallBrInst *CBI = cast<CallBrInst>(&I); 2801 const Value *Callee = CBI->getCalledValue(); 2802 FunctionType *FTy = CBI->getFunctionType(); 2803 2804 if (CBI->hasOperandBundles()) 2805 writeOperandBundles(CBI, InstID); 2806 2807 Code = bitc::FUNC_CODE_INST_CALLBR; 2808 2809 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2810 2811 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2812 1 << bitc::CALL_EXPLICIT_TYPE); 2813 2814 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2815 Vals.push_back(CBI->getNumIndirectDests()); 2816 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2817 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2818 2819 Vals.push_back(VE.getTypeID(FTy)); 2820 pushValueAndType(Callee, InstID, Vals); 2821 2822 // Emit value #'s for the fixed parameters. 2823 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2824 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2825 2826 // Emit type/value pairs for varargs params. 2827 if (FTy->isVarArg()) { 2828 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2829 i != e; ++i) 2830 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2831 } 2832 break; 2833 } 2834 case Instruction::Unreachable: 2835 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2836 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2837 break; 2838 2839 case Instruction::PHI: { 2840 const PHINode &PN = cast<PHINode>(I); 2841 Code = bitc::FUNC_CODE_INST_PHI; 2842 // With the newer instruction encoding, forward references could give 2843 // negative valued IDs. This is most common for PHIs, so we use 2844 // signed VBRs. 2845 SmallVector<uint64_t, 128> Vals64; 2846 Vals64.push_back(VE.getTypeID(PN.getType())); 2847 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2848 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2849 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2850 } 2851 // Emit a Vals64 vector and exit. 2852 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2853 Vals64.clear(); 2854 return; 2855 } 2856 2857 case Instruction::LandingPad: { 2858 const LandingPadInst &LP = cast<LandingPadInst>(I); 2859 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2860 Vals.push_back(VE.getTypeID(LP.getType())); 2861 Vals.push_back(LP.isCleanup()); 2862 Vals.push_back(LP.getNumClauses()); 2863 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2864 if (LP.isCatch(I)) 2865 Vals.push_back(LandingPadInst::Catch); 2866 else 2867 Vals.push_back(LandingPadInst::Filter); 2868 pushValueAndType(LP.getClause(I), InstID, Vals); 2869 } 2870 break; 2871 } 2872 2873 case Instruction::Alloca: { 2874 Code = bitc::FUNC_CODE_INST_ALLOCA; 2875 const AllocaInst &AI = cast<AllocaInst>(I); 2876 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2877 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2878 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2879 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2880 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2881 "not enough bits for maximum alignment"); 2882 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2883 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2884 AlignRecord |= 1 << 6; 2885 AlignRecord |= AI.isSwiftError() << 7; 2886 Vals.push_back(AlignRecord); 2887 break; 2888 } 2889 2890 case Instruction::Load: 2891 if (cast<LoadInst>(I).isAtomic()) { 2892 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2893 pushValueAndType(I.getOperand(0), InstID, Vals); 2894 } else { 2895 Code = bitc::FUNC_CODE_INST_LOAD; 2896 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2897 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2898 } 2899 Vals.push_back(VE.getTypeID(I.getType())); 2900 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2901 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2902 if (cast<LoadInst>(I).isAtomic()) { 2903 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2904 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2905 } 2906 break; 2907 case Instruction::Store: 2908 if (cast<StoreInst>(I).isAtomic()) 2909 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2910 else 2911 Code = bitc::FUNC_CODE_INST_STORE; 2912 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2913 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2914 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2915 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2916 if (cast<StoreInst>(I).isAtomic()) { 2917 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2918 Vals.push_back( 2919 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2920 } 2921 break; 2922 case Instruction::AtomicCmpXchg: 2923 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2924 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2925 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2926 pushValue(I.getOperand(2), InstID, Vals); // newval. 2927 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2928 Vals.push_back( 2929 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2930 Vals.push_back( 2931 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2932 Vals.push_back( 2933 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2934 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2935 break; 2936 case Instruction::AtomicRMW: 2937 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2938 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2939 pushValue(I.getOperand(1), InstID, Vals); // val. 2940 Vals.push_back( 2941 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2942 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2943 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2944 Vals.push_back( 2945 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2946 break; 2947 case Instruction::Fence: 2948 Code = bitc::FUNC_CODE_INST_FENCE; 2949 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2950 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2951 break; 2952 case Instruction::Call: { 2953 const CallInst &CI = cast<CallInst>(I); 2954 FunctionType *FTy = CI.getFunctionType(); 2955 2956 if (CI.hasOperandBundles()) 2957 writeOperandBundles(&CI, InstID); 2958 2959 Code = bitc::FUNC_CODE_INST_CALL; 2960 2961 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2962 2963 unsigned Flags = getOptimizationFlags(&I); 2964 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2965 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2966 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2967 1 << bitc::CALL_EXPLICIT_TYPE | 2968 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2969 unsigned(Flags != 0) << bitc::CALL_FMF); 2970 if (Flags != 0) 2971 Vals.push_back(Flags); 2972 2973 Vals.push_back(VE.getTypeID(FTy)); 2974 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2975 2976 // Emit value #'s for the fixed parameters. 2977 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2978 // Check for labels (can happen with asm labels). 2979 if (FTy->getParamType(i)->isLabelTy()) 2980 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2981 else 2982 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2983 } 2984 2985 // Emit type/value pairs for varargs params. 2986 if (FTy->isVarArg()) { 2987 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2988 i != e; ++i) 2989 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2990 } 2991 break; 2992 } 2993 case Instruction::VAArg: 2994 Code = bitc::FUNC_CODE_INST_VAARG; 2995 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2996 pushValue(I.getOperand(0), InstID, Vals); // valist. 