xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 1d12b885b09a92d268356292c2829a2a6b4aca1d)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/MC/StringTableBuilder.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/Program.h"
35 #include "llvm/Support/SHA1.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cctype>
38 #include <map>
39 using namespace llvm;
40 
41 namespace {
42 
43 cl::opt<unsigned>
44     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
45                    cl::desc("Number of metadatas above which we emit an index "
46                             "to enable lazy-loading"));
47 /// These are manifest constants used by the bitcode writer. They do not need to
48 /// be kept in sync with the reader, but need to be consistent within this file.
49 enum {
50   // VALUE_SYMTAB_BLOCK abbrev id's.
51   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   VST_ENTRY_7_ABBREV,
53   VST_ENTRY_6_ABBREV,
54   VST_BBENTRY_6_ABBREV,
55 
56   // CONSTANTS_BLOCK abbrev id's.
57   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   CONSTANTS_INTEGER_ABBREV,
59   CONSTANTS_CE_CAST_Abbrev,
60   CONSTANTS_NULL_Abbrev,
61 
62   // FUNCTION_BLOCK abbrev id's.
63   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
64   FUNCTION_INST_BINOP_ABBREV,
65   FUNCTION_INST_BINOP_FLAGS_ABBREV,
66   FUNCTION_INST_CAST_ABBREV,
67   FUNCTION_INST_RET_VOID_ABBREV,
68   FUNCTION_INST_RET_VAL_ABBREV,
69   FUNCTION_INST_UNREACHABLE_ABBREV,
70   FUNCTION_INST_GEP_ABBREV,
71 };
72 
73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
74 /// file type.
75 class BitcodeWriterBase {
76 protected:
77   /// The stream created and owned by the client.
78   BitstreamWriter &Stream;
79 
80 public:
81   /// Constructs a BitcodeWriterBase object that writes to the provided
82   /// \p Stream.
83   BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {}
84 
85 protected:
86   void writeBitcodeHeader();
87   void writeModuleVersion();
88 };
89 
90 void BitcodeWriterBase::writeModuleVersion() {
91   // VERSION: [version#]
92   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
93 }
94 
95 /// Class to manage the bitcode writing for a module.
96 class ModuleBitcodeWriter : public BitcodeWriterBase {
97   /// Pointer to the buffer allocated by caller for bitcode writing.
98   const SmallVectorImpl<char> &Buffer;
99 
100   StringTableBuilder &StrtabBuilder;
101 
102   /// The Module to write to bitcode.
103   const Module &M;
104 
105   /// Enumerates ids for all values in the module.
106   ValueEnumerator VE;
107 
108   /// Optional per-module index to write for ThinLTO.
109   const ModuleSummaryIndex *Index;
110 
111   /// True if a module hash record should be written.
112   bool GenerateHash;
113 
114   /// If non-null, when GenerateHash is true, the resulting hash is written
115   /// into ModHash. When GenerateHash is false, that specified value
116   /// is used as the hash instead of computing from the generated bitcode.
117   /// Can be used to produce the same module hash for a minimized bitcode
118   /// used just for the thin link as in the regular full bitcode that will
119   /// be used in the backend.
120   ModuleHash *ModHash;
121 
122   /// The start bit of the identification block.
123   uint64_t BitcodeStartBit;
124 
125   /// Map that holds the correspondence between GUIDs in the summary index,
126   /// that came from indirect call profiles, and a value id generated by this
127   /// class to use in the VST and summary block records.
128   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
129 
130   /// Tracks the last value id recorded in the GUIDToValueMap.
131   unsigned GlobalValueId;
132 
133   /// Saves the offset of the VSTOffset record that must eventually be
134   /// backpatched with the offset of the actual VST.
135   uint64_t VSTOffsetPlaceholder = 0;
136 
137 public:
138   /// Constructs a ModuleBitcodeWriter object for the given Module,
139   /// writing to the provided \p Buffer.
140   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
141                       StringTableBuilder &StrtabBuilder,
142                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
143                       const ModuleSummaryIndex *Index, bool GenerateHash,
144                       ModuleHash *ModHash = nullptr)
145       : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder),
146         M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index),
147         GenerateHash(GenerateHash), ModHash(ModHash),
148         BitcodeStartBit(Stream.GetCurrentBitNo()) {
149     // Assign ValueIds to any callee values in the index that came from
150     // indirect call profiles and were recorded as a GUID not a Value*
151     // (which would have been assigned an ID by the ValueEnumerator).
152     // The starting ValueId is just after the number of values in the
153     // ValueEnumerator, so that they can be emitted in the VST.
154     GlobalValueId = VE.getValues().size();
155     if (!Index)
156       return;
157     for (const auto &GUIDSummaryLists : *Index)
158       // Examine all summaries for this GUID.
159       for (auto &Summary : GUIDSummaryLists.second)
160         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
161           // For each call in the function summary, see if the call
162           // is to a GUID (which means it is for an indirect call,
163           // otherwise we would have a Value for it). If so, synthesize
164           // a value id.
165           for (auto &CallEdge : FS->calls())
166             if (CallEdge.first.isGUID())
167               assignValueId(CallEdge.first.getGUID());
168   }
169 
170   /// Emit the current module to the bitstream.
171   void write();
172 
173 private:
174   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
175 
176   void writeAttributeGroupTable();
177   void writeAttributeTable();
178   void writeTypeTable();
179   void writeComdats();
180   void writeValueSymbolTableForwardDecl();
181   void writeModuleInfo();
182   void writeValueAsMetadata(const ValueAsMetadata *MD,
183                             SmallVectorImpl<uint64_t> &Record);
184   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
185                     unsigned Abbrev);
186   unsigned createDILocationAbbrev();
187   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
188                        unsigned &Abbrev);
189   unsigned createGenericDINodeAbbrev();
190   void writeGenericDINode(const GenericDINode *N,
191                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
192   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
193                        unsigned Abbrev);
194   void writeDIEnumerator(const DIEnumerator *N,
195                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
196   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
197                         unsigned Abbrev);
198   void writeDIDerivedType(const DIDerivedType *N,
199                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
200   void writeDICompositeType(const DICompositeType *N,
201                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
202   void writeDISubroutineType(const DISubroutineType *N,
203                              SmallVectorImpl<uint64_t> &Record,
204                              unsigned Abbrev);
205   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
206                    unsigned Abbrev);
207   void writeDICompileUnit(const DICompileUnit *N,
208                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
209   void writeDISubprogram(const DISubprogram *N,
210                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
211   void writeDILexicalBlock(const DILexicalBlock *N,
212                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
213   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
214                                SmallVectorImpl<uint64_t> &Record,
215                                unsigned Abbrev);
216   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
217                         unsigned Abbrev);
218   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
219                     unsigned Abbrev);
220   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
221                         unsigned Abbrev);
222   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
223                      unsigned Abbrev);
224   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
225                                     SmallVectorImpl<uint64_t> &Record,
226                                     unsigned Abbrev);
227   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
228                                      SmallVectorImpl<uint64_t> &Record,
229                                      unsigned Abbrev);
230   void writeDIGlobalVariable(const DIGlobalVariable *N,
231                              SmallVectorImpl<uint64_t> &Record,
232                              unsigned Abbrev);
233   void writeDILocalVariable(const DILocalVariable *N,
234                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
235   void writeDIExpression(const DIExpression *N,
236                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
237   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
238                                        SmallVectorImpl<uint64_t> &Record,
239                                        unsigned Abbrev);
240   void writeDIObjCProperty(const DIObjCProperty *N,
241                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
242   void writeDIImportedEntity(const DIImportedEntity *N,
243                              SmallVectorImpl<uint64_t> &Record,
244                              unsigned Abbrev);
245   unsigned createNamedMetadataAbbrev();
246   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
247   unsigned createMetadataStringsAbbrev();
248   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
249                             SmallVectorImpl<uint64_t> &Record);
250   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
251                             SmallVectorImpl<uint64_t> &Record,
252                             std::vector<unsigned> *MDAbbrevs = nullptr,
253                             std::vector<uint64_t> *IndexPos = nullptr);
254   void writeModuleMetadata();
255   void writeFunctionMetadata(const Function &F);
256   void writeFunctionMetadataAttachment(const Function &F);
257   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
258   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
259                                     const GlobalObject &GO);
260   void writeModuleMetadataKinds();
261   void writeOperandBundleTags();
262   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
263   void writeModuleConstants();
264   bool pushValueAndType(const Value *V, unsigned InstID,
265                         SmallVectorImpl<unsigned> &Vals);
266   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
267   void pushValue(const Value *V, unsigned InstID,
268                  SmallVectorImpl<unsigned> &Vals);
269   void pushValueSigned(const Value *V, unsigned InstID,
270                        SmallVectorImpl<uint64_t> &Vals);
271   void writeInstruction(const Instruction &I, unsigned InstID,
272                         SmallVectorImpl<unsigned> &Vals);
273   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
274   void writeGlobalValueSymbolTable(
275       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
276   void writeUseList(UseListOrder &&Order);
277   void writeUseListBlock(const Function *F);
278   void
279   writeFunction(const Function &F,
280                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
281   void writeBlockInfo();
282   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
283                                            GlobalValueSummary *Summary,
284                                            unsigned ValueID,
285                                            unsigned FSCallsAbbrev,
286                                            unsigned FSCallsProfileAbbrev,
287                                            const Function &F);
288   void writeModuleLevelReferences(const GlobalVariable &V,
289                                   SmallVector<uint64_t, 64> &NameVals,
290                                   unsigned FSModRefsAbbrev);
291   void writePerModuleGlobalValueSummary();
292   void writeModuleHash(size_t BlockStartPos);
293 
294   void assignValueId(GlobalValue::GUID ValGUID) {
295     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
296   }
297   unsigned getValueId(GlobalValue::GUID ValGUID) {
298     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
299     // Expect that any GUID value had a value Id assigned by an
300     // earlier call to assignValueId.
301     assert(VMI != GUIDToValueIdMap.end() &&
302            "GUID does not have assigned value Id");
303     return VMI->second;
304   }
305   // Helper to get the valueId for the type of value recorded in VI.
306   unsigned getValueId(ValueInfo VI) {
307     if (VI.isGUID())
308       return getValueId(VI.getGUID());
309     return VE.getValueID(VI.getValue());
310   }
311   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
312 };
313 
314 /// Class to manage the bitcode writing for a combined index.
315 class IndexBitcodeWriter : public BitcodeWriterBase {
316   /// The combined index to write to bitcode.
317   const ModuleSummaryIndex &Index;
318 
319   /// When writing a subset of the index for distributed backends, client
320   /// provides a map of modules to the corresponding GUIDs/summaries to write.
321   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
322 
323   /// Map that holds the correspondence between the GUID used in the combined
324   /// index and a value id generated by this class to use in references.
325   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
326 
327   /// Tracks the last value id recorded in the GUIDToValueMap.
328   unsigned GlobalValueId = 0;
329 
330 public:
331   /// Constructs a IndexBitcodeWriter object for the given combined index,
332   /// writing to the provided \p Buffer. When writing a subset of the index
333   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
334   IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index,
335                      const std::map<std::string, GVSummaryMapTy>
336                          *ModuleToSummariesForIndex = nullptr)
337       : BitcodeWriterBase(Stream), Index(Index),
338         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
339     // Assign unique value ids to all summaries to be written, for use
340     // in writing out the call graph edges. Save the mapping from GUID
341     // to the new global value id to use when writing those edges, which
342     // are currently saved in the index in terms of GUID.
343     for (const auto &I : *this)
344       GUIDToValueIdMap[I.first] = ++GlobalValueId;
345   }
346 
347   /// The below iterator returns the GUID and associated summary.
348   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
349 
350   /// Iterator over the value GUID and summaries to be written to bitcode,
351   /// hides the details of whether they are being pulled from the entire
352   /// index or just those in a provided ModuleToSummariesForIndex map.
353   class iterator
354       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
355                                           GVInfo> {
356     /// Enables access to parent class.
357     const IndexBitcodeWriter &Writer;
358 
359     // Iterators used when writing only those summaries in a provided
360     // ModuleToSummariesForIndex map:
361 
362     /// Points to the last element in outer ModuleToSummariesForIndex map.
363     std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack;
364     /// Iterator on outer ModuleToSummariesForIndex map.
365     std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter;
366     /// Iterator on an inner global variable summary map.
367     GVSummaryMapTy::const_iterator ModuleGVSummariesIter;
368 
369     // Iterators used when writing all summaries in the index:
370 
371     /// Points to the last element in the Index outer GlobalValueMap.
372     const_gvsummary_iterator IndexSummariesBack;
373     /// Iterator on outer GlobalValueMap.
374     const_gvsummary_iterator IndexSummariesIter;
375     /// Iterator on an inner GlobalValueSummaryList.
376     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
377 
378   public:
379     /// Construct iterator from parent \p Writer and indicate if we are
380     /// constructing the end iterator.
381     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
382       // Set up the appropriate set of iterators given whether we are writing
383       // the full index or just a subset.
384       // Can't setup the Back or inner iterators if the corresponding map
385       // is empty. This will be handled specially in operator== as well.
386       if (Writer.ModuleToSummariesForIndex &&
387           !Writer.ModuleToSummariesForIndex->empty()) {
388         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
389              std::next(ModuleSummariesBack) !=
390              Writer.ModuleToSummariesForIndex->end();
391              ModuleSummariesBack++)
392           ;
393         ModuleSummariesIter = !IsAtEnd
394                                   ? Writer.ModuleToSummariesForIndex->begin()
395                                   : ModuleSummariesBack;
396         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
397                                          : ModuleSummariesBack->second.end();
398       } else if (!Writer.ModuleToSummariesForIndex &&
399                  Writer.Index.begin() != Writer.Index.end()) {
400         for (IndexSummariesBack = Writer.Index.begin();
401              std::next(IndexSummariesBack) != Writer.Index.end();
402              IndexSummariesBack++)
403           ;
404         IndexSummariesIter =
405             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
406         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
407                                         : IndexSummariesBack->second.end();
408       }
409     }
410 
411     /// Increment the appropriate set of iterators.
412     iterator &operator++() {
413       // First the inner iterator is incremented, then if it is at the end
414       // and there are more outer iterations to go, the inner is reset to
415       // the start of the next inner list.
416       if (Writer.ModuleToSummariesForIndex) {
417         ++ModuleGVSummariesIter;
418         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
419             ModuleSummariesIter != ModuleSummariesBack) {
420           ++ModuleSummariesIter;
421           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
422         }
423       } else {
424         ++IndexGVSummariesIter;
425         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
426             IndexSummariesIter != IndexSummariesBack) {
427           ++IndexSummariesIter;
428           IndexGVSummariesIter = IndexSummariesIter->second.begin();
429         }
430       }
431       return *this;
432     }
433 
434     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
435     /// outer and inner iterator positions.
436     GVInfo operator*() {
437       if (Writer.ModuleToSummariesForIndex)
438         return std::make_pair(ModuleGVSummariesIter->first,
439                               ModuleGVSummariesIter->second);
440       return std::make_pair(IndexSummariesIter->first,
441                             IndexGVSummariesIter->get());
442     }
443 
444     /// Checks if the iterators are equal, with special handling for empty
445     /// indexes.
446     bool operator==(const iterator &RHS) const {
447       if (Writer.ModuleToSummariesForIndex) {
448         // First ensure that both are writing the same subset.
449         if (Writer.ModuleToSummariesForIndex !=
450             RHS.Writer.ModuleToSummariesForIndex)
451           return false;
452         // Already determined above that maps are the same, so if one is
453         // empty, they both are.
454         if (Writer.ModuleToSummariesForIndex->empty())
455           return true;
456         // Ensure the ModuleGVSummariesIter are iterating over the same
457         // container before checking them below.
458         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
459           return false;
460         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
461       }
462       // First ensure RHS also writing the full index, and that both are
463       // writing the same full index.
