xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision fee02c6c1378f7244e05157aa9b07da77061fb64)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<Type*>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
135   switch (Val) {
136   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
137   case bitc::ORDERING_UNORDERED: return Unordered;
138   case bitc::ORDERING_MONOTONIC: return Monotonic;
139   case bitc::ORDERING_ACQUIRE: return Acquire;
140   case bitc::ORDERING_RELEASE: return Release;
141   case bitc::ORDERING_ACQREL: return AcquireRelease;
142   default: // Map unknown orderings to sequentially-consistent.
143   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
144   }
145 }
146 
147 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
148   switch (Val) {
149   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
150   default: // Map unknown scopes to cross-thread.
151   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
152   }
153 }
154 
155 namespace llvm {
156 namespace {
157   /// @brief A class for maintaining the slot number definition
158   /// as a placeholder for the actual definition for forward constants defs.
159   class ConstantPlaceHolder : public ConstantExpr {
160     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
161   public:
162     // allocate space for exactly one operand
163     void *operator new(size_t s) {
164       return User::operator new(s, 1);
165     }
166     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
167       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
168       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
169     }
170 
171     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
172     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
173     static bool classof(const Value *V) {
174       return isa<ConstantExpr>(V) &&
175              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
176     }
177 
178 
179     /// Provide fast operand accessors
180     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
181   };
182 }
183 
184 // FIXME: can we inherit this from ConstantExpr?
185 template <>
186 struct OperandTraits<ConstantPlaceHolder> :
187   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
188 };
189 }
190 
191 
192 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
193   if (Idx == size()) {
194     push_back(V);
195     return;
196   }
197 
198   if (Idx >= size())
199     resize(Idx+1);
200 
201   WeakVH &OldV = ValuePtrs[Idx];
202   if (OldV == 0) {
203     OldV = V;
204     return;
205   }
206 
207   // Handle constants and non-constants (e.g. instrs) differently for
208   // efficiency.
209   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
210     ResolveConstants.push_back(std::make_pair(PHC, Idx));
211     OldV = V;
212   } else {
213     // If there was a forward reference to this value, replace it.
214     Value *PrevVal = OldV;
215     OldV->replaceAllUsesWith(V);
216     delete PrevVal;
217   }
218 }
219 
220 
221 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
222                                                     Type *Ty) {
223   if (Idx >= size())
224     resize(Idx + 1);
225 
226   if (Value *V = ValuePtrs[Idx]) {
227     assert(Ty == V->getType() && "Type mismatch in constant table!");
228     return cast<Constant>(V);
229   }
230 
231   // Create and return a placeholder, which will later be RAUW'd.
232   Constant *C = new ConstantPlaceHolder(Ty, Context);
233   ValuePtrs[Idx] = C;
234   return C;
235 }
236 
237 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
238   if (Idx >= size())
239     resize(Idx + 1);
240 
241   if (Value *V = ValuePtrs[Idx]) {
242     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
243     return V;
244   }
245 
246   // No type specified, must be invalid reference.
247   if (Ty == 0) return 0;
248 
249   // Create and return a placeholder, which will later be RAUW'd.
250   Value *V = new Argument(Ty);
251   ValuePtrs[Idx] = V;
252   return V;
253 }
254 
255 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
256 /// resolves any forward references.  The idea behind this is that we sometimes
257 /// get constants (such as large arrays) which reference *many* forward ref
258 /// constants.  Replacing each of these causes a lot of thrashing when
259 /// building/reuniquing the constant.  Instead of doing this, we look at all the
260 /// uses and rewrite all the place holders at once for any constant that uses
261 /// a placeholder.
262 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
263   // Sort the values by-pointer so that they are efficient to look up with a
264   // binary search.
265   std::sort(ResolveConstants.begin(), ResolveConstants.end());
266 
267   SmallVector<Constant*, 64> NewOps;
268 
269   while (!ResolveConstants.empty()) {
270     Value *RealVal = operator[](ResolveConstants.back().second);
271     Constant *Placeholder = ResolveConstants.back().first;
272     ResolveConstants.pop_back();
273 
274     // Loop over all users of the placeholder, updating them to reference the
275     // new value.  If they reference more than one placeholder, update them all
276     // at once.
277     while (!Placeholder->use_empty()) {
278       Value::use_iterator UI = Placeholder->use_begin();
279       User *U = *UI;
280 
281       // If the using object isn't uniqued, just update the operands.  This
282       // handles instructions and initializers for global variables.
283       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
284         UI.getUse().set(RealVal);
285         continue;
286       }
287 
288       // Otherwise, we have a constant that uses the placeholder.  Replace that
289       // constant with a new constant that has *all* placeholder uses updated.
290       Constant *UserC = cast<Constant>(U);
291       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
292            I != E; ++I) {
293         Value *NewOp;
294         if (!isa<ConstantPlaceHolder>(*I)) {
295           // Not a placeholder reference.
296           NewOp = *I;
297         } else if (*I == Placeholder) {
298           // Common case is that it just references this one placeholder.
299           NewOp = RealVal;
300         } else {
301           // Otherwise, look up the placeholder in ResolveConstants.
302           ResolveConstantsTy::iterator It =
303             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
304                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
305                                                             0));
306           assert(It != ResolveConstants.end() && It->first == *I);
307           NewOp = operator[](It->second);
308         }
309 
310         NewOps.push_back(cast<Constant>(NewOp));
311       }
312 
313       // Make the new constant.
314       Constant *NewC;
315       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
316         NewC = ConstantArray::get(UserCA->getType(), NewOps);
317       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
318         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
319       } else if (isa<ConstantVector>(UserC)) {
320         NewC = ConstantVector::get(NewOps);
321       } else {
322         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
323         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
324       }
325 
326       UserC->replaceAllUsesWith(NewC);
327       UserC->destroyConstant();
328       NewOps.clear();
329     }
330 
331     // Update all ValueHandles, they should be the only users at this point.
332     Placeholder->replaceAllUsesWith(RealVal);
333     delete Placeholder;
334   }
335 }
336 
337 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
338   if (Idx == size()) {
339     push_back(V);
340     return;
341   }
342 
343   if (Idx >= size())
344     resize(Idx+1);
345 
346   WeakVH &OldV = MDValuePtrs[Idx];
347   if (OldV == 0) {
348     OldV = V;
349     return;
350   }
351 
352   // If there was a forward reference to this value, replace it.
353   MDNode *PrevVal = cast<MDNode>(OldV);
354   OldV->replaceAllUsesWith(V);
355   MDNode::deleteTemporary(PrevVal);
356   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
357   // value for Idx.
358   MDValuePtrs[Idx] = V;
359 }
360 
361 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
362   if (Idx >= size())
363     resize(Idx + 1);
364 
365   if (Value *V = MDValuePtrs[Idx]) {
366     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
367     return V;
368   }
369 
370   // Create and return a placeholder, which will later be RAUW'd.
371   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
372   MDValuePtrs[Idx] = V;
373   return V;
374 }
375 
376 Type *BitcodeReader::getTypeByID(unsigned ID) {
377   // The type table size is always specified correctly.
378   if (ID >= TypeList.size())
379     return 0;
380 
381   if (Type *Ty = TypeList[ID])
382     return Ty;
383 
384   // If we have a forward reference, the only possible case is when it is to a
385   // named struct.  Just create a placeholder for now.
386   return TypeList[ID] = StructType::createNamed(Context, "");
387 }
388 
389 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
390 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
391   if (ID >= TypeList.size())
392     TypeList.resize(ID+1);
393 
394   return TypeList[ID];
395 }
396 
397 
398 //===----------------------------------------------------------------------===//
399 //  Functions for parsing blocks from the bitcode file
400 //===----------------------------------------------------------------------===//
401 
402 bool BitcodeReader::ParseAttributeBlock() {
403   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
404     return Error("Malformed block record");
405 
406   if (!MAttributes.empty())
407     return Error("Multiple PARAMATTR blocks found!");
408 
409   SmallVector<uint64_t, 64> Record;
410 
411   SmallVector<AttributeWithIndex, 8> Attrs;
412 
413   // Read all the records.
414   while (1) {
415     unsigned Code = Stream.ReadCode();
416     if (Code == bitc::END_BLOCK) {
417       if (Stream.ReadBlockEnd())
418         return Error("Error at end of PARAMATTR block");
419       return false;
420     }
421 
422     if (Code == bitc::ENTER_SUBBLOCK) {
423       // No known subblocks, always skip them.
424       Stream.ReadSubBlockID();
425       if (Stream.SkipBlock())
426         return Error("Malformed block record");
427       continue;
428     }
429 
430     if (Code == bitc::DEFINE_ABBREV) {
431       Stream.ReadAbbrevRecord();
432       continue;
433     }
434 
435     // Read a record.
436     Record.clear();
437     switch (Stream.ReadRecord(Code, Record)) {
438     default:  // Default behavior: ignore.
439       break;
440     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
441       if (Record.size() & 1)
442         return Error("Invalid ENTRY record");
443 
444       // FIXME : Remove this autoupgrade code in LLVM 3.0.
445       // If Function attributes are using index 0 then transfer them
446       // to index ~0. Index 0 is used for return value attributes but used to be
447       // used for function attributes.
448       Attributes RetAttribute = Attribute::None;
449       Attributes FnAttribute = Attribute::None;
450       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
451         // FIXME: remove in LLVM 3.0
452         // The alignment is stored as a 16-bit raw value from bits 31--16.
453         // We shift the bits above 31 down by 11 bits.
454 
455         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
456         if (Alignment && !isPowerOf2_32(Alignment))
457           return Error("Alignment is not a power of two.");
458 
459         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
460         if (Alignment)
461           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
462         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
463         Record[i+1] = ReconstitutedAttr;
464 
465         if (Record[i] == 0)
466           RetAttribute = Record[i+1];
467         else if (Record[i] == ~0U)
468           FnAttribute = Record[i+1];
469       }
470 
471       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
472                               Attribute::ReadOnly|Attribute::ReadNone);
473 
474       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
475           (RetAttribute & OldRetAttrs) != 0) {
476         if (FnAttribute == Attribute::None) { // add a slot so they get added.
477           Record.push_back(~0U);
478           Record.push_back(0);
479         }
480 
481         FnAttribute  |= RetAttribute & OldRetAttrs;
482         RetAttribute &= ~OldRetAttrs;
483       }
484 
485       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
486         if (Record[i] == 0) {
487           if (RetAttribute != Attribute::None)
488             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
489         } else if (Record[i] == ~0U) {
490           if (FnAttribute != Attribute::None)
491             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
492         } else if (Record[i+1] != Attribute::None)
493           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
494       }
495 
496       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
497       Attrs.clear();
498       break;
499     }
500     }
501   }
502 }
503 
504 bool BitcodeReader::ParseTypeTable() {
505   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
506     return Error("Malformed block record");
507 
508   return ParseTypeTableBody();
509 }
510 
511 bool BitcodeReader::ParseTypeTableBody() {
512   if (!TypeList.empty())
513     return Error("Multiple TYPE_BLOCKs found!");
514 
515   SmallVector<uint64_t, 64> Record;
516   unsigned NumRecords = 0;
517 
518   SmallString<64> TypeName;
519 
520   // Read all the records for this type table.
