1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/MDNode.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/TypeSymbolTable.h" 26 #include "llvm/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Streams.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/System/Program.h" 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 105 106 static void WriteStringRecord(unsigned Code, const std::string &Str, 107 unsigned AbbrevToUse, BitstreamWriter &Stream) { 108 SmallVector<unsigned, 64> Vals; 109 110 // Code: [strchar x N] 111 for (unsigned i = 0, e = Str.size(); i != e; ++i) 112 Vals.push_back(Str[i]); 113 114 // Emit the finished record. 115 Stream.EmitRecord(Code, Vals, AbbrevToUse); 116 } 117 118 // Emit information about parameter attributes. 119 static void WriteAttributeTable(const ValueEnumerator &VE, 120 BitstreamWriter &Stream) { 121 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 122 if (Attrs.empty()) return; 123 124 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 125 126 SmallVector<uint64_t, 64> Record; 127 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 128 const AttrListPtr &A = Attrs[i]; 129 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 130 const AttributeWithIndex &PAWI = A.getSlot(i); 131 Record.push_back(PAWI.Index); 132 133 // FIXME: remove in LLVM 3.0 134 // Store the alignment in the bitcode as a 16-bit raw value instead of a 135 // 5-bit log2 encoded value. Shift the bits above the alignment up by 136 // 11 bits. 137 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 138 if (PAWI.Attrs & Attribute::Alignment) 139 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 140 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 141 142 Record.push_back(FauxAttr); 143 } 144 145 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 146 Record.clear(); 147 } 148 149 Stream.ExitBlock(); 150 } 151 152 /// WriteTypeTable - Write out the type table for a module. 153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 154 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 155 156 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 157 SmallVector<uint64_t, 64> TypeVals; 158 159 // Abbrev for TYPE_CODE_POINTER. 160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 165 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 166 167 // Abbrev for TYPE_CODE_FUNCTION. 168 Abbv = new BitCodeAbbrev(); 169 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 171 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 174 Log2_32_Ceil(VE.getTypes().size()+1))); 175 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 176 177 // Abbrev for TYPE_CODE_STRUCT. 178 Abbv = new BitCodeAbbrev(); 179 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 183 Log2_32_Ceil(VE.getTypes().size()+1))); 184 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 185 186 // Abbrev for TYPE_CODE_ARRAY. 187 Abbv = new BitCodeAbbrev(); 188 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 191 Log2_32_Ceil(VE.getTypes().size()+1))); 192 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 193 194 // Emit an entry count so the reader can reserve space. 195 TypeVals.push_back(TypeList.size()); 196 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 197 TypeVals.clear(); 198 199 // Loop over all of the types, emitting each in turn. 200 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 201 const Type *T = TypeList[i].first; 202 int AbbrevToUse = 0; 203 unsigned Code = 0; 204 205 switch (T->getTypeID()) { 206 default: llvm_unreachable("Unknown type!"); 207 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 208 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 209 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 210 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 211 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 212 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 213 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 214 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 215 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 286 case GlobalValue::ExternalLinkage: return 0; 287 case GlobalValue::WeakAnyLinkage: return 1; 288 case GlobalValue::AppendingLinkage: return 2; 289 case GlobalValue::InternalLinkage: return 3; 290 case GlobalValue::LinkOnceAnyLinkage: return 4; 291 case GlobalValue::DLLImportLinkage: return 5; 292 case GlobalValue::DLLExportLinkage: return 6; 293 case GlobalValue::ExternalWeakLinkage: return 7; 294 case GlobalValue::CommonLinkage: return 8; 295 case GlobalValue::PrivateLinkage: return 9; 296 case GlobalValue::WeakODRLinkage: return 10; 297 case GlobalValue::LinkOnceODRLinkage: return 11; 298 case GlobalValue::AvailableExternallyLinkage: return 12; 299 case GlobalValue::LinkerPrivateLinkage: return 13; 300 } 301 } 302 303 static unsigned getEncodedVisibility(const GlobalValue *GV) { 304 switch (GV->getVisibility()) { 305 default: llvm_unreachable("Invalid visibility!"); 306 case GlobalValue::DefaultVisibility: return 0; 307 case GlobalValue::HiddenVisibility: return 1; 308 case GlobalValue::ProtectedVisibility: return 2; 309 } 310 } 311 312 // Emit top-level description of module, including target triple, inline asm, 313 // descriptors for global variables, and function prototype info. 314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 // Emit the list of dependent libraries for the Module. 317 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 318 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 319 320 // Emit various pieces of data attached to a module. 