2997 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2998 break; 2999 } 3000 3001 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3002 Vals.clear(); 3003 } 3004 3005 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3006 /// to allow clients to efficiently find the function body. 3007 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3008 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3009 // Get the offset of the VST we are writing, and backpatch it into 3010 // the VST forward declaration record. 3011 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3012 // The BitcodeStartBit was the stream offset of the identification block. 3013 VSTOffset -= bitcodeStartBit(); 3014 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3015 // Note that we add 1 here because the offset is relative to one word 3016 // before the start of the identification block, which was historically 3017 // always the start of the regular bitcode header. 3018 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3019 3020 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3021 3022 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3023 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3026 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3027 3028 for (const Function &F : M) { 3029 uint64_t Record[2]; 3030 3031 if (F.isDeclaration()) 3032 continue; 3033 3034 Record[0] = VE.getValueID(&F); 3035 3036 // Save the word offset of the function (from the start of the 3037 // actual bitcode written to the stream). 3038 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3039 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3040 // Note that we add 1 here because the offset is relative to one word 3041 // before the start of the identification block, which was historically 3042 // always the start of the regular bitcode header. 3043 Record[1] = BitcodeIndex / 32 + 1; 3044 3045 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3046 } 3047 3048 Stream.ExitBlock(); 3049 } 3050 3051 /// Emit names for arguments, instructions and basic blocks in a function. 3052 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3053 const ValueSymbolTable &VST) { 3054 if (VST.empty()) 3055 return; 3056 3057 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3058 3059 // FIXME: Set up the abbrev, we know how many values there are! 3060 // FIXME: We know if the type names can use 7-bit ascii. 3061 SmallVector<uint64_t, 64> NameVals; 3062 3063 for (const ValueName &Name : VST) { 3064 // Figure out the encoding to use for the name. 3065 StringEncoding Bits = getStringEncoding(Name.getKey()); 3066 3067 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3068 NameVals.push_back(VE.getValueID(Name.getValue())); 3069 3070 // VST_CODE_ENTRY: [valueid, namechar x N] 3071 // VST_CODE_BBENTRY: [bbid, namechar x N] 3072 unsigned Code; 3073 if (isa<BasicBlock>(Name.getValue())) { 3074 Code = bitc::VST_CODE_BBENTRY; 3075 if (Bits == SE_Char6) 3076 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3077 } else { 3078 Code = bitc::VST_CODE_ENTRY; 3079 if (Bits == SE_Char6) 3080 AbbrevToUse = VST_ENTRY_6_ABBREV; 3081 else if (Bits == SE_Fixed7) 3082 AbbrevToUse = VST_ENTRY_7_ABBREV; 3083 } 3084 3085 for (const auto P : Name.getKey()) 3086 NameVals.push_back((unsigned char)P); 3087 3088 // Emit the finished record. 3089 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3090 NameVals.clear(); 3091 } 3092 3093 Stream.ExitBlock(); 3094 } 3095 3096 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3097 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3098 unsigned Code; 3099 if (isa<BasicBlock>(Order.V)) 3100 Code = bitc::USELIST_CODE_BB; 3101 else 3102 Code = bitc::USELIST_CODE_DEFAULT; 3103 3104 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3105 Record.push_back(VE.getValueID(Order.V)); 3106 Stream.EmitRecord(Code, Record); 3107 } 3108 3109 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3110 assert(VE.shouldPreserveUseListOrder() && 3111 "Expected to be preserving use-list order"); 3112 3113 auto hasMore = [&]() { 3114 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3115 }; 3116 if (!hasMore()) 3117 // Nothing to do. 3118 return; 3119 3120 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3121 while (hasMore()) { 3122 writeUseList(std::move(VE.UseListOrders.back())); 3123 VE.UseListOrders.pop_back(); 3124 } 3125 Stream.ExitBlock(); 3126 } 3127 3128 /// Emit a function body to the module stream. 3129 void ModuleBitcodeWriter::writeFunction( 3130 const Function &F, 3131 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3132 // Save the bitcode index of the start of this function block for recording 3133 // in the VST. 3134 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3135 3136 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3137 VE.incorporateFunction(F); 3138 3139 SmallVector<unsigned, 64> Vals; 3140 3141 // Emit the number of basic blocks, so the reader can create them ahead of 3142 // time. 3143 Vals.push_back(VE.getBasicBlocks().size()); 3144 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3145 Vals.clear(); 3146 3147 // If there are function-local constants, emit them now. 3148 unsigned CstStart, CstEnd; 3149 VE.getFunctionConstantRange(CstStart, CstEnd); 3150 writeConstants(CstStart, CstEnd, false); 3151 3152 // If there is function-local metadata, emit it now. 3153 writeFunctionMetadata(F); 3154 3155 // Keep a running idea of what the instruction ID is. 3156 unsigned InstID = CstEnd; 3157 3158 bool NeedsMetadataAttachment = F.hasMetadata(); 3159 3160 DILocation *LastDL = nullptr; 3161 // Finally, emit all the instructions, in order. 3162 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3163 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3164 I != E; ++I) { 3165 writeInstruction(*I, InstID, Vals); 3166 3167 if (!I->getType()->isVoidTy()) 3168 ++InstID; 3169 3170 // If the instruction has metadata, write a metadata attachment later. 3171 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3172 3173 // If the instruction has a debug location, emit it. 3174 DILocation *DL = I->getDebugLoc(); 3175 if (!DL) 3176 continue; 3177 3178 if (DL == LastDL) { 3179 // Just repeat the same debug loc as last time. 3180 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3181 continue; 3182 } 3183 3184 Vals.push_back(DL->getLine()); 3185 Vals.push_back(DL->getColumn()); 3186 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3187 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3188 Vals.push_back(DL->isImplicitCode()); 3189 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3190 Vals.clear(); 3191 3192 LastDL = DL; 3193 } 3194 3195 // Emit names for all the instructions etc. 3196 if (auto *Symtab = F.getValueSymbolTable()) 3197 writeFunctionLevelValueSymbolTable(*Symtab); 3198 3199 if (NeedsMetadataAttachment) 3200 writeFunctionMetadataAttachment(F); 3201 if (VE.shouldPreserveUseListOrder()) 3202 writeUseListBlock(&F); 3203 VE.purgeFunction(); 3204 Stream.ExitBlock(); 3205 } 3206 3207 // Emit blockinfo, which defines the standard abbreviations etc. 3208 void ModuleBitcodeWriter::writeBlockInfo() { 3209 // We only want to emit block info records for blocks that have multiple 3210 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3211 // Other blocks can define their abbrevs inline. 