521   while (1) {
522     unsigned Code = Stream.ReadCode();
523     if (Code == bitc::END_BLOCK) {
524       if (NumRecords != TypeList.size())
525         return Error("Invalid type forward reference in TYPE_BLOCK");
526       if (Stream.ReadBlockEnd())
527         return Error("Error at end of type table block");
528       return false;
529     }
530 
531     if (Code == bitc::ENTER_SUBBLOCK) {
532       // No known subblocks, always skip them.
533       Stream.ReadSubBlockID();
534       if (Stream.SkipBlock())
535         return Error("Malformed block record");
536       continue;
537     }
538 
539     if (Code == bitc::DEFINE_ABBREV) {
540       Stream.ReadAbbrevRecord();
541       continue;
542     }
543 
544     // Read a record.
545     Record.clear();
546     Type *ResultTy = 0;
547     switch (Stream.ReadRecord(Code, Record)) {
548     default: return Error("unknown type in type table");
549     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
550       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
551       // type list.  This allows us to reserve space.
552       if (Record.size() < 1)
553         return Error("Invalid TYPE_CODE_NUMENTRY record");
554       TypeList.resize(Record[0]);
555       continue;
556     case bitc::TYPE_CODE_VOID:      // VOID
557       ResultTy = Type::getVoidTy(Context);
558       break;
559     case bitc::TYPE_CODE_FLOAT:     // FLOAT
560       ResultTy = Type::getFloatTy(Context);
561       break;
562     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
563       ResultTy = Type::getDoubleTy(Context);
564       break;
565     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
566       ResultTy = Type::getX86_FP80Ty(Context);
567       break;
568     case bitc::TYPE_CODE_FP128:     // FP128
569       ResultTy = Type::getFP128Ty(Context);
570       break;
571     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
572       ResultTy = Type::getPPC_FP128Ty(Context);
573       break;
574     case bitc::TYPE_CODE_LABEL:     // LABEL
575       ResultTy = Type::getLabelTy(Context);
576       break;
577     case bitc::TYPE_CODE_METADATA:  // METADATA
578       ResultTy = Type::getMetadataTy(Context);
579       break;
580     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
581       ResultTy = Type::getX86_MMXTy(Context);
582       break;
583     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
584       if (Record.size() < 1)
585         return Error("Invalid Integer type record");
586 
587       ResultTy = IntegerType::get(Context, Record[0]);
588       break;
589     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
590                                     //          [pointee type, address space]
591       if (Record.size() < 1)
592         return Error("Invalid POINTER type record");
593       unsigned AddressSpace = 0;
594       if (Record.size() == 2)
595         AddressSpace = Record[1];
596       ResultTy = getTypeByID(Record[0]);
597       if (ResultTy == 0) return Error("invalid element type in pointer type");
598       ResultTy = PointerType::get(ResultTy, AddressSpace);
599       break;
600     }
601     case bitc::TYPE_CODE_FUNCTION: {
602       // FIXME: attrid is dead, remove it in LLVM 3.0
603       // FUNCTION: [vararg, attrid, retty, paramty x N]
604       if (Record.size() < 3)
605         return Error("Invalid FUNCTION type record");
606       std::vector<Type*> ArgTys;
607       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
608         if (Type *T = getTypeByID(Record[i]))
609           ArgTys.push_back(T);
610         else
611           break;
612       }
613 
614       ResultTy = getTypeByID(Record[2]);
615       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
616         return Error("invalid type in function type");
617 
618       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
619       break;
620     }
621     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
622       if (Record.size() < 1)
623         return Error("Invalid STRUCT type record");
624       std::vector<Type*> EltTys;
625       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
626         if (Type *T = getTypeByID(Record[i]))
627           EltTys.push_back(T);
628         else
629           break;
630       }
631       if (EltTys.size() != Record.size()-1)
632         return Error("invalid type in struct type");
633       ResultTy = StructType::get(Context, EltTys, Record[0]);
634       break;
635     }
636     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
637       if (ConvertToString(Record, 0, TypeName))
638         return Error("Invalid STRUCT_NAME record");
639       continue;
640 
641     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
642       if (Record.size() < 1)
643         return Error("Invalid STRUCT type record");
644 
645       if (NumRecords >= TypeList.size())
646         return Error("invalid TYPE table");
647 
648       // Check to see if this was forward referenced, if so fill in the temp.
649       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
650       if (Res) {
651         Res->setName(TypeName);
652         TypeList[NumRecords] = 0;
653       } else  // Otherwise, create a new struct.
654         Res = StructType::createNamed(Context, TypeName);
655       TypeName.clear();
656 
657       SmallVector<Type*, 8> EltTys;
658       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
659         if (Type *T = getTypeByID(Record[i]))
660           EltTys.push_back(T);
661         else
662           break;
663       }
664       if (EltTys.size() != Record.size()-1)
665         return Error("invalid STRUCT type record");
666       Res->setBody(EltTys, Record[0]);
667       ResultTy = Res;
668       break;
669     }
670     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
671       if (Record.size() != 1)
672         return Error("Invalid OPAQUE type record");
673 
674       if (NumRecords >= TypeList.size())
675         return Error("invalid TYPE table");
676 
677       // Check to see if this was forward referenced, if so fill in the temp.
678       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
679       if (Res) {
680         Res->setName(TypeName);
681         TypeList[NumRecords] = 0;
682       } else  // Otherwise, create a new struct with no body.
683         Res = StructType::createNamed(Context, TypeName);
684       TypeName.clear();
685       ResultTy = Res;
686       break;
687     }
688     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
689       if (Record.size() < 2)
690         return Error("Invalid ARRAY type record");
691       if ((ResultTy = getTypeByID(Record[1])))
692         ResultTy = ArrayType::get(ResultTy, Record[0]);
693       else
694         return Error("Invalid ARRAY type element");
695       break;
696     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
697       if (Record.size() < 2)
698         return Error("Invalid VECTOR type record");
699       if ((ResultTy = getTypeByID(Record[1])))
700         ResultTy = VectorType::get(ResultTy, Record[0]);
701       else
702         return Error("Invalid ARRAY type element");
703       break;
704     }
705 
706     if (NumRecords >= TypeList.size())
707       return Error("invalid TYPE table");
708     assert(ResultTy && "Didn't read a type?");
709     assert(TypeList[NumRecords] == 0 && "Already read type?");
710     TypeList[NumRecords++] = ResultTy;
711   }
712 }
713 
714 // FIXME: Remove in LLVM 3.1
715 bool BitcodeReader::ParseOldTypeTable() {
716   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
717     return Error("Malformed block record");
718 
719   if (!TypeList.empty())
720     return Error("Multiple TYPE_BLOCKs found!");
721 
722 
723   // While horrible, we have no good ordering of types in the bc file.  Just
724   // iteratively parse types out of the bc file in multiple passes until we get
725   // them all.  Do this by saving a cursor for the start of the type block.
726   BitstreamCursor StartOfTypeBlockCursor(Stream);
727 
728   unsigned NumTypesRead = 0;
729 
730   SmallVector<uint64_t, 64> Record;
731 RestartScan:
732   unsigned NextTypeID = 0;
733   bool ReadAnyTypes = false;
734 
735   // Read all the records for this type table.
736   while (1) {
737     unsigned Code = Stream.ReadCode();
738     if (Code == bitc::END_BLOCK) {
739       if (NextTypeID != TypeList.size())
740         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
741 
742       // If we haven't read all of the types yet, iterate again.
743       if (NumTypesRead != TypeList.size()) {
744         // If we didn't successfully read any types in this pass, then we must
745         // have an unhandled forward reference.
746         if (!ReadAnyTypes)
747           return Error("Obsolete bitcode contains unhandled recursive type");
748 
749         Stream = StartOfTypeBlockCursor;
750         goto RestartScan;
751       }
752 
753       if (Stream.ReadBlockEnd())
754         return Error("Error at end of type table block");
755       return false;
756     }
757 
758     if (Code == bitc::ENTER_SUBBLOCK) {
759       // No known subblocks, always skip them.
760       Stream.ReadSubBlockID();
761       if (Stream.SkipBlock())
762         return Error("Malformed block record");
763       continue;
764     }
765 
766     if (Code == bitc::DEFINE_ABBREV) {
767       Stream.ReadAbbrevRecord();
768       continue;
769     }
770 
771     // Read a record.
772     Record.clear();
773     Type *ResultTy = 0;
774     switch (Stream.ReadRecord(Code, Record)) {
775     default: return Error("unknown type in type table");
776     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
777       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
778       // type list.  This allows us to reserve space.
779       if (Record.size() < 1)
780         return Error("Invalid TYPE_CODE_NUMENTRY record");
781       TypeList.resize(Record[0]);
782       continue;
783     case bitc::TYPE_CODE_VOID:      // VOID
784       ResultTy = Type::getVoidTy(Context);
785       break;
786     case bitc::TYPE_CODE_FLOAT:     // FLOAT
787       ResultTy = Type::getFloatTy(Context);
788       break;
789     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
790       ResultTy = Type::getDoubleTy(Context);
791       break;
792     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
793       ResultTy = Type::getX86_FP80Ty(Context);
794       break;
795     case bitc::TYPE_CODE_FP128:     // FP128
796       ResultTy = Type::getFP128Ty(Context);
797       break;
798     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
799       ResultTy = Type::getPPC_FP128Ty(Context);
800       break;
801     case bitc::TYPE_CODE_LABEL:     // LABEL
802       ResultTy = Type::getLabelTy(Context);
803       break;
804     case bitc::TYPE_CODE_METADATA:  // METADATA
805       ResultTy = Type::getMetadataTy(Context);
806       break;
807     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
808       ResultTy = Type::getX86_MMXTy(Context);
809       break;
810     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
811       if (Record.size() < 1)
812         return Error("Invalid Integer type record");
813       ResultTy = IntegerType::get(Context, Record[0]);
814       break;
815     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
816       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
817         ResultTy = StructType::createNamed(Context, "");
818       break;
819     case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
820       if (NextTypeID >= TypeList.size()) break;
821       // If we already read it, don't reprocess.
822       if (TypeList[NextTypeID] &&
823           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
824         break;
825 
826       // Set a type.