321 if (!M->getTargetTriple().empty()) 322 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 323 0/*TODO*/, Stream); 324 if (!M->getDataLayout().empty()) 325 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 326 0/*TODO*/, Stream); 327 if (!M->getModuleInlineAsm().empty()) 328 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 329 0/*TODO*/, Stream); 330 331 // Emit information about sections and GC, computing how many there are. Also 332 // compute the maximum alignment value. 333 std::map<std::string, unsigned> SectionMap; 334 std::map<std::string, unsigned> GCMap; 335 unsigned MaxAlignment = 0; 336 unsigned MaxGlobalType = 0; 337 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 338 GV != E; ++GV) { 339 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 340 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 341 342 if (!GV->hasSection()) continue; 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[GV->getSection()]; 345 if (Entry != 0) continue; 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 351 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 352 if (F->hasSection()) { 353 // Give section names unique ID's. 354 unsigned &Entry = SectionMap[F->getSection()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 357 0/*TODO*/, Stream); 358 Entry = SectionMap.size(); 359 } 360 } 361 if (F->hasGC()) { 362 // Same for GC names. 363 unsigned &Entry = GCMap[F->getGC()]; 364 if (!Entry) { 365 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 366 0/*TODO*/, Stream); 367 Entry = GCMap.size(); 368 } 369 } 370 } 371 372 // Emit abbrev for globals, now that we know # sections and max alignment. 373 unsigned SimpleGVarAbbrev = 0; 374 if (!M->global_empty()) { 375 // Add an abbrev for common globals with no visibility or thread localness. 376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxGlobalType+1))); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 383 if (MaxAlignment == 0) // Alignment. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else { 386 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 388 Log2_32_Ceil(MaxEncAlignment+1))); 389 } 390 if (SectionMap.empty()) // Section. 391 Abbv->Add(BitCodeAbbrevOp(0)); 392 else 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 394 Log2_32_Ceil(SectionMap.size()+1))); 395 // Don't bother emitting vis + thread local. 396 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 397 } 398 399 // Emit the global variable information. 400 SmallVector<unsigned, 64> Vals; 401 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 402 GV != E; ++GV) { 403 unsigned AbbrevToUse = 0; 404 405 // GLOBALVAR: [type, isconst, initid, 406 // linkage, alignment, section, visibility, threadlocal] 407 Vals.push_back(VE.getTypeID(GV->getType())); 408 Vals.push_back(GV->isConstant()); 409 Vals.push_back(GV->isDeclaration() ? 0 : 410 (VE.getValueID(GV->getInitializer()) + 1)); 411 Vals.push_back(getEncodedLinkage(GV)); 412 Vals.push_back(Log2_32(GV->getAlignment())+1); 413 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 414 if (GV->isThreadLocal() || 415 GV->getVisibility() != GlobalValue::DefaultVisibility) { 416 Vals.push_back(getEncodedVisibility(GV)); 417 Vals.push_back(GV->isThreadLocal()); 418 } else { 419 AbbrevToUse = SimpleGVarAbbrev; 420 } 421 422 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 423 Vals.clear(); 424 } 425 426 // Emit the function proto information. 427 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 428 // FUNCTION: [type, callingconv, isproto, paramattr, 429 // linkage, alignment, section, visibility, gc] 430 Vals.push_back(VE.getTypeID(F->getType())); 431 Vals.push_back(F->getCallingConv()); 432 Vals.push_back(F->isDeclaration()); 433 Vals.push_back(getEncodedLinkage(F)); 434 Vals.push_back(VE.getAttributeID(F->getAttributes())); 435 Vals.push_back(Log2_32(F->getAlignment())+1); 436 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 437 Vals.push_back(getEncodedVisibility(F)); 438 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 439 440 unsigned AbbrevToUse = 0; 441 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 442 Vals.clear(); 443 } 444 445 446 // Emit the alias information. 447 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 448 AI != E; ++AI) { 449 Vals.push_back(VE.getTypeID(AI->getType())); 450 Vals.push_back(VE.getValueID(AI->getAliasee())); 451 Vals.push_back(getEncodedLinkage(AI)); 452 Vals.push_back(getEncodedVisibility(AI)); 453 unsigned AbbrevToUse = 0; 454 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 455 Vals.clear(); 456 } 457 } 458 459 static uint64_t GetOptimizationFlags(const Value *V) { 460 uint64_t Flags = 0; 461 462 if (const OverflowingBinaryOperator *OBO = 463 dyn_cast<OverflowingBinaryOperator>(V)) { 464 if (OBO->hasNoSignedOverflow()) 465 Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW; 466 if (OBO->hasNoUnsignedOverflow()) 467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW; 468 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 469 if (Div->isExact()) 470 Flags |= 1 << bitc::SDIV_EXACT; 471 } 472 473 return Flags; 474 } 475 476 static void WriteModuleMetadata(const ValueEnumerator &VE, 477 BitstreamWriter &Stream) { 478 const ValueEnumerator::ValueList &Vals = VE.getValues(); 479 bool StartedMetadataBlock = false; 480 unsigned MDSAbbrev = 0; 481 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 482 if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 483 if (!StartedMetadataBlock) { 484 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 485 486 // Abbrev for METADATA_STRING. 487 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 488 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 491 MDSAbbrev = Stream.EmitAbbrev(Abbv); 492 StartedMetadataBlock = true; 493 } 494 495 SmallVector<unsigned, 64> StrVals; 496 StrVals.clear(); 497 // Code: [strchar x N] 498 const char *StrBegin = MDS->begin(); 499 for (unsigned i = 0, e = MDS->size(); i != e; ++i) 500 StrVals.push_back(StrBegin[i]); 501 502 // Emit the finished record. 