1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getMetadataFwdRef(unsigned Idx); 130 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 131 void assignValue(Metadata *MD, unsigned Idx); 132 void tryToResolveCycles(); 133 }; 134 135 class BitcodeReader : public GVMaterializer { 136 LLVMContext &Context; 137 Module *TheModule = nullptr; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 // Next offset to start scanning for lazy parsing of function bodies. 142 uint64_t NextUnreadBit = 0; 143 // Last function offset found in the VST. 144 uint64_t LastFunctionBlockBit = 0; 145 bool SeenValueSymbolTable = false; 146 uint64_t VSTOffset = 0; 147 // Contains an arbitrary and optional string identifying the bitcode producer 148 std::string ProducerIdentification; 149 150 std::vector<Type*> TypeList; 151 BitcodeReaderValueList ValueList; 152 BitcodeReaderMetadataList MetadataList; 153 std::vector<Comdat *> ComdatList; 154 SmallVector<Instruction *, 64> InstructionList; 155 156 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 157 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 158 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 159 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 160 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 161 162 SmallVector<Instruction*, 64> InstsWithTBAATag; 163 164 bool HasSeenOldLoopTags = false; 165 166 /// The set of attributes by index. Index zero in the file is for null, and 167 /// is thus not represented here. As such all indices are off by one. 168 std::vector<AttributeSet> MAttributes; 169 170 /// The set of attribute groups. 171 std::map<unsigned, AttributeSet> MAttributeGroups; 172 173 /// While parsing a function body, this is a list of the basic blocks for the 174 /// function. 175 std::vector<BasicBlock*> FunctionBBs; 176 177 // When reading the module header, this list is populated with functions that 178 // have bodies later in the file. 179 std::vector<Function*> FunctionsWithBodies; 180 181 // When intrinsic functions are encountered which require upgrading they are 182 // stored here with their replacement function. 183 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 184 UpgradedIntrinsicMap UpgradedIntrinsics; 185 186 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 187 DenseMap<unsigned, unsigned> MDKindMap; 188 189 // Several operations happen after the module header has been read, but 190 // before function bodies are processed. This keeps track of whether 191 // we've done this yet. 192 bool SeenFirstFunctionBody = false; 193 194 /// When function bodies are initially scanned, this map contains info about 195 /// where to find deferred function body in the stream. 196 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 197 198 /// When Metadata block is initially scanned when parsing the module, we may 199 /// choose to defer parsing of the metadata. This vector contains info about 200 /// which Metadata blocks are deferred. 201 std::vector<uint64_t> DeferredMetadataInfo; 202 203 /// These are basic blocks forward-referenced by block addresses. They are 204 /// inserted lazily into functions when they're loaded. The basic block ID is 205 /// its index into the vector. 206 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 207 std::deque<Function *> BasicBlockFwdRefQueue; 208 209 /// Indicates that we are using a new encoding for instruction operands where 210 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 211 /// instruction number, for a more compact encoding. Some instruction 212 /// operands are not relative to the instruction ID: basic block numbers, and 213 /// types. Once the old style function blocks have been phased out, we would 214 /// not need this flag. 215 bool UseRelativeIDs = false; 216 217 /// True if all functions will be materialized, negating the need to process 218 /// (e.g.) blockaddress forward references. 219 bool WillMaterializeAllForwardRefs = false; 220 221 /// True if any Metadata block has been materialized. 222 bool IsMetadataMaterialized = false; 223 224 bool StripDebugInfo = false; 225 226 /// Functions that need to be matched with subprograms when upgrading old 227 /// metadata. 228 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 229 230 std::vector<std::string> BundleTags; 231 232 public: 233 std::error_code error(BitcodeError E, const Twine &Message); 234 std::error_code error(BitcodeError E); 235 std::error_code error(const Twine &Message); 236 237 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 238 BitcodeReader(LLVMContext &Context); 239 ~BitcodeReader() override { freeState(); } 240 241 std::error_code materializeForwardReferencedFunctions(); 242 243 void freeState(); 244 245 void releaseBuffer(); 246 247 std::error_code materialize(GlobalValue *GV) override; 248 std::error_code materializeModule() override; 249 std::vector<StructType *> getIdentifiedStructTypes() const override; 250 251 /// \brief Main interface to parsing a bitcode buffer. 252 /// \returns true if an error occurred. 253 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 254 Module *M, 255 bool ShouldLazyLoadMetadata = false); 256 257 /// \brief Cheap mechanism to just extract module triple 258 /// \returns true if an error occurred. 259 ErrorOr<std::string> parseTriple(); 260 261 /// Cheap mechanism to just extract the identification block out of bitcode. 262 ErrorOr<std::string> parseIdentificationBlock(); 263 264 static uint64_t decodeSignRotatedValue(uint64_t V); 265 266 /// Materialize any deferred Metadata block. 267 std::error_code materializeMetadata() override; 268 269 void setStripDebugInfo() override; 270 271 /// Save the mapping between the metadata values and the corresponding 272 /// value id that were recorded in the MetadataList during parsing. If 273 /// OnlyTempMD is true, then only record those entries that are still 274 /// temporary metadata. This interface is used when metadata linking is 275 /// performed as a postpass, such as during function importing. 276 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 277 bool OnlyTempMD) override; 278 279 private: 280 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 281 // ProducerIdentification data member, and do some basic enforcement on the 282 // "epoch" encoded in the bitcode. 283 std::error_code parseBitcodeVersion(); 284 285 std::vector<StructType *> IdentifiedStructTypes; 286 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 287 StructType *createIdentifiedStructType(LLVMContext &Context); 288 289 Type *getTypeByID(unsigned ID); 290 Value *getFnValueByID(unsigned ID, Type *Ty) { 291 if (Ty && Ty->isMetadataTy()) 292 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 293 return ValueList.getValueFwdRef(ID, Ty); 294 } 295 Metadata *getFnMetadataByID(unsigned ID) { 296 return MetadataList.getMetadataFwdRef(ID); 297 } 298 BasicBlock *getBasicBlock(unsigned ID) const { 299 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 300 return FunctionBBs[ID]; 301 } 302 AttributeSet getAttributes(unsigned i) const { 303 if (i-1 < MAttributes.size()) 304 return MAttributes[i-1]; 305 return AttributeSet(); 306 } 307 308 /// Read a value/type pair out of the specified record from slot 'Slot'. 309 /// Increment Slot past the number of slots used in the record. Return true on 310 /// failure. 311 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 312 unsigned InstNum, Value *&ResVal) { 313 if (Slot == Record.size()) return true; 314 unsigned ValNo = (unsigned)Record[Slot++]; 315 // Adjust the ValNo, if it was encoded relative to the InstNum. 316 if (UseRelativeIDs) 317 ValNo = InstNum - ValNo; 318 if (ValNo < InstNum) { 319 // If this is not a forward reference, just return the value we already 320 // have. 321 ResVal = getFnValueByID(ValNo, nullptr); 322 return ResVal == nullptr; 323 } 324 if (Slot == Record.size()) 325 return true; 326 327 unsigned TypeNo = (unsigned)Record[Slot++]; 328 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 329 return ResVal == nullptr; 330 } 331 332 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 333 /// past the number of slots used by the value in the record. Return true if 334 /// there is an error. 335 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 336 unsigned InstNum, Type *Ty, Value *&ResVal) { 337 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 338 return true; 339 // All values currently take a single record slot. 340 ++Slot; 341 return false; 342 } 343 344 /// Like popValue, but does not increment the Slot number. 345 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 346 unsigned InstNum, Type *Ty, Value *&ResVal) { 347 ResVal = getValue(Record, Slot, InstNum, Ty); 348 return ResVal == nullptr; 349 } 350 351 /// Version of getValue that returns ResVal directly, or 0 if there is an 352 /// error. 353 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 354 unsigned InstNum, Type *Ty) { 355 if (Slot == Record.size()) return nullptr; 356 unsigned ValNo = (unsigned)Record[Slot]; 357 // Adjust the ValNo, if it was encoded relative to the InstNum. 358 if (UseRelativeIDs) 359 ValNo = InstNum - ValNo; 360 return getFnValueByID(ValNo, Ty); 361 } 362 363 /// Like getValue, but decodes signed VBRs. 364 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 365 unsigned InstNum, Type *Ty) { 366 if (Slot == Record.size()) return nullptr; 367 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 368 // Adjust the ValNo, if it was encoded relative to the InstNum. 369 if (UseRelativeIDs) 370 ValNo = InstNum - ValNo; 371 return getFnValueByID(ValNo, Ty); 372 } 373 374 /// Converts alignment exponent (i.e. power of two (or zero)) to the 375 /// corresponding alignment to use. If alignment is too large, returns 376 /// a corresponding error code. 377 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 378 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 379 std::error_code parseModule(uint64_t ResumeBit, 380 bool ShouldLazyLoadMetadata = false); 381 std::error_code parseAttributeBlock(); 382 std::error_code parseAttributeGroupBlock(); 383 std::error_code parseTypeTable(); 384 std::error_code parseTypeTableBody(); 385 std::error_code parseOperandBundleTags(); 386 387 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 388 unsigned NameIndex, Triple &TT); 389 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 390 std::error_code parseConstants(); 391 std::error_code rememberAndSkipFunctionBodies(); 392 std::error_code rememberAndSkipFunctionBody(); 393 /// Save the positions of the Metadata blocks and skip parsing the blocks. 394 std::error_code rememberAndSkipMetadata(); 395 std::error_code parseFunctionBody(Function *F); 396 std::error_code globalCleanup(); 397 std::error_code resolveGlobalAndAliasInits(); 398 std::error_code parseMetadata(bool ModuleLevel = false); 399 std::error_code parseMetadataKinds(); 400 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 401 std::error_code parseMetadataAttachment(Function &F); 402 ErrorOr<std::string> parseModuleTriple(); 403 std::error_code parseUseLists(); 404 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 405 std::error_code initStreamFromBuffer(); 406 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code findFunctionInStream( 408 Function *F, 409 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 410 }; 411 412 /// Class to manage reading and parsing function summary index bitcode 413 /// files/sections. 414 class ModuleSummaryIndexBitcodeReader { 415 DiagnosticHandlerFunction DiagnosticHandler; 416 417 /// Eventually points to the module index built during parsing. 418 ModuleSummaryIndex *TheIndex = nullptr; 419 420 std::unique_ptr<MemoryBuffer> Buffer; 421 std::unique_ptr<BitstreamReader> StreamFile; 422 BitstreamCursor Stream; 423 424 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 425 /// 426 /// If false, the summary section is fully parsed into the index during 427 /// the initial parse. Otherwise, if true, the caller is expected to 428 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 429 /// section is thus parsed lazily. 430 bool IsLazy = false; 431 432 /// Used to indicate whether caller only wants to check for the presence 433 /// of the global value summary bitcode section. All blocks are skipped, 434 /// but the SeenGlobalValSummary boolean is set. 435 bool CheckGlobalValSummaryPresenceOnly = false; 436 437 /// Indicates whether we have encountered a global value summary section 438 /// yet during parsing, used when checking if file contains global value 439 /// summary section. 440 bool SeenGlobalValSummary = false; 441 442 /// Indicates whether we have already parsed the VST, used for error checking. 443 bool SeenValueSymbolTable = false; 444 445 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 446 /// Used to enable on-demand parsing of the VST. 447 uint64_t VSTOffset = 0; 448 449 // Map to save ValueId to GUID association that was recorded in the 450 // ValueSymbolTable. It is used after the VST is parsed to convert 451 // call graph edges read from the function summary from referencing 452 // callees by their ValueId to using the GUID instead, which is how 453 // they are recorded in the summary index being built. 454 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 455 456 /// Map to save the association between summary offset in the VST to the 457 /// GlobalValueInfo object created when parsing it. Used to access the 458 /// info object when parsing the summary section. 459 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 460 461 /// Map populated during module path string table parsing, from the 462 /// module ID to a string reference owned by the index's module 463 /// path string table, used to correlate with combined index 464 /// summary records. 465 DenseMap<uint64_t, StringRef> ModuleIdMap; 466 467 /// Original source file name recorded in a bitcode record. 468 std::string SourceFileName; 469 470 public: 471 std::error_code error(BitcodeError E, const Twine &Message); 472 std::error_code error(BitcodeError E); 473 std::error_code error(const Twine &Message); 474 475 ModuleSummaryIndexBitcodeReader( 476 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 477 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 478 ModuleSummaryIndexBitcodeReader( 479 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 480 bool CheckGlobalValSummaryPresenceOnly = false); 481 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 482 483 void freeState(); 484 485 void releaseBuffer(); 486 487 /// Check if the parser has encountered a summary section. 488 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 489 490 /// \brief Main interface to parsing a bitcode buffer. 491 /// \returns true if an error occurred. 492 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 493 ModuleSummaryIndex *I); 494 495 /// \brief Interface for parsing a summary lazily. 496 std::error_code 497 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 498 ModuleSummaryIndex *I, size_t SummaryOffset); 499 500 private: 501 std::error_code parseModule(); 502 std::error_code parseValueSymbolTable( 503 uint64_t Offset, 504 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 505 std::error_code parseEntireSummary(); 506 std::error_code parseModuleStringTable(); 507 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 508 std::error_code initStreamFromBuffer(); 509 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 510 uint64_t getGUIDFromValueId(unsigned ValueId); 511 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 512 }; 513 } // end anonymous namespace 514 515 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 516 DiagnosticSeverity Severity, 517 const Twine &Msg) 518 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 519 520 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 521 522 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 523 std::error_code EC, const Twine &Message) { 524 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 525 DiagnosticHandler(DI); 526 return EC; 527 } 528 529 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 530 std::error_code EC) { 531 return error(DiagnosticHandler, EC, EC.message()); 532 } 533 534 static std::error_code error(LLVMContext &Context, std::error_code EC, 535 const Twine &Message) { 536 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 537 Message); 538 } 539 540 static std::error_code error(LLVMContext &Context, std::error_code EC) { 541 return error(Context, EC, EC.message()); 542 } 543 544 static std::error_code error(LLVMContext &Context, const Twine &Message) { 545 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 546 Message); 547 } 548 549 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 550 if (!ProducerIdentification.empty()) { 551 return ::error(Context, make_error_code(E), 552 Message + " (Producer: '" + ProducerIdentification + 553 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 554 } 555 return ::error(Context, make_error_code(E), Message); 556 } 557 558 std::error_code BitcodeReader::error(const Twine &Message) { 559 if (!ProducerIdentification.empty()) { 560 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 561 Message + " (Producer: '" + ProducerIdentification + 562 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 563 } 564 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 565 Message); 566 } 567 568 std::error_code BitcodeReader::error(BitcodeError E) { 569 return ::error(Context, make_error_code(E)); 570 } 571 572 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 573 : Context(Context), Buffer(Buffer), ValueList(Context), 574 MetadataList(Context) {} 575 576 BitcodeReader::BitcodeReader(LLVMContext &Context) 577 : Context(Context), Buffer(nullptr), ValueList(Context), 578 MetadataList(Context) {} 579 580 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 581 if (WillMaterializeAllForwardRefs) 582 return std::error_code(); 583 584 // Prevent recursion. 