827       if (TypeList[NextTypeID] == 0)
828         TypeList[NextTypeID] = StructType::createNamed(Context, "");
829 
830       std::vector<Type*> EltTys;
831       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
832         if (Type *Elt = getTypeByIDOrNull(Record[i]))
833           EltTys.push_back(Elt);
834         else
835           break;
836       }
837 
838       if (EltTys.size() != Record.size()-1)
839         break;      // Not all elements are ready.
840 
841       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
842       ResultTy = TypeList[NextTypeID];
843       TypeList[NextTypeID] = 0;
844       break;
845     }
846     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
847       //          [pointee type, address space]
848       if (Record.size() < 1)
849         return Error("Invalid POINTER type record");
850       unsigned AddressSpace = 0;
851       if (Record.size() == 2)
852         AddressSpace = Record[1];
853       if ((ResultTy = getTypeByIDOrNull(Record[0])))
854         ResultTy = PointerType::get(ResultTy, AddressSpace);
855       break;
856     }
857     case bitc::TYPE_CODE_FUNCTION: {
858       // FIXME: attrid is dead, remove it in LLVM 3.0
859       // FUNCTION: [vararg, attrid, retty, paramty x N]
860       if (Record.size() < 3)
861         return Error("Invalid FUNCTION type record");
862       std::vector<Type*> ArgTys;
863       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
864         if (Type *Elt = getTypeByIDOrNull(Record[i]))
865           ArgTys.push_back(Elt);
866         else
867           break;
868       }
869       if (ArgTys.size()+3 != Record.size())
870         break;  // Something was null.
871       if ((ResultTy = getTypeByIDOrNull(Record[2])))
872         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
873       break;
874     }
875     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
876       if (Record.size() < 2)
877         return Error("Invalid ARRAY type record");
878       if ((ResultTy = getTypeByIDOrNull(Record[1])))
879         ResultTy = ArrayType::get(ResultTy, Record[0]);
880       break;
881     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
882       if (Record.size() < 2)
883         return Error("Invalid VECTOR type record");
884       if ((ResultTy = getTypeByIDOrNull(Record[1])))
885         ResultTy = VectorType::get(ResultTy, Record[0]);
886       break;
887     }
888 
889     if (NextTypeID >= TypeList.size())
890       return Error("invalid TYPE table");
891 
892     if (ResultTy && TypeList[NextTypeID] == 0) {
893       ++NumTypesRead;
894       ReadAnyTypes = true;
895 
896       TypeList[NextTypeID] = ResultTy;
897     }
898 
899     ++NextTypeID;
900   }
901 }
902 
903 
904 bool BitcodeReader::ParseOldTypeSymbolTable() {
905   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
906     return Error("Malformed block record");
907 
908   SmallVector<uint64_t, 64> Record;
909 
910   // Read all the records for this type table.
911   std::string TypeName;
912   while (1) {
913     unsigned Code = Stream.ReadCode();
914     if (Code == bitc::END_BLOCK) {
915       if (Stream.ReadBlockEnd())
916         return Error("Error at end of type symbol table block");
917       return false;
918     }
919 
920     if (Code == bitc::ENTER_SUBBLOCK) {
921       // No known subblocks, always skip them.
922       Stream.ReadSubBlockID();
923       if (Stream.SkipBlock())
924         return Error("Malformed block record");
925       continue;
926     }
927 
928     if (Code == bitc::DEFINE_ABBREV) {
929       Stream.ReadAbbrevRecord();
930       continue;
931     }
932 
933     // Read a record.
934     Record.clear();
935     switch (Stream.ReadRecord(Code, Record)) {
936     default:  // Default behavior: unknown type.
937       break;
938     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
939       if (ConvertToString(Record, 1, TypeName))
940         return Error("Invalid TST_ENTRY record");
941       unsigned TypeID = Record[0];
942       if (TypeID >= TypeList.size())
943         return Error("Invalid Type ID in TST_ENTRY record");
944 
945       // Only apply the type name to a struct type with no name.
946       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
947         if (!STy->isAnonymous() && !STy->hasName())
948           STy->setName(TypeName);
949       TypeName.clear();
950       break;
951     }
952   }
953 }
954 
955 bool BitcodeReader::ParseValueSymbolTable() {
956   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
957     return Error("Malformed block record");
958 
959   SmallVector<uint64_t, 64> Record;
960 
961   // Read all the records for this value table.
962   SmallString<128> ValueName;
963   while (1) {
964     unsigned Code = Stream.ReadCode();
965     if (Code == bitc::END_BLOCK) {
966       if (Stream.ReadBlockEnd())
967         return Error("Error at end of value symbol table block");
968       return false;
969     }
970     if (Code == bitc::ENTER_SUBBLOCK) {
971       // No known subblocks, always skip them.
972       Stream.ReadSubBlockID();
973       if (Stream.SkipBlock())
974         return Error("Malformed block record");
975       continue;
976     }
977 
978     if (Code == bitc::DEFINE_ABBREV) {
979       Stream.ReadAbbrevRecord();
980       continue;
981     }
982 
983     // Read a record.
984     Record.clear();
985     switch (Stream.ReadRecord(Code, Record)) {
986     default:  // Default behavior: unknown type.
987       break;
988     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
989       if (ConvertToString(Record, 1, ValueName))
990         return Error("Invalid VST_ENTRY record");
991       unsigned ValueID = Record[0];
992       if (ValueID >= ValueList.size())
993         return Error("Invalid Value ID in VST_ENTRY record");
994       Value *V = ValueList[ValueID];
995 
996       V->setName(StringRef(ValueName.data(), ValueName.size()));
997       ValueName.clear();
998       break;
999     }
1000     case bitc::VST_CODE_BBENTRY: {
1001       if (ConvertToString(Record, 1, ValueName))
1002         return Error("Invalid VST_BBENTRY record");
1003       BasicBlock *BB = getBasicBlock(Record[0]);
1004       if (BB == 0)
1005         return Error("Invalid BB ID in VST_BBENTRY record");
1006 
1007       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1008       ValueName.clear();
1009       break;
1010     }
1011     }
1012   }
1013 }
1014 
1015 bool BitcodeReader::ParseMetadata() {
1016   unsigned NextMDValueNo = MDValueList.size();
1017 
1018   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1019     return Error("Malformed block record");
1020 
1021   SmallVector<uint64_t, 64> Record;
1022 
1023   // Read all the records.
1024   while (1) {
1025     unsigned Code = Stream.ReadCode();
1026     if (Code == bitc::END_BLOCK) {
1027       if (Stream.ReadBlockEnd())
1028         return Error("Error at end of PARAMATTR block");
1029       return false;
1030     }
1031 
1032     if (Code == bitc::ENTER_SUBBLOCK) {
1033       // No known subblocks, always skip them.
1034       Stream.ReadSubBlockID();
1035       if (Stream.SkipBlock())
1036         return Error("Malformed block record");
1037       continue;
1038     }
1039 
1040     if (Code == bitc::DEFINE_ABBREV) {
1041       Stream.ReadAbbrevRecord();
1042       continue;
1043     }
1044 
1045     bool IsFunctionLocal = false;
1046     // Read a record.
1047     Record.clear();
1048     Code = Stream.ReadRecord(Code, Record);
1049     switch (Code) {
1050     default:  // Default behavior: ignore.
1051       break;
1052     case bitc::METADATA_NAME: {
1053       // Read named of the named metadata.
1054       unsigned NameLength = Record.size();
1055       SmallString<8> Name;
1056       Name.resize(NameLength);
1057       for (unsigned i = 0; i != NameLength; ++i)
1058         Name[i] = Record[i];
1059       Record.clear();
1060       Code = Stream.ReadCode();
1061 
1062       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1063       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1064       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1065 
1066       // Read named metadata elements.
1067       unsigned Size = Record.size();
1068       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1069       for (unsigned i = 0; i != Size; ++i) {
1070         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1071         if (MD == 0)
1072           return Error("Malformed metadata record");
1073         NMD->addOperand(MD);
1074       }
1075       break;
1076     }
1077     case bitc::METADATA_FN_NODE:
1078       IsFunctionLocal = true;
1079       // fall-through
1080     case bitc::METADATA_NODE: {
1081       if (Record.size() % 2 == 1)
1082         return Error("Invalid METADATA_NODE record");
1083 
1084       unsigned Size = Record.size();
1085       SmallVector<Value*, 8> Elts;
1086       for (unsigned i = 0; i != Size; i += 2) {
1087         Type *Ty = getTypeByID(Record[i]);
1088         if (!Ty) return Error("Invalid METADATA_NODE record");
1089         if (Ty->isMetadataTy())
1090           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1091         else if (!Ty->isVoidTy())
1092           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1093         else
1094           Elts.push_back(NULL);
1095       }
1096       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1097       IsFunctionLocal = false;
1098       MDValueList.AssignValue(V, NextMDValueNo++);
1099       break;
1100     }
1101     case bitc::METADATA_STRING: {
1102       unsigned MDStringLength = Record.size();
1103       SmallString<8> String;
1104       String.resize(MDStringLength);
1105       for (unsigned i = 0; i != MDStringLength; ++i)
1106         String[i] = Record[i];
1107       Value *V = MDString::get(Context,
1108                                StringRef(String.data(), String.size()));
1109       MDValueList.AssignValue(V, NextMDValueNo++);
1110       break;
1111     }
1112     case bitc::METADATA_KIND: {
1113       unsigned RecordLength = Record.size();
1114       if (Record.empty() || RecordLength < 2)
1115         return Error("Invalid METADATA_KIND record");
1116       SmallString<8> Name;
1117       Name.resize(RecordLength-1);
1118       unsigned Kind = Record[0];
1119       for (unsigned i = 1; i != RecordLength; ++i)
1120         Name[i-1] = Record[i];
1121 
1122       unsigned NewKind = TheModule->getMDKindID(Name.str());
1123       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1124         return Error("Conflicting METADATA_KIND records");
1125       break;
1126     }
1127     }
1128   }
1129 }
1130 
1131 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1132 /// the LSB for dense VBR encoding.
1133 static uint64_t DecodeSignRotatedValue(uint64_t V) {
1134   if ((V & 1) == 0)
1135     return V >> 1;
1136   if (V != 1)
1137     return -(V >> 1);
1138   // There is no such thing as -0 with integers.  "-0" really means MININT.
1139   return 1ULL << 63;
1140 }
1141 
1142 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1143 /// values and aliases that we can.
1144 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1145   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1146   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1147 
1148   GlobalInitWorklist.swap(GlobalInits);
1149   AliasInitWorklist.swap(AliasInits);
1150 
1151   while (!GlobalInitWorklist.empty()) {
1152     unsigned ValID = GlobalInitWorklist.back().second;
1153     if (ValID >= ValueList.size()) {
1154       // Not ready to resolve this yet, it requires something later in the file.
