1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (CallEdge.first.isGUID()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (VI.isGUID()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 for (const auto &I : *this) 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 } 346 347 /// The below iterator returns the GUID and associated summary. 348 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 349 350 /// Iterator over the value GUID and summaries to be written to bitcode, 351 /// hides the details of whether they are being pulled from the entire 352 /// index or just those in a provided ModuleToSummariesForIndex map. 353 class iterator 354 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 355 GVInfo> { 356 /// Enables access to parent class. 357 const IndexBitcodeWriter &Writer; 358 359 // Iterators used when writing only those summaries in a provided 360 // ModuleToSummariesForIndex map: 361 362 /// Points to the last element in outer ModuleToSummariesForIndex map. 363 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 364 /// Iterator on outer ModuleToSummariesForIndex map. 365 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 366 /// Iterator on an inner global variable summary map. 367 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 368 369 // Iterators used when writing all summaries in the index: 370 371 /// Points to the last element in the Index outer GlobalValueMap. 372 const_gvsummary_iterator IndexSummariesBack; 373 /// Iterator on outer GlobalValueMap. 374 const_gvsummary_iterator IndexSummariesIter; 375 /// Iterator on an inner GlobalValueSummaryList. 376 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 377 378 public: 379 /// Construct iterator from parent \p Writer and indicate if we are 380 /// constructing the end iterator. 381 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 382 // Set up the appropriate set of iterators given whether we are writing 383 // the full index or just a subset. 384 // Can't setup the Back or inner iterators if the corresponding map 385 // is empty. This will be handled specially in operator== as well. 386 if (Writer.ModuleToSummariesForIndex && 387 !Writer.ModuleToSummariesForIndex->empty()) { 388 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 389 std::next(ModuleSummariesBack) != 390 Writer.ModuleToSummariesForIndex->end(); 391 ModuleSummariesBack++) 392 ; 393 ModuleSummariesIter = !IsAtEnd 394 ? Writer.ModuleToSummariesForIndex->begin() 395 : ModuleSummariesBack; 396 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 397 : ModuleSummariesBack->second.end(); 398 } else if (!Writer.ModuleToSummariesForIndex && 399 Writer.Index.begin() != Writer.Index.end()) { 400 for (IndexSummariesBack = Writer.Index.begin(); 401 std::next(IndexSummariesBack) != Writer.Index.end(); 402 IndexSummariesBack++) 403 ; 404 IndexSummariesIter = 405 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 406 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 407 : IndexSummariesBack->second.end(); 408 } 409 } 410 411 /// Increment the appropriate set of iterators. 412 iterator &operator++() { 413 // First the inner iterator is incremented, then if it is at the end 414 // and there are more outer iterations to go, the inner is reset to 415 // the start of the next inner list. 416 if (Writer.ModuleToSummariesForIndex) { 417 ++ModuleGVSummariesIter; 418 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 419 ModuleSummariesIter != ModuleSummariesBack) { 420 ++ModuleSummariesIter; 421 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 422 } 423 } else { 424 ++IndexGVSummariesIter; 425 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 426 IndexSummariesIter != IndexSummariesBack) { 427 ++IndexSummariesIter; 428 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 429 } 430 } 431 return *this; 432 } 433 434 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 435 /// outer and inner iterator positions. 436 GVInfo operator*() { 437 if (Writer.ModuleToSummariesForIndex) 438 return std::make_pair(ModuleGVSummariesIter->first, 439 ModuleGVSummariesIter->second); 440 return std::make_pair(IndexSummariesIter->first, 441 IndexGVSummariesIter->get()); 442 } 443 444 /// Checks if the iterators are equal, with special handling for empty 445 /// indexes. 446 bool operator==(const iterator &RHS) const { 447 if (Writer.ModuleToSummariesForIndex) { 448 // First ensure that both are writing the same subset. 449 if (Writer.ModuleToSummariesForIndex != 450 RHS.Writer.ModuleToSummariesForIndex) 451 return false; 452 // Already determined above that maps are the same, so if one is 453 // empty, they both are. 454 if (Writer.ModuleToSummariesForIndex->empty()) 455 return true; 456 // Ensure the ModuleGVSummariesIter are iterating over the same 457 // container before checking them below. 458 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 459 return false; 460 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 461 } 462 // First ensure RHS also writing the full index, and that both are 463 // writing the same full index. 464 if (RHS.Writer.ModuleToSummariesForIndex || 465 &Writer.Index != &RHS.Writer.Index) 466 return false; 467 // Already determined above that maps are the same, so if one is 468 // empty, they both are. 469 if (Writer.Index.begin() == Writer.Index.end()) 470 return true; 471 // Ensure the IndexGVSummariesIter are iterating over the same 472 // container before checking them below. 473 if (IndexSummariesIter != RHS.IndexSummariesIter) 474 return false; 475 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 476 } 477 }; 478 479 /// Obtain the start iterator over the summaries to be written. 480 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 481 /// Obtain the end iterator over the summaries to be written. 482 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 483 484 /// Main entry point for writing a combined index to bitcode. 485 void write(); 486 487 private: 488 void writeModStrings(); 489 void writeCombinedGlobalValueSummary(); 490 491 /// Indicates whether the provided \p ModulePath should be written into 492 /// the module string table, e.g. if full index written or if it is in 493 /// the provided subset. 494 bool doIncludeModule(StringRef ModulePath) { 495 return !ModuleToSummariesForIndex || 496 ModuleToSummariesForIndex->count(ModulePath); 497 } 498 499 bool hasValueId(GlobalValue::GUID ValGUID) { 500 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 501 return VMI != GUIDToValueIdMap.end(); 502 } 503 void assignValueId(GlobalValue::GUID ValGUID) { 504 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 505 if (ValueId == 0) 506 ValueId = ++GlobalValueId; 507 } 508 unsigned getValueId(GlobalValue::GUID ValGUID) { 509 auto VMI = GUIDToValueIdMap.find(ValGUID); 510 assert(VMI != GUIDToValueIdMap.end()); 511 return VMI->second; 512 } 513 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 514 }; 515 } // end anonymous namespace 516 517 static unsigned getEncodedCastOpcode(unsigned Opcode) { 518 switch (Opcode) { 519 default: llvm_unreachable("Unknown cast instruction!"); 520 case Instruction::Trunc : return bitc::CAST_TRUNC; 521 case Instruction::ZExt : return bitc::CAST_ZEXT; 522 case Instruction::SExt : return bitc::CAST_SEXT; 523 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 524 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 525 case Instruction::UIToFP : return bitc::CAST_UITOFP; 526 case Instruction::SIToFP : return bitc::CAST_SITOFP; 527 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 528 case Instruction::FPExt : return bitc::CAST_FPEXT; 529 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 530 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 531 case Instruction::BitCast : return bitc::CAST_BITCAST; 532 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 533 } 534 } 535 536 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 537 switch (Opcode) { 538 default: llvm_unreachable("Unknown binary instruction!"); 539 case Instruction::Add: 540 case Instruction::FAdd: return bitc::BINOP_ADD; 541 case Instruction::Sub: 542 case Instruction::FSub: return bitc::BINOP_SUB; 543 case Instruction::Mul: 544 case Instruction::FMul: return bitc::BINOP_MUL; 545 case Instruction::UDiv: return bitc::BINOP_UDIV; 546 case Instruction::FDiv: 547 case Instruction::SDiv: return bitc::BINOP_SDIV; 548 case Instruction::URem: return bitc::BINOP_UREM; 549 case Instruction::FRem: 550 case Instruction::SRem: return bitc::BINOP_SREM; 551 case Instruction::Shl: return bitc::BINOP_SHL; 552 case Instruction::LShr: return bitc::BINOP_LSHR; 553 case Instruction::AShr: return bitc::BINOP_ASHR; 554 case Instruction::And: return bitc::BINOP_AND; 555 case Instruction::Or: return bitc::BINOP_OR; 556 case Instruction::Xor: return bitc::BINOP_XOR; 557 } 558 } 559 560 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 561 switch (Op) { 562 default: llvm_unreachable("Unknown RMW operation!"); 563 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 564 case AtomicRMWInst::Add: return bitc::RMW_ADD; 565 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 566 case AtomicRMWInst::And: return bitc::RMW_AND; 567 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 568 case AtomicRMWInst::Or: return bitc::RMW_OR; 569 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 570 case AtomicRMWInst::Max: return bitc::RMW_MAX; 571 case AtomicRMWInst::Min: return bitc::RMW_MIN; 572 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 573 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 574 } 575 } 576 577 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 578 switch (Ordering) { 579 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 580 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 581 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 582 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 583 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 584 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 585 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 586 } 587 llvm_unreachable("Invalid ordering"); 588 } 589 590 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 591 switch (SynchScope) { 592 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 593 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 594 } 595 llvm_unreachable("Invalid synch scope"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 605 AbbrevToUse = 0; 606 Vals.push_back(Str[i]); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCapture: 654 return bitc::ATTR_KIND_NO_CAPTURE; 655 case Attribute::NoDuplicate: 656 return bitc::ATTR_KIND_NO_DUPLICATE; 657 case Attribute::NoImplicitFloat: 658 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 659 case Attribute::NoInline: 660 return bitc::ATTR_KIND_NO_INLINE; 661 case Attribute::NoRecurse: 662 return bitc::ATTR_KIND_NO_RECURSE; 663 case Attribute::NonLazyBind: 664 return bitc::ATTR_KIND_NON_LAZY_BIND; 665 case Attribute::NonNull: 666 return bitc::ATTR_KIND_NON_NULL; 667 case Attribute::Dereferenceable: 668 return bitc::ATTR_KIND_DEREFERENCEABLE; 669 case Attribute::DereferenceableOrNull: 670 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 671 case Attribute::NoRedZone: 672 return bitc::ATTR_KIND_NO_RED_ZONE; 673 case Attribute::NoReturn: 674 return bitc::ATTR_KIND_NO_RETURN; 675 case Attribute::NoUnwind: 676 return bitc::ATTR_KIND_NO_UNWIND; 677 case Attribute::OptimizeForSize: 678 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 679 case Attribute::OptimizeNone: 680 return bitc::ATTR_KIND_OPTIMIZE_NONE; 681 case Attribute::ReadNone: 682 return bitc::ATTR_KIND_READ_NONE; 683 case Attribute::ReadOnly: 684 return bitc::ATTR_KIND_READ_ONLY; 685 case Attribute::Returned: 686 return bitc::ATTR_KIND_RETURNED; 687 case Attribute::ReturnsTwice: 688 return bitc::ATTR_KIND_RETURNS_TWICE; 689 case Attribute::SExt: 690 return bitc::ATTR_KIND_S_EXT; 691 case Attribute::StackAlignment: 692 return bitc::ATTR_KIND_STACK_ALIGNMENT; 693 case Attribute::StackProtect: 694 return bitc::ATTR_KIND_STACK_PROTECT; 695 case Attribute::StackProtectReq: 696 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 697 case Attribute::StackProtectStrong: 698 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 699 case Attribute::SafeStack: 700 return bitc::ATTR_KIND_SAFESTACK; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeThread: 706 return bitc::ATTR_KIND_SANITIZE_THREAD; 707 case Attribute::SanitizeMemory: 708 return bitc::ATTR_KIND_SANITIZE_MEMORY; 709 case Attribute::SwiftError: 710 return bitc::ATTR_KIND_SWIFT_ERROR; 711 case Attribute::SwiftSelf: 712 return bitc::ATTR_KIND_SWIFT_SELF; 713 case Attribute::UWTable: 714 return bitc::ATTR_KIND_UW_TABLE; 715 case Attribute::WriteOnly: 716 return bitc::ATTR_KIND_WRITEONLY; 717 case Attribute::ZExt: 718 return bitc::ATTR_KIND_Z_EXT; 719 case Attribute::EndAttrKinds: 720 llvm_unreachable("Can not encode end-attribute kinds marker."); 721 case Attribute::None: 722 llvm_unreachable("Can not encode none-attribute."); 723 } 724 725 llvm_unreachable("Trying to encode unknown attribute"); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeGroupTable() { 729 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 730 VE.getAttributeGroups(); 731 if (AttrGrps.empty()) return; 732 733 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 734 735 SmallVector<uint64_t, 64> Record; 736 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 737 unsigned AttrListIndex = Pair.first; 738 AttributeSet AS = Pair.second; 739 Record.push_back(VE.getAttributeGroupID(Pair)); 740 Record.push_back(AttrListIndex); 741 742 for (Attribute Attr : AS) { 743 if (Attr.isEnumAttribute()) { 744 Record.push_back(0); 745 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 746 } else if (Attr.isIntAttribute()) { 747 Record.push_back(1); 748 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 749 Record.push_back(Attr.getValueAsInt()); 750 } else { 751 StringRef Kind = Attr.getKindAsString(); 752 StringRef Val = Attr.getValueAsString(); 753 754 Record.push_back(Val.empty() ? 3 : 4); 755 Record.append(Kind.begin(), Kind.end()); 756 Record.push_back(0); 757 if (!Val.empty()) { 758 Record.append(Val.begin(), Val.end()); 759 Record.push_back(0); 760 } 761 } 762 } 763 764 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 765 Record.clear(); 766 } 767 768 Stream.ExitBlock(); 769 } 770 771 void ModuleBitcodeWriter::writeAttributeTable() { 772 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 773 if (Attrs.empty()) return; 774 775 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 776 777 SmallVector<uint64_t, 64> Record; 778 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 779 const AttributeList &A = Attrs[i]; 780 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 781 Record.push_back( 782 VE.getAttributeGroupID({A.getSlotIndex(i), A.getSlotAttributes(i)})); 783 784 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 785 Record.clear(); 786 } 787 788 Stream.ExitBlock(); 789 } 790 791 /// WriteTypeTable - Write out the type table for a module. 792 void ModuleBitcodeWriter::writeTypeTable() { 793 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 794 795 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 796 SmallVector<uint64_t, 64> TypeVals; 797 798 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 799 800 // Abbrev for TYPE_CODE_POINTER. 801 auto Abbv = std::make_shared<BitCodeAbbrev>(); 802 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 804 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 805 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 806 807 // Abbrev for TYPE_CODE_FUNCTION. 