1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/Streams.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/Program.h" 29 using namespace llvm; 30 31 /// These are manifest constants used by the bitcode writer. They do not need to 32 /// be kept in sync with the reader, but need to be consistent within this file. 33 enum { 34 CurVersion = 0, 35 36 // VALUE_SYMTAB_BLOCK abbrev id's. 37 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 38 VST_ENTRY_7_ABBREV, 39 VST_ENTRY_6_ABBREV, 40 VST_BBENTRY_6_ABBREV, 41 42 // CONSTANTS_BLOCK abbrev id's. 43 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 44 CONSTANTS_INTEGER_ABBREV, 45 CONSTANTS_CE_CAST_Abbrev, 46 CONSTANTS_NULL_Abbrev, 47 48 // FUNCTION_BLOCK abbrev id's. 49 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 50 FUNCTION_INST_BINOP_ABBREV, 51 FUNCTION_INST_CAST_ABBREV, 52 FUNCTION_INST_RET_VOID_ABBREV, 53 FUNCTION_INST_RET_VAL_ABBREV, 54 FUNCTION_INST_UNREACHABLE_ABBREV 55 }; 56 57 58 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 59 switch (Opcode) { 60 default: assert(0 && "Unknown cast instruction!"); 61 case Instruction::Trunc : return bitc::CAST_TRUNC; 62 case Instruction::ZExt : return bitc::CAST_ZEXT; 63 case Instruction::SExt : return bitc::CAST_SEXT; 64 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 65 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 66 case Instruction::UIToFP : return bitc::CAST_UITOFP; 67 case Instruction::SIToFP : return bitc::CAST_SITOFP; 68 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 69 case Instruction::FPExt : return bitc::CAST_FPEXT; 70 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 71 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 72 case Instruction::BitCast : return bitc::CAST_BITCAST; 73 } 74 } 75 76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 77 switch (Opcode) { 78 default: assert(0 && "Unknown binary instruction!"); 79 case Instruction::Add: return bitc::BINOP_ADD; 80 case Instruction::Sub: return bitc::BINOP_SUB; 81 case Instruction::Mul: return bitc::BINOP_MUL; 82 case Instruction::UDiv: return bitc::BINOP_UDIV; 83 case Instruction::FDiv: 84 case Instruction::SDiv: return bitc::BINOP_SDIV; 85 case Instruction::URem: return bitc::BINOP_UREM; 86 case Instruction::FRem: 87 case Instruction::SRem: return bitc::BINOP_SREM; 88 case Instruction::Shl: return bitc::BINOP_SHL; 89 case Instruction::LShr: return bitc::BINOP_LSHR; 90 case Instruction::AShr: return bitc::BINOP_ASHR; 91 case Instruction::And: return bitc::BINOP_AND; 92 case Instruction::Or: return bitc::BINOP_OR; 93 case Instruction::Xor: return bitc::BINOP_XOR; 94 } 95 } 96 97 98 99 static void WriteStringRecord(unsigned Code, const std::string &Str, 100 unsigned AbbrevToUse, BitstreamWriter &Stream) { 101 SmallVector<unsigned, 64> Vals; 102 103 // Code: [strchar x N] 104 for (unsigned i = 0, e = Str.size(); i != e; ++i) 105 Vals.push_back(Str[i]); 106 107 // Emit the finished record. 108 Stream.EmitRecord(Code, Vals, AbbrevToUse); 109 } 110 111 // Emit information about parameter attributes. 112 static void WriteAttributeTable(const ValueEnumerator &VE, 113 BitstreamWriter &Stream) { 114 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 115 if (Attrs.empty()) return; 116 117 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 118 119 SmallVector<uint64_t, 64> Record; 120 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 121 const AttrListPtr &A = Attrs[i]; 122 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 123 const AttributeWithIndex &PAWI = A.getSlot(i); 124 Record.push_back(PAWI.Index); 125 126 // FIXME: remove in LLVM 3.0 127 // Store the alignment in the bitcode as a 16-bit raw value instead of a 128 // 5-bit log2 encoded value. Shift the bits above the alignment up by 129 // 11 bits. 130 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 131 if (PAWI.Attrs & Attribute::Alignment) 132 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 133 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 134 135 Record.push_back(FauxAttr); 136 } 137 138 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 139 Record.clear(); 140 } 141 142 Stream.ExitBlock(); 143 } 144 145 /// WriteTypeTable - Write out the type table for a module. 146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 147 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 148 149 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 150 SmallVector<uint64_t, 64> TypeVals; 151 152 // Abbrev for TYPE_CODE_POINTER. 153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 154 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 158 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 159 160 // Abbrev for TYPE_CODE_FUNCTION. 161 Abbv = new BitCodeAbbrev(); 162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 164 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 167 Log2_32_Ceil(VE.getTypes().size()+1))); 168 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 169 170 // Abbrev for TYPE_CODE_STRUCT. 171 Abbv = new BitCodeAbbrev(); 172 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 176 Log2_32_Ceil(VE.getTypes().size()+1))); 177 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 178 179 // Abbrev for TYPE_CODE_ARRAY. 180 Abbv = new BitCodeAbbrev(); 181 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 184 Log2_32_Ceil(VE.getTypes().size()+1))); 185 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 186 187 // Emit an entry count so the reader can reserve space. 