3212 Stream.EnterBlockInfoBlock(); 3213 3214 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3215 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3220 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3221 VST_ENTRY_8_ABBREV) 3222 llvm_unreachable("Unexpected abbrev ordering!"); 3223 } 3224 3225 { // 7-bit fixed width VST_CODE_ENTRY strings. 3226 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3227 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3231 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3232 VST_ENTRY_7_ABBREV) 3233 llvm_unreachable("Unexpected abbrev ordering!"); 3234 } 3235 { // 6-bit char6 VST_CODE_ENTRY strings. 3236 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3237 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3241 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3242 VST_ENTRY_6_ABBREV) 3243 llvm_unreachable("Unexpected abbrev ordering!"); 3244 } 3245 { // 6-bit char6 VST_CODE_BBENTRY strings. 3246 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3247 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3251 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3252 VST_BBENTRY_6_ABBREV) 3253 llvm_unreachable("Unexpected abbrev ordering!"); 3254 } 3255 3256 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3257 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3258 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3260 VE.computeBitsRequiredForTypeIndicies())); 3261 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3262 CONSTANTS_SETTYPE_ABBREV) 3263 llvm_unreachable("Unexpected abbrev ordering!"); 3264 } 3265 3266 { // INTEGER abbrev for CONSTANTS_BLOCK. 3267 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3268 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3270 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3271 CONSTANTS_INTEGER_ABBREV) 3272 llvm_unreachable("Unexpected abbrev ordering!"); 3273 } 3274 3275 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3276 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3277 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3280 VE.computeBitsRequiredForTypeIndicies())); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3282 3283 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3284 CONSTANTS_CE_CAST_Abbrev) 3285 llvm_unreachable("Unexpected abbrev ordering!"); 3286 } 3287 { // NULL abbrev for CONSTANTS_BLOCK. 3288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3290 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3291 CONSTANTS_NULL_Abbrev) 3292 llvm_unreachable("Unexpected abbrev ordering!"); 3293 } 3294 3295 // FIXME: This should only use space for first class types! 3296 3297 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3299 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3302 VE.computeBitsRequiredForTypeIndicies())); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3305 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3306 FUNCTION_INST_LOAD_ABBREV) 3307 llvm_unreachable("Unexpected abbrev ordering!"); 3308 } 3309 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3310 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3311 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3314 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3315 FUNCTION_INST_UNOP_ABBREV) 3316 llvm_unreachable("Unexpected abbrev ordering!"); 3317 } 3318 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3319 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3320 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3324 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3325 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3326 llvm_unreachable("Unexpected abbrev ordering!"); 3327 } 3328 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3330 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3334 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3335 FUNCTION_INST_BINOP_ABBREV) 3336 llvm_unreachable("Unexpected abbrev ordering!"); 3337 } 3338 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3339 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3340 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3345 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3346 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3347 llvm_unreachable("Unexpected abbrev ordering!"); 3348 } 3349 { // INST_CAST abbrev for FUNCTION_BLOCK. 3350 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3351 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3354 VE.computeBitsRequiredForTypeIndicies())); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3356 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3357 FUNCTION_INST_CAST_ABBREV) 3358 llvm_unreachable("Unexpected abbrev ordering!"); 3359 } 3360 3361 { // INST_RET abbrev for FUNCTION_BLOCK. 3362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3363 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3364 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3365 FUNCTION_INST_RET_VOID_ABBREV) 3366 llvm_unreachable("Unexpected abbrev ordering!"); 3367 } 3368 { // INST_RET abbrev for FUNCTION_BLOCK. 3369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3370 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3372 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3373 FUNCTION_INST_RET_VAL_ABBREV) 3374 llvm_unreachable("Unexpected abbrev ordering!"); 3375 } 3376 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3378 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3379 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3380 FUNCTION_INST_UNREACHABLE_ABBREV) 3381 llvm_unreachable("Unexpected abbrev ordering!"); 3382 } 3383 { 3384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3385 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3388 Log2_32_Ceil(VE.getTypes().size() + 1))); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3391 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3392 FUNCTION_INST_GEP_ABBREV) 3393 llvm_unreachable("Unexpected abbrev ordering!"); 3394 } 3395 3396 Stream.ExitBlock(); 3397 } 3398 3399 /// Write the module path strings, currently only used when generating 3400 /// a combined index file. 3401 void IndexBitcodeWriter::writeModStrings() { 3402 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3403 3404 // TODO: See which abbrev sizes we actually need to emit 3405 3406 // 8-bit fixed-width MST_ENTRY strings. 3407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3408 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3412 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3413 3414 // 7-bit fixed width MST_ENTRY strings. 3415 Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3420 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3421 3422 // 6-bit char6 MST_ENTRY strings. 3423 Abbv = std::make_shared<BitCodeAbbrev>(); 3424 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3428 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3429 3430 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3431 Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3438 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3439 3440 SmallVector<unsigned, 64> Vals; 3441 forEachModule( 3442 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3443 StringRef Key = MPSE.getKey(); 3444 const auto &Value = MPSE.getValue(); 3445 StringEncoding Bits = getStringEncoding(Key); 3446 unsigned AbbrevToUse = Abbrev8Bit; 3447 if (Bits == SE_Char6) 3448 AbbrevToUse = Abbrev6Bit; 3449 else if (Bits == SE_Fixed7) 3450 AbbrevToUse = Abbrev7Bit; 3451 3452 Vals.push_back(Value.first); 3453 Vals.append(Key.begin(), Key.end()); 3454 3455 // Emit the finished record. 