1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 65 // SwitchInst Magic 66 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 67 }; 68 69 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 70 switch (Opcode) { 71 default: llvm_unreachable("Unknown cast instruction!"); 72 case Instruction::Trunc : return bitc::CAST_TRUNC; 73 case Instruction::ZExt : return bitc::CAST_ZEXT; 74 case Instruction::SExt : return bitc::CAST_SEXT; 75 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 76 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 77 case Instruction::UIToFP : return bitc::CAST_UITOFP; 78 case Instruction::SIToFP : return bitc::CAST_SITOFP; 79 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 80 case Instruction::FPExt : return bitc::CAST_FPEXT; 81 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 82 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 83 case Instruction::BitCast : return bitc::CAST_BITCAST; 84 } 85 } 86 87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 88 switch (Opcode) { 89 default: llvm_unreachable("Unknown binary instruction!"); 90 case Instruction::Add: 91 case Instruction::FAdd: return bitc::BINOP_ADD; 92 case Instruction::Sub: 93 case Instruction::FSub: return bitc::BINOP_SUB; 94 case Instruction::Mul: 95 case Instruction::FMul: return bitc::BINOP_MUL; 96 case Instruction::UDiv: return bitc::BINOP_UDIV; 97 case Instruction::FDiv: 98 case Instruction::SDiv: return bitc::BINOP_SDIV; 99 case Instruction::URem: return bitc::BINOP_UREM; 100 case Instruction::FRem: 101 case Instruction::SRem: return bitc::BINOP_SREM; 102 case Instruction::Shl: return bitc::BINOP_SHL; 103 case Instruction::LShr: return bitc::BINOP_LSHR; 104 case Instruction::AShr: return bitc::BINOP_ASHR; 105 case Instruction::And: return bitc::BINOP_AND; 106 case Instruction::Or: return bitc::BINOP_OR; 107 case Instruction::Xor: return bitc::BINOP_XOR; 108 } 109 } 110 111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 112 switch (Op) { 113 default: llvm_unreachable("Unknown RMW operation!"); 114 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 115 case AtomicRMWInst::Add: return bitc::RMW_ADD; 116 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 117 case AtomicRMWInst::And: return bitc::RMW_AND; 118 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 119 case AtomicRMWInst::Or: return bitc::RMW_OR; 120 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 121 case AtomicRMWInst::Max: return bitc::RMW_MAX; 122 case AtomicRMWInst::Min: return bitc::RMW_MIN; 123 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 124 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 125 } 126 } 127 128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 129 switch (Ordering) { 130 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 131 case Unordered: return bitc::ORDERING_UNORDERED; 132 case Monotonic: return bitc::ORDERING_MONOTONIC; 133 case Acquire: return bitc::ORDERING_ACQUIRE; 134 case Release: return bitc::ORDERING_RELEASE; 135 case AcquireRelease: return bitc::ORDERING_ACQREL; 136 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 137 } 138 llvm_unreachable("Invalid ordering"); 139 } 140 141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 142 switch (SynchScope) { 143 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 144 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 145 } 146 llvm_unreachable("Invalid synch scope"); 147 } 148 149 static void WriteStringRecord(unsigned Code, StringRef Str, 150 unsigned AbbrevToUse, BitstreamWriter &Stream) { 151 SmallVector<unsigned, 64> Vals; 152 153 // Code: [strchar x N] 154 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 155 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 156 AbbrevToUse = 0; 157 Vals.push_back(Str[i]); 158 } 159 160 // Emit the finished record. 161 Stream.EmitRecord(Code, Vals, AbbrevToUse); 162 } 163 164 // Emit information about parameter attributes. 165 static void WriteAttributeTable(const ValueEnumerator &VE, 166 BitstreamWriter &Stream) { 167 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 168 if (Attrs.empty()) return; 169 170 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 171 172 SmallVector<uint64_t, 64> Record; 173 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 174 const AttrListPtr &A = Attrs[i]; 175 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 176 const AttributeWithIndex &PAWI = A.getSlot(i); 177 Record.push_back(PAWI.Index); 178 Record.push_back(Attributes::encodeLLVMAttributesForBitcode(PAWI.Attrs)); 179 } 180 181 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 182 Record.clear(); 183 } 184 185 Stream.ExitBlock(); 186 } 187 188 /// WriteTypeTable - Write out the type table for a module. 189 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 190 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 191 192 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 193 SmallVector<uint64_t, 64> TypeVals; 194 195 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 196 197 // Abbrev for TYPE_CODE_POINTER. 198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 199 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 201 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 202 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 203 204 // Abbrev for TYPE_CODE_FUNCTION. 205 Abbv = new BitCodeAbbrev(); 206 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 210 211 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 212 213 // Abbrev for TYPE_CODE_STRUCT_ANON. 214 Abbv = new BitCodeAbbrev(); 215 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 219 220 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 221 222 // Abbrev for TYPE_CODE_STRUCT_NAME. 223 Abbv = new BitCodeAbbrev(); 224 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 227 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 228 229 // Abbrev for TYPE_CODE_STRUCT_NAMED. 230 Abbv = new BitCodeAbbrev(); 231 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 235 236 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 237 238 // Abbrev for TYPE_CODE_ARRAY. 239 Abbv = new BitCodeAbbrev(); 240 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 243 244 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 245 246 // Emit an entry count so the reader can reserve space. 247 TypeVals.push_back(TypeList.size()); 248 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 249 TypeVals.clear(); 250 251 // Loop over all of the types, emitting each in turn. 252 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 253 Type *T = TypeList[i]; 254 int AbbrevToUse = 0; 255 unsigned Code = 0; 256 257 switch (T->getTypeID()) { 258 default: llvm_unreachable("Unknown type!"); 259 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 260 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 261 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 262 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 263 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 264 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 265 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 266 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 267 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 268 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 269 case Type::IntegerTyID: 270 // INTEGER: [width] 271 Code = bitc::TYPE_CODE_INTEGER; 272 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 273 break; 274 case Type::PointerTyID: { 275 PointerType *PTy = cast<PointerType>(T); 276 // POINTER: [pointee type, address space] 277 Code = bitc::TYPE_CODE_POINTER; 278 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 279 unsigned AddressSpace = PTy->getAddressSpace(); 280 TypeVals.push_back(AddressSpace); 281 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 282 break; 283 } 284 case Type::FunctionTyID: { 285 FunctionType *FT = cast<FunctionType>(T); 286 // FUNCTION: [isvararg, retty, paramty x N] 287 Code = bitc::TYPE_CODE_FUNCTION; 288 TypeVals.push_back(FT->isVarArg()); 289 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 291 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 292 AbbrevToUse = FunctionAbbrev; 293 break; 294 } 295 case Type::StructTyID: { 296 StructType *ST = cast<StructType>(T); 297 // STRUCT: [ispacked, eltty x N] 298 TypeVals.push_back(ST->isPacked()); 299 // Output all of the element types. 