503 Stream.EmitRecord(bitc::METADATA_STRING, StrVals, MDSAbbrev); 504 } 505 } 506 507 if (StartedMetadataBlock) 508 Stream.ExitBlock(); 509 } 510 511 512 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 513 const ValueEnumerator &VE, 514 BitstreamWriter &Stream, bool isGlobal) { 515 if (FirstVal == LastVal) return; 516 517 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 518 519 unsigned AggregateAbbrev = 0; 520 unsigned String8Abbrev = 0; 521 unsigned CString7Abbrev = 0; 522 unsigned CString6Abbrev = 0; 523 // If this is a constant pool for the module, emit module-specific abbrevs. 524 if (isGlobal) { 525 // Abbrev for CST_CODE_AGGREGATE. 526 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 527 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 530 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 531 532 // Abbrev for CST_CODE_STRING. 533 Abbv = new BitCodeAbbrev(); 534 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 537 String8Abbrev = Stream.EmitAbbrev(Abbv); 538 // Abbrev for CST_CODE_CSTRING. 539 Abbv = new BitCodeAbbrev(); 540 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 543 CString7Abbrev = Stream.EmitAbbrev(Abbv); 544 // Abbrev for CST_CODE_CSTRING. 545 Abbv = new BitCodeAbbrev(); 546 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 549 CString6Abbrev = Stream.EmitAbbrev(Abbv); 550 } 551 552 SmallVector<uint64_t, 64> Record; 553 554 const ValueEnumerator::ValueList &Vals = VE.getValues(); 555 const Type *LastTy = 0; 556 for (unsigned i = FirstVal; i != LastVal; ++i) { 557 const Value *V = Vals[i].first; 558 if (isa<MDString>(V)) 559 continue; 560 // If we need to switch types, do so now. 561 if (V->getType() != LastTy) { 562 LastTy = V->getType(); 563 Record.push_back(VE.getTypeID(LastTy)); 564 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 565 CONSTANTS_SETTYPE_ABBREV); 566 Record.clear(); 567 } 568 569 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 570 Record.push_back(unsigned(IA->hasSideEffects())); 571 572 // Add the asm string. 573 const std::string &AsmStr = IA->getAsmString(); 574 Record.push_back(AsmStr.size()); 575 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 576 Record.push_back(AsmStr[i]); 577 578 // Add the constraint string. 579 const std::string &ConstraintStr = IA->getConstraintString(); 580 Record.push_back(ConstraintStr.size()); 581 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 582 Record.push_back(ConstraintStr[i]); 583 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 584 Record.clear(); 585 continue; 586 } 587 const Constant *C = cast<Constant>(V); 588 unsigned Code = -1U; 589 unsigned AbbrevToUse = 0; 590 if (C->isNullValue()) { 591 Code = bitc::CST_CODE_NULL; 592 } else if (isa<UndefValue>(C)) { 593 Code = bitc::CST_CODE_UNDEF; 594 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 595 if (IV->getBitWidth() <= 64) { 596 int64_t V = IV->getSExtValue(); 597 if (V >= 0) 598 Record.push_back(V << 1); 599 else 600 Record.push_back((-V << 1) | 1); 601 Code = bitc::CST_CODE_INTEGER; 602 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 603 } else { // Wide integers, > 64 bits in size. 604 // We have an arbitrary precision integer value to write whose 605 // bit width is > 64. However, in canonical unsigned integer 606 // format it is likely that the high bits are going to be zero. 607 // So, we only write the number of active words. 608 unsigned NWords = IV->getValue().getActiveWords(); 609 const uint64_t *RawWords = IV->getValue().getRawData(); 610 for (unsigned i = 0; i != NWords; ++i) { 611 int64_t V = RawWords[i]; 612 if (V >= 0) 613 Record.push_back(V << 1); 614 else 615 Record.push_back((-V << 1) | 1); 616 } 617 Code = bitc::CST_CODE_WIDE_INTEGER; 618 } 619 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 620 Code = bitc::CST_CODE_FLOAT; 621 const Type *Ty = CFP->getType(); 622 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 623 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 624 } else if (Ty == Type::X86_FP80Ty) { 625 // api needed to prevent premature destruction 626 // bits are not in the same order as a normal i80 APInt, compensate. 627 APInt api = CFP->getValueAPF().bitcastToAPInt(); 628 const uint64_t *p = api.getRawData(); 629 Record.push_back((p[1] << 48) | (p[0] >> 16)); 630 Record.push_back(p[0] & 0xffffLL); 631 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 632 APInt api = CFP->getValueAPF().bitcastToAPInt(); 633 const uint64_t *p = api.getRawData(); 634 Record.push_back(p[0]); 635 Record.push_back(p[1]); 636 } else { 637 assert (0 && "Unknown FP type!"); 638 } 639 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 640 // Emit constant strings specially. 641 unsigned NumOps = C->getNumOperands(); 642 // If this is a null-terminated string, use the denser CSTRING encoding. 643 if (C->getOperand(NumOps-1)->isNullValue()) { 644 Code = bitc::CST_CODE_CSTRING; 645 --NumOps; // Don't encode the null, which isn't allowed by char6. 