3456 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3457 3458 // Emit an optional hash for the module now 3459 const auto &Hash = Value.second; 3460 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3461 Vals.assign(Hash.begin(), Hash.end()); 3462 // Emit the hash record. 3463 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3464 } 3465 3466 Vals.clear(); 3467 }); 3468 Stream.ExitBlock(); 3469 } 3470 3471 /// Write the function type metadata related records that need to appear before 3472 /// a function summary entry (whether per-module or combined). 3473 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3474 FunctionSummary *FS) { 3475 if (!FS->type_tests().empty()) 3476 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3477 3478 SmallVector<uint64_t, 64> Record; 3479 3480 auto WriteVFuncIdVec = [&](uint64_t Ty, 3481 ArrayRef<FunctionSummary::VFuncId> VFs) { 3482 if (VFs.empty()) 3483 return; 3484 Record.clear(); 3485 for (auto &VF : VFs) { 3486 Record.push_back(VF.GUID); 3487 Record.push_back(VF.Offset); 3488 } 3489 Stream.EmitRecord(Ty, Record); 3490 }; 3491 3492 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3493 FS->type_test_assume_vcalls()); 3494 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3495 FS->type_checked_load_vcalls()); 3496 3497 auto WriteConstVCallVec = [&](uint64_t Ty, 3498 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3499 for (auto &VC : VCs) { 3500 Record.clear(); 3501 Record.push_back(VC.VFunc.GUID); 3502 Record.push_back(VC.VFunc.Offset); 3503 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3504 Stream.EmitRecord(Ty, Record); 3505 } 3506 }; 3507 3508 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3509 FS->type_test_assume_const_vcalls()); 3510 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3511 FS->type_checked_load_const_vcalls()); 3512 } 3513 3514 /// Collect type IDs from type tests used by function. 3515 static void 3516 getReferencedTypeIds(FunctionSummary *FS, 3517 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3518 if (!FS->type_tests().empty()) 3519 for (auto &TT : FS->type_tests()) 3520 ReferencedTypeIds.insert(TT); 3521 3522 auto GetReferencedTypesFromVFuncIdVec = 3523 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3524 for (auto &VF : VFs) 3525 ReferencedTypeIds.insert(VF.GUID); 3526 }; 3527 3528 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3529 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3530 3531 auto GetReferencedTypesFromConstVCallVec = 3532 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3533 for (auto &VC : VCs) 3534 ReferencedTypeIds.insert(VC.VFunc.GUID); 3535 }; 3536 3537 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3538 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3539 } 3540 3541 static void writeWholeProgramDevirtResolutionByArg( 3542 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3543 const WholeProgramDevirtResolution::ByArg &ByArg) { 3544 NameVals.push_back(args.size()); 3545 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3546 3547 NameVals.push_back(ByArg.TheKind); 3548 NameVals.push_back(ByArg.Info); 3549 NameVals.push_back(ByArg.Byte); 3550 NameVals.push_back(ByArg.Bit); 3551 } 3552 3553 static void writeWholeProgramDevirtResolution( 3554 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3555 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3556 NameVals.push_back(Id); 3557 3558 NameVals.push_back(Wpd.TheKind); 3559 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3560 NameVals.push_back(Wpd.SingleImplName.size()); 3561 3562 NameVals.push_back(Wpd.ResByArg.size()); 3563 for (auto &A : Wpd.ResByArg) 3564 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3565 } 3566 3567 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3568 StringTableBuilder &StrtabBuilder, 3569 const std::string &Id, 3570 const TypeIdSummary &Summary) { 3571 NameVals.push_back(StrtabBuilder.add(Id)); 3572 NameVals.push_back(Id.size()); 3573 3574 NameVals.push_back(Summary.TTRes.TheKind); 3575 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3576 NameVals.push_back(Summary.TTRes.AlignLog2); 3577 NameVals.push_back(Summary.TTRes.SizeM1); 3578 NameVals.push_back(Summary.TTRes.BitMask); 3579 NameVals.push_back(Summary.TTRes.InlineBits); 3580 3581 for (auto &W : Summary.WPDRes) 3582 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3583 W.second); 3584 } 3585 3586 // Helper to emit a single function summary record. 3587 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3588 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3589 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3590 const Function &F) { 3591 NameVals.push_back(ValueID); 3592 3593 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3594 writeFunctionTypeMetadataRecords(Stream, FS); 3595 3596 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3597 NameVals.push_back(FS->instCount()); 3598 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3599 NameVals.push_back(FS->refs().size()); 3600 NameVals.push_back(FS->immutableRefCount()); 3601 3602 for (auto &RI : FS->refs()) 3603 NameVals.push_back(VE.getValueID(RI.getValue())); 3604 3605 bool HasProfileData = 3606 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3607 for (auto &ECI : FS->calls()) { 3608 NameVals.push_back(getValueId(ECI.first)); 3609 if (HasProfileData) 3610 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3611 else if (WriteRelBFToSummary) 3612 NameVals.push_back(ECI.second.RelBlockFreq); 3613 } 3614 3615 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3616 unsigned Code = 3617 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3618 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3619 : bitc::FS_PERMODULE)); 3620 3621 // Emit the finished record. 3622 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3623 NameVals.clear(); 3624 } 3625 3626 // Collect the global value references in the given variable's initializer, 3627 // and emit them in a summary record. 3628 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3629 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3630 unsigned FSModRefsAbbrev) { 3631 auto VI = Index->getValueInfo(V.getGUID()); 3632 if (!VI || VI.getSummaryList().empty()) { 3633 // Only declarations should not have a summary (a declaration might however 3634 // have a summary if the def was in module level asm). 3635 assert(V.isDeclaration()); 3636 return; 3637 } 3638 auto *Summary = VI.getSummaryList()[0].get(); 3639 NameVals.push_back(VE.getValueID(&V)); 3640 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3641 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3642 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3643 3644 unsigned SizeBeforeRefs = NameVals.size(); 3645 for (auto &RI : VS->refs()) 3646 NameVals.push_back(VE.getValueID(RI.getValue())); 3647 // Sort the refs for determinism output, the vector returned by FS->refs() has 3648 // been initialized from a DenseSet. 3649 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3650 3651 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3652 FSModRefsAbbrev); 3653 NameVals.clear(); 3654 } 3655 3656 // Current version for the summary. 