808 Abbv = std::make_shared<BitCodeAbbrev>(); 809 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 813 814 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 815 816 // Abbrev for TYPE_CODE_STRUCT_ANON. 817 Abbv = std::make_shared<BitCodeAbbrev>(); 818 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 822 823 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_STRUCT_NAME. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 830 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 831 832 // Abbrev for TYPE_CODE_STRUCT_NAMED. 833 Abbv = std::make_shared<BitCodeAbbrev>(); 834 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 838 839 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 840 841 // Abbrev for TYPE_CODE_ARRAY. 842 Abbv = std::make_shared<BitCodeAbbrev>(); 843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 846 847 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Emit an entry count so the reader can reserve space. 850 TypeVals.push_back(TypeList.size()); 851 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 852 TypeVals.clear(); 853 854 // Loop over all of the types, emitting each in turn. 855 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 856 Type *T = TypeList[i]; 857 int AbbrevToUse = 0; 858 unsigned Code = 0; 859 860 switch (T->getTypeID()) { 861 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 862 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 863 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 864 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 865 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 866 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 867 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 868 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 869 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 870 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 871 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 872 case Type::IntegerTyID: 873 // INTEGER: [width] 874 Code = bitc::TYPE_CODE_INTEGER; 875 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 876 break; 877 case Type::PointerTyID: { 878 PointerType *PTy = cast<PointerType>(T); 879 // POINTER: [pointee type, address space] 880 Code = bitc::TYPE_CODE_POINTER; 881 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 882 unsigned AddressSpace = PTy->getAddressSpace(); 883 TypeVals.push_back(AddressSpace); 884 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 885 break; 886 } 887 case Type::FunctionTyID: { 888 FunctionType *FT = cast<FunctionType>(T); 889 // FUNCTION: [isvararg, retty, paramty x N] 890 Code = bitc::TYPE_CODE_FUNCTION; 891 TypeVals.push_back(FT->isVarArg()); 892 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 893 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 894 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 895 AbbrevToUse = FunctionAbbrev; 896 break; 897 } 898 case Type::StructTyID: { 899 StructType *ST = cast<StructType>(T); 900 // STRUCT: [ispacked, eltty x N] 901 TypeVals.push_back(ST->isPacked()); 902 // Output all of the element types. 903 for (StructType::element_iterator I = ST->element_begin(), 904 E = ST->element_end(); I != E; ++I) 905 TypeVals.push_back(VE.getTypeID(*I)); 906 907 if (ST->isLiteral()) { 908 Code = bitc::TYPE_CODE_STRUCT_ANON; 909 AbbrevToUse = StructAnonAbbrev; 910 } else { 911 if (ST->isOpaque()) { 912 Code = bitc::TYPE_CODE_OPAQUE; 913 } else { 914 Code = bitc::TYPE_CODE_STRUCT_NAMED; 915 AbbrevToUse = StructNamedAbbrev; 916 } 917 918 // Emit the name if it is present. 919 if (!ST->getName().empty()) 920 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 921 StructNameAbbrev); 922 } 923 break; 924 } 925 case Type::ArrayTyID: { 926 ArrayType *AT = cast<ArrayType>(T); 927 // ARRAY: [numelts, eltty] 928 Code = bitc::TYPE_CODE_ARRAY; 929 TypeVals.push_back(AT->getNumElements()); 930 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 931 AbbrevToUse = ArrayAbbrev; 932 break; 933 } 934 case Type::VectorTyID: { 935 VectorType *VT = cast<VectorType>(T); 936 // VECTOR [numelts, eltty] 937 Code = bitc::TYPE_CODE_VECTOR; 938 TypeVals.push_back(VT->getNumElements()); 939 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 940 break; 941 } 942 } 943 944 // Emit the finished record. 945 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 946 TypeVals.clear(); 947 } 948 949 Stream.ExitBlock(); 950 } 951 952 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 953 switch (Linkage) { 954 case GlobalValue::ExternalLinkage: 955 return 0; 956 case GlobalValue::WeakAnyLinkage: 957 return 16; 958 case GlobalValue::AppendingLinkage: 959 return 2; 960 case GlobalValue::InternalLinkage: 961 return 3; 962 case GlobalValue::LinkOnceAnyLinkage: 963 return 18; 964 case GlobalValue::ExternalWeakLinkage: 965 return 7; 966 case GlobalValue::CommonLinkage: 967 return 8; 968 case GlobalValue::PrivateLinkage: 969 return 9; 970 case GlobalValue::WeakODRLinkage: 971 return 17; 972 case GlobalValue::LinkOnceODRLinkage: 973 return 19; 974 case GlobalValue::AvailableExternallyLinkage: 975 return 12; 976 } 977 llvm_unreachable("Invalid linkage"); 978 } 979 980 static unsigned getEncodedLinkage(const GlobalValue &GV) { 981 return getEncodedLinkage(GV.getLinkage()); 982 } 983 984 // Decode the flags for GlobalValue in the summary 985 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 986 uint64_t RawFlags = 0; 987 988 RawFlags |= Flags.NotEligibleToImport; // bool 989 RawFlags |= (Flags.LiveRoot << 1); 990 // Linkage don't need to be remapped at that time for the summary. Any future 991 // change to the getEncodedLinkage() function will need to be taken into 992 // account here as well. 993 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 994 995 return RawFlags; 996 } 997 998 static unsigned getEncodedVisibility(const GlobalValue &GV) { 999 switch (GV.getVisibility()) { 1000 case GlobalValue::DefaultVisibility: return 0; 1001 case GlobalValue::HiddenVisibility: return 1; 1002 case GlobalValue::ProtectedVisibility: return 2; 1003 } 1004 llvm_unreachable("Invalid visibility"); 1005 } 1006 1007 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1008 switch (GV.getDLLStorageClass()) { 1009 case GlobalValue::DefaultStorageClass: return 0; 1010 case GlobalValue::DLLImportStorageClass: return 1; 1011 case GlobalValue::DLLExportStorageClass: return 2; 1012 } 1013 llvm_unreachable("Invalid DLL storage class"); 1014 } 1015 1016 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1017 switch (GV.getThreadLocalMode()) { 1018 case GlobalVariable::NotThreadLocal: return 0; 1019 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1020 case GlobalVariable::LocalDynamicTLSModel: return 2; 1021 case GlobalVariable::InitialExecTLSModel: return 3; 1022 case GlobalVariable::LocalExecTLSModel: return 4; 1023 } 1024 llvm_unreachable("Invalid TLS model"); 1025 } 1026 1027 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1028 switch (C.getSelectionKind()) { 1029 case Comdat::Any: 1030 return bitc::COMDAT_SELECTION_KIND_ANY; 1031 case Comdat::ExactMatch: 1032 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1033 case Comdat::Largest: 1034 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1035 case Comdat::NoDuplicates: 1036 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1037 case Comdat::SameSize: 1038 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1039 } 1040 llvm_unreachable("Invalid selection kind"); 1041 } 1042 1043 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1044 switch (GV.getUnnamedAddr()) { 1045 case GlobalValue::UnnamedAddr::None: return 0; 1046 case GlobalValue::UnnamedAddr::Local: return 2; 1047 case GlobalValue::UnnamedAddr::Global: return 1; 1048 } 1049 llvm_unreachable("Invalid unnamed_addr"); 1050 } 1051 1052 void ModuleBitcodeWriter::writeComdats() { 1053 SmallVector<unsigned, 64> Vals; 1054 for (const Comdat *C : VE.getComdats()) { 1055 // COMDAT: [strtab offset, strtab size, selection_kind] 1056 Vals.push_back(StrtabBuilder.add(C->getName())); 1057 Vals.push_back(C->getName().size()); 1058 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1059 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1060 Vals.clear(); 1061 } 1062 } 1063 1064 /// Write a record that will eventually hold the word offset of the 1065 /// module-level VST. For now the offset is 0, which will be backpatched 1066 /// after the real VST is written. Saves the bit offset to backpatch. 1067 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1068 // Write a placeholder value in for the offset of the real VST, 1069 // which is written after the function blocks so that it can include 1070 // the offset of each function. The placeholder offset will be 1071 // updated when the real VST is written. 1072 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1073 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1074 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1075 // hold the real VST offset. Must use fixed instead of VBR as we don't 1076 // know how many VBR chunks to reserve ahead of time. 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1078 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 1080 // Emit the placeholder 1081 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1082 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1083 1084 // Compute and save the bit offset to the placeholder, which will be 1085 // patched when the real VST is written. We can simply subtract the 32-bit 1086 // fixed size from the current bit number to get the location to backpatch. 1087 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1088 } 1089 1090 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1091 1092 /// Determine the encoding to use for the given string name and length. 1093 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1094 bool isChar6 = true; 1095 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1096 if (isChar6) 1097 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1098 if ((unsigned char)*C & 128) 1099 // don't bother scanning the rest. 1100 return SE_Fixed8; 1101 } 1102 if (isChar6) 1103 return SE_Char6; 1104 else 1105 return SE_Fixed7; 1106 } 1107 1108 /// Emit top-level description of module, including target triple, inline asm, 1109 /// descriptors for global variables, and function prototype info. 1110 /// Returns the bit offset to backpatch with the location of the real VST. 1111 void ModuleBitcodeWriter::writeModuleInfo() { 1112 // Emit various pieces of data attached to a module. 1113 if (!M.getTargetTriple().empty()) 1114 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1115 0 /*TODO*/); 1116 const std::string &DL = M.getDataLayoutStr(); 1117 if (!DL.empty()) 1118 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1119 if (!M.getModuleInlineAsm().empty()) 1120 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1121 0 /*TODO*/); 1122 1123 // Emit information about sections and GC, computing how many there are. Also 1124 // compute the maximum alignment value. 1125 std::map<std::string, unsigned> SectionMap; 1126 std::map<std::string, unsigned> GCMap; 1127 unsigned MaxAlignment = 0; 1128 unsigned MaxGlobalType = 0; 1129 for (const GlobalValue &GV : M.globals()) { 1130 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1131 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1132 if (GV.hasSection()) { 1133 // Give section names unique ID's. 1134 unsigned &Entry = SectionMap[GV.getSection()]; 1135 if (!Entry) { 1136 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1137 0 /*TODO*/); 1138 Entry = SectionMap.size(); 1139 } 1140 } 1141 } 1142 for (const Function &F : M) { 1143 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1144 if (F.hasSection()) { 1145 // Give section names unique ID's. 1146 unsigned &Entry = SectionMap[F.getSection()]; 1147 if (!Entry) { 1148 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1149 0 /*TODO*/); 1150 Entry = SectionMap.size(); 1151 } 1152 } 1153 if (F.hasGC()) { 1154 // Same for GC names. 1155 unsigned &Entry = GCMap[F.getGC()]; 1156 if (!Entry) { 1157 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1158 0 /*TODO*/); 1159 Entry = GCMap.size(); 1160 } 1161 } 1162 } 1163 1164 // Emit abbrev for globals, now that we know # sections and max alignment. 1165 unsigned SimpleGVarAbbrev = 0; 1166 if (!M.global_empty()) { 1167 // Add an abbrev for common globals with no visibility or thread localness. 1168 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1173 Log2_32_Ceil(MaxGlobalType+1))); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1175 //| explicitType << 1 1176 //| constant 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1179 if (MaxAlignment == 0) // Alignment. 1180 Abbv->Add(BitCodeAbbrevOp(0)); 1181 else { 1182 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1184 Log2_32_Ceil(MaxEncAlignment+1))); 1185 } 1186 if (SectionMap.empty()) // Section. 1187 Abbv->Add(BitCodeAbbrevOp(0)); 1188 else 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1190 Log2_32_Ceil(SectionMap.size()+1))); 1191 // Don't bother emitting vis + thread local. 1192 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1193 } 1194 1195 SmallVector<unsigned, 64> Vals; 1196 // Emit the module's source file name. 1197 { 1198 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1199 M.getSourceFileName().size()); 1200 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1201 if (Bits == SE_Char6) 1202 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1203 else if (Bits == SE_Fixed7) 1204 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1205 1206 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1208 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1210 Abbv->Add(AbbrevOpToUse); 1211 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1212 1213 for (const auto P : M.getSourceFileName()) 1214 Vals.push_back((unsigned char)P); 1215 1216 // Emit the finished record. 1217 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1218 Vals.clear(); 1219 } 1220 1221 // Emit the global variable information. 1222 for (const GlobalVariable &GV : M.globals()) { 1223 unsigned AbbrevToUse = 0; 1224 1225 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1226 // linkage, alignment, section, visibility, threadlocal, 1227 // unnamed_addr, externally_initialized, dllstorageclass, 1228 // comdat] 1229 Vals.push_back(StrtabBuilder.add(GV.getName())); 1230 Vals.push_back(GV.getName().size()); 1231 Vals.push_back(VE.getTypeID(GV.getValueType())); 1232 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1233 Vals.push_back(GV.isDeclaration() ? 0 : 1234 (VE.getValueID(GV.getInitializer()) + 1)); 1235 Vals.push_back(getEncodedLinkage(GV)); 1236 Vals.push_back(Log2_32(GV.getAlignment())+1); 1237 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1238 if (GV.isThreadLocal() || 1239 GV.getVisibility() != GlobalValue::DefaultVisibility || 1240 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1241 GV.isExternallyInitialized() || 1242 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1243 GV.hasComdat()) { 1244 Vals.push_back(getEncodedVisibility(GV)); 1245 Vals.push_back(getEncodedThreadLocalMode(GV)); 1246 Vals.push_back(getEncodedUnnamedAddr(GV)); 1247 Vals.push_back(GV.isExternallyInitialized()); 1248 Vals.push_back(getEncodedDLLStorageClass(GV)); 1249 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1250 } else { 1251 AbbrevToUse = SimpleGVarAbbrev; 1252 } 1253 1254 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1255 Vals.clear(); 1256 } 1257 1258 // Emit the function proto information. 