300 for (StructType::element_iterator I = ST->element_begin(), 301 E = ST->element_end(); I != E; ++I) 302 TypeVals.push_back(VE.getTypeID(*I)); 303 304 if (ST->isLiteral()) { 305 Code = bitc::TYPE_CODE_STRUCT_ANON; 306 AbbrevToUse = StructAnonAbbrev; 307 } else { 308 if (ST->isOpaque()) { 309 Code = bitc::TYPE_CODE_OPAQUE; 310 } else { 311 Code = bitc::TYPE_CODE_STRUCT_NAMED; 312 AbbrevToUse = StructNamedAbbrev; 313 } 314 315 // Emit the name if it is present. 316 if (!ST->getName().empty()) 317 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 318 StructNameAbbrev, Stream); 319 } 320 break; 321 } 322 case Type::ArrayTyID: { 323 ArrayType *AT = cast<ArrayType>(T); 324 // ARRAY: [numelts, eltty] 325 Code = bitc::TYPE_CODE_ARRAY; 326 TypeVals.push_back(AT->getNumElements()); 327 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 328 AbbrevToUse = ArrayAbbrev; 329 break; 330 } 331 case Type::VectorTyID: { 332 VectorType *VT = cast<VectorType>(T); 333 // VECTOR [numelts, eltty] 334 Code = bitc::TYPE_CODE_VECTOR; 335 TypeVals.push_back(VT->getNumElements()); 336 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 337 break; 338 } 339 } 340 341 // Emit the finished record. 342 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 343 TypeVals.clear(); 344 } 345 346 Stream.ExitBlock(); 347 } 348 349 static unsigned getEncodedLinkage(const GlobalValue *GV) { 350 switch (GV->getLinkage()) { 351 case GlobalValue::ExternalLinkage: return 0; 352 case GlobalValue::WeakAnyLinkage: return 1; 353 case GlobalValue::AppendingLinkage: return 2; 354 case GlobalValue::InternalLinkage: return 3; 355 case GlobalValue::LinkOnceAnyLinkage: return 4; 356 case GlobalValue::DLLImportLinkage: return 5; 357 case GlobalValue::DLLExportLinkage: return 6; 358 case GlobalValue::ExternalWeakLinkage: return 7; 359 case GlobalValue::CommonLinkage: return 8; 360 case GlobalValue::PrivateLinkage: return 9; 361 case GlobalValue::WeakODRLinkage: return 10; 362 case GlobalValue::LinkOnceODRLinkage: return 11; 363 case GlobalValue::AvailableExternallyLinkage: return 12; 364 case GlobalValue::LinkerPrivateLinkage: return 13; 365 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 366 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; 367 } 368 llvm_unreachable("Invalid linkage"); 369 } 370 371 static unsigned getEncodedVisibility(const GlobalValue *GV) { 372 switch (GV->getVisibility()) { 373 case GlobalValue::DefaultVisibility: return 0; 374 case GlobalValue::HiddenVisibility: return 1; 375 case GlobalValue::ProtectedVisibility: return 2; 376 } 377 llvm_unreachable("Invalid visibility"); 378 } 379 380 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 381 switch (GV->getThreadLocalMode()) { 382 case GlobalVariable::NotThreadLocal: return 0; 383 case GlobalVariable::GeneralDynamicTLSModel: return 1; 384 case GlobalVariable::LocalDynamicTLSModel: return 2; 385 case GlobalVariable::InitialExecTLSModel: return 3; 386 case GlobalVariable::LocalExecTLSModel: return 4; 387 } 388 llvm_unreachable("Invalid TLS model"); 389 } 390 391 // Emit top-level description of module, including target triple, inline asm, 392 // descriptors for global variables, and function prototype info. 393 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 394 BitstreamWriter &Stream) { 395 // Emit the list of dependent libraries for the Module. 396 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 397 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 398 399 // Emit various pieces of data attached to a module. 400 if (!M->getTargetTriple().empty()) 401 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 402 0/*TODO*/, Stream); 403 if (!M->getDataLayout().empty()) 404 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 405 0/*TODO*/, Stream); 406 if (!M->getModuleInlineAsm().empty()) 407 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 408 0/*TODO*/, Stream); 409 410 // Emit information about sections and GC, computing how many there are. Also 411 // compute the maximum alignment value. 412 std::map<std::string, unsigned> SectionMap; 413 std::map<std::string, unsigned> GCMap; 414 unsigned MaxAlignment = 0; 415 unsigned MaxGlobalType = 0; 416 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 417 GV != E; ++GV) { 418 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 419 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 420 if (GV->hasSection()) { 421 // Give section names unique ID's. 422 unsigned &Entry = SectionMap[GV->getSection()]; 423 if (!Entry) { 424 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 425 0/*TODO*/, Stream); 426 Entry = SectionMap.size(); 427 } 428 } 429 } 430 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 431 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 432 if (F->hasSection()) { 433 // Give section names unique ID's. 434 unsigned &Entry = SectionMap[F->getSection()]; 435 if (!Entry) { 436 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 437 0/*TODO*/, Stream); 438 Entry = SectionMap.size(); 439 } 440 } 441 if (F->hasGC()) { 442 // Same for GC names. 443 unsigned &Entry = GCMap[F->getGC()]; 444 if (!Entry) { 445 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 446 0/*TODO*/, Stream); 447 Entry = GCMap.size(); 448 } 449 } 450 } 451 452 // Emit abbrev for globals, now that we know # sections and max alignment. 453 unsigned SimpleGVarAbbrev = 0; 454 if (!M->global_empty()) { 455 // Add an abbrev for common globals with no visibility or thread localness. 456 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 457 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 459 Log2_32_Ceil(MaxGlobalType+1))); 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 463 if (MaxAlignment == 0) // Alignment. 464 Abbv->Add(BitCodeAbbrevOp(0)); 465 else { 466 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 468 Log2_32_Ceil(MaxEncAlignment+1))); 469 } 470 if (SectionMap.empty()) // Section. 471 Abbv->Add(BitCodeAbbrevOp(0)); 472 else 473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 474 Log2_32_Ceil(SectionMap.size()+1))); 475 // Don't bother emitting vis + thread local. 476 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 477 } 478 479 // Emit the global variable information. 480 SmallVector<unsigned, 64> Vals; 481 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 482 GV != E; ++GV) { 483 unsigned AbbrevToUse = 0; 484 485 // GLOBALVAR: [type, isconst, initid, 486 // linkage, alignment, section, visibility, threadlocal, 487 // unnamed_addr] 488 Vals.push_back(VE.getTypeID(GV->getType())); 489 Vals.push_back(GV->isConstant()); 490 Vals.push_back(GV->isDeclaration() ? 0 : 491 (VE.getValueID(GV->getInitializer()) + 1)); 492 Vals.push_back(getEncodedLinkage(GV)); 493 Vals.push_back(Log2_32(GV->getAlignment())+1); 494 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 495 if (GV->isThreadLocal() || 496 GV->getVisibility() != GlobalValue::DefaultVisibility || 497 GV->hasUnnamedAddr()) { 498 Vals.push_back(getEncodedVisibility(GV)); 499 Vals.push_back(getEncodedThreadLocalMode(GV)); 500 Vals.push_back(GV->hasUnnamedAddr()); 501 } else { 502 AbbrevToUse = SimpleGVarAbbrev; 503 } 504 505 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 506 Vals.clear(); 507 } 508 509 // Emit the function proto information. 510 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 511 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 512 // section, visibility, gc, unnamed_addr] 513 Vals.push_back(VE.getTypeID(F->getType())); 514 Vals.push_back(F->getCallingConv()); 515 Vals.push_back(F->isDeclaration()); 516 Vals.push_back(getEncodedLinkage(F)); 517 Vals.push_back(VE.getAttributeID(F->getAttributes())); 518 Vals.push_back(Log2_32(F->getAlignment())+1); 519 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 520 Vals.push_back(getEncodedVisibility(F)); 521 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 522 Vals.push_back(F->hasUnnamedAddr()); 523 524 unsigned AbbrevToUse = 0; 525 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 526 Vals.clear(); 527 } 528 529 // Emit the alias information. 