3657 // This is bumped whenever we introduce changes in the way some record are 3658 // interpreted, like flags for instance. 3659 static const uint64_t INDEX_VERSION = 6; 3660 3661 /// Emit the per-module summary section alongside the rest of 3662 /// the module's bitcode. 3663 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3664 // By default we compile with ThinLTO if the module has a summary, but the 3665 // client can request full LTO with a module flag. 3666 bool IsThinLTO = true; 3667 if (auto *MD = 3668 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3669 IsThinLTO = MD->getZExtValue(); 3670 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3671 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3672 4); 3673 3674 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3675 3676 // Write the index flags. 3677 uint64_t Flags = 0; 3678 // Bits 1-3 are set only in the combined index, skip them. 3679 if (Index->enableSplitLTOUnit()) 3680 Flags |= 0x8; 3681 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3682 3683 if (Index->begin() == Index->end()) { 3684 Stream.ExitBlock(); 3685 return; 3686 } 3687 3688 for (const auto &GVI : valueIds()) { 3689 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3690 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3691 } 3692 3693 // Abbrev for FS_PERMODULE_PROFILE. 3694 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3695 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3702 // numrefs x valueid, n x (valueid, hotness) 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3705 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3706 3707 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3708 Abbv = std::make_shared<BitCodeAbbrev>(); 3709 if (WriteRelBFToSummary) 3710 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3711 else 3712 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3719 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3722 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3723 3724 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3725 Abbv = std::make_shared<BitCodeAbbrev>(); 3726 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3731 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3732 3733 // Abbrev for FS_ALIAS. 3734 Abbv = std::make_shared<BitCodeAbbrev>(); 3735 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3739 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3740 3741 SmallVector<uint64_t, 64> NameVals; 3742 // Iterate over the list of functions instead of the Index to 3743 // ensure the ordering is stable. 3744 for (const Function &F : M) { 3745 // Summary emission does not support anonymous functions, they have to 3746 // renamed using the anonymous function renaming pass. 3747 if (!F.hasName()) 3748 report_fatal_error("Unexpected anonymous function when writing summary"); 3749 3750 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3751 if (!VI || VI.getSummaryList().empty()) { 3752 // Only declarations should not have a summary (a declaration might 3753 // however have a summary if the def was in module level asm). 3754 assert(F.isDeclaration()); 3755 continue; 3756 } 3757 auto *Summary = VI.getSummaryList()[0].get(); 3758 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3759 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3760 } 3761 3762 // Capture references from GlobalVariable initializers, which are outside 3763 // of a function scope. 3764 for (const GlobalVariable &G : M.globals()) 3765 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3766 3767 for (const GlobalAlias &A : M.aliases()) { 3768 auto *Aliasee = A.getBaseObject(); 3769 if (!Aliasee->hasName()) 3770 // Nameless function don't have an entry in the summary, skip it. 3771 continue; 3772 auto AliasId = VE.getValueID(&A); 3773 auto AliaseeId = VE.getValueID(Aliasee); 3774 NameVals.push_back(AliasId); 3775 auto *Summary = Index->getGlobalValueSummary(A); 3776 AliasSummary *AS = cast<AliasSummary>(Summary); 3777 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3778 NameVals.push_back(AliaseeId); 3779 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3780 NameVals.clear(); 3781 } 3782 3783 Stream.ExitBlock(); 3784 } 3785 3786 /// Emit the combined summary section into the combined index file. 3787 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3788 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3789 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3790 3791 // Write the index flags. 3792 uint64_t Flags = 0; 3793 if (Index.withGlobalValueDeadStripping()) 3794 Flags |= 0x1; 3795 if (Index.skipModuleByDistributedBackend()) 3796 Flags |= 0x2; 3797 if (Index.hasSyntheticEntryCounts()) 3798 Flags |= 0x4; 3799 if (Index.enableSplitLTOUnit()) 3800 Flags |= 0x8; 3801 if (Index.partiallySplitLTOUnits()) 3802 Flags |= 0x10; 3803 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3804 3805 for (const auto &GVI : valueIds()) { 3806 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3807 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3808 } 3809 3810 // Abbrev for FS_COMBINED. 3811 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3812 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3821 // numrefs x valueid, n x (valueid) 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3824 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3825 3826 // Abbrev for FS_COMBINED_PROFILE. 3827 Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3836 // numrefs x valueid, n x (valueid, hotness) 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3839 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3840 3841 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3842 Abbv = std::make_shared<BitCodeAbbrev>(); 3843 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3849 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3850 3851 // Abbrev for FS_COMBINED_ALIAS. 3852 Abbv = std::make_shared<BitCodeAbbrev>(); 3853 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3858 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3859 3860 // The aliases are emitted as a post-pass, and will point to the value 3861 // id of the aliasee. Save them in a vector for post-processing. 3862 SmallVector<AliasSummary *, 64> Aliases; 3863 3864 // Save the value id for each summary for alias emission. 3865 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3866 3867 SmallVector<uint64_t, 64> NameVals; 3868 3869 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3870 // with the type ids referenced by this index file. 3871 std::set<GlobalValue::GUID> ReferencedTypeIds; 3872 3873 // For local linkage, we also emit the original name separately 3874 // immediately after the record. 3875 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3876 if (!GlobalValue::isLocalLinkage(S.linkage())) 3877 return; 3878 NameVals.push_back(S.getOriginalName()); 3879 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3880 NameVals.clear(); 3881 }; 3882 3883 forEachSummary([&](GVInfo I, bool IsAliasee) { 3884 GlobalValueSummary *S = I.second; 3885 assert(S); 3886 3887 auto ValueId = getValueId(I.first); 3888 assert(ValueId); 3889 SummaryToValueIdMap[S] = *ValueId; 3890 3891 // If this is invoked for an aliasee, we want to record the above 3892 // mapping, but then not emit a summary entry (if the aliasee is 3893 // to be imported, we will invoke this separately with IsAliasee=false). 