585 WillMaterializeAllForwardRefs = true; 586 587 while (!BasicBlockFwdRefQueue.empty()) { 588 Function *F = BasicBlockFwdRefQueue.front(); 589 BasicBlockFwdRefQueue.pop_front(); 590 assert(F && "Expected valid function"); 591 if (!BasicBlockFwdRefs.count(F)) 592 // Already materialized. 593 continue; 594 595 // Check for a function that isn't materializable to prevent an infinite 596 // loop. When parsing a blockaddress stored in a global variable, there 597 // isn't a trivial way to check if a function will have a body without a 598 // linear search through FunctionsWithBodies, so just check it here. 599 if (!F->isMaterializable()) 600 return error("Never resolved function from blockaddress"); 601 602 // Try to materialize F. 603 if (std::error_code EC = materialize(F)) 604 return EC; 605 } 606 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 607 608 // Reset state. 609 WillMaterializeAllForwardRefs = false; 610 return std::error_code(); 611 } 612 613 void BitcodeReader::freeState() { 614 Buffer = nullptr; 615 std::vector<Type*>().swap(TypeList); 616 ValueList.clear(); 617 MetadataList.clear(); 618 std::vector<Comdat *>().swap(ComdatList); 619 620 std::vector<AttributeSet>().swap(MAttributes); 621 std::vector<BasicBlock*>().swap(FunctionBBs); 622 std::vector<Function*>().swap(FunctionsWithBodies); 623 DeferredFunctionInfo.clear(); 624 DeferredMetadataInfo.clear(); 625 MDKindMap.clear(); 626 627 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 628 BasicBlockFwdRefQueue.clear(); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // Helper functions to implement forward reference resolution, etc. 633 //===----------------------------------------------------------------------===// 634 635 /// Convert a string from a record into an std::string, return true on failure. 636 template <typename StrTy> 637 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 638 StrTy &Result) { 639 if (Idx > Record.size()) 640 return true; 641 642 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 643 Result += (char)Record[i]; 644 return false; 645 } 646 647 static bool hasImplicitComdat(size_t Val) { 648 switch (Val) { 649 default: 650 return false; 651 case 1: // Old WeakAnyLinkage 652 case 4: // Old LinkOnceAnyLinkage 653 case 10: // Old WeakODRLinkage 654 case 11: // Old LinkOnceODRLinkage 655 return true; 656 } 657 } 658 659 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 660 switch (Val) { 661 default: // Map unknown/new linkages to external 662 case 0: 663 return GlobalValue::ExternalLinkage; 664 case 2: 665 return GlobalValue::AppendingLinkage; 666 case 3: 667 return GlobalValue::InternalLinkage; 668 case 5: 669 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 670 case 6: 671 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 672 case 7: 673 return GlobalValue::ExternalWeakLinkage; 674 case 8: 675 return GlobalValue::CommonLinkage; 676 case 9: 677 return GlobalValue::PrivateLinkage; 678 case 12: 679 return GlobalValue::AvailableExternallyLinkage; 680 case 13: 681 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 682 case 14: 683 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 684 case 15: 685 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 686 case 1: // Old value with implicit comdat. 687 case 16: 688 return GlobalValue::WeakAnyLinkage; 689 case 10: // Old value with implicit comdat. 690 case 17: 691 return GlobalValue::WeakODRLinkage; 692 case 4: // Old value with implicit comdat. 693 case 18: 694 return GlobalValue::LinkOnceAnyLinkage; 695 case 11: // Old value with implicit comdat. 696 case 19: 697 return GlobalValue::LinkOnceODRLinkage; 698 } 699 } 700 701 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 702 switch (Val) { 703 default: // Map unknown visibilities to default. 704 case 0: return GlobalValue::DefaultVisibility; 705 case 1: return GlobalValue::HiddenVisibility; 706 case 2: return GlobalValue::ProtectedVisibility; 707 } 708 } 709 710 static GlobalValue::DLLStorageClassTypes 711 getDecodedDLLStorageClass(unsigned Val) { 712 switch (Val) { 713 default: // Map unknown values to default. 714 case 0: return GlobalValue::DefaultStorageClass; 715 case 1: return GlobalValue::DLLImportStorageClass; 716 case 2: return GlobalValue::DLLExportStorageClass; 717 } 718 } 719 720 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 721 switch (Val) { 722 case 0: return GlobalVariable::NotThreadLocal; 723 default: // Map unknown non-zero value to general dynamic. 724 case 1: return GlobalVariable::GeneralDynamicTLSModel; 725 case 2: return GlobalVariable::LocalDynamicTLSModel; 726 case 3: return GlobalVariable::InitialExecTLSModel; 727 case 4: return GlobalVariable::LocalExecTLSModel; 728 } 729 } 730 731 static int getDecodedCastOpcode(unsigned Val) { 732 switch (Val) { 733 default: return -1; 734 case bitc::CAST_TRUNC : return Instruction::Trunc; 735 case bitc::CAST_ZEXT : return Instruction::ZExt; 736 case bitc::CAST_SEXT : return Instruction::SExt; 737 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 738 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 739 case bitc::CAST_UITOFP : return Instruction::UIToFP; 740 case bitc::CAST_SITOFP : return Instruction::SIToFP; 741 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 742 case bitc::CAST_FPEXT : return Instruction::FPExt; 743 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 744 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 745 case bitc::CAST_BITCAST : return Instruction::BitCast; 746 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 747 } 748 } 749 750 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 751 bool IsFP = Ty->isFPOrFPVectorTy(); 752 // BinOps are only valid for int/fp or vector of int/fp types 753 if (!IsFP && !Ty->isIntOrIntVectorTy()) 754 return -1; 755 756 switch (Val) { 757 default: 758 return -1; 759 case bitc::BINOP_ADD: 760 return IsFP ? Instruction::FAdd : Instruction::Add; 761 case bitc::BINOP_SUB: 762 return IsFP ? Instruction::FSub : Instruction::Sub; 763 case bitc::BINOP_MUL: 764 return IsFP ? Instruction::FMul : Instruction::Mul; 765 case bitc::BINOP_UDIV: 766 return IsFP ? -1 : Instruction::UDiv; 767 case bitc::BINOP_SDIV: 768 return IsFP ? Instruction::FDiv : Instruction::SDiv; 769 case bitc::BINOP_UREM: 770 return IsFP ? -1 : Instruction::URem; 771 case bitc::BINOP_SREM: 772 return IsFP ? Instruction::FRem : Instruction::SRem; 773 case bitc::BINOP_SHL: 774 return IsFP ? -1 : Instruction::Shl; 775 case bitc::BINOP_LSHR: 776 return IsFP ? -1 : Instruction::LShr; 777 case bitc::BINOP_ASHR: 778 return IsFP ? -1 : Instruction::AShr; 779 case bitc::BINOP_AND: 780 return IsFP ? -1 : Instruction::And; 781 case bitc::BINOP_OR: 782 return IsFP ? -1 : Instruction::Or; 783 case bitc::BINOP_XOR: 784 return IsFP ? -1 : Instruction::Xor; 785 } 786 } 787 788 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 789 switch (Val) { 790 default: return AtomicRMWInst::BAD_BINOP; 791 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 792 case bitc::RMW_ADD: return AtomicRMWInst::Add; 793 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 794 case bitc::RMW_AND: return AtomicRMWInst::And; 795 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 796 case bitc::RMW_OR: return AtomicRMWInst::Or; 797 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 798 case bitc::RMW_MAX: return AtomicRMWInst::Max; 799 case bitc::RMW_MIN: return AtomicRMWInst::Min; 800 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 801 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 802 } 803 } 804 805 static AtomicOrdering getDecodedOrdering(unsigned Val) { 806 switch (Val) { 807 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 808 case bitc::ORDERING_UNORDERED: return Unordered; 809 case bitc::ORDERING_MONOTONIC: return Monotonic; 810 case bitc::ORDERING_ACQUIRE: return Acquire; 811 case bitc::ORDERING_RELEASE: return Release; 812 case bitc::ORDERING_ACQREL: return AcquireRelease; 813 default: // Map unknown orderings to sequentially-consistent. 814 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 815 } 816 } 817 818 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 819 switch (Val) { 820 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 821 default: // Map unknown scopes to cross-thread. 822 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 823 } 824 } 825 826 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 827 switch (Val) { 828 default: // Map unknown selection kinds to any. 829 case bitc::COMDAT_SELECTION_KIND_ANY: 830 return Comdat::Any; 831 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 832 return Comdat::ExactMatch; 833 case bitc::COMDAT_SELECTION_KIND_LARGEST: 834 return Comdat::Largest; 835 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 836 return Comdat::NoDuplicates; 837 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 838 return Comdat::SameSize; 839 } 840 } 841 842 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 843 FastMathFlags FMF; 844 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 845 FMF.setUnsafeAlgebra(); 846 if (0 != (Val & FastMathFlags::NoNaNs)) 847 FMF.setNoNaNs(); 848 if (0 != (Val & FastMathFlags::NoInfs)) 849 FMF.setNoInfs(); 850 if (0 != (Val & FastMathFlags::NoSignedZeros)) 851 FMF.setNoSignedZeros(); 852 if (0 != (Val & FastMathFlags::AllowReciprocal)) 853 FMF.setAllowReciprocal(); 854 return FMF; 855 } 856 857 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 858 switch (Val) { 859 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 860 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 861 } 862 } 863 864 namespace llvm { 865 namespace { 866 /// \brief A class for maintaining the slot number definition 867 /// as a placeholder for the actual definition for forward constants defs. 868 class ConstantPlaceHolder : public ConstantExpr { 869 void operator=(const ConstantPlaceHolder &) = delete; 870 871 public: 872 // allocate space for exactly one operand 873 void *operator new(size_t s) { return User::operator new(s, 1); } 874 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 875 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 876 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 877 } 878 879 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 880 static bool classof(const Value *V) { 881 return isa<ConstantExpr>(V) && 882 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 883 } 884 885 /// Provide fast operand accessors 886 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 887 }; 888 } // end anonymous namespace 889 890 // FIXME: can we inherit this from ConstantExpr? 891 template <> 892 struct OperandTraits<ConstantPlaceHolder> : 893 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 894 }; 895 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 896 } // end namespace llvm 897 898 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 899 if (Idx == size()) { 900 push_back(V); 901 return; 902 } 903 904 if (Idx >= size()) 905 resize(Idx+1); 906 907 WeakVH &OldV = ValuePtrs[Idx]; 908 if (!OldV) { 909 OldV = V; 910 return; 911 } 912 913 // Handle constants and non-constants (e.g. instrs) differently for 914 // efficiency. 915 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 916 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 917 OldV = V; 918 } else { 919 // If there was a forward reference to this value, replace it. 920 Value *PrevVal = OldV; 921 OldV->replaceAllUsesWith(V); 922 delete PrevVal; 923 } 924 } 925 926 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 927 Type *Ty) { 928 if (Idx >= size()) 929 resize(Idx + 1); 930 931 if (Value *V = ValuePtrs[Idx]) { 932 if (Ty != V->getType()) 933 report_fatal_error("Type mismatch in constant table!"); 934 return cast<Constant>(V); 935 } 936 937 // Create and return a placeholder, which will later be RAUW'd. 938 Constant *C = new ConstantPlaceHolder(Ty, Context); 939 ValuePtrs[Idx] = C; 940 return C; 941 } 942 943 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 944 // Bail out for a clearly invalid value. This would make us call resize(0) 945 if (Idx == UINT_MAX) 946 return nullptr; 947 948 if (Idx >= size()) 949 resize(Idx + 1); 950 951 if (Value *V = ValuePtrs[Idx]) { 952 // If the types don't match, it's invalid. 953 if (Ty && Ty != V->getType()) 954 return nullptr; 955 return V; 956 } 957 958 // No type specified, must be invalid reference. 959 if (!Ty) return nullptr; 960 961 // Create and return a placeholder, which will later be RAUW'd. 962 Value *V = new Argument(Ty); 963 ValuePtrs[Idx] = V; 964 return V; 965 } 966 967 /// Once all constants are read, this method bulk resolves any forward 968 /// references. The idea behind this is that we sometimes get constants (such 969 /// as large arrays) which reference *many* forward ref constants. Replacing 970 /// each of these causes a lot of thrashing when building/reuniquing the 971 /// constant. Instead of doing this, we look at all the uses and rewrite all 972 /// the place holders at once for any constant that uses a placeholder. 973 void BitcodeReaderValueList::resolveConstantForwardRefs() { 974 // Sort the values by-pointer so that they are efficient to look up with a 975 // binary search. 976 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 977 978 SmallVector<Constant*, 64> NewOps; 979 980 while (!ResolveConstants.empty()) { 981 Value *RealVal = operator[](ResolveConstants.back().second); 982 Constant *Placeholder = ResolveConstants.back().first; 983 ResolveConstants.pop_back(); 984 985 // Loop over all users of the placeholder, updating them to reference the 986 // new value. If they reference more than one placeholder, update them all 987 // at once. 988 while (!Placeholder->use_empty()) { 989 auto UI = Placeholder->user_begin(); 990 User *U = *UI; 991 992 // If the using object isn't uniqued, just update the operands. This 993 // handles instructions and initializers for global variables. 994 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 995 UI.getUse().set(RealVal); 996 continue; 997 } 998 999 // Otherwise, we have a constant that uses the placeholder. Replace that 1000 // constant with a new constant that has *all* placeholder uses updated. 1001 Constant *UserC = cast<Constant>(U); 1002 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1003 I != E; ++I) { 1004 Value *NewOp; 1005 if (!isa<ConstantPlaceHolder>(*I)) { 1006 // Not a placeholder reference. 1007 NewOp = *I; 1008 } else if (*I == Placeholder) { 1009 // Common case is that it just references this one placeholder. 1010 NewOp = RealVal; 1011 } else { 1012 // Otherwise, look up the placeholder in ResolveConstants. 1013 ResolveConstantsTy::iterator It = 1014 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1015 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1016 0)); 1017 assert(It != ResolveConstants.end() && It->first == *I); 1018 NewOp = operator[](It->second); 1019 } 1020 1021 NewOps.push_back(cast<Constant>(NewOp)); 1022 } 1023 1024 // Make the new constant. 1025 Constant *NewC; 1026 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1027 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1028 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1029 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1030 } else if (isa<ConstantVector>(UserC)) { 1031 NewC = ConstantVector::get(NewOps); 1032 } else { 1033 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1034 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1035 } 1036 1037 UserC->replaceAllUsesWith(NewC); 1038 UserC->destroyConstant(); 1039 NewOps.clear(); 1040 } 1041 1042 // Update all ValueHandles, they should be the only users at this point. 1043 Placeholder->replaceAllUsesWith(RealVal); 1044 delete Placeholder; 1045 } 1046 } 1047 1048 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1049 if (Idx == size()) { 1050 push_back(MD); 1051 return; 1052 } 1053 1054 if (Idx >= size()) 1055 resize(Idx+1); 1056 1057 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1058 if (!OldMD) { 1059 OldMD.reset(MD); 1060 return; 1061 } 1062 1063 // If there was a forward reference to this value, replace it. 1064 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1065 PrevMD->replaceAllUsesWith(MD); 1066 --NumFwdRefs; 1067 } 1068 1069 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1070 if (Idx >= size()) 1071 resize(Idx + 1); 1072 1073 if (Metadata *MD = MetadataPtrs[Idx]) 1074 return MD; 1075 1076 // Track forward refs to be resolved later. 