530 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 531 AI != E; ++AI) { 532 // ALIAS: [alias type, aliasee val#, linkage, visibility] 533 Vals.push_back(VE.getTypeID(AI->getType())); 534 Vals.push_back(VE.getValueID(AI->getAliasee())); 535 Vals.push_back(getEncodedLinkage(AI)); 536 Vals.push_back(getEncodedVisibility(AI)); 537 unsigned AbbrevToUse = 0; 538 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 539 Vals.clear(); 540 } 541 } 542 543 static uint64_t GetOptimizationFlags(const Value *V) { 544 uint64_t Flags = 0; 545 546 if (const OverflowingBinaryOperator *OBO = 547 dyn_cast<OverflowingBinaryOperator>(V)) { 548 if (OBO->hasNoSignedWrap()) 549 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 550 if (OBO->hasNoUnsignedWrap()) 551 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 552 } else if (const PossiblyExactOperator *PEO = 553 dyn_cast<PossiblyExactOperator>(V)) { 554 if (PEO->isExact()) 555 Flags |= 1 << bitc::PEO_EXACT; 556 } 557 558 return Flags; 559 } 560 561 static void WriteMDNode(const MDNode *N, 562 const ValueEnumerator &VE, 563 BitstreamWriter &Stream, 564 SmallVector<uint64_t, 64> &Record) { 565 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 566 if (N->getOperand(i)) { 567 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 568 Record.push_back(VE.getValueID(N->getOperand(i))); 569 } else { 570 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 571 Record.push_back(0); 572 } 573 } 574 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 575 bitc::METADATA_NODE; 576 Stream.EmitRecord(MDCode, Record, 0); 577 Record.clear(); 578 } 579 580 static void WriteModuleMetadata(const Module *M, 581 const ValueEnumerator &VE, 582 BitstreamWriter &Stream) { 583 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 584 bool StartedMetadataBlock = false; 585 unsigned MDSAbbrev = 0; 586 SmallVector<uint64_t, 64> Record; 587 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 588 589 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 590 if (!N->isFunctionLocal() || !N->getFunction()) { 591 if (!StartedMetadataBlock) { 592 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 593 StartedMetadataBlock = true; 594 } 595 WriteMDNode(N, VE, Stream, Record); 596 } 597 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 598 if (!StartedMetadataBlock) { 599 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 600 601 // Abbrev for METADATA_STRING. 602 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 603 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 606 MDSAbbrev = Stream.EmitAbbrev(Abbv); 607 StartedMetadataBlock = true; 608 } 609 610 // Code: [strchar x N] 611 Record.append(MDS->begin(), MDS->end()); 612 613 // Emit the finished record. 614 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 615 Record.clear(); 616 } 617 } 618 619 // Write named metadata. 620 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 621 E = M->named_metadata_end(); I != E; ++I) { 622 const NamedMDNode *NMD = I; 623 if (!StartedMetadataBlock) { 624 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 625 StartedMetadataBlock = true; 626 } 627 628 // Write name. 629 StringRef Str = NMD->getName(); 630 for (unsigned i = 0, e = Str.size(); i != e; ++i) 631 Record.push_back(Str[i]); 632 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 633 Record.clear(); 634 635 // Write named metadata operands. 636 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 637 Record.push_back(VE.getValueID(NMD->getOperand(i))); 638 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 639 Record.clear(); 640 } 641 642 if (StartedMetadataBlock) 643 Stream.ExitBlock(); 644 } 645 646 static void WriteFunctionLocalMetadata(const Function &F, 647 const ValueEnumerator &VE, 648 BitstreamWriter &Stream) { 649 bool StartedMetadataBlock = false; 650 SmallVector<uint64_t, 64> Record; 651 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 652 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 653 if (const MDNode *N = Vals[i]) 654 if (N->isFunctionLocal() && N->getFunction() == &F) { 655 if (!StartedMetadataBlock) { 656 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 657 StartedMetadataBlock = true; 658 } 659 WriteMDNode(N, VE, Stream, Record); 660 } 661 662 if (StartedMetadataBlock) 663 Stream.ExitBlock(); 664 } 665 666 static void WriteMetadataAttachment(const Function &F, 667 const ValueEnumerator &VE, 668 BitstreamWriter &Stream) { 669 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 670 671 SmallVector<uint64_t, 64> Record; 672 673 // Write metadata attachments 674 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 675 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 676 677 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 678 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 679 I != E; ++I) { 680 MDs.clear(); 681 I->getAllMetadataOtherThanDebugLoc(MDs); 682 683 // If no metadata, ignore instruction. 684 if (MDs.empty()) continue; 685 686 Record.push_back(VE.getInstructionID(I)); 687 688 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 689 Record.push_back(MDs[i].first); 690 Record.push_back(VE.getValueID(MDs[i].second)); 691 } 692 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 693 Record.clear(); 694 } 695 696 Stream.ExitBlock(); 697 } 698 699 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 700 SmallVector<uint64_t, 64> Record; 701 702 // Write metadata kinds 703 // METADATA_KIND - [n x [id, name]] 704 SmallVector<StringRef, 4> Names; 705 M->getMDKindNames(Names); 706 707 if (Names.empty()) return; 708 709 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 710 711 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 712 Record.push_back(MDKindID); 713 StringRef KName = Names[MDKindID]; 714 Record.append(KName.begin(), KName.end()); 715 716 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 717 Record.clear(); 718 } 719 720 Stream.ExitBlock(); 721 } 722 723 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 724 if ((int64_t)V >= 0) 725 Vals.push_back(V << 1); 726 else 727 Vals.push_back((-V << 1) | 1); 728 } 729 730 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, 731 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 732 bool EmitSizeForWideNumbers = false 733 ) { 734 if (Val.getBitWidth() <= 64) { 735 uint64_t V = Val.getSExtValue(); 736 emitSignedInt64(Vals, V); 737 Code = bitc::CST_CODE_INTEGER; 738 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 739 } else { 740 // Wide integers, > 64 bits in size. 741 // We have an arbitrary precision integer value to write whose 742 // bit width is > 64. However, in canonical unsigned integer 743 // format it is likely that the high bits are going to be zero. 744 // So, we only write the number of active words. 745 unsigned NWords = Val.getActiveWords(); 746 747 if (EmitSizeForWideNumbers) 748 Vals.push_back(NWords); 749 750 const uint64_t *RawWords = Val.getRawData(); 751 for (unsigned i = 0; i != NWords; ++i) { 752 emitSignedInt64(Vals, RawWords[i]); 753 } 754 Code = bitc::CST_CODE_WIDE_INTEGER; 755 } 756 } 757 758 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 759 const ValueEnumerator &VE, 760 BitstreamWriter &Stream, bool isGlobal) { 761 if (FirstVal == LastVal) return; 762 763 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 764 765 unsigned AggregateAbbrev = 0; 766 unsigned String8Abbrev = 0; 767 unsigned CString7Abbrev = 0; 768 unsigned CString6Abbrev = 0; 769 // If this is a constant pool for the module, emit module-specific abbrevs. 770 if (isGlobal) { 771 // Abbrev for CST_CODE_AGGREGATE. 772 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 773 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 776 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 777 778 // Abbrev for CST_CODE_STRING. 779 Abbv = new BitCodeAbbrev(); 780 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 783 String8Abbrev = Stream.EmitAbbrev(Abbv); 784 // Abbrev for CST_CODE_CSTRING. 785 Abbv = new BitCodeAbbrev(); 786 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 789 CString7Abbrev = Stream.EmitAbbrev(Abbv); 790 // Abbrev for CST_CODE_CSTRING. 791 Abbv = new BitCodeAbbrev(); 792 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 795 CString6Abbrev = Stream.EmitAbbrev(Abbv); 796 } 797 798 SmallVector<uint64_t, 64> Record; 799 800 const ValueEnumerator::ValueList &Vals = VE.getValues(); 801 Type *LastTy = 0; 802 for (unsigned i = FirstVal; i != LastVal; ++i) { 803 const Value *V = Vals[i].first; 804 // If we need to switch types, do so now. 805 if (V->getType() != LastTy) { 806 LastTy = V->getType(); 807 Record.push_back(VE.getTypeID(LastTy)); 808 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 809 CONSTANTS_SETTYPE_ABBREV); 810 Record.clear(); 811 } 812 813 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 814 Record.push_back(unsigned(IA->hasSideEffects()) | 815 unsigned(IA->isAlignStack()) << 1 | 816 unsigned(IA->getDialect()&1) << 2); 817 818 // Add the asm string. 