188 TypeVals.push_back(TypeList.size()); 189 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 190 TypeVals.clear(); 191 192 // Loop over all of the types, emitting each in turn. 193 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 194 const Type *T = TypeList[i].first; 195 int AbbrevToUse = 0; 196 unsigned Code = 0; 197 198 switch (T->getTypeID()) { 199 default: assert(0 && "Unknown type!"); 200 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 201 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 202 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 203 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 204 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 205 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 206 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 207 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 208 case Type::IntegerTyID: 209 // INTEGER: [width] 210 Code = bitc::TYPE_CODE_INTEGER; 211 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 212 break; 213 case Type::PointerTyID: { 214 const PointerType *PTy = cast<PointerType>(T); 215 // POINTER: [pointee type, address space] 216 Code = bitc::TYPE_CODE_POINTER; 217 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 218 unsigned AddressSpace = PTy->getAddressSpace(); 219 TypeVals.push_back(AddressSpace); 220 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 221 break; 222 } 223 case Type::FunctionTyID: { 224 const FunctionType *FT = cast<FunctionType>(T); 225 // FUNCTION: [isvararg, attrid, retty, paramty x N] 226 Code = bitc::TYPE_CODE_FUNCTION; 227 TypeVals.push_back(FT->isVarArg()); 228 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 229 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 230 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 231 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 232 AbbrevToUse = FunctionAbbrev; 233 break; 234 } 235 case Type::StructTyID: { 236 const StructType *ST = cast<StructType>(T); 237 // STRUCT: [ispacked, eltty x N] 238 Code = bitc::TYPE_CODE_STRUCT; 239 TypeVals.push_back(ST->isPacked()); 240 // Output all of the element types. 241 for (StructType::element_iterator I = ST->element_begin(), 242 E = ST->element_end(); I != E; ++I) 243 TypeVals.push_back(VE.getTypeID(*I)); 244 AbbrevToUse = StructAbbrev; 245 break; 246 } 247 case Type::ArrayTyID: { 248 const ArrayType *AT = cast<ArrayType>(T); 249 // ARRAY: [numelts, eltty] 250 Code = bitc::TYPE_CODE_ARRAY; 251 TypeVals.push_back(AT->getNumElements()); 252 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 253 AbbrevToUse = ArrayAbbrev; 254 break; 255 } 256 case Type::VectorTyID: { 257 const VectorType *VT = cast<VectorType>(T); 258 // VECTOR [numelts, eltty] 259 Code = bitc::TYPE_CODE_VECTOR; 260 TypeVals.push_back(VT->getNumElements()); 261 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 262 break; 263 } 264 } 265 266 // Emit the finished record. 267 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 268 TypeVals.clear(); 269 } 270 271 Stream.ExitBlock(); 272 } 273 274 static unsigned getEncodedLinkage(const GlobalValue *GV) { 275 switch (GV->getLinkage()) { 276 default: assert(0 && "Invalid linkage!"); 277 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 278 case GlobalValue::ExternalLinkage: return 0; 279 case GlobalValue::WeakAnyLinkage: return 1; 280 case GlobalValue::AppendingLinkage: return 2; 281 case GlobalValue::InternalLinkage: return 3; 282 case GlobalValue::LinkOnceAnyLinkage: return 4; 283 case GlobalValue::DLLImportLinkage: return 5; 284 case GlobalValue::DLLExportLinkage: return 6; 285 case GlobalValue::ExternalWeakLinkage: return 7; 286 case GlobalValue::CommonLinkage: return 8; 287 case GlobalValue::PrivateLinkage: return 9; 288 case GlobalValue::WeakODRLinkage: return 10; 289 case GlobalValue::LinkOnceODRLinkage: return 11; 290 case GlobalValue::AvailableExternallyLinkage: return 12; 291 } 292 } 293 294 static unsigned getEncodedVisibility(const GlobalValue *GV) { 295 switch (GV->getVisibility()) { 296 default: assert(0 && "Invalid visibility!"); 297 case GlobalValue::DefaultVisibility: return 0; 298 case GlobalValue::HiddenVisibility: return 1; 299 case GlobalValue::ProtectedVisibility: return 2; 300 } 301 } 302 303 // Emit top-level description of module, including target triple, inline asm, 304 // descriptors for global variables, and function prototype info. 305 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 306 BitstreamWriter &Stream) { 307 // Emit the list of dependent libraries for the Module. 308 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 309 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 310 311 // Emit various pieces of data attached to a module. 312 if (!M->getTargetTriple().empty()) 313 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 314 0/*TODO*/, Stream); 315 if (!M->getDataLayout().empty()) 316 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 317 0/*TODO*/, Stream); 318 if (!M->getModuleInlineAsm().empty()) 319 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 320 0/*TODO*/, Stream); 321 322 // Emit information about sections and GC, computing how many there are. Also 323 // compute the maximum alignment value. 324 std::map<std::string, unsigned> SectionMap; 325 std::map<std::string, unsigned> GCMap; 326 unsigned MaxAlignment = 0; 327 unsigned MaxGlobalType = 0; 328 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 329 GV != E; ++GV) { 330 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 331 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 332 333 if (!GV->hasSection()) continue; 334 // Give section names unique ID's. 335 unsigned &Entry = SectionMap[GV->getSection()]; 336 if (Entry != 0) continue; 337 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 338 0/*TODO*/, Stream); 339 Entry = SectionMap.size(); 340 } 341 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 342 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 343 if (F->hasSection()) { 344 // Give section names unique ID's. 345 unsigned &Entry = SectionMap[F->getSection()]; 346 if (!Entry) { 347 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 348 0/*TODO*/, Stream); 349 Entry = SectionMap.size(); 350 } 351 } 352 if (F->hasGC()) { 353 // Same for GC names. 354 unsigned &Entry = GCMap[F->getGC()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 357 0/*TODO*/, Stream); 358 Entry = GCMap.size(); 359 } 360 } 361 } 362 363 // Emit abbrev for globals, now that we know # sections and max alignment. 364 unsigned SimpleGVarAbbrev = 0; 365 if (!M->global_empty()) { 366 // Add an abbrev for common globals with no visibility or thread localness. 367 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 368 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 370 Log2_32_Ceil(MaxGlobalType+1))); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 374 if (MaxAlignment == 0) // Alignment. 