1077 if (AnyFwdRefs) { 1078 MinFwdRef = std::min(MinFwdRef, Idx); 1079 MaxFwdRef = std::max(MaxFwdRef, Idx); 1080 } else { 1081 AnyFwdRefs = true; 1082 MinFwdRef = MaxFwdRef = Idx; 1083 } 1084 ++NumFwdRefs; 1085 1086 // Create and return a placeholder, which will later be RAUW'd. 1087 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1088 MetadataPtrs[Idx].reset(MD); 1089 return MD; 1090 } 1091 1092 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1093 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1094 } 1095 1096 void BitcodeReaderMetadataList::tryToResolveCycles() { 1097 if (!AnyFwdRefs) 1098 // Nothing to do. 1099 return; 1100 1101 if (NumFwdRefs) 1102 // Still forward references... can't resolve cycles. 1103 return; 1104 1105 // Resolve any cycles. 1106 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1107 auto &MD = MetadataPtrs[I]; 1108 auto *N = dyn_cast_or_null<MDNode>(MD); 1109 if (!N) 1110 continue; 1111 1112 assert(!N->isTemporary() && "Unexpected forward reference"); 1113 N->resolveCycles(); 1114 } 1115 1116 // Make sure we return early again until there's another forward ref. 1117 AnyFwdRefs = false; 1118 } 1119 1120 Type *BitcodeReader::getTypeByID(unsigned ID) { 1121 // The type table size is always specified correctly. 1122 if (ID >= TypeList.size()) 1123 return nullptr; 1124 1125 if (Type *Ty = TypeList[ID]) 1126 return Ty; 1127 1128 // If we have a forward reference, the only possible case is when it is to a 1129 // named struct. Just create a placeholder for now. 1130 return TypeList[ID] = createIdentifiedStructType(Context); 1131 } 1132 1133 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1134 StringRef Name) { 1135 auto *Ret = StructType::create(Context, Name); 1136 IdentifiedStructTypes.push_back(Ret); 1137 return Ret; 1138 } 1139 1140 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1141 auto *Ret = StructType::create(Context); 1142 IdentifiedStructTypes.push_back(Ret); 1143 return Ret; 1144 } 1145 1146 //===----------------------------------------------------------------------===// 1147 // Functions for parsing blocks from the bitcode file 1148 //===----------------------------------------------------------------------===// 1149 1150 1151 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1152 /// been decoded from the given integer. This function must stay in sync with 1153 /// 'encodeLLVMAttributesForBitcode'. 1154 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1155 uint64_t EncodedAttrs) { 1156 // FIXME: Remove in 4.0. 1157 1158 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1159 // the bits above 31 down by 11 bits. 1160 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1161 assert((!Alignment || isPowerOf2_32(Alignment)) && 1162 "Alignment must be a power of two."); 1163 1164 if (Alignment) 1165 B.addAlignmentAttr(Alignment); 1166 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1167 (EncodedAttrs & 0xffff)); 1168 } 1169 1170 std::error_code BitcodeReader::parseAttributeBlock() { 1171 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1172 return error("Invalid record"); 1173 1174 if (!MAttributes.empty()) 1175 return error("Invalid multiple blocks"); 1176 1177 SmallVector<uint64_t, 64> Record; 1178 1179 SmallVector<AttributeSet, 8> Attrs; 1180 1181 // Read all the records. 1182 while (1) { 1183 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1184 1185 switch (Entry.Kind) { 1186 case BitstreamEntry::SubBlock: // Handled for us already. 1187 case BitstreamEntry::Error: 1188 return error("Malformed block"); 1189 case BitstreamEntry::EndBlock: 1190 return std::error_code(); 1191 case BitstreamEntry::Record: 1192 // The interesting case. 1193 break; 1194 } 1195 1196 // Read a record. 1197 Record.clear(); 1198 switch (Stream.readRecord(Entry.ID, Record)) { 1199 default: // Default behavior: ignore. 1200 break; 1201 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1202 // FIXME: Remove in 4.0. 1203 if (Record.size() & 1) 1204 return error("Invalid record"); 1205 1206 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1207 AttrBuilder B; 1208 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1209 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1210 } 1211 1212 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1213 Attrs.clear(); 1214 break; 1215 } 1216 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1217 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1218 Attrs.push_back(MAttributeGroups[Record[i]]); 1219 1220 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1221 Attrs.clear(); 1222 break; 1223 } 1224 } 1225 } 1226 } 1227 1228 // Returns Attribute::None on unrecognized codes. 1229 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1230 switch (Code) { 1231 default: 1232 return Attribute::None; 1233 case bitc::ATTR_KIND_ALIGNMENT: 1234 return Attribute::Alignment; 1235 case bitc::ATTR_KIND_ALWAYS_INLINE: 1236 return Attribute::AlwaysInline; 1237 case bitc::ATTR_KIND_ARGMEMONLY: 1238 return Attribute::ArgMemOnly; 1239 case bitc::ATTR_KIND_BUILTIN: 1240 return Attribute::Builtin; 1241 case bitc::ATTR_KIND_BY_VAL: 1242 return Attribute::ByVal; 1243 case bitc::ATTR_KIND_IN_ALLOCA: 1244 return Attribute::InAlloca; 1245 case bitc::ATTR_KIND_COLD: 1246 return Attribute::Cold; 1247 case bitc::ATTR_KIND_CONVERGENT: 1248 return Attribute::Convergent; 1249 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1250 return Attribute::InaccessibleMemOnly; 1251 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1252 return Attribute::InaccessibleMemOrArgMemOnly; 1253 case bitc::ATTR_KIND_INLINE_HINT: 1254 return Attribute::InlineHint; 1255 case bitc::ATTR_KIND_IN_REG: 1256 return Attribute::InReg; 1257 case bitc::ATTR_KIND_JUMP_TABLE: 1258 return Attribute::JumpTable; 1259 case bitc::ATTR_KIND_MIN_SIZE: 1260 return Attribute::MinSize; 1261 case bitc::ATTR_KIND_NAKED: 1262 return Attribute::Naked; 1263 case bitc::ATTR_KIND_NEST: 1264 return Attribute::Nest; 1265 case bitc::ATTR_KIND_NO_ALIAS: 1266 return Attribute::NoAlias; 1267 case bitc::ATTR_KIND_NO_BUILTIN: 1268 return Attribute::NoBuiltin; 1269 case bitc::ATTR_KIND_NO_CAPTURE: 1270 return Attribute::NoCapture; 1271 case bitc::ATTR_KIND_NO_DUPLICATE: 1272 return Attribute::NoDuplicate; 1273 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1274 return Attribute::NoImplicitFloat; 1275 case bitc::ATTR_KIND_NO_INLINE: 1276 return Attribute::NoInline; 1277 case bitc::ATTR_KIND_NO_RECURSE: 1278 return Attribute::NoRecurse; 1279 case bitc::ATTR_KIND_NON_LAZY_BIND: 1280 return Attribute::NonLazyBind; 1281 case bitc::ATTR_KIND_NON_NULL: 1282 return Attribute::NonNull; 1283 case bitc::ATTR_KIND_DEREFERENCEABLE: 1284 return Attribute::Dereferenceable; 1285 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1286 return Attribute::DereferenceableOrNull; 1287 case bitc::ATTR_KIND_NO_RED_ZONE: 1288 return Attribute::NoRedZone; 1289 case bitc::ATTR_KIND_NO_RETURN: 1290 return Attribute::NoReturn; 1291 case bitc::ATTR_KIND_NO_UNWIND: 1292 return Attribute::NoUnwind; 1293 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1294 return Attribute::OptimizeForSize; 1295 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1296 return Attribute::OptimizeNone; 1297 case bitc::ATTR_KIND_READ_NONE: 1298 return Attribute::ReadNone; 1299 case bitc::ATTR_KIND_READ_ONLY: 1300 return Attribute::ReadOnly; 1301 case bitc::ATTR_KIND_RETURNED: 1302 return Attribute::Returned; 1303 case bitc::ATTR_KIND_RETURNS_TWICE: 1304 return Attribute::ReturnsTwice; 1305 case bitc::ATTR_KIND_S_EXT: 1306 return Attribute::SExt; 1307 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1308 return Attribute::StackAlignment; 1309 case bitc::ATTR_KIND_STACK_PROTECT: 1310 return Attribute::StackProtect; 1311 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1312 return Attribute::StackProtectReq; 1313 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1314 return Attribute::StackProtectStrong; 1315 case bitc::ATTR_KIND_SAFESTACK: 1316 return Attribute::SafeStack; 1317 case bitc::ATTR_KIND_STRUCT_RET: 1318 return Attribute::StructRet; 1319 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1320 return Attribute::SanitizeAddress; 1321 case bitc::ATTR_KIND_SANITIZE_THREAD: 1322 return Attribute::SanitizeThread; 1323 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1324 return Attribute::SanitizeMemory; 1325 case bitc::ATTR_KIND_UW_TABLE: 1326 return Attribute::UWTable; 1327 case bitc::ATTR_KIND_Z_EXT: 1328 return Attribute::ZExt; 1329 } 1330 } 1331 1332 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1333 unsigned &Alignment) { 1334 // Note: Alignment in bitcode files is incremented by 1, so that zero 1335 // can be used for default alignment. 1336 if (Exponent > Value::MaxAlignmentExponent + 1) 1337 return error("Invalid alignment value"); 1338 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1339 return std::error_code(); 1340 } 1341 1342 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1343 Attribute::AttrKind *Kind) { 1344 *Kind = getAttrFromCode(Code); 1345 if (*Kind == Attribute::None) 1346 return error(BitcodeError::CorruptedBitcode, 1347 "Unknown attribute kind (" + Twine(Code) + ")"); 1348 return std::error_code(); 1349 } 1350 1351 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1352 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1353 return error("Invalid record"); 1354 1355 if (!MAttributeGroups.empty()) 1356 return error("Invalid multiple blocks"); 1357 1358 SmallVector<uint64_t, 64> Record; 1359 1360 // Read all the records. 1361 while (1) { 1362 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1363 1364 switch (Entry.Kind) { 1365 case BitstreamEntry::SubBlock: // Handled for us already. 1366 case BitstreamEntry::Error: 1367 return error("Malformed block"); 1368 case BitstreamEntry::EndBlock: 1369 return std::error_code(); 1370 case BitstreamEntry::Record: 1371 // The interesting case. 1372 break; 1373 } 1374 1375 // Read a record. 1376 Record.clear(); 1377 switch (Stream.readRecord(Entry.ID, Record)) { 1378 default: // Default behavior: ignore. 1379 break; 1380 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1381 if (Record.size() < 3) 1382 return error("Invalid record"); 1383 1384 uint64_t GrpID = Record[0]; 1385 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1386 1387 AttrBuilder B; 1388 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1389 if (Record[i] == 0) { // Enum attribute 1390 Attribute::AttrKind Kind; 1391 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1392 return EC; 1393 1394 B.addAttribute(Kind); 1395 } else if (Record[i] == 1) { // Integer attribute 1396 Attribute::AttrKind Kind; 1397 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1398 return EC; 1399 if (Kind == Attribute::Alignment) 1400 B.addAlignmentAttr(Record[++i]); 1401 else if (Kind == Attribute::StackAlignment) 1402 B.addStackAlignmentAttr(Record[++i]); 1403 else if (Kind == Attribute::Dereferenceable) 1404 B.addDereferenceableAttr(Record[++i]); 1405 else if (Kind == Attribute::DereferenceableOrNull) 1406 B.addDereferenceableOrNullAttr(Record[++i]); 1407 } else { // String attribute 1408 assert((Record[i] == 3 || Record[i] == 4) && 1409 "Invalid attribute group entry"); 1410 bool HasValue = (Record[i++] == 4); 1411 SmallString<64> KindStr; 1412 SmallString<64> ValStr; 1413 1414 while (Record[i] != 0 && i != e) 1415 KindStr += Record[i++]; 1416 assert(Record[i] == 0 && "Kind string not null terminated"); 1417 1418 if (HasValue) { 1419 // Has a value associated with it. 1420 ++i; // Skip the '0' that terminates the "kind" string. 1421 while (Record[i] != 0 && i != e) 1422 ValStr += Record[i++]; 1423 assert(Record[i] == 0 && "Value string not null terminated"); 1424 } 1425 1426 B.addAttribute(KindStr.str(), ValStr.str()); 1427 } 1428 } 1429 1430 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1431 break; 1432 } 1433 } 1434 } 1435 } 1436 1437 std::error_code BitcodeReader::parseTypeTable() { 1438 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1439 return error("Invalid record"); 1440 1441 return parseTypeTableBody(); 1442 } 1443 1444 std::error_code BitcodeReader::parseTypeTableBody() { 1445 if (!TypeList.empty()) 1446 return error("Invalid multiple blocks"); 1447 1448 SmallVector<uint64_t, 64> Record; 1449 unsigned NumRecords = 0; 1450 1451 SmallString<64> TypeName; 1452 1453 // Read all the records for this type table. 1454 while (1) { 1455 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1456 1457 switch (Entry.Kind) { 1458 case BitstreamEntry::SubBlock: // Handled for us already. 1459 case BitstreamEntry::Error: 1460 return error("Malformed block"); 1461 case BitstreamEntry::EndBlock: 1462 if (NumRecords != TypeList.size()) 1463 return error("Malformed block"); 1464 return std::error_code(); 1465 case BitstreamEntry::Record: 1466 // The interesting case. 1467 break; 1468 } 1469 1470 // Read a record. 1471 Record.clear(); 1472 Type *ResultTy = nullptr; 1473 switch (Stream.readRecord(Entry.ID, Record)) { 1474 default: 1475 return error("Invalid value"); 1476 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1477 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1478 // type list. This allows us to reserve space. 1479 if (Record.size() < 1) 1480 return error("Invalid record"); 1481 TypeList.resize(Record[0]); 1482 continue; 1483 case bitc::TYPE_CODE_VOID: // VOID 1484 ResultTy = Type::getVoidTy(Context); 1485 break; 1486 case bitc::TYPE_CODE_HALF: // HALF 1487 ResultTy = Type::getHalfTy(Context); 1488 break; 1489 case bitc::TYPE_CODE_FLOAT: // FLOAT 1490 ResultTy = Type::getFloatTy(Context); 1491 break; 1492 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1493 ResultTy = Type::getDoubleTy(Context); 1494 break; 1495 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1496 ResultTy = Type::getX86_FP80Ty(Context); 1497 break; 1498 case bitc::TYPE_CODE_FP128: // FP128 1499 ResultTy = Type::getFP128Ty(Context); 1500 break; 1501 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1502 ResultTy = Type::getPPC_FP128Ty(Context); 1503 break; 1504 case bitc::TYPE_CODE_LABEL: // LABEL 1505 ResultTy = Type::getLabelTy(Context); 1506 break; 1507 case bitc::TYPE_CODE_METADATA: // METADATA 1508 ResultTy = Type::getMetadataTy(Context); 1509 break; 1510 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1511 ResultTy = Type::getX86_MMXTy(Context); 1512 break; 1513 case bitc::TYPE_CODE_TOKEN: // TOKEN 1514 ResultTy = Type::getTokenTy(Context); 1515 break; 1516 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1517 if (Record.size() < 1) 1518 return error("Invalid record"); 1519 1520 uint64_t NumBits = Record[0]; 1521 if (NumBits < IntegerType::MIN_INT_BITS || 1522 NumBits > IntegerType::MAX_INT_BITS) 1523 return error("Bitwidth for integer type out of range"); 1524 ResultTy = IntegerType::get(Context, NumBits); 1525 break; 1526 } 1527 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1528 // [pointee type, address space] 1529 if (Record.size() < 1) 1530 return error("Invalid record"); 1531 unsigned AddressSpace = 0; 1532 if (Record.size() == 2) 1533 AddressSpace = Record[1]; 1534 ResultTy = getTypeByID(Record[0]); 1535 if (!ResultTy || 1536 !PointerType::isValidElementType(ResultTy)) 1537 return error("Invalid type"); 1538 ResultTy = PointerType::get(ResultTy, AddressSpace); 1539 break; 1540 } 1541 case bitc::TYPE_CODE_FUNCTION_OLD: { 1542 // FIXME: attrid is dead, remove it in LLVM 4.0 1543 // FUNCTION: [vararg, attrid, retty, paramty x N] 1544 if (Record.size() < 3) 1545 return error("Invalid record"); 1546 SmallVector<Type*, 8> ArgTys; 1547 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1548 if (Type *T = getTypeByID(Record[i])) 1549 ArgTys.push_back(T); 1550 else 1551 break; 1552 } 1553 1554 ResultTy = getTypeByID(Record[2]); 1555 if (!ResultTy || ArgTys.size() < Record.size()-3) 1556 return error("Invalid type"); 1557 1558 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1559 break; 1560 } 1561 case bitc::TYPE_CODE_FUNCTION: { 1562 // FUNCTION: [vararg, retty, paramty x N] 1563 if (Record.size() < 2) 1564 return error("Invalid record"); 1565 SmallVector<Type*, 8> ArgTys; 1566 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1567 if (Type *T = getTypeByID(Record[i])) { 1568 if (!FunctionType::isValidArgumentType(T)) 1569 return error("Invalid function argument type"); 1570 ArgTys.push_back(T); 1571 } 1572 else 1573 break; 1574 } 1575 1576 ResultTy = getTypeByID(Record[1]); 1577 if (!ResultTy || ArgTys.size() < Record.size()-2) 1578 return error("Invalid type"); 1579 1580 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1581 break; 1582 } 1583 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1584 if (Record.size() < 1) 1585 return error("Invalid record"); 1586 SmallVector<Type*, 8> EltTys; 1587 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1588 if (Type *T = getTypeByID(Record[i])) 1589 EltTys.push_back(T); 1590 else 1591 break; 1592 } 1593 if (EltTys.size() != Record.size()-1) 1594 return error("Invalid type"); 1595 ResultTy = StructType::get(Context, EltTys, Record[0]); 1596 break; 1597 } 1598 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1599 if (convertToString(Record, 0, TypeName)) 1600 return error("Invalid record"); 1601 continue; 1602 1603 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1604 if (Record.size() < 1) 1605 return error("Invalid record"); 1606 1607 if (NumRecords >= TypeList.size()) 1608 return error("Invalid TYPE table"); 1609 1610 // Check to see if this was forward referenced, if so fill in the temp. 1611 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1612 if (Res) { 1613 Res->setName(TypeName); 1614 TypeList[NumRecords] = nullptr; 1615 } else // Otherwise, create a new struct. 