819 const std::string &AsmStr = IA->getAsmString(); 820 Record.push_back(AsmStr.size()); 821 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 822 Record.push_back(AsmStr[i]); 823 824 // Add the constraint string. 825 const std::string &ConstraintStr = IA->getConstraintString(); 826 Record.push_back(ConstraintStr.size()); 827 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 828 Record.push_back(ConstraintStr[i]); 829 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 830 Record.clear(); 831 continue; 832 } 833 const Constant *C = cast<Constant>(V); 834 unsigned Code = -1U; 835 unsigned AbbrevToUse = 0; 836 if (C->isNullValue()) { 837 Code = bitc::CST_CODE_NULL; 838 } else if (isa<UndefValue>(C)) { 839 Code = bitc::CST_CODE_UNDEF; 840 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 841 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 842 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 843 Code = bitc::CST_CODE_FLOAT; 844 Type *Ty = CFP->getType(); 845 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 846 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 847 } else if (Ty->isX86_FP80Ty()) { 848 // api needed to prevent premature destruction 849 // bits are not in the same order as a normal i80 APInt, compensate. 850 APInt api = CFP->getValueAPF().bitcastToAPInt(); 851 const uint64_t *p = api.getRawData(); 852 Record.push_back((p[1] << 48) | (p[0] >> 16)); 853 Record.push_back(p[0] & 0xffffLL); 854 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 855 APInt api = CFP->getValueAPF().bitcastToAPInt(); 856 const uint64_t *p = api.getRawData(); 857 Record.push_back(p[0]); 858 Record.push_back(p[1]); 859 } else { 860 assert (0 && "Unknown FP type!"); 861 } 862 } else if (isa<ConstantDataSequential>(C) && 863 cast<ConstantDataSequential>(C)->isString()) { 864 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 865 // Emit constant strings specially. 866 unsigned NumElts = Str->getNumElements(); 867 // If this is a null-terminated string, use the denser CSTRING encoding. 868 if (Str->isCString()) { 869 Code = bitc::CST_CODE_CSTRING; 870 --NumElts; // Don't encode the null, which isn't allowed by char6. 871 } else { 872 Code = bitc::CST_CODE_STRING; 873 AbbrevToUse = String8Abbrev; 874 } 875 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 876 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 877 for (unsigned i = 0; i != NumElts; ++i) { 878 unsigned char V = Str->getElementAsInteger(i); 879 Record.push_back(V); 880 isCStr7 &= (V & 128) == 0; 881 if (isCStrChar6) 882 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 883 } 884 885 if (isCStrChar6) 886 AbbrevToUse = CString6Abbrev; 887 else if (isCStr7) 888 AbbrevToUse = CString7Abbrev; 889 } else if (const ConstantDataSequential *CDS = 890 dyn_cast<ConstantDataSequential>(C)) { 891 Code = bitc::CST_CODE_DATA; 892 Type *EltTy = CDS->getType()->getElementType(); 893 if (isa<IntegerType>(EltTy)) { 894 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 895 Record.push_back(CDS->getElementAsInteger(i)); 896 } else if (EltTy->isFloatTy()) { 897 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 898 union { float F; uint32_t I; }; 899 F = CDS->getElementAsFloat(i); 900 Record.push_back(I); 901 } 902 } else { 903 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 904 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 905 union { double F; uint64_t I; }; 906 F = CDS->getElementAsDouble(i); 907 Record.push_back(I); 908 } 909 } 910 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 911 isa<ConstantVector>(C)) { 912 Code = bitc::CST_CODE_AGGREGATE; 913 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 914 Record.push_back(VE.getValueID(C->getOperand(i))); 915 AbbrevToUse = AggregateAbbrev; 916 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 917 switch (CE->getOpcode()) { 918 default: 919 if (Instruction::isCast(CE->getOpcode())) { 920 Code = bitc::CST_CODE_CE_CAST; 921 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 922 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 923 Record.push_back(VE.getValueID(C->getOperand(0))); 924 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 925 } else { 926 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 927 Code = bitc::CST_CODE_CE_BINOP; 928 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 929 Record.push_back(VE.getValueID(C->getOperand(0))); 930 Record.push_back(VE.getValueID(C->getOperand(1))); 931 uint64_t Flags = GetOptimizationFlags(CE); 932 if (Flags != 0) 933 Record.push_back(Flags); 934 } 935 break; 936 case Instruction::GetElementPtr: 937 Code = bitc::CST_CODE_CE_GEP; 938 if (cast<GEPOperator>(C)->isInBounds()) 939 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 940 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 941 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 942 Record.push_back(VE.getValueID(C->getOperand(i))); 943 } 944 break; 945 case Instruction::Select: 946 Code = bitc::CST_CODE_CE_SELECT; 947 Record.push_back(VE.getValueID(C->getOperand(0))); 948 Record.push_back(VE.getValueID(C->getOperand(1))); 949 Record.push_back(VE.getValueID(C->getOperand(2))); 950 break; 951 case Instruction::ExtractElement: 952 Code = bitc::CST_CODE_CE_EXTRACTELT; 953 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 954 Record.push_back(VE.getValueID(C->getOperand(0))); 955 Record.push_back(VE.getValueID(C->getOperand(1))); 956 break; 957 case Instruction::InsertElement: 958 Code = bitc::CST_CODE_CE_INSERTELT; 959 Record.push_back(VE.getValueID(C->getOperand(0))); 960 Record.push_back(VE.getValueID(C->getOperand(1))); 961 Record.push_back(VE.getValueID(C->getOperand(2))); 962 break; 963 case Instruction::ShuffleVector: 964 // If the return type and argument types are the same, this is a 965 // standard shufflevector instruction. If the types are different, 966 // then the shuffle is widening or truncating the input vectors, and 967 // the argument type must also be encoded. 968 if (C->getType() == C->getOperand(0)->getType()) { 969 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 970 } else { 971 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 972 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 973 } 974 Record.push_back(VE.getValueID(C->getOperand(0))); 975 Record.push_back(VE.getValueID(C->getOperand(1))); 976 Record.push_back(VE.getValueID(C->getOperand(2))); 977 break; 978 case Instruction::ICmp: 979 case Instruction::FCmp: 980 Code = bitc::CST_CODE_CE_CMP; 981 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 982 Record.push_back(VE.getValueID(C->getOperand(0))); 983 Record.push_back(VE.getValueID(C->getOperand(1))); 984 Record.push_back(CE->getPredicate()); 985 break; 986 } 987 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 988 Code = bitc::CST_CODE_BLOCKADDRESS; 989 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 990 Record.push_back(VE.getValueID(BA->getFunction())); 991 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 992 } else { 993 #ifndef NDEBUG 994 C->dump(); 995 #endif 996 llvm_unreachable("Unknown constant!"); 997 } 998 Stream.EmitRecord(Code, Record, AbbrevToUse); 999 Record.clear(); 1000 } 1001 1002 Stream.ExitBlock(); 1003 } 1004 1005 static void WriteModuleConstants(const ValueEnumerator &VE, 1006 BitstreamWriter &Stream) { 1007 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1008 1009 // Find the first constant to emit, which is the first non-globalvalue value. 1010 // We know globalvalues have been emitted by WriteModuleInfo. 1011 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1012 if (!isa<GlobalValue>(Vals[i].first)) { 1013 WriteConstants(i, Vals.size(), VE, Stream, true); 1014 return; 1015 } 1016 } 1017 } 1018 1019 /// PushValueAndType - The file has to encode both the value and type id for 1020 /// many values, because we need to know what type to create for forward 1021 /// references. However, most operands are not forward references, so this type 1022 /// field is not needed. 