1155       GlobalInits.push_back(GlobalInitWorklist.back());
1156     } else {
1157       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1158         GlobalInitWorklist.back().first->setInitializer(C);
1159       else
1160         return Error("Global variable initializer is not a constant!");
1161     }
1162     GlobalInitWorklist.pop_back();
1163   }
1164 
1165   while (!AliasInitWorklist.empty()) {
1166     unsigned ValID = AliasInitWorklist.back().second;
1167     if (ValID >= ValueList.size()) {
1168       AliasInits.push_back(AliasInitWorklist.back());
1169     } else {
1170       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1171         AliasInitWorklist.back().first->setAliasee(C);
1172       else
1173         return Error("Alias initializer is not a constant!");
1174     }
1175     AliasInitWorklist.pop_back();
1176   }
1177   return false;
1178 }
1179 
1180 bool BitcodeReader::ParseConstants() {
1181   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1182     return Error("Malformed block record");
1183 
1184   SmallVector<uint64_t, 64> Record;
1185 
1186   // Read all the records for this value table.
1187   Type *CurTy = Type::getInt32Ty(Context);
1188   unsigned NextCstNo = ValueList.size();
1189   while (1) {
1190     unsigned Code = Stream.ReadCode();
1191     if (Code == bitc::END_BLOCK)
1192       break;
1193 
1194     if (Code == bitc::ENTER_SUBBLOCK) {
1195       // No known subblocks, always skip them.
1196       Stream.ReadSubBlockID();
1197       if (Stream.SkipBlock())
1198         return Error("Malformed block record");
1199       continue;
1200     }
1201 
1202     if (Code == bitc::DEFINE_ABBREV) {
1203       Stream.ReadAbbrevRecord();
1204       continue;
1205     }
1206 
1207     // Read a record.
1208     Record.clear();
1209     Value *V = 0;
1210     unsigned BitCode = Stream.ReadRecord(Code, Record);
1211     switch (BitCode) {
1212     default:  // Default behavior: unknown constant
1213     case bitc::CST_CODE_UNDEF:     // UNDEF
1214       V = UndefValue::get(CurTy);
1215       break;
1216     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1217       if (Record.empty())
1218         return Error("Malformed CST_SETTYPE record");
1219       if (Record[0] >= TypeList.size())
1220         return Error("Invalid Type ID in CST_SETTYPE record");
1221       CurTy = TypeList[Record[0]];
1222       continue;  // Skip the ValueList manipulation.
1223     case bitc::CST_CODE_NULL:      // NULL
1224       V = Constant::getNullValue(CurTy);
1225       break;
1226     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1227       if (!CurTy->isIntegerTy() || Record.empty())
1228         return Error("Invalid CST_INTEGER record");
1229       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1230       break;
1231     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1232       if (!CurTy->isIntegerTy() || Record.empty())
1233         return Error("Invalid WIDE_INTEGER record");
1234 
1235       unsigned NumWords = Record.size();
1236       SmallVector<uint64_t, 8> Words;
1237       Words.resize(NumWords);
1238       for (unsigned i = 0; i != NumWords; ++i)
1239         Words[i] = DecodeSignRotatedValue(Record[i]);
1240       V = ConstantInt::get(Context,
1241                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1242                                  Words));
1243       break;
1244     }
1245     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1246       if (Record.empty())
1247         return Error("Invalid FLOAT record");
1248       if (CurTy->isFloatTy())
1249         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1250       else if (CurTy->isDoubleTy())
1251         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1252       else if (CurTy->isX86_FP80Ty()) {
1253         // Bits are not stored the same way as a normal i80 APInt, compensate.
1254         uint64_t Rearrange[2];
1255         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1256         Rearrange[1] = Record[0] >> 48;
1257         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1258       } else if (CurTy->isFP128Ty())
1259         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1260       else if (CurTy->isPPC_FP128Ty())
1261         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1262       else
1263         V = UndefValue::get(CurTy);
1264       break;
1265     }
1266 
1267     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1268       if (Record.empty())
1269         return Error("Invalid CST_AGGREGATE record");
1270 
1271       unsigned Size = Record.size();
1272       std::vector<Constant*> Elts;
1273 
1274       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1275         for (unsigned i = 0; i != Size; ++i)
1276           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1277                                                      STy->getElementType(i)));
1278         V = ConstantStruct::get(STy, Elts);
1279       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1280         Type *EltTy = ATy->getElementType();
1281         for (unsigned i = 0; i != Size; ++i)
1282           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1283         V = ConstantArray::get(ATy, Elts);
1284       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1285         Type *EltTy = VTy->getElementType();
1286         for (unsigned i = 0; i != Size; ++i)
1287           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1288         V = ConstantVector::get(Elts);
1289       } else {
1290         V = UndefValue::get(CurTy);
1291       }
1292       break;
1293     }
1294     case bitc::CST_CODE_STRING: { // STRING: [values]
1295       if (Record.empty())
1296         return Error("Invalid CST_AGGREGATE record");
1297 
1298       ArrayType *ATy = cast<ArrayType>(CurTy);
1299       Type *EltTy = ATy->getElementType();
1300 
1301       unsigned Size = Record.size();
1302       std::vector<Constant*> Elts;
1303       for (unsigned i = 0; i != Size; ++i)
1304         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1305       V = ConstantArray::get(ATy, Elts);
1306       break;
1307     }
1308     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1309       if (Record.empty())
1310         return Error("Invalid CST_AGGREGATE record");
1311 
1312       ArrayType *ATy = cast<ArrayType>(CurTy);
1313       Type *EltTy = ATy->getElementType();
1314 
1315       unsigned Size = Record.size();
1316       std::vector<Constant*> Elts;
1317       for (unsigned i = 0; i != Size; ++i)
1318         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1319       Elts.push_back(Constant::getNullValue(EltTy));
1320       V = ConstantArray::get(ATy, Elts);
1321       break;
1322     }
1323     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1324       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1325       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1326       if (Opc < 0) {
1327         V = UndefValue::get(CurTy);  // Unknown binop.
1328       } else {
1329         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1330         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1331         unsigned Flags = 0;
1332         if (Record.size() >= 4) {
1333           if (Opc == Instruction::Add ||
1334               Opc == Instruction::Sub ||
1335               Opc == Instruction::Mul ||
1336               Opc == Instruction::Shl) {
1337             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1338               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1339             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1340               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1341           } else if (Opc == Instruction::SDiv ||
1342                      Opc == Instruction::UDiv ||
1343                      Opc == Instruction::LShr ||
1344                      Opc == Instruction::AShr) {
1345             if (Record[3] & (1 << bitc::PEO_EXACT))
1346               Flags |= SDivOperator::IsExact;
1347           }
1348         }
1349         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1350       }
1351       break;
1352     }
1353     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1354       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1355       int Opc = GetDecodedCastOpcode(Record[0]);
1356       if (Opc < 0) {
1357         V = UndefValue::get(CurTy);  // Unknown cast.
1358       } else {
1359         Type *OpTy = getTypeByID(Record[1]);
1360         if (!OpTy) return Error("Invalid CE_CAST record");
1361         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1362         V = ConstantExpr::getCast(Opc, Op, CurTy);
1363       }
1364       break;
1365     }
1366     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1367     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1368       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1369       SmallVector<Constant*, 16> Elts;
1370       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1371         Type *ElTy = getTypeByID(Record[i]);
1372         if (!ElTy) return Error("Invalid CE_GEP record");
1373         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1374       }
1375       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1376       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1377                                          BitCode ==
1378                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1379       break;
1380     }
1381     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1382       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1383       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1384                                                               Type::getInt1Ty(Context)),
1385                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1386                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1387       break;
1388     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1389       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1390       VectorType *OpTy =
1391         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1392       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1393       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1394       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1395       V = ConstantExpr::getExtractElement(Op0, Op1);
1396       break;
1397     }
1398     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1399       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1400       if (Record.size() < 3 || OpTy == 0)
1401         return Error("Invalid CE_INSERTELT record");
1402       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1403       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1404                                                   OpTy->getElementType());
1405       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1406       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1407       break;
1408     }
1409     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1410       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1411       if (Record.size() < 3 || OpTy == 0)
1412         return Error("Invalid CE_SHUFFLEVEC record");
1413       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1414       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1415       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1416                                                  OpTy->getNumElements());
1417       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1418       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1419       break;
1420     }
1421     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1422       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1423       VectorType *OpTy =
1424         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1425       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1426         return Error("Invalid CE_SHUFVEC_EX record");
1427       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1428       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1429       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1430                                                  RTy->getNumElements());
1431       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1432       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1433       break;
1434     }
1435     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1436       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1437       Type *OpTy = getTypeByID(Record[0]);
1438       if (OpTy == 0) return Error("Invalid CE_CMP record");
1439       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1440       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1441 
1442       if (OpTy->isFPOrFPVectorTy())
1443         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1444       else
1445         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1446       break;
1447     }
1448     case bitc::CST_CODE_INLINEASM: {
1449       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1450       std::string AsmStr, ConstrStr;
1451       bool HasSideEffects = Record[0] & 1;
1452       bool IsAlignStack = Record[0] >> 1;
1453       unsigned AsmStrSize = Record[1];
1454       if (2+AsmStrSize >= Record.size())
1455         return Error("Invalid INLINEASM record");
1456       unsigned ConstStrSize = Record[2+AsmStrSize];
1457       if (3+AsmStrSize+ConstStrSize > Record.size())
1458         return Error("Invalid INLINEASM record");
1459 
1460       for (unsigned i = 0; i != AsmStrSize; ++i)
1461         AsmStr += (char)Record[2+i];
1462       for (unsigned i = 0; i != ConstStrSize; ++i)
1463         ConstrStr += (char)Record[3+AsmStrSize+i];
1464       PointerType *PTy = cast<PointerType>(CurTy);
1465       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1466                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1467       break;
1468     }
1469     case bitc::CST_CODE_BLOCKADDRESS:{
1470       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1471       Type *FnTy = getTypeByID(Record[0]);
1472       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1473       Function *Fn =
1474         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1475       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1476 
1477       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1478                                                   Type::getInt8Ty(Context),
1479                                             false, GlobalValue::InternalLinkage,
1480                                                   0, "");
1481       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1482       V = FwdRef;
1483       break;
1484     }
1485     }
1486 
1487     ValueList.AssignValue(V, NextCstNo);
1488     ++NextCstNo;
1489   }
1490 
1491   if (NextCstNo != ValueList.size())
1492     return Error("Invalid constant reference!");
1493 
1494   if (Stream.ReadBlockEnd())
1495     return Error("Error at end of constants block");
1496 
1497   // Once all the constants have been read, go through and resolve forward
1498   // references.
1499   ValueList.ResolveConstantForwardRefs();
1500   return false;
1501 }
1502 
1503 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1504 /// remember where it is and then skip it.  This lets us lazily deserialize the
1505 /// functions.
