xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 1f10c5ea943b0f13df9d61ca22dc964760ecc45f)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/ValueSymbolTable.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Program.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cctype>
32 #include <map>
33 using namespace llvm;
34 
35 static cl::opt<bool>
36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
37                               cl::desc("Turn on experimental support for "
38                                        "use-list order preservation."),
39                               cl::init(false), cl::Hidden);
40 
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44   // VALUE_SYMTAB_BLOCK abbrev id's.
45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   VST_ENTRY_7_ABBREV,
47   VST_ENTRY_6_ABBREV,
48   VST_BBENTRY_6_ABBREV,
49 
50   // CONSTANTS_BLOCK abbrev id's.
51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   CONSTANTS_INTEGER_ABBREV,
53   CONSTANTS_CE_CAST_Abbrev,
54   CONSTANTS_NULL_Abbrev,
55 
56   // FUNCTION_BLOCK abbrev id's.
57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   FUNCTION_INST_BINOP_ABBREV,
59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
60   FUNCTION_INST_CAST_ABBREV,
61   FUNCTION_INST_RET_VOID_ABBREV,
62   FUNCTION_INST_RET_VAL_ABBREV,
63   FUNCTION_INST_UNREACHABLE_ABBREV
64 };
65 
66 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
67   switch (Opcode) {
68   default: llvm_unreachable("Unknown cast instruction!");
69   case Instruction::Trunc   : return bitc::CAST_TRUNC;
70   case Instruction::ZExt    : return bitc::CAST_ZEXT;
71   case Instruction::SExt    : return bitc::CAST_SEXT;
72   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
73   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
74   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
75   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
76   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
77   case Instruction::FPExt   : return bitc::CAST_FPEXT;
78   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
79   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
80   case Instruction::BitCast : return bitc::CAST_BITCAST;
81   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
82   }
83 }
84 
85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
86   switch (Opcode) {
87   default: llvm_unreachable("Unknown binary instruction!");
88   case Instruction::Add:
89   case Instruction::FAdd: return bitc::BINOP_ADD;
90   case Instruction::Sub:
91   case Instruction::FSub: return bitc::BINOP_SUB;
92   case Instruction::Mul:
93   case Instruction::FMul: return bitc::BINOP_MUL;
94   case Instruction::UDiv: return bitc::BINOP_UDIV;
95   case Instruction::FDiv:
96   case Instruction::SDiv: return bitc::BINOP_SDIV;
97   case Instruction::URem: return bitc::BINOP_UREM;
98   case Instruction::FRem:
99   case Instruction::SRem: return bitc::BINOP_SREM;
100   case Instruction::Shl:  return bitc::BINOP_SHL;
101   case Instruction::LShr: return bitc::BINOP_LSHR;
102   case Instruction::AShr: return bitc::BINOP_ASHR;
103   case Instruction::And:  return bitc::BINOP_AND;
104   case Instruction::Or:   return bitc::BINOP_OR;
105   case Instruction::Xor:  return bitc::BINOP_XOR;
106   }
107 }
108 
109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
110   switch (Op) {
111   default: llvm_unreachable("Unknown RMW operation!");
112   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
113   case AtomicRMWInst::Add: return bitc::RMW_ADD;
114   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
115   case AtomicRMWInst::And: return bitc::RMW_AND;
116   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
117   case AtomicRMWInst::Or: return bitc::RMW_OR;
118   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
119   case AtomicRMWInst::Max: return bitc::RMW_MAX;
120   case AtomicRMWInst::Min: return bitc::RMW_MIN;
121   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
122   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
123   }
124 }
125 
126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
127   switch (Ordering) {
128   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
129   case Unordered: return bitc::ORDERING_UNORDERED;
130   case Monotonic: return bitc::ORDERING_MONOTONIC;
131   case Acquire: return bitc::ORDERING_ACQUIRE;
132   case Release: return bitc::ORDERING_RELEASE;
133   case AcquireRelease: return bitc::ORDERING_ACQREL;
134   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
135   }
136   llvm_unreachable("Invalid ordering");
137 }
138 
139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
140   switch (SynchScope) {
141   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
142   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
143   }
144   llvm_unreachable("Invalid synch scope");
145 }
146 
147 static void WriteStringRecord(unsigned Code, StringRef Str,
148                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
149   SmallVector<unsigned, 64> Vals;
150 
151   // Code: [strchar x N]
152   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
153     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
154       AbbrevToUse = 0;
155     Vals.push_back(Str[i]);
156   }
157 
158   // Emit the finished record.
159   Stream.EmitRecord(Code, Vals, AbbrevToUse);
160 }
161 
162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
163   switch (Kind) {
164   case Attribute::Alignment:
165     return bitc::ATTR_KIND_ALIGNMENT;
166   case Attribute::AlwaysInline:
167     return bitc::ATTR_KIND_ALWAYS_INLINE;
168   case Attribute::Builtin:
169     return bitc::ATTR_KIND_BUILTIN;
170   case Attribute::ByVal:
171     return bitc::ATTR_KIND_BY_VAL;
172   case Attribute::InAlloca:
173     return bitc::ATTR_KIND_IN_ALLOCA;
174   case Attribute::Cold:
175     return bitc::ATTR_KIND_COLD;
176   case Attribute::InlineHint:
177     return bitc::ATTR_KIND_INLINE_HINT;
178   case Attribute::InReg:
179     return bitc::ATTR_KIND_IN_REG;
180   case Attribute::MinSize:
181     return bitc::ATTR_KIND_MIN_SIZE;
182   case Attribute::Naked:
183     return bitc::ATTR_KIND_NAKED;
184   case Attribute::Nest:
185     return bitc::ATTR_KIND_NEST;
186   case Attribute::NoAlias:
187     return bitc::ATTR_KIND_NO_ALIAS;
188   case Attribute::NoBuiltin:
189     return bitc::ATTR_KIND_NO_BUILTIN;
190   case Attribute::NoCapture:
191     return bitc::ATTR_KIND_NO_CAPTURE;
192   case Attribute::NoDuplicate:
193     return bitc::ATTR_KIND_NO_DUPLICATE;
194   case Attribute::NoImplicitFloat:
195     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
196   case Attribute::NoInline:
197     return bitc::ATTR_KIND_NO_INLINE;
198   case Attribute::NonLazyBind:
199     return bitc::ATTR_KIND_NON_LAZY_BIND;
200   case Attribute::NoRedZone:
201     return bitc::ATTR_KIND_NO_RED_ZONE;
202   case Attribute::NoReturn:
203     return bitc::ATTR_KIND_NO_RETURN;
204   case Attribute::NoUnwind:
205     return bitc::ATTR_KIND_NO_UNWIND;
206   case Attribute::OptimizeForSize:
207     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
208   case Attribute::OptimizeNone:
209     return bitc::ATTR_KIND_OPTIMIZE_NONE;
210   case Attribute::ReadNone:
211     return bitc::ATTR_KIND_READ_NONE;
212   case Attribute::ReadOnly:
213     return bitc::ATTR_KIND_READ_ONLY;
214   case Attribute::Returned:
215     return bitc::ATTR_KIND_RETURNED;
216   case Attribute::ReturnsTwice:
217     return bitc::ATTR_KIND_RETURNS_TWICE;
218   case Attribute::SExt:
219     return bitc::ATTR_KIND_S_EXT;
220   case Attribute::StackAlignment:
221     return bitc::ATTR_KIND_STACK_ALIGNMENT;
222   case Attribute::StackProtect:
223     return bitc::ATTR_KIND_STACK_PROTECT;
224   case Attribute::StackProtectReq:
225     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
226   case Attribute::StackProtectStrong:
227     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
228   case Attribute::StructRet:
229     return bitc::ATTR_KIND_STRUCT_RET;
230   case Attribute::SanitizeAddress:
231     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
232   case Attribute::SanitizeThread:
233     return bitc::ATTR_KIND_SANITIZE_THREAD;
234   case Attribute::SanitizeMemory:
235     return bitc::ATTR_KIND_SANITIZE_MEMORY;
236   case Attribute::UWTable:
237     return bitc::ATTR_KIND_UW_TABLE;
238   case Attribute::ZExt:
239     return bitc::ATTR_KIND_Z_EXT;
240   case Attribute::EndAttrKinds:
241     llvm_unreachable("Can not encode end-attribute kinds marker.");
242   case Attribute::None:
243     llvm_unreachable("Can not encode none-attribute.");
244   }
245 
246   llvm_unreachable("Trying to encode unknown attribute");
247 }
248 
249 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
250                                      BitstreamWriter &Stream) {
251   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
252   if (AttrGrps.empty()) return;
253 
254   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
255 
256   SmallVector<uint64_t, 64> Record;
257   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
258     AttributeSet AS = AttrGrps[i];
259     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
260       AttributeSet A = AS.getSlotAttributes(i);
261 
262       Record.push_back(VE.getAttributeGroupID(A));
263       Record.push_back(AS.getSlotIndex(i));
264 
265       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
266            I != E; ++I) {
267         Attribute Attr = *I;
268         if (Attr.isEnumAttribute()) {
269           Record.push_back(0);
270           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
271         } else if (Attr.isAlignAttribute()) {
272           Record.push_back(1);
273           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
274           Record.push_back(Attr.getValueAsInt());
275         } else {
276           StringRef Kind = Attr.getKindAsString();
277           StringRef Val = Attr.getValueAsString();
278 
279           Record.push_back(Val.empty() ? 3 : 4);
280           Record.append(Kind.begin(), Kind.end());
281           Record.push_back(0);
282           if (!Val.empty()) {
283             Record.append(Val.begin(), Val.end());
284             Record.push_back(0);
285           }
286         }
287       }
288 
289       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
290       Record.clear();
291     }
292   }
293 
294   Stream.ExitBlock();
295 }
296 
297 static void WriteAttributeTable(const ValueEnumerator &VE,
298                                 BitstreamWriter &Stream) {
299   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
300   if (Attrs.empty()) return;
301 
302   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
303 
304   SmallVector<uint64_t, 64> Record;
305   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
306     const AttributeSet &A = Attrs[i];
307     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
308       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
309 
310     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
311     Record.clear();
312   }
313 
314   Stream.ExitBlock();
315 }
316 
317 /// WriteTypeTable - Write out the type table for a module.