464       if (RHS.Writer.ModuleToSummariesForIndex ||
465           &Writer.Index != &RHS.Writer.Index)
466         return false;
467       // Already determined above that maps are the same, so if one is
468       // empty, they both are.
469       if (Writer.Index.begin() == Writer.Index.end())
470         return true;
471       // Ensure the IndexGVSummariesIter are iterating over the same
472       // container before checking them below.
473       if (IndexSummariesIter != RHS.IndexSummariesIter)
474         return false;
475       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
476     }
477   };
478 
479   /// Obtain the start iterator over the summaries to be written.
480   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
481   /// Obtain the end iterator over the summaries to be written.
482   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
483 
484   /// Main entry point for writing a combined index to bitcode.
485   void write();
486 
487 private:
488   void writeModStrings();
489   void writeCombinedGlobalValueSummary();
490 
491   /// Indicates whether the provided \p ModulePath should be written into
492   /// the module string table, e.g. if full index written or if it is in
493   /// the provided subset.
494   bool doIncludeModule(StringRef ModulePath) {
495     return !ModuleToSummariesForIndex ||
496            ModuleToSummariesForIndex->count(ModulePath);
497   }
498 
499   bool hasValueId(GlobalValue::GUID ValGUID) {
500     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
501     return VMI != GUIDToValueIdMap.end();
502   }
503   void assignValueId(GlobalValue::GUID ValGUID) {
504     unsigned &ValueId = GUIDToValueIdMap[ValGUID];
505     if (ValueId == 0)
506       ValueId = ++GlobalValueId;
507   }
508   unsigned getValueId(GlobalValue::GUID ValGUID) {
509     auto VMI = GUIDToValueIdMap.find(ValGUID);
510     assert(VMI != GUIDToValueIdMap.end());
511     return VMI->second;
512   }
513   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
514 };
515 } // end anonymous namespace
516 
517 static unsigned getEncodedCastOpcode(unsigned Opcode) {
518   switch (Opcode) {
519   default: llvm_unreachable("Unknown cast instruction!");
520   case Instruction::Trunc   : return bitc::CAST_TRUNC;
521   case Instruction::ZExt    : return bitc::CAST_ZEXT;
522   case Instruction::SExt    : return bitc::CAST_SEXT;
523   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
524   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
525   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
526   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
527   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
528   case Instruction::FPExt   : return bitc::CAST_FPEXT;
529   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
530   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
531   case Instruction::BitCast : return bitc::CAST_BITCAST;
532   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
533   }
534 }
535 
536 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
537   switch (Opcode) {
538   default: llvm_unreachable("Unknown binary instruction!");
539   case Instruction::Add:
540   case Instruction::FAdd: return bitc::BINOP_ADD;
541   case Instruction::Sub:
542   case Instruction::FSub: return bitc::BINOP_SUB;
543   case Instruction::Mul:
544   case Instruction::FMul: return bitc::BINOP_MUL;
545   case Instruction::UDiv: return bitc::BINOP_UDIV;
546   case Instruction::FDiv:
547   case Instruction::SDiv: return bitc::BINOP_SDIV;
548   case Instruction::URem: return bitc::BINOP_UREM;
549   case Instruction::FRem:
550   case Instruction::SRem: return bitc::BINOP_SREM;
551   case Instruction::Shl:  return bitc::BINOP_SHL;
552   case Instruction::LShr: return bitc::BINOP_LSHR;
553   case Instruction::AShr: return bitc::BINOP_ASHR;
554   case Instruction::And:  return bitc::BINOP_AND;
555   case Instruction::Or:   return bitc::BINOP_OR;
556   case Instruction::Xor:  return bitc::BINOP_XOR;
557   }
558 }
559 
560 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
561   switch (Op) {
562   default: llvm_unreachable("Unknown RMW operation!");
563   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
564   case AtomicRMWInst::Add: return bitc::RMW_ADD;
565   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
566   case AtomicRMWInst::And: return bitc::RMW_AND;
567   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
568   case AtomicRMWInst::Or: return bitc::RMW_OR;
569   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
570   case AtomicRMWInst::Max: return bitc::RMW_MAX;
571   case AtomicRMWInst::Min: return bitc::RMW_MIN;
572   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
573   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
574   }
575 }
576 
577 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
578   switch (Ordering) {
579   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
580   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
581   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
582   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
583   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
584   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
585   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
586   }
587   llvm_unreachable("Invalid ordering");
588 }
589 
590 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
591   switch (SynchScope) {
592   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
593   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
594   }
595   llvm_unreachable("Invalid synch scope");
596 }
597 
598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
599                               StringRef Str, unsigned AbbrevToUse) {
600   SmallVector<unsigned, 64> Vals;
601 
602   // Code: [strchar x N]
603   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
604     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
605       AbbrevToUse = 0;
606     Vals.push_back(Str[i]);
607   }
608 
609   // Emit the finished record.
610   Stream.EmitRecord(Code, Vals, AbbrevToUse);
611 }
612 
613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
614   switch (Kind) {
615   case Attribute::Alignment:
616     return bitc::ATTR_KIND_ALIGNMENT;
617   case Attribute::AllocSize:
618     return bitc::ATTR_KIND_ALLOC_SIZE;
619   case Attribute::AlwaysInline:
620     return bitc::ATTR_KIND_ALWAYS_INLINE;
621   case Attribute::ArgMemOnly:
622     return bitc::ATTR_KIND_ARGMEMONLY;
623   case Attribute::Builtin:
624     return bitc::ATTR_KIND_BUILTIN;
625   case Attribute::ByVal:
626     return bitc::ATTR_KIND_BY_VAL;
627   case Attribute::Convergent:
628     return bitc::ATTR_KIND_CONVERGENT;
629   case Attribute::InAlloca:
630     return bitc::ATTR_KIND_IN_ALLOCA;
631   case Attribute::Cold:
632     return bitc::ATTR_KIND_COLD;
633   case Attribute::InaccessibleMemOnly:
634     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
635   case Attribute::InaccessibleMemOrArgMemOnly:
636     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
637   case Attribute::InlineHint:
638     return bitc::ATTR_KIND_INLINE_HINT;
639   case Attribute::InReg:
640     return bitc::ATTR_KIND_IN_REG;
641   case Attribute::JumpTable:
642     return bitc::ATTR_KIND_JUMP_TABLE;
643   case Attribute::MinSize:
644     return bitc::ATTR_KIND_MIN_SIZE;
645   case Attribute::Naked:
646     return bitc::ATTR_KIND_NAKED;
647   case Attribute::Nest:
648     return bitc::ATTR_KIND_NEST;
649   case Attribute::NoAlias:
650     return bitc::ATTR_KIND_NO_ALIAS;
651   case Attribute::NoBuiltin:
652     return bitc::ATTR_KIND_NO_BUILTIN;
653   case Attribute::NoCapture:
654     return bitc::ATTR_KIND_NO_CAPTURE;
655   case Attribute::NoDuplicate:
656     return bitc::ATTR_KIND_NO_DUPLICATE;
657   case Attribute::NoImplicitFloat:
658     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
659   case Attribute::NoInline:
660     return bitc::ATTR_KIND_NO_INLINE;
661   case Attribute::NoRecurse:
662     return bitc::ATTR_KIND_NO_RECURSE;
663   case Attribute::NonLazyBind:
664     return bitc::ATTR_KIND_NON_LAZY_BIND;
665   case Attribute::NonNull:
666     return bitc::ATTR_KIND_NON_NULL;
667   case Attribute::Dereferenceable:
668     return bitc::ATTR_KIND_DEREFERENCEABLE;
669   case Attribute::DereferenceableOrNull:
670     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
671   case Attribute::NoRedZone:
672     return bitc::ATTR_KIND_NO_RED_ZONE;
673   case Attribute::NoReturn:
674     return bitc::ATTR_KIND_NO_RETURN;
675   case Attribute::NoUnwind:
676     return bitc::ATTR_KIND_NO_UNWIND;
677   case Attribute::OptimizeForSize:
678     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
679   case Attribute::OptimizeNone:
680     return bitc::ATTR_KIND_OPTIMIZE_NONE;
681   case Attribute::ReadNone:
682     return bitc::ATTR_KIND_READ_NONE;
683   case Attribute::ReadOnly:
684     return bitc::ATTR_KIND_READ_ONLY;
685   case Attribute::Returned:
686     return bitc::ATTR_KIND_RETURNED;
687   case Attribute::ReturnsTwice:
688     return bitc::ATTR_KIND_RETURNS_TWICE;
689   case Attribute::SExt:
690     return bitc::ATTR_KIND_S_EXT;
691   case Attribute::StackAlignment:
692     return bitc::ATTR_KIND_STACK_ALIGNMENT;
693   case Attribute::StackProtect:
694     return bitc::ATTR_KIND_STACK_PROTECT;
695   case Attribute::StackProtectReq:
696     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
697   case Attribute::StackProtectStrong:
698     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
699   case Attribute::SafeStack:
700     return bitc::ATTR_KIND_SAFESTACK;
701   case Attribute::StructRet:
702     return bitc::ATTR_KIND_STRUCT_RET;
703   case Attribute::SanitizeAddress:
704     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
705   case Attribute::SanitizeThread:
706     return bitc::ATTR_KIND_SANITIZE_THREAD;
707   case Attribute::SanitizeMemory:
708     return bitc::ATTR_KIND_SANITIZE_MEMORY;
709   case Attribute::SwiftError:
710     return bitc::ATTR_KIND_SWIFT_ERROR;
711   case Attribute::SwiftSelf:
712     return bitc::ATTR_KIND_SWIFT_SELF;
713   case Attribute::UWTable:
714     return bitc::ATTR_KIND_UW_TABLE;
715   case Attribute::WriteOnly:
716     return bitc::ATTR_KIND_WRITEONLY;
717   case Attribute::ZExt:
718     return bitc::ATTR_KIND_Z_EXT;
719   case Attribute::EndAttrKinds:
720     llvm_unreachable("Can not encode end-attribute kinds marker.");
721   case Attribute::None:
722     llvm_unreachable("Can not encode none-attribute.");
723   }
724 
725   llvm_unreachable("Trying to encode unknown attribute");
726 }
727 
728 void ModuleBitcodeWriter::writeAttributeGroupTable() {
729   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
730       VE.getAttributeGroups();
731   if (AttrGrps.empty()) return;
732 
733   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
734 
735   SmallVector<uint64_t, 64> Record;
736   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
737     unsigned AttrListIndex = Pair.first;
738     AttributeSet AS = Pair.second;
739     Record.push_back(VE.getAttributeGroupID(Pair));
740     Record.push_back(AttrListIndex);
741 
742     for (Attribute Attr : AS) {
743       if (Attr.isEnumAttribute()) {
744         Record.push_back(0);
745         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
746       } else if (Attr.isIntAttribute()) {
747         Record.push_back(1);
748         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
749         Record.push_back(Attr.getValueAsInt());
750       } else {
751         StringRef Kind = Attr.getKindAsString();
752         StringRef Val = Attr.getValueAsString();
753 
754         Record.push_back(Val.empty() ? 3 : 4);
755         Record.append(Kind.begin(), Kind.end());
756         Record.push_back(0);
757         if (!Val.empty()) {
758           Record.append(Val.begin(), Val.end());
759           Record.push_back(0);
760         }
761       }
762     }
763 
764     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
765     Record.clear();
766   }
767 
768   Stream.ExitBlock();
769 }
770 
771 void ModuleBitcodeWriter::writeAttributeTable() {
772   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
773   if (Attrs.empty()) return;
774 
775   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
776 
777   SmallVector<uint64_t, 64> Record;
778   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
779     const AttributeList &A = Attrs[i];
780     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
781       Record.push_back(
782           VE.getAttributeGroupID({A.getSlotIndex(i), A.getSlotAttributes(i)}));
783 
784     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
785     Record.clear();
786   }
787 
788   Stream.ExitBlock();
789 }
790 
791 /// WriteTypeTable - Write out the type table for a module.
792 void ModuleBitcodeWriter::writeTypeTable() {
793   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
794 
795   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
796   SmallVector<uint64_t, 64> TypeVals;
797 
798   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
799 
800   // Abbrev for TYPE_CODE_POINTER.
801   auto Abbv = std::make_shared<BitCodeAbbrev>();
802   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
804   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
805   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
806 
807   // Abbrev for TYPE_CODE_FUNCTION.
808   Abbv = std::make_shared<BitCodeAbbrev>();
809   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
810   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
811   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
812   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
813 
814   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
815 
816   // Abbrev for TYPE_CODE_STRUCT_ANON.
817   Abbv = std::make_shared<BitCodeAbbrev>();
818   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
821   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
822 
823   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
824 
825   // Abbrev for TYPE_CODE_STRUCT_NAME.
826   Abbv = std::make_shared<BitCodeAbbrev>();
827   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
828   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
829   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
830   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
831 
832   // Abbrev for TYPE_CODE_STRUCT_NAMED.
833   Abbv = std::make_shared<BitCodeAbbrev>();
834   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
835   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
836   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
837   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
838 
839   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
840 
841   // Abbrev for TYPE_CODE_ARRAY.
842   Abbv = std::make_shared<BitCodeAbbrev>();
843   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
844   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
845   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
846 
847   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
848 
849   // Emit an entry count so the reader can reserve space.
850   TypeVals.push_back(TypeList.size());
851   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
852   TypeVals.clear();
853 
854   // Loop over all of the types, emitting each in turn.
855   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
856     Type *T = TypeList[i];
857     int AbbrevToUse = 0;
858     unsigned Code = 0;
859 
860     switch (T->getTypeID()) {
861     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
862     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
863     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
864     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
865     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
866     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
867     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
868     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
869     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
870     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
871     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
872     case Type::IntegerTyID:
873       // INTEGER: [width]
874       Code = bitc::TYPE_CODE_INTEGER;
875       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
876       break;
877     case Type::PointerTyID: {
878       PointerType *PTy = cast<PointerType>(T);
879       // POINTER: [pointee type, address space]
880       Code = bitc::TYPE_CODE_POINTER;
881       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
882       unsigned AddressSpace = PTy->getAddressSpace();
883       TypeVals.push_back(AddressSpace);
884       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
885       break;
886     }
887     case Type::FunctionTyID: {
888       FunctionType *FT = cast<FunctionType>(T);
889       // FUNCTION: [isvararg, retty, paramty x N]
890       Code = bitc::TYPE_CODE_FUNCTION;
891       TypeVals.push_back(FT->isVarArg());
892       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
893       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
894         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
895       AbbrevToUse = FunctionAbbrev;
896       break;
897     }
898     case Type::StructTyID: {
899       StructType *ST = cast<StructType>(T);
900       // STRUCT: [ispacked, eltty x N]
901       TypeVals.push_back(ST->isPacked());
902       // Output all of the element types.
903       for (StructType::element_iterator I = ST->element_begin(),
904            E = ST->element_end(); I != E; ++I)
905         TypeVals.push_back(VE.getTypeID(*I));
906 
907       if (ST->isLiteral()) {
908         Code = bitc::TYPE_CODE_STRUCT_ANON;
909         AbbrevToUse = StructAnonAbbrev;
910       } else {
911         if (ST->isOpaque()) {
912           Code = bitc::TYPE_CODE_OPAQUE;
913         } else {
914           Code = bitc::TYPE_CODE_STRUCT_NAMED;
915           AbbrevToUse = StructNamedAbbrev;
916         }
917 
918         // Emit the name if it is present.
919         if (!ST->getName().empty())
920           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
921                             StructNameAbbrev);
922       }
923       break;
924     }
925     case Type::ArrayTyID: {
926       ArrayType *AT = cast<ArrayType>(T);
927       // ARRAY: [numelts, eltty]
928       Code = bitc::TYPE_CODE_ARRAY;
929       TypeVals.push_back(AT->getNumElements());
930       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
931       AbbrevToUse = ArrayAbbrev;
932       break;
933     }
934     case Type::VectorTyID: {
935       VectorType *VT = cast<VectorType>(T);
936       // VECTOR [numelts, eltty]
937       Code = bitc::TYPE_CODE_VECTOR;
938       TypeVals.push_back(VT->getNumElements());
939       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
940       break;
941     }
942     }
943 
944     // Emit the finished record.