1616 Res = createIdentifiedStructType(Context, TypeName); 1617 TypeName.clear(); 1618 1619 SmallVector<Type*, 8> EltTys; 1620 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1621 if (Type *T = getTypeByID(Record[i])) 1622 EltTys.push_back(T); 1623 else 1624 break; 1625 } 1626 if (EltTys.size() != Record.size()-1) 1627 return error("Invalid record"); 1628 Res->setBody(EltTys, Record[0]); 1629 ResultTy = Res; 1630 break; 1631 } 1632 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1633 if (Record.size() != 1) 1634 return error("Invalid record"); 1635 1636 if (NumRecords >= TypeList.size()) 1637 return error("Invalid TYPE table"); 1638 1639 // Check to see if this was forward referenced, if so fill in the temp. 1640 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1641 if (Res) { 1642 Res->setName(TypeName); 1643 TypeList[NumRecords] = nullptr; 1644 } else // Otherwise, create a new struct with no body. 1645 Res = createIdentifiedStructType(Context, TypeName); 1646 TypeName.clear(); 1647 ResultTy = Res; 1648 break; 1649 } 1650 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1651 if (Record.size() < 2) 1652 return error("Invalid record"); 1653 ResultTy = getTypeByID(Record[1]); 1654 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1655 return error("Invalid type"); 1656 ResultTy = ArrayType::get(ResultTy, Record[0]); 1657 break; 1658 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1659 if (Record.size() < 2) 1660 return error("Invalid record"); 1661 if (Record[0] == 0) 1662 return error("Invalid vector length"); 1663 ResultTy = getTypeByID(Record[1]); 1664 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1665 return error("Invalid type"); 1666 ResultTy = VectorType::get(ResultTy, Record[0]); 1667 break; 1668 } 1669 1670 if (NumRecords >= TypeList.size()) 1671 return error("Invalid TYPE table"); 1672 if (TypeList[NumRecords]) 1673 return error( 1674 "Invalid TYPE table: Only named structs can be forward referenced"); 1675 assert(ResultTy && "Didn't read a type?"); 1676 TypeList[NumRecords++] = ResultTy; 1677 } 1678 } 1679 1680 std::error_code BitcodeReader::parseOperandBundleTags() { 1681 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1682 return error("Invalid record"); 1683 1684 if (!BundleTags.empty()) 1685 return error("Invalid multiple blocks"); 1686 1687 SmallVector<uint64_t, 64> Record; 1688 1689 while (1) { 1690 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1691 1692 switch (Entry.Kind) { 1693 case BitstreamEntry::SubBlock: // Handled for us already. 1694 case BitstreamEntry::Error: 1695 return error("Malformed block"); 1696 case BitstreamEntry::EndBlock: 1697 return std::error_code(); 1698 case BitstreamEntry::Record: 1699 // The interesting case. 1700 break; 1701 } 1702 1703 // Tags are implicitly mapped to integers by their order. 1704 1705 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1706 return error("Invalid record"); 1707 1708 // OPERAND_BUNDLE_TAG: [strchr x N] 1709 BundleTags.emplace_back(); 1710 if (convertToString(Record, 0, BundleTags.back())) 1711 return error("Invalid record"); 1712 Record.clear(); 1713 } 1714 } 1715 1716 /// Associate a value with its name from the given index in the provided record. 1717 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1718 unsigned NameIndex, Triple &TT) { 1719 SmallString<128> ValueName; 1720 if (convertToString(Record, NameIndex, ValueName)) 1721 return error("Invalid record"); 1722 unsigned ValueID = Record[0]; 1723 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1724 return error("Invalid record"); 1725 Value *V = ValueList[ValueID]; 1726 1727 StringRef NameStr(ValueName.data(), ValueName.size()); 1728 if (NameStr.find_first_of(0) != StringRef::npos) 1729 return error("Invalid value name"); 1730 V->setName(NameStr); 1731 auto *GO = dyn_cast<GlobalObject>(V); 1732 if (GO) { 1733 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1734 if (TT.isOSBinFormatMachO()) 1735 GO->setComdat(nullptr); 1736 else 1737 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1738 } 1739 } 1740 return V; 1741 } 1742 1743 /// Helper to note and return the current location, and jump to the given 1744 /// offset. 1745 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1746 BitstreamCursor &Stream) { 1747 // Save the current parsing location so we can jump back at the end 1748 // of the VST read. 1749 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1750 Stream.JumpToBit(Offset * 32); 1751 #ifndef NDEBUG 1752 // Do some checking if we are in debug mode. 1753 BitstreamEntry Entry = Stream.advance(); 1754 assert(Entry.Kind == BitstreamEntry::SubBlock); 1755 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1756 #else 1757 // In NDEBUG mode ignore the output so we don't get an unused variable 1758 // warning. 1759 Stream.advance(); 1760 #endif 1761 return CurrentBit; 1762 } 1763 1764 /// Parse the value symbol table at either the current parsing location or 1765 /// at the given bit offset if provided. 1766 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1767 uint64_t CurrentBit; 1768 // Pass in the Offset to distinguish between calling for the module-level 1769 // VST (where we want to jump to the VST offset) and the function-level 1770 // VST (where we don't). 1771 if (Offset > 0) 1772 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1773 1774 // Compute the delta between the bitcode indices in the VST (the word offset 1775 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1776 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1777 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1778 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1779 // just before entering the VST subblock because: 1) the EnterSubBlock 1780 // changes the AbbrevID width; 2) the VST block is nested within the same 1781 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1782 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1783 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1784 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1785 unsigned FuncBitcodeOffsetDelta = 1786 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1787 1788 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1789 return error("Invalid record"); 1790 1791 SmallVector<uint64_t, 64> Record; 1792 1793 Triple TT(TheModule->getTargetTriple()); 1794 1795 // Read all the records for this value table. 1796 SmallString<128> ValueName; 1797 while (1) { 1798 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1799 1800 switch (Entry.Kind) { 1801 case BitstreamEntry::SubBlock: // Handled for us already. 1802 case BitstreamEntry::Error: 1803 return error("Malformed block"); 1804 case BitstreamEntry::EndBlock: 1805 if (Offset > 0) 1806 Stream.JumpToBit(CurrentBit); 1807 return std::error_code(); 1808 case BitstreamEntry::Record: 1809 // The interesting case. 1810 break; 1811 } 1812 1813 // Read a record. 1814 Record.clear(); 1815 switch (Stream.readRecord(Entry.ID, Record)) { 1816 default: // Default behavior: unknown type. 1817 break; 1818 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1819 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1820 if (std::error_code EC = ValOrErr.getError()) 1821 return EC; 1822 ValOrErr.get(); 1823 break; 1824 } 1825 case bitc::VST_CODE_FNENTRY: { 1826 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1827 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1828 if (std::error_code EC = ValOrErr.getError()) 1829 return EC; 1830 Value *V = ValOrErr.get(); 1831 1832 auto *GO = dyn_cast<GlobalObject>(V); 1833 if (!GO) { 1834 // If this is an alias, need to get the actual Function object 1835 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1836 auto *GA = dyn_cast<GlobalAlias>(V); 1837 if (GA) 1838 GO = GA->getBaseObject(); 1839 assert(GO); 1840 } 1841 1842 uint64_t FuncWordOffset = Record[1]; 1843 Function *F = dyn_cast<Function>(GO); 1844 assert(F); 1845 uint64_t FuncBitOffset = FuncWordOffset * 32; 1846 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1847 // Set the LastFunctionBlockBit to point to the last function block. 1848 // Later when parsing is resumed after function materialization, 1849 // we can simply skip that last function block. 1850 if (FuncBitOffset > LastFunctionBlockBit) 1851 LastFunctionBlockBit = FuncBitOffset; 1852 break; 1853 } 1854 case bitc::VST_CODE_BBENTRY: { 1855 if (convertToString(Record, 1, ValueName)) 1856 return error("Invalid record"); 1857 BasicBlock *BB = getBasicBlock(Record[0]); 1858 if (!BB) 1859 return error("Invalid record"); 1860 1861 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1862 ValueName.clear(); 1863 break; 1864 } 1865 } 1866 } 1867 } 1868 1869 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1870 std::error_code 1871 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1872 if (Record.size() < 2) 1873 return error("Invalid record"); 1874 1875 unsigned Kind = Record[0]; 1876 SmallString<8> Name(Record.begin() + 1, Record.end()); 1877 1878 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1879 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1880 return error("Conflicting METADATA_KIND records"); 1881 return std::error_code(); 1882 } 1883 1884 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1885 1886 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1887 /// module level metadata. 1888 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1889 IsMetadataMaterialized = true; 1890 unsigned NextMetadataNo = MetadataList.size(); 1891 1892 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1893 return error("Invalid record"); 1894 1895 SmallVector<uint64_t, 64> Record; 1896 1897 auto getMD = [&](unsigned ID) -> Metadata * { 1898 return MetadataList.getMetadataFwdRef(ID); 1899 }; 1900 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1901 if (ID) 1902 return getMD(ID - 1); 1903 return nullptr; 1904 }; 1905 auto getMDString = [&](unsigned ID) -> MDString *{ 1906 // This requires that the ID is not really a forward reference. In 1907 // particular, the MDString must already have been resolved. 1908 return cast_or_null<MDString>(getMDOrNull(ID)); 1909 }; 1910 1911 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1912 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1913 1914 // Read all the records. 1915 while (1) { 1916 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1917 1918 switch (Entry.Kind) { 1919 case BitstreamEntry::SubBlock: // Handled for us already. 1920 case BitstreamEntry::Error: 1921 return error("Malformed block"); 1922 case BitstreamEntry::EndBlock: 1923 MetadataList.tryToResolveCycles(); 1924 return std::error_code(); 1925 case BitstreamEntry::Record: 1926 // The interesting case. 1927 break; 1928 } 1929 1930 // Read a record. 1931 Record.clear(); 1932 unsigned Code = Stream.readRecord(Entry.ID, Record); 1933 bool IsDistinct = false; 1934 switch (Code) { 1935 default: // Default behavior: ignore. 1936 break; 1937 case bitc::METADATA_NAME: { 1938 // Read name of the named metadata. 1939 SmallString<8> Name(Record.begin(), Record.end()); 1940 Record.clear(); 1941 Code = Stream.ReadCode(); 1942 1943 unsigned NextBitCode = Stream.readRecord(Code, Record); 1944 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1945 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1946 1947 // Read named metadata elements. 1948 unsigned Size = Record.size(); 1949 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1950 for (unsigned i = 0; i != Size; ++i) { 1951 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 1952 if (!MD) 1953 return error("Invalid record"); 1954 NMD->addOperand(MD); 1955 } 1956 break; 1957 } 1958 case bitc::METADATA_OLD_FN_NODE: { 1959 // FIXME: Remove in 4.0. 1960 // This is a LocalAsMetadata record, the only type of function-local 1961 // metadata. 1962 if (Record.size() % 2 == 1) 1963 return error("Invalid record"); 1964 1965 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1966 // to be legal, but there's no upgrade path. 1967 auto dropRecord = [&] { 1968 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1969 }; 1970 if (Record.size() != 2) { 1971 dropRecord(); 1972 break; 1973 } 1974 1975 Type *Ty = getTypeByID(Record[0]); 1976 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1977 dropRecord(); 1978 break; 1979 } 1980 1981 MetadataList.assignValue( 1982 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1983 NextMetadataNo++); 1984 break; 1985 } 1986 case bitc::METADATA_OLD_NODE: { 1987 // FIXME: Remove in 4.0. 1988 if (Record.size() % 2 == 1) 1989 return error("Invalid record"); 1990 1991 unsigned Size = Record.size(); 1992 SmallVector<Metadata *, 8> Elts; 1993 for (unsigned i = 0; i != Size; i += 2) { 1994 Type *Ty = getTypeByID(Record[i]); 1995 if (!Ty) 1996 return error("Invalid record"); 1997 if (Ty->isMetadataTy()) 1998 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 1999 else if (!Ty->isVoidTy()) { 2000 auto *MD = 2001 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2002 assert(isa<ConstantAsMetadata>(MD) && 2003 "Expected non-function-local metadata"); 2004 Elts.push_back(MD); 2005 } else 2006 Elts.push_back(nullptr); 2007 } 2008 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2009 break; 2010 } 2011 case bitc::METADATA_VALUE: { 2012 if (Record.size() != 2) 2013 return error("Invalid record"); 2014 2015 Type *Ty = getTypeByID(Record[0]); 2016 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2017 return error("Invalid record"); 2018 2019 MetadataList.assignValue( 2020 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2021 NextMetadataNo++); 2022 break; 2023 } 2024 case bitc::METADATA_DISTINCT_NODE: 2025 IsDistinct = true; 2026 // fallthrough... 2027 case bitc::METADATA_NODE: { 2028 SmallVector<Metadata *, 8> Elts; 2029 Elts.reserve(Record.size()); 2030 for (unsigned ID : Record) 2031 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2032 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2033 : MDNode::get(Context, Elts), 2034 NextMetadataNo++); 2035 break; 2036 } 2037 case bitc::METADATA_LOCATION: { 2038 if (Record.size() != 5) 2039 return error("Invalid record"); 2040 2041 unsigned Line = Record[1]; 2042 unsigned Column = Record[2]; 2043 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2044 if (!Scope) 2045 return error("Invalid record"); 2046 Metadata *InlinedAt = 2047 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2048 MetadataList.assignValue( 2049 GET_OR_DISTINCT(DILocation, Record[0], 2050 (Context, Line, Column, Scope, InlinedAt)), 2051 NextMetadataNo++); 2052 break; 2053 } 2054 case bitc::METADATA_GENERIC_DEBUG: { 2055 if (Record.size() < 4) 2056 return error("Invalid record"); 2057 2058 unsigned Tag = Record[1]; 2059 unsigned Version = Record[2]; 2060 2061 if (Tag >= 1u << 16 || Version != 0) 2062 return error("Invalid record"); 2063 2064 auto *Header = getMDString(Record[3]); 2065 SmallVector<Metadata *, 8> DwarfOps; 2066 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2067 DwarfOps.push_back(Record[I] 2068 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2069 : nullptr); 2070 MetadataList.assignValue( 2071 GET_OR_DISTINCT(GenericDINode, Record[0], 2072 (Context, Tag, Header, DwarfOps)), 2073 NextMetadataNo++); 2074 break; 2075 } 2076 case bitc::METADATA_SUBRANGE: { 2077 if (Record.size() != 3) 2078 return error("Invalid record"); 2079 2080 MetadataList.assignValue( 2081 GET_OR_DISTINCT(DISubrange, Record[0], 2082 (Context, Record[1], unrotateSign(Record[2]))), 2083 NextMetadataNo++); 2084 break; 2085 } 2086 case bitc::METADATA_ENUMERATOR: { 2087 if (Record.size() != 3) 2088 return error("Invalid record"); 2089 2090 MetadataList.assignValue( 2091 GET_OR_DISTINCT( 2092 DIEnumerator, Record[0], 2093 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2094 NextMetadataNo++); 2095 break; 2096 } 2097 case bitc::METADATA_BASIC_TYPE: { 2098 if (Record.size() != 6) 2099 return error("Invalid record"); 2100 2101 MetadataList.assignValue( 2102 GET_OR_DISTINCT(DIBasicType, Record[0], 2103 (Context, Record[1], getMDString(Record[2]), 2104 Record[3], Record[4], Record[5])), 2105 NextMetadataNo++); 2106 break; 2107 } 2108 case bitc::METADATA_DERIVED_TYPE: { 2109 if (Record.size() != 12) 2110 return error("Invalid record"); 2111 2112 MetadataList.assignValue( 2113 GET_OR_DISTINCT(DIDerivedType, Record[0], 2114 (Context, Record[1], getMDString(Record[2]), 2115 getMDOrNull(Record[3]), Record[4], 2116 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2117 Record[7], Record[8], Record[9], Record[10], 2118 getMDOrNull(Record[11]))), 2119 NextMetadataNo++); 2120 break; 2121 } 2122 case bitc::METADATA_COMPOSITE_TYPE: { 2123 if (Record.size() != 16) 2124 return error("Invalid record"); 2125 2126 MetadataList.assignValue( 2127 GET_OR_DISTINCT(DICompositeType, Record[0], 2128 (Context, Record[1], getMDString(Record[2]), 2129 getMDOrNull(Record[3]), Record[4], 2130 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2131 Record[7], Record[8], Record[9], Record[10], 2132 getMDOrNull(Record[11]), Record[12], 2133 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2134 getMDString(Record[15]))), 2135 NextMetadataNo++); 2136 break; 2137 } 2138 case bitc::METADATA_SUBROUTINE_TYPE: { 2139 if (Record.size() != 3) 2140 return error("Invalid record"); 2141 2142 MetadataList.assignValue( 2143 GET_OR_DISTINCT(DISubroutineType, Record[0], 2144 (Context, Record[1], getMDOrNull(Record[2]))), 2145 NextMetadataNo++); 2146 break; 2147 } 2148 2149 case bitc::METADATA_MODULE: { 2150 if (Record.size() != 6) 2151 return error("Invalid record"); 2152 2153 MetadataList.assignValue( 2154 GET_OR_DISTINCT(DIModule, Record[0], 2155 (Context, getMDOrNull(Record[1]), 2156 getMDString(Record[2]), getMDString(Record[3]), 2157 getMDString(Record[4]), getMDString(Record[5]))), 2158 NextMetadataNo++); 2159 break; 2160 } 2161 2162 case bitc::METADATA_FILE: { 2163 if (Record.size() != 3) 2164 return error("Invalid record"); 2165 2166 MetadataList.assignValue( 2167 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2168 getMDString(Record[2]))), 2169 NextMetadataNo++); 2170 break; 2171 } 2172 case bitc::METADATA_COMPILE_UNIT: { 2173 if (Record.size() < 14 || Record.size() > 16) 2174 return error("Invalid record"); 2175 2176 // Ignore Record[0], which indicates whether this compile unit is 2177 // distinct. It's always distinct. 