3894 if (IsAliasee) 3895 return; 3896 3897 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3898 // Will process aliases as a post-pass because the reader wants all 3899 // global to be loaded first. 3900 Aliases.push_back(AS); 3901 return; 3902 } 3903 3904 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3905 NameVals.push_back(*ValueId); 3906 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3907 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3908 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3909 for (auto &RI : VS->refs()) { 3910 auto RefValueId = getValueId(RI.getGUID()); 3911 if (!RefValueId) 3912 continue; 3913 NameVals.push_back(*RefValueId); 3914 } 3915 3916 // Emit the finished record. 3917 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3918 FSModRefsAbbrev); 3919 NameVals.clear(); 3920 MaybeEmitOriginalName(*S); 3921 return; 3922 } 3923 3924 auto *FS = cast<FunctionSummary>(S); 3925 writeFunctionTypeMetadataRecords(Stream, FS); 3926 getReferencedTypeIds(FS, ReferencedTypeIds); 3927 3928 NameVals.push_back(*ValueId); 3929 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3930 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3931 NameVals.push_back(FS->instCount()); 3932 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3933 NameVals.push_back(FS->entryCount()); 3934 3935 // Fill in below 3936 NameVals.push_back(0); // numrefs 3937 NameVals.push_back(0); // immutablerefcnt 3938 3939 unsigned Count = 0, ImmutableRefCnt = 0; 3940 for (auto &RI : FS->refs()) { 3941 auto RefValueId = getValueId(RI.getGUID()); 3942 if (!RefValueId) 3943 continue; 3944 NameVals.push_back(*RefValueId); 3945 if (RI.isReadOnly()) 3946 ImmutableRefCnt++; 3947 Count++; 3948 } 3949 NameVals[6] = Count; 3950 NameVals[7] = ImmutableRefCnt; 3951 3952 bool HasProfileData = false; 3953 for (auto &EI : FS->calls()) { 3954 HasProfileData |= 3955 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3956 if (HasProfileData) 3957 break; 3958 } 3959 3960 for (auto &EI : FS->calls()) { 3961 // If this GUID doesn't have a value id, it doesn't have a function 3962 // summary and we don't need to record any calls to it. 3963 GlobalValue::GUID GUID = EI.first.getGUID(); 3964 auto CallValueId = getValueId(GUID); 3965 if (!CallValueId) { 3966 // For SamplePGO, the indirect call targets for local functions will 3967 // have its original name annotated in profile. We try to find the 3968 // corresponding PGOFuncName as the GUID. 3969 GUID = Index.getGUIDFromOriginalID(GUID); 3970 if (GUID == 0) 3971 continue; 3972 CallValueId = getValueId(GUID); 3973 if (!CallValueId) 3974 continue; 3975 // The mapping from OriginalId to GUID may return a GUID 3976 // that corresponds to a static variable. Filter it out here. 3977 // This can happen when 3978 // 1) There is a call to a library function which does not have 3979 // a CallValidId; 3980 // 2) There is a static variable with the OriginalGUID identical 3981 // to the GUID of the library function in 1); 3982 // When this happens, the logic for SamplePGO kicks in and 3983 // the static variable in 2) will be found, which needs to be 3984 // filtered out. 3985 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3986 if (GVSum && 3987 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3988 continue; 3989 } 3990 NameVals.push_back(*CallValueId); 3991 if (HasProfileData) 3992 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3993 } 3994 3995 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3996 unsigned Code = 3997 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3998 3999 // Emit the finished record. 4000 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4001 NameVals.clear(); 4002 MaybeEmitOriginalName(*S); 4003 }); 4004 4005 for (auto *AS : Aliases) { 4006 auto AliasValueId = SummaryToValueIdMap[AS]; 4007 assert(AliasValueId); 4008 NameVals.push_back(AliasValueId); 4009 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4010 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4011 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4012 assert(AliaseeValueId); 4013 NameVals.push_back(AliaseeValueId); 4014 4015 // Emit the finished record. 4016 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4017 NameVals.clear(); 4018 MaybeEmitOriginalName(*AS); 4019 4020 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4021 getReferencedTypeIds(FS, ReferencedTypeIds); 4022 } 4023 4024 if (!Index.cfiFunctionDefs().empty()) { 4025 for (auto &S : Index.cfiFunctionDefs()) { 4026 NameVals.push_back(StrtabBuilder.add(S)); 4027 NameVals.push_back(S.size()); 4028 } 4029 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4030 NameVals.clear(); 4031 } 4032 4033 if (!Index.cfiFunctionDecls().empty()) { 4034 for (auto &S : Index.cfiFunctionDecls()) { 4035 NameVals.push_back(StrtabBuilder.add(S)); 4036 NameVals.push_back(S.size()); 4037 } 4038 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4039 NameVals.clear(); 4040 } 4041 4042 // Walk the GUIDs that were referenced, and write the 4043 // corresponding type id records. 4044 for (auto &T : ReferencedTypeIds) { 4045 auto TidIter = Index.typeIds().equal_range(T); 4046 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4047 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4048 It->second.second); 4049 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4050 NameVals.clear(); 4051 } 4052 } 4053 4054 Stream.ExitBlock(); 4055 } 4056 4057 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4058 /// current llvm version, and a record for the epoch number. 4059 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4060 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4061 4062 // Write the "user readable" string identifying the bitcode producer 4063 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4064 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4067 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4068 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4069 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4070 4071 // Write the epoch version 4072 Abbv = std::make_shared<BitCodeAbbrev>(); 4073 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4075 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4076 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4077 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4078 Stream.ExitBlock(); 4079 } 4080 4081 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4082 // Emit the module's hash. 4083 // MODULE_CODE_HASH: [5*i32] 4084 if (GenerateHash) { 4085 uint32_t Vals[5]; 4086 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4087 Buffer.size() - BlockStartPos)); 4088 StringRef Hash = Hasher.result(); 4089 for (int Pos = 0; Pos < 20; Pos += 4) { 4090 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4091 } 4092 4093 // Emit the finished record. 4094 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4095 4096 if (ModHash) 4097 // Save the written hash value. 4098 llvm::copy(Vals, std::begin(*ModHash)); 4099 } 4100 } 4101 4102 void ModuleBitcodeWriter::write() { 4103 writeIdentificationBlock(Stream); 4104 4105 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4106 size_t BlockStartPos = Buffer.size(); 4107 4108 writeModuleVersion(); 4109 4110 // Emit blockinfo, which defines the standard abbreviations etc. 4111 writeBlockInfo(); 4112 4113 // Emit information about attribute groups. 4114 writeAttributeGroupTable(); 4115 4116 // Emit information about parameter attributes. 