375 Abbv->Add(BitCodeAbbrevOp(0)); 376 else { 377 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxEncAlignment+1))); 380 } 381 if (SectionMap.empty()) // Section. 382 Abbv->Add(BitCodeAbbrevOp(0)); 383 else 384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 385 Log2_32_Ceil(SectionMap.size()+1))); 386 // Don't bother emitting vis + thread local. 387 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 388 } 389 390 // Emit the global variable information. 391 SmallVector<unsigned, 64> Vals; 392 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 393 GV != E; ++GV) { 394 unsigned AbbrevToUse = 0; 395 396 // GLOBALVAR: [type, isconst, initid, 397 // linkage, alignment, section, visibility, threadlocal] 398 Vals.push_back(VE.getTypeID(GV->getType())); 399 Vals.push_back(GV->isConstant()); 400 Vals.push_back(GV->isDeclaration() ? 0 : 401 (VE.getValueID(GV->getInitializer()) + 1)); 402 Vals.push_back(getEncodedLinkage(GV)); 403 Vals.push_back(Log2_32(GV->getAlignment())+1); 404 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 405 if (GV->isThreadLocal() || 406 GV->getVisibility() != GlobalValue::DefaultVisibility) { 407 Vals.push_back(getEncodedVisibility(GV)); 408 Vals.push_back(GV->isThreadLocal()); 409 } else { 410 AbbrevToUse = SimpleGVarAbbrev; 411 } 412 413 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 414 Vals.clear(); 415 } 416 417 // Emit the function proto information. 418 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 419 // FUNCTION: [type, callingconv, isproto, paramattr, 420 // linkage, alignment, section, visibility, gc] 421 Vals.push_back(VE.getTypeID(F->getType())); 422 Vals.push_back(F->getCallingConv()); 423 Vals.push_back(F->isDeclaration()); 424 Vals.push_back(getEncodedLinkage(F)); 425 Vals.push_back(VE.getAttributeID(F->getAttributes())); 426 Vals.push_back(Log2_32(F->getAlignment())+1); 427 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 428 Vals.push_back(getEncodedVisibility(F)); 429 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 430 431 unsigned AbbrevToUse = 0; 432 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 433 Vals.clear(); 434 } 435 436 437 // Emit the alias information. 438 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 439 AI != E; ++AI) { 440 Vals.push_back(VE.getTypeID(AI->getType())); 441 Vals.push_back(VE.getValueID(AI->getAliasee())); 442 Vals.push_back(getEncodedLinkage(AI)); 443 Vals.push_back(getEncodedVisibility(AI)); 444 unsigned AbbrevToUse = 0; 445 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 446 Vals.clear(); 447 } 448 } 449 450 451 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 452 const ValueEnumerator &VE, 453 BitstreamWriter &Stream, bool isGlobal) { 454 if (FirstVal == LastVal) return; 455 456 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 457 458 unsigned AggregateAbbrev = 0; 459 unsigned String8Abbrev = 0; 460 unsigned CString7Abbrev = 0; 461 unsigned CString6Abbrev = 0; 462 unsigned MDString8Abbrev = 0; 463 unsigned MDString6Abbrev = 0; 464 // If this is a constant pool for the module, emit module-specific abbrevs. 465 if (isGlobal) { 466 // Abbrev for CST_CODE_AGGREGATE. 467 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 468 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 471 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 472 473 // Abbrev for CST_CODE_STRING. 474 Abbv = new BitCodeAbbrev(); 475 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 478 String8Abbrev = Stream.EmitAbbrev(Abbv); 479 // Abbrev for CST_CODE_CSTRING. 480 Abbv = new BitCodeAbbrev(); 481 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 484 CString7Abbrev = Stream.EmitAbbrev(Abbv); 485 // Abbrev for CST_CODE_CSTRING. 486 Abbv = new BitCodeAbbrev(); 487 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 490 CString6Abbrev = Stream.EmitAbbrev(Abbv); 491 492 // Abbrev for CST_CODE_MDSTRING. 493 Abbv = new BitCodeAbbrev(); 494 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 497 MDString8Abbrev = Stream.EmitAbbrev(Abbv); 498 // Abbrev for CST_CODE_MDSTRING. 499 Abbv = new BitCodeAbbrev(); 500 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 503 MDString6Abbrev = Stream.EmitAbbrev(Abbv); 504 } 505 506 SmallVector<uint64_t, 64> Record; 507 508 const ValueEnumerator::ValueList &Vals = VE.getValues(); 509 const Type *LastTy = 0; 510 for (unsigned i = FirstVal; i != LastVal; ++i) { 511 const Value *V = Vals[i].first; 512 // If we need to switch types, do so now. 513 if (V->getType() != LastTy) { 514 LastTy = V->getType(); 515 Record.push_back(VE.getTypeID(LastTy)); 516 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 517 CONSTANTS_SETTYPE_ABBREV); 518 Record.clear(); 519 } 520 521 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 522 Record.push_back(unsigned(IA->hasSideEffects())); 523 524 // Add the asm string. 525 const std::string &AsmStr = IA->getAsmString(); 526 Record.push_back(AsmStr.size()); 527 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 528 Record.push_back(AsmStr[i]); 529 530 // Add the constraint string. 531 const std::string &ConstraintStr = IA->getConstraintString(); 532 Record.push_back(ConstraintStr.size()); 533 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 534 Record.push_back(ConstraintStr[i]); 535 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 536 Record.clear(); 537 continue; 538 } 539 const Constant *C = cast<Constant>(V); 540 unsigned Code = -1U; 541 unsigned AbbrevToUse = 0; 542 if (C->isNullValue()) { 543 Code = bitc::CST_CODE_NULL; 544 } else if (isa<UndefValue>(C)) { 545 Code = bitc::CST_CODE_UNDEF; 546 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 547 if (IV->getBitWidth() <= 64) { 548 int64_t V = IV->getSExtValue(); 549 if (V >= 0) 550 Record.push_back(V << 1); 551 else 552 Record.push_back((-V << 1) | 1); 553 Code = bitc::CST_CODE_INTEGER; 554 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 555 } else { // Wide integers, > 64 bits in size. 556 // We have an arbitrary precision integer value to write whose 557 // bit width is > 64. However, in canonical unsigned integer 558 // format it is likely that the high bits are going to be zero. 559 // So, we only write the number of active words. 