646 } else { 647 Code = bitc::CST_CODE_STRING; 648 AbbrevToUse = String8Abbrev; 649 } 650 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 651 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 652 for (unsigned i = 0; i != NumOps; ++i) { 653 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 654 Record.push_back(V); 655 isCStr7 &= (V & 128) == 0; 656 if (isCStrChar6) 657 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 658 } 659 660 if (isCStrChar6) 661 AbbrevToUse = CString6Abbrev; 662 else if (isCStr7) 663 AbbrevToUse = CString7Abbrev; 664 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 665 isa<ConstantVector>(V)) { 666 Code = bitc::CST_CODE_AGGREGATE; 667 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 668 Record.push_back(VE.getValueID(C->getOperand(i))); 669 AbbrevToUse = AggregateAbbrev; 670 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 671 switch (CE->getOpcode()) { 672 default: 673 if (Instruction::isCast(CE->getOpcode())) { 674 Code = bitc::CST_CODE_CE_CAST; 675 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 676 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 677 Record.push_back(VE.getValueID(C->getOperand(0))); 678 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 679 } else { 680 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 681 Code = bitc::CST_CODE_CE_BINOP; 682 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 683 Record.push_back(VE.getValueID(C->getOperand(0))); 684 Record.push_back(VE.getValueID(C->getOperand(1))); 685 uint64_t Flags = GetOptimizationFlags(CE); 686 if (Flags != 0) 687 Record.push_back(Flags); 688 } 689 break; 690 case Instruction::GetElementPtr: 691 Code = bitc::CST_CODE_CE_GEP; 692 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 693 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 694 Record.push_back(VE.getValueID(C->getOperand(i))); 695 } 696 break; 697 case Instruction::Select: 698 Code = bitc::CST_CODE_CE_SELECT; 699 Record.push_back(VE.getValueID(C->getOperand(0))); 700 Record.push_back(VE.getValueID(C->getOperand(1))); 701 Record.push_back(VE.getValueID(C->getOperand(2))); 702 break; 703 case Instruction::ExtractElement: 704 Code = bitc::CST_CODE_CE_EXTRACTELT; 705 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 706 Record.push_back(VE.getValueID(C->getOperand(0))); 707 Record.push_back(VE.getValueID(C->getOperand(1))); 708 break; 709 case Instruction::InsertElement: 710 Code = bitc::CST_CODE_CE_INSERTELT; 711 Record.push_back(VE.getValueID(C->getOperand(0))); 712 Record.push_back(VE.getValueID(C->getOperand(1))); 713 Record.push_back(VE.getValueID(C->getOperand(2))); 714 break; 715 case Instruction::ShuffleVector: 716 // If the return type and argument types are the same, this is a 717 // standard shufflevector instruction. If the types are different, 718 // then the shuffle is widening or truncating the input vectors, and 719 // the argument type must also be encoded. 720 if (C->getType() == C->getOperand(0)->getType()) { 721 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 722 } else { 723 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 724 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 725 } 726 Record.push_back(VE.getValueID(C->getOperand(0))); 727 Record.push_back(VE.getValueID(C->getOperand(1))); 728 Record.push_back(VE.getValueID(C->getOperand(2))); 729 break; 730 case Instruction::ICmp: 731 case Instruction::FCmp: 732 Code = bitc::CST_CODE_CE_CMP; 733 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 734 Record.push_back(VE.getValueID(C->getOperand(0))); 735 Record.push_back(VE.getValueID(C->getOperand(1))); 736 Record.push_back(CE->getPredicate()); 737 break; 738 } 739 } else if (const MDNode *N = dyn_cast<MDNode>(C)) { 740 Code = bitc::CST_CODE_MDNODE; 741 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 742 if (N->getElement(i)) { 743 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 744 Record.push_back(VE.getValueID(N->getElement(i))); 745 } else { 746 Record.push_back(VE.getTypeID(Type::VoidTy)); 747 Record.push_back(0); 748 } 749 } 750 } else { 751 llvm_unreachable("Unknown constant!"); 752 } 753 Stream.EmitRecord(Code, Record, AbbrevToUse); 754 Record.clear(); 755 } 756 757 Stream.ExitBlock(); 758 } 759 760 static void WriteModuleConstants(const ValueEnumerator &VE, 761 BitstreamWriter &Stream) { 762 const ValueEnumerator::ValueList &Vals = VE.getValues(); 763 764 // Find the first constant to emit, which is the first non-globalvalue value. 765 // We know globalvalues have been emitted by WriteModuleInfo. 766 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 767 if (!isa<GlobalValue>(Vals[i].first)) { 768 WriteConstants(i, Vals.size(), VE, Stream, true); 769 return; 770 } 771 } 772 } 773 774 /// PushValueAndType - The file has to encode both the value and type id for 775 /// many values, because we need to know what type to create for forward 776 /// references. However, most operands are not forward references, so this type 777 /// field is not needed. 778 /// 779 /// This function adds V's value ID to Vals. If the value ID is higher than the 780 /// instruction ID, then it is a forward reference, and it also includes the 781 /// type ID. 782 static bool PushValueAndType(const Value *V, unsigned InstID, 783 SmallVector<unsigned, 64> &Vals, 784 ValueEnumerator &VE) { 785 unsigned ValID = VE.getValueID(V); 786 Vals.push_back(ValID); 787 if (ValID >= InstID) { 788 Vals.push_back(VE.getTypeID(V->getType())); 789 return true; 790 } 791 return false; 792 } 793 794 /// WriteInstruction - Emit an instruction to the specified stream. 795 static void WriteInstruction(const Instruction &I, unsigned InstID, 796 ValueEnumerator &VE, BitstreamWriter &Stream, 797 SmallVector<unsigned, 64> &Vals) { 798 unsigned Code = 0; 799 unsigned AbbrevToUse = 0; 800 switch (I.getOpcode()) { 801 default: 802 if (Instruction::isCast(I.getOpcode())) { 803 Code = bitc::FUNC_CODE_INST_CAST; 804 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 805 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 806 Vals.push_back(VE.getTypeID(I.getType())); 807 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 808 } else { 809 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 810 Code = bitc::FUNC_CODE_INST_BINOP; 811 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 812 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 813 Vals.push_back(VE.getValueID(I.getOperand(1))); 814 