945     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
946     TypeVals.clear();
947   }
948 
949   Stream.ExitBlock();
950 }
951 
952 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
953   switch (Linkage) {
954   case GlobalValue::ExternalLinkage:
955     return 0;
956   case GlobalValue::WeakAnyLinkage:
957     return 16;
958   case GlobalValue::AppendingLinkage:
959     return 2;
960   case GlobalValue::InternalLinkage:
961     return 3;
962   case GlobalValue::LinkOnceAnyLinkage:
963     return 18;
964   case GlobalValue::ExternalWeakLinkage:
965     return 7;
966   case GlobalValue::CommonLinkage:
967     return 8;
968   case GlobalValue::PrivateLinkage:
969     return 9;
970   case GlobalValue::WeakODRLinkage:
971     return 17;
972   case GlobalValue::LinkOnceODRLinkage:
973     return 19;
974   case GlobalValue::AvailableExternallyLinkage:
975     return 12;
976   }
977   llvm_unreachable("Invalid linkage");
978 }
979 
980 static unsigned getEncodedLinkage(const GlobalValue &GV) {
981   return getEncodedLinkage(GV.getLinkage());
982 }
983 
984 // Decode the flags for GlobalValue in the summary
985 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
986   uint64_t RawFlags = 0;
987 
988   RawFlags |= Flags.NotEligibleToImport; // bool
989   RawFlags |= (Flags.LiveRoot << 1);
990   // Linkage don't need to be remapped at that time for the summary. Any future
991   // change to the getEncodedLinkage() function will need to be taken into
992   // account here as well.
993   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
994 
995   return RawFlags;
996 }
997 
998 static unsigned getEncodedVisibility(const GlobalValue &GV) {
999   switch (GV.getVisibility()) {
1000   case GlobalValue::DefaultVisibility:   return 0;
1001   case GlobalValue::HiddenVisibility:    return 1;
1002   case GlobalValue::ProtectedVisibility: return 2;
1003   }
1004   llvm_unreachable("Invalid visibility");
1005 }
1006 
1007 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1008   switch (GV.getDLLStorageClass()) {
1009   case GlobalValue::DefaultStorageClass:   return 0;
1010   case GlobalValue::DLLImportStorageClass: return 1;
1011   case GlobalValue::DLLExportStorageClass: return 2;
1012   }
1013   llvm_unreachable("Invalid DLL storage class");
1014 }
1015 
1016 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1017   switch (GV.getThreadLocalMode()) {
1018     case GlobalVariable::NotThreadLocal:         return 0;
1019     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1020     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1021     case GlobalVariable::InitialExecTLSModel:    return 3;
1022     case GlobalVariable::LocalExecTLSModel:      return 4;
1023   }
1024   llvm_unreachable("Invalid TLS model");
1025 }
1026 
1027 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1028   switch (C.getSelectionKind()) {
1029   case Comdat::Any:
1030     return bitc::COMDAT_SELECTION_KIND_ANY;
1031   case Comdat::ExactMatch:
1032     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1033   case Comdat::Largest:
1034     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1035   case Comdat::NoDuplicates:
1036     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1037   case Comdat::SameSize:
1038     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1039   }
1040   llvm_unreachable("Invalid selection kind");
1041 }
1042 
1043 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1044   switch (GV.getUnnamedAddr()) {
1045   case GlobalValue::UnnamedAddr::None:   return 0;
1046   case GlobalValue::UnnamedAddr::Local:  return 2;
1047   case GlobalValue::UnnamedAddr::Global: return 1;
1048   }
1049   llvm_unreachable("Invalid unnamed_addr");
1050 }
1051 
1052 void ModuleBitcodeWriter::writeComdats() {
1053   SmallVector<unsigned, 64> Vals;
1054   for (const Comdat *C : VE.getComdats()) {
1055     // COMDAT: [strtab offset, strtab size, selection_kind]
1056     Vals.push_back(StrtabBuilder.add(C->getName()));
1057     Vals.push_back(C->getName().size());
1058     Vals.push_back(getEncodedComdatSelectionKind(*C));
1059     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1060     Vals.clear();
1061   }
1062 }
1063 
1064 /// Write a record that will eventually hold the word offset of the
1065 /// module-level VST. For now the offset is 0, which will be backpatched
1066 /// after the real VST is written. Saves the bit offset to backpatch.
1067 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1068   // Write a placeholder value in for the offset of the real VST,
1069   // which is written after the function blocks so that it can include
1070   // the offset of each function. The placeholder offset will be
1071   // updated when the real VST is written.
1072   auto Abbv = std::make_shared<BitCodeAbbrev>();
1073   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1074   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1075   // hold the real VST offset. Must use fixed instead of VBR as we don't
1076   // know how many VBR chunks to reserve ahead of time.
1077   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1078   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1079 
1080   // Emit the placeholder
1081   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1082   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1083 
1084   // Compute and save the bit offset to the placeholder, which will be
1085   // patched when the real VST is written. We can simply subtract the 32-bit
1086   // fixed size from the current bit number to get the location to backpatch.
1087   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1088 }
1089 
1090 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1091 
1092 /// Determine the encoding to use for the given string name and length.
1093 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1094   bool isChar6 = true;
1095   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1096     if (isChar6)
1097       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1098     if ((unsigned char)*C & 128)
1099       // don't bother scanning the rest.
1100       return SE_Fixed8;
1101   }
1102   if (isChar6)
1103     return SE_Char6;
1104   else
1105     return SE_Fixed7;
1106 }
1107 
1108 /// Emit top-level description of module, including target triple, inline asm,
1109 /// descriptors for global variables, and function prototype info.
1110 /// Returns the bit offset to backpatch with the location of the real VST.
1111 void ModuleBitcodeWriter::writeModuleInfo() {
1112   // Emit various pieces of data attached to a module.
1113   if (!M.getTargetTriple().empty())
1114     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1115                       0 /*TODO*/);
1116   const std::string &DL = M.getDataLayoutStr();
1117   if (!DL.empty())
1118     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1119   if (!M.getModuleInlineAsm().empty())
1120     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1121                       0 /*TODO*/);
1122 
1123   // Emit information about sections and GC, computing how many there are. Also
1124   // compute the maximum alignment value.
1125   std::map<std::string, unsigned> SectionMap;
1126   std::map<std::string, unsigned> GCMap;
1127   unsigned MaxAlignment = 0;
1128   unsigned MaxGlobalType = 0;
1129   for (const GlobalValue &GV : M.globals()) {
1130     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1131     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1132     if (GV.hasSection()) {
1133       // Give section names unique ID's.
1134       unsigned &Entry = SectionMap[GV.getSection()];
1135       if (!Entry) {
1136         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1137                           0 /*TODO*/);
1138         Entry = SectionMap.size();
1139       }
1140     }
1141   }
1142   for (const Function &F : M) {
1143     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1144     if (F.hasSection()) {
1145       // Give section names unique ID's.
1146       unsigned &Entry = SectionMap[F.getSection()];
1147       if (!Entry) {
1148         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1149                           0 /*TODO*/);
1150         Entry = SectionMap.size();
1151       }
1152     }
1153     if (F.hasGC()) {
1154       // Same for GC names.
1155       unsigned &Entry = GCMap[F.getGC()];
1156       if (!Entry) {
1157         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1158                           0 /*TODO*/);
1159         Entry = GCMap.size();
1160       }
1161     }
1162   }
1163 
1164   // Emit abbrev for globals, now that we know # sections and max alignment.
1165   unsigned SimpleGVarAbbrev = 0;
1166   if (!M.global_empty()) {
1167     // Add an abbrev for common globals with no visibility or thread localness.
1168     auto Abbv = std::make_shared<BitCodeAbbrev>();
1169     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1170     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1171     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1173                               Log2_32_Ceil(MaxGlobalType+1)));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1175                                                            //| explicitType << 1
1176                                                            //| constant
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1179     if (MaxAlignment == 0)                                 // Alignment.
1180       Abbv->Add(BitCodeAbbrevOp(0));
1181     else {
1182       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1183       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1184                                Log2_32_Ceil(MaxEncAlignment+1)));
1185     }
1186     if (SectionMap.empty())                                    // Section.
1187       Abbv->Add(BitCodeAbbrevOp(0));
1188     else
1189       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1190                                Log2_32_Ceil(SectionMap.size()+1)));
1191     // Don't bother emitting vis + thread local.
1192     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1193   }
1194 
1195   SmallVector<unsigned, 64> Vals;
1196   // Emit the module's source file name.
1197   {
1198     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1199                                             M.getSourceFileName().size());
1200     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1201     if (Bits == SE_Char6)
1202       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1203     else if (Bits == SE_Fixed7)
1204       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1205 
1206     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1207     auto Abbv = std::make_shared<BitCodeAbbrev>();
1208     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1210     Abbv->Add(AbbrevOpToUse);
1211     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1212 
1213     for (const auto P : M.getSourceFileName())
1214       Vals.push_back((unsigned char)P);
1215 
1216     // Emit the finished record.
1217     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1218     Vals.clear();
1219   }
1220 
1221   // Emit the global variable information.
1222   for (const GlobalVariable &GV : M.globals()) {
1223     unsigned AbbrevToUse = 0;
1224 
1225     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1226     //             linkage, alignment, section, visibility, threadlocal,
1227     //             unnamed_addr, externally_initialized, dllstorageclass,
1228     //             comdat]
1229     Vals.push_back(StrtabBuilder.add(GV.getName()));
1230     Vals.push_back(GV.getName().size());
1231     Vals.push_back(VE.getTypeID(GV.getValueType()));
1232     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1233     Vals.push_back(GV.isDeclaration() ? 0 :
1234                    (VE.getValueID(GV.getInitializer()) + 1));
1235     Vals.push_back(getEncodedLinkage(GV));
1236     Vals.push_back(Log2_32(GV.getAlignment())+1);
1237     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1238     if (GV.isThreadLocal() ||
1239         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1240         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1241         GV.isExternallyInitialized() ||
1242         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1243         GV.hasComdat()) {
1244       Vals.push_back(getEncodedVisibility(GV));
1245       Vals.push_back(getEncodedThreadLocalMode(GV));
1246       Vals.push_back(getEncodedUnnamedAddr(GV));
1247       Vals.push_back(GV.isExternallyInitialized());
1248       Vals.push_back(getEncodedDLLStorageClass(GV));
1249       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1250     } else {
1251       AbbrevToUse = SimpleGVarAbbrev;
1252     }
1253 
1254     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1255     Vals.clear();
1256   }
1257 
1258   // Emit the function proto information.
1259   for (const Function &F : M) {
1260     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1261     //             linkage, paramattrs, alignment, section, visibility, gc,
1262     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1263     //             prefixdata, personalityfn]
1264     Vals.push_back(StrtabBuilder.add(F.getName()));
1265     Vals.push_back(F.getName().size());
1266     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1267     Vals.push_back(F.getCallingConv());
1268     Vals.push_back(F.isDeclaration());
1269     Vals.push_back(getEncodedLinkage(F));
1270     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1271     Vals.push_back(Log2_32(F.getAlignment())+1);
1272     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1273     Vals.push_back(getEncodedVisibility(F));
1274     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1275     Vals.push_back(getEncodedUnnamedAddr(F));
1276     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1277                                        : 0);
1278     Vals.push_back(getEncodedDLLStorageClass(F));
1279     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1280     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1281                                      : 0);
1282     Vals.push_back(
1283         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1284 
1285     unsigned AbbrevToUse = 0;
1286     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1287     Vals.clear();
1288   }
1289 
1290   // Emit the alias information.
1291   for (const GlobalAlias &A : M.aliases()) {
1292     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1293     //         visibility, dllstorageclass, threadlocal, unnamed_addr]
1294     Vals.push_back(StrtabBuilder.add(A.getName()));
1295     Vals.push_back(A.getName().size());
1296     Vals.push_back(VE.getTypeID(A.getValueType()));
1297     Vals.push_back(A.getType()->getAddressSpace());
1298     Vals.push_back(VE.getValueID(A.getAliasee()));
1299     Vals.push_back(getEncodedLinkage(A));
1300     Vals.push_back(getEncodedVisibility(A));
1301     Vals.push_back(getEncodedDLLStorageClass(A));
1302     Vals.push_back(getEncodedThreadLocalMode(A));
1303     Vals.push_back(getEncodedUnnamedAddr(A));
1304     unsigned AbbrevToUse = 0;
1305     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1306     Vals.clear();
1307   }
1308 
1309   // Emit the ifunc information.
1310   for (const GlobalIFunc &I : M.ifuncs()) {
1311     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1312     //         val#, linkage, visibility]
1313     Vals.push_back(StrtabBuilder.add(I.getName()));
1314     Vals.push_back(I.getName().size());
1315     Vals.push_back(VE.getTypeID(I.getValueType()));
1316     Vals.push_back(I.getType()->getAddressSpace());
1317     Vals.push_back(VE.getValueID(I.getResolver()));
1318     Vals.push_back(getEncodedLinkage(I));
1319     Vals.push_back(getEncodedVisibility(I));
1320     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1321     Vals.clear();
1322   }
1323 
1324   writeValueSymbolTableForwardDecl();
1325 }
1326 
1327 static uint64_t getOptimizationFlags(const Value *V) {
1328   uint64_t Flags = 0;
1329 
1330   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1331     if (OBO->hasNoSignedWrap())
1332       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1333     if (OBO->hasNoUnsignedWrap())
1334       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1335   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1336     if (PEO->isExact())
1337       Flags |= 1 << bitc::PEO_EXACT;
1338   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1339     if (FPMO->hasUnsafeAlgebra())
1340       Flags |= FastMathFlags::UnsafeAlgebra;
1341     if (FPMO->hasNoNaNs())
1342       Flags |= FastMathFlags::NoNaNs;
1343     if (FPMO->hasNoInfs())
1344       Flags |= FastMathFlags::NoInfs;
1345     if (FPMO->hasNoSignedZeros())
1346       Flags |= FastMathFlags::NoSignedZeros;
1347     if (FPMO->hasAllowReciprocal())
1348       Flags |= FastMathFlags::AllowReciprocal;
1349     if (FPMO->hasAllowContract())
1350       Flags |= FastMathFlags::AllowContract;
1351   }
1352 
1353   return Flags;
1354 }
1355 
1356 void ModuleBitcodeWriter::writeValueAsMetadata(
1357     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1358   // Mimic an MDNode with a value as one operand.
1359   Value *V = MD->getValue();
1360   Record.push_back(VE.getTypeID(V->getType()));
1361   Record.push_back(VE.getValueID(V));
1362   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1363   Record.clear();
1364 }
1365 
1366 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1367                                        SmallVectorImpl<uint64_t> &Record,
1368                                        unsigned Abbrev) {
1369   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1370     Metadata *MD = N->getOperand(i);
1371     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1372            "Unexpected function-local metadata");
1373     Record.push_back(VE.getMetadataOrNullID(MD));
1374   }
1375   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1376                                     : bitc::METADATA_NODE,
1377                     Record, Abbrev);
1378   Record.clear();
1379 }
1380 
1381 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1382   // Assume the column is usually under 128, and always output the inlined-at
1383   // location (it's never more expensive than building an array size 1).
1384   auto Abbv = std::make_shared<BitCodeAbbrev>();
1385   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1391   return Stream.EmitAbbrev(std::move(Abbv));
1392 }
1393 
1394 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1395                                           SmallVectorImpl<uint64_t> &Record,
1396                                           unsigned &Abbrev) {
1397   if (!Abbrev)
1398     Abbrev = createDILocationAbbrev();
1399 
1400   Record.push_back(N->isDistinct());
1401   Record.push_back(N->getLine());
1402   Record.push_back(N->getColumn());
1403   Record.push_back(VE.getMetadataID(N->getScope()));
1404   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1405 
1406   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1407   Record.clear();
1408 }
1409 
1410 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1411   // Assume the column is usually under 128, and always output the inlined-at
1412   // location (it's never more expensive than building an array size 1).