318 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
319   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
320 
321   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
322   SmallVector<uint64_t, 64> TypeVals;
323 
324   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
325 
326   // Abbrev for TYPE_CODE_POINTER.
327   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
328   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
329   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
330   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
331   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
332 
333   // Abbrev for TYPE_CODE_FUNCTION.
334   Abbv = new BitCodeAbbrev();
335   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
339 
340   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
341 
342   // Abbrev for TYPE_CODE_STRUCT_ANON.
343   Abbv = new BitCodeAbbrev();
344   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
345   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
348 
349   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
350 
351   // Abbrev for TYPE_CODE_STRUCT_NAME.
352   Abbv = new BitCodeAbbrev();
353   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
354   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
356   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
357 
358   // Abbrev for TYPE_CODE_STRUCT_NAMED.
359   Abbv = new BitCodeAbbrev();
360   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
364 
365   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
366 
367   // Abbrev for TYPE_CODE_ARRAY.
368   Abbv = new BitCodeAbbrev();
369   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
372 
373   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
374 
375   // Emit an entry count so the reader can reserve space.
376   TypeVals.push_back(TypeList.size());
377   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
378   TypeVals.clear();
379 
380   // Loop over all of the types, emitting each in turn.
381   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
382     Type *T = TypeList[i];
383     int AbbrevToUse = 0;
384     unsigned Code = 0;
385 
386     switch (T->getTypeID()) {
387     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
388     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
389     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
390     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
391     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
392     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
393     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
394     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
395     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
396     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
397     case Type::IntegerTyID:
398       // INTEGER: [width]
399       Code = bitc::TYPE_CODE_INTEGER;
400       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
401       break;
402     case Type::PointerTyID: {
403       PointerType *PTy = cast<PointerType>(T);
404       // POINTER: [pointee type, address space]
405       Code = bitc::TYPE_CODE_POINTER;
406       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
407       unsigned AddressSpace = PTy->getAddressSpace();
408       TypeVals.push_back(AddressSpace);
409       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
410       break;
411     }
412     case Type::FunctionTyID: {
413       FunctionType *FT = cast<FunctionType>(T);
414       // FUNCTION: [isvararg, retty, paramty x N]
415       Code = bitc::TYPE_CODE_FUNCTION;
416       TypeVals.push_back(FT->isVarArg());
417       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
418       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
419         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
420       AbbrevToUse = FunctionAbbrev;
421       break;
422     }
423     case Type::StructTyID: {
424       StructType *ST = cast<StructType>(T);
425       // STRUCT: [ispacked, eltty x N]
426       TypeVals.push_back(ST->isPacked());
427       // Output all of the element types.
428       for (StructType::element_iterator I = ST->element_begin(),
429            E = ST->element_end(); I != E; ++I)
430         TypeVals.push_back(VE.getTypeID(*I));
431 
432       if (ST->isLiteral()) {
433         Code = bitc::TYPE_CODE_STRUCT_ANON;
434         AbbrevToUse = StructAnonAbbrev;
435       } else {
436         if (ST->isOpaque()) {
437           Code = bitc::TYPE_CODE_OPAQUE;
438         } else {
439           Code = bitc::TYPE_CODE_STRUCT_NAMED;
440           AbbrevToUse = StructNamedAbbrev;
441         }
442 
443         // Emit the name if it is present.
444         if (!ST->getName().empty())
445           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
446                             StructNameAbbrev, Stream);
447       }
448       break;
449     }
450     case Type::ArrayTyID: {
451       ArrayType *AT = cast<ArrayType>(T);
452       // ARRAY: [numelts, eltty]
453       Code = bitc::TYPE_CODE_ARRAY;
454       TypeVals.push_back(AT->getNumElements());
455       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
456       AbbrevToUse = ArrayAbbrev;
457       break;
458     }
459     case Type::VectorTyID: {
460       VectorType *VT = cast<VectorType>(T);
461       // VECTOR [numelts, eltty]
462       Code = bitc::TYPE_CODE_VECTOR;
463       TypeVals.push_back(VT->getNumElements());
464       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
465       break;
466     }
467     }
468 
469     // Emit the finished record.
470     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
471     TypeVals.clear();
472   }
473 
474   Stream.ExitBlock();
475 }
476 
477 static unsigned getEncodedLinkage(const GlobalValue *GV) {
478   switch (GV->getLinkage()) {
479   case GlobalValue::ExternalLinkage:                 return 0;
480   case GlobalValue::WeakAnyLinkage:                  return 1;
481   case GlobalValue::AppendingLinkage:                return 2;
482   case GlobalValue::InternalLinkage:                 return 3;
483   case GlobalValue::LinkOnceAnyLinkage:              return 4;
484   case GlobalValue::ExternalWeakLinkage:             return 7;
485   case GlobalValue::CommonLinkage:                   return 8;
486   case GlobalValue::PrivateLinkage:                  return 9;
487   case GlobalValue::WeakODRLinkage:                  return 10;
488   case GlobalValue::LinkOnceODRLinkage:              return 11;
489   case GlobalValue::AvailableExternallyLinkage:      return 12;
490   }
491   llvm_unreachable("Invalid linkage");
492 }
493 
494 static unsigned getEncodedVisibility(const GlobalValue *GV) {
495   switch (GV->getVisibility()) {
496   case GlobalValue::DefaultVisibility:   return 0;
497   case GlobalValue::HiddenVisibility:    return 1;
498   case GlobalValue::ProtectedVisibility: return 2;
499   }
500   llvm_unreachable("Invalid visibility");
501 }
502 
503 static unsigned getEncodedDLLStorageClass(const GlobalValue *GV) {
504   switch (GV->getDLLStorageClass()) {
505   case GlobalValue::DefaultStorageClass:   return 0;
506   case GlobalValue::DLLImportStorageClass: return 1;
507   case GlobalValue::DLLExportStorageClass: return 2;
508   }
509   llvm_unreachable("Invalid DLL storage class");
510 }
511 
512 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
513   switch (GV->getThreadLocalMode()) {
514     case GlobalVariable::NotThreadLocal:         return 0;
515     case GlobalVariable::GeneralDynamicTLSModel: return 1;
516     case GlobalVariable::LocalDynamicTLSModel:   return 2;
517     case GlobalVariable::InitialExecTLSModel:    return 3;
518     case GlobalVariable::LocalExecTLSModel:      return 4;
519   }
520   llvm_unreachable("Invalid TLS model");
521 }
522 
523 // Emit top-level description of module, including target triple, inline asm,
524 // descriptors for global variables, and function prototype info.