560 unsigned NWords = IV->getValue().getActiveWords(); 561 const uint64_t *RawWords = IV->getValue().getRawData(); 562 for (unsigned i = 0; i != NWords; ++i) { 563 int64_t V = RawWords[i]; 564 if (V >= 0) 565 Record.push_back(V << 1); 566 else 567 Record.push_back((-V << 1) | 1); 568 } 569 Code = bitc::CST_CODE_WIDE_INTEGER; 570 } 571 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 572 Code = bitc::CST_CODE_FLOAT; 573 const Type *Ty = CFP->getType(); 574 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 575 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 576 } else if (Ty == Type::X86_FP80Ty) { 577 // api needed to prevent premature destruction 578 // bits are not in the same order as a normal i80 APInt, compensate. 579 APInt api = CFP->getValueAPF().bitcastToAPInt(); 580 const uint64_t *p = api.getRawData(); 581 Record.push_back((p[1] << 48) | (p[0] >> 16)); 582 Record.push_back(p[0] & 0xffffLL); 583 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 584 APInt api = CFP->getValueAPF().bitcastToAPInt(); 585 const uint64_t *p = api.getRawData(); 586 Record.push_back(p[0]); 587 Record.push_back(p[1]); 588 } else { 589 assert (0 && "Unknown FP type!"); 590 } 591 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 592 // Emit constant strings specially. 593 unsigned NumOps = C->getNumOperands(); 594 // If this is a null-terminated string, use the denser CSTRING encoding. 595 if (C->getOperand(NumOps-1)->isNullValue()) { 596 Code = bitc::CST_CODE_CSTRING; 597 --NumOps; // Don't encode the null, which isn't allowed by char6. 598 } else { 599 Code = bitc::CST_CODE_STRING; 600 AbbrevToUse = String8Abbrev; 601 } 602 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 603 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 604 for (unsigned i = 0; i != NumOps; ++i) { 605 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 606 Record.push_back(V); 607 isCStr7 &= (V & 128) == 0; 608 if (isCStrChar6) 609 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 610 } 611 612 if (isCStrChar6) 613 AbbrevToUse = CString6Abbrev; 614 else if (isCStr7) 615 AbbrevToUse = CString7Abbrev; 616 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 617 isa<ConstantVector>(V)) { 618 Code = bitc::CST_CODE_AGGREGATE; 619 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 620 Record.push_back(VE.getValueID(C->getOperand(i))); 621 AbbrevToUse = AggregateAbbrev; 622 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 623 switch (CE->getOpcode()) { 624 default: 625 if (Instruction::isCast(CE->getOpcode())) { 626 Code = bitc::CST_CODE_CE_CAST; 627 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 628 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 629 Record.push_back(VE.getValueID(C->getOperand(0))); 630 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 631 } else { 632 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 633 Code = bitc::CST_CODE_CE_BINOP; 634 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 635 Record.push_back(VE.getValueID(C->getOperand(0))); 636 Record.push_back(VE.getValueID(C->getOperand(1))); 637 } 638 break; 639 case Instruction::GetElementPtr: 640 Code = bitc::CST_CODE_CE_GEP; 641 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 642 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 643 Record.push_back(VE.getValueID(C->getOperand(i))); 644 } 645 break; 646 case Instruction::Select: 647 Code = bitc::CST_CODE_CE_SELECT; 648 Record.push_back(VE.getValueID(C->getOperand(0))); 649 Record.push_back(VE.getValueID(C->getOperand(1))); 650 Record.push_back(VE.getValueID(C->getOperand(2))); 651 break; 652 case Instruction::ExtractElement: 653 Code = bitc::CST_CODE_CE_EXTRACTELT; 654 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 655 Record.push_back(VE.getValueID(C->getOperand(0))); 656 Record.push_back(VE.getValueID(C->getOperand(1))); 657 break; 658 case Instruction::InsertElement: 659 Code = bitc::CST_CODE_CE_INSERTELT; 660 Record.push_back(VE.getValueID(C->getOperand(0))); 661 Record.push_back(VE.getValueID(C->getOperand(1))); 662 Record.push_back(VE.getValueID(C->getOperand(2))); 663 break; 664 case Instruction::ShuffleVector: 665 // If the return type and argument types are the same, this is a 666 // standard shufflevector instruction. If the types are different, 667 // then the shuffle is widening or truncating the input vectors, and 668 // the argument type must also be encoded. 669 if (C->getType() == C->getOperand(0)->getType()) { 670 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 671 } else { 672 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 673 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 674 } 675 Record.push_back(VE.getValueID(C->getOperand(0))); 676 Record.push_back(VE.getValueID(C->getOperand(1))); 677 Record.push_back(VE.getValueID(C->getOperand(2))); 678 break; 679 case Instruction::ICmp: 680 case Instruction::FCmp: 681 case Instruction::VICmp: 682 case Instruction::VFCmp: 683 if (isa<VectorType>(C->getOperand(0)->getType()) 684 && (CE->getOpcode() == Instruction::ICmp 685 || CE->getOpcode() == Instruction::FCmp)) { 686 // compare returning vector of Int1Ty 687 assert(0 && "Unsupported constant!"); 688 } else { 689 Code = bitc::CST_CODE_CE_CMP; 690 } 691 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 692 Record.push_back(VE.getValueID(C->getOperand(0))); 693 Record.push_back(VE.getValueID(C->getOperand(1))); 694 Record.push_back(CE->getPredicate()); 695 break; 696 } 697 } else if (const MDString *S = dyn_cast<MDString>(C)) { 698 Code = bitc::CST_CODE_MDSTRING; 699 AbbrevToUse = MDString6Abbrev; 700 for (unsigned i = 0, e = S->size(); i != e; ++i) { 701 char V = S->begin()[i]; 702 Record.push_back(V); 703 704 if (!BitCodeAbbrevOp::isChar6(V)) 705 AbbrevToUse = MDString8Abbrev; 706 } 707 } else if (const MDNode *N = dyn_cast<MDNode>(C)) { 708 Code = bitc::CST_CODE_MDNODE; 709 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 710 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 711 Record.push_back(VE.getValueID(N->getOperand(i))); 712 } 713 } else { 714 assert(0 && "Unknown constant!"); 715 } 716 Stream.EmitRecord(Code, Record, AbbrevToUse); 717 Record.clear(); 718 } 719 720 Stream.ExitBlock(); 721 } 722 723 static void WriteModuleConstants(const ValueEnumerator &VE, 724 BitstreamWriter &Stream) { 725 const ValueEnumerator::ValueList &Vals = VE.getValues(); 726 727 // Find the first constant to emit, which is the first non-globalvalue value. 