1506 bool BitcodeReader::RememberAndSkipFunctionBody() {
1507   // Get the function we are talking about.
1508   if (FunctionsWithBodies.empty())
1509     return Error("Insufficient function protos");
1510 
1511   Function *Fn = FunctionsWithBodies.back();
1512   FunctionsWithBodies.pop_back();
1513 
1514   // Save the current stream state.
1515   uint64_t CurBit = Stream.GetCurrentBitNo();
1516   DeferredFunctionInfo[Fn] = CurBit;
1517 
1518   // Skip over the function block for now.
1519   if (Stream.SkipBlock())
1520     return Error("Malformed block record");
1521   return false;
1522 }
1523 
1524 bool BitcodeReader::ParseModule() {
1525   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1526     return Error("Malformed block record");
1527 
1528   SmallVector<uint64_t, 64> Record;
1529   std::vector<std::string> SectionTable;
1530   std::vector<std::string> GCTable;
1531 
1532   // Read all the records for this module.
1533   while (!Stream.AtEndOfStream()) {
1534     unsigned Code = Stream.ReadCode();
1535     if (Code == bitc::END_BLOCK) {
1536       if (Stream.ReadBlockEnd())
1537         return Error("Error at end of module block");
1538 
1539       // Patch the initializers for globals and aliases up.
1540       ResolveGlobalAndAliasInits();
1541       if (!GlobalInits.empty() || !AliasInits.empty())
1542         return Error("Malformed global initializer set");
1543       if (!FunctionsWithBodies.empty())
1544         return Error("Too few function bodies found");
1545 
1546       // Look for intrinsic functions which need to be upgraded at some point
1547       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1548            FI != FE; ++FI) {
1549         Function* NewFn;
1550         if (UpgradeIntrinsicFunction(FI, NewFn))
1551           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1552       }
1553 
1554       // Look for global variables which need to be renamed.
1555       for (Module::global_iterator
1556              GI = TheModule->global_begin(), GE = TheModule->global_end();
1557            GI != GE; ++GI)
1558         UpgradeGlobalVariable(GI);
1559 
1560       // Force deallocation of memory for these vectors to favor the client that
1561       // want lazy deserialization.
1562       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1563       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1564       std::vector<Function*>().swap(FunctionsWithBodies);
1565       return false;
1566     }
1567 
1568     if (Code == bitc::ENTER_SUBBLOCK) {
1569       switch (Stream.ReadSubBlockID()) {
1570       default:  // Skip unknown content.
1571         if (Stream.SkipBlock())
1572           return Error("Malformed block record");
1573         break;
1574       case bitc::BLOCKINFO_BLOCK_ID:
1575         if (Stream.ReadBlockInfoBlock())
1576           return Error("Malformed BlockInfoBlock");
1577         break;
1578       case bitc::PARAMATTR_BLOCK_ID:
1579         if (ParseAttributeBlock())
1580           return true;
1581         break;
1582       case bitc::TYPE_BLOCK_ID_NEW:
1583         if (ParseTypeTable())
1584           return true;
1585         break;
1586       case bitc::TYPE_BLOCK_ID_OLD:
1587         if (ParseOldTypeTable())
1588           return true;
1589         break;
1590       case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1591         if (ParseOldTypeSymbolTable())
1592           return true;
1593         break;
1594       case bitc::VALUE_SYMTAB_BLOCK_ID:
1595         if (ParseValueSymbolTable())
1596           return true;
1597         break;
1598       case bitc::CONSTANTS_BLOCK_ID:
1599         if (ParseConstants() || ResolveGlobalAndAliasInits())
1600           return true;
1601         break;
1602       case bitc::METADATA_BLOCK_ID:
1603         if (ParseMetadata())
1604           return true;
1605         break;
1606       case bitc::FUNCTION_BLOCK_ID:
1607         // If this is the first function body we've seen, reverse the
1608         // FunctionsWithBodies list.
1609         if (!HasReversedFunctionsWithBodies) {
1610           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1611           HasReversedFunctionsWithBodies = true;
1612         }
1613 
1614         if (RememberAndSkipFunctionBody())
1615           return true;
1616         break;
1617       }
1618       continue;
1619     }
1620 
1621     if (Code == bitc::DEFINE_ABBREV) {
1622       Stream.ReadAbbrevRecord();
1623       continue;
1624     }
1625 
1626     // Read a record.
1627     switch (Stream.ReadRecord(Code, Record)) {
1628     default: break;  // Default behavior, ignore unknown content.
1629     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1630       if (Record.size() < 1)
1631         return Error("Malformed MODULE_CODE_VERSION");
1632       // Only version #0 is supported so far.
1633       if (Record[0] != 0)
1634         return Error("Unknown bitstream version!");
1635       break;
1636     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1637       std::string S;
1638       if (ConvertToString(Record, 0, S))
1639         return Error("Invalid MODULE_CODE_TRIPLE record");
1640       TheModule->setTargetTriple(S);
1641       break;
1642     }
1643     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1644       std::string S;
1645       if (ConvertToString(Record, 0, S))
1646         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1647       TheModule->setDataLayout(S);
1648       break;
1649     }
1650     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1651       std::string S;
1652       if (ConvertToString(Record, 0, S))
1653         return Error("Invalid MODULE_CODE_ASM record");
1654       TheModule->setModuleInlineAsm(S);
1655       break;
1656     }
1657     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1658       std::string S;
1659       if (ConvertToString(Record, 0, S))
1660         return Error("Invalid MODULE_CODE_DEPLIB record");
1661       TheModule->addLibrary(S);
1662       break;
1663     }
1664     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1665       std::string S;
1666       if (ConvertToString(Record, 0, S))
1667         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1668       SectionTable.push_back(S);
1669       break;
1670     }
1671     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1672       std::string S;
1673       if (ConvertToString(Record, 0, S))
1674         return Error("Invalid MODULE_CODE_GCNAME record");
1675       GCTable.push_back(S);
1676       break;
1677     }
1678     // GLOBALVAR: [pointer type, isconst, initid,
1679     //             linkage, alignment, section, visibility, threadlocal,
1680     //             unnamed_addr]
1681     case bitc::MODULE_CODE_GLOBALVAR: {
1682       if (Record.size() < 6)
1683         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1684       Type *Ty = getTypeByID(Record[0]);
1685       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1686       if (!Ty->isPointerTy())
1687         return Error("Global not a pointer type!");
1688       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1689       Ty = cast<PointerType>(Ty)->getElementType();
1690 
1691       bool isConstant = Record[1];
1692       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1693       unsigned Alignment = (1 << Record[4]) >> 1;
1694       std::string Section;
1695       if (Record[5]) {
1696         if (Record[5]-1 >= SectionTable.size())
1697           return Error("Invalid section ID");
1698         Section = SectionTable[Record[5]-1];
1699       }
1700       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1701       if (Record.size() > 6)
1702         Visibility = GetDecodedVisibility(Record[6]);
1703       bool isThreadLocal = false;
1704       if (Record.size() > 7)
1705         isThreadLocal = Record[7];
1706 
1707       bool UnnamedAddr = false;
1708       if (Record.size() > 8)
1709         UnnamedAddr = Record[8];
1710 
1711       GlobalVariable *NewGV =
1712         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1713                            isThreadLocal, AddressSpace);
1714       NewGV->setAlignment(Alignment);
1715       if (!Section.empty())
1716         NewGV->setSection(Section);
1717       NewGV->setVisibility(Visibility);
1718       NewGV->setThreadLocal(isThreadLocal);
1719       NewGV->setUnnamedAddr(UnnamedAddr);
1720 
1721       ValueList.push_back(NewGV);
1722 
1723       // Remember which value to use for the global initializer.
1724       if (unsigned InitID = Record[2])
1725         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1726       break;
1727     }
1728     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1729     //             alignment, section, visibility, gc, unnamed_addr]
1730     case bitc::MODULE_CODE_FUNCTION: {
1731       if (Record.size() < 8)
1732         return Error("Invalid MODULE_CODE_FUNCTION record");
1733       Type *Ty = getTypeByID(Record[0]);
1734       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1735       if (!Ty->isPointerTy())
1736         return Error("Function not a pointer type!");
1737       FunctionType *FTy =
1738         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1739       if (!FTy)
1740         return Error("Function not a pointer to function type!");
1741 
1742       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1743                                         "", TheModule);
1744 
1745       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1746       bool isProto = Record[2];
1747       Func->setLinkage(GetDecodedLinkage(Record[3]));
1748       Func->setAttributes(getAttributes(Record[4]));
1749 
1750       Func->setAlignment((1 << Record[5]) >> 1);
1751       if (Record[6]) {
1752         if (Record[6]-1 >= SectionTable.size())
1753           return Error("Invalid section ID");
1754         Func->setSection(SectionTable[Record[6]-1]);
1755       }
1756       Func->setVisibility(GetDecodedVisibility(Record[7]));
1757       if (Record.size() > 8 && Record[8]) {
1758         if (Record[8]-1 > GCTable.size())
1759           return Error("Invalid GC ID");
1760         Func->setGC(GCTable[Record[8]-1].c_str());
1761       }
1762       bool UnnamedAddr = false;
1763       if (Record.size() > 9)
1764         UnnamedAddr = Record[9];
1765       Func->setUnnamedAddr(UnnamedAddr);
1766       ValueList.push_back(Func);
1767 
1768       // If this is a function with a body, remember the prototype we are
1769       // creating now, so that we can match up the body with them later.
1770       if (!isProto)
1771         FunctionsWithBodies.push_back(Func);
1772       break;
1773     }
1774     // ALIAS: [alias type, aliasee val#, linkage]
1775     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1776     case bitc::MODULE_CODE_ALIAS: {
1777       if (Record.size() < 3)
1778         return Error("Invalid MODULE_ALIAS record");
1779       Type *Ty = getTypeByID(Record[0]);
1780       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1781       if (!Ty->isPointerTy())
1782         return Error("Function not a pointer type!");
1783 
1784       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1785                                            "", 0, TheModule);
1786       // Old bitcode files didn't have visibility field.
1787       if (Record.size() > 3)
1788         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1789       ValueList.push_back(NewGA);
1790       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1791       break;
1792     }
1793     /// MODULE_CODE_PURGEVALS: [numvals]
1794     case bitc::MODULE_CODE_PURGEVALS:
1795       // Trim down the value list to the specified size.
1796       if (Record.size() < 1 || Record[0] > ValueList.size())
1797         return Error("Invalid MODULE_PURGEVALS record");
1798       ValueList.shrinkTo(Record[0]);
1799       break;
1800     }
1801     Record.clear();
1802   }
1803 
1804   return Error("Premature end of bitstream");
1805 }
1806 
1807 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1808   TheModule = 0;
1809 
1810   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1811   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1812 
1813   if (Buffer->getBufferSize() & 3) {
1814     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1815       return Error("Invalid bitcode signature");
1816     else
1817       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1818   }
1819 
1820   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1821   // The magic number is 0x0B17C0DE stored in little endian.