4117 writeAttributeTable(); 4118 4119 // Emit information describing all of the types in the module. 4120 writeTypeTable(); 4121 4122 writeComdats(); 4123 4124 // Emit top-level description of module, including target triple, inline asm, 4125 // descriptors for global variables, and function prototype info. 4126 writeModuleInfo(); 4127 4128 // Emit constants. 4129 writeModuleConstants(); 4130 4131 // Emit metadata kind names. 4132 writeModuleMetadataKinds(); 4133 4134 // Emit metadata. 4135 writeModuleMetadata(); 4136 4137 // Emit module-level use-lists. 4138 if (VE.shouldPreserveUseListOrder()) 4139 writeUseListBlock(nullptr); 4140 4141 writeOperandBundleTags(); 4142 writeSyncScopeNames(); 4143 4144 // Emit function bodies. 4145 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4146 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4147 if (!F->isDeclaration()) 4148 writeFunction(*F, FunctionToBitcodeIndex); 4149 4150 // Need to write after the above call to WriteFunction which populates 4151 // the summary information in the index. 4152 if (Index) 4153 writePerModuleGlobalValueSummary(); 4154 4155 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4156 4157 writeModuleHash(BlockStartPos); 4158 4159 Stream.ExitBlock(); 4160 } 4161 4162 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4163 uint32_t &Position) { 4164 support::endian::write32le(&Buffer[Position], Value); 4165 Position += 4; 4166 } 4167 4168 /// If generating a bc file on darwin, we have to emit a 4169 /// header and trailer to make it compatible with the system archiver. To do 4170 /// this we emit the following header, and then emit a trailer that pads the 4171 /// file out to be a multiple of 16 bytes. 4172 /// 4173 /// struct bc_header { 4174 /// uint32_t Magic; // 0x0B17C0DE 4175 /// uint32_t Version; // Version, currently always 0. 4176 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4177 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4178 /// uint32_t CPUType; // CPU specifier. 4179 /// ... potentially more later ... 4180 /// }; 4181 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4182 const Triple &TT) { 4183 unsigned CPUType = ~0U; 4184 4185 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4186 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4187 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4188 // specific constants here because they are implicitly part of the Darwin ABI. 4189 enum { 4190 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4191 DARWIN_CPU_TYPE_X86 = 7, 4192 DARWIN_CPU_TYPE_ARM = 12, 4193 DARWIN_CPU_TYPE_POWERPC = 18 4194 }; 4195 4196 Triple::ArchType Arch = TT.getArch(); 4197 if (Arch == Triple::x86_64) 4198 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4199 else if (Arch == Triple::x86) 4200 CPUType = DARWIN_CPU_TYPE_X86; 4201 else if (Arch == Triple::ppc) 4202 CPUType = DARWIN_CPU_TYPE_POWERPC; 4203 else if (Arch == Triple::ppc64) 4204 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4205 else if (Arch == Triple::arm || Arch == Triple::thumb) 4206 CPUType = DARWIN_CPU_TYPE_ARM; 4207 4208 // Traditional Bitcode starts after header. 4209 assert(Buffer.size() >= BWH_HeaderSize && 4210 "Expected header size to be reserved"); 4211 unsigned BCOffset = BWH_HeaderSize; 4212 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4213 4214 // Write the magic and version. 4215 unsigned Position = 0; 4216 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4217 writeInt32ToBuffer(0, Buffer, Position); // Version. 4218 writeInt32ToBuffer(BCOffset, Buffer, Position); 4219 writeInt32ToBuffer(BCSize, Buffer, Position); 4220 writeInt32ToBuffer(CPUType, Buffer, Position); 4221 4222 // If the file is not a multiple of 16 bytes, insert dummy padding. 4223 while (Buffer.size() & 15) 4224 Buffer.push_back(0); 4225 } 4226 4227 /// Helper to write the header common to all bitcode files. 4228 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4229 // Emit the file header. 4230 Stream.Emit((unsigned)'B', 8); 4231 Stream.Emit((unsigned)'C', 8); 4232 Stream.Emit(0x0, 4); 4233 Stream.Emit(0xC, 4); 4234 Stream.Emit(0xE, 4); 4235 Stream.Emit(0xD, 4); 4236 } 4237 4238 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4239 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4240 writeBitcodeHeader(*Stream); 4241 } 4242 4243 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4244 4245 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4246 Stream->EnterSubblock(Block, 3); 4247 4248 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4249 Abbv->Add(BitCodeAbbrevOp(Record)); 4250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4251 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4252 4253 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4254 4255 Stream->ExitBlock(); 4256 } 4257 4258 void BitcodeWriter::writeSymtab() { 4259 assert(!WroteStrtab && !WroteSymtab); 4260 4261 // If any module has module-level inline asm, we will require a registered asm 4262 // parser for the target so that we can create an accurate symbol table for 4263 // the module. 4264 for (Module *M : Mods) { 4265 if (M->getModuleInlineAsm().empty()) 4266 continue; 4267 4268 std::string Err; 4269 const Triple TT(M->getTargetTriple()); 4270 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4271 if (!T || !T->hasMCAsmParser()) 4272 return; 4273 } 4274 4275 WroteSymtab = true; 4276 SmallVector<char, 0> Symtab; 4277 // The irsymtab::build function may be unable to create a symbol table if the 4278 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4279 // table is not required for correctness, but we still want to be able to 4280 // write malformed modules to bitcode files, so swallow the error. 4281 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4282 consumeError(std::move(E)); 4283 return; 4284 } 4285 4286 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4287 {Symtab.data(), Symtab.size()}); 4288 } 4289 4290 void BitcodeWriter::writeStrtab() { 4291 assert(!WroteStrtab); 4292 4293 std::vector<char> Strtab; 4294 StrtabBuilder.finalizeInOrder(); 4295 Strtab.resize(StrtabBuilder.getSize()); 4296 StrtabBuilder.write((uint8_t *)Strtab.data()); 4297 4298 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4299 {Strtab.data(), Strtab.size()}); 4300 4301 WroteStrtab = true; 4302 } 4303 4304 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4305 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4306 WroteStrtab = true; 4307 } 4308 4309 void BitcodeWriter::writeModule(const Module &M, 4310 bool ShouldPreserveUseListOrder, 4311 const ModuleSummaryIndex *Index, 4312 bool GenerateHash, ModuleHash *ModHash) { 4313 assert(!WroteStrtab); 4314 4315 // The Mods vector is used by irsymtab::build, which requires non-const 4316 // Modules in case it needs to materialize metadata. But the bitcode writer 4317 // requires that the module is materialized, so we can cast to non-const here, 4318 // after checking that it is in fact materialized. 4319 assert(M.isMaterialized()); 4320 Mods.push_back(const_cast<Module *>(&M)); 4321 4322 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4323 ShouldPreserveUseListOrder, Index, 4324 GenerateHash, ModHash); 4325 ModuleWriter.write(); 4326 } 4327 4328 void BitcodeWriter::writeIndex( 4329 const ModuleSummaryIndex *Index, 4330 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4331 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4332 ModuleToSummariesForIndex); 4333 IndexWriter.write(); 4334 } 4335 4336 /// Write the specified module to the specified output stream. 