2178 MetadataList.assignValue( 2179 DICompileUnit::getDistinct( 2180 Context, Record[1], getMDOrNull(Record[2]), 2181 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2182 Record[6], getMDString(Record[7]), Record[8], 2183 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2184 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2185 getMDOrNull(Record[13]), 2186 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2187 Record.size() <= 14 ? 0 : Record[14]), 2188 NextMetadataNo++); 2189 break; 2190 } 2191 case bitc::METADATA_SUBPROGRAM: { 2192 if (Record.size() != 18 && Record.size() != 19) 2193 return error("Invalid record"); 2194 2195 bool HasFn = Record.size() == 19; 2196 DISubprogram *SP = GET_OR_DISTINCT( 2197 DISubprogram, 2198 Record[0] || Record[8], // All definitions should be distinct. 2199 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2200 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2201 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2202 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2203 Record[14], getMDOrNull(Record[15 + HasFn]), 2204 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2205 MetadataList.assignValue(SP, NextMetadataNo++); 2206 2207 // Upgrade sp->function mapping to function->sp mapping. 2208 if (HasFn && Record[15]) { 2209 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2210 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2211 if (F->isMaterializable()) 2212 // Defer until materialized; unmaterialized functions may not have 2213 // metadata. 2214 FunctionsWithSPs[F] = SP; 2215 else if (!F->empty()) 2216 F->setSubprogram(SP); 2217 } 2218 } 2219 break; 2220 } 2221 case bitc::METADATA_LEXICAL_BLOCK: { 2222 if (Record.size() != 5) 2223 return error("Invalid record"); 2224 2225 MetadataList.assignValue( 2226 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2227 (Context, getMDOrNull(Record[1]), 2228 getMDOrNull(Record[2]), Record[3], Record[4])), 2229 NextMetadataNo++); 2230 break; 2231 } 2232 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2233 if (Record.size() != 4) 2234 return error("Invalid record"); 2235 2236 MetadataList.assignValue( 2237 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2238 (Context, getMDOrNull(Record[1]), 2239 getMDOrNull(Record[2]), Record[3])), 2240 NextMetadataNo++); 2241 break; 2242 } 2243 case bitc::METADATA_NAMESPACE: { 2244 if (Record.size() != 5) 2245 return error("Invalid record"); 2246 2247 MetadataList.assignValue( 2248 GET_OR_DISTINCT(DINamespace, Record[0], 2249 (Context, getMDOrNull(Record[1]), 2250 getMDOrNull(Record[2]), getMDString(Record[3]), 2251 Record[4])), 2252 NextMetadataNo++); 2253 break; 2254 } 2255 case bitc::METADATA_MACRO: { 2256 if (Record.size() != 5) 2257 return error("Invalid record"); 2258 2259 MetadataList.assignValue( 2260 GET_OR_DISTINCT(DIMacro, Record[0], 2261 (Context, Record[1], Record[2], 2262 getMDString(Record[3]), getMDString(Record[4]))), 2263 NextMetadataNo++); 2264 break; 2265 } 2266 case bitc::METADATA_MACRO_FILE: { 2267 if (Record.size() != 5) 2268 return error("Invalid record"); 2269 2270 MetadataList.assignValue( 2271 GET_OR_DISTINCT(DIMacroFile, Record[0], 2272 (Context, Record[1], Record[2], 2273 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2274 NextMetadataNo++); 2275 break; 2276 } 2277 case bitc::METADATA_TEMPLATE_TYPE: { 2278 if (Record.size() != 3) 2279 return error("Invalid record"); 2280 2281 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2282 Record[0], 2283 (Context, getMDString(Record[1]), 2284 getMDOrNull(Record[2]))), 2285 NextMetadataNo++); 2286 break; 2287 } 2288 case bitc::METADATA_TEMPLATE_VALUE: { 2289 if (Record.size() != 5) 2290 return error("Invalid record"); 2291 2292 MetadataList.assignValue( 2293 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2294 (Context, Record[1], getMDString(Record[2]), 2295 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2296 NextMetadataNo++); 2297 break; 2298 } 2299 case bitc::METADATA_GLOBAL_VAR: { 2300 if (Record.size() != 11) 2301 return error("Invalid record"); 2302 2303 MetadataList.assignValue( 2304 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2305 (Context, getMDOrNull(Record[1]), 2306 getMDString(Record[2]), getMDString(Record[3]), 2307 getMDOrNull(Record[4]), Record[5], 2308 getMDOrNull(Record[6]), Record[7], Record[8], 2309 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2310 NextMetadataNo++); 2311 break; 2312 } 2313 case bitc::METADATA_LOCAL_VAR: { 2314 // 10th field is for the obseleted 'inlinedAt:' field. 2315 if (Record.size() < 8 || Record.size() > 10) 2316 return error("Invalid record"); 2317 2318 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2319 // DW_TAG_arg_variable. 2320 bool HasTag = Record.size() > 8; 2321 MetadataList.assignValue( 2322 GET_OR_DISTINCT(DILocalVariable, Record[0], 2323 (Context, getMDOrNull(Record[1 + HasTag]), 2324 getMDString(Record[2 + HasTag]), 2325 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2326 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2327 Record[7 + HasTag])), 2328 NextMetadataNo++); 2329 break; 2330 } 2331 case bitc::METADATA_EXPRESSION: { 2332 if (Record.size() < 1) 2333 return error("Invalid record"); 2334 2335 MetadataList.assignValue( 2336 GET_OR_DISTINCT(DIExpression, Record[0], 2337 (Context, makeArrayRef(Record).slice(1))), 2338 NextMetadataNo++); 2339 break; 2340 } 2341 case bitc::METADATA_OBJC_PROPERTY: { 2342 if (Record.size() != 8) 2343 return error("Invalid record"); 2344 2345 MetadataList.assignValue( 2346 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2347 (Context, getMDString(Record[1]), 2348 getMDOrNull(Record[2]), Record[3], 2349 getMDString(Record[4]), getMDString(Record[5]), 2350 Record[6], getMDOrNull(Record[7]))), 2351 NextMetadataNo++); 2352 break; 2353 } 2354 case bitc::METADATA_IMPORTED_ENTITY: { 2355 if (Record.size() != 6) 2356 return error("Invalid record"); 2357 2358 MetadataList.assignValue( 2359 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2360 (Context, Record[1], getMDOrNull(Record[2]), 2361 getMDOrNull(Record[3]), Record[4], 2362 getMDString(Record[5]))), 2363 NextMetadataNo++); 2364 break; 2365 } 2366 case bitc::METADATA_STRING: { 2367 std::string String(Record.begin(), Record.end()); 2368 2369 // Test for upgrading !llvm.loop. 2370 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2371 2372 Metadata *MD = MDString::get(Context, String); 2373 MetadataList.assignValue(MD, NextMetadataNo++); 2374 break; 2375 } 2376 case bitc::METADATA_KIND: { 2377 // Support older bitcode files that had METADATA_KIND records in a 2378 // block with METADATA_BLOCK_ID. 2379 if (std::error_code EC = parseMetadataKindRecord(Record)) 2380 return EC; 2381 break; 2382 } 2383 } 2384 } 2385 #undef GET_OR_DISTINCT 2386 } 2387 2388 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2389 std::error_code BitcodeReader::parseMetadataKinds() { 2390 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2391 return error("Invalid record"); 2392 2393 SmallVector<uint64_t, 64> Record; 2394 2395 // Read all the records. 2396 while (1) { 2397 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2398 2399 switch (Entry.Kind) { 2400 case BitstreamEntry::SubBlock: // Handled for us already. 2401 case BitstreamEntry::Error: 2402 return error("Malformed block"); 2403 case BitstreamEntry::EndBlock: 2404 return std::error_code(); 2405 case BitstreamEntry::Record: 2406 // The interesting case. 2407 break; 2408 } 2409 2410 // Read a record. 2411 Record.clear(); 2412 unsigned Code = Stream.readRecord(Entry.ID, Record); 2413 switch (Code) { 2414 default: // Default behavior: ignore. 2415 break; 2416 case bitc::METADATA_KIND: { 2417 if (std::error_code EC = parseMetadataKindRecord(Record)) 2418 return EC; 2419 break; 2420 } 2421 } 2422 } 2423 } 2424 2425 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2426 /// encoding. 2427 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2428 if ((V & 1) == 0) 2429 return V >> 1; 2430 if (V != 1) 2431 return -(V >> 1); 2432 // There is no such thing as -0 with integers. "-0" really means MININT. 2433 return 1ULL << 63; 2434 } 2435 2436 /// Resolve all of the initializers for global values and aliases that we can. 2437 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2438 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2439 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2440 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2441 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2442 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2443 2444 GlobalInitWorklist.swap(GlobalInits); 2445 AliasInitWorklist.swap(AliasInits); 2446 FunctionPrefixWorklist.swap(FunctionPrefixes); 2447 FunctionPrologueWorklist.swap(FunctionPrologues); 2448 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2449 2450 while (!GlobalInitWorklist.empty()) { 2451 unsigned ValID = GlobalInitWorklist.back().second; 2452 if (ValID >= ValueList.size()) { 2453 // Not ready to resolve this yet, it requires something later in the file. 2454 GlobalInits.push_back(GlobalInitWorklist.back()); 2455 } else { 2456 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2457 GlobalInitWorklist.back().first->setInitializer(C); 2458 else 2459 return error("Expected a constant"); 2460 } 2461 GlobalInitWorklist.pop_back(); 2462 } 2463 2464 while (!AliasInitWorklist.empty()) { 2465 unsigned ValID = AliasInitWorklist.back().second; 2466 if (ValID >= ValueList.size()) { 2467 AliasInits.push_back(AliasInitWorklist.back()); 2468 } else { 2469 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2470 if (!C) 2471 return error("Expected a constant"); 2472 GlobalAlias *Alias = AliasInitWorklist.back().first; 2473 if (C->getType() != Alias->getType()) 2474 return error("Alias and aliasee types don't match"); 2475 Alias->setAliasee(C); 2476 } 2477 AliasInitWorklist.pop_back(); 2478 } 2479 2480 while (!FunctionPrefixWorklist.empty()) { 2481 unsigned ValID = FunctionPrefixWorklist.back().second; 2482 if (ValID >= ValueList.size()) { 2483 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2484 } else { 2485 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2486 FunctionPrefixWorklist.back().first->setPrefixData(C); 2487 else 2488 return error("Expected a constant"); 2489 } 2490 FunctionPrefixWorklist.pop_back(); 2491 } 2492 2493 while (!FunctionPrologueWorklist.empty()) { 2494 unsigned ValID = FunctionPrologueWorklist.back().second; 2495 if (ValID >= ValueList.size()) { 2496 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2497 } else { 2498 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2499 FunctionPrologueWorklist.back().first->setPrologueData(C); 2500 else 2501 return error("Expected a constant"); 2502 } 2503 FunctionPrologueWorklist.pop_back(); 2504 } 2505 2506 while (!FunctionPersonalityFnWorklist.empty()) { 2507 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2508 if (ValID >= ValueList.size()) { 2509 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2510 } else { 2511 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2512 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2513 else 2514 return error("Expected a constant"); 2515 } 2516 FunctionPersonalityFnWorklist.pop_back(); 2517 } 2518 2519 return std::error_code(); 2520 } 2521 2522 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2523 SmallVector<uint64_t, 8> Words(Vals.size()); 2524 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2525 BitcodeReader::decodeSignRotatedValue); 2526 2527 return APInt(TypeBits, Words); 2528 } 2529 2530 std::error_code BitcodeReader::parseConstants() { 2531 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2532 return error("Invalid record"); 2533 2534 SmallVector<uint64_t, 64> Record; 2535 2536 // Read all the records for this value table. 2537 Type *CurTy = Type::getInt32Ty(Context); 2538 unsigned NextCstNo = ValueList.size(); 2539 while (1) { 2540 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2541 2542 switch (Entry.Kind) { 2543 case BitstreamEntry::SubBlock: // Handled for us already. 2544 case BitstreamEntry::Error: 2545 return error("Malformed block"); 2546 case BitstreamEntry::EndBlock: 2547 if (NextCstNo != ValueList.size()) 2548 return error("Invalid constant reference"); 2549 2550 // Once all the constants have been read, go through and resolve forward 2551 // references. 2552 ValueList.resolveConstantForwardRefs(); 2553 return std::error_code(); 2554 case BitstreamEntry::Record: 2555 // The interesting case. 2556 break; 2557 } 2558 2559 // Read a record. 2560 Record.clear(); 2561 Value *V = nullptr; 2562 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2563 switch (BitCode) { 2564 default: // Default behavior: unknown constant 2565 case bitc::CST_CODE_UNDEF: // UNDEF 2566 V = UndefValue::get(CurTy); 2567 break; 2568 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2569 if (Record.empty()) 2570 return error("Invalid record"); 2571 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2572 return error("Invalid record"); 2573 CurTy = TypeList[Record[0]]; 2574 continue; // Skip the ValueList manipulation. 2575 case bitc::CST_CODE_NULL: // NULL 2576 V = Constant::getNullValue(CurTy); 2577 break; 2578 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2579 if (!CurTy->isIntegerTy() || Record.empty()) 2580 return error("Invalid record"); 2581 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2582 break; 2583 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2584 if (!CurTy->isIntegerTy() || Record.empty()) 2585 return error("Invalid record"); 2586 2587 APInt VInt = 2588 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2589 V = ConstantInt::get(Context, VInt); 2590 2591 break; 2592 } 2593 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2594 if (Record.empty()) 2595 return error("Invalid record"); 2596 if (CurTy->isHalfTy()) 2597 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2598 APInt(16, (uint16_t)Record[0]))); 2599 else if (CurTy->isFloatTy()) 2600 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2601 APInt(32, (uint32_t)Record[0]))); 2602 else if (CurTy->isDoubleTy()) 2603 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2604 APInt(64, Record[0]))); 2605 else if (CurTy->isX86_FP80Ty()) { 2606 // Bits are not stored the same way as a normal i80 APInt, compensate. 