1822   if (isBitcodeWrapper(BufPtr, BufEnd))
1823     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1824       return Error("Invalid bitcode wrapper header");
1825 
1826   StreamFile.init(BufPtr, BufEnd);
1827   Stream.init(StreamFile);
1828 
1829   // Sniff for the signature.
1830   if (Stream.Read(8) != 'B' ||
1831       Stream.Read(8) != 'C' ||
1832       Stream.Read(4) != 0x0 ||
1833       Stream.Read(4) != 0xC ||
1834       Stream.Read(4) != 0xE ||
1835       Stream.Read(4) != 0xD)
1836     return Error("Invalid bitcode signature");
1837 
1838   // We expect a number of well-defined blocks, though we don't necessarily
1839   // need to understand them all.
1840   while (!Stream.AtEndOfStream()) {
1841     unsigned Code = Stream.ReadCode();
1842 
1843     if (Code != bitc::ENTER_SUBBLOCK) {
1844 
1845       // The ranlib in xcode 4 will align archive members by appending newlines to the
1846       // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1847       // ignore these final 4 bytes :-(
1848       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1849           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1850 	  Stream.AtEndOfStream())
1851         return false;
1852 
1853       return Error("Invalid record at top-level");
1854     }
1855 
1856     unsigned BlockID = Stream.ReadSubBlockID();
1857 
1858     // We only know the MODULE subblock ID.
1859     switch (BlockID) {
1860     case bitc::BLOCKINFO_BLOCK_ID:
1861       if (Stream.ReadBlockInfoBlock())
1862         return Error("Malformed BlockInfoBlock");
1863       break;
1864     case bitc::MODULE_BLOCK_ID:
1865       // Reject multiple MODULE_BLOCK's in a single bitstream.
1866       if (TheModule)
1867         return Error("Multiple MODULE_BLOCKs in same stream");
1868       TheModule = M;
1869       if (ParseModule())
1870         return true;
1871       break;
1872     default:
1873       if (Stream.SkipBlock())
1874         return Error("Malformed block record");
1875       break;
1876     }
1877   }
1878 
1879   return false;
1880 }
1881 
1882 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1883   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1884     return Error("Malformed block record");
1885 
1886   SmallVector<uint64_t, 64> Record;
1887 
1888   // Read all the records for this module.
1889   while (!Stream.AtEndOfStream()) {
1890     unsigned Code = Stream.ReadCode();
1891     if (Code == bitc::END_BLOCK) {
1892       if (Stream.ReadBlockEnd())
1893         return Error("Error at end of module block");
1894 
1895       return false;
1896     }
1897 
1898     if (Code == bitc::ENTER_SUBBLOCK) {
1899       switch (Stream.ReadSubBlockID()) {
1900       default:  // Skip unknown content.
1901         if (Stream.SkipBlock())
1902           return Error("Malformed block record");
1903         break;
1904       }
1905       continue;
1906     }
1907 
1908     if (Code == bitc::DEFINE_ABBREV) {
1909       Stream.ReadAbbrevRecord();
1910       continue;
1911     }
1912 
1913     // Read a record.
1914     switch (Stream.ReadRecord(Code, Record)) {
1915     default: break;  // Default behavior, ignore unknown content.
1916     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1917       if (Record.size() < 1)
1918         return Error("Malformed MODULE_CODE_VERSION");
1919       // Only version #0 is supported so far.
1920       if (Record[0] != 0)
1921         return Error("Unknown bitstream version!");
1922       break;
1923     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1924       std::string S;
1925       if (ConvertToString(Record, 0, S))
1926         return Error("Invalid MODULE_CODE_TRIPLE record");
1927       Triple = S;
1928       break;
1929     }
1930     }
1931     Record.clear();
1932   }
1933 
1934   return Error("Premature end of bitstream");
1935 }
1936 
1937 bool BitcodeReader::ParseTriple(std::string &Triple) {
1938   if (Buffer->getBufferSize() & 3)
1939     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1940 
1941   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1942   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1943 
1944   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1945   // The magic number is 0x0B17C0DE stored in little endian.
1946   if (isBitcodeWrapper(BufPtr, BufEnd))
1947     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1948       return Error("Invalid bitcode wrapper header");
1949 
1950   StreamFile.init(BufPtr, BufEnd);
1951   Stream.init(StreamFile);
1952 
1953   // Sniff for the signature.
1954   if (Stream.Read(8) != 'B' ||
1955       Stream.Read(8) != 'C' ||
1956       Stream.Read(4) != 0x0 ||
1957       Stream.Read(4) != 0xC ||
1958       Stream.Read(4) != 0xE ||
1959       Stream.Read(4) != 0xD)
1960     return Error("Invalid bitcode signature");
1961 
1962   // We expect a number of well-defined blocks, though we don't necessarily
1963   // need to understand them all.
1964   while (!Stream.AtEndOfStream()) {
1965     unsigned Code = Stream.ReadCode();
1966 
1967     if (Code != bitc::ENTER_SUBBLOCK)
1968       return Error("Invalid record at top-level");
1969 
1970     unsigned BlockID = Stream.ReadSubBlockID();
1971 
1972     // We only know the MODULE subblock ID.
1973     switch (BlockID) {
1974     case bitc::MODULE_BLOCK_ID:
1975       if (ParseModuleTriple(Triple))
1976         return true;
1977       break;
1978     default:
1979       if (Stream.SkipBlock())
1980         return Error("Malformed block record");
1981       break;
1982     }
1983   }
1984 
1985   return false;
1986 }
1987 
1988 /// ParseMetadataAttachment - Parse metadata attachments.
1989 bool BitcodeReader::ParseMetadataAttachment() {
1990   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1991     return Error("Malformed block record");
1992 
1993   SmallVector<uint64_t, 64> Record;
1994   while(1) {
1995     unsigned Code = Stream.ReadCode();
1996     if (Code == bitc::END_BLOCK) {
1997       if (Stream.ReadBlockEnd())
1998         return Error("Error at end of PARAMATTR block");
1999       break;
2000     }
2001     if (Code == bitc::DEFINE_ABBREV) {
2002       Stream.ReadAbbrevRecord();
2003       continue;
2004     }
2005     // Read a metadata attachment record.
2006     Record.clear();
2007     switch (Stream.ReadRecord(Code, Record)) {
2008     default:  // Default behavior: ignore.
2009       break;
2010     case bitc::METADATA_ATTACHMENT: {
2011       unsigned RecordLength = Record.size();
2012       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2013         return Error ("Invalid METADATA_ATTACHMENT reader!");
2014       Instruction *Inst = InstructionList[Record[0]];
2015       for (unsigned i = 1; i != RecordLength; i = i+2) {
2016         unsigned Kind = Record[i];
2017         DenseMap<unsigned, unsigned>::iterator I =
2018           MDKindMap.find(Kind);
2019         if (I == MDKindMap.end())
2020           return Error("Invalid metadata kind ID");
2021         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2022         Inst->setMetadata(I->second, cast<MDNode>(Node));
2023       }
2024       break;
2025     }
2026     }
2027   }
2028   return false;
2029 }
2030 
2031 /// ParseFunctionBody - Lazily parse the specified function body block.
2032 bool BitcodeReader::ParseFunctionBody(Function *F) {
2033   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2034     return Error("Malformed block record");
2035 
2036   InstructionList.clear();
2037   unsigned ModuleValueListSize = ValueList.size();
2038   unsigned ModuleMDValueListSize = MDValueList.size();
2039 
2040   // Add all the function arguments to the value table.
2041   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2042     ValueList.push_back(I);
2043 
2044   unsigned NextValueNo = ValueList.size();
2045   BasicBlock *CurBB = 0;
2046   unsigned CurBBNo = 0;
2047 
2048   DebugLoc LastLoc;
2049 
2050   // Read all the records.
2051   SmallVector<uint64_t, 64> Record;
2052   while (1) {
2053     unsigned Code = Stream.ReadCode();
2054     if (Code == bitc::END_BLOCK) {
2055       if (Stream.ReadBlockEnd())
2056         return Error("Error at end of function block");
2057       break;
2058     }
2059 
2060     if (Code == bitc::ENTER_SUBBLOCK) {
2061       switch (Stream.ReadSubBlockID()) {
2062       default:  // Skip unknown content.
2063         if (Stream.SkipBlock())
2064           return Error("Malformed block record");
2065         break;
2066       case bitc::CONSTANTS_BLOCK_ID:
2067         if (ParseConstants()) return true;
2068         NextValueNo = ValueList.size();
2069         break;
2070       case bitc::VALUE_SYMTAB_BLOCK_ID:
2071         if (ParseValueSymbolTable()) return true;
2072         break;
2073       case bitc::METADATA_ATTACHMENT_ID:
2074         if (ParseMetadataAttachment()) return true;
2075         break;
2076       case bitc::METADATA_BLOCK_ID:
2077         if (ParseMetadata()) return true;
2078         break;
2079       }
2080       continue;
2081     }
2082 
2083     if (Code == bitc::DEFINE_ABBREV) {
2084       Stream.ReadAbbrevRecord();
2085       continue;
2086     }
2087 
2088     // Read a record.
2089     Record.clear();
2090     Instruction *I = 0;
2091     unsigned BitCode = Stream.ReadRecord(Code, Record);
2092     switch (BitCode) {
2093     default: // Default behavior: reject
2094       return Error("Unknown instruction");
2095     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2096       if (Record.size() < 1 || Record[0] == 0)
2097         return Error("Invalid DECLAREBLOCKS record");
2098       // Create all the basic blocks for the function.
2099       FunctionBBs.resize(Record[0]);
2100       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2101         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2102       CurBB = FunctionBBs[0];
2103       continue;
2104 
2105     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2106       // This record indicates that the last instruction is at the same
2107       // location as the previous instruction with a location.
2108       I = 0;
2109 
2110       // Get the last instruction emitted.
2111       if (CurBB && !CurBB->empty())
2112         I = &CurBB->back();
2113       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2114                !FunctionBBs[CurBBNo-1]->empty())
2115         I = &FunctionBBs[CurBBNo-1]->back();
2116 
2117       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2118       I->setDebugLoc(LastLoc);
2119       I = 0;
2120       continue;
2121 
2122     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2123       I = 0;     // Get the last instruction emitted.