1023 /// 1024 /// This function adds V's value ID to Vals. If the value ID is higher than the 1025 /// instruction ID, then it is a forward reference, and it also includes the 1026 /// type ID. The value ID that is written is encoded relative to the InstID. 1027 static bool PushValueAndType(const Value *V, unsigned InstID, 1028 SmallVector<unsigned, 64> &Vals, 1029 ValueEnumerator &VE) { 1030 unsigned ValID = VE.getValueID(V); 1031 // Make encoding relative to the InstID. 1032 Vals.push_back(InstID - ValID); 1033 if (ValID >= InstID) { 1034 Vals.push_back(VE.getTypeID(V->getType())); 1035 return true; 1036 } 1037 return false; 1038 } 1039 1040 /// pushValue - Like PushValueAndType, but where the type of the value is 1041 /// omitted (perhaps it was already encoded in an earlier operand). 1042 static void pushValue(const Value *V, unsigned InstID, 1043 SmallVector<unsigned, 64> &Vals, 1044 ValueEnumerator &VE) { 1045 unsigned ValID = VE.getValueID(V); 1046 Vals.push_back(InstID - ValID); 1047 } 1048 1049 static void pushValue64(const Value *V, unsigned InstID, 1050 SmallVector<uint64_t, 128> &Vals, 1051 ValueEnumerator &VE) { 1052 uint64_t ValID = VE.getValueID(V); 1053 Vals.push_back(InstID - ValID); 1054 } 1055 1056 static void pushValueSigned(const Value *V, unsigned InstID, 1057 SmallVector<uint64_t, 128> &Vals, 1058 ValueEnumerator &VE) { 1059 unsigned ValID = VE.getValueID(V); 1060 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1061 emitSignedInt64(Vals, diff); 1062 } 1063 1064 /// WriteInstruction - Emit an instruction to the specified stream. 1065 static void WriteInstruction(const Instruction &I, unsigned InstID, 1066 ValueEnumerator &VE, BitstreamWriter &Stream, 1067 SmallVector<unsigned, 64> &Vals) { 1068 unsigned Code = 0; 1069 unsigned AbbrevToUse = 0; 1070 VE.setInstructionID(&I); 1071 switch (I.getOpcode()) { 1072 default: 1073 if (Instruction::isCast(I.getOpcode())) { 1074 Code = bitc::FUNC_CODE_INST_CAST; 1075 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1076 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1077 Vals.push_back(VE.getTypeID(I.getType())); 1078 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1079 } else { 1080 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1081 Code = bitc::FUNC_CODE_INST_BINOP; 1082 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1083 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1084 pushValue(I.getOperand(1), InstID, Vals, VE); 1085 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1086 uint64_t Flags = GetOptimizationFlags(&I); 1087 if (Flags != 0) { 1088 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1089 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1090 Vals.push_back(Flags); 1091 } 1092 } 1093 break; 1094 1095 case Instruction::GetElementPtr: 1096 Code = bitc::FUNC_CODE_INST_GEP; 1097 if (cast<GEPOperator>(&I)->isInBounds()) 1098 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1099 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1100 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1101 break; 1102 case Instruction::ExtractValue: { 1103 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1104 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1105 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1106 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1107 Vals.push_back(*i); 1108 break; 1109 } 1110 case Instruction::InsertValue: { 1111 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1112 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1113 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1114 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1115 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1116 Vals.push_back(*i); 1117 break; 1118 } 1119 case Instruction::Select: 1120 Code = bitc::FUNC_CODE_INST_VSELECT; 1121 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1122 pushValue(I.getOperand(2), InstID, Vals, VE); 1123 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1124 break; 1125 case Instruction::ExtractElement: 1126 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1127 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1128 pushValue(I.getOperand(1), InstID, Vals, VE); 1129 break; 1130 case Instruction::InsertElement: 1131 Code = bitc::FUNC_CODE_INST_INSERTELT; 1132 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1133 pushValue(I.getOperand(1), InstID, Vals, VE); 1134 pushValue(I.getOperand(2), InstID, Vals, VE); 1135 break; 1136 case Instruction::ShuffleVector: 1137 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1138 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1139 pushValue(I.getOperand(1), InstID, Vals, VE); 1140 pushValue(I.getOperand(2), InstID, Vals, VE); 1141 break; 1142 case Instruction::ICmp: 1143 case Instruction::FCmp: 1144 // compare returning Int1Ty or vector of Int1Ty 1145 Code = bitc::FUNC_CODE_INST_CMP2; 1146 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1147 pushValue(I.getOperand(1), InstID, Vals, VE); 1148 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1149 break; 1150 1151 case Instruction::Ret: 1152 { 1153 Code = bitc::FUNC_CODE_INST_RET; 1154 unsigned NumOperands = I.getNumOperands(); 1155 if (NumOperands == 0) 1156 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1157 else if (NumOperands == 1) { 1158 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1159 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1160 } else { 1161 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1162 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1163 } 1164 } 1165 break; 1166 case Instruction::Br: 1167 { 1168 Code = bitc::FUNC_CODE_INST_BR; 1169 BranchInst &II = cast<BranchInst>(I); 1170 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1171 if (II.isConditional()) { 1172 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1173 pushValue(II.getCondition(), InstID, Vals, VE); 1174 } 1175 } 1176 break; 1177 case Instruction::Switch: 1178 { 1179 // Redefine Vals, since here we need to use 64 bit values 1180 // explicitly to store large APInt numbers. 1181 SmallVector<uint64_t, 128> Vals64; 1182 1183 Code = bitc::FUNC_CODE_INST_SWITCH; 1184 SwitchInst &SI = cast<SwitchInst>(I); 1185 1186 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); 1187 Vals64.push_back(SwitchRecordHeader); 1188 1189 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); 1190 pushValue64(SI.getCondition(), InstID, Vals64, VE); 1191 Vals64.push_back(VE.getValueID(SI.getDefaultDest())); 1192 Vals64.push_back(SI.getNumCases()); 1193 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1194 i != e; ++i) { 1195 IntegersSubset& CaseRanges = i.getCaseValueEx(); 1196 unsigned Code, Abbrev; // will unused. 1197 1198 if (CaseRanges.isSingleNumber()) { 1199 Vals64.push_back(1/*NumItems = 1*/); 1200 Vals64.push_back(true/*IsSingleNumber = true*/); 1201 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true); 1202 } else { 1203 1204 Vals64.push_back(CaseRanges.getNumItems()); 1205 1206 if (CaseRanges.isSingleNumbersOnly()) { 1207 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1208 ri != rn; ++ri) { 1209 1210 Vals64.push_back(true/*IsSingleNumber = true*/); 1211 1212 EmitAPInt(Vals64, Code, Abbrev, 1213 CaseRanges.getSingleNumber(ri), true); 1214 } 1215 } else 1216 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1217 ri != rn; ++ri) { 1218 IntegersSubset::Range r = CaseRanges.getItem(ri); 1219 bool IsSingleNumber = CaseRanges.isSingleNumber(ri); 1220 1221 Vals64.push_back(IsSingleNumber); 1222 1223 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true); 1224 if (!IsSingleNumber) 1225 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true); 1226 } 1227 } 1228 Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); 1229 } 1230 1231 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1232 1233 // Also do expected action - clear external Vals collection: 1234 Vals.clear(); 1235 return; 1236 } 1237 break; 1238 case Instruction::IndirectBr: 1239 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1240 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1241 // Encode the address operand as relative, but not the basic blocks. 