4337 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4338 bool ShouldPreserveUseListOrder, 4339 const ModuleSummaryIndex *Index, 4340 bool GenerateHash, ModuleHash *ModHash) { 4341 SmallVector<char, 0> Buffer; 4342 Buffer.reserve(256*1024); 4343 4344 // If this is darwin or another generic macho target, reserve space for the 4345 // header. 4346 Triple TT(M.getTargetTriple()); 4347 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4348 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4349 4350 BitcodeWriter Writer(Buffer); 4351 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4352 ModHash); 4353 Writer.writeSymtab(); 4354 Writer.writeStrtab(); 4355 4356 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4357 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4358 4359 // Write the generated bitstream to "Out". 4360 Out.write((char*)&Buffer.front(), Buffer.size()); 4361 } 4362 4363 void IndexBitcodeWriter::write() { 4364 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4365 4366 writeModuleVersion(); 4367 4368 // Write the module paths in the combined index. 4369 writeModStrings(); 4370 4371 // Write the summary combined index records. 4372 writeCombinedGlobalValueSummary(); 4373 4374 Stream.ExitBlock(); 4375 } 4376 4377 // Write the specified module summary index to the given raw output stream, 4378 // where it will be written in a new bitcode block. This is used when 4379 // writing the combined index file for ThinLTO. When writing a subset of the 4380 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4381 void llvm::WriteIndexToFile( 4382 const ModuleSummaryIndex &Index, raw_ostream &Out, 4383 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4384 SmallVector<char, 0> Buffer; 4385 Buffer.reserve(256 * 1024); 4386 4387 BitcodeWriter Writer(Buffer); 4388 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4389 Writer.writeStrtab(); 4390 4391 Out.write((char *)&Buffer.front(), Buffer.size()); 4392 } 4393 4394 namespace { 4395 4396 /// Class to manage the bitcode writing for a thin link bitcode file. 4397 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4398 /// ModHash is for use in ThinLTO incremental build, generated while writing 4399 /// the module bitcode file. 4400 const ModuleHash *ModHash; 4401 4402 public: 4403 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4404 BitstreamWriter &Stream, 4405 const ModuleSummaryIndex &Index, 4406 const ModuleHash &ModHash) 4407 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4408 /*ShouldPreserveUseListOrder=*/false, &Index), 4409 ModHash(&ModHash) {} 4410 4411 void write(); 4412 4413 private: 4414 void writeSimplifiedModuleInfo(); 4415 }; 4416 4417 } // end anonymous namespace 4418 4419 // This function writes a simpilified module info for thin link bitcode file. 4420 // It only contains the source file name along with the name(the offset and 4421 // size in strtab) and linkage for global values. For the global value info 4422 // entry, in order to keep linkage at offset 5, there are three zeros used 4423 // as padding. 4424 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4425 SmallVector<unsigned, 64> Vals; 4426 // Emit the module's source file name. 4427 { 4428 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4429 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4430 if (Bits == SE_Char6) 4431 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4432 else if (Bits == SE_Fixed7) 4433 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4434 4435 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4437 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4439 Abbv->Add(AbbrevOpToUse); 4440 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4441 4442 for (const auto P : M.getSourceFileName()) 4443 Vals.push_back((unsigned char)P); 4444 4445 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4446 Vals.clear(); 4447 } 4448 4449 // Emit the global variable information. 4450 for (const GlobalVariable &GV : M.globals()) { 4451 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4452 Vals.push_back(StrtabBuilder.add(GV.getName())); 4453 Vals.push_back(GV.getName().size()); 4454 Vals.push_back(0); 4455 Vals.push_back(0); 4456 Vals.push_back(0); 4457 Vals.push_back(getEncodedLinkage(GV)); 4458 4459 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4460 Vals.clear(); 4461 } 4462 4463 // Emit the function proto information. 4464 for (const Function &F : M) { 4465 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4466 Vals.push_back(StrtabBuilder.add(F.getName())); 4467 Vals.push_back(F.getName().size()); 4468 Vals.push_back(0); 4469 Vals.push_back(0); 4470 Vals.push_back(0); 4471 Vals.push_back(getEncodedLinkage(F)); 4472 4473 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4474 Vals.clear(); 4475 } 4476 4477 // Emit the alias information. 4478 for (const GlobalAlias &A : M.aliases()) { 4479 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4480 Vals.push_back(StrtabBuilder.add(A.getName())); 4481 Vals.push_back(A.getName().size()); 4482 Vals.push_back(0); 4483 Vals.push_back(0); 4484 Vals.push_back(0); 4485 Vals.push_back(getEncodedLinkage(A)); 4486 4487 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4488 Vals.clear(); 4489 } 4490 4491 // Emit the ifunc information. 4492 for (const GlobalIFunc &I : M.ifuncs()) { 4493 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4494 Vals.push_back(StrtabBuilder.add(I.getName())); 4495 Vals.push_back(I.getName().size()); 4496 Vals.push_back(0); 4497 Vals.push_back(0); 4498 Vals.push_back(0); 4499 Vals.push_back(getEncodedLinkage(I)); 4500 4501 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4502 Vals.clear(); 4503 } 4504 } 4505 4506 void ThinLinkBitcodeWriter::write() { 4507 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4508 4509 writeModuleVersion(); 4510 4511 writeSimplifiedModuleInfo(); 4512 4513 writePerModuleGlobalValueSummary(); 4514 4515 // Write module hash. 4516 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4517 4518 Stream.ExitBlock(); 4519 } 4520 4521 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4522 const ModuleSummaryIndex &Index, 4523 const ModuleHash &ModHash) { 4524 assert(!WroteStrtab); 4525 4526 // The Mods vector is used by irsymtab::build, which requires non-const 4527 // Modules in case it needs to materialize metadata. But the bitcode writer 4528 // requires that the module is materialized, so we can cast to non-const here, 4529 // after checking that it is in fact materialized. 4530 assert(M.isMaterialized()); 4531 Mods.push_back(const_cast<Module *>(&M)); 4532 4533 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4534 ModHash); 4535 ThinLinkWriter.write(); 4536 } 4537 4538 // Write the specified thin link bitcode file to the given raw output stream, 4539 // where it will be written in a new bitcode block. This is used when 4540 // writing the per-module index file for ThinLTO. 4541 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4542 const ModuleSummaryIndex &Index, 4543 const ModuleHash &ModHash) { 4544 SmallVector<char, 0> Buffer; 4545 Buffer.reserve(256 * 1024); 4546 4547 BitcodeWriter Writer(Buffer); 4548 Writer.writeThinLinkBitcode(M, Index, ModHash); 4549 Writer.writeSymtab(); 4550 Writer.writeStrtab(); 4551 4552 Out.write((char *)&Buffer.front(), Buffer.size()); 4553 } 4554