1259 for (const Function &F : M) { 1260 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1261 // linkage, paramattrs, alignment, section, visibility, gc, 1262 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1263 // prefixdata, personalityfn] 1264 Vals.push_back(StrtabBuilder.add(F.getName())); 1265 Vals.push_back(F.getName().size()); 1266 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1267 Vals.push_back(F.getCallingConv()); 1268 Vals.push_back(F.isDeclaration()); 1269 Vals.push_back(getEncodedLinkage(F)); 1270 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1271 Vals.push_back(Log2_32(F.getAlignment())+1); 1272 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1273 Vals.push_back(getEncodedVisibility(F)); 1274 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1275 Vals.push_back(getEncodedUnnamedAddr(F)); 1276 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1277 : 0); 1278 Vals.push_back(getEncodedDLLStorageClass(F)); 1279 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1280 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1281 : 0); 1282 Vals.push_back( 1283 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1284 1285 unsigned AbbrevToUse = 0; 1286 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1287 Vals.clear(); 1288 } 1289 1290 // Emit the alias information. 1291 for (const GlobalAlias &A : M.aliases()) { 1292 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1293 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1294 Vals.push_back(StrtabBuilder.add(A.getName())); 1295 Vals.push_back(A.getName().size()); 1296 Vals.push_back(VE.getTypeID(A.getValueType())); 1297 Vals.push_back(A.getType()->getAddressSpace()); 1298 Vals.push_back(VE.getValueID(A.getAliasee())); 1299 Vals.push_back(getEncodedLinkage(A)); 1300 Vals.push_back(getEncodedVisibility(A)); 1301 Vals.push_back(getEncodedDLLStorageClass(A)); 1302 Vals.push_back(getEncodedThreadLocalMode(A)); 1303 Vals.push_back(getEncodedUnnamedAddr(A)); 1304 unsigned AbbrevToUse = 0; 1305 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1306 Vals.clear(); 1307 } 1308 1309 // Emit the ifunc information. 1310 for (const GlobalIFunc &I : M.ifuncs()) { 1311 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1312 // val#, linkage, visibility] 1313 Vals.push_back(StrtabBuilder.add(I.getName())); 1314 Vals.push_back(I.getName().size()); 1315 Vals.push_back(VE.getTypeID(I.getValueType())); 1316 Vals.push_back(I.getType()->getAddressSpace()); 1317 Vals.push_back(VE.getValueID(I.getResolver())); 1318 Vals.push_back(getEncodedLinkage(I)); 1319 Vals.push_back(getEncodedVisibility(I)); 1320 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1321 Vals.clear(); 1322 } 1323 1324 writeValueSymbolTableForwardDecl(); 1325 } 1326 1327 static uint64_t getOptimizationFlags(const Value *V) { 1328 uint64_t Flags = 0; 1329 1330 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1331 if (OBO->hasNoSignedWrap()) 1332 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1333 if (OBO->hasNoUnsignedWrap()) 1334 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1335 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1336 if (PEO->isExact()) 1337 Flags |= 1 << bitc::PEO_EXACT; 1338 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1339 if (FPMO->hasUnsafeAlgebra()) 1340 Flags |= FastMathFlags::UnsafeAlgebra; 1341 if (FPMO->hasNoNaNs()) 1342 Flags |= FastMathFlags::NoNaNs; 1343 if (FPMO->hasNoInfs()) 1344 Flags |= FastMathFlags::NoInfs; 1345 if (FPMO->hasNoSignedZeros()) 1346 Flags |= FastMathFlags::NoSignedZeros; 1347 if (FPMO->hasAllowReciprocal()) 1348 Flags |= FastMathFlags::AllowReciprocal; 1349 if (FPMO->hasAllowContract()) 1350 Flags |= FastMathFlags::AllowContract; 1351 } 1352 1353 return Flags; 1354 } 1355 1356 void ModuleBitcodeWriter::writeValueAsMetadata( 1357 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1358 // Mimic an MDNode with a value as one operand. 1359 Value *V = MD->getValue(); 1360 Record.push_back(VE.getTypeID(V->getType())); 1361 Record.push_back(VE.getValueID(V)); 1362 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1363 Record.clear(); 1364 } 1365 1366 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1367 SmallVectorImpl<uint64_t> &Record, 1368 unsigned Abbrev) { 1369 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1370 Metadata *MD = N->getOperand(i); 1371 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1372 "Unexpected function-local metadata"); 1373 Record.push_back(VE.getMetadataOrNullID(MD)); 1374 } 1375 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1376 : bitc::METADATA_NODE, 1377 Record, Abbrev); 1378 Record.clear(); 1379 } 1380 1381 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1382 // Assume the column is usually under 128, and always output the inlined-at 1383 // location (it's never more expensive than building an array size 1). 1384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1391 return Stream.EmitAbbrev(std::move(Abbv)); 1392 } 1393 1394 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1395 SmallVectorImpl<uint64_t> &Record, 1396 unsigned &Abbrev) { 1397 if (!Abbrev) 1398 Abbrev = createDILocationAbbrev(); 1399 1400 Record.push_back(N->isDistinct()); 1401 Record.push_back(N->getLine()); 1402 Record.push_back(N->getColumn()); 1403 Record.push_back(VE.getMetadataID(N->getScope())); 1404 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1405 1406 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1407 Record.clear(); 1408 } 1409 1410 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1411 // Assume the column is usually under 128, and always output the inlined-at 1412 // location (it's never more expensive than building an array size 1). 1413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1414 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1421 return Stream.EmitAbbrev(std::move(Abbv)); 1422 } 1423 1424 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1425 SmallVectorImpl<uint64_t> &Record, 1426 unsigned &Abbrev) { 1427 if (!Abbrev) 1428 Abbrev = createGenericDINodeAbbrev(); 1429 1430 Record.push_back(N->isDistinct()); 1431 Record.push_back(N->getTag()); 1432 Record.push_back(0); // Per-tag version field; unused for now. 1433 1434 for (auto &I : N->operands()) 1435 Record.push_back(VE.getMetadataOrNullID(I)); 1436 1437 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1438 Record.clear(); 1439 } 1440 1441 static uint64_t rotateSign(int64_t I) { 1442 uint64_t U = I; 1443 return I < 0 ? ~(U << 1) : U << 1; 1444 } 1445 1446 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(N->getCount()); 1451 Record.push_back(rotateSign(N->getLowerBound())); 1452 1453 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned Abbrev) { 1460 Record.push_back(N->isDistinct()); 1461 Record.push_back(rotateSign(N->getValue())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1463 1464 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1465 Record.clear(); 1466 } 1467 1468 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1469 SmallVectorImpl<uint64_t> &Record, 1470 unsigned Abbrev) { 1471 Record.push_back(N->isDistinct()); 1472 Record.push_back(N->getTag()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1474 Record.push_back(N->getSizeInBits()); 1475 Record.push_back(N->getAlignInBits()); 1476 Record.push_back(N->getEncoding()); 1477 1478 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1479 Record.clear(); 1480 } 1481 1482 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1483 SmallVectorImpl<uint64_t> &Record, 1484 unsigned Abbrev) { 1485 Record.push_back(N->isDistinct()); 1486 Record.push_back(N->getTag()); 1487 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1489 Record.push_back(N->getLine()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1492 Record.push_back(N->getSizeInBits()); 1493 Record.push_back(N->getAlignInBits()); 1494 Record.push_back(N->getOffsetInBits()); 1495 Record.push_back(N->getFlags()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1497 1498 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1499 // that there is no DWARF address space associated with DIDerivedType. 1500 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1501 Record.push_back(*DWARFAddressSpace + 1); 1502 else 1503 Record.push_back(0); 1504 1505 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 void ModuleBitcodeWriter::writeDICompositeType( 1510 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 const unsigned IsNotUsedInOldTypeRef = 0x2; 1513 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1514 Record.push_back(N->getTag()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1517 Record.push_back(N->getLine()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1520 Record.push_back(N->getSizeInBits()); 1521 Record.push_back(N->getAlignInBits()); 1522 Record.push_back(N->getOffsetInBits()); 1523 Record.push_back(N->getFlags()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1525 Record.push_back(N->getRuntimeLang()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1529 1530 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1531 Record.clear(); 1532 } 1533 1534 void ModuleBitcodeWriter::writeDISubroutineType( 1535 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1536 unsigned Abbrev) { 1537 const unsigned HasNoOldTypeRefs = 0x2; 1538 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1539 Record.push_back(N->getFlags()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1541 Record.push_back(N->getCC()); 1542 1543 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 Record.push_back(N->isDistinct()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1553 Record.push_back(N->getChecksumKind()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1555 1556 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1557 Record.clear(); 1558 } 1559 1560 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1561 SmallVectorImpl<uint64_t> &Record, 1562 unsigned Abbrev) { 1563 assert(N->isDistinct() && "Expected distinct compile units"); 1564 Record.push_back(/* IsDistinct */ true); 1565 Record.push_back(N->getSourceLanguage()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1568 Record.push_back(N->isOptimized()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1570 Record.push_back(N->getRuntimeVersion()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1572 Record.push_back(N->getEmissionKind()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1575 Record.push_back(/* subprograms */ 0); 1576 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1578 Record.push_back(N->getDWOId()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1580 Record.push_back(N->getSplitDebugInlining()); 1581 Record.push_back(N->getDebugInfoForProfiling()); 1582 1583 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1584 Record.clear(); 1585 } 1586 1587 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1588 SmallVectorImpl<uint64_t> &Record, 1589 unsigned Abbrev) { 1590 uint64_t HasUnitFlag = 1 << 1; 1591 Record.push_back(N->isDistinct() | HasUnitFlag); 1592 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1596 Record.push_back(N->getLine()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1598 Record.push_back(N->isLocalToUnit()); 1599 Record.push_back(N->isDefinition()); 1600 Record.push_back(N->getScopeLine()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1602 Record.push_back(N->getVirtuality()); 1603 Record.push_back(N->getVirtualIndex()); 1604 Record.push_back(N->getFlags()); 1605 Record.push_back(N->isOptimized()); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1610 Record.push_back(N->getThisAdjustment()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1612 1613 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1614 Record.clear(); 1615 } 1616 1617 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1618 SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 Record.push_back(N->isDistinct()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1623 Record.push_back(N->getLine()); 1624 Record.push_back(N->getColumn()); 1625 1626 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1631 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct()); 1634 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1636 Record.push_back(N->getDiscriminator()); 1637 1638 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1646 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1649 Record.push_back(N->getLine()); 1650 1651 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1652 Record.clear(); 1653 } 1654 1655 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1656 SmallVectorImpl<uint64_t> &Record, 1657 unsigned Abbrev) { 1658 Record.push_back(N->isDistinct()); 1659 Record.push_back(N->getMacinfoType()); 1660 Record.push_back(N->getLine()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1663 1664 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1669 SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.push_back(N->isDistinct()); 1672 Record.push_back(N->getMacinfoType()); 1673 Record.push_back(N->getLine()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1676 1677 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1678 Record.clear(); 1679 } 1680 1681 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1682 SmallVectorImpl<uint64_t> &Record, 1683 unsigned Abbrev) { 1684 Record.push_back(N->isDistinct()); 1685 for (auto &I : N->operands()) 1686 Record.push_back(VE.getMetadataOrNullID(I)); 1687 1688 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1693 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 Record.push_back(N->isDistinct()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1698 1699 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1704 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 Record.push_back(N->isDistinct()); 1707 Record.push_back(N->getTag()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1711 1712 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1713 Record.clear(); 1714 } 1715 1716 void ModuleBitcodeWriter::writeDIGlobalVariable( 1717 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1718 unsigned Abbrev) { 1719 const uint64_t Version = 1 << 1; 1720 Record.push_back((uint64_t)N->isDistinct() | Version); 1721 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1725 Record.push_back(N->getLine()); 1726 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1727 Record.push_back(N->isLocalToUnit()); 1728 Record.push_back(N->isDefinition()); 1729 Record.push_back(/* expr */ 0); 1730 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1731 Record.push_back(N->getAlignInBits()); 1732 1733 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1734 Record.clear(); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDILocalVariable( 1738 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 // In order to support all possible bitcode formats in BitcodeReader we need 1741 // to distinguish the following cases: 1742 // 1) Record has no artificial tag (Record[1]), 1743 // has no obsolete inlinedAt field (Record[9]). 1744 // In this case Record size will be 8, HasAlignment flag is false. 1745 // 2) Record has artificial tag (Record[1]), 1746 // has no obsolete inlignedAt field (Record[9]). 1747 // In this case Record size will be 9, HasAlignment flag is false. 1748 // 3) Record has both artificial tag (Record[1]) and 1749 // obsolete inlignedAt field (Record[9]). 1750 // In this case Record size will be 10, HasAlignment flag is false. 