1413   auto Abbv = std::make_shared<BitCodeAbbrev>();
1414   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1415   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1416   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1417   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1418   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1419   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1420   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1421   return Stream.EmitAbbrev(std::move(Abbv));
1422 }
1423 
1424 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1425                                              SmallVectorImpl<uint64_t> &Record,
1426                                              unsigned &Abbrev) {
1427   if (!Abbrev)
1428     Abbrev = createGenericDINodeAbbrev();
1429 
1430   Record.push_back(N->isDistinct());
1431   Record.push_back(N->getTag());
1432   Record.push_back(0); // Per-tag version field; unused for now.
1433 
1434   for (auto &I : N->operands())
1435     Record.push_back(VE.getMetadataOrNullID(I));
1436 
1437   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1438   Record.clear();
1439 }
1440 
1441 static uint64_t rotateSign(int64_t I) {
1442   uint64_t U = I;
1443   return I < 0 ? ~(U << 1) : U << 1;
1444 }
1445 
1446 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1447                                           SmallVectorImpl<uint64_t> &Record,
1448                                           unsigned Abbrev) {
1449   Record.push_back(N->isDistinct());
1450   Record.push_back(N->getCount());
1451   Record.push_back(rotateSign(N->getLowerBound()));
1452 
1453   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1454   Record.clear();
1455 }
1456 
1457 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1458                                             SmallVectorImpl<uint64_t> &Record,
1459                                             unsigned Abbrev) {
1460   Record.push_back(N->isDistinct());
1461   Record.push_back(rotateSign(N->getValue()));
1462   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1463 
1464   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1465   Record.clear();
1466 }
1467 
1468 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1469                                            SmallVectorImpl<uint64_t> &Record,
1470                                            unsigned Abbrev) {
1471   Record.push_back(N->isDistinct());
1472   Record.push_back(N->getTag());
1473   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1474   Record.push_back(N->getSizeInBits());
1475   Record.push_back(N->getAlignInBits());
1476   Record.push_back(N->getEncoding());
1477 
1478   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1479   Record.clear();
1480 }
1481 
1482 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1483                                              SmallVectorImpl<uint64_t> &Record,
1484                                              unsigned Abbrev) {
1485   Record.push_back(N->isDistinct());
1486   Record.push_back(N->getTag());
1487   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1488   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1489   Record.push_back(N->getLine());
1490   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1491   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1492   Record.push_back(N->getSizeInBits());
1493   Record.push_back(N->getAlignInBits());
1494   Record.push_back(N->getOffsetInBits());
1495   Record.push_back(N->getFlags());
1496   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1497 
1498   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1499   // that there is no DWARF address space associated with DIDerivedType.
1500   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1501     Record.push_back(*DWARFAddressSpace + 1);
1502   else
1503     Record.push_back(0);
1504 
1505   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1506   Record.clear();
1507 }
1508 
1509 void ModuleBitcodeWriter::writeDICompositeType(
1510     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1511     unsigned Abbrev) {
1512   const unsigned IsNotUsedInOldTypeRef = 0x2;
1513   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1514   Record.push_back(N->getTag());
1515   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1516   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1517   Record.push_back(N->getLine());
1518   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1519   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1520   Record.push_back(N->getSizeInBits());
1521   Record.push_back(N->getAlignInBits());
1522   Record.push_back(N->getOffsetInBits());
1523   Record.push_back(N->getFlags());
1524   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1525   Record.push_back(N->getRuntimeLang());
1526   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1527   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1528   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1529 
1530   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1531   Record.clear();
1532 }
1533 
1534 void ModuleBitcodeWriter::writeDISubroutineType(
1535     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1536     unsigned Abbrev) {
1537   const unsigned HasNoOldTypeRefs = 0x2;
1538   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1539   Record.push_back(N->getFlags());
1540   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1541   Record.push_back(N->getCC());
1542 
1543   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1544   Record.clear();
1545 }
1546 
1547 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1548                                       SmallVectorImpl<uint64_t> &Record,
1549                                       unsigned Abbrev) {
1550   Record.push_back(N->isDistinct());
1551   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1552   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1553   Record.push_back(N->getChecksumKind());
1554   Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()));
1555 
1556   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1557   Record.clear();
1558 }
1559 
1560 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1561                                              SmallVectorImpl<uint64_t> &Record,
1562                                              unsigned Abbrev) {
1563   assert(N->isDistinct() && "Expected distinct compile units");
1564   Record.push_back(/* IsDistinct */ true);
1565   Record.push_back(N->getSourceLanguage());
1566   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1567   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1568   Record.push_back(N->isOptimized());
1569   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1570   Record.push_back(N->getRuntimeVersion());
1571   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1572   Record.push_back(N->getEmissionKind());
1573   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1574   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1575   Record.push_back(/* subprograms */ 0);
1576   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1577   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1578   Record.push_back(N->getDWOId());
1579   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1580   Record.push_back(N->getSplitDebugInlining());
1581   Record.push_back(N->getDebugInfoForProfiling());
1582 
1583   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1584   Record.clear();
1585 }
1586 
1587 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1588                                             SmallVectorImpl<uint64_t> &Record,
1589                                             unsigned Abbrev) {
1590   uint64_t HasUnitFlag = 1 << 1;
1591   Record.push_back(N->isDistinct() | HasUnitFlag);
1592   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1593   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1594   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1595   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1596   Record.push_back(N->getLine());
1597   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1598   Record.push_back(N->isLocalToUnit());
1599   Record.push_back(N->isDefinition());
1600   Record.push_back(N->getScopeLine());
1601   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1602   Record.push_back(N->getVirtuality());
1603   Record.push_back(N->getVirtualIndex());
1604   Record.push_back(N->getFlags());
1605   Record.push_back(N->isOptimized());
1606   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1607   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1608   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1609   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1610   Record.push_back(N->getThisAdjustment());
1611   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1612 
1613   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1614   Record.clear();
1615 }
1616 
1617 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1618                                               SmallVectorImpl<uint64_t> &Record,
1619                                               unsigned Abbrev) {
1620   Record.push_back(N->isDistinct());
1621   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1622   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1623   Record.push_back(N->getLine());
1624   Record.push_back(N->getColumn());
1625 
1626   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1627   Record.clear();
1628 }
1629 
1630 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1631     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1632     unsigned Abbrev) {
1633   Record.push_back(N->isDistinct());
1634   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1635   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1636   Record.push_back(N->getDiscriminator());
1637 
1638   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1639   Record.clear();
1640 }
1641 
1642 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1643                                            SmallVectorImpl<uint64_t> &Record,
1644                                            unsigned Abbrev) {
1645   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1646   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1647   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1648   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1649   Record.push_back(N->getLine());
1650 
1651   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1652   Record.clear();
1653 }
1654 
1655 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1656                                        SmallVectorImpl<uint64_t> &Record,
1657                                        unsigned Abbrev) {
1658   Record.push_back(N->isDistinct());
1659   Record.push_back(N->getMacinfoType());
1660   Record.push_back(N->getLine());
1661   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1662   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1663 
1664   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1665   Record.clear();
1666 }
1667 
1668 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1669                                            SmallVectorImpl<uint64_t> &Record,
1670                                            unsigned Abbrev) {
1671   Record.push_back(N->isDistinct());
1672   Record.push_back(N->getMacinfoType());
1673   Record.push_back(N->getLine());
1674   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1675   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1676 
1677   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1678   Record.clear();
1679 }
1680 
1681 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1682                                         SmallVectorImpl<uint64_t> &Record,
1683                                         unsigned Abbrev) {
1684   Record.push_back(N->isDistinct());
1685   for (auto &I : N->operands())
1686     Record.push_back(VE.getMetadataOrNullID(I));
1687 
1688   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1689   Record.clear();
1690 }
1691 
1692 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1693     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1694     unsigned Abbrev) {
1695   Record.push_back(N->isDistinct());
1696   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1697   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1698 
1699   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1700   Record.clear();
1701 }
1702 
1703 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1704     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1705     unsigned Abbrev) {
1706   Record.push_back(N->isDistinct());
1707   Record.push_back(N->getTag());
1708   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1709   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1710   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1711 
1712   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1713   Record.clear();
1714 }
1715 
1716 void ModuleBitcodeWriter::writeDIGlobalVariable(
1717     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1718     unsigned Abbrev) {
1719   const uint64_t Version = 1 << 1;
1720   Record.push_back((uint64_t)N->isDistinct() | Version);
1721   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1722   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1723   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1724   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1725   Record.push_back(N->getLine());
1726   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1727   Record.push_back(N->isLocalToUnit());
1728   Record.push_back(N->isDefinition());
1729   Record.push_back(/* expr */ 0);
1730   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1731   Record.push_back(N->getAlignInBits());
1732 
1733   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1734   Record.clear();
1735 }
1736 
1737 void ModuleBitcodeWriter::writeDILocalVariable(
1738     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1739     unsigned Abbrev) {
1740   // In order to support all possible bitcode formats in BitcodeReader we need
1741   // to distinguish the following cases:
1742   // 1) Record has no artificial tag (Record[1]),
1743   //   has no obsolete inlinedAt field (Record[9]).
1744   //   In this case Record size will be 8, HasAlignment flag is false.
1745   // 2) Record has artificial tag (Record[1]),
1746   //   has no obsolete inlignedAt field (Record[9]).
1747   //   In this case Record size will be 9, HasAlignment flag is false.
1748   // 3) Record has both artificial tag (Record[1]) and
1749   //   obsolete inlignedAt field (Record[9]).
1750   //   In this case Record size will be 10, HasAlignment flag is false.
1751   // 4) Record has neither artificial tag, nor inlignedAt field, but
1752   //   HasAlignment flag is true and Record[8] contains alignment value.
1753   const uint64_t HasAlignmentFlag = 1 << 1;
1754   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1755   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1756   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1757   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1758   Record.push_back(N->getLine());
1759   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1760   Record.push_back(N->getArg());
1761   Record.push_back(N->getFlags());
1762   Record.push_back(N->getAlignInBits());
1763 
1764   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1765   Record.clear();
1766 }
1767 
1768 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1769                                             SmallVectorImpl<uint64_t> &Record,
1770                                             unsigned Abbrev) {
1771   Record.reserve(N->getElements().size() + 1);
1772   const uint64_t Version = 2 << 1;
1773   Record.push_back((uint64_t)N->isDistinct() | Version);
1774   Record.append(N->elements_begin(), N->elements_end());
1775 
1776   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1777   Record.clear();
1778 }
1779 
1780 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1781     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1782     unsigned Abbrev) {
1783   Record.push_back(N->isDistinct());
1784   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1785   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1786 
1787   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1788   Record.clear();
1789 }
1790 
1791 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1792                                               SmallVectorImpl<uint64_t> &Record,
1793                                               unsigned Abbrev) {
1794   Record.push_back(N->isDistinct());
1795   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1796   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1797   Record.push_back(N->getLine());
1798   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1800   Record.push_back(N->getAttributes());
1801   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1802 
1803   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1804   Record.clear();
1805 }
1806 
1807 void ModuleBitcodeWriter::writeDIImportedEntity(
1808     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1809     unsigned Abbrev) {
1810   Record.push_back(N->isDistinct());
1811   Record.push_back(N->getTag());
1812   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1813   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1814   Record.push_back(N->getLine());
1815   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1816 
1817   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1818   Record.clear();
1819 }
1820 
1821 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1822   auto Abbv = std::make_shared<BitCodeAbbrev>();
1823   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1825   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1826   return Stream.EmitAbbrev(std::move(Abbv));
1827 }
1828 
1829 void ModuleBitcodeWriter::writeNamedMetadata(
1830     SmallVectorImpl<uint64_t> &Record) {
1831   if (M.named_metadata_empty())
1832     return;
1833 
1834   unsigned Abbrev = createNamedMetadataAbbrev();
1835   for (const NamedMDNode &NMD : M.named_metadata()) {
1836     // Write name.
1837     StringRef Str = NMD.getName();
1838     Record.append(Str.bytes_begin(), Str.bytes_end());
1839     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1840     Record.clear();
1841 
1842     // Write named metadata operands.
1843     for (const MDNode *N : NMD.operands())
1844       Record.push_back(VE.getMetadataID(N));
1845     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1846     Record.clear();
1847   }
1848 }
1849 
1850 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1851   auto Abbv = std::make_shared<BitCodeAbbrev>();
1852   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1853   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1854   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1855   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1856   return Stream.EmitAbbrev(std::move(Abbv));
1857 }
1858 
1859 /// Write out a record for MDString.
1860 ///
1861 /// All the metadata strings in a metadata block are emitted in a single
1862 /// record.  The sizes and strings themselves are shoved into a blob.
1863 void ModuleBitcodeWriter::writeMetadataStrings(
1864     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1865   if (Strings.empty())
1866     return;
1867 
1868   // Start the record with the number of strings.
1869   Record.push_back(bitc::METADATA_STRINGS);
1870   Record.push_back(Strings.size());
1871 
1872   // Emit the sizes of the strings in the blob.
1873   SmallString<256> Blob;
1874   {
1875     BitstreamWriter W(Blob);
1876     for (const Metadata *MD : Strings)
1877       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1878     W.FlushToWord();
1879   }
1880 
1881   // Add the offset to the strings to the record.
1882   Record.push_back(Blob.size());
1883 
1884   // Add the strings to the blob.
1885   for (const Metadata *MD : Strings)
1886     Blob.append(cast<MDString>(MD)->getString());
1887 
1888   // Emit the final record.
1889   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1890   Record.clear();
1891 }
1892 
1893 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1894 enum MetadataAbbrev : unsigned {
1895 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1896 #include "llvm/IR/Metadata.def"
1897   LastPlusOne
1898 };
1899 
1900 void ModuleBitcodeWriter::writeMetadataRecords(
1901     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1902     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1903   if (MDs.empty())
1904     return;
1905 
1906   // Initialize MDNode abbreviations.
1907 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1908 #include "llvm/IR/Metadata.def"
1909 
1910   for (const Metadata *MD : MDs) {
1911     if (IndexPos)
1912       IndexPos->push_back(Stream.GetCurrentBitNo());
1913     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1914       assert(N->isResolved() && "Expected forward references to be resolved");
1915 
1916       switch (N->getMetadataID()) {
1917       default:
1918         llvm_unreachable("Invalid MDNode subclass");
1919 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1920   case Metadata::CLASS##Kind:                                                  \
1921     if (MDAbbrevs)                                                             \
1922       write##CLASS(cast<CLASS>(N), Record,                                     \
1923                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1924     else                                                                       \
1925       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1926     continue;
1927 #include "llvm/IR/Metadata.def"
1928       }
1929     }
1930     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1931   }
1932 }
1933 
1934 void ModuleBitcodeWriter::writeModuleMetadata() {
1935   if (!VE.hasMDs() && M.named_metadata_empty())
1936     return;
1937 
1938   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1939   SmallVector<uint64_t, 64> Record;
1940 
1941   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1942   // block and load any metadata.
1943   std::vector<unsigned> MDAbbrevs;
1944 
1945   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1946   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1947   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1948       createGenericDINodeAbbrev();
1949 
1950   auto Abbv = std::make_shared<BitCodeAbbrev>();
1951   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1952   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1953   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1954   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1955 
1956   Abbv = std::make_shared<BitCodeAbbrev>();
1957   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1960   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1961 
1962   // Emit MDStrings together upfront.
1963   writeMetadataStrings(VE.getMDStrings(), Record);
1964 
1965   // We only emit an index for the metadata record if we have more than a given
1966   // (naive) threshold of metadatas, otherwise it is not worth it.
1967   if (VE.getNonMDStrings().size() > IndexThreshold) {
1968     // Write a placeholder value in for the offset of the metadata index,
1969     // which is written after the records, so that it can include
1970     // the offset of each entry. The placeholder offset will be
1971     // updated after all records are emitted.