2607 uint64_t Rearrange[2]; 2608 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2609 Rearrange[1] = Record[0] >> 48; 2610 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2611 APInt(80, Rearrange))); 2612 } else if (CurTy->isFP128Ty()) 2613 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2614 APInt(128, Record))); 2615 else if (CurTy->isPPC_FP128Ty()) 2616 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2617 APInt(128, Record))); 2618 else 2619 V = UndefValue::get(CurTy); 2620 break; 2621 } 2622 2623 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2624 if (Record.empty()) 2625 return error("Invalid record"); 2626 2627 unsigned Size = Record.size(); 2628 SmallVector<Constant*, 16> Elts; 2629 2630 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2631 for (unsigned i = 0; i != Size; ++i) 2632 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2633 STy->getElementType(i))); 2634 V = ConstantStruct::get(STy, Elts); 2635 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2636 Type *EltTy = ATy->getElementType(); 2637 for (unsigned i = 0; i != Size; ++i) 2638 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2639 V = ConstantArray::get(ATy, Elts); 2640 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2641 Type *EltTy = VTy->getElementType(); 2642 for (unsigned i = 0; i != Size; ++i) 2643 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2644 V = ConstantVector::get(Elts); 2645 } else { 2646 V = UndefValue::get(CurTy); 2647 } 2648 break; 2649 } 2650 case bitc::CST_CODE_STRING: // STRING: [values] 2651 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2652 if (Record.empty()) 2653 return error("Invalid record"); 2654 2655 SmallString<16> Elts(Record.begin(), Record.end()); 2656 V = ConstantDataArray::getString(Context, Elts, 2657 BitCode == bitc::CST_CODE_CSTRING); 2658 break; 2659 } 2660 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2661 if (Record.empty()) 2662 return error("Invalid record"); 2663 2664 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2665 if (EltTy->isIntegerTy(8)) { 2666 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2667 if (isa<VectorType>(CurTy)) 2668 V = ConstantDataVector::get(Context, Elts); 2669 else 2670 V = ConstantDataArray::get(Context, Elts); 2671 } else if (EltTy->isIntegerTy(16)) { 2672 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2673 if (isa<VectorType>(CurTy)) 2674 V = ConstantDataVector::get(Context, Elts); 2675 else 2676 V = ConstantDataArray::get(Context, Elts); 2677 } else if (EltTy->isIntegerTy(32)) { 2678 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2679 if (isa<VectorType>(CurTy)) 2680 V = ConstantDataVector::get(Context, Elts); 2681 else 2682 V = ConstantDataArray::get(Context, Elts); 2683 } else if (EltTy->isIntegerTy(64)) { 2684 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2685 if (isa<VectorType>(CurTy)) 2686 V = ConstantDataVector::get(Context, Elts); 2687 else 2688 V = ConstantDataArray::get(Context, Elts); 2689 } else if (EltTy->isHalfTy()) { 2690 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2691 if (isa<VectorType>(CurTy)) 2692 V = ConstantDataVector::getFP(Context, Elts); 2693 else 2694 V = ConstantDataArray::getFP(Context, Elts); 2695 } else if (EltTy->isFloatTy()) { 2696 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2697 if (isa<VectorType>(CurTy)) 2698 V = ConstantDataVector::getFP(Context, Elts); 2699 else 2700 V = ConstantDataArray::getFP(Context, Elts); 2701 } else if (EltTy->isDoubleTy()) { 2702 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2703 if (isa<VectorType>(CurTy)) 2704 V = ConstantDataVector::getFP(Context, Elts); 2705 else 2706 V = ConstantDataArray::getFP(Context, Elts); 2707 } else { 2708 return error("Invalid type for value"); 2709 } 2710 break; 2711 } 2712 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2713 if (Record.size() < 3) 2714 return error("Invalid record"); 2715 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2716 if (Opc < 0) { 2717 V = UndefValue::get(CurTy); // Unknown binop. 2718 } else { 2719 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2720 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2721 unsigned Flags = 0; 2722 if (Record.size() >= 4) { 2723 if (Opc == Instruction::Add || 2724 Opc == Instruction::Sub || 2725 Opc == Instruction::Mul || 2726 Opc == Instruction::Shl) { 2727 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2728 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2729 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2730 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2731 } else if (Opc == Instruction::SDiv || 2732 Opc == Instruction::UDiv || 2733 Opc == Instruction::LShr || 2734 Opc == Instruction::AShr) { 2735 if (Record[3] & (1 << bitc::PEO_EXACT)) 2736 Flags |= SDivOperator::IsExact; 2737 } 2738 } 2739 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2740 } 2741 break; 2742 } 2743 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2744 if (Record.size() < 3) 2745 return error("Invalid record"); 2746 int Opc = getDecodedCastOpcode(Record[0]); 2747 if (Opc < 0) { 2748 V = UndefValue::get(CurTy); // Unknown cast. 2749 } else { 2750 Type *OpTy = getTypeByID(Record[1]); 2751 if (!OpTy) 2752 return error("Invalid record"); 2753 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2754 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2755 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2756 } 2757 break; 2758 } 2759 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2760 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2761 unsigned OpNum = 0; 2762 Type *PointeeType = nullptr; 2763 if (Record.size() % 2) 2764 PointeeType = getTypeByID(Record[OpNum++]); 2765 SmallVector<Constant*, 16> Elts; 2766 while (OpNum != Record.size()) { 2767 Type *ElTy = getTypeByID(Record[OpNum++]); 2768 if (!ElTy) 2769 return error("Invalid record"); 2770 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2771 } 2772 2773 if (PointeeType && 2774 PointeeType != 2775 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2776 ->getElementType()) 2777 return error("Explicit gep operator type does not match pointee type " 2778 "of pointer operand"); 2779 2780 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2781 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2782 BitCode == 2783 bitc::CST_CODE_CE_INBOUNDS_GEP); 2784 break; 2785 } 2786 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2787 if (Record.size() < 3) 2788 return error("Invalid record"); 2789 2790 Type *SelectorTy = Type::getInt1Ty(Context); 2791 2792 // The selector might be an i1 or an <n x i1> 2793 // Get the type from the ValueList before getting a forward ref. 2794 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2795 if (Value *V = ValueList[Record[0]]) 2796 if (SelectorTy != V->getType()) 2797 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2798 2799 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2800 SelectorTy), 2801 ValueList.getConstantFwdRef(Record[1],CurTy), 2802 ValueList.getConstantFwdRef(Record[2],CurTy)); 2803 break; 2804 } 2805 case bitc::CST_CODE_CE_EXTRACTELT 2806 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2807 if (Record.size() < 3) 2808 return error("Invalid record"); 2809 VectorType *OpTy = 2810 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2811 if (!OpTy) 2812 return error("Invalid record"); 2813 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2814 Constant *Op1 = nullptr; 2815 if (Record.size() == 4) { 2816 Type *IdxTy = getTypeByID(Record[2]); 2817 if (!IdxTy) 2818 return error("Invalid record"); 2819 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2820 } else // TODO: Remove with llvm 4.0 2821 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2822 if (!Op1) 2823 return error("Invalid record"); 2824 V = ConstantExpr::getExtractElement(Op0, Op1); 2825 break; 2826 } 2827 case bitc::CST_CODE_CE_INSERTELT 2828 : { // CE_INSERTELT: [opval, opval, opty, opval] 2829 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2830 if (Record.size() < 3 || !OpTy) 2831 return error("Invalid record"); 2832 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2833 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2834 OpTy->getElementType()); 2835 Constant *Op2 = nullptr; 2836 if (Record.size() == 4) { 2837 Type *IdxTy = getTypeByID(Record[2]); 2838 if (!IdxTy) 2839 return error("Invalid record"); 2840 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2841 } else // TODO: Remove with llvm 4.0 2842 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2843 if (!Op2) 2844 return error("Invalid record"); 2845 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2846 break; 2847 } 2848 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2849 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2850 if (Record.size() < 3 || !OpTy) 2851 return error("Invalid record"); 2852 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2853 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2854 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2855 OpTy->getNumElements()); 2856 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2857 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2858 break; 2859 } 2860 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2861 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2862 VectorType *OpTy = 2863 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2864 if (Record.size() < 4 || !RTy || !OpTy) 2865 return error("Invalid record"); 2866 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2867 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2868 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2869 RTy->getNumElements()); 2870 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2871 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2872 break; 2873 } 2874 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2875 if (Record.size() < 4) 2876 return error("Invalid record"); 2877 Type *OpTy = getTypeByID(Record[0]); 2878 if (!OpTy) 2879 return error("Invalid record"); 2880 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2881 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2882 2883 if (OpTy->isFPOrFPVectorTy()) 2884 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2885 else 2886 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2887 break; 2888 } 2889 // This maintains backward compatibility, pre-asm dialect keywords. 2890 // FIXME: Remove with the 4.0 release. 2891 case bitc::CST_CODE_INLINEASM_OLD: { 2892 if (Record.size() < 2) 2893 return error("Invalid record"); 2894 std::string AsmStr, ConstrStr; 2895 bool HasSideEffects = Record[0] & 1; 2896 bool IsAlignStack = Record[0] >> 1; 2897 unsigned AsmStrSize = Record[1]; 2898 if (2+AsmStrSize >= Record.size()) 2899 return error("Invalid record"); 2900 unsigned ConstStrSize = Record[2+AsmStrSize]; 2901 if (3+AsmStrSize+ConstStrSize > Record.size()) 2902 return error("Invalid record"); 2903 2904 for (unsigned i = 0; i != AsmStrSize; ++i) 2905 AsmStr += (char)Record[2+i]; 2906 for (unsigned i = 0; i != ConstStrSize; ++i) 2907 ConstrStr += (char)Record[3+AsmStrSize+i]; 2908 PointerType *PTy = cast<PointerType>(CurTy); 2909 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2910 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2911 break; 2912 } 2913 // This version adds support for the asm dialect keywords (e.g., 2914 // inteldialect). 2915 case bitc::CST_CODE_INLINEASM: { 2916 if (Record.size() < 2) 2917 return error("Invalid record"); 2918 std::string AsmStr, ConstrStr; 2919 bool HasSideEffects = Record[0] & 1; 2920 bool IsAlignStack = (Record[0] >> 1) & 1; 2921 unsigned AsmDialect = Record[0] >> 2; 2922 unsigned AsmStrSize = Record[1]; 2923 if (2+AsmStrSize >= Record.size()) 2924 return error("Invalid record"); 2925 unsigned ConstStrSize = Record[2+AsmStrSize]; 2926 if (3+AsmStrSize+ConstStrSize > Record.size()) 2927 return error("Invalid record"); 2928 2929 for (unsigned i = 0; i != AsmStrSize; ++i) 2930 AsmStr += (char)Record[2+i]; 2931 for (unsigned i = 0; i != ConstStrSize; ++i) 2932 ConstrStr += (char)Record[3+AsmStrSize+i]; 2933 PointerType *PTy = cast<PointerType>(CurTy); 2934 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2935 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2936 InlineAsm::AsmDialect(AsmDialect)); 2937 break; 2938 } 2939 case bitc::CST_CODE_BLOCKADDRESS:{ 2940 if (Record.size() < 3) 2941 return error("Invalid record"); 2942 Type *FnTy = getTypeByID(Record[0]); 2943 if (!FnTy) 2944 return error("Invalid record"); 2945 Function *Fn = 2946 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2947 if (!Fn) 2948 return error("Invalid record"); 2949 2950 // If the function is already parsed we can insert the block address right 2951 // away. 2952 BasicBlock *BB; 2953 unsigned BBID = Record[2]; 2954 if (!BBID) 2955 // Invalid reference to entry block. 2956 return error("Invalid ID"); 2957 if (!Fn->empty()) { 2958 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2959 for (size_t I = 0, E = BBID; I != E; ++I) { 2960 if (BBI == BBE) 2961 return error("Invalid ID"); 2962 ++BBI; 2963 } 2964 BB = &*BBI; 2965 } else { 2966 // Otherwise insert a placeholder and remember it so it can be inserted 2967 // when the function is parsed. 2968 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2969 if (FwdBBs.empty()) 2970 BasicBlockFwdRefQueue.push_back(Fn); 2971 if (FwdBBs.size() < BBID + 1) 2972 FwdBBs.resize(BBID + 1); 2973 if (!FwdBBs[BBID]) 2974 FwdBBs[BBID] = BasicBlock::Create(Context); 2975 BB = FwdBBs[BBID]; 2976 } 2977 V = BlockAddress::get(Fn, BB); 2978 break; 2979 } 2980 } 2981 2982 ValueList.assignValue(V, NextCstNo); 2983 ++NextCstNo; 2984 } 2985 } 2986 2987 std::error_code BitcodeReader::parseUseLists() { 2988 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2989 return error("Invalid record"); 2990 2991 // Read all the records. 2992 SmallVector<uint64_t, 64> Record; 2993 while (1) { 2994 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2995 2996 switch (Entry.Kind) { 2997 case BitstreamEntry::SubBlock: // Handled for us already. 2998 case BitstreamEntry::Error: 2999 return error("Malformed block"); 3000 case BitstreamEntry::EndBlock: 3001 return std::error_code(); 3002 case BitstreamEntry::Record: 3003 // The interesting case. 3004 break; 3005 } 3006 3007 // Read a use list record. 3008 Record.clear(); 3009 bool IsBB = false; 3010 switch (Stream.readRecord(Entry.ID, Record)) { 3011 default: // Default behavior: unknown type. 3012 break; 3013 case bitc::USELIST_CODE_BB: 3014 IsBB = true; 3015 // fallthrough 3016 case bitc::USELIST_CODE_DEFAULT: { 3017 unsigned RecordLength = Record.size(); 3018 if (RecordLength < 3) 3019 // Records should have at least an ID and two indexes. 3020 return error("Invalid record"); 3021 unsigned ID = Record.back(); 3022 Record.pop_back(); 3023 3024 Value *V; 3025 if (IsBB) { 3026 assert(ID < FunctionBBs.size() && "Basic block not found"); 3027 V = FunctionBBs[ID]; 3028 } else 3029 V = ValueList[ID]; 3030 unsigned NumUses = 0; 3031 SmallDenseMap<const Use *, unsigned, 16> Order; 3032 for (const Use &U : V->materialized_uses()) { 3033 if (++NumUses > Record.size()) 3034 break; 3035 Order[&U] = Record[NumUses - 1]; 3036 } 3037 if (Order.size() != Record.size() || NumUses > Record.size()) 3038 // Mismatches can happen if the functions are being materialized lazily 3039 // (out-of-order), or a value has been upgraded. 3040 break; 3041 3042 V->sortUseList([&](const Use &L, const Use &R) { 3043 return Order.lookup(&L) < Order.lookup(&R); 3044 }); 3045 break; 3046 } 3047 } 3048 } 3049 } 3050 3051 /// When we see the block for metadata, remember where it is and then skip it. 3052 /// This lets us lazily deserialize the metadata. 3053 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3054 // Save the current stream state. 3055 uint64_t CurBit = Stream.GetCurrentBitNo(); 3056 DeferredMetadataInfo.push_back(CurBit); 3057 3058 // Skip over the block for now. 3059 if (Stream.SkipBlock()) 3060 return error("Invalid record"); 3061 return std::error_code(); 3062 } 3063 3064 std::error_code BitcodeReader::materializeMetadata() { 3065 for (uint64_t BitPos : DeferredMetadataInfo) { 3066 // Move the bit stream to the saved position. 3067 Stream.JumpToBit(BitPos); 3068 if (std::error_code EC = parseMetadata(true)) 3069 return EC; 3070 } 3071 DeferredMetadataInfo.clear(); 3072 return std::error_code(); 3073 } 3074 3075 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3076 3077 void BitcodeReader::saveMetadataList( 3078 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3079 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3080 Metadata *MD = MetadataList[ID]; 3081 auto *N = dyn_cast_or_null<MDNode>(MD); 3082 assert((!N || (N->isResolved() || N->isTemporary())) && 3083 "Found non-resolved non-temp MDNode while saving metadata"); 3084 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3085 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3086 // just MDNode, as we may have references to other types of module-level 3087 // metadata (e.g. ValueAsMetadata) from instructions. 3088 if (!OnlyTempMD || (N && N->isTemporary())) { 3089 // Will call this after materializing each function, in order to 3090 // handle remapping of the function's instructions/metadata. 3091 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3092 // See if we already have an entry in that case. 3093 if (OnlyTempMD && !IterBool.second) { 3094 assert(IterBool.first->second == ID && 3095 "Inconsistent metadata value id"); 3096 continue; 3097 } 3098 if (N && N->isTemporary()) 3099 // Ensure that we assert if someone tries to RAUW this temporary 3100 // metadata while it is the key of a map. The flag will be set back 3101 // to true when the saved metadata list is destroyed. 3102 N->setCanReplace(false); 3103 } 3104 } 3105 } 3106 3107 /// When we see the block for a function body, remember where it is and then 3108 /// skip it. This lets us lazily deserialize the functions. 3109 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3110 // Get the function we are talking about. 3111 if (FunctionsWithBodies.empty()) 3112 return error("Insufficient function protos"); 3113 3114 Function *Fn = FunctionsWithBodies.back(); 3115 FunctionsWithBodies.pop_back(); 3116 3117 // Save the current stream state. 3118 uint64_t CurBit = Stream.GetCurrentBitNo(); 3119 assert( 3120 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3121 "Mismatch between VST and scanned function offsets"); 3122 DeferredFunctionInfo[Fn] = CurBit; 3123 3124 // Skip over the function block for now. 3125 if (Stream.SkipBlock()) 3126 return error("Invalid record"); 3127 return std::error_code(); 3128 } 3129 3130 std::error_code BitcodeReader::globalCleanup() { 3131 // Patch the initializers for globals and aliases up. 3132 resolveGlobalAndAliasInits(); 3133 if (!GlobalInits.empty() || !AliasInits.empty()) 3134 return error("Malformed global initializer set"); 3135 3136 // Look for intrinsic functions which need to be upgraded at some point 3137 for (Function &F : *TheModule) { 3138 Function *NewFn; 3139 if (UpgradeIntrinsicFunction(&F, NewFn)) 3140 UpgradedIntrinsics[&F] = NewFn; 3141 } 3142 3143 // Look for global variables which need to be renamed. 