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 815 uint64_t Flags = GetOptimizationFlags(&I); 816 if (Flags != 0) { 817 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 818 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 819 Vals.push_back(Flags); 820 } 821 } 822 break; 823 824 case Instruction::GetElementPtr: 825 Code = bitc::FUNC_CODE_INST_GEP; 826 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 827 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 828 break; 829 case Instruction::ExtractValue: { 830 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 831 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 832 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 833 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 834 Vals.push_back(*i); 835 break; 836 } 837 case Instruction::InsertValue: { 838 Code = bitc::FUNC_CODE_INST_INSERTVAL; 839 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 840 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 841 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 842 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 843 Vals.push_back(*i); 844 break; 845 } 846 case Instruction::Select: 847 Code = bitc::FUNC_CODE_INST_VSELECT; 848 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 849 Vals.push_back(VE.getValueID(I.getOperand(2))); 850 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 851 break; 852 case Instruction::ExtractElement: 853 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 854 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 855 Vals.push_back(VE.getValueID(I.getOperand(1))); 856 break; 857 case Instruction::InsertElement: 858 Code = bitc::FUNC_CODE_INST_INSERTELT; 859 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 860 Vals.push_back(VE.getValueID(I.getOperand(1))); 861 Vals.push_back(VE.getValueID(I.getOperand(2))); 862 break; 863 case Instruction::ShuffleVector: 864 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 865 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 866 Vals.push_back(VE.getValueID(I.getOperand(1))); 867 Vals.push_back(VE.getValueID(I.getOperand(2))); 868 break; 869 case Instruction::ICmp: 870 case Instruction::FCmp: 871 // compare returning Int1Ty or vector of Int1Ty 872 Code = bitc::FUNC_CODE_INST_CMP2; 873 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 874 Vals.push_back(VE.getValueID(I.getOperand(1))); 875 Vals.push_back(cast<CmpInst>(I).getPredicate()); 876 break; 877 878 case Instruction::Ret: 879 { 880 Code = bitc::FUNC_CODE_INST_RET; 881 unsigned NumOperands = I.getNumOperands(); 882 if (NumOperands == 0) 883 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 884 else if (NumOperands == 1) { 885 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 886 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 887 } else { 888 for (unsigned i = 0, e = NumOperands; i != e; ++i) 889 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 890 } 891 } 892 break; 893 case Instruction::Br: 894 { 895 Code = bitc::FUNC_CODE_INST_BR; 896 BranchInst &II(cast<BranchInst>(I)); 897 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 898 if (II.isConditional()) { 899 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 900 Vals.push_back(VE.getValueID(II.getCondition())); 901 } 902 } 903 break; 904 case Instruction::Switch: 905 Code = bitc::FUNC_CODE_INST_SWITCH; 906 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 907 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 908 Vals.push_back(VE.getValueID(I.getOperand(i))); 909 break; 910 case Instruction::Invoke: { 911 const InvokeInst *II = cast<InvokeInst>(&I); 912 const Value *Callee(II->getCalledValue()); 913 const PointerType *PTy = cast<PointerType>(Callee->getType()); 914 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 915 Code = bitc::FUNC_CODE_INST_INVOKE; 916 917 Vals.push_back(VE.getAttributeID(II->getAttributes())); 918 Vals.push_back(II->getCallingConv()); 919 Vals.push_back(VE.getValueID(II->getNormalDest())); 920 Vals.push_back(VE.getValueID(II->getUnwindDest())); 921 PushValueAndType(Callee, InstID, Vals, VE); 922 923 // Emit value #'s for the fixed parameters. 924 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 925 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 926 927 // Emit type/value pairs for varargs params. 928 if (FTy->isVarArg()) { 929 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 930 i != e; ++i) 931 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 932 } 933 break; 934 } 935 case Instruction::Unwind: 936 Code = bitc::FUNC_CODE_INST_UNWIND; 937 break; 938 case Instruction::Unreachable: 939 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 940 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 941 break; 942 943 case Instruction::PHI: 944 Code = bitc::FUNC_CODE_INST_PHI; 945 Vals.push_back(VE.getTypeID(I.getType())); 946 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 947 Vals.push_back(VE.getValueID(I.getOperand(i))); 948 break; 949 950 case Instruction::Malloc: 951 Code = bitc::FUNC_CODE_INST_MALLOC; 952 Vals.push_back(VE.getTypeID(I.getType())); 953 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 954 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 955 break; 956 957 case Instruction::Free: 958 Code = bitc::FUNC_CODE_INST_FREE; 959 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 960 break; 961 962 case Instruction::Alloca: 963 Code = bitc::FUNC_CODE_INST_ALLOCA; 964 Vals.push_back(VE.getTypeID(I.getType())); 965 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 966 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 967 break; 968 969 case Instruction::Load: 970 Code = bitc::FUNC_CODE_INST_LOAD; 971 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 972 