1242 pushValue(I.getOperand(0), InstID, Vals, VE); 1243 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1244 Vals.push_back(VE.getValueID(I.getOperand(i))); 1245 break; 1246 1247 case Instruction::Invoke: { 1248 const InvokeInst *II = cast<InvokeInst>(&I); 1249 const Value *Callee(II->getCalledValue()); 1250 PointerType *PTy = cast<PointerType>(Callee->getType()); 1251 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1252 Code = bitc::FUNC_CODE_INST_INVOKE; 1253 1254 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1255 Vals.push_back(II->getCallingConv()); 1256 Vals.push_back(VE.getValueID(II->getNormalDest())); 1257 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1258 PushValueAndType(Callee, InstID, Vals, VE); 1259 1260 // Emit value #'s for the fixed parameters. 1261 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1262 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1263 1264 // Emit type/value pairs for varargs params. 1265 if (FTy->isVarArg()) { 1266 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1267 i != e; ++i) 1268 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1269 } 1270 break; 1271 } 1272 case Instruction::Resume: 1273 Code = bitc::FUNC_CODE_INST_RESUME; 1274 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1275 break; 1276 case Instruction::Unreachable: 1277 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1278 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1279 break; 1280 1281 case Instruction::PHI: { 1282 const PHINode &PN = cast<PHINode>(I); 1283 Code = bitc::FUNC_CODE_INST_PHI; 1284 // With the newer instruction encoding, forward references could give 1285 // negative valued IDs. This is most common for PHIs, so we use 1286 // signed VBRs. 1287 SmallVector<uint64_t, 128> Vals64; 1288 Vals64.push_back(VE.getTypeID(PN.getType())); 1289 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1290 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1291 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1292 } 1293 // Emit a Vals64 vector and exit. 1294 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1295 Vals64.clear(); 1296 return; 1297 } 1298 1299 case Instruction::LandingPad: { 1300 const LandingPadInst &LP = cast<LandingPadInst>(I); 1301 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1302 Vals.push_back(VE.getTypeID(LP.getType())); 1303 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1304 Vals.push_back(LP.isCleanup()); 1305 Vals.push_back(LP.getNumClauses()); 1306 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1307 if (LP.isCatch(I)) 1308 Vals.push_back(LandingPadInst::Catch); 1309 else 1310 Vals.push_back(LandingPadInst::Filter); 1311 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1312 } 1313 break; 1314 } 1315 1316 case Instruction::Alloca: 1317 Code = bitc::FUNC_CODE_INST_ALLOCA; 1318 Vals.push_back(VE.getTypeID(I.getType())); 1319 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1320 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1321 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1322 break; 1323 1324 case Instruction::Load: 1325 if (cast<LoadInst>(I).isAtomic()) { 1326 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1327 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1328 } else { 1329 Code = bitc::FUNC_CODE_INST_LOAD; 1330 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1331 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1332 } 1333 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1334 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1335 if (cast<LoadInst>(I).isAtomic()) { 1336 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1337 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1338 } 1339 break; 1340 case Instruction::Store: 1341 if (cast<StoreInst>(I).isAtomic()) 1342 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1343 else 1344 Code = bitc::FUNC_CODE_INST_STORE; 1345 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1346 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1347 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1348 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1349 if (cast<StoreInst>(I).isAtomic()) { 1350 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1351 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1352 } 1353 break; 1354 case Instruction::AtomicCmpXchg: 1355 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1356 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1357 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1358 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1359 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1360 Vals.push_back(GetEncodedOrdering( 1361 cast<AtomicCmpXchgInst>(I).getOrdering())); 1362 Vals.push_back(GetEncodedSynchScope( 1363 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1364 break; 1365 case Instruction::AtomicRMW: 1366 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1367 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1368 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1369 Vals.push_back(GetEncodedRMWOperation( 1370 cast<AtomicRMWInst>(I).getOperation())); 1371 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1372 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1373 Vals.push_back(GetEncodedSynchScope( 1374 cast<AtomicRMWInst>(I).getSynchScope())); 1375 break; 1376 case Instruction::Fence: 1377 Code = bitc::FUNC_CODE_INST_FENCE; 1378 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1379 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1380 break; 1381 case Instruction::Call: { 1382 const CallInst &CI = cast<CallInst>(I); 1383 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1384 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1385 1386 Code = bitc::FUNC_CODE_INST_CALL; 1387 1388 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1389 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1390 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1391 1392 // Emit value #'s for the fixed parameters. 1393 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1394 // Check for labels (can happen with asm labels). 1395 if (FTy->getParamType(i)->isLabelTy()) 1396 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1397 else 1398 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1399 } 1400 1401 // Emit type/value pairs for varargs params. 1402 if (FTy->isVarArg()) { 1403 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1404 i != e; ++i) 1405 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1406 } 1407 break; 1408 } 1409 case Instruction::VAArg: 1410 Code = bitc::FUNC_CODE_INST_VAARG; 1411 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1412 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1413 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1414 break; 1415 } 1416 1417 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1418 Vals.clear(); 1419 } 1420 1421 // Emit names for globals/functions etc. 1422 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1423 const ValueEnumerator &VE, 1424 BitstreamWriter &Stream) { 1425 if (VST.empty()) return; 1426 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1427 1428 // FIXME: Set up the abbrev, we know how many values there are! 1429 // FIXME: We know if the type names can use 7-bit ascii. 1430 SmallVector<unsigned, 64> NameVals; 1431 1432 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1433 SI != SE; ++SI) { 1434 1435 const ValueName &Name = *SI; 1436 1437 // Figure out the encoding to use for the name. 1438 bool is7Bit = true; 1439 bool isChar6 = true; 1440 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1441 C != E; ++C) { 1442 if (isChar6) 1443 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1444 if ((unsigned char)*C & 128) { 1445 is7Bit = false; 1446 break; // don't bother scanning the rest. 1447 } 1448 } 1449 1450 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1451 1452 // VST_ENTRY: [valueid, namechar x N] 1453 // VST_BBENTRY: [bbid, namechar x N] 1454 unsigned Code; 1455 if (isa<BasicBlock>(SI->getValue())) { 1456 Code = bitc::VST_CODE_BBENTRY; 1457 if (isChar6) 1458 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1459 } else { 1460 Code = bitc::VST_CODE_ENTRY; 1461 if (isChar6) 1462 AbbrevToUse = VST_ENTRY_6_ABBREV; 1463 else if (is7Bit) 1464 AbbrevToUse = VST_ENTRY_7_ABBREV; 1465 } 1466 1467 NameVals.push_back(VE.getValueID(SI->getValue())); 1468 for (const char *P = Name.getKeyData(), 1469 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1470 NameVals.push_back((unsigned char)*P); 1471 1472 // Emit the finished record. 