728 // We know globalvalues have been emitted by WriteModuleInfo. 729 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 730 if (!isa<GlobalValue>(Vals[i].first)) { 731 WriteConstants(i, Vals.size(), VE, Stream, true); 732 return; 733 } 734 } 735 } 736 737 /// PushValueAndType - The file has to encode both the value and type id for 738 /// many values, because we need to know what type to create for forward 739 /// references. However, most operands are not forward references, so this type 740 /// field is not needed. 741 /// 742 /// This function adds V's value ID to Vals. If the value ID is higher than the 743 /// instruction ID, then it is a forward reference, and it also includes the 744 /// type ID. 745 static bool PushValueAndType(const Value *V, unsigned InstID, 746 SmallVector<unsigned, 64> &Vals, 747 ValueEnumerator &VE) { 748 unsigned ValID = VE.getValueID(V); 749 Vals.push_back(ValID); 750 if (ValID >= InstID) { 751 Vals.push_back(VE.getTypeID(V->getType())); 752 return true; 753 } 754 return false; 755 } 756 757 /// WriteInstruction - Emit an instruction to the specified stream. 758 static void WriteInstruction(const Instruction &I, unsigned InstID, 759 ValueEnumerator &VE, BitstreamWriter &Stream, 760 SmallVector<unsigned, 64> &Vals) { 761 unsigned Code = 0; 762 unsigned AbbrevToUse = 0; 763 switch (I.getOpcode()) { 764 default: 765 if (Instruction::isCast(I.getOpcode())) { 766 Code = bitc::FUNC_CODE_INST_CAST; 767 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 768 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 769 Vals.push_back(VE.getTypeID(I.getType())); 770 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 771 } else { 772 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 773 Code = bitc::FUNC_CODE_INST_BINOP; 774 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 775 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 776 Vals.push_back(VE.getValueID(I.getOperand(1))); 777 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 778 } 779 break; 780 781 case Instruction::GetElementPtr: 782 Code = bitc::FUNC_CODE_INST_GEP; 783 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 784 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 785 break; 786 case Instruction::ExtractValue: { 787 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 788 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 789 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 790 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 791 Vals.push_back(*i); 792 break; 793 } 794 case Instruction::InsertValue: { 795 Code = bitc::FUNC_CODE_INST_INSERTVAL; 796 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 797 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 798 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 799 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 800 Vals.push_back(*i); 801 break; 802 } 803 case Instruction::Select: 804 Code = bitc::FUNC_CODE_INST_VSELECT; 805 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 806 Vals.push_back(VE.getValueID(I.getOperand(2))); 807 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 808 break; 809 case Instruction::ExtractElement: 810 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 811 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 812 Vals.push_back(VE.getValueID(I.getOperand(1))); 813 break; 814 case Instruction::InsertElement: 815 Code = bitc::FUNC_CODE_INST_INSERTELT; 816 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 817 Vals.push_back(VE.getValueID(I.getOperand(1))); 818 Vals.push_back(VE.getValueID(I.getOperand(2))); 819 break; 820 case Instruction::ShuffleVector: 821 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 822 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 823 Vals.push_back(VE.getValueID(I.getOperand(1))); 824 Vals.push_back(VE.getValueID(I.getOperand(2))); 825 break; 826 case Instruction::ICmp: 827 case Instruction::FCmp: 828 case Instruction::VICmp: 829 case Instruction::VFCmp: 830 if (I.getOpcode() == Instruction::ICmp 831 || I.getOpcode() == Instruction::FCmp) { 832 // compare returning Int1Ty or vector of Int1Ty 833 Code = bitc::FUNC_CODE_INST_CMP2; 834 } else { 835 Code = bitc::FUNC_CODE_INST_CMP; 836 } 837 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 838 Vals.push_back(VE.getValueID(I.getOperand(1))); 839 Vals.push_back(cast<CmpInst>(I).getPredicate()); 840 break; 841 842 case Instruction::Ret: 843 { 844 Code = bitc::FUNC_CODE_INST_RET; 845 unsigned NumOperands = I.getNumOperands(); 846 if (NumOperands == 0) 847 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 848 else if (NumOperands == 1) { 849 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 850 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 851 } else { 852 for (unsigned i = 0, e = NumOperands; i != e; ++i) 853 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 854 } 855 } 856 break; 857 case Instruction::Br: 858 { 859 Code = bitc::FUNC_CODE_INST_BR; 860 BranchInst &II(cast<BranchInst>(I)); 861 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 862 if (II.isConditional()) { 863 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 864 Vals.push_back(VE.getValueID(II.getCondition())); 865 } 866 } 867 break; 868 case Instruction::Switch: 869 Code = bitc::FUNC_CODE_INST_SWITCH; 870 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 871 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 872 Vals.push_back(VE.getValueID(I.getOperand(i))); 873 break; 874 case Instruction::Invoke: { 875 const InvokeInst *II = cast<InvokeInst>(&I); 876 const Value *Callee(II->getCalledValue()); 877 const PointerType *PTy = cast<PointerType>(Callee->getType()); 878 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 879 Code = bitc::FUNC_CODE_INST_INVOKE; 880 881 Vals.push_back(VE.getAttributeID(II->getAttributes())); 882 Vals.push_back(II->getCallingConv()); 883 Vals.push_back(VE.getValueID(II->getNormalDest())); 884 Vals.push_back(VE.getValueID(II->getUnwindDest())); 885 PushValueAndType(Callee, InstID, Vals, VE); 886 887 // Emit value #'s for the fixed parameters. 