3144 for (GlobalVariable &GV : TheModule->globals()) 3145 UpgradeGlobalVariable(&GV); 3146 3147 // Force deallocation of memory for these vectors to favor the client that 3148 // want lazy deserialization. 3149 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3150 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3151 return std::error_code(); 3152 } 3153 3154 /// Support for lazy parsing of function bodies. This is required if we 3155 /// either have an old bitcode file without a VST forward declaration record, 3156 /// or if we have an anonymous function being materialized, since anonymous 3157 /// functions do not have a name and are therefore not in the VST. 3158 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3159 Stream.JumpToBit(NextUnreadBit); 3160 3161 if (Stream.AtEndOfStream()) 3162 return error("Could not find function in stream"); 3163 3164 if (!SeenFirstFunctionBody) 3165 return error("Trying to materialize functions before seeing function blocks"); 3166 3167 // An old bitcode file with the symbol table at the end would have 3168 // finished the parse greedily. 3169 assert(SeenValueSymbolTable); 3170 3171 SmallVector<uint64_t, 64> Record; 3172 3173 while (1) { 3174 BitstreamEntry Entry = Stream.advance(); 3175 switch (Entry.Kind) { 3176 default: 3177 return error("Expect SubBlock"); 3178 case BitstreamEntry::SubBlock: 3179 switch (Entry.ID) { 3180 default: 3181 return error("Expect function block"); 3182 case bitc::FUNCTION_BLOCK_ID: 3183 if (std::error_code EC = rememberAndSkipFunctionBody()) 3184 return EC; 3185 NextUnreadBit = Stream.GetCurrentBitNo(); 3186 return std::error_code(); 3187 } 3188 } 3189 } 3190 } 3191 3192 std::error_code BitcodeReader::parseBitcodeVersion() { 3193 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3194 return error("Invalid record"); 3195 3196 // Read all the records. 3197 SmallVector<uint64_t, 64> Record; 3198 while (1) { 3199 BitstreamEntry Entry = Stream.advance(); 3200 3201 switch (Entry.Kind) { 3202 default: 3203 case BitstreamEntry::Error: 3204 return error("Malformed block"); 3205 case BitstreamEntry::EndBlock: 3206 return std::error_code(); 3207 case BitstreamEntry::Record: 3208 // The interesting case. 3209 break; 3210 } 3211 3212 // Read a record. 3213 Record.clear(); 3214 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3215 switch (BitCode) { 3216 default: // Default behavior: reject 3217 return error("Invalid value"); 3218 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3219 // N] 3220 convertToString(Record, 0, ProducerIdentification); 3221 break; 3222 } 3223 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3224 unsigned epoch = (unsigned)Record[0]; 3225 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3226 return error( 3227 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3228 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3229 } 3230 } 3231 } 3232 } 3233 } 3234 3235 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3236 bool ShouldLazyLoadMetadata) { 3237 if (ResumeBit) 3238 Stream.JumpToBit(ResumeBit); 3239 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3240 return error("Invalid record"); 3241 3242 SmallVector<uint64_t, 64> Record; 3243 std::vector<std::string> SectionTable; 3244 std::vector<std::string> GCTable; 3245 3246 // Read all the records for this module. 3247 while (1) { 3248 BitstreamEntry Entry = Stream.advance(); 3249 3250 switch (Entry.Kind) { 3251 case BitstreamEntry::Error: 3252 return error("Malformed block"); 3253 case BitstreamEntry::EndBlock: 3254 return globalCleanup(); 3255 3256 case BitstreamEntry::SubBlock: 3257 switch (Entry.ID) { 3258 default: // Skip unknown content. 3259 if (Stream.SkipBlock()) 3260 return error("Invalid record"); 3261 break; 3262 case bitc::BLOCKINFO_BLOCK_ID: 3263 if (Stream.ReadBlockInfoBlock()) 3264 return error("Malformed block"); 3265 break; 3266 case bitc::PARAMATTR_BLOCK_ID: 3267 if (std::error_code EC = parseAttributeBlock()) 3268 return EC; 3269 break; 3270 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3271 if (std::error_code EC = parseAttributeGroupBlock()) 3272 return EC; 3273 break; 3274 case bitc::TYPE_BLOCK_ID_NEW: 3275 if (std::error_code EC = parseTypeTable()) 3276 return EC; 3277 break; 3278 case bitc::VALUE_SYMTAB_BLOCK_ID: 3279 if (!SeenValueSymbolTable) { 3280 // Either this is an old form VST without function index and an 3281 // associated VST forward declaration record (which would have caused 3282 // the VST to be jumped to and parsed before it was encountered 3283 // normally in the stream), or there were no function blocks to 3284 // trigger an earlier parsing of the VST. 3285 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3286 if (std::error_code EC = parseValueSymbolTable()) 3287 return EC; 3288 SeenValueSymbolTable = true; 3289 } else { 3290 // We must have had a VST forward declaration record, which caused 3291 // the parser to jump to and parse the VST earlier. 3292 assert(VSTOffset > 0); 3293 if (Stream.SkipBlock()) 3294 return error("Invalid record"); 3295 } 3296 break; 3297 case bitc::CONSTANTS_BLOCK_ID: 3298 if (std::error_code EC = parseConstants()) 3299 return EC; 3300 if (std::error_code EC = resolveGlobalAndAliasInits()) 3301 return EC; 3302 break; 3303 case bitc::METADATA_BLOCK_ID: 3304 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3305 if (std::error_code EC = rememberAndSkipMetadata()) 3306 return EC; 3307 break; 3308 } 3309 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3310 if (std::error_code EC = parseMetadata(true)) 3311 return EC; 3312 break; 3313 case bitc::METADATA_KIND_BLOCK_ID: 3314 if (std::error_code EC = parseMetadataKinds()) 3315 return EC; 3316 break; 3317 case bitc::FUNCTION_BLOCK_ID: 3318 // If this is the first function body we've seen, reverse the 3319 // FunctionsWithBodies list. 3320 if (!SeenFirstFunctionBody) { 3321 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3322 if (std::error_code EC = globalCleanup()) 3323 return EC; 3324 SeenFirstFunctionBody = true; 3325 } 3326 3327 if (VSTOffset > 0) { 3328 // If we have a VST forward declaration record, make sure we 3329 // parse the VST now if we haven't already. It is needed to 3330 // set up the DeferredFunctionInfo vector for lazy reading. 3331 if (!SeenValueSymbolTable) { 3332 if (std::error_code EC = 3333 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3334 return EC; 3335 SeenValueSymbolTable = true; 3336 // Fall through so that we record the NextUnreadBit below. 3337 // This is necessary in case we have an anonymous function that 3338 // is later materialized. Since it will not have a VST entry we 3339 // need to fall back to the lazy parse to find its offset. 3340 } else { 3341 // If we have a VST forward declaration record, but have already 3342 // parsed the VST (just above, when the first function body was 3343 // encountered here), then we are resuming the parse after 3344 // materializing functions. The ResumeBit points to the 3345 // start of the last function block recorded in the 3346 // DeferredFunctionInfo map. Skip it. 3347 if (Stream.SkipBlock()) 3348 return error("Invalid record"); 3349 continue; 3350 } 3351 } 3352 3353 // Support older bitcode files that did not have the function 3354 // index in the VST, nor a VST forward declaration record, as 3355 // well as anonymous functions that do not have VST entries. 3356 // Build the DeferredFunctionInfo vector on the fly. 3357 if (std::error_code EC = rememberAndSkipFunctionBody()) 3358 return EC; 3359 3360 // Suspend parsing when we reach the function bodies. Subsequent 3361 // materialization calls will resume it when necessary. If the bitcode 3362 // file is old, the symbol table will be at the end instead and will not 3363 // have been seen yet. In this case, just finish the parse now. 3364 if (SeenValueSymbolTable) { 3365 NextUnreadBit = Stream.GetCurrentBitNo(); 3366 return std::error_code(); 3367 } 3368 break; 3369 case bitc::USELIST_BLOCK_ID: 3370 if (std::error_code EC = parseUseLists()) 3371 return EC; 3372 break; 3373 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3374 if (std::error_code EC = parseOperandBundleTags()) 3375 return EC; 3376 break; 3377 } 3378 continue; 3379 3380 case BitstreamEntry::Record: 3381 // The interesting case. 3382 break; 3383 } 3384 3385 // Read a record. 3386 auto BitCode = Stream.readRecord(Entry.ID, Record); 3387 switch (BitCode) { 3388 default: break; // Default behavior, ignore unknown content. 3389 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3390 if (Record.size() < 1) 3391 return error("Invalid record"); 3392 // Only version #0 and #1 are supported so far. 3393 unsigned module_version = Record[0]; 3394 switch (module_version) { 3395 default: 3396 return error("Invalid value"); 3397 case 0: 3398 UseRelativeIDs = false; 3399 break; 3400 case 1: 3401 UseRelativeIDs = true; 3402 break; 3403 } 3404 break; 3405 } 3406 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3407 std::string S; 3408 if (convertToString(Record, 0, S)) 3409 return error("Invalid record"); 3410 TheModule->setTargetTriple(S); 3411 break; 3412 } 3413 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3414 std::string S; 3415 if (convertToString(Record, 0, S)) 3416 return error("Invalid record"); 3417 TheModule->setDataLayout(S); 3418 break; 3419 } 3420 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3421 std::string S; 3422 if (convertToString(Record, 0, S)) 3423 return error("Invalid record"); 3424 TheModule->setModuleInlineAsm(S); 3425 break; 3426 } 3427 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3428 // FIXME: Remove in 4.0. 3429 std::string S; 3430 if (convertToString(Record, 0, S)) 3431 return error("Invalid record"); 3432 // Ignore value. 3433 break; 3434 } 3435 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3436 std::string S; 3437 if (convertToString(Record, 0, S)) 3438 return error("Invalid record"); 3439 SectionTable.push_back(S); 3440 break; 3441 } 3442 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3443 std::string S; 3444 if (convertToString(Record, 0, S)) 3445 return error("Invalid record"); 3446 GCTable.push_back(S); 3447 break; 3448 } 3449 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3450 if (Record.size() < 2) 3451 return error("Invalid record"); 3452 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3453 unsigned ComdatNameSize = Record[1]; 3454 std::string ComdatName; 3455 ComdatName.reserve(ComdatNameSize); 3456 for (unsigned i = 0; i != ComdatNameSize; ++i) 3457 ComdatName += (char)Record[2 + i]; 3458 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3459 C->setSelectionKind(SK); 3460 ComdatList.push_back(C); 3461 break; 3462 } 3463 // GLOBALVAR: [pointer type, isconst, initid, 3464 // linkage, alignment, section, visibility, threadlocal, 3465 // unnamed_addr, externally_initialized, dllstorageclass, 3466 // comdat] 3467 case bitc::MODULE_CODE_GLOBALVAR: { 3468 if (Record.size() < 6) 3469 return error("Invalid record"); 3470 Type *Ty = getTypeByID(Record[0]); 3471 if (!Ty) 3472 return error("Invalid record"); 3473 bool isConstant = Record[1] & 1; 3474 bool explicitType = Record[1] & 2; 3475 unsigned AddressSpace; 3476 if (explicitType) { 3477 AddressSpace = Record[1] >> 2; 3478 } else { 3479 if (!Ty->isPointerTy()) 3480 return error("Invalid type for value"); 3481 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3482 Ty = cast<PointerType>(Ty)->getElementType(); 3483 } 3484 3485 uint64_t RawLinkage = Record[3]; 3486 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3487 unsigned Alignment; 3488 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3489 return EC; 3490 std::string Section; 3491 if (Record[5]) { 3492 if (Record[5]-1 >= SectionTable.size()) 3493 return error("Invalid ID"); 3494 Section = SectionTable[Record[5]-1]; 3495 } 3496 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3497 // Local linkage must have default visibility. 3498 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3499 // FIXME: Change to an error if non-default in 4.0. 3500 Visibility = getDecodedVisibility(Record[6]); 3501 3502 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3503 if (Record.size() > 7) 3504 TLM = getDecodedThreadLocalMode(Record[7]); 3505 3506 bool UnnamedAddr = false; 3507 if (Record.size() > 8) 3508 UnnamedAddr = Record[8]; 3509 3510 bool ExternallyInitialized = false; 3511 if (Record.size() > 9) 3512 ExternallyInitialized = Record[9]; 3513 3514 GlobalVariable *NewGV = 3515 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3516 TLM, AddressSpace, ExternallyInitialized); 3517 NewGV->setAlignment(Alignment); 3518 if (!Section.empty()) 3519 NewGV->setSection(Section); 3520 NewGV->setVisibility(Visibility); 3521 NewGV->setUnnamedAddr(UnnamedAddr); 3522 3523 if (Record.size() > 10) 3524 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3525 else 3526 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3527 3528 ValueList.push_back(NewGV); 3529 3530 // Remember which value to use for the global initializer. 3531 if (unsigned InitID = Record[2]) 3532 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3533 3534 if (Record.size() > 11) { 3535 if (unsigned ComdatID = Record[11]) { 3536 if (ComdatID > ComdatList.size()) 3537 return error("Invalid global variable comdat ID"); 3538 NewGV->setComdat(ComdatList[ComdatID - 1]); 3539 } 3540 } else if (hasImplicitComdat(RawLinkage)) { 3541 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3542 } 3543 break; 3544 } 3545 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3546 // alignment, section, visibility, gc, unnamed_addr, 3547 // prologuedata, dllstorageclass, comdat, prefixdata] 3548 case bitc::MODULE_CODE_FUNCTION: { 3549 if (Record.size() < 8) 3550 return error("Invalid record"); 3551 Type *Ty = getTypeByID(Record[0]); 3552 if (!Ty) 3553 return error("Invalid record"); 3554 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3555 Ty = PTy->getElementType(); 3556 auto *FTy = dyn_cast<FunctionType>(Ty); 3557 if (!FTy) 3558 return error("Invalid type for value"); 3559 auto CC = static_cast<CallingConv::ID>(Record[1]); 3560 if (CC & ~CallingConv::MaxID) 3561 return error("Invalid calling convention ID"); 3562 3563 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3564 "", TheModule); 3565 3566 Func->setCallingConv(CC); 3567 bool isProto = Record[2]; 3568 uint64_t RawLinkage = Record[3]; 3569 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3570 Func->setAttributes(getAttributes(Record[4])); 3571 3572 unsigned Alignment; 3573 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3574 return EC; 3575 Func->setAlignment(Alignment); 3576 if (Record[6]) { 3577 if (Record[6]-1 >= SectionTable.size()) 3578 return error("Invalid ID"); 3579 Func->setSection(SectionTable[Record[6]-1]); 3580 } 3581 // Local linkage must have default visibility. 3582 if (!Func->hasLocalLinkage()) 3583 // FIXME: Change to an error if non-default in 4.0. 3584 Func->setVisibility(getDecodedVisibility(Record[7])); 3585 if (Record.size() > 8 && Record[8]) { 3586 if (Record[8]-1 >= GCTable.size()) 3587 return error("Invalid ID"); 3588 Func->setGC(GCTable[Record[8]-1].c_str()); 3589 } 3590 bool UnnamedAddr = false; 3591 if (Record.size() > 9) 3592 UnnamedAddr = Record[9]; 3593 Func->setUnnamedAddr(UnnamedAddr); 3594 if (Record.size() > 10 && Record[10] != 0) 3595 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3596 3597 if (Record.size() > 11) 3598 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3599 else 3600 upgradeDLLImportExportLinkage(Func, RawLinkage); 3601 3602 if (Record.size() > 12) { 3603 if (unsigned ComdatID = Record[12]) { 3604 if (ComdatID > ComdatList.size()) 3605 return error("Invalid function comdat ID"); 3606 Func->setComdat(ComdatList[ComdatID - 1]); 3607 } 3608 } else if (hasImplicitComdat(RawLinkage)) { 3609 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3610 } 3611 3612 if (Record.size() > 13 && Record[13] != 0) 3613 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3614 3615 if (Record.size() > 14 && Record[14] != 0) 3616 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3617 3618 ValueList.push_back(Func); 3619 3620 // If this is a function with a body, remember the prototype we are 3621 // creating now, so that we can match up the body with them later. 3622 if (!isProto) { 3623 Func->setIsMaterializable(true); 3624 FunctionsWithBodies.push_back(Func); 3625 DeferredFunctionInfo[Func] = 0; 3626 } 3627 break; 3628 } 3629 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3630 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3631 case bitc::MODULE_CODE_ALIAS: 3632 case bitc::MODULE_CODE_ALIAS_OLD: { 3633 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3634 if (Record.size() < (3 + (unsigned)NewRecord)) 3635 return error("Invalid record"); 3636 unsigned OpNum = 0; 3637 Type *Ty = getTypeByID(Record[OpNum++]); 3638 if (!Ty) 3639 return error("Invalid record"); 3640 3641 unsigned AddrSpace; 3642 if (!NewRecord) { 3643 auto *PTy = dyn_cast<PointerType>(Ty); 3644 if (!PTy) 3645 return error("Invalid type for value"); 3646 Ty = PTy->getElementType(); 3647 AddrSpace = PTy->getAddressSpace(); 3648 } else { 3649 AddrSpace = Record[OpNum++]; 3650 } 3651 3652 auto Val = Record[OpNum++]; 3653 auto Linkage = Record[OpNum++]; 3654 auto *NewGA = GlobalAlias::create( 3655 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3656 // Old bitcode files didn't have visibility field. 