1972     uint64_t Vals[] = {0, 0};
1973     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1974   }
1975 
1976   // Compute and save the bit offset to the current position, which will be
1977   // patched when we emit the index later. We can simply subtract the 64-bit
1978   // fixed size from the current bit number to get the location to backpatch.
1979   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
1980 
1981   // This index will contain the bitpos for each individual record.
1982   std::vector<uint64_t> IndexPos;
1983   IndexPos.reserve(VE.getNonMDStrings().size());
1984 
1985   // Write all the records
1986   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1987 
1988   if (VE.getNonMDStrings().size() > IndexThreshold) {
1989     // Now that we have emitted all the records we will emit the index. But
1990     // first
1991     // backpatch the forward reference so that the reader can skip the records
1992     // efficiently.
1993     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
1994                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
1995 
1996     // Delta encode the index.
1997     uint64_t PreviousValue = IndexOffsetRecordBitPos;
1998     for (auto &Elt : IndexPos) {
1999       auto EltDelta = Elt - PreviousValue;
2000       PreviousValue = Elt;
2001       Elt = EltDelta;
2002     }
2003     // Emit the index record.
2004     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2005     IndexPos.clear();
2006   }
2007 
2008   // Write the named metadata now.
2009   writeNamedMetadata(Record);
2010 
2011   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2012     SmallVector<uint64_t, 4> Record;
2013     Record.push_back(VE.getValueID(&GO));
2014     pushGlobalMetadataAttachment(Record, GO);
2015     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2016   };
2017   for (const Function &F : M)
2018     if (F.isDeclaration() && F.hasMetadata())
2019       AddDeclAttachedMetadata(F);
2020   // FIXME: Only store metadata for declarations here, and move data for global
2021   // variable definitions to a separate block (PR28134).
2022   for (const GlobalVariable &GV : M.globals())
2023     if (GV.hasMetadata())
2024       AddDeclAttachedMetadata(GV);
2025 
2026   Stream.ExitBlock();
2027 }
2028 
2029 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2030   if (!VE.hasMDs())
2031     return;
2032 
2033   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2034   SmallVector<uint64_t, 64> Record;
2035   writeMetadataStrings(VE.getMDStrings(), Record);
2036   writeMetadataRecords(VE.getNonMDStrings(), Record);
2037   Stream.ExitBlock();
2038 }
2039 
2040 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2041     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2042   // [n x [id, mdnode]]
2043   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2044   GO.getAllMetadata(MDs);
2045   for (const auto &I : MDs) {
2046     Record.push_back(I.first);
2047     Record.push_back(VE.getMetadataID(I.second));
2048   }
2049 }
2050 
2051 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2052   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2053 
2054   SmallVector<uint64_t, 64> Record;
2055 
2056   if (F.hasMetadata()) {
2057     pushGlobalMetadataAttachment(Record, F);
2058     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2059     Record.clear();
2060   }
2061 
2062   // Write metadata attachments
2063   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2064   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2065   for (const BasicBlock &BB : F)
2066     for (const Instruction &I : BB) {
2067       MDs.clear();
2068       I.getAllMetadataOtherThanDebugLoc(MDs);
2069 
2070       // If no metadata, ignore instruction.
2071       if (MDs.empty()) continue;
2072 
2073       Record.push_back(VE.getInstructionID(&I));
2074 
2075       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2076         Record.push_back(MDs[i].first);
2077         Record.push_back(VE.getMetadataID(MDs[i].second));
2078       }
2079       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2080       Record.clear();
2081     }
2082 
2083   Stream.ExitBlock();
2084 }
2085 
2086 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2087   SmallVector<uint64_t, 64> Record;
2088 
2089   // Write metadata kinds
2090   // METADATA_KIND - [n x [id, name]]
2091   SmallVector<StringRef, 8> Names;
2092   M.getMDKindNames(Names);
2093 
2094   if (Names.empty()) return;
2095 
2096   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2097 
2098   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2099     Record.push_back(MDKindID);
2100     StringRef KName = Names[MDKindID];
2101     Record.append(KName.begin(), KName.end());
2102 
2103     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2104     Record.clear();
2105   }
2106 
2107   Stream.ExitBlock();
2108 }
2109 
2110 void ModuleBitcodeWriter::writeOperandBundleTags() {
2111   // Write metadata kinds
2112   //
2113   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2114   //
2115   // OPERAND_BUNDLE_TAG - [strchr x N]
2116 
2117   SmallVector<StringRef, 8> Tags;
2118   M.getOperandBundleTags(Tags);
2119 
2120   if (Tags.empty())
2121     return;
2122 
2123   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2124 
2125   SmallVector<uint64_t, 64> Record;
2126 
2127   for (auto Tag : Tags) {
2128     Record.append(Tag.begin(), Tag.end());
2129 
2130     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2131     Record.clear();
2132   }
2133 
2134   Stream.ExitBlock();
2135 }
2136 
2137 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2138   if ((int64_t)V >= 0)
2139     Vals.push_back(V << 1);
2140   else
2141     Vals.push_back((-V << 1) | 1);
2142 }
2143 
2144 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2145                                          bool isGlobal) {
2146   if (FirstVal == LastVal) return;
2147 
2148   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2149 
2150   unsigned AggregateAbbrev = 0;
2151   unsigned String8Abbrev = 0;
2152   unsigned CString7Abbrev = 0;
2153   unsigned CString6Abbrev = 0;
2154   // If this is a constant pool for the module, emit module-specific abbrevs.
2155   if (isGlobal) {
2156     // Abbrev for CST_CODE_AGGREGATE.
2157     auto Abbv = std::make_shared<BitCodeAbbrev>();
2158     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2161     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2162 
2163     // Abbrev for CST_CODE_STRING.
2164     Abbv = std::make_shared<BitCodeAbbrev>();
2165     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2168     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2169     // Abbrev for CST_CODE_CSTRING.
2170     Abbv = std::make_shared<BitCodeAbbrev>();
2171     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2174     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2175     // Abbrev for CST_CODE_CSTRING.
2176     Abbv = std::make_shared<BitCodeAbbrev>();
2177     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2179     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2180     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2181   }
2182 
2183   SmallVector<uint64_t, 64> Record;
2184 
2185   const ValueEnumerator::ValueList &Vals = VE.getValues();
2186   Type *LastTy = nullptr;
2187   for (unsigned i = FirstVal; i != LastVal; ++i) {
2188     const Value *V = Vals[i].first;
2189     // If we need to switch types, do so now.
2190     if (V->getType() != LastTy) {
2191       LastTy = V->getType();
2192       Record.push_back(VE.getTypeID(LastTy));
2193       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2194                         CONSTANTS_SETTYPE_ABBREV);
2195       Record.clear();
2196     }
2197 
2198     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2199       Record.push_back(unsigned(IA->hasSideEffects()) |
2200                        unsigned(IA->isAlignStack()) << 1 |
2201                        unsigned(IA->getDialect()&1) << 2);
2202 
2203       // Add the asm string.
2204       const std::string &AsmStr = IA->getAsmString();
2205       Record.push_back(AsmStr.size());
2206       Record.append(AsmStr.begin(), AsmStr.end());
2207 
2208       // Add the constraint string.
2209       const std::string &ConstraintStr = IA->getConstraintString();
2210       Record.push_back(ConstraintStr.size());
2211       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2212       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2213       Record.clear();
2214       continue;
2215     }
2216     const Constant *C = cast<Constant>(V);
2217     unsigned Code = -1U;
2218     unsigned AbbrevToUse = 0;
2219     if (C->isNullValue()) {
2220       Code = bitc::CST_CODE_NULL;
2221     } else if (isa<UndefValue>(C)) {
2222       Code = bitc::CST_CODE_UNDEF;
2223     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2224       if (IV->getBitWidth() <= 64) {
2225         uint64_t V = IV->getSExtValue();
2226         emitSignedInt64(Record, V);
2227         Code = bitc::CST_CODE_INTEGER;
2228         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2229       } else {                             // Wide integers, > 64 bits in size.
2230         // We have an arbitrary precision integer value to write whose
2231         // bit width is > 64. However, in canonical unsigned integer
2232         // format it is likely that the high bits are going to be zero.
2233         // So, we only write the number of active words.
2234         unsigned NWords = IV->getValue().getActiveWords();
2235         const uint64_t *RawWords = IV->getValue().getRawData();
2236         for (unsigned i = 0; i != NWords; ++i) {
2237           emitSignedInt64(Record, RawWords[i]);
2238         }
2239         Code = bitc::CST_CODE_WIDE_INTEGER;
2240       }
2241     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2242       Code = bitc::CST_CODE_FLOAT;
2243       Type *Ty = CFP->getType();
2244       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2245         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2246       } else if (Ty->isX86_FP80Ty()) {
2247         // api needed to prevent premature destruction
2248         // bits are not in the same order as a normal i80 APInt, compensate.
2249         APInt api = CFP->getValueAPF().bitcastToAPInt();
2250         const uint64_t *p = api.getRawData();
2251         Record.push_back((p[1] << 48) | (p[0] >> 16));
2252         Record.push_back(p[0] & 0xffffLL);
2253       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2254         APInt api = CFP->getValueAPF().bitcastToAPInt();
2255         const uint64_t *p = api.getRawData();
2256         Record.push_back(p[0]);
2257         Record.push_back(p[1]);
2258       } else {
2259         assert (0 && "Unknown FP type!");
2260       }
2261     } else if (isa<ConstantDataSequential>(C) &&
2262                cast<ConstantDataSequential>(C)->isString()) {
2263       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2264       // Emit constant strings specially.
2265       unsigned NumElts = Str->getNumElements();
2266       // If this is a null-terminated string, use the denser CSTRING encoding.
2267       if (Str->isCString()) {
2268         Code = bitc::CST_CODE_CSTRING;
2269         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2270       } else {
2271         Code = bitc::CST_CODE_STRING;
2272         AbbrevToUse = String8Abbrev;
2273       }
2274       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2275       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2276       for (unsigned i = 0; i != NumElts; ++i) {
2277         unsigned char V = Str->getElementAsInteger(i);
2278         Record.push_back(V);
2279         isCStr7 &= (V & 128) == 0;
2280         if (isCStrChar6)
2281           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2282       }
2283 
2284       if (isCStrChar6)
2285         AbbrevToUse = CString6Abbrev;
2286       else if (isCStr7)
2287         AbbrevToUse = CString7Abbrev;
2288     } else if (const ConstantDataSequential *CDS =
2289                   dyn_cast<ConstantDataSequential>(C)) {
2290       Code = bitc::CST_CODE_DATA;
2291       Type *EltTy = CDS->getType()->getElementType();
2292       if (isa<IntegerType>(EltTy)) {
2293         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2294           Record.push_back(CDS->getElementAsInteger(i));
2295       } else {
2296         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2297           Record.push_back(
2298               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2299       }
2300     } else if (isa<ConstantAggregate>(C)) {
2301       Code = bitc::CST_CODE_AGGREGATE;
2302       for (const Value *Op : C->operands())
2303         Record.push_back(VE.getValueID(Op));
2304       AbbrevToUse = AggregateAbbrev;
2305     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2306       switch (CE->getOpcode()) {
2307       default:
2308         if (Instruction::isCast(CE->getOpcode())) {
2309           Code = bitc::CST_CODE_CE_CAST;
2310           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2311           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2312           Record.push_back(VE.getValueID(C->getOperand(0)));
2313           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2314         } else {
2315           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2316           Code = bitc::CST_CODE_CE_BINOP;
2317           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2318           Record.push_back(VE.getValueID(C->getOperand(0)));
2319           Record.push_back(VE.getValueID(C->getOperand(1)));
2320           uint64_t Flags = getOptimizationFlags(CE);
2321           if (Flags != 0)
2322             Record.push_back(Flags);
2323         }
2324         break;
2325       case Instruction::GetElementPtr: {
2326         Code = bitc::CST_CODE_CE_GEP;
2327         const auto *GO = cast<GEPOperator>(C);
2328         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2329         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2330           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2331           Record.push_back((*Idx << 1) | GO->isInBounds());
2332         } else if (GO->isInBounds())
2333           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2334         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2335           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2336           Record.push_back(VE.getValueID(C->getOperand(i)));
2337         }
2338         break;
2339       }
2340       case Instruction::Select:
2341         Code = bitc::CST_CODE_CE_SELECT;
2342         Record.push_back(VE.getValueID(C->getOperand(0)));
2343         Record.push_back(VE.getValueID(C->getOperand(1)));
2344         Record.push_back(VE.getValueID(C->getOperand(2)));
2345         break;
2346       case Instruction::ExtractElement:
2347         Code = bitc::CST_CODE_CE_EXTRACTELT;
2348         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2349         Record.push_back(VE.getValueID(C->getOperand(0)));
2350         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2351         Record.push_back(VE.getValueID(C->getOperand(1)));
2352         break;
2353       case Instruction::InsertElement:
2354         Code = bitc::CST_CODE_CE_INSERTELT;
2355         Record.push_back(VE.getValueID(C->getOperand(0)));
2356         Record.push_back(VE.getValueID(C->getOperand(1)));
2357         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2358         Record.push_back(VE.getValueID(C->getOperand(2)));
2359         break;
2360       case Instruction::ShuffleVector:
2361         // If the return type and argument types are the same, this is a
2362         // standard shufflevector instruction.  If the types are different,
2363         // then the shuffle is widening or truncating the input vectors, and
2364         // the argument type must also be encoded.
2365         if (C->getType() == C->getOperand(0)->getType()) {
2366           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2367         } else {
2368           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2369           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2370         }
2371         Record.push_back(VE.getValueID(C->getOperand(0)));
2372         Record.push_back(VE.getValueID(C->getOperand(1)));
2373         Record.push_back(VE.getValueID(C->getOperand(2)));
2374         break;
2375       case Instruction::ICmp:
2376       case Instruction::FCmp:
2377         Code = bitc::CST_CODE_CE_CMP;
2378         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2379         Record.push_back(VE.getValueID(C->getOperand(0)));
2380         Record.push_back(VE.getValueID(C->getOperand(1)));
2381         Record.push_back(CE->getPredicate());
2382         break;
2383       }
2384     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2385       Code = bitc::CST_CODE_BLOCKADDRESS;
2386       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2387       Record.push_back(VE.getValueID(BA->getFunction()));
2388       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2389     } else {
2390 #ifndef NDEBUG
2391       C->dump();
2392 #endif
2393       llvm_unreachable("Unknown constant!");
2394     }
2395     Stream.EmitRecord(Code, Record, AbbrevToUse);
2396     Record.clear();
2397   }
2398 
2399   Stream.ExitBlock();
2400 }
2401 
2402 void ModuleBitcodeWriter::writeModuleConstants() {
2403   const ValueEnumerator::ValueList &Vals = VE.getValues();
2404 
2405   // Find the first constant to emit, which is the first non-globalvalue value.
2406   // We know globalvalues have been emitted by WriteModuleInfo.
2407   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2408     if (!isa<GlobalValue>(Vals[i].first)) {
2409       writeConstants(i, Vals.size(), true);
2410       return;
2411     }
2412   }
2413 }
2414 
2415 /// pushValueAndType - The file has to encode both the value and type id for
2416 /// many values, because we need to know what type to create for forward
2417 /// references.  However, most operands are not forward references, so this type
2418 /// field is not needed.
2419 ///
2420 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2421 /// instruction ID, then it is a forward reference, and it also includes the
2422 /// type ID.  The value ID that is written is encoded relative to the InstID.
2423 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2424                                            SmallVectorImpl<unsigned> &Vals) {
2425   unsigned ValID = VE.getValueID(V);
2426   // Make encoding relative to the InstID.