888 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 889 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 890 891 // Emit type/value pairs for varargs params. 892 if (FTy->isVarArg()) { 893 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 894 i != e; ++i) 895 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 896 } 897 break; 898 } 899 case Instruction::Unwind: 900 Code = bitc::FUNC_CODE_INST_UNWIND; 901 break; 902 case Instruction::Unreachable: 903 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 904 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 905 break; 906 907 case Instruction::PHI: 908 Code = bitc::FUNC_CODE_INST_PHI; 909 Vals.push_back(VE.getTypeID(I.getType())); 910 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 911 Vals.push_back(VE.getValueID(I.getOperand(i))); 912 break; 913 914 case Instruction::Malloc: 915 Code = bitc::FUNC_CODE_INST_MALLOC; 916 Vals.push_back(VE.getTypeID(I.getType())); 917 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 918 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 919 break; 920 921 case Instruction::Free: 922 Code = bitc::FUNC_CODE_INST_FREE; 923 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 924 break; 925 926 case Instruction::Alloca: 927 Code = bitc::FUNC_CODE_INST_ALLOCA; 928 Vals.push_back(VE.getTypeID(I.getType())); 929 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 930 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 931 break; 932 933 case Instruction::Load: 934 Code = bitc::FUNC_CODE_INST_LOAD; 935 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 936 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 937 938 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 939 Vals.push_back(cast<LoadInst>(I).isVolatile()); 940 break; 941 case Instruction::Store: 942 Code = bitc::FUNC_CODE_INST_STORE2; 943 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 944 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 945 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 946 Vals.push_back(cast<StoreInst>(I).isVolatile()); 947 break; 948 case Instruction::Call: { 949 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 950 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 951 952 Code = bitc::FUNC_CODE_INST_CALL; 953 954 const CallInst *CI = cast<CallInst>(&I); 955 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 956 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 957 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 958 959 // Emit value #'s for the fixed parameters. 960 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 961 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 962 963 // Emit type/value pairs for varargs params. 964 if (FTy->isVarArg()) { 965 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 966 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 967 i != e; ++i) 968 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 969 } 970 break; 971 } 972 case Instruction::VAArg: 973 Code = bitc::FUNC_CODE_INST_VAARG; 974 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 975 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 976 Vals.push_back(VE.getTypeID(I.getType())); // restype. 977 break; 978 } 979 980 Stream.EmitRecord(Code, Vals, AbbrevToUse); 981 Vals.clear(); 982 } 983 984 // Emit names for globals/functions etc. 985 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 986 const ValueEnumerator &VE, 987 BitstreamWriter &Stream) { 988 if (VST.empty()) return; 989 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 990 991 // FIXME: Set up the abbrev, we know how many values there are! 992 // FIXME: We know if the type names can use 7-bit ascii. 993 SmallVector<unsigned, 64> NameVals; 994 995 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 996 SI != SE; ++SI) { 997 998 const ValueName &Name = *SI; 999 1000 // Figure out the encoding to use for the name. 1001 bool is7Bit = true; 1002 bool isChar6 = true; 1003 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1004 C != E; ++C) { 1005 if (isChar6) 1006 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1007 if ((unsigned char)*C & 128) { 1008 is7Bit = false; 1009 break; // don't bother scanning the rest. 1010 } 1011 } 1012 1013 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1014 1015 // VST_ENTRY: [valueid, namechar x N] 1016 // VST_BBENTRY: [bbid, namechar x N] 1017 unsigned Code; 1018 if (isa<BasicBlock>(SI->getValue())) { 1019 Code = bitc::VST_CODE_BBENTRY; 1020 if (isChar6) 1021 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1022 } else { 1023 Code = bitc::VST_CODE_ENTRY; 1024 if (isChar6) 1025 AbbrevToUse = VST_ENTRY_6_ABBREV; 1026 else if (is7Bit) 1027 AbbrevToUse = VST_ENTRY_7_ABBREV; 1028 } 1029 1030 NameVals.push_back(VE.getValueID(SI->getValue())); 1031 for (const char *P = Name.getKeyData(), 1032 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1033 NameVals.push_back((unsigned char)*P); 1034 1035 // Emit the finished record. 1036 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1037 NameVals.clear(); 1038 } 1039 Stream.ExitBlock(); 1040 } 1041 1042 /// WriteFunction - Emit a function body to the module stream. 1043 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1044 BitstreamWriter &Stream) { 1045 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1046 VE.incorporateFunction(F); 1047 1048 SmallVector<unsigned, 64> Vals; 1049 1050 // Emit the number of basic blocks, so the reader can create them ahead of 1051 // time. 1052 Vals.push_back(VE.getBasicBlocks().size()); 1053 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1054 Vals.clear(); 1055 1056 // If there are function-local constants, emit them now. 1057 unsigned CstStart, CstEnd; 1058 VE.getFunctionConstantRange(CstStart, CstEnd); 1059 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1060 1061 // Keep a running idea of what the instruction ID is. 1062 unsigned InstID = CstEnd; 1063 1064 // Finally, emit all the instructions, in order. 