525 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
526                             BitstreamWriter &Stream) {
527   // Emit various pieces of data attached to a module.
528   if (!M->getTargetTriple().empty())
529     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
530                       0/*TODO*/, Stream);
531   const std::string &DL = M->getDataLayoutStr();
532   if (!DL.empty())
533     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
534   if (!M->getModuleInlineAsm().empty())
535     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
536                       0/*TODO*/, Stream);
537 
538   // Emit information about sections and GC, computing how many there are. Also
539   // compute the maximum alignment value.
540   std::map<std::string, unsigned> SectionMap;
541   std::map<std::string, unsigned> GCMap;
542   unsigned MaxAlignment = 0;
543   unsigned MaxGlobalType = 0;
544   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
545        GV != E; ++GV) {
546     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
547     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
548     if (GV->hasSection()) {
549       // Give section names unique ID's.
550       unsigned &Entry = SectionMap[GV->getSection()];
551       if (!Entry) {
552         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
553                           0/*TODO*/, Stream);
554         Entry = SectionMap.size();
555       }
556     }
557   }
558   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
559     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
560     if (F->hasSection()) {
561       // Give section names unique ID's.
562       unsigned &Entry = SectionMap[F->getSection()];
563       if (!Entry) {
564         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
565                           0/*TODO*/, Stream);
566         Entry = SectionMap.size();
567       }
568     }
569     if (F->hasGC()) {
570       // Same for GC names.
571       unsigned &Entry = GCMap[F->getGC()];
572       if (!Entry) {
573         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
574                           0/*TODO*/, Stream);
575         Entry = GCMap.size();
576       }
577     }
578   }
579 
580   // Emit abbrev for globals, now that we know # sections and max alignment.
581   unsigned SimpleGVarAbbrev = 0;
582   if (!M->global_empty()) {
583     // Add an abbrev for common globals with no visibility or thread localness.
584     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
585     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
586     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
587                               Log2_32_Ceil(MaxGlobalType+1)));
588     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
589     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
590     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
591     if (MaxAlignment == 0)                                      // Alignment.
592       Abbv->Add(BitCodeAbbrevOp(0));
593     else {
594       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
595       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
596                                Log2_32_Ceil(MaxEncAlignment+1)));
597     }
598     if (SectionMap.empty())                                    // Section.
599       Abbv->Add(BitCodeAbbrevOp(0));
600     else
601       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
602                                Log2_32_Ceil(SectionMap.size()+1)));
603     // Don't bother emitting vis + thread local.
604     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
605   }
606 
607   // Emit the global variable information.
608   SmallVector<unsigned, 64> Vals;
609   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
610        GV != E; ++GV) {
611     unsigned AbbrevToUse = 0;
612 
613     // GLOBALVAR: [type, isconst, initid,
614     //             linkage, alignment, section, visibility, threadlocal,
615     //             unnamed_addr, externally_initialized, dllstorageclass]
616     Vals.push_back(VE.getTypeID(GV->getType()));
617     Vals.push_back(GV->isConstant());
618     Vals.push_back(GV->isDeclaration() ? 0 :
619                    (VE.getValueID(GV->getInitializer()) + 1));
620     Vals.push_back(getEncodedLinkage(GV));
621     Vals.push_back(Log2_32(GV->getAlignment())+1);
622     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
623     if (GV->isThreadLocal() ||
624         GV->getVisibility() != GlobalValue::DefaultVisibility ||
625         GV->hasUnnamedAddr() || GV->isExternallyInitialized() ||
626         GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
627       Vals.push_back(getEncodedVisibility(GV));
628       Vals.push_back(getEncodedThreadLocalMode(GV));
629       Vals.push_back(GV->hasUnnamedAddr());
630       Vals.push_back(GV->isExternallyInitialized());
631       Vals.push_back(getEncodedDLLStorageClass(GV));
632     } else {
633       AbbrevToUse = SimpleGVarAbbrev;
634     }
635 
636     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
637     Vals.clear();
638   }
639 
640   // Emit the function proto information.
641   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
642     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
643     //             section, visibility, gc, unnamed_addr, prefix]
644     Vals.push_back(VE.getTypeID(F->getType()));
645     Vals.push_back(F->getCallingConv());
646     Vals.push_back(F->isDeclaration());
647     Vals.push_back(getEncodedLinkage(F));
648     Vals.push_back(VE.getAttributeID(F->getAttributes()));
649     Vals.push_back(Log2_32(F->getAlignment())+1);
650     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
651     Vals.push_back(getEncodedVisibility(F));
652     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
653     Vals.push_back(F->hasUnnamedAddr());
654     Vals.push_back(F->hasPrefixData() ? (VE.getValueID(F->getPrefixData()) + 1)
655                                       : 0);
656     Vals.push_back(getEncodedDLLStorageClass(F));
657 
658     unsigned AbbrevToUse = 0;
659     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
660     Vals.clear();
661   }
662 
663   // Emit the alias information.
664   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
665        AI != E; ++AI) {
666     // ALIAS: [alias type, aliasee val#, linkage, visibility]
667     Vals.push_back(VE.getTypeID(AI->getType()));
668     Vals.push_back(VE.getValueID(AI->getAliasee()));
669     Vals.push_back(getEncodedLinkage(AI));
670     Vals.push_back(getEncodedVisibility(AI));
671     Vals.push_back(getEncodedDLLStorageClass(AI));
672     unsigned AbbrevToUse = 0;
673     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
674     Vals.clear();
675   }
676 }
677 
678 static uint64_t GetOptimizationFlags(const Value *V) {
679   uint64_t Flags = 0;
680 
681   if (const OverflowingBinaryOperator *OBO =
682         dyn_cast<OverflowingBinaryOperator>(V)) {
683     if (OBO->hasNoSignedWrap())
684       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
685     if (OBO->hasNoUnsignedWrap())
686       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
687   } else if (const PossiblyExactOperator *PEO =
688                dyn_cast<PossiblyExactOperator>(V)) {
689     if (PEO->isExact())
690       Flags |= 1 << bitc::PEO_EXACT;
691   } else if (const FPMathOperator *FPMO =
692              dyn_cast<const FPMathOperator>(V)) {
693     if (FPMO->hasUnsafeAlgebra())
694       Flags |= FastMathFlags::UnsafeAlgebra;
695     if (FPMO->hasNoNaNs())
696       Flags |= FastMathFlags::NoNaNs;
697     if (FPMO->hasNoInfs())
698       Flags |= FastMathFlags::NoInfs;
699     if (FPMO->hasNoSignedZeros())
700       Flags |= FastMathFlags::NoSignedZeros;
701     if (FPMO->hasAllowReciprocal())
702       Flags |= FastMathFlags::AllowReciprocal;
703   }
704 
705   return Flags;
706 }
707 
708 static void WriteMDNode(const MDNode *N,
709                         const ValueEnumerator &VE,
710                         BitstreamWriter &Stream,
711                         SmallVectorImpl<uint64_t> &Record) {
712   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
713     if (N->getOperand(i)) {
714       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
715       Record.push_back(VE.getValueID(N->getOperand(i)));
716     } else {
717       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
718       Record.push_back(0);
719     }
720   }
721   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
722                                            bitc::METADATA_NODE;
723   Stream.EmitRecord(MDCode, Record, 0);
724   Record.clear();
725 }
726 
727 static void WriteModuleMetadata(const Module *M,
728                                 const ValueEnumerator &VE,
729                                 BitstreamWriter &Stream) {
730   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
731   bool StartedMetadataBlock = false;
732   unsigned MDSAbbrev = 0;
733   SmallVector<uint64_t, 64> Record;
734   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
735 
736     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
737       if (!N->isFunctionLocal() || !N->getFunction()) {
738         if (!StartedMetadataBlock) {
739           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
740           StartedMetadataBlock = true;
741         }
742         WriteMDNode(N, VE, Stream, Record);
743       }
744     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
745       if (!StartedMetadataBlock)  {
746         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
747 
748         // Abbrev for METADATA_STRING.