2427   Vals.push_back(InstID - ValID);
2428   if (ValID >= InstID) {
2429     Vals.push_back(VE.getTypeID(V->getType()));
2430     return true;
2431   }
2432   return false;
2433 }
2434 
2435 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2436                                               unsigned InstID) {
2437   SmallVector<unsigned, 64> Record;
2438   LLVMContext &C = CS.getInstruction()->getContext();
2439 
2440   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2441     const auto &Bundle = CS.getOperandBundleAt(i);
2442     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2443 
2444     for (auto &Input : Bundle.Inputs)
2445       pushValueAndType(Input, InstID, Record);
2446 
2447     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2448     Record.clear();
2449   }
2450 }
2451 
2452 /// pushValue - Like pushValueAndType, but where the type of the value is
2453 /// omitted (perhaps it was already encoded in an earlier operand).
2454 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2455                                     SmallVectorImpl<unsigned> &Vals) {
2456   unsigned ValID = VE.getValueID(V);
2457   Vals.push_back(InstID - ValID);
2458 }
2459 
2460 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2461                                           SmallVectorImpl<uint64_t> &Vals) {
2462   unsigned ValID = VE.getValueID(V);
2463   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2464   emitSignedInt64(Vals, diff);
2465 }
2466 
2467 /// WriteInstruction - Emit an instruction to the specified stream.
2468 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2469                                            unsigned InstID,
2470                                            SmallVectorImpl<unsigned> &Vals) {
2471   unsigned Code = 0;
2472   unsigned AbbrevToUse = 0;
2473   VE.setInstructionID(&I);
2474   switch (I.getOpcode()) {
2475   default:
2476     if (Instruction::isCast(I.getOpcode())) {
2477       Code = bitc::FUNC_CODE_INST_CAST;
2478       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2479         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2480       Vals.push_back(VE.getTypeID(I.getType()));
2481       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2482     } else {
2483       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2484       Code = bitc::FUNC_CODE_INST_BINOP;
2485       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2486         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2487       pushValue(I.getOperand(1), InstID, Vals);
2488       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2489       uint64_t Flags = getOptimizationFlags(&I);
2490       if (Flags != 0) {
2491         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2492           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2493         Vals.push_back(Flags);
2494       }
2495     }
2496     break;
2497 
2498   case Instruction::GetElementPtr: {
2499     Code = bitc::FUNC_CODE_INST_GEP;
2500     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2501     auto &GEPInst = cast<GetElementPtrInst>(I);
2502     Vals.push_back(GEPInst.isInBounds());
2503     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2504     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2505       pushValueAndType(I.getOperand(i), InstID, Vals);
2506     break;
2507   }
2508   case Instruction::ExtractValue: {
2509     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2510     pushValueAndType(I.getOperand(0), InstID, Vals);
2511     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2512     Vals.append(EVI->idx_begin(), EVI->idx_end());
2513     break;
2514   }
2515   case Instruction::InsertValue: {
2516     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2517     pushValueAndType(I.getOperand(0), InstID, Vals);
2518     pushValueAndType(I.getOperand(1), InstID, Vals);
2519     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2520     Vals.append(IVI->idx_begin(), IVI->idx_end());
2521     break;
2522   }
2523   case Instruction::Select:
2524     Code = bitc::FUNC_CODE_INST_VSELECT;
2525     pushValueAndType(I.getOperand(1), InstID, Vals);
2526     pushValue(I.getOperand(2), InstID, Vals);
2527     pushValueAndType(I.getOperand(0), InstID, Vals);
2528     break;
2529   case Instruction::ExtractElement:
2530     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2531     pushValueAndType(I.getOperand(0), InstID, Vals);
2532     pushValueAndType(I.getOperand(1), InstID, Vals);
2533     break;
2534   case Instruction::InsertElement:
2535     Code = bitc::FUNC_CODE_INST_INSERTELT;
2536     pushValueAndType(I.getOperand(0), InstID, Vals);
2537     pushValue(I.getOperand(1), InstID, Vals);
2538     pushValueAndType(I.getOperand(2), InstID, Vals);
2539     break;
2540   case Instruction::ShuffleVector:
2541     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2542     pushValueAndType(I.getOperand(0), InstID, Vals);
2543     pushValue(I.getOperand(1), InstID, Vals);
2544     pushValue(I.getOperand(2), InstID, Vals);
2545     break;
2546   case Instruction::ICmp:
2547   case Instruction::FCmp: {
2548     // compare returning Int1Ty or vector of Int1Ty
2549     Code = bitc::FUNC_CODE_INST_CMP2;
2550     pushValueAndType(I.getOperand(0), InstID, Vals);
2551     pushValue(I.getOperand(1), InstID, Vals);
2552     Vals.push_back(cast<CmpInst>(I).getPredicate());
2553     uint64_t Flags = getOptimizationFlags(&I);
2554     if (Flags != 0)
2555       Vals.push_back(Flags);
2556     break;
2557   }
2558 
2559   case Instruction::Ret:
2560     {
2561       Code = bitc::FUNC_CODE_INST_RET;
2562       unsigned NumOperands = I.getNumOperands();
2563       if (NumOperands == 0)
2564         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2565       else if (NumOperands == 1) {
2566         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2567           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2568       } else {
2569         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2570           pushValueAndType(I.getOperand(i), InstID, Vals);
2571       }
2572     }
2573     break;
2574   case Instruction::Br:
2575     {
2576       Code = bitc::FUNC_CODE_INST_BR;
2577       const BranchInst &II = cast<BranchInst>(I);
2578       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2579       if (II.isConditional()) {
2580         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2581         pushValue(II.getCondition(), InstID, Vals);
2582       }
2583     }
2584     break;
2585   case Instruction::Switch:
2586     {
2587       Code = bitc::FUNC_CODE_INST_SWITCH;
2588       const SwitchInst &SI = cast<SwitchInst>(I);
2589       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2590       pushValue(SI.getCondition(), InstID, Vals);
2591       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2592       for (auto Case : SI.cases()) {
2593         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2594         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2595       }
2596     }
2597     break;
2598   case Instruction::IndirectBr:
2599     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2600     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2601     // Encode the address operand as relative, but not the basic blocks.
2602     pushValue(I.getOperand(0), InstID, Vals);
2603     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2604       Vals.push_back(VE.getValueID(I.getOperand(i)));
2605     break;
2606 
2607   case Instruction::Invoke: {
2608     const InvokeInst *II = cast<InvokeInst>(&I);
2609     const Value *Callee = II->getCalledValue();
2610     FunctionType *FTy = II->getFunctionType();
2611 
2612     if (II->hasOperandBundles())
2613       writeOperandBundles(II, InstID);
2614 
2615     Code = bitc::FUNC_CODE_INST_INVOKE;
2616 
2617     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2618     Vals.push_back(II->getCallingConv() | 1 << 13);
2619     Vals.push_back(VE.getValueID(II->getNormalDest()));
2620     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2621     Vals.push_back(VE.getTypeID(FTy));
2622     pushValueAndType(Callee, InstID, Vals);
2623 
2624     // Emit value #'s for the fixed parameters.
2625     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2626       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2627 
2628     // Emit type/value pairs for varargs params.
2629     if (FTy->isVarArg()) {
2630       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2631            i != e; ++i)
2632         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2633     }
2634     break;
2635   }
2636   case Instruction::Resume:
2637     Code = bitc::FUNC_CODE_INST_RESUME;
2638     pushValueAndType(I.getOperand(0), InstID, Vals);
2639     break;
2640   case Instruction::CleanupRet: {
2641     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2642     const auto &CRI = cast<CleanupReturnInst>(I);
2643     pushValue(CRI.getCleanupPad(), InstID, Vals);
2644     if (CRI.hasUnwindDest())
2645       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2646     break;
2647   }
2648   case Instruction::CatchRet: {
2649     Code = bitc::FUNC_CODE_INST_CATCHRET;
2650     const auto &CRI = cast<CatchReturnInst>(I);
2651     pushValue(CRI.getCatchPad(), InstID, Vals);
2652     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2653     break;
2654   }
2655   case Instruction::CleanupPad:
2656   case Instruction::CatchPad: {
2657     const auto &FuncletPad = cast<FuncletPadInst>(I);
2658     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2659                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2660     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2661 
2662     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2663     Vals.push_back(NumArgOperands);
2664     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2665       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2666     break;
2667   }
2668   case Instruction::CatchSwitch: {
2669     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2670     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2671 
2672     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2673 
2674     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2675     Vals.push_back(NumHandlers);
2676     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2677       Vals.push_back(VE.getValueID(CatchPadBB));
2678 
2679     if (CatchSwitch.hasUnwindDest())
2680       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2681     break;
2682   }
2683   case Instruction::Unreachable:
2684     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2685     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2686     break;
2687 
2688   case Instruction::PHI: {
2689     const PHINode &PN = cast<PHINode>(I);
2690     Code = bitc::FUNC_CODE_INST_PHI;
2691     // With the newer instruction encoding, forward references could give
2692     // negative valued IDs.  This is most common for PHIs, so we use
2693     // signed VBRs.
2694     SmallVector<uint64_t, 128> Vals64;
2695     Vals64.push_back(VE.getTypeID(PN.getType()));
2696     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2697       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2698       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2699     }
2700     // Emit a Vals64 vector and exit.
2701     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2702     Vals64.clear();
2703     return;
2704   }
2705 
2706   case Instruction::LandingPad: {
2707     const LandingPadInst &LP = cast<LandingPadInst>(I);
2708     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2709     Vals.push_back(VE.getTypeID(LP.getType()));
2710     Vals.push_back(LP.isCleanup());
2711     Vals.push_back(LP.getNumClauses());
2712     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2713       if (LP.isCatch(I))
2714         Vals.push_back(LandingPadInst::Catch);
2715       else
2716         Vals.push_back(LandingPadInst::Filter);
2717       pushValueAndType(LP.getClause(I), InstID, Vals);
2718     }
2719     break;
2720   }
2721 
2722   case Instruction::Alloca: {
2723     Code = bitc::FUNC_CODE_INST_ALLOCA;
2724     const AllocaInst &AI = cast<AllocaInst>(I);
2725     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2726     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2727     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2728     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2729     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2730            "not enough bits for maximum alignment");
2731     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2732     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2733     AlignRecord |= 1 << 6;
2734     AlignRecord |= AI.isSwiftError() << 7;
2735     Vals.push_back(AlignRecord);
2736     break;
2737   }
2738 
2739   case Instruction::Load:
2740     if (cast<LoadInst>(I).isAtomic()) {
2741       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2742       pushValueAndType(I.getOperand(0), InstID, Vals);
2743     } else {
2744       Code = bitc::FUNC_CODE_INST_LOAD;
2745       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2746         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2747     }
2748     Vals.push_back(VE.getTypeID(I.getType()));
2749     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2750     Vals.push_back(cast<LoadInst>(I).isVolatile());
2751     if (cast<LoadInst>(I).isAtomic()) {
2752       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2753       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2754     }
2755     break;
2756   case Instruction::Store:
2757     if (cast<StoreInst>(I).isAtomic())
2758       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2759     else
2760       Code = bitc::FUNC_CODE_INST_STORE;
2761     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2762     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2763     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2764     Vals.push_back(cast<StoreInst>(I).isVolatile());
2765     if (cast<StoreInst>(I).isAtomic()) {
2766       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2767       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2768     }
2769     break;
2770   case Instruction::AtomicCmpXchg:
2771     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2772     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2773     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2774     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2775     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2776     Vals.push_back(
2777         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2778     Vals.push_back(
2779         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2780     Vals.push_back(
2781         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2782     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2783     break;
2784   case Instruction::AtomicRMW:
2785     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2786     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2787     pushValue(I.getOperand(1), InstID, Vals);        // val.
2788     Vals.push_back(
2789         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2790     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2791     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2792     Vals.push_back(
2793         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2794     break;
2795   case Instruction::Fence:
2796     Code = bitc::FUNC_CODE_INST_FENCE;
2797     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2798     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2799     break;
2800   case Instruction::Call: {
2801     const CallInst &CI = cast<CallInst>(I);
2802     FunctionType *FTy = CI.getFunctionType();
2803 
2804     if (CI.hasOperandBundles())
2805       writeOperandBundles(&CI, InstID);
2806 
2807     Code = bitc::FUNC_CODE_INST_CALL;
2808 
2809     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2810 
2811     unsigned Flags = getOptimizationFlags(&I);
2812     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2813                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2814                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2815                    1 << bitc::CALL_EXPLICIT_TYPE |
2816                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2817                    unsigned(Flags != 0) << bitc::CALL_FMF);
2818     if (Flags != 0)
2819       Vals.push_back(Flags);
2820 
2821     Vals.push_back(VE.getTypeID(FTy));
2822     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2823 
2824     // Emit value #'s for the fixed parameters.
2825     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2826       // Check for labels (can happen with asm labels).
2827       if (FTy->getParamType(i)->isLabelTy())
2828         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2829       else
2830         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2831     }
2832 
2833     // Emit type/value pairs for varargs params.
2834     if (FTy->isVarArg()) {
2835       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2836            i != e; ++i)
2837         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2838     }
2839     break;
2840   }
2841   case Instruction::VAArg:
2842     Code = bitc::FUNC_CODE_INST_VAARG;
2843     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2844     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2845     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2846     break;
2847   }
2848 
2849   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2850   Vals.clear();
2851 }
2852 
2853 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2854 /// to allow clients to efficiently find the function body.
2855 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2856   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2857   // Get the offset of the VST we are writing, and backpatch it into
2858   // the VST forward declaration record.
2859   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2860   // The BitcodeStartBit was the stream offset of the identification block.
2861   VSTOffset -= bitcodeStartBit();
2862   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2863   // Note that we add 1 here because the offset is relative to one word
2864   // before the start of the identification block, which was historically
2865   // always the start of the regular bitcode header.
2866   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2867 
2868   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2869 
2870   auto Abbv = std::make_shared<BitCodeAbbrev>();
2871   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2872   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2873   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2874   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2875 
2876   for (const Function &F : M) {
2877     uint64_t Record[2];
2878 
2879     if (F.isDeclaration())
2880       continue;
2881 
2882     Record[0] = VE.getValueID(&F);
2883 
2884     // Save the word offset of the function (from the start of the
2885     // actual bitcode written to the stream).
2886     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2887     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2888     // Note that we add 1 here because the offset is relative to one word
2889     // before the start of the identification block, which was historically
2890     // always the start of the regular bitcode header.
2891     Record[1] = BitcodeIndex / 32 + 1;
2892 
2893     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2894   }
2895 
2896   Stream.ExitBlock();
2897 }
2898 
2899 /// Emit names for arguments, instructions and basic blocks in a function.
2900 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2901     const ValueSymbolTable &VST) {
2902   if (VST.empty())
2903     return;
2904 
2905   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2906 
2907   // FIXME: Set up the abbrev, we know how many values there are!
2908   // FIXME: We know if the type names can use 7-bit ascii.
2909   SmallVector<uint64_t, 64> NameVals;
2910 
2911   for (const ValueName &Name : VST) {
2912     // Figure out the encoding to use for the name.
2913     StringEncoding Bits =
2914         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2915 
2916     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2917     NameVals.push_back(VE.getValueID(Name.getValue()));
2918 
2919     // VST_CODE_ENTRY:   [valueid, namechar x N]
2920     // VST_CODE_BBENTRY: [bbid, namechar x N]
2921     unsigned Code;
2922     if (isa<BasicBlock>(Name.getValue())) {
2923       Code = bitc::VST_CODE_BBENTRY;
2924       if (Bits == SE_Char6)
2925         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2926     } else {
2927       Code = bitc::VST_CODE_ENTRY;
2928       if (Bits == SE_Char6)
2929         AbbrevToUse = VST_ENTRY_6_ABBREV;
2930       else if (Bits == SE_Fixed7)
2931         AbbrevToUse = VST_ENTRY_7_ABBREV;
2932     }
2933 
2934     for (const auto P : Name.getKey())
2935       NameVals.push_back((unsigned char)P);
2936 
2937     // Emit the finished record.