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 973 974 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 975 Vals.push_back(cast<LoadInst>(I).isVolatile()); 976 break; 977 case Instruction::Store: 978 Code = bitc::FUNC_CODE_INST_STORE2; 979 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 980 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 981 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 982 Vals.push_back(cast<StoreInst>(I).isVolatile()); 983 break; 984 case Instruction::Call: { 985 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 986 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 987 988 Code = bitc::FUNC_CODE_INST_CALL; 989 990 const CallInst *CI = cast<CallInst>(&I); 991 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 992 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 993 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 994 995 // Emit value #'s for the fixed parameters. 996 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 997 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 998 999 // Emit type/value pairs for varargs params. 1000 if (FTy->isVarArg()) { 1001 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1002 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1003 i != e; ++i) 1004 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1005 } 1006 break; 1007 } 1008 case Instruction::VAArg: 1009 Code = bitc::FUNC_CODE_INST_VAARG; 1010 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1011 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1012 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1013 break; 1014 } 1015 1016 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1017 Vals.clear(); 1018 } 1019 1020 // Emit names for globals/functions etc. 1021 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1022 const ValueEnumerator &VE, 1023 BitstreamWriter &Stream) { 1024 if (VST.empty()) return; 1025 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1026 1027 // FIXME: Set up the abbrev, we know how many values there are! 1028 // FIXME: We know if the type names can use 7-bit ascii. 1029 SmallVector<unsigned, 64> NameVals; 1030 1031 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1032 SI != SE; ++SI) { 1033 1034 const ValueName &Name = *SI; 1035 1036 // Figure out the encoding to use for the name. 1037 bool is7Bit = true; 1038 bool isChar6 = true; 1039 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1040 C != E; ++C) { 1041 if (isChar6) 1042 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1043 if ((unsigned char)*C & 128) { 1044 is7Bit = false; 1045 break; // don't bother scanning the rest. 1046 } 1047 } 1048 1049 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1050 1051 // VST_ENTRY: [valueid, namechar x N] 1052 // VST_BBENTRY: [bbid, namechar x N] 1053 unsigned Code; 1054 if (isa<BasicBlock>(SI->getValue())) { 1055 Code = bitc::VST_CODE_BBENTRY; 1056 if (isChar6) 1057 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1058 } else { 1059 Code = bitc::VST_CODE_ENTRY; 1060 if (isChar6) 1061 AbbrevToUse = VST_ENTRY_6_ABBREV; 1062 else if (is7Bit) 1063 AbbrevToUse = VST_ENTRY_7_ABBREV; 1064 } 1065 1066 NameVals.push_back(VE.getValueID(SI->getValue())); 1067 for (const char *P = Name.getKeyData(), 1068 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1069 NameVals.push_back((unsigned char)*P); 1070 1071 // Emit the finished record. 1072 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1073 NameVals.clear(); 1074 } 1075 Stream.ExitBlock(); 1076 } 1077 1078 /// WriteFunction - Emit a function body to the module stream. 1079 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1080 BitstreamWriter &Stream) { 1081 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1082 VE.incorporateFunction(F); 1083 1084 SmallVector<unsigned, 64> Vals; 1085 1086 // Emit the number of basic blocks, so the reader can create them ahead of 1087 // time. 1088 Vals.push_back(VE.getBasicBlocks().size()); 1089 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1090 Vals.clear(); 1091 1092 // If there are function-local constants, emit them now. 1093 unsigned CstStart, CstEnd; 1094 VE.getFunctionConstantRange(CstStart, CstEnd); 1095 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1096 1097 // Keep a running idea of what the instruction ID is. 1098 unsigned InstID = CstEnd; 1099 1100 // Finally, emit all the instructions, in order. 1101 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1102 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1103 I != E; ++I) { 1104 WriteInstruction(*I, InstID, VE, Stream, Vals); 1105 if (I->getType() != Type::VoidTy) 1106 ++InstID; 1107 } 1108 1109 // Emit names for all the instructions etc. 1110 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1111 1112 VE.purgeFunction(); 1113 Stream.ExitBlock(); 1114 } 1115 1116 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1117 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1118 const ValueEnumerator &VE, 1119 BitstreamWriter &Stream) { 1120 if (TST.empty()) return; 1121 1122 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1123 1124 // 7-bit fixed width VST_CODE_ENTRY strings. 1125 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1126 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1128 Log2_32_Ceil(VE.getTypes().size()+1))); 1129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1131 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1132 1133 SmallVector<unsigned, 64> NameVals; 1134 1135 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1136 TI != TE; ++TI) { 1137 // TST_ENTRY: [typeid, namechar x N] 1138 NameVals.push_back(VE.getTypeID(TI->second)); 1139 1140 const std::string &Str = TI->first; 1141 bool is7Bit = true; 1142 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1143 NameVals.push_back((unsigned char)Str[i]); 1144 if (Str[i] & 128) 1145 is7Bit = false; 1146 } 1147 1148 // Emit the finished record. 