749         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
750         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
751         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
752         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
753         MDSAbbrev = Stream.EmitAbbrev(Abbv);
754         StartedMetadataBlock = true;
755       }
756 
757       // Code: [strchar x N]
758       Record.append(MDS->begin(), MDS->end());
759 
760       // Emit the finished record.
761       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
762       Record.clear();
763     }
764   }
765 
766   // Write named metadata.
767   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
768        E = M->named_metadata_end(); I != E; ++I) {
769     const NamedMDNode *NMD = I;
770     if (!StartedMetadataBlock)  {
771       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
772       StartedMetadataBlock = true;
773     }
774 
775     // Write name.
776     StringRef Str = NMD->getName();
777     for (unsigned i = 0, e = Str.size(); i != e; ++i)
778       Record.push_back(Str[i]);
779     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
780     Record.clear();
781 
782     // Write named metadata operands.
783     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
784       Record.push_back(VE.getValueID(NMD->getOperand(i)));
785     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
786     Record.clear();
787   }
788 
789   if (StartedMetadataBlock)
790     Stream.ExitBlock();
791 }
792 
793 static void WriteFunctionLocalMetadata(const Function &F,
794                                        const ValueEnumerator &VE,
795                                        BitstreamWriter &Stream) {
796   bool StartedMetadataBlock = false;
797   SmallVector<uint64_t, 64> Record;
798   const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
799   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
800     if (const MDNode *N = Vals[i])
801       if (N->isFunctionLocal() && N->getFunction() == &F) {
802         if (!StartedMetadataBlock) {
803           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
804           StartedMetadataBlock = true;
805         }
806         WriteMDNode(N, VE, Stream, Record);
807       }
808 
809   if (StartedMetadataBlock)
810     Stream.ExitBlock();
811 }
812 
813 static void WriteMetadataAttachment(const Function &F,
814                                     const ValueEnumerator &VE,
815                                     BitstreamWriter &Stream) {
816   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
817 
818   SmallVector<uint64_t, 64> Record;
819 
820   // Write metadata attachments
821   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
822   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
823 
824   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
825     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
826          I != E; ++I) {
827       MDs.clear();
828       I->getAllMetadataOtherThanDebugLoc(MDs);
829 
830       // If no metadata, ignore instruction.
831       if (MDs.empty()) continue;
832 
833       Record.push_back(VE.getInstructionID(I));
834 
835       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
836         Record.push_back(MDs[i].first);
837         Record.push_back(VE.getValueID(MDs[i].second));
838       }
839       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
840       Record.clear();
841     }
842 
843   Stream.ExitBlock();
844 }
845 
846 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
847   SmallVector<uint64_t, 64> Record;
848 
849   // Write metadata kinds
850   // METADATA_KIND - [n x [id, name]]
851   SmallVector<StringRef, 8> Names;
852   M->getMDKindNames(Names);
853 
854   if (Names.empty()) return;
855 
856   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
857 
858   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
859     Record.push_back(MDKindID);
860     StringRef KName = Names[MDKindID];
861     Record.append(KName.begin(), KName.end());
862 
863     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
864     Record.clear();
865   }
866 
867   Stream.ExitBlock();
868 }
869 
870 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
871   if ((int64_t)V >= 0)
872     Vals.push_back(V << 1);
873   else
874     Vals.push_back((-V << 1) | 1);
875 }
876 
877 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
878                            const ValueEnumerator &VE,
879                            BitstreamWriter &Stream, bool isGlobal) {
880   if (FirstVal == LastVal) return;
881 
882   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
883 
884   unsigned AggregateAbbrev = 0;
885   unsigned String8Abbrev = 0;
886   unsigned CString7Abbrev = 0;
887   unsigned CString6Abbrev = 0;
888   // If this is a constant pool for the module, emit module-specific abbrevs.
889   if (isGlobal) {
890     // Abbrev for CST_CODE_AGGREGATE.
891     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
892     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
893     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
894     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
895     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
896 
897     // Abbrev for CST_CODE_STRING.
898     Abbv = new BitCodeAbbrev();
899     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
900     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
901     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
902     String8Abbrev = Stream.EmitAbbrev(Abbv);
903     // Abbrev for CST_CODE_CSTRING.
904     Abbv = new BitCodeAbbrev();
905     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
906     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
907     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
908     CString7Abbrev = Stream.EmitAbbrev(Abbv);
909     // Abbrev for CST_CODE_CSTRING.
910     Abbv = new BitCodeAbbrev();
911     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
912     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
913     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
914     CString6Abbrev = Stream.EmitAbbrev(Abbv);
915   }
916 
917   SmallVector<uint64_t, 64> Record;
918 
919   const ValueEnumerator::ValueList &Vals = VE.getValues();
920   Type *LastTy = nullptr;
921   for (unsigned i = FirstVal; i != LastVal; ++i) {
922     const Value *V = Vals[i].first;
923     // If we need to switch types, do so now.
924     if (V->getType() != LastTy) {
925       LastTy = V->getType();
926       Record.push_back(VE.getTypeID(LastTy));
927       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
928                         CONSTANTS_SETTYPE_ABBREV);
929       Record.clear();
930     }
931 
932     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
933       Record.push_back(unsigned(IA->hasSideEffects()) |
934                        unsigned(IA->isAlignStack()) << 1 |
935                        unsigned(IA->getDialect()&1) << 2);
936 
937       // Add the asm string.
938       const std::string &AsmStr = IA->getAsmString();
939       Record.push_back(AsmStr.size());
940       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
941         Record.push_back(AsmStr[i]);
942 
943       // Add the constraint string.
944       const std::string &ConstraintStr = IA->getConstraintString();
945       Record.push_back(ConstraintStr.size());
946       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
947         Record.push_back(ConstraintStr[i]);
948       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
949       Record.clear();
950       continue;
951     }
952     const Constant *C = cast<Constant>(V);
953     unsigned Code = -1U;
954     unsigned AbbrevToUse = 0;
955     if (C->isNullValue()) {
956       Code = bitc::CST_CODE_NULL;
957     } else if (isa<UndefValue>(C)) {
958       Code = bitc::CST_CODE_UNDEF;
959     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
960       if (IV->getBitWidth() <= 64) {
961         uint64_t V = IV->getSExtValue();
962         emitSignedInt64(Record, V);
963         Code = bitc::CST_CODE_INTEGER;
964         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
965       } else {                             // Wide integers, > 64 bits in size.
966         // We have an arbitrary precision integer value to write whose
967         // bit width is > 64. However, in canonical unsigned integer
968         // format it is likely that the high bits are going to be zero.
969         // So, we only write the number of active words.
970         unsigned NWords = IV->getValue().getActiveWords();
971         const uint64_t *RawWords = IV->getValue().getRawData();
972         for (unsigned i = 0; i != NWords; ++i) {
973           emitSignedInt64(Record, RawWords[i]);
974         }
975         Code = bitc::CST_CODE_WIDE_INTEGER;
976       }
977     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
978       Code = bitc::CST_CODE_FLOAT;
979       Type *Ty = CFP->getType();
980       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
981         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
982       } else if (Ty->isX86_FP80Ty()) {
983         // api needed to prevent premature destruction
984         // bits are not in the same order as a normal i80 APInt, compensate.
985         APInt api = CFP->getValueAPF().bitcastToAPInt();
986         const uint64_t *p = api.getRawData();
987         Record.push_back((p[1] << 48) | (p[0] >> 16));
988         Record.push_back(p[0] & 0xffffLL);
989       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
990         APInt api = CFP->getValueAPF().bitcastToAPInt();
991         const uint64_t *p = api.getRawData();
992         Record.push_back(p[0]);
993         Record.push_back(p[1]);
994       } else {
995         assert (0 && "Unknown FP type!");
996       }
997     } else if (isa<ConstantDataSequential>(C) &&
998                cast<ConstantDataSequential>(C)->isString()) {
999       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1000       // Emit constant strings specially.