2938     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2939     NameVals.clear();
2940   }
2941 
2942   Stream.ExitBlock();
2943 }
2944 
2945 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2946   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2947   unsigned Code;
2948   if (isa<BasicBlock>(Order.V))
2949     Code = bitc::USELIST_CODE_BB;
2950   else
2951     Code = bitc::USELIST_CODE_DEFAULT;
2952 
2953   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2954   Record.push_back(VE.getValueID(Order.V));
2955   Stream.EmitRecord(Code, Record);
2956 }
2957 
2958 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2959   assert(VE.shouldPreserveUseListOrder() &&
2960          "Expected to be preserving use-list order");
2961 
2962   auto hasMore = [&]() {
2963     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2964   };
2965   if (!hasMore())
2966     // Nothing to do.
2967     return;
2968 
2969   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2970   while (hasMore()) {
2971     writeUseList(std::move(VE.UseListOrders.back()));
2972     VE.UseListOrders.pop_back();
2973   }
2974   Stream.ExitBlock();
2975 }
2976 
2977 /// Emit a function body to the module stream.
2978 void ModuleBitcodeWriter::writeFunction(
2979     const Function &F,
2980     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2981   // Save the bitcode index of the start of this function block for recording
2982   // in the VST.
2983   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2984 
2985   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2986   VE.incorporateFunction(F);
2987 
2988   SmallVector<unsigned, 64> Vals;
2989 
2990   // Emit the number of basic blocks, so the reader can create them ahead of
2991   // time.
2992   Vals.push_back(VE.getBasicBlocks().size());
2993   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2994   Vals.clear();
2995 
2996   // If there are function-local constants, emit them now.
2997   unsigned CstStart, CstEnd;
2998   VE.getFunctionConstantRange(CstStart, CstEnd);
2999   writeConstants(CstStart, CstEnd, false);
3000 
3001   // If there is function-local metadata, emit it now.
3002   writeFunctionMetadata(F);
3003 
3004   // Keep a running idea of what the instruction ID is.
3005   unsigned InstID = CstEnd;
3006 
3007   bool NeedsMetadataAttachment = F.hasMetadata();
3008 
3009   DILocation *LastDL = nullptr;
3010   // Finally, emit all the instructions, in order.
3011   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3012     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3013          I != E; ++I) {
3014       writeInstruction(*I, InstID, Vals);
3015 
3016       if (!I->getType()->isVoidTy())
3017         ++InstID;
3018 
3019       // If the instruction has metadata, write a metadata attachment later.
3020       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3021 
3022       // If the instruction has a debug location, emit it.
3023       DILocation *DL = I->getDebugLoc();
3024       if (!DL)
3025         continue;
3026 
3027       if (DL == LastDL) {
3028         // Just repeat the same debug loc as last time.
3029         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3030         continue;
3031       }
3032 
3033       Vals.push_back(DL->getLine());
3034       Vals.push_back(DL->getColumn());
3035       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3036       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3037       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3038       Vals.clear();
3039 
3040       LastDL = DL;
3041     }
3042 
3043   // Emit names for all the instructions etc.
3044   if (auto *Symtab = F.getValueSymbolTable())
3045     writeFunctionLevelValueSymbolTable(*Symtab);
3046 
3047   if (NeedsMetadataAttachment)
3048     writeFunctionMetadataAttachment(F);
3049   if (VE.shouldPreserveUseListOrder())
3050     writeUseListBlock(&F);
3051   VE.purgeFunction();
3052   Stream.ExitBlock();
3053 }
3054 
3055 // Emit blockinfo, which defines the standard abbreviations etc.
3056 void ModuleBitcodeWriter::writeBlockInfo() {
3057   // We only want to emit block info records for blocks that have multiple
3058   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3059   // Other blocks can define their abbrevs inline.
3060   Stream.EnterBlockInfoBlock();
3061 
3062   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3063     auto Abbv = std::make_shared<BitCodeAbbrev>();
3064     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3065     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3066     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3067     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3068     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3069         VST_ENTRY_8_ABBREV)
3070       llvm_unreachable("Unexpected abbrev ordering!");
3071   }
3072 
3073   { // 7-bit fixed width VST_CODE_ENTRY strings.
3074     auto Abbv = std::make_shared<BitCodeAbbrev>();
3075     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3076     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3077     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3078     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3079     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3080         VST_ENTRY_7_ABBREV)
3081       llvm_unreachable("Unexpected abbrev ordering!");
3082   }
3083   { // 6-bit char6 VST_CODE_ENTRY strings.
3084     auto Abbv = std::make_shared<BitCodeAbbrev>();
3085     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3086     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3087     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3088     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3089     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3090         VST_ENTRY_6_ABBREV)
3091       llvm_unreachable("Unexpected abbrev ordering!");
3092   }
3093   { // 6-bit char6 VST_CODE_BBENTRY strings.
3094     auto Abbv = std::make_shared<BitCodeAbbrev>();
3095     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3096     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3097     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3098     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3099     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3100         VST_BBENTRY_6_ABBREV)
3101       llvm_unreachable("Unexpected abbrev ordering!");
3102   }
3103 
3104 
3105 
3106   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3107     auto Abbv = std::make_shared<BitCodeAbbrev>();
3108     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3109     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3110                               VE.computeBitsRequiredForTypeIndicies()));
3111     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3112         CONSTANTS_SETTYPE_ABBREV)
3113       llvm_unreachable("Unexpected abbrev ordering!");
3114   }
3115 
3116   { // INTEGER abbrev for CONSTANTS_BLOCK.
3117     auto Abbv = std::make_shared<BitCodeAbbrev>();
3118     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3119     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3120     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3121         CONSTANTS_INTEGER_ABBREV)
3122       llvm_unreachable("Unexpected abbrev ordering!");
3123   }
3124 
3125   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3126     auto Abbv = std::make_shared<BitCodeAbbrev>();
3127     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3130                               VE.computeBitsRequiredForTypeIndicies()));
3131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3132 
3133     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3134         CONSTANTS_CE_CAST_Abbrev)
3135       llvm_unreachable("Unexpected abbrev ordering!");
3136   }
3137   { // NULL abbrev for CONSTANTS_BLOCK.
3138     auto Abbv = std::make_shared<BitCodeAbbrev>();
3139     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3140     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3141         CONSTANTS_NULL_Abbrev)
3142       llvm_unreachable("Unexpected abbrev ordering!");
3143   }
3144 
3145   // FIXME: This should only use space for first class types!
3146 
3147   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3148     auto Abbv = std::make_shared<BitCodeAbbrev>();
3149     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3151     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3152                               VE.computeBitsRequiredForTypeIndicies()));
3153     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3155     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3156         FUNCTION_INST_LOAD_ABBREV)
3157       llvm_unreachable("Unexpected abbrev ordering!");
3158   }
3159   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3160     auto Abbv = std::make_shared<BitCodeAbbrev>();
3161     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3165     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3166         FUNCTION_INST_BINOP_ABBREV)
3167       llvm_unreachable("Unexpected abbrev ordering!");
3168   }
3169   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3170     auto Abbv = std::make_shared<BitCodeAbbrev>();
3171     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3176     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3177         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3178       llvm_unreachable("Unexpected abbrev ordering!");
3179   }
3180   { // INST_CAST abbrev for FUNCTION_BLOCK.
3181     auto Abbv = std::make_shared<BitCodeAbbrev>();
3182     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3185                               VE.computeBitsRequiredForTypeIndicies()));
3186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3187     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3188         FUNCTION_INST_CAST_ABBREV)
3189       llvm_unreachable("Unexpected abbrev ordering!");
3190   }
3191 
3192   { // INST_RET abbrev for FUNCTION_BLOCK.
3193     auto Abbv = std::make_shared<BitCodeAbbrev>();
3194     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3195     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3196         FUNCTION_INST_RET_VOID_ABBREV)
3197       llvm_unreachable("Unexpected abbrev ordering!");
3198   }
3199   { // INST_RET abbrev for FUNCTION_BLOCK.
3200     auto Abbv = std::make_shared<BitCodeAbbrev>();
3201     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3203     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3204         FUNCTION_INST_RET_VAL_ABBREV)
3205       llvm_unreachable("Unexpected abbrev ordering!");
3206   }
3207   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3208     auto Abbv = std::make_shared<BitCodeAbbrev>();
3209     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3210     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3211         FUNCTION_INST_UNREACHABLE_ABBREV)
3212       llvm_unreachable("Unexpected abbrev ordering!");
3213   }
3214   {
3215     auto Abbv = std::make_shared<BitCodeAbbrev>();
3216     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3218     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3219                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3222     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3223         FUNCTION_INST_GEP_ABBREV)
3224       llvm_unreachable("Unexpected abbrev ordering!");
3225   }
3226 
3227   Stream.ExitBlock();
3228 }
3229 
3230 /// Write the module path strings, currently only used when generating
3231 /// a combined index file.
3232 void IndexBitcodeWriter::writeModStrings() {
3233   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3234 
3235   // TODO: See which abbrev sizes we actually need to emit
3236 
3237   // 8-bit fixed-width MST_ENTRY strings.
3238   auto Abbv = std::make_shared<BitCodeAbbrev>();
3239   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3240   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3241   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3243   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3244 
3245   // 7-bit fixed width MST_ENTRY strings.
3246   Abbv = std::make_shared<BitCodeAbbrev>();
3247   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3248   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3249   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3250   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3251   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3252 
3253   // 6-bit char6 MST_ENTRY strings.
3254   Abbv = std::make_shared<BitCodeAbbrev>();
3255   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3256   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3257   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3258   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3259   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3260 
3261   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3262   Abbv = std::make_shared<BitCodeAbbrev>();
3263   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3264   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3265   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3266   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3267   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3268   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3269   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3270 
3271   SmallVector<unsigned, 64> Vals;
3272   for (const auto &MPSE : Index.modulePaths()) {
3273     if (!doIncludeModule(MPSE.getKey()))
3274       continue;
3275     StringEncoding Bits =
3276         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3277     unsigned AbbrevToUse = Abbrev8Bit;
3278     if (Bits == SE_Char6)
3279       AbbrevToUse = Abbrev6Bit;
3280     else if (Bits == SE_Fixed7)
3281       AbbrevToUse = Abbrev7Bit;
3282 
3283     Vals.push_back(MPSE.getValue().first);
3284 
3285     for (const auto P : MPSE.getKey())
3286       Vals.push_back((unsigned char)P);
3287 
3288     // Emit the finished record.
3289     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3290 
3291     Vals.clear();
3292     // Emit an optional hash for the module now
3293     auto &Hash = MPSE.getValue().second;
3294     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3295     for (auto Val : Hash) {
3296       if (Val)
3297         AllZero = false;
3298       Vals.push_back(Val);
3299     }
3300     if (!AllZero) {
3301       // Emit the hash record.
3302       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3303     }
3304 
3305     Vals.clear();
3306   }
3307   Stream.ExitBlock();
3308 }
3309 
3310 /// Write the function type metadata related records that need to appear before
3311 /// a function summary entry (whether per-module or combined).
3312 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3313                                              FunctionSummary *FS) {
3314   if (!FS->type_tests().empty())
3315     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3316 
3317   SmallVector<uint64_t, 64> Record;
3318 
3319   auto WriteVFuncIdVec = [&](uint64_t Ty,
3320                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3321     if (VFs.empty())
3322       return;
3323     Record.clear();
3324     for (auto &VF : VFs) {
3325       Record.push_back(VF.GUID);
3326       Record.push_back(VF.Offset);
3327     }
3328     Stream.EmitRecord(Ty, Record);
3329   };
3330 
3331   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3332                   FS->type_test_assume_vcalls());
3333   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3334                   FS->type_checked_load_vcalls());
3335 
3336   auto WriteConstVCallVec = [&](uint64_t Ty,
3337                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3338     for (auto &VC : VCs) {
3339       Record.clear();
3340       Record.push_back(VC.VFunc.GUID);
3341       Record.push_back(VC.VFunc.Offset);
3342       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3343       Stream.EmitRecord(Ty, Record);
3344     }
3345   };
3346 
3347   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3348                      FS->type_test_assume_const_vcalls());
3349   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3350                      FS->type_checked_load_const_vcalls());
3351 }
3352 
3353 // Helper to emit a single function summary record.
3354 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3355     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3356     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3357     const Function &F) {
3358   NameVals.push_back(ValueID);
3359 
3360   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3361   writeFunctionTypeMetadataRecords(Stream, FS);
3362 
3363   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3364   NameVals.push_back(FS->instCount());
3365   NameVals.push_back(FS->refs().size());
3366 
3367   for (auto &RI : FS->refs())
3368     NameVals.push_back(VE.getValueID(RI.getValue()));
3369 
3370   bool HasProfileData = F.getEntryCount().hasValue();
3371   for (auto &ECI : FS->calls()) {
3372     NameVals.push_back(getValueId(ECI.first));
3373     if (HasProfileData)
3374       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3375   }
3376 
3377   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3378   unsigned Code =
3379       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3380 
3381   // Emit the finished record.
3382   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3383   NameVals.clear();
3384 }
3385 
3386 // Collect the global value references in the given variable's initializer,
3387 // and emit them in a summary record.
3388 void ModuleBitcodeWriter::writeModuleLevelReferences(
3389     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3390     unsigned FSModRefsAbbrev) {
3391   auto Summaries =
3392       Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName()));
3393   if (Summaries == Index->end()) {
3394     // Only declarations should not have a summary (a declaration might however
3395     // have a summary if the def was in module level asm).
3396     assert(V.isDeclaration());
3397     return;
3398   }
3399   auto *Summary = Summaries->second.front().get();
3400   NameVals.push_back(VE.getValueID(&V));
3401   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3402   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3403 
3404   unsigned SizeBeforeRefs = NameVals.size();
3405   for (auto &RI : VS->refs())
3406     NameVals.push_back(VE.getValueID(RI.getValue()));
3407   // Sort the refs for determinism output, the vector returned by FS->refs() has
3408   // been initialized from a DenseSet.
3409   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3410 
3411   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3412                     FSModRefsAbbrev);
3413   NameVals.clear();
3414 }
3415 
3416 // Current version for the summary.
3417 // This is bumped whenever we introduce changes in the way some record are
3418 // interpreted, like flags for instance.
3419 static const uint64_t INDEX_VERSION = 3;
3420 
3421 /// Emit the per-module summary section alongside the rest of
3422 /// the module's bitcode.
3423 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3424   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3425 
3426   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3427 
3428   if (Index->begin() == Index->end()) {
3429     Stream.ExitBlock();
3430     return;
3431   }
3432 
3433   for (const auto &GVI : valueIds()) {
3434     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3435                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3436   }
3437 
3438   // Abbrev for FS_PERMODULE.
3439   auto Abbv = std::make_shared<BitCodeAbbrev>();
3440   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3441   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3442   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3443   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3444   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3445   // numrefs x valueid, n x (valueid)
3446   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3447   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3448   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3449 
3450   // Abbrev for FS_PERMODULE_PROFILE.
3451   Abbv = std::make_shared<BitCodeAbbrev>();
3452   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3453   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3454   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3455   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3456   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3457   // numrefs x valueid, n x (valueid, hotness)
3458   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3459   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3460   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3461 
3462   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3463   Abbv = std::make_shared<BitCodeAbbrev>();
3464   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3465   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3466   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3467   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3468   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3469   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3470 
3471   // Abbrev for FS_ALIAS.
3472   Abbv = std::make_shared<BitCodeAbbrev>();
3473   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3474   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3475   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3476   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3477   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3478 
3479   SmallVector<uint64_t, 64> NameVals;
3480   // Iterate over the list of functions instead of the Index to
3481   // ensure the ordering is stable.
3482   for (const Function &F : M) {
3483     // Summary emission does not support anonymous functions, they have to
3484     // renamed using the anonymous function renaming pass.
3485     if (!F.hasName())
3486       report_fatal_error("Unexpected anonymous function when writing summary");
3487 
3488     auto Summaries =
3489         Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName()));
3490     if (Summaries == Index->end()) {
3491       // Only declarations should not have a summary (a declaration might
3492       // however have a summary if the def was in module level asm).