1473 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1474 NameVals.clear(); 1475 } 1476 Stream.ExitBlock(); 1477 } 1478 1479 /// WriteFunction - Emit a function body to the module stream. 1480 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1481 BitstreamWriter &Stream) { 1482 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1483 VE.incorporateFunction(F); 1484 1485 SmallVector<unsigned, 64> Vals; 1486 1487 // Emit the number of basic blocks, so the reader can create them ahead of 1488 // time. 1489 Vals.push_back(VE.getBasicBlocks().size()); 1490 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1491 Vals.clear(); 1492 1493 // If there are function-local constants, emit them now. 1494 unsigned CstStart, CstEnd; 1495 VE.getFunctionConstantRange(CstStart, CstEnd); 1496 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1497 1498 // If there is function-local metadata, emit it now. 1499 WriteFunctionLocalMetadata(F, VE, Stream); 1500 1501 // Keep a running idea of what the instruction ID is. 1502 unsigned InstID = CstEnd; 1503 1504 bool NeedsMetadataAttachment = false; 1505 1506 DebugLoc LastDL; 1507 1508 // Finally, emit all the instructions, in order. 1509 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1510 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1511 I != E; ++I) { 1512 WriteInstruction(*I, InstID, VE, Stream, Vals); 1513 1514 if (!I->getType()->isVoidTy()) 1515 ++InstID; 1516 1517 // If the instruction has metadata, write a metadata attachment later. 1518 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1519 1520 // If the instruction has a debug location, emit it. 1521 DebugLoc DL = I->getDebugLoc(); 1522 if (DL.isUnknown()) { 1523 // nothing todo. 1524 } else if (DL == LastDL) { 1525 // Just repeat the same debug loc as last time. 1526 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1527 } else { 1528 MDNode *Scope, *IA; 1529 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1530 1531 Vals.push_back(DL.getLine()); 1532 Vals.push_back(DL.getCol()); 1533 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1534 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1535 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1536 Vals.clear(); 1537 1538 LastDL = DL; 1539 } 1540 } 1541 1542 // Emit names for all the instructions etc. 1543 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1544 1545 if (NeedsMetadataAttachment) 1546 WriteMetadataAttachment(F, VE, Stream); 1547 VE.purgeFunction(); 1548 Stream.ExitBlock(); 1549 } 1550 1551 // Emit blockinfo, which defines the standard abbreviations etc. 1552 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1553 // We only want to emit block info records for blocks that have multiple 1554 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1555 // Other blocks can define their abbrevs inline. 1556 Stream.EnterBlockInfoBlock(2); 1557 1558 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1559 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1564 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1565 Abbv) != VST_ENTRY_8_ABBREV) 1566 llvm_unreachable("Unexpected abbrev ordering!"); 1567 } 1568 1569 { // 7-bit fixed width VST_ENTRY strings. 1570 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1571 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1575 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1576 Abbv) != VST_ENTRY_7_ABBREV) 1577 llvm_unreachable("Unexpected abbrev ordering!"); 1578 } 1579 { // 6-bit char6 VST_ENTRY strings. 1580 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1581 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1585 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1586 Abbv) != VST_ENTRY_6_ABBREV) 1587 llvm_unreachable("Unexpected abbrev ordering!"); 1588 } 1589 { // 6-bit char6 VST_BBENTRY strings. 1590 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1591 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1595 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1596 Abbv) != VST_BBENTRY_6_ABBREV) 1597 llvm_unreachable("Unexpected abbrev ordering!"); 1598 } 1599 1600 1601 1602 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1603 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1604 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1606 Log2_32_Ceil(VE.getTypes().size()+1))); 1607 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1608 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1609 llvm_unreachable("Unexpected abbrev ordering!"); 1610 } 1611 1612 { // INTEGER abbrev for CONSTANTS_BLOCK. 1613 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1614 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1616 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1617 Abbv) != CONSTANTS_INTEGER_ABBREV) 1618 llvm_unreachable("Unexpected abbrev ordering!"); 1619 } 1620 1621 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1622 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1623 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1626 Log2_32_Ceil(VE.getTypes().size()+1))); 1627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1628 1629 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1630 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1631 llvm_unreachable("Unexpected abbrev ordering!"); 1632 } 1633 { // NULL abbrev for CONSTANTS_BLOCK. 1634 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1635 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1636 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1637 Abbv) != CONSTANTS_NULL_Abbrev) 1638 llvm_unreachable("Unexpected abbrev ordering!"); 1639 } 1640 1641 // FIXME: This should only use space for first class types! 1642 1643 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1644 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1645 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1649 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1650 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1651 llvm_unreachable("Unexpected abbrev ordering!"); 1652 } 1653 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1654 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1655 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1659 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1660 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1661 llvm_unreachable("Unexpected abbrev ordering!"); 1662 } 1663 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1664 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1665 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1670 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1671 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1672 llvm_unreachable("Unexpected abbrev ordering!"); 1673 } 1674 { // INST_CAST abbrev for FUNCTION_BLOCK. 1675 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1676 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1679 Log2_32_Ceil(VE.getTypes().size()+1))); 1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1681 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1682 Abbv) != FUNCTION_INST_CAST_ABBREV) 1683 llvm_unreachable("Unexpected abbrev ordering!"); 1684 } 1685 1686 { // INST_RET abbrev for FUNCTION_BLOCK. 1687 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1688 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1689 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1690 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1691 llvm_unreachable("Unexpected abbrev ordering!"); 1692 } 1693 { // INST_RET abbrev for FUNCTION_BLOCK. 1694 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1695 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1697 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1698 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1699 llvm_unreachable("Unexpected abbrev ordering!"); 1700 } 1701 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1703 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1704 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1705 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1706 llvm_unreachable("Unexpected abbrev ordering!"); 1707 } 1708 1709 Stream.ExitBlock(); 1710 } 1711 1712 // Sort the Users based on the order in which the reader parses the bitcode 1713 // file. 1714 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1715 // TODO: Implement. 