1751 // 4) Record has neither artificial tag, nor inlignedAt field, but 1752 // HasAlignment flag is true and Record[8] contains alignment value. 1753 const uint64_t HasAlignmentFlag = 1 << 1; 1754 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1755 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1757 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1758 Record.push_back(N->getLine()); 1759 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1760 Record.push_back(N->getArg()); 1761 Record.push_back(N->getFlags()); 1762 Record.push_back(N->getAlignInBits()); 1763 1764 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1769 SmallVectorImpl<uint64_t> &Record, 1770 unsigned Abbrev) { 1771 Record.reserve(N->getElements().size() + 1); 1772 const uint64_t Version = 2 << 1; 1773 Record.push_back((uint64_t)N->isDistinct() | Version); 1774 Record.append(N->elements_begin(), N->elements_end()); 1775 1776 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1777 Record.clear(); 1778 } 1779 1780 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1781 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1782 unsigned Abbrev) { 1783 Record.push_back(N->isDistinct()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1786 1787 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1792 SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 Record.push_back(N->isDistinct()); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1797 Record.push_back(N->getLine()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1800 Record.push_back(N->getAttributes()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1802 1803 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDIImportedEntity( 1808 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 Record.push_back(N->isDistinct()); 1811 Record.push_back(N->getTag()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1814 Record.push_back(N->getLine()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1816 1817 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1818 Record.clear(); 1819 } 1820 1821 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1822 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1823 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1826 return Stream.EmitAbbrev(std::move(Abbv)); 1827 } 1828 1829 void ModuleBitcodeWriter::writeNamedMetadata( 1830 SmallVectorImpl<uint64_t> &Record) { 1831 if (M.named_metadata_empty()) 1832 return; 1833 1834 unsigned Abbrev = createNamedMetadataAbbrev(); 1835 for (const NamedMDNode &NMD : M.named_metadata()) { 1836 // Write name. 1837 StringRef Str = NMD.getName(); 1838 Record.append(Str.bytes_begin(), Str.bytes_end()); 1839 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1840 Record.clear(); 1841 1842 // Write named metadata operands. 1843 for (const MDNode *N : NMD.operands()) 1844 Record.push_back(VE.getMetadataID(N)); 1845 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1846 Record.clear(); 1847 } 1848 } 1849 1850 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1851 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1852 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1856 return Stream.EmitAbbrev(std::move(Abbv)); 1857 } 1858 1859 /// Write out a record for MDString. 1860 /// 1861 /// All the metadata strings in a metadata block are emitted in a single 1862 /// record. The sizes and strings themselves are shoved into a blob. 1863 void ModuleBitcodeWriter::writeMetadataStrings( 1864 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1865 if (Strings.empty()) 1866 return; 1867 1868 // Start the record with the number of strings. 1869 Record.push_back(bitc::METADATA_STRINGS); 1870 Record.push_back(Strings.size()); 1871 1872 // Emit the sizes of the strings in the blob. 1873 SmallString<256> Blob; 1874 { 1875 BitstreamWriter W(Blob); 1876 for (const Metadata *MD : Strings) 1877 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1878 W.FlushToWord(); 1879 } 1880 1881 // Add the offset to the strings to the record. 1882 Record.push_back(Blob.size()); 1883 1884 // Add the strings to the blob. 1885 for (const Metadata *MD : Strings) 1886 Blob.append(cast<MDString>(MD)->getString()); 1887 1888 // Emit the final record. 1889 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1890 Record.clear(); 1891 } 1892 1893 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1894 enum MetadataAbbrev : unsigned { 1895 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1896 #include "llvm/IR/Metadata.def" 1897 LastPlusOne 1898 }; 1899 1900 void ModuleBitcodeWriter::writeMetadataRecords( 1901 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1902 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1903 if (MDs.empty()) 1904 return; 1905 1906 // Initialize MDNode abbreviations. 1907 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1908 #include "llvm/IR/Metadata.def" 1909 1910 for (const Metadata *MD : MDs) { 1911 if (IndexPos) 1912 IndexPos->push_back(Stream.GetCurrentBitNo()); 1913 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1914 assert(N->isResolved() && "Expected forward references to be resolved"); 1915 1916 switch (N->getMetadataID()) { 1917 default: 1918 llvm_unreachable("Invalid MDNode subclass"); 1919 #define HANDLE_MDNODE_LEAF(CLASS) \ 1920 case Metadata::CLASS##Kind: \ 1921 if (MDAbbrevs) \ 1922 write##CLASS(cast<CLASS>(N), Record, \ 1923 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1924 else \ 1925 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1926 continue; 1927 #include "llvm/IR/Metadata.def" 1928 } 1929 } 1930 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1931 } 1932 } 1933 1934 void ModuleBitcodeWriter::writeModuleMetadata() { 1935 if (!VE.hasMDs() && M.named_metadata_empty()) 1936 return; 1937 1938 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1939 SmallVector<uint64_t, 64> Record; 1940 1941 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1942 // block and load any metadata. 1943 std::vector<unsigned> MDAbbrevs; 1944 1945 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1946 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1947 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1948 createGenericDINodeAbbrev(); 1949 1950 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1951 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1954 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1955 1956 Abbv = std::make_shared<BitCodeAbbrev>(); 1957 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1960 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1961 1962 // Emit MDStrings together upfront. 1963 writeMetadataStrings(VE.getMDStrings(), Record); 1964 1965 // We only emit an index for the metadata record if we have more than a given 1966 // (naive) threshold of metadatas, otherwise it is not worth it. 1967 if (VE.getNonMDStrings().size() > IndexThreshold) { 1968 // Write a placeholder value in for the offset of the metadata index, 1969 // which is written after the records, so that it can include 1970 // the offset of each entry. The placeholder offset will be 1971 // updated after all records are emitted. 1972 uint64_t Vals[] = {0, 0}; 1973 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1974 } 1975 1976 // Compute and save the bit offset to the current position, which will be 1977 // patched when we emit the index later. We can simply subtract the 64-bit 1978 // fixed size from the current bit number to get the location to backpatch. 1979 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1980 1981 // This index will contain the bitpos for each individual record. 1982 std::vector<uint64_t> IndexPos; 1983 IndexPos.reserve(VE.getNonMDStrings().size()); 1984 1985 // Write all the records 1986 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1987 1988 if (VE.getNonMDStrings().size() > IndexThreshold) { 1989 // Now that we have emitted all the records we will emit the index. But 1990 // first 1991 // backpatch the forward reference so that the reader can skip the records 1992 // efficiently. 1993 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1994 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1995 1996 // Delta encode the index. 1997 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1998 for (auto &Elt : IndexPos) { 1999 auto EltDelta = Elt - PreviousValue; 2000 PreviousValue = Elt; 2001 Elt = EltDelta; 2002 } 2003 // Emit the index record. 2004 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2005 IndexPos.clear(); 2006 } 2007 2008 // Write the named metadata now. 2009 writeNamedMetadata(Record); 2010 2011 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2012 SmallVector<uint64_t, 4> Record; 2013 Record.push_back(VE.getValueID(&GO)); 2014 pushGlobalMetadataAttachment(Record, GO); 2015 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2016 }; 2017 for (const Function &F : M) 2018 if (F.isDeclaration() && F.hasMetadata()) 2019 AddDeclAttachedMetadata(F); 2020 // FIXME: Only store metadata for declarations here, and move data for global 2021 // variable definitions to a separate block (PR28134). 2022 for (const GlobalVariable &GV : M.globals()) 2023 if (GV.hasMetadata()) 2024 AddDeclAttachedMetadata(GV); 2025 2026 Stream.ExitBlock(); 2027 } 2028 2029 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2030 if (!VE.hasMDs()) 2031 return; 2032 2033 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2034 SmallVector<uint64_t, 64> Record; 2035 writeMetadataStrings(VE.getMDStrings(), Record); 2036 writeMetadataRecords(VE.getNonMDStrings(), Record); 2037 Stream.ExitBlock(); 2038 } 2039 2040 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2041 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2042 // [n x [id, mdnode]] 2043 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2044 GO.getAllMetadata(MDs); 2045 for (const auto &I : MDs) { 2046 Record.push_back(I.first); 2047 Record.push_back(VE.getMetadataID(I.second)); 2048 } 2049 } 2050 2051 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2052 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2053 2054 SmallVector<uint64_t, 64> Record; 2055 2056 if (F.hasMetadata()) { 2057 pushGlobalMetadataAttachment(Record, F); 2058 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2059 Record.clear(); 2060 } 2061 2062 // Write metadata attachments 2063 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2064 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2065 for (const BasicBlock &BB : F) 2066 for (const Instruction &I : BB) { 2067 MDs.clear(); 2068 I.getAllMetadataOtherThanDebugLoc(MDs); 2069 2070 // If no metadata, ignore instruction. 2071 if (MDs.empty()) continue; 2072 2073 Record.push_back(VE.getInstructionID(&I)); 2074 2075 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2076 Record.push_back(MDs[i].first); 2077 Record.push_back(VE.getMetadataID(MDs[i].second)); 2078 } 2079 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2080 Record.clear(); 2081 } 2082 2083 Stream.ExitBlock(); 2084 } 2085 2086 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2087 SmallVector<uint64_t, 64> Record; 2088 2089 // Write metadata kinds 2090 // METADATA_KIND - [n x [id, name]] 2091 SmallVector<StringRef, 8> Names; 2092 M.getMDKindNames(Names); 2093 2094 if (Names.empty()) return; 2095 2096 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2097 2098 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2099 Record.push_back(MDKindID); 2100 StringRef KName = Names[MDKindID]; 2101 Record.append(KName.begin(), KName.end()); 2102 2103 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2104 Record.clear(); 2105 } 2106 2107 Stream.ExitBlock(); 2108 } 2109 2110 void ModuleBitcodeWriter::writeOperandBundleTags() { 2111 // Write metadata kinds 2112 // 2113 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2114 // 2115 // OPERAND_BUNDLE_TAG - [strchr x N] 2116 2117 SmallVector<StringRef, 8> Tags; 2118 M.getOperandBundleTags(Tags); 2119 2120 if (Tags.empty()) 2121 return; 2122 2123 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2124 2125 SmallVector<uint64_t, 64> Record; 2126 2127 for (auto Tag : Tags) { 2128 Record.append(Tag.begin(), Tag.end()); 2129 2130 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2131 Record.clear(); 2132 } 2133 2134 Stream.ExitBlock(); 2135 } 2136 2137 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2138 if ((int64_t)V >= 0) 2139 Vals.push_back(V << 1); 2140 else 2141 Vals.push_back((-V << 1) | 1); 2142 } 2143 2144 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2145 bool isGlobal) { 2146 if (FirstVal == LastVal) return; 2147 2148 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2149 2150 unsigned AggregateAbbrev = 0; 2151 unsigned String8Abbrev = 0; 2152 unsigned CString7Abbrev = 0; 2153 unsigned CString6Abbrev = 0; 2154 // If this is a constant pool for the module, emit module-specific abbrevs. 2155 if (isGlobal) { 2156 // Abbrev for CST_CODE_AGGREGATE. 2157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2158 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2161 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2162 2163 // Abbrev for CST_CODE_STRING. 2164 Abbv = std::make_shared<BitCodeAbbrev>(); 2165 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2168 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2169 // Abbrev for CST_CODE_CSTRING. 2170 Abbv = std::make_shared<BitCodeAbbrev>(); 2171 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2174 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2175 // Abbrev for CST_CODE_CSTRING. 2176 Abbv = std::make_shared<BitCodeAbbrev>(); 2177 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2180 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2181 } 2182 2183 SmallVector<uint64_t, 64> Record; 2184 2185 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2186 Type *LastTy = nullptr; 2187 for (unsigned i = FirstVal; i != LastVal; ++i) { 2188 const Value *V = Vals[i].first; 2189 // If we need to switch types, do so now. 2190 if (V->getType() != LastTy) { 2191 LastTy = V->getType(); 2192 Record.push_back(VE.getTypeID(LastTy)); 2193 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2194 CONSTANTS_SETTYPE_ABBREV); 2195 Record.clear(); 2196 } 2197 2198 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2199 Record.push_back(unsigned(IA->hasSideEffects()) | 2200 unsigned(IA->isAlignStack()) << 1 | 2201 unsigned(IA->getDialect()&1) << 2); 2202 2203 // Add the asm string. 2204 const std::string &AsmStr = IA->getAsmString(); 2205 Record.push_back(AsmStr.size()); 2206 Record.append(AsmStr.begin(), AsmStr.end()); 2207 2208 // Add the constraint string. 2209 const std::string &ConstraintStr = IA->getConstraintString(); 2210 Record.push_back(ConstraintStr.size()); 2211 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2212 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2213 Record.clear(); 2214 continue; 2215 } 2216 const Constant *C = cast<Constant>(V); 2217 unsigned Code = -1U; 2218 unsigned AbbrevToUse = 0; 2219 if (C->isNullValue()) { 2220 Code = bitc::CST_CODE_NULL; 2221 } else if (isa<UndefValue>(C)) { 2222 Code = bitc::CST_CODE_UNDEF; 2223 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2224 if (IV->getBitWidth() <= 64) { 2225 uint64_t V = IV->getSExtValue(); 2226 emitSignedInt64(Record, V); 2227 Code = bitc::CST_CODE_INTEGER; 2228 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2229 } else { // Wide integers, > 64 bits in size. 2230 // We have an arbitrary precision integer value to write whose 2231 // bit width is > 64. However, in canonical unsigned integer 2232 // format it is likely that the high bits are going to be zero. 2233 // So, we only write the number of active words. 