3493       assert(F.isDeclaration());
3494       continue;
3495     }
3496     auto *Summary = Summaries->second.front().get();
3497     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3498                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3499   }
3500 
3501   // Capture references from GlobalVariable initializers, which are outside
3502   // of a function scope.
3503   for (const GlobalVariable &G : M.globals())
3504     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3505 
3506   for (const GlobalAlias &A : M.aliases()) {
3507     auto *Aliasee = A.getBaseObject();
3508     if (!Aliasee->hasName())
3509       // Nameless function don't have an entry in the summary, skip it.
3510       continue;
3511     auto AliasId = VE.getValueID(&A);
3512     auto AliaseeId = VE.getValueID(Aliasee);
3513     NameVals.push_back(AliasId);
3514     auto *Summary = Index->getGlobalValueSummary(A);
3515     AliasSummary *AS = cast<AliasSummary>(Summary);
3516     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3517     NameVals.push_back(AliaseeId);
3518     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3519     NameVals.clear();
3520   }
3521 
3522   Stream.ExitBlock();
3523 }
3524 
3525 /// Emit the combined summary section into the combined index file.
3526 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3527   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3528   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3529 
3530   // Create value IDs for undefined references.
3531   for (const auto &I : *this) {
3532     if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) {
3533       for (auto &RI : VS->refs())
3534         assignValueId(RI.getGUID());
3535       continue;
3536     }
3537 
3538     auto *FS = dyn_cast<FunctionSummary>(I.second);
3539     if (!FS)
3540       continue;
3541     for (auto &RI : FS->refs())
3542       assignValueId(RI.getGUID());
3543 
3544     for (auto &EI : FS->calls()) {
3545       GlobalValue::GUID GUID = EI.first.getGUID();
3546       if (!hasValueId(GUID)) {
3547         // For SamplePGO, the indirect call targets for local functions will
3548         // have its original name annotated in profile. We try to find the
3549         // corresponding PGOFuncName as the GUID.
3550         GUID = Index.getGUIDFromOriginalID(GUID);
3551         if (GUID == 0 || !hasValueId(GUID))
3552           continue;
3553       }
3554       assignValueId(GUID);
3555     }
3556   }
3557 
3558   for (const auto &GVI : valueIds()) {
3559     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3560                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3561   }
3562 
3563   // Abbrev for FS_COMBINED.
3564   auto Abbv = std::make_shared<BitCodeAbbrev>();
3565   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3566   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3567   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3568   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3569   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3570   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3571   // numrefs x valueid, n x (valueid)
3572   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3573   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3574   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3575 
3576   // Abbrev for FS_COMBINED_PROFILE.
3577   Abbv = std::make_shared<BitCodeAbbrev>();
3578   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3579   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3580   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3581   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3582   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3583   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3584   // numrefs x valueid, n x (valueid, hotness)
3585   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3586   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3587   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3588 
3589   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3590   Abbv = std::make_shared<BitCodeAbbrev>();
3591   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3592   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3593   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3594   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3595   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3596   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3597   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3598 
3599   // Abbrev for FS_COMBINED_ALIAS.
3600   Abbv = std::make_shared<BitCodeAbbrev>();
3601   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3602   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3603   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3604   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3605   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3606   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3607 
3608   // The aliases are emitted as a post-pass, and will point to the value
3609   // id of the aliasee. Save them in a vector for post-processing.
3610   SmallVector<AliasSummary *, 64> Aliases;
3611 
3612   // Save the value id for each summary for alias emission.
3613   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3614 
3615   SmallVector<uint64_t, 64> NameVals;
3616 
3617   // For local linkage, we also emit the original name separately
3618   // immediately after the record.
3619   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3620     if (!GlobalValue::isLocalLinkage(S.linkage()))
3621       return;
3622     NameVals.push_back(S.getOriginalName());
3623     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3624     NameVals.clear();
3625   };
3626 
3627   for (const auto &I : *this) {
3628     GlobalValueSummary *S = I.second;
3629     assert(S);
3630 
3631     assert(hasValueId(I.first));
3632     unsigned ValueId = getValueId(I.first);
3633     SummaryToValueIdMap[S] = ValueId;
3634 
3635     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3636       // Will process aliases as a post-pass because the reader wants all
3637       // global to be loaded first.
3638       Aliases.push_back(AS);
3639       continue;
3640     }
3641 
3642     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3643       NameVals.push_back(ValueId);
3644       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3645       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3646       for (auto &RI : VS->refs()) {
3647         NameVals.push_back(getValueId(RI.getGUID()));
3648       }
3649 
3650       // Emit the finished record.
3651       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3652                         FSModRefsAbbrev);
3653       NameVals.clear();
3654       MaybeEmitOriginalName(*S);
3655       continue;
3656     }
3657 
3658     auto *FS = cast<FunctionSummary>(S);
3659     writeFunctionTypeMetadataRecords(Stream, FS);
3660 
3661     NameVals.push_back(ValueId);
3662     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3663     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3664     NameVals.push_back(FS->instCount());
3665     NameVals.push_back(FS->refs().size());
3666 
3667     for (auto &RI : FS->refs()) {
3668       NameVals.push_back(getValueId(RI.getGUID()));
3669     }
3670 
3671     bool HasProfileData = false;
3672     for (auto &EI : FS->calls()) {
3673       HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown;
3674       if (HasProfileData)
3675         break;
3676     }
3677 
3678     for (auto &EI : FS->calls()) {
3679       // If this GUID doesn't have a value id, it doesn't have a function
3680       // summary and we don't need to record any calls to it.
3681       GlobalValue::GUID GUID = EI.first.getGUID();
3682       if (!hasValueId(GUID)) {
3683         // For SamplePGO, the indirect call targets for local functions will
3684         // have its original name annotated in profile. We try to find the
3685         // corresponding PGOFuncName as the GUID.
3686         GUID = Index.getGUIDFromOriginalID(GUID);
3687         if (GUID == 0 || !hasValueId(GUID))
3688           continue;
3689       }
3690       NameVals.push_back(getValueId(GUID));
3691       if (HasProfileData)
3692         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3693     }
3694 
3695     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3696     unsigned Code =
3697         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3698 
3699     // Emit the finished record.
3700     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3701     NameVals.clear();
3702     MaybeEmitOriginalName(*S);
3703   }
3704 
3705   for (auto *AS : Aliases) {
3706     auto AliasValueId = SummaryToValueIdMap[AS];
3707     assert(AliasValueId);
3708     NameVals.push_back(AliasValueId);
3709     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3710     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3711     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3712     assert(AliaseeValueId);
3713     NameVals.push_back(AliaseeValueId);
3714 
3715     // Emit the finished record.
3716     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3717     NameVals.clear();
3718     MaybeEmitOriginalName(*AS);
3719   }
3720 
3721   Stream.ExitBlock();
3722 }
3723 
3724 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3725 /// current llvm version, and a record for the epoch number.
3726 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3727   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3728 
3729   // Write the "user readable" string identifying the bitcode producer
3730   auto Abbv = std::make_shared<BitCodeAbbrev>();
3731   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3732   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3733   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3734   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3735   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3736                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3737 
3738   // Write the epoch version
3739   Abbv = std::make_shared<BitCodeAbbrev>();
3740   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3741   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3742   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3743   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3744   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3745   Stream.ExitBlock();
3746 }
3747 
3748 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3749   // Emit the module's hash.
3750   // MODULE_CODE_HASH: [5*i32]
3751   if (GenerateHash) {
3752     SHA1 Hasher;
3753     uint32_t Vals[5];
3754     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3755                                     Buffer.size() - BlockStartPos));
3756     StringRef Hash = Hasher.result();
3757     for (int Pos = 0; Pos < 20; Pos += 4) {
3758       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3759     }
3760 
3761     // Emit the finished record.
3762     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3763 
3764     if (ModHash)
3765       // Save the written hash value.
3766       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3767   } else if (ModHash)
3768     Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
3769 }
3770 
3771 void ModuleBitcodeWriter::write() {
3772   writeIdentificationBlock(Stream);
3773 
3774   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3775   size_t BlockStartPos = Buffer.size();
3776 
3777   writeModuleVersion();
3778 
3779   // Emit blockinfo, which defines the standard abbreviations etc.
3780   writeBlockInfo();
3781 
3782   // Emit information about attribute groups.
3783   writeAttributeGroupTable();
3784 
3785   // Emit information about parameter attributes.
3786   writeAttributeTable();
3787 
3788   // Emit information describing all of the types in the module.
3789   writeTypeTable();
3790 
3791   writeComdats();
3792 
3793   // Emit top-level description of module, including target triple, inline asm,
3794   // descriptors for global variables, and function prototype info.
3795   writeModuleInfo();
3796 
3797   // Emit constants.
3798   writeModuleConstants();
3799 
3800   // Emit metadata kind names.
3801   writeModuleMetadataKinds();
3802 
3803   // Emit metadata.
3804   writeModuleMetadata();
3805 
3806   // Emit module-level use-lists.
3807   if (VE.shouldPreserveUseListOrder())
3808     writeUseListBlock(nullptr);
3809 
3810   writeOperandBundleTags();
3811 
3812   // Emit function bodies.
3813   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3814   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3815     if (!F->isDeclaration())
3816       writeFunction(*F, FunctionToBitcodeIndex);
3817 
3818   // Need to write after the above call to WriteFunction which populates
3819   // the summary information in the index.
3820   if (Index)
3821     writePerModuleGlobalValueSummary();
3822 
3823   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3824 
3825   writeModuleHash(BlockStartPos);
3826 
3827   Stream.ExitBlock();
3828 }
3829 
3830 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3831                                uint32_t &Position) {
3832   support::endian::write32le(&Buffer[Position], Value);
3833   Position += 4;
3834 }
3835 
3836 /// If generating a bc file on darwin, we have to emit a
3837 /// header and trailer to make it compatible with the system archiver.  To do
3838 /// this we emit the following header, and then emit a trailer that pads the
3839 /// file out to be a multiple of 16 bytes.
3840 ///
3841 /// struct bc_header {
3842 ///   uint32_t Magic;         // 0x0B17C0DE
3843 ///   uint32_t Version;       // Version, currently always 0.
3844 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3845 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3846 ///   uint32_t CPUType;       // CPU specifier.
3847 ///   ... potentially more later ...
3848 /// };
3849 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3850                                          const Triple &TT) {
3851   unsigned CPUType = ~0U;
3852 
3853   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3854   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3855   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3856   // specific constants here because they are implicitly part of the Darwin ABI.
3857   enum {
3858     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3859     DARWIN_CPU_TYPE_X86        = 7,
3860     DARWIN_CPU_TYPE_ARM        = 12,
3861     DARWIN_CPU_TYPE_POWERPC    = 18
3862   };
3863 
3864   Triple::ArchType Arch = TT.getArch();
3865   if (Arch == Triple::x86_64)
3866     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3867   else if (Arch == Triple::x86)
3868     CPUType = DARWIN_CPU_TYPE_X86;
3869   else if (Arch == Triple::ppc)
3870     CPUType = DARWIN_CPU_TYPE_POWERPC;
3871   else if (Arch == Triple::ppc64)
3872     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3873   else if (Arch == Triple::arm || Arch == Triple::thumb)
3874     CPUType = DARWIN_CPU_TYPE_ARM;
3875 
3876   // Traditional Bitcode starts after header.
3877   assert(Buffer.size() >= BWH_HeaderSize &&
3878          "Expected header size to be reserved");
3879   unsigned BCOffset = BWH_HeaderSize;
3880   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3881 
3882   // Write the magic and version.
3883   unsigned Position = 0;
3884   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3885   writeInt32ToBuffer(0, Buffer, Position); // Version.
3886   writeInt32ToBuffer(BCOffset, Buffer, Position);
3887   writeInt32ToBuffer(BCSize, Buffer, Position);
3888   writeInt32ToBuffer(CPUType, Buffer, Position);
3889 
3890   // If the file is not a multiple of 16 bytes, insert dummy padding.
3891   while (Buffer.size() & 15)
3892     Buffer.push_back(0);
3893 }
3894 
3895 /// Helper to write the header common to all bitcode files.
3896 static void writeBitcodeHeader(BitstreamWriter &Stream) {
3897   // Emit the file header.
3898   Stream.Emit((unsigned)'B', 8);
3899   Stream.Emit((unsigned)'C', 8);
3900   Stream.Emit(0x0, 4);
3901   Stream.Emit(0xC, 4);
3902   Stream.Emit(0xE, 4);
3903   Stream.Emit(0xD, 4);
3904 }
3905 
3906 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
3907     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
3908   writeBitcodeHeader(*Stream);
3909 }
3910 
3911 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
3912 
3913 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
3914   Stream->EnterSubblock(Block, 3);
3915 
3916   auto Abbv = std::make_shared<BitCodeAbbrev>();
3917   Abbv->Add(BitCodeAbbrevOp(Record));
3918   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
3919   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
3920 
3921   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
3922 
3923   Stream->ExitBlock();
3924 }
3925 
3926 void BitcodeWriter::writeStrtab() {
3927   assert(!WroteStrtab);
3928 
3929   std::vector<char> Strtab;
3930   StrtabBuilder.finalizeInOrder();
3931   Strtab.resize(StrtabBuilder.getSize());
3932   StrtabBuilder.write((uint8_t *)Strtab.data());
3933 
3934   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
3935             {Strtab.data(), Strtab.size()});
3936 
3937   WroteStrtab = true;
3938 }
3939 
3940 void BitcodeWriter::copyStrtab(StringRef Strtab) {
3941   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
3942   WroteStrtab = true;
3943 }
3944 
3945 void BitcodeWriter::writeModule(const Module *M,
3946                                 bool ShouldPreserveUseListOrder,
3947                                 const ModuleSummaryIndex *Index,
3948                                 bool GenerateHash, ModuleHash *ModHash) {
3949   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
3950                                    ShouldPreserveUseListOrder, Index,
3951                                    GenerateHash, ModHash);
3952   ModuleWriter.write();
3953 }
3954 
3955 /// WriteBitcodeToFile - Write the specified module to the specified output
3956 /// stream.
3957 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3958                               bool ShouldPreserveUseListOrder,
3959                               const ModuleSummaryIndex *Index,
3960                               bool GenerateHash, ModuleHash *ModHash) {
3961   SmallVector<char, 0> Buffer;
3962   Buffer.reserve(256*1024);
3963 
3964   // If this is darwin or another generic macho target, reserve space for the
3965   // header.
3966   Triple TT(M->getTargetTriple());
3967   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3968     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3969 
3970   BitcodeWriter Writer(Buffer);
3971   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
3972                      ModHash);
3973   Writer.writeStrtab();
3974 
3975   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3976     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3977 
3978   // Write the generated bitstream to "Out".
3979   Out.write((char*)&Buffer.front(), Buffer.size());
3980 }
3981 
3982 void IndexBitcodeWriter::write() {
3983   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3984 
3985   writeModuleVersion();
3986 
3987   // Write the module paths in the combined index.
3988   writeModStrings();
3989 
3990   // Write the summary combined index records.
3991   writeCombinedGlobalValueSummary();
3992 
3993   Stream.ExitBlock();
3994 }
3995 
3996 // Write the specified module summary index to the given raw output stream,
3997 // where it will be written in a new bitcode block. This is used when
3998 // writing the combined index file for ThinLTO. When writing a subset of the
3999 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4000 void llvm::WriteIndexToFile(
4001     const ModuleSummaryIndex &Index, raw_ostream &Out,
4002     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4003   SmallVector<char, 0> Buffer;
4004   Buffer.reserve(256 * 1024);
4005 
4006   BitstreamWriter Stream(Buffer);
4007   writeBitcodeHeader(Stream);
4008 
4009   IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex);
4010   IndexWriter.write();
4011 
4012   Out.write((char *)&Buffer.front(), Buffer.size());
4013 }
4014