1001       unsigned NumElts = Str->getNumElements();
1002       // If this is a null-terminated string, use the denser CSTRING encoding.
1003       if (Str->isCString()) {
1004         Code = bitc::CST_CODE_CSTRING;
1005         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1006       } else {
1007         Code = bitc::CST_CODE_STRING;
1008         AbbrevToUse = String8Abbrev;
1009       }
1010       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1011       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1012       for (unsigned i = 0; i != NumElts; ++i) {
1013         unsigned char V = Str->getElementAsInteger(i);
1014         Record.push_back(V);
1015         isCStr7 &= (V & 128) == 0;
1016         if (isCStrChar6)
1017           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1018       }
1019 
1020       if (isCStrChar6)
1021         AbbrevToUse = CString6Abbrev;
1022       else if (isCStr7)
1023         AbbrevToUse = CString7Abbrev;
1024     } else if (const ConstantDataSequential *CDS =
1025                   dyn_cast<ConstantDataSequential>(C)) {
1026       Code = bitc::CST_CODE_DATA;
1027       Type *EltTy = CDS->getType()->getElementType();
1028       if (isa<IntegerType>(EltTy)) {
1029         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1030           Record.push_back(CDS->getElementAsInteger(i));
1031       } else if (EltTy->isFloatTy()) {
1032         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1033           union { float F; uint32_t I; };
1034           F = CDS->getElementAsFloat(i);
1035           Record.push_back(I);
1036         }
1037       } else {
1038         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1039         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1040           union { double F; uint64_t I; };
1041           F = CDS->getElementAsDouble(i);
1042           Record.push_back(I);
1043         }
1044       }
1045     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1046                isa<ConstantVector>(C)) {
1047       Code = bitc::CST_CODE_AGGREGATE;
1048       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1049         Record.push_back(VE.getValueID(C->getOperand(i)));
1050       AbbrevToUse = AggregateAbbrev;
1051     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1052       switch (CE->getOpcode()) {
1053       default:
1054         if (Instruction::isCast(CE->getOpcode())) {
1055           Code = bitc::CST_CODE_CE_CAST;
1056           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1057           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1058           Record.push_back(VE.getValueID(C->getOperand(0)));
1059           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1060         } else {
1061           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1062           Code = bitc::CST_CODE_CE_BINOP;
1063           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1064           Record.push_back(VE.getValueID(C->getOperand(0)));
1065           Record.push_back(VE.getValueID(C->getOperand(1)));
1066           uint64_t Flags = GetOptimizationFlags(CE);
1067           if (Flags != 0)
1068             Record.push_back(Flags);
1069         }
1070         break;
1071       case Instruction::GetElementPtr:
1072         Code = bitc::CST_CODE_CE_GEP;
1073         if (cast<GEPOperator>(C)->isInBounds())
1074           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1075         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1076           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1077           Record.push_back(VE.getValueID(C->getOperand(i)));
1078         }
1079         break;
1080       case Instruction::Select:
1081         Code = bitc::CST_CODE_CE_SELECT;
1082         Record.push_back(VE.getValueID(C->getOperand(0)));
1083         Record.push_back(VE.getValueID(C->getOperand(1)));
1084         Record.push_back(VE.getValueID(C->getOperand(2)));
1085         break;
1086       case Instruction::ExtractElement:
1087         Code = bitc::CST_CODE_CE_EXTRACTELT;
1088         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1089         Record.push_back(VE.getValueID(C->getOperand(0)));
1090         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1091         Record.push_back(VE.getValueID(C->getOperand(1)));
1092         break;
1093       case Instruction::InsertElement:
1094         Code = bitc::CST_CODE_CE_INSERTELT;
1095         Record.push_back(VE.getValueID(C->getOperand(0)));
1096         Record.push_back(VE.getValueID(C->getOperand(1)));
1097         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1098         Record.push_back(VE.getValueID(C->getOperand(2)));
1099         break;
1100       case Instruction::ShuffleVector:
1101         // If the return type and argument types are the same, this is a
1102         // standard shufflevector instruction.  If the types are different,
1103         // then the shuffle is widening or truncating the input vectors, and
1104         // the argument type must also be encoded.
1105         if (C->getType() == C->getOperand(0)->getType()) {
1106           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1107         } else {
1108           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1109           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1110         }
1111         Record.push_back(VE.getValueID(C->getOperand(0)));
1112         Record.push_back(VE.getValueID(C->getOperand(1)));
1113         Record.push_back(VE.getValueID(C->getOperand(2)));
1114         break;
1115       case Instruction::ICmp:
1116       case Instruction::FCmp:
1117         Code = bitc::CST_CODE_CE_CMP;
1118         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1119         Record.push_back(VE.getValueID(C->getOperand(0)));
1120         Record.push_back(VE.getValueID(C->getOperand(1)));
1121         Record.push_back(CE->getPredicate());
1122         break;
1123       }
1124     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1125       Code = bitc::CST_CODE_BLOCKADDRESS;
1126       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1127       Record.push_back(VE.getValueID(BA->getFunction()));
1128       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1129     } else {
1130 #ifndef NDEBUG
1131       C->dump();
1132 #endif
1133       llvm_unreachable("Unknown constant!");
1134     }
1135     Stream.EmitRecord(Code, Record, AbbrevToUse);
1136     Record.clear();
1137   }
1138 
1139   Stream.ExitBlock();
1140 }
1141 
1142 static void WriteModuleConstants(const ValueEnumerator &VE,
1143                                  BitstreamWriter &Stream) {
1144   const ValueEnumerator::ValueList &Vals = VE.getValues();
1145 
1146   // Find the first constant to emit, which is the first non-globalvalue value.
1147   // We know globalvalues have been emitted by WriteModuleInfo.
1148   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1149     if (!isa<GlobalValue>(Vals[i].first)) {
1150       WriteConstants(i, Vals.size(), VE, Stream, true);
1151       return;
1152     }
1153   }
1154 }
1155 
1156 /// PushValueAndType - The file has to encode both the value and type id for
1157 /// many values, because we need to know what type to create for forward
1158 /// references.  However, most operands are not forward references, so this type
1159 /// field is not needed.
1160 ///
1161 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1162 /// instruction ID, then it is a forward reference, and it also includes the
1163 /// type ID.  The value ID that is written is encoded relative to the InstID.
1164 static bool PushValueAndType(const Value *V, unsigned InstID,
1165                              SmallVectorImpl<unsigned> &Vals,
1166                              ValueEnumerator &VE) {
1167   unsigned ValID = VE.getValueID(V);
1168   // Make encoding relative to the InstID.
1169   Vals.push_back(InstID - ValID);
1170   if (ValID >= InstID) {
1171     Vals.push_back(VE.getTypeID(V->getType()));
1172     return true;
1173   }
1174   return false;
1175 }
1176 
1177 /// pushValue - Like PushValueAndType, but where the type of the value is
1178 /// omitted (perhaps it was already encoded in an earlier operand).
1179 static void pushValue(const Value *V, unsigned InstID,
1180                       SmallVectorImpl<unsigned> &Vals,
1181                       ValueEnumerator &VE) {
1182   unsigned ValID = VE.getValueID(V);
1183   Vals.push_back(InstID - ValID);
1184 }
1185 
1186 static void pushValueSigned(const Value *V, unsigned InstID,
1187                             SmallVectorImpl<uint64_t> &Vals,
1188                             ValueEnumerator &VE) {
1189   unsigned ValID = VE.getValueID(V);
1190   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1191   emitSignedInt64(Vals, diff);
1192 }
1193 
1194 /// WriteInstruction - Emit an instruction to the specified stream.