1716 return true; 1717 } 1718 1719 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1720 BitstreamWriter &Stream) { 1721 1722 // One or zero uses can't get out of order. 1723 if (V->use_empty() || V->hasNUses(1)) 1724 return; 1725 1726 // Make a copy of the in-memory use-list for sorting. 1727 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1728 SmallVector<const User*, 8> UseList; 1729 UseList.reserve(UseListSize); 1730 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1731 I != E; ++I) { 1732 const User *U = *I; 1733 UseList.push_back(U); 1734 } 1735 1736 // Sort the copy based on the order read by the BitcodeReader. 1737 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1738 1739 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1740 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1741 1742 // TODO: Emit the USELIST_CODE_ENTRYs. 1743 } 1744 1745 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1746 BitstreamWriter &Stream) { 1747 VE.incorporateFunction(*F); 1748 1749 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1750 AI != AE; ++AI) 1751 WriteUseList(AI, VE, Stream); 1752 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1753 ++BB) { 1754 WriteUseList(BB, VE, Stream); 1755 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1756 ++II) { 1757 WriteUseList(II, VE, Stream); 1758 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1759 OI != E; ++OI) { 1760 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1761 isa<InlineAsm>(*OI)) 1762 WriteUseList(*OI, VE, Stream); 1763 } 1764 } 1765 } 1766 VE.purgeFunction(); 1767 } 1768 1769 // Emit use-lists. 1770 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1771 BitstreamWriter &Stream) { 1772 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1773 1774 // XXX: this modifies the module, but in a way that should never change the 1775 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1776 // contain entries in the use_list that do not exist in the Module and are 1777 // not stored in the .bc file. 1778 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1779 I != E; ++I) 1780 I->removeDeadConstantUsers(); 1781 1782 // Write the global variables. 1783 for (Module::const_global_iterator GI = M->global_begin(), 1784 GE = M->global_end(); GI != GE; ++GI) { 1785 WriteUseList(GI, VE, Stream); 1786 1787 // Write the global variable initializers. 1788 if (GI->hasInitializer()) 1789 WriteUseList(GI->getInitializer(), VE, Stream); 1790 } 1791 1792 // Write the functions. 1793 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1794 WriteUseList(FI, VE, Stream); 1795 if (!FI->isDeclaration()) 1796 WriteFunctionUseList(FI, VE, Stream); 1797 } 1798 1799 // Write the aliases. 1800 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1801 AI != AE; ++AI) { 1802 WriteUseList(AI, VE, Stream); 1803 WriteUseList(AI->getAliasee(), VE, Stream); 1804 } 1805 1806 Stream.ExitBlock(); 1807 } 1808 1809 /// WriteModule - Emit the specified module to the bitstream. 1810 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1811 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1812 1813 SmallVector<unsigned, 1> Vals; 1814 unsigned CurVersion = 1; 1815 Vals.push_back(CurVersion); 1816 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1817 1818 // Analyze the module, enumerating globals, functions, etc. 1819 ValueEnumerator VE(M); 1820 1821 // Emit blockinfo, which defines the standard abbreviations etc. 1822 WriteBlockInfo(VE, Stream); 1823 1824 // Emit information about parameter attributes. 1825 WriteAttributeTable(VE, Stream); 1826 1827 // Emit information describing all of the types in the module. 1828 WriteTypeTable(VE, Stream); 1829 1830 // Emit top-level description of module, including target triple, inline asm, 1831 // descriptors for global variables, and function prototype info. 1832 WriteModuleInfo(M, VE, Stream); 1833 1834 // Emit constants. 1835 WriteModuleConstants(VE, Stream); 1836 1837 // Emit metadata. 1838 WriteModuleMetadata(M, VE, Stream); 1839 1840 // Emit metadata. 1841 WriteModuleMetadataStore(M, Stream); 1842 1843 // Emit names for globals/functions etc. 1844 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1845 1846 // Emit use-lists. 1847 if (EnablePreserveUseListOrdering) 1848 WriteModuleUseLists(M, VE, Stream); 1849 1850 // Emit function bodies. 1851 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1852 if (!F->isDeclaration()) 1853 WriteFunction(*F, VE, Stream); 1854 1855 Stream.ExitBlock(); 1856 } 1857 1858 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1859 /// header and trailer to make it compatible with the system archiver. To do 1860 /// this we emit the following header, and then emit a trailer that pads the 1861 /// file out to be a multiple of 16 bytes. 1862 /// 1863 /// struct bc_header { 1864 /// uint32_t Magic; // 0x0B17C0DE 1865 /// uint32_t Version; // Version, currently always 0. 1866 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1867 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1868 /// uint32_t CPUType; // CPU specifier. 1869 /// ... potentially more later ... 1870 /// }; 1871 enum { 1872 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1873 DarwinBCHeaderSize = 5*4 1874 }; 1875 1876 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1877 uint32_t &Position) { 1878 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1879 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1880 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1881 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1882 Position += 4; 1883 } 1884 1885 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1886 const Triple &TT) { 1887 unsigned CPUType = ~0U; 1888 1889 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1890 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1891 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1892 // specific constants here because they are implicitly part of the Darwin ABI. 1893 enum { 1894 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1895 DARWIN_CPU_TYPE_X86 = 7, 1896 DARWIN_CPU_TYPE_ARM = 12, 1897 DARWIN_CPU_TYPE_POWERPC = 18 1898 }; 1899 1900 Triple::ArchType Arch = TT.getArch(); 1901 if (Arch == Triple::x86_64) 1902 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1903 else if (Arch == Triple::x86) 1904 CPUType = DARWIN_CPU_TYPE_X86; 1905 else if (Arch == Triple::ppc) 1906 CPUType = DARWIN_CPU_TYPE_POWERPC; 1907 else if (Arch == Triple::ppc64) 1908 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1909 else if (Arch == Triple::arm || Arch == Triple::thumb) 1910 CPUType = DARWIN_CPU_TYPE_ARM; 1911 1912 // Traditional Bitcode starts after header. 1913 assert(Buffer.size() >= DarwinBCHeaderSize && 1914 "Expected header size to be reserved"); 1915 unsigned BCOffset = DarwinBCHeaderSize; 1916 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1917 1918 // Write the magic and version. 1919 unsigned Position = 0; 1920 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1921 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1922 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1923 WriteInt32ToBuffer(BCSize , Buffer, Position); 1924 WriteInt32ToBuffer(CPUType , Buffer, Position); 1925 1926 // If the file is not a multiple of 16 bytes, insert dummy padding. 1927 while (Buffer.size() & 15) 1928 Buffer.push_back(0); 1929 } 1930 1931 /// WriteBitcodeToFile - Write the specified module to the specified output 1932 /// stream. 1933 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1934 SmallVector<char, 1024> Buffer; 1935 Buffer.reserve(256*1024); 1936 1937 // If this is darwin or another generic macho target, reserve space for the 1938 // header. 1939 Triple TT(M->getTargetTriple()); 1940 if (TT.isOSDarwin()) 1941 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1942 1943 // Emit the module into the buffer. 1944 { 1945 BitstreamWriter Stream(Buffer); 1946 1947 // Emit the file header. 1948 Stream.Emit((unsigned)'B', 8); 1949 Stream.Emit((unsigned)'C', 8); 1950 Stream.Emit(0x0, 4); 1951 Stream.Emit(0xC, 4); 1952 Stream.Emit(0xE, 4); 1953 Stream.Emit(0xD, 4); 1954 1955 // Emit the module. 1956 WriteModule(M, Stream); 1957 } 1958 1959 if (TT.isOSDarwin()) 1960 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1961 1962 // Write the generated bitstream to "Out". 1963 Out.write((char*)&Buffer.front(), Buffer.size()); 1964 } 1965