2234 unsigned NWords = IV->getValue().getActiveWords(); 2235 const uint64_t *RawWords = IV->getValue().getRawData(); 2236 for (unsigned i = 0; i != NWords; ++i) { 2237 emitSignedInt64(Record, RawWords[i]); 2238 } 2239 Code = bitc::CST_CODE_WIDE_INTEGER; 2240 } 2241 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2242 Code = bitc::CST_CODE_FLOAT; 2243 Type *Ty = CFP->getType(); 2244 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2245 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2246 } else if (Ty->isX86_FP80Ty()) { 2247 // api needed to prevent premature destruction 2248 // bits are not in the same order as a normal i80 APInt, compensate. 2249 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2250 const uint64_t *p = api.getRawData(); 2251 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2252 Record.push_back(p[0] & 0xffffLL); 2253 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2254 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2255 const uint64_t *p = api.getRawData(); 2256 Record.push_back(p[0]); 2257 Record.push_back(p[1]); 2258 } else { 2259 assert (0 && "Unknown FP type!"); 2260 } 2261 } else if (isa<ConstantDataSequential>(C) && 2262 cast<ConstantDataSequential>(C)->isString()) { 2263 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2264 // Emit constant strings specially. 2265 unsigned NumElts = Str->getNumElements(); 2266 // If this is a null-terminated string, use the denser CSTRING encoding. 2267 if (Str->isCString()) { 2268 Code = bitc::CST_CODE_CSTRING; 2269 --NumElts; // Don't encode the null, which isn't allowed by char6. 2270 } else { 2271 Code = bitc::CST_CODE_STRING; 2272 AbbrevToUse = String8Abbrev; 2273 } 2274 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2275 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2276 for (unsigned i = 0; i != NumElts; ++i) { 2277 unsigned char V = Str->getElementAsInteger(i); 2278 Record.push_back(V); 2279 isCStr7 &= (V & 128) == 0; 2280 if (isCStrChar6) 2281 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2282 } 2283 2284 if (isCStrChar6) 2285 AbbrevToUse = CString6Abbrev; 2286 else if (isCStr7) 2287 AbbrevToUse = CString7Abbrev; 2288 } else if (const ConstantDataSequential *CDS = 2289 dyn_cast<ConstantDataSequential>(C)) { 2290 Code = bitc::CST_CODE_DATA; 2291 Type *EltTy = CDS->getType()->getElementType(); 2292 if (isa<IntegerType>(EltTy)) { 2293 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2294 Record.push_back(CDS->getElementAsInteger(i)); 2295 } else { 2296 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2297 Record.push_back( 2298 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2299 } 2300 } else if (isa<ConstantAggregate>(C)) { 2301 Code = bitc::CST_CODE_AGGREGATE; 2302 for (const Value *Op : C->operands()) 2303 Record.push_back(VE.getValueID(Op)); 2304 AbbrevToUse = AggregateAbbrev; 2305 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2306 switch (CE->getOpcode()) { 2307 default: 2308 if (Instruction::isCast(CE->getOpcode())) { 2309 Code = bitc::CST_CODE_CE_CAST; 2310 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2311 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2312 Record.push_back(VE.getValueID(C->getOperand(0))); 2313 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2314 } else { 2315 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2316 Code = bitc::CST_CODE_CE_BINOP; 2317 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2318 Record.push_back(VE.getValueID(C->getOperand(0))); 2319 Record.push_back(VE.getValueID(C->getOperand(1))); 2320 uint64_t Flags = getOptimizationFlags(CE); 2321 if (Flags != 0) 2322 Record.push_back(Flags); 2323 } 2324 break; 2325 case Instruction::GetElementPtr: { 2326 Code = bitc::CST_CODE_CE_GEP; 2327 const auto *GO = cast<GEPOperator>(C); 2328 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2329 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2330 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2331 Record.push_back((*Idx << 1) | GO->isInBounds()); 2332 } else if (GO->isInBounds()) 2333 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2334 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2335 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2336 Record.push_back(VE.getValueID(C->getOperand(i))); 2337 } 2338 break; 2339 } 2340 case Instruction::Select: 2341 Code = bitc::CST_CODE_CE_SELECT; 2342 Record.push_back(VE.getValueID(C->getOperand(0))); 2343 Record.push_back(VE.getValueID(C->getOperand(1))); 2344 Record.push_back(VE.getValueID(C->getOperand(2))); 2345 break; 2346 case Instruction::ExtractElement: 2347 Code = bitc::CST_CODE_CE_EXTRACTELT; 2348 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2349 Record.push_back(VE.getValueID(C->getOperand(0))); 2350 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2351 Record.push_back(VE.getValueID(C->getOperand(1))); 2352 break; 2353 case Instruction::InsertElement: 2354 Code = bitc::CST_CODE_CE_INSERTELT; 2355 Record.push_back(VE.getValueID(C->getOperand(0))); 2356 Record.push_back(VE.getValueID(C->getOperand(1))); 2357 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2358 Record.push_back(VE.getValueID(C->getOperand(2))); 2359 break; 2360 case Instruction::ShuffleVector: 2361 // If the return type and argument types are the same, this is a 2362 // standard shufflevector instruction. If the types are different, 2363 // then the shuffle is widening or truncating the input vectors, and 2364 // the argument type must also be encoded. 2365 if (C->getType() == C->getOperand(0)->getType()) { 2366 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2367 } else { 2368 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2369 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2370 } 2371 Record.push_back(VE.getValueID(C->getOperand(0))); 2372 Record.push_back(VE.getValueID(C->getOperand(1))); 2373 Record.push_back(VE.getValueID(C->getOperand(2))); 2374 break; 2375 case Instruction::ICmp: 2376 case Instruction::FCmp: 2377 Code = bitc::CST_CODE_CE_CMP; 2378 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2379 Record.push_back(VE.getValueID(C->getOperand(0))); 2380 Record.push_back(VE.getValueID(C->getOperand(1))); 2381 Record.push_back(CE->getPredicate()); 2382 break; 2383 } 2384 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2385 Code = bitc::CST_CODE_BLOCKADDRESS; 2386 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2387 Record.push_back(VE.getValueID(BA->getFunction())); 2388 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2389 } else { 2390 #ifndef NDEBUG 2391 C->dump(); 2392 #endif 2393 llvm_unreachable("Unknown constant!"); 2394 } 2395 Stream.EmitRecord(Code, Record, AbbrevToUse); 2396 Record.clear(); 2397 } 2398 2399 Stream.ExitBlock(); 2400 } 2401 2402 void ModuleBitcodeWriter::writeModuleConstants() { 2403 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2404 2405 // Find the first constant to emit, which is the first non-globalvalue value. 2406 // We know globalvalues have been emitted by WriteModuleInfo. 2407 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2408 if (!isa<GlobalValue>(Vals[i].first)) { 2409 writeConstants(i, Vals.size(), true); 2410 return; 2411 } 2412 } 2413 } 2414 2415 /// pushValueAndType - The file has to encode both the value and type id for 2416 /// many values, because we need to know what type to create for forward 2417 /// references. However, most operands are not forward references, so this type 2418 /// field is not needed. 2419 /// 2420 /// This function adds V's value ID to Vals. If the value ID is higher than the 2421 /// instruction ID, then it is a forward reference, and it also includes the 2422 /// type ID. The value ID that is written is encoded relative to the InstID. 2423 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2424 SmallVectorImpl<unsigned> &Vals) { 2425 unsigned ValID = VE.getValueID(V); 2426 // Make encoding relative to the InstID. 2427 Vals.push_back(InstID - ValID); 2428 if (ValID >= InstID) { 2429 Vals.push_back(VE.getTypeID(V->getType())); 2430 return true; 2431 } 2432 return false; 2433 } 2434 2435 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2436 unsigned InstID) { 2437 SmallVector<unsigned, 64> Record; 2438 LLVMContext &C = CS.getInstruction()->getContext(); 2439 2440 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2441 const auto &Bundle = CS.getOperandBundleAt(i); 2442 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2443 2444 for (auto &Input : Bundle.Inputs) 2445 pushValueAndType(Input, InstID, Record); 2446 2447 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2448 Record.clear(); 2449 } 2450 } 2451 2452 /// pushValue - Like pushValueAndType, but where the type of the value is 2453 /// omitted (perhaps it was already encoded in an earlier operand). 2454 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2455 SmallVectorImpl<unsigned> &Vals) { 2456 unsigned ValID = VE.getValueID(V); 2457 Vals.push_back(InstID - ValID); 2458 } 2459 2460 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2461 SmallVectorImpl<uint64_t> &Vals) { 2462 unsigned ValID = VE.getValueID(V); 2463 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2464 emitSignedInt64(Vals, diff); 2465 } 2466 2467 /// WriteInstruction - Emit an instruction to the specified stream. 2468 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2469 unsigned InstID, 2470 SmallVectorImpl<unsigned> &Vals) { 2471 unsigned Code = 0; 2472 unsigned AbbrevToUse = 0; 2473 VE.setInstructionID(&I); 2474 switch (I.getOpcode()) { 2475 default: 2476 if (Instruction::isCast(I.getOpcode())) { 2477 Code = bitc::FUNC_CODE_INST_CAST; 2478 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2479 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2480 Vals.push_back(VE.getTypeID(I.getType())); 2481 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2482 } else { 2483 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2484 Code = bitc::FUNC_CODE_INST_BINOP; 2485 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2486 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2487 pushValue(I.getOperand(1), InstID, Vals); 2488 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2489 uint64_t Flags = getOptimizationFlags(&I); 2490 if (Flags != 0) { 2491 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2492 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2493 Vals.push_back(Flags); 2494 } 2495 } 2496 break; 2497 2498 case Instruction::GetElementPtr: { 2499 Code = bitc::FUNC_CODE_INST_GEP; 2500 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2501 auto &GEPInst = cast<GetElementPtrInst>(I); 2502 Vals.push_back(GEPInst.isInBounds()); 2503 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2504 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2505 pushValueAndType(I.getOperand(i), InstID, Vals); 2506 break; 2507 } 2508 case Instruction::ExtractValue: { 2509 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2510 pushValueAndType(I.getOperand(0), InstID, Vals); 2511 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2512 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2513 break; 2514 } 2515 case Instruction::InsertValue: { 2516 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2517 pushValueAndType(I.getOperand(0), InstID, Vals); 2518 pushValueAndType(I.getOperand(1), InstID, Vals); 2519 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2520 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2521 break; 2522 } 2523 case Instruction::Select: 2524 Code = bitc::FUNC_CODE_INST_VSELECT; 2525 pushValueAndType(I.getOperand(1), InstID, Vals); 2526 pushValue(I.getOperand(2), InstID, Vals); 2527 pushValueAndType(I.getOperand(0), InstID, Vals); 2528 break; 2529 case Instruction::ExtractElement: 2530 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2531 pushValueAndType(I.getOperand(0), InstID, Vals); 2532 pushValueAndType(I.getOperand(1), InstID, Vals); 2533 break; 2534 case Instruction::InsertElement: 2535 Code = bitc::FUNC_CODE_INST_INSERTELT; 2536 pushValueAndType(I.getOperand(0), InstID, Vals); 2537 pushValue(I.getOperand(1), InstID, Vals); 2538 pushValueAndType(I.getOperand(2), InstID, Vals); 2539 break; 2540 case Instruction::ShuffleVector: 2541 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2542 pushValueAndType(I.getOperand(0), InstID, Vals); 2543 pushValue(I.getOperand(1), InstID, Vals); 2544 pushValue(I.getOperand(2), InstID, Vals); 2545 break; 2546 case Instruction::ICmp: 2547 case Instruction::FCmp: { 2548 // compare returning Int1Ty or vector of Int1Ty 2549 Code = bitc::FUNC_CODE_INST_CMP2; 2550 pushValueAndType(I.getOperand(0), InstID, Vals); 2551 pushValue(I.getOperand(1), InstID, Vals); 2552 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2553 uint64_t Flags = getOptimizationFlags(&I); 2554 if (Flags != 0) 2555 Vals.push_back(Flags); 2556 break; 2557 } 2558 2559 case Instruction::Ret: 2560 { 2561 Code = bitc::FUNC_CODE_INST_RET; 2562 unsigned NumOperands = I.getNumOperands(); 2563 if (NumOperands == 0) 2564 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2565 else if (NumOperands == 1) { 2566 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2567 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2568 } else { 2569 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2570 pushValueAndType(I.getOperand(i), InstID, Vals); 2571 } 2572 } 2573 break; 2574 case Instruction::Br: 2575 { 2576 Code = bitc::FUNC_CODE_INST_BR; 2577 const BranchInst &II = cast<BranchInst>(I); 2578 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2579 if (II.isConditional()) { 2580 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2581 pushValue(II.getCondition(), InstID, Vals); 2582 } 2583 } 2584 break; 2585 case Instruction::Switch: 2586 { 2587 Code = bitc::FUNC_CODE_INST_SWITCH; 2588 const SwitchInst &SI = cast<SwitchInst>(I); 2589 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2590 pushValue(SI.getCondition(), InstID, Vals); 2591 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2592 for (auto Case : SI.cases()) { 2593 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2594 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2595 } 2596 } 2597 break; 2598 case Instruction::IndirectBr: 2599 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2600 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2601 // Encode the address operand as relative, but not the basic blocks. 2602 pushValue(I.getOperand(0), InstID, Vals); 2603 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2604 Vals.push_back(VE.getValueID(I.getOperand(i))); 2605 break; 2606 2607 case Instruction::Invoke: { 2608 const InvokeInst *II = cast<InvokeInst>(&I); 2609 const Value *Callee = II->getCalledValue(); 2610 FunctionType *FTy = II->getFunctionType(); 2611 2612 if (II->hasOperandBundles()) 2613 writeOperandBundles(II, InstID); 2614 2615 Code = bitc::FUNC_CODE_INST_INVOKE; 2616 2617 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2618 Vals.push_back(II->getCallingConv() | 1 << 13); 2619 Vals.push_back(VE.getValueID(II->getNormalDest())); 2620 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2621 Vals.push_back(VE.getTypeID(FTy)); 2622 pushValueAndType(Callee, InstID, Vals); 2623 2624 // Emit value #'s for the fixed parameters. 2625 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2626 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2627 2628 // Emit type/value pairs for varargs params. 