1195 static void WriteInstruction(const Instruction &I, unsigned InstID,
1196                              ValueEnumerator &VE, BitstreamWriter &Stream,
1197                              SmallVectorImpl<unsigned> &Vals) {
1198   unsigned Code = 0;
1199   unsigned AbbrevToUse = 0;
1200   VE.setInstructionID(&I);
1201   switch (I.getOpcode()) {
1202   default:
1203     if (Instruction::isCast(I.getOpcode())) {
1204       Code = bitc::FUNC_CODE_INST_CAST;
1205       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1206         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1207       Vals.push_back(VE.getTypeID(I.getType()));
1208       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1209     } else {
1210       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1211       Code = bitc::FUNC_CODE_INST_BINOP;
1212       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1213         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1214       pushValue(I.getOperand(1), InstID, Vals, VE);
1215       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1216       uint64_t Flags = GetOptimizationFlags(&I);
1217       if (Flags != 0) {
1218         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1219           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1220         Vals.push_back(Flags);
1221       }
1222     }
1223     break;
1224 
1225   case Instruction::GetElementPtr:
1226     Code = bitc::FUNC_CODE_INST_GEP;
1227     if (cast<GEPOperator>(&I)->isInBounds())
1228       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1229     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1230       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1231     break;
1232   case Instruction::ExtractValue: {
1233     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1234     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1235     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1236     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1237       Vals.push_back(*i);
1238     break;
1239   }
1240   case Instruction::InsertValue: {
1241     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1242     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1243     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1244     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1245     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1246       Vals.push_back(*i);
1247     break;
1248   }
1249   case Instruction::Select:
1250     Code = bitc::FUNC_CODE_INST_VSELECT;
1251     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1252     pushValue(I.getOperand(2), InstID, Vals, VE);
1253     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1254     break;
1255   case Instruction::ExtractElement:
1256     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1257     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1258     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1259     break;
1260   case Instruction::InsertElement:
1261     Code = bitc::FUNC_CODE_INST_INSERTELT;
1262     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1263     pushValue(I.getOperand(1), InstID, Vals, VE);
1264     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1265     break;
1266   case Instruction::ShuffleVector:
1267     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1268     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1269     pushValue(I.getOperand(1), InstID, Vals, VE);
1270     pushValue(I.getOperand(2), InstID, Vals, VE);
1271     break;
1272   case Instruction::ICmp:
1273   case Instruction::FCmp:
1274     // compare returning Int1Ty or vector of Int1Ty
1275     Code = bitc::FUNC_CODE_INST_CMP2;
1276     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1277     pushValue(I.getOperand(1), InstID, Vals, VE);
1278     Vals.push_back(cast<CmpInst>(I).getPredicate());
1279     break;
1280 
1281   case Instruction::Ret:
1282     {
1283       Code = bitc::FUNC_CODE_INST_RET;
1284       unsigned NumOperands = I.getNumOperands();
1285       if (NumOperands == 0)
1286         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1287       else if (NumOperands == 1) {
1288         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1289           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1290       } else {
1291         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1292           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1293       }
1294     }
1295     break;
1296   case Instruction::Br:
1297     {
1298       Code = bitc::FUNC_CODE_INST_BR;
1299       const BranchInst &II = cast<BranchInst>(I);
1300       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1301       if (II.isConditional()) {
1302         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1303         pushValue(II.getCondition(), InstID, Vals, VE);
1304       }
1305     }
1306     break;
1307   case Instruction::Switch:
1308     {
1309       Code = bitc::FUNC_CODE_INST_SWITCH;
1310       const SwitchInst &SI = cast<SwitchInst>(I);
1311       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1312       pushValue(SI.getCondition(), InstID, Vals, VE);
1313       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1314       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1315            i != e; ++i) {
1316         Vals.push_back(VE.getValueID(i.getCaseValue()));
1317         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1318       }
1319     }
1320     break;
1321   case Instruction::IndirectBr:
1322     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1323     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1324     // Encode the address operand as relative, but not the basic blocks.
1325     pushValue(I.getOperand(0), InstID, Vals, VE);
1326     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1327       Vals.push_back(VE.getValueID(I.getOperand(i)));
1328     break;
1329 
1330   case Instruction::Invoke: {
1331     const InvokeInst *II = cast<InvokeInst>(&I);
1332     const Value *Callee(II->getCalledValue());
1333     PointerType *PTy = cast<PointerType>(Callee->getType());
1334     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1335     Code = bitc::FUNC_CODE_INST_INVOKE;
1336 
1337     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1338     Vals.push_back(II->getCallingConv());
1339     Vals.push_back(VE.getValueID(II->getNormalDest()));
1340     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1341     PushValueAndType(Callee, InstID, Vals, VE);
1342 
1343     // Emit value #'s for the fixed parameters.
1344     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1345       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1346 
1347     // Emit type/value pairs for varargs params.
1348     if (FTy->isVarArg()) {
1349       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1350            i != e; ++i)
1351         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1352     }
1353     break;
1354   }
1355   case Instruction::Resume:
1356     Code = bitc::FUNC_CODE_INST_RESUME;
1357     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1358     break;
1359   case Instruction::Unreachable:
1360     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1361     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1362     break;
1363 
1364   case Instruction::PHI: {
1365     const PHINode &PN = cast<PHINode>(I);
1366     Code = bitc::FUNC_CODE_INST_PHI;
1367     // With the newer instruction encoding, forward references could give
1368     // negative valued IDs.  This is most common for PHIs, so we use
1369     // signed VBRs.
1370     SmallVector<uint64_t, 128> Vals64;
1371     Vals64.push_back(VE.getTypeID(PN.getType()));
1372     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1373       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1374       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1375     }
1376     // Emit a Vals64 vector and exit.
1377     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1378     Vals64.clear();
1379     return;
1380   }
1381 
1382   case Instruction::LandingPad: {
1383     const LandingPadInst &LP = cast<LandingPadInst>(I);
1384     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1385     Vals.push_back(VE.getTypeID(LP.getType()));
1386     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1387     Vals.push_back(LP.isCleanup());
1388     Vals.push_back(LP.getNumClauses());
1389     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1390       if (LP.isCatch(I))
1391         Vals.push_back(LandingPadInst::Catch);
1392       else
1393         Vals.push_back(LandingPadInst::Filter);
1394       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1395     }
1396     break;
1397   }
1398 
1399   case Instruction::Alloca:
1400     Code = bitc::FUNC_CODE_INST_ALLOCA;
1401     Vals.push_back(VE.getTypeID(I.getType()));
1402     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1403     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1404     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1405     break;
1406 
1407   case Instruction::Load:
1408     if (cast<LoadInst>(I).isAtomic()) {
1409       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1410       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1411     } else {
1412       Code = bitc::FUNC_CODE_INST_LOAD;
1413       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1414         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1415     }
1416     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1417     Vals.push_back(cast<LoadInst>(I).isVolatile());
1418     if (cast<LoadInst>(I).isAtomic()) {
1419       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1420       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1421     }
1422     break;
1423   case Instruction::Store:
1424     if (cast<StoreInst>(I).isAtomic())
1425       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1426     else
1427       Code = bitc::FUNC_CODE_INST_STORE;
1428     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1429     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1430     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1431     Vals.push_back(cast<StoreInst>(I).isVolatile());
1432     if (cast<StoreInst>(I).isAtomic()) {
1433       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1434       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1435     }
1436     break;
1437   case Instruction::AtomicCmpXchg:
1438     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1439     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1440     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1441     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1442     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1443     Vals.push_back(GetEncodedOrdering(
1444                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1445     Vals.push_back(GetEncodedSynchScope(
1446                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1447     Vals.push_back(GetEncodedOrdering(
1448                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1449     break;
1450   case Instruction::AtomicRMW:
1451     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1452     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1453     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1454     Vals.push_back(GetEncodedRMWOperation(
1455                      cast<AtomicRMWInst>(I).getOperation()));
1456     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1457     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1458     Vals.push_back(GetEncodedSynchScope(
1459                      cast<AtomicRMWInst>(I).getSynchScope()));
1460     break;
1461   case Instruction::Fence:
1462     Code = bitc::FUNC_CODE_INST_FENCE;
1463     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1464     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1465     break;
1466   case Instruction::Call: {
1467     const CallInst &CI = cast<CallInst>(I);
1468     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1469     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1470 
1471     Code = bitc::FUNC_CODE_INST_CALL;
1472 
1473     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1474     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1475                    unsigned(CI.isMustTailCall()) << 14);
1476     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1477 
1478     // Emit value #'s for the fixed parameters.
1479     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1480       // Check for labels (can happen with asm labels).
1481       if (FTy->getParamType(i)->isLabelTy())
1482         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1483       else
1484         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1485     }
1486 
1487     // Emit type/value pairs for varargs params.