2124       if (CurBB && !CurBB->empty())
2125         I = &CurBB->back();
2126       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2127                !FunctionBBs[CurBBNo-1]->empty())
2128         I = &FunctionBBs[CurBBNo-1]->back();
2129       if (I == 0 || Record.size() < 4)
2130         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2131 
2132       unsigned Line = Record[0], Col = Record[1];
2133       unsigned ScopeID = Record[2], IAID = Record[3];
2134 
2135       MDNode *Scope = 0, *IA = 0;
2136       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2137       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2138       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2139       I->setDebugLoc(LastLoc);
2140       I = 0;
2141       continue;
2142     }
2143 
2144     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2145       unsigned OpNum = 0;
2146       Value *LHS, *RHS;
2147       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2148           getValue(Record, OpNum, LHS->getType(), RHS) ||
2149           OpNum+1 > Record.size())
2150         return Error("Invalid BINOP record");
2151 
2152       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2153       if (Opc == -1) return Error("Invalid BINOP record");
2154       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2155       InstructionList.push_back(I);
2156       if (OpNum < Record.size()) {
2157         if (Opc == Instruction::Add ||
2158             Opc == Instruction::Sub ||
2159             Opc == Instruction::Mul ||
2160             Opc == Instruction::Shl) {
2161           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2162             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2163           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2164             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2165         } else if (Opc == Instruction::SDiv ||
2166                    Opc == Instruction::UDiv ||
2167                    Opc == Instruction::LShr ||
2168                    Opc == Instruction::AShr) {
2169           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2170             cast<BinaryOperator>(I)->setIsExact(true);
2171         }
2172       }
2173       break;
2174     }
2175     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2176       unsigned OpNum = 0;
2177       Value *Op;
2178       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2179           OpNum+2 != Record.size())
2180         return Error("Invalid CAST record");
2181 
2182       Type *ResTy = getTypeByID(Record[OpNum]);
2183       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2184       if (Opc == -1 || ResTy == 0)
2185         return Error("Invalid CAST record");
2186       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2187       InstructionList.push_back(I);
2188       break;
2189     }
2190     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2191     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2192       unsigned OpNum = 0;
2193       Value *BasePtr;
2194       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2195         return Error("Invalid GEP record");
2196 
2197       SmallVector<Value*, 16> GEPIdx;
2198       while (OpNum != Record.size()) {
2199         Value *Op;
2200         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2201           return Error("Invalid GEP record");
2202         GEPIdx.push_back(Op);
2203       }
2204 
2205       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2206       InstructionList.push_back(I);
2207       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2208         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2209       break;
2210     }
2211 
2212     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2213                                        // EXTRACTVAL: [opty, opval, n x indices]
2214       unsigned OpNum = 0;
2215       Value *Agg;
2216       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2217         return Error("Invalid EXTRACTVAL record");
2218 
2219       SmallVector<unsigned, 4> EXTRACTVALIdx;
2220       for (unsigned RecSize = Record.size();
2221            OpNum != RecSize; ++OpNum) {
2222         uint64_t Index = Record[OpNum];
2223         if ((unsigned)Index != Index)
2224           return Error("Invalid EXTRACTVAL index");
2225         EXTRACTVALIdx.push_back((unsigned)Index);
2226       }
2227 
2228       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2229       InstructionList.push_back(I);
2230       break;
2231     }
2232 
2233     case bitc::FUNC_CODE_INST_INSERTVAL: {
2234                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2235       unsigned OpNum = 0;
2236       Value *Agg;
2237       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2238         return Error("Invalid INSERTVAL record");
2239       Value *Val;
2240       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2241         return Error("Invalid INSERTVAL record");
2242 
2243       SmallVector<unsigned, 4> INSERTVALIdx;
2244       for (unsigned RecSize = Record.size();
2245            OpNum != RecSize; ++OpNum) {
2246         uint64_t Index = Record[OpNum];
2247         if ((unsigned)Index != Index)
2248           return Error("Invalid INSERTVAL index");
2249         INSERTVALIdx.push_back((unsigned)Index);
2250       }
2251 
2252       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2253       InstructionList.push_back(I);
2254       break;
2255     }
2256 
2257     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2258       // obsolete form of select
2259       // handles select i1 ... in old bitcode
2260       unsigned OpNum = 0;
2261       Value *TrueVal, *FalseVal, *Cond;
2262       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2263           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2264           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2265         return Error("Invalid SELECT record");
2266 
2267       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2268       InstructionList.push_back(I);
2269       break;
2270     }
2271 
2272     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2273       // new form of select
2274       // handles select i1 or select [N x i1]
2275       unsigned OpNum = 0;
2276       Value *TrueVal, *FalseVal, *Cond;
2277       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2278           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2279           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2280         return Error("Invalid SELECT record");
2281 
2282       // select condition can be either i1 or [N x i1]
2283       if (VectorType* vector_type =
2284           dyn_cast<VectorType>(Cond->getType())) {
2285         // expect <n x i1>
2286         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2287           return Error("Invalid SELECT condition type");
2288       } else {
2289         // expect i1
2290         if (Cond->getType() != Type::getInt1Ty(Context))
2291           return Error("Invalid SELECT condition type");
2292       }
2293 
2294       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2295       InstructionList.push_back(I);
2296       break;
2297     }
2298 
2299     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2300       unsigned OpNum = 0;
2301       Value *Vec, *Idx;
2302       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2303           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2304         return Error("Invalid EXTRACTELT record");
2305       I = ExtractElementInst::Create(Vec, Idx);
2306       InstructionList.push_back(I);
2307       break;
2308     }
2309 
2310     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2311       unsigned OpNum = 0;
2312       Value *Vec, *Elt, *Idx;
2313       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2314           getValue(Record, OpNum,
2315                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2316           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2317         return Error("Invalid INSERTELT record");
2318       I = InsertElementInst::Create(Vec, Elt, Idx);
2319       InstructionList.push_back(I);
2320       break;
2321     }
2322 
2323     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2324       unsigned OpNum = 0;
2325       Value *Vec1, *Vec2, *Mask;
2326       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2327           getValue(Record, OpNum, Vec1->getType(), Vec2))
2328         return Error("Invalid SHUFFLEVEC record");
2329 
2330       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2331         return Error("Invalid SHUFFLEVEC record");
2332       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2333       InstructionList.push_back(I);
2334       break;
2335     }
2336 
2337     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2338       // Old form of ICmp/FCmp returning bool
2339       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2340       // both legal on vectors but had different behaviour.
2341     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2342       // FCmp/ICmp returning bool or vector of bool
2343 
2344       unsigned OpNum = 0;
2345       Value *LHS, *RHS;
2346       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2347           getValue(Record, OpNum, LHS->getType(), RHS) ||
2348           OpNum+1 != Record.size())
2349         return Error("Invalid CMP record");
2350 
2351       if (LHS->getType()->isFPOrFPVectorTy())
2352         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2353       else
2354         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2355       InstructionList.push_back(I);
2356       break;
2357     }
2358 
2359     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2360       {
2361         unsigned Size = Record.size();
2362         if (Size == 0) {
2363           I = ReturnInst::Create(Context);
2364           InstructionList.push_back(I);
2365           break;
2366         }
2367 
2368         unsigned OpNum = 0;
2369         Value *Op = NULL;
2370         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2371           return Error("Invalid RET record");
2372         if (OpNum != Record.size())
2373           return Error("Invalid RET record");
2374 
2375         I = ReturnInst::Create(Context, Op);
2376         InstructionList.push_back(I);
2377         break;
2378       }
2379     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2380       if (Record.size() != 1 && Record.size() != 3)
2381         return Error("Invalid BR record");
2382       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2383       if (TrueDest == 0)
2384         return Error("Invalid BR record");
2385 
2386       if (Record.size() == 1) {
2387         I = BranchInst::Create(TrueDest);
2388         InstructionList.push_back(I);
2389       }
2390       else {
2391         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2392         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2393         if (FalseDest == 0 || Cond == 0)
2394           return Error("Invalid BR record");
2395         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2396         InstructionList.push_back(I);
2397       }
2398       break;
2399     }
2400     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2401       if (Record.size() < 3 || (Record.size() & 1) == 0)
2402         return Error("Invalid SWITCH record");
2403       Type *OpTy = getTypeByID(Record[0]);
2404       Value *Cond = getFnValueByID(Record[1], OpTy);
2405       BasicBlock *Default = getBasicBlock(Record[2]);
2406       if (OpTy == 0 || Cond == 0 || Default == 0)
2407         return Error("Invalid SWITCH record");
2408       unsigned NumCases = (Record.size()-3)/2;
2409       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2410       InstructionList.push_back(SI);
2411       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2412         ConstantInt *CaseVal =
2413           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2414         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2415         if (CaseVal == 0 || DestBB == 0) {
2416           delete SI;
2417           return Error("Invalid SWITCH record!");
2418         }
2419         SI->addCase(CaseVal, DestBB);
2420       }
2421       I = SI;
2422       break;
2423     }
2424     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2425       if (Record.size() < 2)
2426         return Error("Invalid INDIRECTBR record");
2427       Type *OpTy = getTypeByID(Record[0]);
2428       Value *Address = getFnValueByID(Record[1], OpTy);
2429       if (OpTy == 0 || Address == 0)
2430         return Error("Invalid INDIRECTBR record");
2431       unsigned NumDests = Record.size()-2;
2432       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2433       InstructionList.push_back(IBI);
2434       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2435         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2436           IBI->addDestination(DestBB);
2437         } else {
2438           delete IBI;
2439           return Error("Invalid INDIRECTBR record!");
2440         }
2441       }
2442       I = IBI;
2443       break;
2444     }
2445 
2446     case bitc::FUNC_CODE_INST_INVOKE: {
2447       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2448       if (Record.size() < 4) return Error("Invalid INVOKE record");
2449       AttrListPtr PAL = getAttributes(Record[0]);
2450       unsigned CCInfo = Record[1];
2451       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2452       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2453 
2454       unsigned OpNum = 4;
2455       Value *Callee;
2456       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2457         return Error("Invalid INVOKE record");
2458 
2459       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2460       FunctionType *FTy = !CalleeTy ? 0 :
2461         dyn_cast<FunctionType>(CalleeTy->getElementType());
2462 
2463       // Check that the right number of fixed parameters are here.
2464       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2465           Record.size() < OpNum+FTy->getNumParams())
2466         return Error("Invalid INVOKE record");
2467 
2468       SmallVector<Value*, 16> Ops;
2469       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2470         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2471         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2472       }
2473 
2474       if (!FTy->isVarArg()) {
2475         if (Record.size() != OpNum)
2476           return Error("Invalid INVOKE record");
2477       } else {
2478         // Read type/value pairs for varargs params.