1065 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1066 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1067 I != E; ++I) { 1068 WriteInstruction(*I, InstID, VE, Stream, Vals); 1069 if (I->getType() != Type::VoidTy) 1070 ++InstID; 1071 } 1072 1073 // Emit names for all the instructions etc. 1074 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1075 1076 VE.purgeFunction(); 1077 Stream.ExitBlock(); 1078 } 1079 1080 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1081 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1082 const ValueEnumerator &VE, 1083 BitstreamWriter &Stream) { 1084 if (TST.empty()) return; 1085 1086 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1087 1088 // 7-bit fixed width VST_CODE_ENTRY strings. 1089 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1090 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1092 Log2_32_Ceil(VE.getTypes().size()+1))); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1095 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1096 1097 SmallVector<unsigned, 64> NameVals; 1098 1099 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1100 TI != TE; ++TI) { 1101 // TST_ENTRY: [typeid, namechar x N] 1102 NameVals.push_back(VE.getTypeID(TI->second)); 1103 1104 const std::string &Str = TI->first; 1105 bool is7Bit = true; 1106 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1107 NameVals.push_back((unsigned char)Str[i]); 1108 if (Str[i] & 128) 1109 is7Bit = false; 1110 } 1111 1112 // Emit the finished record. 1113 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1114 NameVals.clear(); 1115 } 1116 1117 Stream.ExitBlock(); 1118 } 1119 1120 // Emit blockinfo, which defines the standard abbreviations etc. 1121 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1122 // We only want to emit block info records for blocks that have multiple 1123 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1124 // blocks can defined their abbrevs inline. 1125 Stream.EnterBlockInfoBlock(2); 1126 1127 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1133 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1134 Abbv) != VST_ENTRY_8_ABBREV) 1135 assert(0 && "Unexpected abbrev ordering!"); 1136 } 1137 1138 { // 7-bit fixed width VST_ENTRY strings. 1139 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1140 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1144 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1145 Abbv) != VST_ENTRY_7_ABBREV) 1146 assert(0 && "Unexpected abbrev ordering!"); 1147 } 1148 { // 6-bit char6 VST_ENTRY strings. 1149 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1150 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1154 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1155 Abbv) != VST_ENTRY_6_ABBREV) 1156 assert(0 && "Unexpected abbrev ordering!"); 1157 } 1158 { // 6-bit char6 VST_BBENTRY strings. 1159 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1160 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1164 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1165 Abbv) != VST_BBENTRY_6_ABBREV) 1166 assert(0 && "Unexpected abbrev ordering!"); 1167 } 1168 1169 1170 1171 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1172 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1173 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1175 Log2_32_Ceil(VE.getTypes().size()+1))); 1176 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1177 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1178 assert(0 && "Unexpected abbrev ordering!"); 1179 } 1180 1181 { // INTEGER abbrev for CONSTANTS_BLOCK. 1182 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1183 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1185 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1186 Abbv) != CONSTANTS_INTEGER_ABBREV) 1187 assert(0 && "Unexpected abbrev ordering!"); 1188 } 1189 1190 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1192 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1195 Log2_32_Ceil(VE.getTypes().size()+1))); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1197 1198 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1199 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1200 assert(0 && "Unexpected abbrev ordering!"); 1201 } 1202 { // NULL abbrev for CONSTANTS_BLOCK. 1203 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1204 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1206 Abbv) != CONSTANTS_NULL_Abbrev) 1207 assert(0 && "Unexpected abbrev ordering!"); 1208 } 1209 1210 // FIXME: This should only use space for first class types! 1211 1212 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1213 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1214 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1218 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1219 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1220 assert(0 && "Unexpected abbrev ordering!"); 1221 } 1222 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1223 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1224 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1228 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1229 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1230 assert(0 && "Unexpected abbrev ordering!"); 1231 } 1232 { // INST_CAST abbrev for FUNCTION_BLOCK. 1233 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1234 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1237 Log2_32_Ceil(VE.getTypes().size()+1))); 1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1239 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1240 Abbv) != FUNCTION_INST_CAST_ABBREV) 1241 assert(0 && "Unexpected abbrev ordering!"); 1242 } 1243 1244 { // INST_RET abbrev for FUNCTION_BLOCK. 1245 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1246 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1247 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1248 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1249 assert(0 && "Unexpected abbrev ordering!"); 1250 } 1251 { // INST_RET abbrev for FUNCTION_BLOCK. 