1488     if (FTy->isVarArg()) {
1489       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1490            i != e; ++i)
1491         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1492     }
1493     break;
1494   }
1495   case Instruction::VAArg:
1496     Code = bitc::FUNC_CODE_INST_VAARG;
1497     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1498     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1499     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1500     break;
1501   }
1502 
1503   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1504   Vals.clear();
1505 }
1506 
1507 // Emit names for globals/functions etc.
1508 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1509                                   const ValueEnumerator &VE,
1510                                   BitstreamWriter &Stream) {
1511   if (VST.empty()) return;
1512   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1513 
1514   // FIXME: Set up the abbrev, we know how many values there are!
1515   // FIXME: We know if the type names can use 7-bit ascii.
1516   SmallVector<unsigned, 64> NameVals;
1517 
1518   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1519        SI != SE; ++SI) {
1520 
1521     const ValueName &Name = *SI;
1522 
1523     // Figure out the encoding to use for the name.
1524     bool is7Bit = true;
1525     bool isChar6 = true;
1526     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1527          C != E; ++C) {
1528       if (isChar6)
1529         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1530       if ((unsigned char)*C & 128) {
1531         is7Bit = false;
1532         break;  // don't bother scanning the rest.
1533       }
1534     }
1535 
1536     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1537 
1538     // VST_ENTRY:   [valueid, namechar x N]
1539     // VST_BBENTRY: [bbid, namechar x N]
1540     unsigned Code;
1541     if (isa<BasicBlock>(SI->getValue())) {
1542       Code = bitc::VST_CODE_BBENTRY;
1543       if (isChar6)
1544         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1545     } else {
1546       Code = bitc::VST_CODE_ENTRY;
1547       if (isChar6)
1548         AbbrevToUse = VST_ENTRY_6_ABBREV;
1549       else if (is7Bit)
1550         AbbrevToUse = VST_ENTRY_7_ABBREV;
1551     }
1552 
1553     NameVals.push_back(VE.getValueID(SI->getValue()));
1554     for (const char *P = Name.getKeyData(),
1555          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1556       NameVals.push_back((unsigned char)*P);
1557 
1558     // Emit the finished record.
1559     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1560     NameVals.clear();
1561   }
1562   Stream.ExitBlock();
1563 }
1564 
1565 /// WriteFunction - Emit a function body to the module stream.
1566 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1567                           BitstreamWriter &Stream) {
1568   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1569   VE.incorporateFunction(F);
1570 
1571   SmallVector<unsigned, 64> Vals;
1572 
1573   // Emit the number of basic blocks, so the reader can create them ahead of
1574   // time.
1575   Vals.push_back(VE.getBasicBlocks().size());
1576   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1577   Vals.clear();
1578 
1579   // If there are function-local constants, emit them now.
1580   unsigned CstStart, CstEnd;
1581   VE.getFunctionConstantRange(CstStart, CstEnd);
1582   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1583 
1584   // If there is function-local metadata, emit it now.
1585   WriteFunctionLocalMetadata(F, VE, Stream);
1586 
1587   // Keep a running idea of what the instruction ID is.
1588   unsigned InstID = CstEnd;
1589 
1590   bool NeedsMetadataAttachment = false;
1591 
1592   DebugLoc LastDL;
1593 
1594   // Finally, emit all the instructions, in order.
1595   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1596     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1597          I != E; ++I) {
1598       WriteInstruction(*I, InstID, VE, Stream, Vals);
1599 
1600       if (!I->getType()->isVoidTy())
1601         ++InstID;
1602 
1603       // If the instruction has metadata, write a metadata attachment later.
1604       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1605 
1606       // If the instruction has a debug location, emit it.
1607       DebugLoc DL = I->getDebugLoc();
1608       if (DL.isUnknown()) {
1609         // nothing todo.
1610       } else if (DL == LastDL) {
1611         // Just repeat the same debug loc as last time.
1612         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1613       } else {
1614         MDNode *Scope, *IA;
1615         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1616 
1617         Vals.push_back(DL.getLine());
1618         Vals.push_back(DL.getCol());
1619         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1620         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1621         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1622         Vals.clear();
1623 
1624         LastDL = DL;
1625       }
1626     }
1627 
1628   // Emit names for all the instructions etc.
1629   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1630 
1631   if (NeedsMetadataAttachment)
1632     WriteMetadataAttachment(F, VE, Stream);
1633   VE.purgeFunction();
1634   Stream.ExitBlock();
1635 }
1636 
1637 // Emit blockinfo, which defines the standard abbreviations etc.
1638 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1639   // We only want to emit block info records for blocks that have multiple
1640   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1641   // Other blocks can define their abbrevs inline.
1642   Stream.EnterBlockInfoBlock(2);
1643 
1644   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1645     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1648     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1649     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1650     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1651                                    Abbv) != VST_ENTRY_8_ABBREV)
1652       llvm_unreachable("Unexpected abbrev ordering!");
1653   }
1654 
1655   { // 7-bit fixed width VST_ENTRY strings.
1656     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1657     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1658     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1661     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1662                                    Abbv) != VST_ENTRY_7_ABBREV)
1663       llvm_unreachable("Unexpected abbrev ordering!");
1664   }
1665   { // 6-bit char6 VST_ENTRY strings.
1666     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1667     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1668     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1670     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1671     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1672                                    Abbv) != VST_ENTRY_6_ABBREV)
1673       llvm_unreachable("Unexpected abbrev ordering!");
1674   }
1675   { // 6-bit char6 VST_BBENTRY strings.
1676     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1677     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1680     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1681     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1682                                    Abbv) != VST_BBENTRY_6_ABBREV)
1683       llvm_unreachable("Unexpected abbrev ordering!");
1684   }
1685 
1686 
1687 
1688   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1689     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1690     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1691     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1692                               Log2_32_Ceil(VE.getTypes().size()+1)));
1693     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1694                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1695       llvm_unreachable("Unexpected abbrev ordering!");
1696   }
1697 
1698   { // INTEGER abbrev for CONSTANTS_BLOCK.
1699     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1700     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1701     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1702     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1703                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1704       llvm_unreachable("Unexpected abbrev ordering!");
1705   }
1706 
1707   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1708     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1709     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1711     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1712                               Log2_32_Ceil(VE.getTypes().size()+1)));
1713     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1714 
1715     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1716                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1717       llvm_unreachable("Unexpected abbrev ordering!");
1718   }
1719   { // NULL abbrev for CONSTANTS_BLOCK.
1720     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1721     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1722     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1723                                    Abbv) != CONSTANTS_NULL_Abbrev)
1724       llvm_unreachable("Unexpected abbrev ordering!");
1725   }
1726 
1727   // FIXME: This should only use space for first class types!
1728 
1729   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1730     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1731     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1732     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1733     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1735     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1736                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1737       llvm_unreachable("Unexpected abbrev ordering!");
1738   }
1739   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1740     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1741     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1742     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1745     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1746                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1747       llvm_unreachable("Unexpected abbrev ordering!");
1748   }
1749   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1750     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1751     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1752     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1756     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1757                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1758       llvm_unreachable("Unexpected abbrev ordering!");
1759   }
1760   { // INST_CAST abbrev for FUNCTION_BLOCK.
1761     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1762     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1763     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1764     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1765                               Log2_32_Ceil(VE.getTypes().size()+1)));
1766     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1767     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1768                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1769       llvm_unreachable("Unexpected abbrev ordering!");
1770   }
1771 
1772   { // INST_RET abbrev for FUNCTION_BLOCK.
1773     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1774     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1775     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1776                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1777       llvm_unreachable("Unexpected abbrev ordering!");
1778   }
1779   { // INST_RET abbrev for FUNCTION_BLOCK.
1780     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1781     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1783     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1784                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1785       llvm_unreachable("Unexpected abbrev ordering!");
1786   }
1787   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1788     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1789     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1790     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1791                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1792       llvm_unreachable("Unexpected abbrev ordering!");
1793   }
1794 
1795   Stream.ExitBlock();
1796 }
1797 
1798 // Sort the Users based on the order in which the reader parses the bitcode
1799 // file.
1800 static bool bitcodereader_order(const User *lhs, const User *rhs) {
1801   // TODO: Implement.