2629 if (FTy->isVarArg()) { 2630 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2631 i != e; ++i) 2632 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2633 } 2634 break; 2635 } 2636 case Instruction::Resume: 2637 Code = bitc::FUNC_CODE_INST_RESUME; 2638 pushValueAndType(I.getOperand(0), InstID, Vals); 2639 break; 2640 case Instruction::CleanupRet: { 2641 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2642 const auto &CRI = cast<CleanupReturnInst>(I); 2643 pushValue(CRI.getCleanupPad(), InstID, Vals); 2644 if (CRI.hasUnwindDest()) 2645 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2646 break; 2647 } 2648 case Instruction::CatchRet: { 2649 Code = bitc::FUNC_CODE_INST_CATCHRET; 2650 const auto &CRI = cast<CatchReturnInst>(I); 2651 pushValue(CRI.getCatchPad(), InstID, Vals); 2652 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2653 break; 2654 } 2655 case Instruction::CleanupPad: 2656 case Instruction::CatchPad: { 2657 const auto &FuncletPad = cast<FuncletPadInst>(I); 2658 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2659 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2660 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2661 2662 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2663 Vals.push_back(NumArgOperands); 2664 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2665 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2666 break; 2667 } 2668 case Instruction::CatchSwitch: { 2669 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2670 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2671 2672 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2673 2674 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2675 Vals.push_back(NumHandlers); 2676 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2677 Vals.push_back(VE.getValueID(CatchPadBB)); 2678 2679 if (CatchSwitch.hasUnwindDest()) 2680 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2681 break; 2682 } 2683 case Instruction::Unreachable: 2684 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2685 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2686 break; 2687 2688 case Instruction::PHI: { 2689 const PHINode &PN = cast<PHINode>(I); 2690 Code = bitc::FUNC_CODE_INST_PHI; 2691 // With the newer instruction encoding, forward references could give 2692 // negative valued IDs. This is most common for PHIs, so we use 2693 // signed VBRs. 2694 SmallVector<uint64_t, 128> Vals64; 2695 Vals64.push_back(VE.getTypeID(PN.getType())); 2696 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2697 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2698 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2699 } 2700 // Emit a Vals64 vector and exit. 2701 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2702 Vals64.clear(); 2703 return; 2704 } 2705 2706 case Instruction::LandingPad: { 2707 const LandingPadInst &LP = cast<LandingPadInst>(I); 2708 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2709 Vals.push_back(VE.getTypeID(LP.getType())); 2710 Vals.push_back(LP.isCleanup()); 2711 Vals.push_back(LP.getNumClauses()); 2712 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2713 if (LP.isCatch(I)) 2714 Vals.push_back(LandingPadInst::Catch); 2715 else 2716 Vals.push_back(LandingPadInst::Filter); 2717 pushValueAndType(LP.getClause(I), InstID, Vals); 2718 } 2719 break; 2720 } 2721 2722 case Instruction::Alloca: { 2723 Code = bitc::FUNC_CODE_INST_ALLOCA; 2724 const AllocaInst &AI = cast<AllocaInst>(I); 2725 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2726 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2727 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2728 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2729 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2730 "not enough bits for maximum alignment"); 2731 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2732 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2733 AlignRecord |= 1 << 6; 2734 AlignRecord |= AI.isSwiftError() << 7; 2735 Vals.push_back(AlignRecord); 2736 break; 2737 } 2738 2739 case Instruction::Load: 2740 if (cast<LoadInst>(I).isAtomic()) { 2741 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2742 pushValueAndType(I.getOperand(0), InstID, Vals); 2743 } else { 2744 Code = bitc::FUNC_CODE_INST_LOAD; 2745 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2746 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2747 } 2748 Vals.push_back(VE.getTypeID(I.getType())); 2749 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2750 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2751 if (cast<LoadInst>(I).isAtomic()) { 2752 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2753 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2754 } 2755 break; 2756 case Instruction::Store: 2757 if (cast<StoreInst>(I).isAtomic()) 2758 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2759 else 2760 Code = bitc::FUNC_CODE_INST_STORE; 2761 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2762 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2763 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2764 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2765 if (cast<StoreInst>(I).isAtomic()) { 2766 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2767 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2768 } 2769 break; 2770 case Instruction::AtomicCmpXchg: 2771 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2772 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2773 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2774 pushValue(I.getOperand(2), InstID, Vals); // newval. 2775 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2776 Vals.push_back( 2777 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2778 Vals.push_back( 2779 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2780 Vals.push_back( 2781 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2782 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2783 break; 2784 case Instruction::AtomicRMW: 2785 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2786 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2787 pushValue(I.getOperand(1), InstID, Vals); // val. 2788 Vals.push_back( 2789 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2790 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2791 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2792 Vals.push_back( 2793 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2794 break; 2795 case Instruction::Fence: 2796 Code = bitc::FUNC_CODE_INST_FENCE; 2797 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2798 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2799 break; 2800 case Instruction::Call: { 2801 const CallInst &CI = cast<CallInst>(I); 2802 FunctionType *FTy = CI.getFunctionType(); 2803 2804 if (CI.hasOperandBundles()) 2805 writeOperandBundles(&CI, InstID); 2806 2807 Code = bitc::FUNC_CODE_INST_CALL; 2808 2809 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2810 2811 unsigned Flags = getOptimizationFlags(&I); 2812 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2813 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2814 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2815 1 << bitc::CALL_EXPLICIT_TYPE | 2816 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2817 unsigned(Flags != 0) << bitc::CALL_FMF); 2818 if (Flags != 0) 2819 Vals.push_back(Flags); 2820 2821 Vals.push_back(VE.getTypeID(FTy)); 2822 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2823 2824 // Emit value #'s for the fixed parameters. 2825 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2826 // Check for labels (can happen with asm labels). 2827 if (FTy->getParamType(i)->isLabelTy()) 2828 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2829 else 2830 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2831 } 2832 2833 // Emit type/value pairs for varargs params. 2834 if (FTy->isVarArg()) { 2835 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2836 i != e; ++i) 2837 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2838 } 2839 break; 2840 } 2841 case Instruction::VAArg: 2842 Code = bitc::FUNC_CODE_INST_VAARG; 2843 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2844 pushValue(I.getOperand(0), InstID, Vals); // valist. 2845 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2846 break; 2847 } 2848 2849 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2850 Vals.clear(); 2851 } 2852 2853 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2854 /// to allow clients to efficiently find the function body. 2855 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2856 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2857 // Get the offset of the VST we are writing, and backpatch it into 2858 // the VST forward declaration record. 2859 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2860 // The BitcodeStartBit was the stream offset of the identification block. 2861 VSTOffset -= bitcodeStartBit(); 2862 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2863 // Note that we add 1 here because the offset is relative to one word 2864 // before the start of the identification block, which was historically 2865 // always the start of the regular bitcode header. 2866 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2867 2868 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2869 2870 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2871 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2874 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2875 2876 for (const Function &F : M) { 2877 uint64_t Record[2]; 2878 2879 if (F.isDeclaration()) 2880 continue; 2881 2882 Record[0] = VE.getValueID(&F); 2883 2884 // Save the word offset of the function (from the start of the 2885 // actual bitcode written to the stream). 2886 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2887 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2888 // Note that we add 1 here because the offset is relative to one word 2889 // before the start of the identification block, which was historically 2890 // always the start of the regular bitcode header. 2891 Record[1] = BitcodeIndex / 32 + 1; 2892 2893 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2894 } 2895 2896 Stream.ExitBlock(); 2897 } 2898 2899 /// Emit names for arguments, instructions and basic blocks in a function. 2900 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2901 const ValueSymbolTable &VST) { 2902 if (VST.empty()) 2903 return; 2904 2905 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2906 2907 // FIXME: Set up the abbrev, we know how many values there are! 2908 // FIXME: We know if the type names can use 7-bit ascii. 2909 SmallVector<uint64_t, 64> NameVals; 2910 2911 for (const ValueName &Name : VST) { 2912 // Figure out the encoding to use for the name. 2913 StringEncoding Bits = 2914 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2915 2916 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2917 NameVals.push_back(VE.getValueID(Name.getValue())); 2918 2919 // VST_CODE_ENTRY: [valueid, namechar x N] 2920 // VST_CODE_BBENTRY: [bbid, namechar x N] 2921 unsigned Code; 2922 if (isa<BasicBlock>(Name.getValue())) { 2923 Code = bitc::VST_CODE_BBENTRY; 2924 if (Bits == SE_Char6) 2925 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2926 } else { 2927 Code = bitc::VST_CODE_ENTRY; 2928 if (Bits == SE_Char6) 2929 AbbrevToUse = VST_ENTRY_6_ABBREV; 2930 else if (Bits == SE_Fixed7) 2931 AbbrevToUse = VST_ENTRY_7_ABBREV; 2932 } 2933 2934 for (const auto P : Name.getKey()) 2935 NameVals.push_back((unsigned char)P); 2936 2937 // Emit the finished record. 2938 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2939 NameVals.clear(); 2940 } 2941 2942 Stream.ExitBlock(); 2943 } 2944 2945 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2946 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2947 unsigned Code; 2948 if (isa<BasicBlock>(Order.V)) 2949 Code = bitc::USELIST_CODE_BB; 2950 else 2951 Code = bitc::USELIST_CODE_DEFAULT; 2952 2953 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2954 Record.push_back(VE.getValueID(Order.V)); 2955 Stream.EmitRecord(Code, Record); 2956 } 2957 2958 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2959 assert(VE.shouldPreserveUseListOrder() && 2960 "Expected to be preserving use-list order"); 2961 2962 auto hasMore = [&]() { 2963 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2964 }; 2965 if (!hasMore()) 2966 // Nothing to do. 2967 return; 2968 2969 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2970 while (hasMore()) { 2971 writeUseList(std::move(VE.UseListOrders.back())); 2972 VE.UseListOrders.pop_back(); 2973 } 2974 Stream.ExitBlock(); 2975 } 2976 2977 /// Emit a function body to the module stream. 2978 void ModuleBitcodeWriter::writeFunction( 2979 const Function &F, 2980 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2981 // Save the bitcode index of the start of this function block for recording 2982 // in the VST. 2983 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2984 2985 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2986 VE.incorporateFunction(F); 2987 2988 SmallVector<unsigned, 64> Vals; 2989 2990 // Emit the number of basic blocks, so the reader can create them ahead of 2991 // time. 2992 Vals.push_back(VE.getBasicBlocks().size()); 2993 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2994 Vals.clear(); 2995 2996 // If there are function-local constants, emit them now. 2997 unsigned CstStart, CstEnd; 2998 VE.getFunctionConstantRange(CstStart, CstEnd); 2999 writeConstants(CstStart, CstEnd, false); 3000 3001 // If there is function-local metadata, emit it now. 3002 writeFunctionMetadata(F); 3003 3004 // Keep a running idea of what the instruction ID is. 3005 unsigned InstID = CstEnd; 3006 3007 bool NeedsMetadataAttachment = F.hasMetadata(); 3008 3009 DILocation *LastDL = nullptr; 3010 // Finally, emit all the instructions, in order. 3011 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3012 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3013 I != E; ++I) { 3014 writeInstruction(*I, InstID, Vals); 3015 3016 if (!I->getType()->isVoidTy()) 3017 ++InstID; 3018 3019 // If the instruction has metadata, write a metadata attachment later. 3020 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3021 3022 // If the instruction has a debug location, emit it. 3023 DILocation *DL = I->getDebugLoc(); 3024 if (!DL) 3025 continue; 3026 3027 if (DL == LastDL) { 3028 // Just repeat the same debug loc as last time. 3029 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3030 continue; 3031 } 3032 3033 Vals.push_back(DL->getLine()); 3034 Vals.push_back(DL->getColumn()); 3035 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3036 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3037 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3038 Vals.clear(); 3039 3040 LastDL = DL; 3041 } 3042 3043 // Emit names for all the instructions etc. 3044 if (auto *Symtab = F.getValueSymbolTable()) 3045 writeFunctionLevelValueSymbolTable(*Symtab); 3046 3047 if (NeedsMetadataAttachment) 3048 writeFunctionMetadataAttachment(F); 3049 if (VE.shouldPreserveUseListOrder()) 3050 writeUseListBlock(&F); 3051 VE.purgeFunction(); 3052 Stream.ExitBlock(); 3053 } 3054 3055 // Emit blockinfo, which defines the standard abbreviations etc. 3056 void ModuleBitcodeWriter::writeBlockInfo() { 3057 // We only want to emit block info records for blocks that have multiple 3058 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3059 // Other blocks can define their abbrevs inline. 