1149 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1150 NameVals.clear(); 1151 } 1152 1153 Stream.ExitBlock(); 1154 } 1155 1156 // Emit blockinfo, which defines the standard abbreviations etc. 1157 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1158 // We only want to emit block info records for blocks that have multiple 1159 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1160 // blocks can defined their abbrevs inline. 1161 Stream.EnterBlockInfoBlock(2); 1162 1163 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1164 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1169 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1170 Abbv) != VST_ENTRY_8_ABBREV) 1171 llvm_unreachable("Unexpected abbrev ordering!"); 1172 } 1173 1174 { // 7-bit fixed width VST_ENTRY strings. 1175 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1176 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1180 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1181 Abbv) != VST_ENTRY_7_ABBREV) 1182 llvm_unreachable("Unexpected abbrev ordering!"); 1183 } 1184 { // 6-bit char6 VST_ENTRY strings. 1185 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1186 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1190 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1191 Abbv) != VST_ENTRY_6_ABBREV) 1192 llvm_unreachable("Unexpected abbrev ordering!"); 1193 } 1194 { // 6-bit char6 VST_BBENTRY strings. 1195 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1196 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1200 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1201 Abbv) != VST_BBENTRY_6_ABBREV) 1202 llvm_unreachable("Unexpected abbrev ordering!"); 1203 } 1204 1205 1206 1207 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1208 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1209 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1211 Log2_32_Ceil(VE.getTypes().size()+1))); 1212 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1213 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1214 llvm_unreachable("Unexpected abbrev ordering!"); 1215 } 1216 1217 { // INTEGER abbrev for CONSTANTS_BLOCK. 1218 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1219 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1221 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1222 Abbv) != CONSTANTS_INTEGER_ABBREV) 1223 llvm_unreachable("Unexpected abbrev ordering!"); 1224 } 1225 1226 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1227 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1228 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1231 Log2_32_Ceil(VE.getTypes().size()+1))); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1233 1234 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1235 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1236 llvm_unreachable("Unexpected abbrev ordering!"); 1237 } 1238 { // NULL abbrev for CONSTANTS_BLOCK. 1239 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1240 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1241 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1242 Abbv) != CONSTANTS_NULL_Abbrev) 1243 llvm_unreachable("Unexpected abbrev ordering!"); 1244 } 1245 1246 // FIXME: This should only use space for first class types! 1247 1248 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1249 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1250 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1254 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1255 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1256 llvm_unreachable("Unexpected abbrev ordering!"); 1257 } 1258 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1259 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1264 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1265 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1266 llvm_unreachable("Unexpected abbrev ordering!"); 1267 } 1268 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1269 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1270 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1275 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1276 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1277 llvm_unreachable("Unexpected abbrev ordering!"); 1278 } 1279 { // INST_CAST abbrev for FUNCTION_BLOCK. 1280 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1281 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1284 Log2_32_Ceil(VE.getTypes().size()+1))); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1286 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1287 Abbv) != FUNCTION_INST_CAST_ABBREV) 1288 llvm_unreachable("Unexpected abbrev ordering!"); 1289 } 1290 1291 { // INST_RET abbrev for FUNCTION_BLOCK. 1292 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1293 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1294 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1295 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1296 llvm_unreachable("Unexpected abbrev ordering!"); 1297 } 1298 { // INST_RET abbrev for FUNCTION_BLOCK. 1299 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1300 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1302 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1303 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1304 llvm_unreachable("Unexpected abbrev ordering!"); 1305 } 1306 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1307 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1308 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1309 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1310 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1311 llvm_unreachable("Unexpected abbrev ordering!"); 1312 } 1313 1314 Stream.ExitBlock(); 1315 } 1316 1317 1318 /// WriteModule - Emit the specified module to the bitstream. 