1802   return true;
1803 }
1804 
1805 static void WriteUseList(const Value *V, const ValueEnumerator &VE,
1806                          BitstreamWriter &Stream) {
1807 
1808   // One or zero uses can't get out of order.
1809   if (V->use_empty() || V->hasNUses(1))
1810     return;
1811 
1812   // Make a copy of the in-memory use-list for sorting.
1813   SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end());
1814 
1815   // Sort the copy based on the order read by the BitcodeReader.
1816   std::sort(UserList.begin(), UserList.end(), bitcodereader_order);
1817 
1818   // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1819   // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1820 
1821   // TODO: Emit the USELIST_CODE_ENTRYs.
1822 }
1823 
1824 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
1825                                  BitstreamWriter &Stream) {
1826   VE.incorporateFunction(*F);
1827 
1828   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1829        AI != AE; ++AI)
1830     WriteUseList(AI, VE, Stream);
1831   for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1832        ++BB) {
1833     WriteUseList(BB, VE, Stream);
1834     for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1835          ++II) {
1836       WriteUseList(II, VE, Stream);
1837       for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1838            OI != E; ++OI) {
1839         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1840             isa<InlineAsm>(*OI))
1841           WriteUseList(*OI, VE, Stream);
1842       }
1843     }
1844   }
1845   VE.purgeFunction();
1846 }
1847 
1848 // Emit use-lists.
1849 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
1850                                 BitstreamWriter &Stream) {
1851   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1852 
1853   // XXX: this modifies the module, but in a way that should never change the
1854   // behavior of any pass or codegen in LLVM. The problem is that GVs may
1855   // contain entries in the use_list that do not exist in the Module and are
1856   // not stored in the .bc file.
1857   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1858        I != E; ++I)
1859     I->removeDeadConstantUsers();
1860 
1861   // Write the global variables.
1862   for (Module::const_global_iterator GI = M->global_begin(),
1863          GE = M->global_end(); GI != GE; ++GI) {
1864     WriteUseList(GI, VE, Stream);
1865 
1866     // Write the global variable initializers.
1867     if (GI->hasInitializer())
1868       WriteUseList(GI->getInitializer(), VE, Stream);
1869   }
1870 
1871   // Write the functions.
1872   for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1873     WriteUseList(FI, VE, Stream);
1874     if (!FI->isDeclaration())
1875       WriteFunctionUseList(FI, VE, Stream);
1876     if (FI->hasPrefixData())
1877       WriteUseList(FI->getPrefixData(), VE, Stream);
1878   }
1879 
1880   // Write the aliases.
1881   for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1882        AI != AE; ++AI) {
1883     WriteUseList(AI, VE, Stream);
1884     WriteUseList(AI->getAliasee(), VE, Stream);
1885   }
1886 
1887   Stream.ExitBlock();
1888 }
1889 
1890 /// WriteModule - Emit the specified module to the bitstream.
1891 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1892   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1893 
1894   SmallVector<unsigned, 1> Vals;
1895   unsigned CurVersion = 1;
1896   Vals.push_back(CurVersion);
1897   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1898 
1899   // Analyze the module, enumerating globals, functions, etc.
1900   ValueEnumerator VE(M);
1901 
1902   // Emit blockinfo, which defines the standard abbreviations etc.
1903   WriteBlockInfo(VE, Stream);
1904 
1905   // Emit information about attribute groups.
1906   WriteAttributeGroupTable(VE, Stream);
1907 
1908   // Emit information about parameter attributes.
1909   WriteAttributeTable(VE, Stream);
1910 
1911   // Emit information describing all of the types in the module.
1912   WriteTypeTable(VE, Stream);
1913 
1914   // Emit top-level description of module, including target triple, inline asm,
1915   // descriptors for global variables, and function prototype info.
1916   WriteModuleInfo(M, VE, Stream);
1917 
1918   // Emit constants.
1919   WriteModuleConstants(VE, Stream);
1920 
1921   // Emit metadata.
1922   WriteModuleMetadata(M, VE, Stream);
1923 
1924   // Emit metadata.
1925   WriteModuleMetadataStore(M, Stream);
1926 
1927   // Emit names for globals/functions etc.
1928   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1929 
1930   // Emit use-lists.
1931   if (EnablePreserveUseListOrdering)
1932     WriteModuleUseLists(M, VE, Stream);
1933 
1934   // Emit function bodies.
1935   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1936     if (!F->isDeclaration())
1937       WriteFunction(*F, VE, Stream);
1938 
1939   Stream.ExitBlock();
1940 }
1941 
1942 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1943 /// header and trailer to make it compatible with the system archiver.  To do
1944 /// this we emit the following header, and then emit a trailer that pads the
1945 /// file out to be a multiple of 16 bytes.
1946 ///
1947 /// struct bc_header {
1948 ///   uint32_t Magic;         // 0x0B17C0DE
1949 ///   uint32_t Version;       // Version, currently always 0.
1950 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1951 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1952 ///   uint32_t CPUType;       // CPU specifier.
1953 ///   ... potentially more later ...
1954 /// };
1955 enum {
1956   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1957   DarwinBCHeaderSize = 5*4
1958 };
1959 
1960 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1961                                uint32_t &Position) {
1962   Buffer[Position + 0] = (unsigned char) (Value >>  0);
1963   Buffer[Position + 1] = (unsigned char) (Value >>  8);
1964   Buffer[Position + 2] = (unsigned char) (Value >> 16);
1965   Buffer[Position + 3] = (unsigned char) (Value >> 24);
1966   Position += 4;
1967 }
1968 
1969 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1970                                          const Triple &TT) {
1971   unsigned CPUType = ~0U;
1972 
1973   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1974   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1975   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1976   // specific constants here because they are implicitly part of the Darwin ABI.
1977   enum {
1978     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1979     DARWIN_CPU_TYPE_X86        = 7,
1980     DARWIN_CPU_TYPE_ARM        = 12,
1981     DARWIN_CPU_TYPE_POWERPC    = 18
1982   };
1983 
1984   Triple::ArchType Arch = TT.getArch();
1985   if (Arch == Triple::x86_64)
1986     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1987   else if (Arch == Triple::x86)
1988     CPUType = DARWIN_CPU_TYPE_X86;
1989   else if (Arch == Triple::ppc)
1990     CPUType = DARWIN_CPU_TYPE_POWERPC;
1991   else if (Arch == Triple::ppc64)
1992     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1993   else if (Arch == Triple::arm || Arch == Triple::thumb)
1994     CPUType = DARWIN_CPU_TYPE_ARM;
1995 
1996   // Traditional Bitcode starts after header.
1997   assert(Buffer.size() >= DarwinBCHeaderSize &&
1998          "Expected header size to be reserved");
1999   unsigned BCOffset = DarwinBCHeaderSize;
2000   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2001 
2002   // Write the magic and version.
2003   unsigned Position = 0;
2004   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2005   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2006   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2007   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2008   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2009 
2010   // If the file is not a multiple of 16 bytes, insert dummy padding.
2011   while (Buffer.size() & 15)
2012     Buffer.push_back(0);
2013 }
2014 
2015 /// WriteBitcodeToFile - Write the specified module to the specified output
2016 /// stream.
2017 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2018   SmallVector<char, 0> Buffer;
2019   Buffer.reserve(256*1024);
2020 
2021   // If this is darwin or another generic macho target, reserve space for the
2022   // header.
2023   Triple TT(M->getTargetTriple());
2024   if (TT.isOSDarwin())
2025     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2026 
2027   // Emit the module into the buffer.
2028   {
2029     BitstreamWriter Stream(Buffer);
2030 
2031     // Emit the file header.
2032     Stream.Emit((unsigned)'B', 8);
2033     Stream.Emit((unsigned)'C', 8);
2034     Stream.Emit(0x0, 4);
2035     Stream.Emit(0xC, 4);
2036     Stream.Emit(0xE, 4);
2037     Stream.Emit(0xD, 4);
2038 
2039     // Emit the module.
2040     WriteModule(M, Stream);
2041   }
2042 
2043   if (TT.isOSDarwin())
2044     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2045 
2046   // Write the generated bitstream to "Out".
2047   Out.write((char*)&Buffer.front(), Buffer.size());
2048 }
2049