3060 Stream.EnterBlockInfoBlock(); 3061 3062 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3063 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3068 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3069 VST_ENTRY_8_ABBREV) 3070 llvm_unreachable("Unexpected abbrev ordering!"); 3071 } 3072 3073 { // 7-bit fixed width VST_CODE_ENTRY strings. 3074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3075 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3079 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3080 VST_ENTRY_7_ABBREV) 3081 llvm_unreachable("Unexpected abbrev ordering!"); 3082 } 3083 { // 6-bit char6 VST_CODE_ENTRY strings. 3084 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3085 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3089 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3090 VST_ENTRY_6_ABBREV) 3091 llvm_unreachable("Unexpected abbrev ordering!"); 3092 } 3093 { // 6-bit char6 VST_CODE_BBENTRY strings. 3094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3095 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3099 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3100 VST_BBENTRY_6_ABBREV) 3101 llvm_unreachable("Unexpected abbrev ordering!"); 3102 } 3103 3104 3105 3106 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3107 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3108 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3110 VE.computeBitsRequiredForTypeIndicies())); 3111 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3112 CONSTANTS_SETTYPE_ABBREV) 3113 llvm_unreachable("Unexpected abbrev ordering!"); 3114 } 3115 3116 { // INTEGER abbrev for CONSTANTS_BLOCK. 3117 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3118 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3120 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3121 CONSTANTS_INTEGER_ABBREV) 3122 llvm_unreachable("Unexpected abbrev ordering!"); 3123 } 3124 3125 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3127 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3130 VE.computeBitsRequiredForTypeIndicies())); 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3132 3133 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3134 CONSTANTS_CE_CAST_Abbrev) 3135 llvm_unreachable("Unexpected abbrev ordering!"); 3136 } 3137 { // NULL abbrev for CONSTANTS_BLOCK. 3138 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3139 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3140 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3141 CONSTANTS_NULL_Abbrev) 3142 llvm_unreachable("Unexpected abbrev ordering!"); 3143 } 3144 3145 // FIXME: This should only use space for first class types! 3146 3147 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3148 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3149 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3152 VE.computeBitsRequiredForTypeIndicies())); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3155 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3156 FUNCTION_INST_LOAD_ABBREV) 3157 llvm_unreachable("Unexpected abbrev ordering!"); 3158 } 3159 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3160 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3161 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3165 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3166 FUNCTION_INST_BINOP_ABBREV) 3167 llvm_unreachable("Unexpected abbrev ordering!"); 3168 } 3169 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3170 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3171 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3176 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3177 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3178 llvm_unreachable("Unexpected abbrev ordering!"); 3179 } 3180 { // INST_CAST abbrev for FUNCTION_BLOCK. 3181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3182 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3185 VE.computeBitsRequiredForTypeIndicies())); 3186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3187 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3188 FUNCTION_INST_CAST_ABBREV) 3189 llvm_unreachable("Unexpected abbrev ordering!"); 3190 } 3191 3192 { // INST_RET abbrev for FUNCTION_BLOCK. 3193 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3194 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3195 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3196 FUNCTION_INST_RET_VOID_ABBREV) 3197 llvm_unreachable("Unexpected abbrev ordering!"); 3198 } 3199 { // INST_RET abbrev for FUNCTION_BLOCK. 3200 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3201 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3203 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3204 FUNCTION_INST_RET_VAL_ABBREV) 3205 llvm_unreachable("Unexpected abbrev ordering!"); 3206 } 3207 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3208 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3209 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3210 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3211 FUNCTION_INST_UNREACHABLE_ABBREV) 3212 llvm_unreachable("Unexpected abbrev ordering!"); 3213 } 3214 { 3215 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3216 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3219 Log2_32_Ceil(VE.getTypes().size() + 1))); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3222 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3223 FUNCTION_INST_GEP_ABBREV) 3224 llvm_unreachable("Unexpected abbrev ordering!"); 3225 } 3226 3227 Stream.ExitBlock(); 3228 } 3229 3230 /// Write the module path strings, currently only used when generating 3231 /// a combined index file. 3232 void IndexBitcodeWriter::writeModStrings() { 3233 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3234 3235 // TODO: See which abbrev sizes we actually need to emit 3236 3237 // 8-bit fixed-width MST_ENTRY strings. 3238 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3239 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3243 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3244 3245 // 7-bit fixed width MST_ENTRY strings. 3246 Abbv = std::make_shared<BitCodeAbbrev>(); 3247 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3251 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3252 3253 // 6-bit char6 MST_ENTRY strings. 3254 Abbv = std::make_shared<BitCodeAbbrev>(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3259 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3260 3261 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3262 Abbv = std::make_shared<BitCodeAbbrev>(); 3263 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3269 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3270 3271 SmallVector<unsigned, 64> Vals; 3272 for (const auto &MPSE : Index.modulePaths()) { 3273 if (!doIncludeModule(MPSE.getKey())) 3274 continue; 3275 StringEncoding Bits = 3276 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3277 unsigned AbbrevToUse = Abbrev8Bit; 3278 if (Bits == SE_Char6) 3279 AbbrevToUse = Abbrev6Bit; 3280 else if (Bits == SE_Fixed7) 3281 AbbrevToUse = Abbrev7Bit; 3282 3283 Vals.push_back(MPSE.getValue().first); 3284 3285 for (const auto P : MPSE.getKey()) 3286 Vals.push_back((unsigned char)P); 3287 3288 // Emit the finished record. 3289 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3290 3291 Vals.clear(); 3292 // Emit an optional hash for the module now 3293 auto &Hash = MPSE.getValue().second; 3294 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3295 for (auto Val : Hash) { 3296 if (Val) 3297 AllZero = false; 3298 Vals.push_back(Val); 3299 } 3300 if (!AllZero) { 3301 // Emit the hash record. 3302 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3303 } 3304 3305 Vals.clear(); 3306 } 3307 Stream.ExitBlock(); 3308 } 3309 3310 /// Write the function type metadata related records that need to appear before 3311 /// a function summary entry (whether per-module or combined). 3312 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3313 FunctionSummary *FS) { 3314 if (!FS->type_tests().empty()) 3315 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3316 3317 SmallVector<uint64_t, 64> Record; 3318 3319 auto WriteVFuncIdVec = [&](uint64_t Ty, 3320 ArrayRef<FunctionSummary::VFuncId> VFs) { 3321 if (VFs.empty()) 3322 return; 3323 Record.clear(); 3324 for (auto &VF : VFs) { 3325 Record.push_back(VF.GUID); 3326 Record.push_back(VF.Offset); 3327 } 3328 Stream.EmitRecord(Ty, Record); 3329 }; 3330 3331 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3332 FS->type_test_assume_vcalls()); 3333 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3334 FS->type_checked_load_vcalls()); 3335 3336 auto WriteConstVCallVec = [&](uint64_t Ty, 3337 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3338 for (auto &VC : VCs) { 3339 Record.clear(); 3340 Record.push_back(VC.VFunc.GUID); 3341 Record.push_back(VC.VFunc.Offset); 3342 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3343 Stream.EmitRecord(Ty, Record); 3344 } 3345 }; 3346 3347 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3348 FS->type_test_assume_const_vcalls()); 3349 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3350 FS->type_checked_load_const_vcalls()); 3351 } 3352 3353 // Helper to emit a single function summary record. 3354 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3355 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3356 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3357 const Function &F) { 3358 NameVals.push_back(ValueID); 3359 3360 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3361 writeFunctionTypeMetadataRecords(Stream, FS); 3362 3363 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3364 NameVals.push_back(FS->instCount()); 3365 NameVals.push_back(FS->refs().size()); 3366 3367 for (auto &RI : FS->refs()) 3368 NameVals.push_back(VE.getValueID(RI.getValue())); 3369 3370 bool HasProfileData = F.getEntryCount().hasValue(); 3371 for (auto &ECI : FS->calls()) { 3372 NameVals.push_back(getValueId(ECI.first)); 3373 if (HasProfileData) 3374 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3375 } 3376 3377 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3378 unsigned Code = 3379 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3380 3381 // Emit the finished record. 3382 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3383 NameVals.clear(); 3384 } 3385 3386 // Collect the global value references in the given variable's initializer, 3387 // and emit them in a summary record. 3388 void ModuleBitcodeWriter::writeModuleLevelReferences( 3389 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3390 unsigned FSModRefsAbbrev) { 3391 auto Summaries = 3392 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3393 if (Summaries == Index->end()) { 3394 // Only declarations should not have a summary (a declaration might however 3395 // have a summary if the def was in module level asm). 3396 assert(V.isDeclaration()); 3397 return; 3398 } 3399 auto *Summary = Summaries->second.front().get(); 3400 NameVals.push_back(VE.getValueID(&V)); 3401 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3402 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3403 3404 unsigned SizeBeforeRefs = NameVals.size(); 3405 for (auto &RI : VS->refs()) 3406 NameVals.push_back(VE.getValueID(RI.getValue())); 3407 // Sort the refs for determinism output, the vector returned by FS->refs() has 3408 // been initialized from a DenseSet. 3409 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3410 3411 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3412 FSModRefsAbbrev); 3413 NameVals.clear(); 3414 } 3415 3416 // Current version for the summary. 3417 // This is bumped whenever we introduce changes in the way some record are 3418 // interpreted, like flags for instance. 3419 static const uint64_t INDEX_VERSION = 3; 3420 3421 /// Emit the per-module summary section alongside the rest of 3422 /// the module's bitcode. 3423 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3424 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3425 3426 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3427 3428 if (Index->begin() == Index->end()) { 3429 Stream.ExitBlock(); 3430 return; 3431 } 3432 3433 for (const auto &GVI : valueIds()) { 3434 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3435 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3436 } 3437 3438 // Abbrev for FS_PERMODULE. 3439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3445 // numrefs x valueid, n x (valueid) 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3448 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3449 3450 // Abbrev for FS_PERMODULE_PROFILE. 3451 Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3457 // numrefs x valueid, n x (valueid, hotness) 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3460 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3461 3462 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3463 Abbv = std::make_shared<BitCodeAbbrev>(); 3464 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3469 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3470 3471 // Abbrev for FS_ALIAS. 3472 Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3477 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3478 3479 SmallVector<uint64_t, 64> NameVals; 3480 // Iterate over the list of functions instead of the Index to 3481 // ensure the ordering is stable. 3482 for (const Function &F : M) { 3483 // Summary emission does not support anonymous functions, they have to 3484 // renamed using the anonymous function renaming pass. 3485 if (!F.hasName()) 3486 report_fatal_error("Unexpected anonymous function when writing summary"); 3487 3488 auto Summaries = 3489 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3490 if (Summaries == Index->end()) { 3491 // Only declarations should not have a summary (a declaration might 3492 // however have a summary if the def was in module level asm). 3493 assert(F.isDeclaration()); 3494 continue; 3495 } 3496 auto *Summary = Summaries->second.front().get(); 3497 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3498 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3499 } 3500 3501 // Capture references from GlobalVariable initializers, which are outside 3502 // of a function scope. 3503 for (const GlobalVariable &G : M.globals()) 3504 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3505 3506 for (const GlobalAlias &A : M.aliases()) { 3507 auto *Aliasee = A.getBaseObject(); 3508 if (!Aliasee->hasName()) 3509 // Nameless function don't have an entry in the summary, skip it. 3510 continue; 3511 auto AliasId = VE.getValueID(&A); 3512 auto AliaseeId = VE.getValueID(Aliasee); 3513 NameVals.push_back(AliasId); 3514 auto *Summary = Index->getGlobalValueSummary(A); 3515 AliasSummary *AS = cast<AliasSummary>(Summary); 3516 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3517 NameVals.push_back(AliaseeId); 3518 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3519 NameVals.clear(); 3520 } 3521 3522 Stream.ExitBlock(); 3523 } 3524 3525 /// Emit the combined summary section into the combined index file. 3526 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3527 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3528 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3529 3530 // Create value IDs for undefined references. 