1319 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1320 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1321 1322 // Emit the version number if it is non-zero. 1323 if (CurVersion) { 1324 SmallVector<unsigned, 1> Vals; 1325 Vals.push_back(CurVersion); 1326 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1327 } 1328 1329 // Analyze the module, enumerating globals, functions, etc. 1330 ValueEnumerator VE(M); 1331 1332 // Emit blockinfo, which defines the standard abbreviations etc. 1333 WriteBlockInfo(VE, Stream); 1334 1335 // Emit information about parameter attributes. 1336 WriteAttributeTable(VE, Stream); 1337 1338 // Emit information describing all of the types in the module. 1339 WriteTypeTable(VE, Stream); 1340 1341 // Emit top-level description of module, including target triple, inline asm, 1342 // descriptors for global variables, and function prototype info. 1343 WriteModuleInfo(M, VE, Stream); 1344 1345 // Emit metadata. 1346 WriteModuleMetadata(VE, Stream); 1347 1348 // Emit constants. 1349 WriteModuleConstants(VE, Stream); 1350 1351 // Emit function bodies. 1352 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1353 if (!I->isDeclaration()) 1354 WriteFunction(*I, VE, Stream); 1355 1356 // Emit the type symbol table information. 1357 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1358 1359 // Emit names for globals/functions etc. 1360 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1361 1362 Stream.ExitBlock(); 1363 } 1364 1365 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1366 /// header and trailer to make it compatible with the system archiver. To do 1367 /// this we emit the following header, and then emit a trailer that pads the 1368 /// file out to be a multiple of 16 bytes. 1369 /// 1370 /// struct bc_header { 1371 /// uint32_t Magic; // 0x0B17C0DE 1372 /// uint32_t Version; // Version, currently always 0. 1373 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1374 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1375 /// uint32_t CPUType; // CPU specifier. 1376 /// ... potentially more later ... 1377 /// }; 1378 enum { 1379 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1380 DarwinBCHeaderSize = 5*4 1381 }; 1382 1383 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1384 const std::string &TT) { 1385 unsigned CPUType = ~0U; 1386 1387 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1388 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1389 // specific constants here because they are implicitly part of the Darwin ABI. 1390 enum { 1391 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1392 DARWIN_CPU_TYPE_X86 = 7, 1393 DARWIN_CPU_TYPE_POWERPC = 18 1394 }; 1395 1396 if (TT.find("x86_64-") == 0) 1397 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1398 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1399 TT[4] == '-' && TT[1] - '3' < 6) 1400 CPUType = DARWIN_CPU_TYPE_X86; 1401 else if (TT.find("powerpc-") == 0) 1402 CPUType = DARWIN_CPU_TYPE_POWERPC; 1403 else if (TT.find("powerpc64-") == 0) 1404 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1405 1406 // Traditional Bitcode starts after header. 1407 unsigned BCOffset = DarwinBCHeaderSize; 1408 1409 Stream.Emit(0x0B17C0DE, 32); 1410 Stream.Emit(0 , 32); // Version. 1411 Stream.Emit(BCOffset , 32); 1412 Stream.Emit(0 , 32); // Filled in later. 1413 Stream.Emit(CPUType , 32); 1414 } 1415 1416 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1417 /// finalize the header. 1418 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1419 // Update the size field in the header. 1420 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1421 1422 // If the file is not a multiple of 16 bytes, insert dummy padding. 1423 while (BufferSize & 15) { 1424 Stream.Emit(0, 8); 1425 ++BufferSize; 1426 } 1427 } 1428 1429 1430 /// WriteBitcodeToFile - Write the specified module to the specified output 1431 /// stream. 1432 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1433 raw_os_ostream RawOut(Out); 1434 // If writing to stdout, set binary mode. 1435 if (llvm::cout == Out) 1436 sys::Program::ChangeStdoutToBinary(); 1437 WriteBitcodeToFile(M, RawOut); 1438 } 1439 1440 /// WriteBitcodeToFile - Write the specified module to the specified output 1441 /// stream. 1442 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1443 std::vector<unsigned char> Buffer; 1444 BitstreamWriter Stream(Buffer); 1445 1446 Buffer.reserve(256*1024); 1447 1448 WriteBitcodeToStream( M, Stream ); 1449 1450 // If writing to stdout, set binary mode. 1451 if (&llvm::outs() == &Out) 1452 sys::Program::ChangeStdoutToBinary(); 1453 1454 // Write the generated bitstream to "Out". 1455 Out.write((char*)&Buffer.front(), Buffer.size()); 1456 1457 // Make sure it hits disk now. 1458 Out.flush(); 1459 } 1460 1461 /// WriteBitcodeToStream - Write the specified module to the specified output 1462 /// stream. 1463 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1464 // If this is darwin, emit a file header and trailer if needed. 1465 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1466 if (isDarwin) 1467 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1468 1469 // Emit the file header. 1470 Stream.Emit((unsigned)'B', 8); 1471 Stream.Emit((unsigned)'C', 8); 1472 Stream.Emit(0x0, 4); 1473 Stream.Emit(0xC, 4); 1474 Stream.Emit(0xE, 4); 1475 Stream.Emit(0xD, 4); 1476 1477 // Emit the module. 1478 WriteModule(M, Stream); 1479 1480 if (isDarwin) 1481 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1482 } 1483