2479         while (OpNum != Record.size()) {
2480           Value *Op;
2481           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2482             return Error("Invalid INVOKE record");
2483           Ops.push_back(Op);
2484         }
2485       }
2486 
2487       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2488       InstructionList.push_back(I);
2489       cast<InvokeInst>(I)->setCallingConv(
2490         static_cast<CallingConv::ID>(CCInfo));
2491       cast<InvokeInst>(I)->setAttributes(PAL);
2492       break;
2493     }
2494     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2495       I = new UnwindInst(Context);
2496       InstructionList.push_back(I);
2497       break;
2498     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2499       I = new UnreachableInst(Context);
2500       InstructionList.push_back(I);
2501       break;
2502     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2503       if (Record.size() < 1 || ((Record.size()-1)&1))
2504         return Error("Invalid PHI record");
2505       Type *Ty = getTypeByID(Record[0]);
2506       if (!Ty) return Error("Invalid PHI record");
2507 
2508       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2509       InstructionList.push_back(PN);
2510 
2511       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2512         Value *V = getFnValueByID(Record[1+i], Ty);
2513         BasicBlock *BB = getBasicBlock(Record[2+i]);
2514         if (!V || !BB) return Error("Invalid PHI record");
2515         PN->addIncoming(V, BB);
2516       }
2517       I = PN;
2518       break;
2519     }
2520 
2521     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2522       if (Record.size() != 4)
2523         return Error("Invalid ALLOCA record");
2524       PointerType *Ty =
2525         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2526       Type *OpTy = getTypeByID(Record[1]);
2527       Value *Size = getFnValueByID(Record[2], OpTy);
2528       unsigned Align = Record[3];
2529       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2530       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2531       InstructionList.push_back(I);
2532       break;
2533     }
2534     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2535       unsigned OpNum = 0;
2536       Value *Op;
2537       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2538           OpNum+2 != Record.size())
2539         return Error("Invalid LOAD record");
2540 
2541       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2542       InstructionList.push_back(I);
2543       break;
2544     }
2545     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2546       unsigned OpNum = 0;
2547       Value *Val, *Ptr;
2548       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2549           getValue(Record, OpNum,
2550                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2551           OpNum+2 != Record.size())
2552         return Error("Invalid STORE record");
2553 
2554       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2555       InstructionList.push_back(I);
2556       break;
2557     }
2558     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2559       if (2 != Record.size())
2560         return Error("Invalid FENCE record");
2561       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2562       if (Ordering == NotAtomic || Ordering == Unordered ||
2563           Ordering == Monotonic)
2564         return Error("Invalid FENCE record");
2565       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2566       I = new FenceInst(Context, Ordering, SynchScope);
2567       InstructionList.push_back(I);
2568       break;
2569     }
2570     case bitc::FUNC_CODE_INST_CALL: {
2571       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2572       if (Record.size() < 3)
2573         return Error("Invalid CALL record");
2574 
2575       AttrListPtr PAL = getAttributes(Record[0]);
2576       unsigned CCInfo = Record[1];
2577 
2578       unsigned OpNum = 2;
2579       Value *Callee;
2580       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2581         return Error("Invalid CALL record");
2582 
2583       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2584       FunctionType *FTy = 0;
2585       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2586       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2587         return Error("Invalid CALL record");
2588 
2589       SmallVector<Value*, 16> Args;
2590       // Read the fixed params.
2591       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2592         if (FTy->getParamType(i)->isLabelTy())
2593           Args.push_back(getBasicBlock(Record[OpNum]));
2594         else
2595           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2596         if (Args.back() == 0) return Error("Invalid CALL record");
2597       }
2598 
2599       // Read type/value pairs for varargs params.
2600       if (!FTy->isVarArg()) {
2601         if (OpNum != Record.size())
2602           return Error("Invalid CALL record");
2603       } else {
2604         while (OpNum != Record.size()) {
2605           Value *Op;
2606           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2607             return Error("Invalid CALL record");
2608           Args.push_back(Op);
2609         }
2610       }
2611 
2612       I = CallInst::Create(Callee, Args);
2613       InstructionList.push_back(I);
2614       cast<CallInst>(I)->setCallingConv(
2615         static_cast<CallingConv::ID>(CCInfo>>1));
2616       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2617       cast<CallInst>(I)->setAttributes(PAL);
2618       break;
2619     }
2620     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2621       if (Record.size() < 3)
2622         return Error("Invalid VAARG record");
2623       Type *OpTy = getTypeByID(Record[0]);
2624       Value *Op = getFnValueByID(Record[1], OpTy);
2625       Type *ResTy = getTypeByID(Record[2]);
2626       if (!OpTy || !Op || !ResTy)
2627         return Error("Invalid VAARG record");
2628       I = new VAArgInst(Op, ResTy);
2629       InstructionList.push_back(I);
2630       break;
2631     }
2632     }
2633 
2634     // Add instruction to end of current BB.  If there is no current BB, reject
2635     // this file.
2636     if (CurBB == 0) {
2637       delete I;
2638       return Error("Invalid instruction with no BB");
2639     }
2640     CurBB->getInstList().push_back(I);
2641 
2642     // If this was a terminator instruction, move to the next block.
2643     if (isa<TerminatorInst>(I)) {
2644       ++CurBBNo;
2645       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2646     }
2647 
2648     // Non-void values get registered in the value table for future use.
2649     if (I && !I->getType()->isVoidTy())
2650       ValueList.AssignValue(I, NextValueNo++);
2651   }
2652 
2653   // Check the function list for unresolved values.
2654   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2655     if (A->getParent() == 0) {
2656       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2657       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2658         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2659           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2660           delete A;
2661         }
2662       }
2663       return Error("Never resolved value found in function!");
2664     }
2665   }
2666 
2667   // FIXME: Check for unresolved forward-declared metadata references
2668   // and clean up leaks.
2669 
2670   // See if anything took the address of blocks in this function.  If so,
2671   // resolve them now.
2672   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2673     BlockAddrFwdRefs.find(F);
2674   if (BAFRI != BlockAddrFwdRefs.end()) {
2675     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2676     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2677       unsigned BlockIdx = RefList[i].first;
2678       if (BlockIdx >= FunctionBBs.size())
2679         return Error("Invalid blockaddress block #");
2680 
2681       GlobalVariable *FwdRef = RefList[i].second;
2682       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2683       FwdRef->eraseFromParent();
2684     }
2685 
2686     BlockAddrFwdRefs.erase(BAFRI);
2687   }
2688 
2689   // Trim the value list down to the size it was before we parsed this function.
2690   ValueList.shrinkTo(ModuleValueListSize);
2691   MDValueList.shrinkTo(ModuleMDValueListSize);
2692   std::vector<BasicBlock*>().swap(FunctionBBs);
2693   return false;
2694 }
2695 
2696 //===----------------------------------------------------------------------===//
2697 // GVMaterializer implementation
2698 //===----------------------------------------------------------------------===//
2699 
2700 
2701 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2702   if (const Function *F = dyn_cast<Function>(GV)) {
2703     return F->isDeclaration() &&
2704       DeferredFunctionInfo.count(const_cast<Function*>(F));
2705   }
2706   return false;
2707 }
2708 
2709 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2710   Function *F = dyn_cast<Function>(GV);
2711   // If it's not a function or is already material, ignore the request.
2712   if (!F || !F->isMaterializable()) return false;
2713 
2714   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2715   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2716 
2717   // Move the bit stream to the saved position of the deferred function body.
2718   Stream.JumpToBit(DFII->second);
2719 
2720   if (ParseFunctionBody(F)) {
2721     if (ErrInfo) *ErrInfo = ErrorString;
2722     return true;
2723   }
2724 
2725   // Upgrade any old intrinsic calls in the function.
2726   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2727        E = UpgradedIntrinsics.end(); I != E; ++I) {
2728     if (I->first != I->second) {
2729       for (Value::use_iterator UI = I->first->use_begin(),
2730            UE = I->first->use_end(); UI != UE; ) {
2731         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2732           UpgradeIntrinsicCall(CI, I->second);
2733       }
2734     }
2735   }
2736 
2737   return false;
2738 }
2739 
2740 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2741   const Function *F = dyn_cast<Function>(GV);
2742   if (!F || F->isDeclaration())
2743     return false;
2744   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2745 }
2746 
2747 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2748   Function *F = dyn_cast<Function>(GV);
2749   // If this function isn't dematerializable, this is a noop.
2750   if (!F || !isDematerializable(F))
2751     return;
2752 
2753   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2754 
2755   // Just forget the function body, we can remat it later.
2756   F->deleteBody();
2757 }
2758 
2759 
2760 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2761   assert(M == TheModule &&
2762          "Can only Materialize the Module this BitcodeReader is attached to.");
2763   // Iterate over the module, deserializing any functions that are still on
2764   // disk.
2765   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2766        F != E; ++F)
2767     if (F->isMaterializable() &&
2768         Materialize(F, ErrInfo))
2769       return true;
2770 
2771   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2772   // delete the old functions to clean up. We can't do this unless the entire
2773   // module is materialized because there could always be another function body
2774   // with calls to the old function.
2775   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2776        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2777     if (I->first != I->second) {
2778       for (Value::use_iterator UI = I->first->use_begin(),
2779            UE = I->first->use_end(); UI != UE; ) {
2780         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2781           UpgradeIntrinsicCall(CI, I->second);
2782       }
2783       if (!I->first->use_empty())
2784         I->first->replaceAllUsesWith(I->second);
2785       I->first->eraseFromParent();
2786     }
2787   }
2788   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2789 
2790   // Check debug info intrinsics.
2791   CheckDebugInfoIntrinsics(TheModule);
2792 
2793   return false;
2794 }
2795 
2796 
2797 //===----------------------------------------------------------------------===//
2798 // External interface
2799 //===----------------------------------------------------------------------===//
2800 
2801 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2802 ///
2803 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2804                                    LLVMContext& Context,
2805                                    std::string *ErrMsg) {
2806   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2807   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2808   M->setMaterializer(R);
2809   if (R->ParseBitcodeInto(M)) {
2810     if (ErrMsg)
2811       *ErrMsg = R->getErrorString();
2812 
2813     delete M;  // Also deletes R.
2814     return 0;
2815   }
2816   // Have the BitcodeReader dtor delete 'Buffer'.
2817   R->setBufferOwned(true);
2818   return M;
2819 }
2820 
2821 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2822 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2823 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2824                                std::string *ErrMsg){
2825   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2826   if (!M) return 0;
2827 
2828   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2829   // there was an error.
2830   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2831 
2832   // Read in the entire module, and destroy the BitcodeReader.
2833   if (M->MaterializeAllPermanently(ErrMsg)) {
2834     delete M;
2835     return 0;
2836   }
2837 
2838   return M;
2839 }
2840 
2841 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2842                                          LLVMContext& Context,
2843                                          std::string *ErrMsg) {
2844   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2845   // Don't let the BitcodeReader dtor delete 'Buffer'.
2846   R->setBufferOwned(false);
2847 
2848   std::string Triple("");
2849   if (R->ParseTriple(Triple))
2850     if (ErrMsg)
2851       *ErrMsg = R->getErrorString();
2852 
2853   delete R;
2854   return Triple;
2855 }
2856