3531 for (const auto &I : *this) { 3532 if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) { 3533 for (auto &RI : VS->refs()) 3534 assignValueId(RI.getGUID()); 3535 continue; 3536 } 3537 3538 auto *FS = dyn_cast<FunctionSummary>(I.second); 3539 if (!FS) 3540 continue; 3541 for (auto &RI : FS->refs()) 3542 assignValueId(RI.getGUID()); 3543 3544 for (auto &EI : FS->calls()) { 3545 GlobalValue::GUID GUID = EI.first.getGUID(); 3546 if (!hasValueId(GUID)) { 3547 // For SamplePGO, the indirect call targets for local functions will 3548 // have its original name annotated in profile. We try to find the 3549 // corresponding PGOFuncName as the GUID. 3550 GUID = Index.getGUIDFromOriginalID(GUID); 3551 if (GUID == 0 || !hasValueId(GUID)) 3552 continue; 3553 } 3554 assignValueId(GUID); 3555 } 3556 } 3557 3558 for (const auto &GVI : valueIds()) { 3559 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3560 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3561 } 3562 3563 // Abbrev for FS_COMBINED. 3564 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3565 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3571 // numrefs x valueid, n x (valueid) 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3574 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3575 3576 // Abbrev for FS_COMBINED_PROFILE. 3577 Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3584 // numrefs x valueid, n x (valueid, hotness) 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3587 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3588 3589 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3590 Abbv = std::make_shared<BitCodeAbbrev>(); 3591 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3597 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3598 3599 // Abbrev for FS_COMBINED_ALIAS. 3600 Abbv = std::make_shared<BitCodeAbbrev>(); 3601 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3606 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3607 3608 // The aliases are emitted as a post-pass, and will point to the value 3609 // id of the aliasee. Save them in a vector for post-processing. 3610 SmallVector<AliasSummary *, 64> Aliases; 3611 3612 // Save the value id for each summary for alias emission. 3613 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3614 3615 SmallVector<uint64_t, 64> NameVals; 3616 3617 // For local linkage, we also emit the original name separately 3618 // immediately after the record. 3619 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3620 if (!GlobalValue::isLocalLinkage(S.linkage())) 3621 return; 3622 NameVals.push_back(S.getOriginalName()); 3623 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3624 NameVals.clear(); 3625 }; 3626 3627 for (const auto &I : *this) { 3628 GlobalValueSummary *S = I.second; 3629 assert(S); 3630 3631 assert(hasValueId(I.first)); 3632 unsigned ValueId = getValueId(I.first); 3633 SummaryToValueIdMap[S] = ValueId; 3634 3635 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3636 // Will process aliases as a post-pass because the reader wants all 3637 // global to be loaded first. 3638 Aliases.push_back(AS); 3639 continue; 3640 } 3641 3642 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3643 NameVals.push_back(ValueId); 3644 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3645 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3646 for (auto &RI : VS->refs()) { 3647 NameVals.push_back(getValueId(RI.getGUID())); 3648 } 3649 3650 // Emit the finished record. 3651 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3652 FSModRefsAbbrev); 3653 NameVals.clear(); 3654 MaybeEmitOriginalName(*S); 3655 continue; 3656 } 3657 3658 auto *FS = cast<FunctionSummary>(S); 3659 writeFunctionTypeMetadataRecords(Stream, FS); 3660 3661 NameVals.push_back(ValueId); 3662 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3663 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3664 NameVals.push_back(FS->instCount()); 3665 NameVals.push_back(FS->refs().size()); 3666 3667 for (auto &RI : FS->refs()) { 3668 NameVals.push_back(getValueId(RI.getGUID())); 3669 } 3670 3671 bool HasProfileData = false; 3672 for (auto &EI : FS->calls()) { 3673 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3674 if (HasProfileData) 3675 break; 3676 } 3677 3678 for (auto &EI : FS->calls()) { 3679 // If this GUID doesn't have a value id, it doesn't have a function 3680 // summary and we don't need to record any calls to it. 3681 GlobalValue::GUID GUID = EI.first.getGUID(); 3682 if (!hasValueId(GUID)) { 3683 // For SamplePGO, the indirect call targets for local functions will 3684 // have its original name annotated in profile. We try to find the 3685 // corresponding PGOFuncName as the GUID. 3686 GUID = Index.getGUIDFromOriginalID(GUID); 3687 if (GUID == 0 || !hasValueId(GUID)) 3688 continue; 3689 } 3690 NameVals.push_back(getValueId(GUID)); 3691 if (HasProfileData) 3692 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3693 } 3694 3695 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3696 unsigned Code = 3697 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3698 3699 // Emit the finished record. 3700 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3701 NameVals.clear(); 3702 MaybeEmitOriginalName(*S); 3703 } 3704 3705 for (auto *AS : Aliases) { 3706 auto AliasValueId = SummaryToValueIdMap[AS]; 3707 assert(AliasValueId); 3708 NameVals.push_back(AliasValueId); 3709 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3710 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3711 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3712 assert(AliaseeValueId); 3713 NameVals.push_back(AliaseeValueId); 3714 3715 // Emit the finished record. 3716 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3717 NameVals.clear(); 3718 MaybeEmitOriginalName(*AS); 3719 } 3720 3721 Stream.ExitBlock(); 3722 } 3723 3724 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3725 /// current llvm version, and a record for the epoch number. 3726 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3727 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3728 3729 // Write the "user readable" string identifying the bitcode producer 3730 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3731 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3734 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3735 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3736 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3737 3738 // Write the epoch version 3739 Abbv = std::make_shared<BitCodeAbbrev>(); 3740 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3742 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3743 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3744 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3745 Stream.ExitBlock(); 3746 } 3747 3748 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3749 // Emit the module's hash. 3750 // MODULE_CODE_HASH: [5*i32] 3751 if (GenerateHash) { 3752 SHA1 Hasher; 3753 uint32_t Vals[5]; 3754 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3755 Buffer.size() - BlockStartPos)); 3756 StringRef Hash = Hasher.result(); 3757 for (int Pos = 0; Pos < 20; Pos += 4) { 3758 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3759 } 3760 3761 // Emit the finished record. 3762 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3763 3764 if (ModHash) 3765 // Save the written hash value. 3766 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3767 } else if (ModHash) 3768 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3769 } 3770 3771 void ModuleBitcodeWriter::write() { 3772 writeIdentificationBlock(Stream); 3773 3774 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3775 size_t BlockStartPos = Buffer.size(); 3776 3777 writeModuleVersion(); 3778 3779 // Emit blockinfo, which defines the standard abbreviations etc. 3780 writeBlockInfo(); 3781 3782 // Emit information about attribute groups. 3783 writeAttributeGroupTable(); 3784 3785 // Emit information about parameter attributes. 3786 writeAttributeTable(); 3787 3788 // Emit information describing all of the types in the module. 3789 writeTypeTable(); 3790 3791 writeComdats(); 3792 3793 // Emit top-level description of module, including target triple, inline asm, 3794 // descriptors for global variables, and function prototype info. 3795 writeModuleInfo(); 3796 3797 // Emit constants. 3798 writeModuleConstants(); 3799 3800 // Emit metadata kind names. 3801 writeModuleMetadataKinds(); 3802 3803 // Emit metadata. 3804 writeModuleMetadata(); 3805 3806 // Emit module-level use-lists. 3807 if (VE.shouldPreserveUseListOrder()) 3808 writeUseListBlock(nullptr); 3809 3810 writeOperandBundleTags(); 3811 3812 // Emit function bodies. 3813 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3814 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3815 if (!F->isDeclaration()) 3816 writeFunction(*F, FunctionToBitcodeIndex); 3817 3818 // Need to write after the above call to WriteFunction which populates 3819 // the summary information in the index. 3820 if (Index) 3821 writePerModuleGlobalValueSummary(); 3822 3823 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3824 3825 writeModuleHash(BlockStartPos); 3826 3827 Stream.ExitBlock(); 3828 } 3829 3830 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3831 uint32_t &Position) { 3832 support::endian::write32le(&Buffer[Position], Value); 3833 Position += 4; 3834 } 3835 3836 /// If generating a bc file on darwin, we have to emit a 3837 /// header and trailer to make it compatible with the system archiver. To do 3838 /// this we emit the following header, and then emit a trailer that pads the 3839 /// file out to be a multiple of 16 bytes. 3840 /// 3841 /// struct bc_header { 3842 /// uint32_t Magic; // 0x0B17C0DE 3843 /// uint32_t Version; // Version, currently always 0. 3844 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3845 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3846 /// uint32_t CPUType; // CPU specifier. 3847 /// ... potentially more later ... 3848 /// }; 3849 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3850 const Triple &TT) { 3851 unsigned CPUType = ~0U; 3852 3853 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3854 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3855 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3856 // specific constants here because they are implicitly part of the Darwin ABI. 3857 enum { 3858 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3859 DARWIN_CPU_TYPE_X86 = 7, 3860 DARWIN_CPU_TYPE_ARM = 12, 3861 DARWIN_CPU_TYPE_POWERPC = 18 3862 }; 3863 3864 Triple::ArchType Arch = TT.getArch(); 3865 if (Arch == Triple::x86_64) 3866 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3867 else if (Arch == Triple::x86) 3868 CPUType = DARWIN_CPU_TYPE_X86; 3869 else if (Arch == Triple::ppc) 3870 CPUType = DARWIN_CPU_TYPE_POWERPC; 3871 else if (Arch == Triple::ppc64) 3872 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3873 else if (Arch == Triple::arm || Arch == Triple::thumb) 3874 CPUType = DARWIN_CPU_TYPE_ARM; 3875 3876 // Traditional Bitcode starts after header. 3877 assert(Buffer.size() >= BWH_HeaderSize && 3878 "Expected header size to be reserved"); 3879 unsigned BCOffset = BWH_HeaderSize; 3880 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3881 3882 // Write the magic and version. 3883 unsigned Position = 0; 3884 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3885 writeInt32ToBuffer(0, Buffer, Position); // Version. 3886 writeInt32ToBuffer(BCOffset, Buffer, Position); 3887 writeInt32ToBuffer(BCSize, Buffer, Position); 3888 writeInt32ToBuffer(CPUType, Buffer, Position); 3889 3890 // If the file is not a multiple of 16 bytes, insert dummy padding. 3891 while (Buffer.size() & 15) 3892 Buffer.push_back(0); 3893 } 3894 3895 /// Helper to write the header common to all bitcode files. 3896 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3897 // Emit the file header. 3898 Stream.Emit((unsigned)'B', 8); 3899 Stream.Emit((unsigned)'C', 8); 3900 Stream.Emit(0x0, 4); 3901 Stream.Emit(0xC, 4); 3902 Stream.Emit(0xE, 4); 3903 Stream.Emit(0xD, 4); 3904 } 3905 3906 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3907 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3908 writeBitcodeHeader(*Stream); 3909 } 3910 3911 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3912 3913 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3914 Stream->EnterSubblock(Block, 3); 3915 3916 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3917 Abbv->Add(BitCodeAbbrevOp(Record)); 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3919 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3920 3921 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3922 3923 Stream->ExitBlock(); 3924 } 3925 3926 void BitcodeWriter::writeStrtab() { 3927 assert(!WroteStrtab); 3928 3929 std::vector<char> Strtab; 3930 StrtabBuilder.finalizeInOrder(); 3931 Strtab.resize(StrtabBuilder.getSize()); 3932 StrtabBuilder.write((uint8_t *)Strtab.data()); 3933 3934 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3935 {Strtab.data(), Strtab.size()}); 3936 3937 WroteStrtab = true; 3938 } 3939 3940 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3941 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3942 WroteStrtab = true; 3943 } 3944 3945 void BitcodeWriter::writeModule(const Module *M, 3946 bool ShouldPreserveUseListOrder, 3947 const ModuleSummaryIndex *Index, 3948 bool GenerateHash, ModuleHash *ModHash) { 3949 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3950 ShouldPreserveUseListOrder, Index, 3951 GenerateHash, ModHash); 3952 ModuleWriter.write(); 3953 } 3954 3955 /// WriteBitcodeToFile - Write the specified module to the specified output 3956 /// stream. 3957 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3958 bool ShouldPreserveUseListOrder, 3959 const ModuleSummaryIndex *Index, 3960 bool GenerateHash, ModuleHash *ModHash) { 3961 SmallVector<char, 0> Buffer; 3962 Buffer.reserve(256*1024); 3963 3964 // If this is darwin or another generic macho target, reserve space for the 3965 // header. 3966 Triple TT(M->getTargetTriple()); 3967 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3968 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3969 3970 BitcodeWriter Writer(Buffer); 3971 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3972 ModHash); 3973 Writer.writeStrtab(); 3974 3975 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3976 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3977 3978 // Write the generated bitstream to "Out". 3979 Out.write((char*)&Buffer.front(), Buffer.size()); 3980 } 3981 3982 void IndexBitcodeWriter::write() { 3983 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3984 3985 writeModuleVersion(); 3986 3987 // Write the module paths in the combined index. 3988 writeModStrings(); 3989 3990 // Write the summary combined index records. 3991 writeCombinedGlobalValueSummary(); 3992 3993 Stream.ExitBlock(); 3994 } 3995 3996 // Write the specified module summary index to the given raw output stream, 3997 // where it will be written in a new bitcode block. This is used when 3998 // writing the combined index file for ThinLTO. When writing a subset of the 3999 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4000 void llvm::WriteIndexToFile( 4001 const ModuleSummaryIndex &Index, raw_ostream &Out, 4002 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4003 SmallVector<char, 0> Buffer; 4004 Buffer.reserve(256 * 1024); 4005 4006 BitstreamWriter Stream(Buffer); 4007 writeBitcodeHeader(Stream); 4008 4009 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4010 IndexWriter.write(); 4011 4012 Out.write((char *)&Buffer.front(), Buffer.size()); 4013 } 4014