1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1255 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1256 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1257 assert(0 && "Unexpected abbrev ordering!"); 1258 } 1259 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1260 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1261 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1263 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1264 assert(0 && "Unexpected abbrev ordering!"); 1265 } 1266 1267 Stream.ExitBlock(); 1268 } 1269 1270 1271 /// WriteModule - Emit the specified module to the bitstream. 1272 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1273 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1274 1275 // Emit the version number if it is non-zero. 1276 if (CurVersion) { 1277 SmallVector<unsigned, 1> Vals; 1278 Vals.push_back(CurVersion); 1279 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1280 } 1281 1282 // Analyze the module, enumerating globals, functions, etc. 1283 ValueEnumerator VE(M); 1284 1285 // Emit blockinfo, which defines the standard abbreviations etc. 1286 WriteBlockInfo(VE, Stream); 1287 1288 // Emit information about parameter attributes. 1289 WriteAttributeTable(VE, Stream); 1290 1291 // Emit information describing all of the types in the module. 1292 WriteTypeTable(VE, Stream); 1293 1294 // Emit top-level description of module, including target triple, inline asm, 1295 // descriptors for global variables, and function prototype info. 1296 WriteModuleInfo(M, VE, Stream); 1297 1298 // Emit constants. 1299 WriteModuleConstants(VE, Stream); 1300 1301 // If we have any aggregate values in the value table, purge them - these can 1302 // only be used to initialize global variables. Doing so makes the value 1303 // namespace smaller for code in functions. 1304 int NumNonAggregates = VE.PurgeAggregateValues(); 1305 if (NumNonAggregates != -1) { 1306 SmallVector<unsigned, 1> Vals; 1307 Vals.push_back(NumNonAggregates); 1308 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1309 } 1310 1311 // Emit function bodies. 1312 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1313 if (!I->isDeclaration()) 1314 WriteFunction(*I, VE, Stream); 1315 1316 // Emit the type symbol table information. 1317 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1318 1319 // Emit names for globals/functions etc. 1320 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1321 1322 Stream.ExitBlock(); 1323 } 1324 1325 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1326 /// header and trailer to make it compatible with the system archiver. To do 1327 /// this we emit the following header, and then emit a trailer that pads the 1328 /// file out to be a multiple of 16 bytes. 1329 /// 1330 /// struct bc_header { 1331 /// uint32_t Magic; // 0x0B17C0DE 1332 /// uint32_t Version; // Version, currently always 0. 1333 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1334 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1335 /// uint32_t CPUType; // CPU specifier. 1336 /// ... potentially more later ... 1337 /// }; 1338 enum { 1339 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1340 DarwinBCHeaderSize = 5*4 1341 }; 1342 1343 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1344 const std::string &TT) { 1345 unsigned CPUType = ~0U; 1346 1347 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1348 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1349 // specific constants here because they are implicitly part of the Darwin ABI. 1350 enum { 1351 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1352 DARWIN_CPU_TYPE_X86 = 7, 1353 DARWIN_CPU_TYPE_POWERPC = 18 1354 }; 1355 1356 if (TT.find("x86_64-") == 0) 1357 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1358 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1359 TT[4] == '-' && TT[1] - '3' < 6) 1360 CPUType = DARWIN_CPU_TYPE_X86; 1361 else if (TT.find("powerpc-") == 0) 1362 CPUType = DARWIN_CPU_TYPE_POWERPC; 1363 else if (TT.find("powerpc64-") == 0) 1364 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1365 1366 // Traditional Bitcode starts after header. 1367 unsigned BCOffset = DarwinBCHeaderSize; 1368 1369 Stream.Emit(0x0B17C0DE, 32); 1370 Stream.Emit(0 , 32); // Version. 1371 Stream.Emit(BCOffset , 32); 1372 Stream.Emit(0 , 32); // Filled in later. 1373 Stream.Emit(CPUType , 32); 1374 } 1375 1376 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1377 /// finalize the header. 1378 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1379 // Update the size field in the header. 1380 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1381 1382 // If the file is not a multiple of 16 bytes, insert dummy padding. 1383 while (BufferSize & 15) { 1384 Stream.Emit(0, 8); 1385 ++BufferSize; 1386 } 1387 } 1388 1389 1390 /// WriteBitcodeToFile - Write the specified module to the specified output 1391 /// stream. 1392 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1393 raw_os_ostream RawOut(Out); 1394 // If writing to stdout, set binary mode. 1395 if (llvm::cout == Out) 1396 sys::Program::ChangeStdoutToBinary(); 1397 WriteBitcodeToFile(M, RawOut); 1398 } 1399 1400 /// WriteBitcodeToFile - Write the specified module to the specified output 1401 /// stream. 1402 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1403 std::vector<unsigned char> Buffer; 1404 BitstreamWriter Stream(Buffer); 1405 1406 Buffer.reserve(256*1024); 1407 1408 WriteBitcodeToStream( M, Stream ); 1409 1410 // If writing to stdout, set binary mode. 1411 if (&llvm::outs() == &Out) 1412 sys::Program::ChangeStdoutToBinary(); 1413 1414 // Write the generated bitstream to "Out". 1415 Out.write((char*)&Buffer.front(), Buffer.size()); 1416 1417 // Make sure it hits disk now. 1418 Out.flush(); 1419 } 1420 1421 /// WriteBitcodeToStream - Write the specified module to the specified output 1422 /// stream. 1423 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1424 // If this is darwin, emit a file header and trailer if needed. 1425 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1426 if (isDarwin) 1427 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1428 1429 // Emit the file header. 1430 Stream.Emit((unsigned)'B', 8); 1431 Stream.Emit((unsigned)'C', 8); 1432 Stream.Emit(0x0, 4); 1433 Stream.Emit(0xC, 4); 1434 Stream.Emit(0xE, 4); 1435 Stream.Emit(0xD, 4); 1436 1437 // Emit the module. 1438 WriteModule(M, Stream); 1439 1440 if (isDarwin) 1441 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1442 } 1443