3657 // Local linkage must have default visibility. 3658 if (OpNum != Record.size()) { 3659 auto VisInd = OpNum++; 3660 if (!NewGA->hasLocalLinkage()) 3661 // FIXME: Change to an error if non-default in 4.0. 3662 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3663 } 3664 if (OpNum != Record.size()) 3665 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3666 else 3667 upgradeDLLImportExportLinkage(NewGA, Linkage); 3668 if (OpNum != Record.size()) 3669 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3670 if (OpNum != Record.size()) 3671 NewGA->setUnnamedAddr(Record[OpNum++]); 3672 ValueList.push_back(NewGA); 3673 AliasInits.push_back(std::make_pair(NewGA, Val)); 3674 break; 3675 } 3676 /// MODULE_CODE_PURGEVALS: [numvals] 3677 case bitc::MODULE_CODE_PURGEVALS: 3678 // Trim down the value list to the specified size. 3679 if (Record.size() < 1 || Record[0] > ValueList.size()) 3680 return error("Invalid record"); 3681 ValueList.shrinkTo(Record[0]); 3682 break; 3683 /// MODULE_CODE_VSTOFFSET: [offset] 3684 case bitc::MODULE_CODE_VSTOFFSET: 3685 if (Record.size() < 1) 3686 return error("Invalid record"); 3687 VSTOffset = Record[0]; 3688 break; 3689 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3690 case bitc::MODULE_CODE_SOURCE_FILENAME: 3691 SmallString<128> ValueName; 3692 if (convertToString(Record, 0, ValueName)) 3693 return error("Invalid record"); 3694 TheModule->setSourceFileName(ValueName); 3695 break; 3696 } 3697 Record.clear(); 3698 } 3699 } 3700 3701 /// Helper to read the header common to all bitcode files. 3702 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3703 // Sniff for the signature. 3704 if (Stream.Read(8) != 'B' || 3705 Stream.Read(8) != 'C' || 3706 Stream.Read(4) != 0x0 || 3707 Stream.Read(4) != 0xC || 3708 Stream.Read(4) != 0xE || 3709 Stream.Read(4) != 0xD) 3710 return false; 3711 return true; 3712 } 3713 3714 std::error_code 3715 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3716 Module *M, bool ShouldLazyLoadMetadata) { 3717 TheModule = M; 3718 3719 if (std::error_code EC = initStream(std::move(Streamer))) 3720 return EC; 3721 3722 // Sniff for the signature. 3723 if (!hasValidBitcodeHeader(Stream)) 3724 return error("Invalid bitcode signature"); 3725 3726 // We expect a number of well-defined blocks, though we don't necessarily 3727 // need to understand them all. 3728 while (1) { 3729 if (Stream.AtEndOfStream()) { 3730 // We didn't really read a proper Module. 3731 return error("Malformed IR file"); 3732 } 3733 3734 BitstreamEntry Entry = 3735 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3736 3737 if (Entry.Kind != BitstreamEntry::SubBlock) 3738 return error("Malformed block"); 3739 3740 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3741 parseBitcodeVersion(); 3742 continue; 3743 } 3744 3745 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3746 return parseModule(0, ShouldLazyLoadMetadata); 3747 3748 if (Stream.SkipBlock()) 3749 return error("Invalid record"); 3750 } 3751 } 3752 3753 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3754 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3755 return error("Invalid record"); 3756 3757 SmallVector<uint64_t, 64> Record; 3758 3759 std::string Triple; 3760 // Read all the records for this module. 3761 while (1) { 3762 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3763 3764 switch (Entry.Kind) { 3765 case BitstreamEntry::SubBlock: // Handled for us already. 3766 case BitstreamEntry::Error: 3767 return error("Malformed block"); 3768 case BitstreamEntry::EndBlock: 3769 return Triple; 3770 case BitstreamEntry::Record: 3771 // The interesting case. 3772 break; 3773 } 3774 3775 // Read a record. 3776 switch (Stream.readRecord(Entry.ID, Record)) { 3777 default: break; // Default behavior, ignore unknown content. 3778 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3779 std::string S; 3780 if (convertToString(Record, 0, S)) 3781 return error("Invalid record"); 3782 Triple = S; 3783 break; 3784 } 3785 } 3786 Record.clear(); 3787 } 3788 llvm_unreachable("Exit infinite loop"); 3789 } 3790 3791 ErrorOr<std::string> BitcodeReader::parseTriple() { 3792 if (std::error_code EC = initStream(nullptr)) 3793 return EC; 3794 3795 // Sniff for the signature. 3796 if (!hasValidBitcodeHeader(Stream)) 3797 return error("Invalid bitcode signature"); 3798 3799 // We expect a number of well-defined blocks, though we don't necessarily 3800 // need to understand them all. 3801 while (1) { 3802 BitstreamEntry Entry = Stream.advance(); 3803 3804 switch (Entry.Kind) { 3805 case BitstreamEntry::Error: 3806 return error("Malformed block"); 3807 case BitstreamEntry::EndBlock: 3808 return std::error_code(); 3809 3810 case BitstreamEntry::SubBlock: 3811 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3812 return parseModuleTriple(); 3813 3814 // Ignore other sub-blocks. 3815 if (Stream.SkipBlock()) 3816 return error("Malformed block"); 3817 continue; 3818 3819 case BitstreamEntry::Record: 3820 Stream.skipRecord(Entry.ID); 3821 continue; 3822 } 3823 } 3824 } 3825 3826 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3827 if (std::error_code EC = initStream(nullptr)) 3828 return EC; 3829 3830 // Sniff for the signature. 3831 if (!hasValidBitcodeHeader(Stream)) 3832 return error("Invalid bitcode signature"); 3833 3834 // We expect a number of well-defined blocks, though we don't necessarily 3835 // need to understand them all. 3836 while (1) { 3837 BitstreamEntry Entry = Stream.advance(); 3838 switch (Entry.Kind) { 3839 case BitstreamEntry::Error: 3840 return error("Malformed block"); 3841 case BitstreamEntry::EndBlock: 3842 return std::error_code(); 3843 3844 case BitstreamEntry::SubBlock: 3845 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3846 if (std::error_code EC = parseBitcodeVersion()) 3847 return EC; 3848 return ProducerIdentification; 3849 } 3850 // Ignore other sub-blocks. 3851 if (Stream.SkipBlock()) 3852 return error("Malformed block"); 3853 continue; 3854 case BitstreamEntry::Record: 3855 Stream.skipRecord(Entry.ID); 3856 continue; 3857 } 3858 } 3859 } 3860 3861 /// Parse metadata attachments. 3862 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3863 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3864 return error("Invalid record"); 3865 3866 SmallVector<uint64_t, 64> Record; 3867 while (1) { 3868 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3869 3870 switch (Entry.Kind) { 3871 case BitstreamEntry::SubBlock: // Handled for us already. 3872 case BitstreamEntry::Error: 3873 return error("Malformed block"); 3874 case BitstreamEntry::EndBlock: 3875 return std::error_code(); 3876 case BitstreamEntry::Record: 3877 // The interesting case. 3878 break; 3879 } 3880 3881 // Read a metadata attachment record. 3882 Record.clear(); 3883 switch (Stream.readRecord(Entry.ID, Record)) { 3884 default: // Default behavior: ignore. 3885 break; 3886 case bitc::METADATA_ATTACHMENT: { 3887 unsigned RecordLength = Record.size(); 3888 if (Record.empty()) 3889 return error("Invalid record"); 3890 if (RecordLength % 2 == 0) { 3891 // A function attachment. 3892 for (unsigned I = 0; I != RecordLength; I += 2) { 3893 auto K = MDKindMap.find(Record[I]); 3894 if (K == MDKindMap.end()) 3895 return error("Invalid ID"); 3896 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3897 if (!MD) 3898 return error("Invalid metadata attachment"); 3899 F.setMetadata(K->second, MD); 3900 } 3901 continue; 3902 } 3903 3904 // An instruction attachment. 3905 Instruction *Inst = InstructionList[Record[0]]; 3906 for (unsigned i = 1; i != RecordLength; i = i+2) { 3907 unsigned Kind = Record[i]; 3908 DenseMap<unsigned, unsigned>::iterator I = 3909 MDKindMap.find(Kind); 3910 if (I == MDKindMap.end()) 3911 return error("Invalid ID"); 3912 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3913 if (isa<LocalAsMetadata>(Node)) 3914 // Drop the attachment. This used to be legal, but there's no 3915 // upgrade path. 3916 break; 3917 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3918 if (!MD) 3919 return error("Invalid metadata attachment"); 3920 3921 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3922 MD = upgradeInstructionLoopAttachment(*MD); 3923 3924 Inst->setMetadata(I->second, MD); 3925 if (I->second == LLVMContext::MD_tbaa) { 3926 InstsWithTBAATag.push_back(Inst); 3927 continue; 3928 } 3929 } 3930 break; 3931 } 3932 } 3933 } 3934 } 3935 3936 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3937 LLVMContext &Context = PtrType->getContext(); 3938 if (!isa<PointerType>(PtrType)) 3939 return error(Context, "Load/Store operand is not a pointer type"); 3940 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3941 3942 if (ValType && ValType != ElemType) 3943 return error(Context, "Explicit load/store type does not match pointee " 3944 "type of pointer operand"); 3945 if (!PointerType::isLoadableOrStorableType(ElemType)) 3946 return error(Context, "Cannot load/store from pointer"); 3947 return std::error_code(); 3948 } 3949 3950 /// Lazily parse the specified function body block. 3951 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3952 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3953 return error("Invalid record"); 3954 3955 InstructionList.clear(); 3956 unsigned ModuleValueListSize = ValueList.size(); 3957 unsigned ModuleMetadataListSize = MetadataList.size(); 3958 3959 // Add all the function arguments to the value table. 3960 for (Argument &I : F->args()) 3961 ValueList.push_back(&I); 3962 3963 unsigned NextValueNo = ValueList.size(); 3964 BasicBlock *CurBB = nullptr; 3965 unsigned CurBBNo = 0; 3966 3967 DebugLoc LastLoc; 3968 auto getLastInstruction = [&]() -> Instruction * { 3969 if (CurBB && !CurBB->empty()) 3970 return &CurBB->back(); 3971 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3972 !FunctionBBs[CurBBNo - 1]->empty()) 3973 return &FunctionBBs[CurBBNo - 1]->back(); 3974 return nullptr; 3975 }; 3976 3977 std::vector<OperandBundleDef> OperandBundles; 3978 3979 // Read all the records. 3980 SmallVector<uint64_t, 64> Record; 3981 while (1) { 3982 BitstreamEntry Entry = Stream.advance(); 3983 3984 switch (Entry.Kind) { 3985 case BitstreamEntry::Error: 3986 return error("Malformed block"); 3987 case BitstreamEntry::EndBlock: 3988 goto OutOfRecordLoop; 3989 3990 case BitstreamEntry::SubBlock: 3991 switch (Entry.ID) { 3992 default: // Skip unknown content. 3993 if (Stream.SkipBlock()) 3994 return error("Invalid record"); 3995 break; 3996 case bitc::CONSTANTS_BLOCK_ID: 3997 if (std::error_code EC = parseConstants()) 3998 return EC; 3999 NextValueNo = ValueList.size(); 4000 break; 4001 case bitc::VALUE_SYMTAB_BLOCK_ID: 4002 if (std::error_code EC = parseValueSymbolTable()) 4003 return EC; 4004 break; 4005 case bitc::METADATA_ATTACHMENT_ID: 4006 if (std::error_code EC = parseMetadataAttachment(*F)) 4007 return EC; 4008 break; 4009 case bitc::METADATA_BLOCK_ID: 4010 if (std::error_code EC = parseMetadata()) 4011 return EC; 4012 break; 4013 case bitc::USELIST_BLOCK_ID: 4014 if (std::error_code EC = parseUseLists()) 4015 return EC; 4016 break; 4017 } 4018 continue; 4019 4020 case BitstreamEntry::Record: 4021 // The interesting case. 4022 break; 4023 } 4024 4025 // Read a record. 4026 Record.clear(); 4027 Instruction *I = nullptr; 4028 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4029 switch (BitCode) { 4030 default: // Default behavior: reject 4031 return error("Invalid value"); 4032 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4033 if (Record.size() < 1 || Record[0] == 0) 4034 return error("Invalid record"); 4035 // Create all the basic blocks for the function. 4036 FunctionBBs.resize(Record[0]); 4037 4038 // See if anything took the address of blocks in this function. 4039 auto BBFRI = BasicBlockFwdRefs.find(F); 4040 if (BBFRI == BasicBlockFwdRefs.end()) { 4041 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4042 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4043 } else { 4044 auto &BBRefs = BBFRI->second; 4045 // Check for invalid basic block references. 4046 if (BBRefs.size() > FunctionBBs.size()) 4047 return error("Invalid ID"); 4048 assert(!BBRefs.empty() && "Unexpected empty array"); 4049 assert(!BBRefs.front() && "Invalid reference to entry block"); 4050 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4051 ++I) 4052 if (I < RE && BBRefs[I]) { 4053 BBRefs[I]->insertInto(F); 4054 FunctionBBs[I] = BBRefs[I]; 4055 } else { 4056 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4057 } 4058 4059 // Erase from the table. 4060 BasicBlockFwdRefs.erase(BBFRI); 4061 } 4062 4063 CurBB = FunctionBBs[0]; 4064 continue; 4065 } 4066 4067 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4068 // This record indicates that the last instruction is at the same 4069 // location as the previous instruction with a location. 4070 I = getLastInstruction(); 4071 4072 if (!I) 4073 return error("Invalid record"); 4074 I->setDebugLoc(LastLoc); 4075 I = nullptr; 4076 continue; 4077 4078 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4079 I = getLastInstruction(); 4080 if (!I || Record.size() < 4) 4081 return error("Invalid record"); 4082 4083 unsigned Line = Record[0], Col = Record[1]; 4084 unsigned ScopeID = Record[2], IAID = Record[3]; 4085 4086 MDNode *Scope = nullptr, *IA = nullptr; 4087 if (ScopeID) { 4088 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4089 if (!Scope) 4090 return error("Invalid record"); 4091 } 4092 if (IAID) { 4093 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4094 if (!IA) 4095 return error("Invalid record"); 4096 } 4097 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4098 I->setDebugLoc(LastLoc); 4099 I = nullptr; 4100 continue; 4101 } 4102 4103 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4104 unsigned OpNum = 0; 4105 Value *LHS, *RHS; 4106 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4107 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4108 OpNum+1 > Record.size()) 4109 return error("Invalid record"); 4110 4111 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4112 if (Opc == -1) 4113 return error("Invalid record"); 4114 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4115 InstructionList.push_back(I); 4116 if (OpNum < Record.size()) { 4117 if (Opc == Instruction::Add || 4118 Opc == Instruction::Sub || 4119 Opc == Instruction::Mul || 4120 Opc == Instruction::Shl) { 4121 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4122 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4123 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4124 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4125 } else if (Opc == Instruction::SDiv || 4126 Opc == Instruction::UDiv || 4127 Opc == Instruction::LShr || 4128 Opc == Instruction::AShr) { 4129 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4130 cast<BinaryOperator>(I)->setIsExact(true); 4131 } else if (isa<FPMathOperator>(I)) { 4132 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4133 if (FMF.any()) 4134 I->setFastMathFlags(FMF); 4135 } 4136 4137 } 4138 break; 4139 } 4140 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4141 unsigned OpNum = 0; 4142 Value *Op; 4143 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4144 OpNum+2 != Record.size()) 4145 return error("Invalid record"); 4146 4147 Type *ResTy = getTypeByID(Record[OpNum]); 4148 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4149 if (Opc == -1 || !ResTy) 4150 return error("Invalid record"); 4151 Instruction *Temp = nullptr; 4152 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4153 if (Temp) { 4154 InstructionList.push_back(Temp); 4155 CurBB->getInstList().push_back(Temp); 4156 } 4157 } else { 4158 auto CastOp = (Instruction::CastOps)Opc; 4159 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4160 return error("Invalid cast"); 4161 I = CastInst::Create(CastOp, Op, ResTy); 4162 } 4163 InstructionList.push_back(I); 4164 break; 4165 } 4166 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4167 case bitc::FUNC_CODE_INST_GEP_OLD: 4168 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4169 unsigned OpNum = 0; 4170 4171 Type *Ty; 4172 bool InBounds; 4173 4174 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4175 InBounds = Record[OpNum++]; 4176 Ty = getTypeByID(Record[OpNum++]); 4177 } else { 4178 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4179 Ty = nullptr; 4180 } 4181 4182 Value *BasePtr; 4183 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4184 return error("Invalid record"); 4185 4186 if (!Ty) 4187 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4188 ->getElementType(); 4189 else if (Ty != 4190 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4191 ->getElementType()) 4192 return error( 4193 "Explicit gep type does not match pointee type of pointer operand"); 4194 4195 SmallVector<Value*, 16> GEPIdx; 4196 while (OpNum != Record.size()) { 4197 Value *Op; 4198 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4199 return error("Invalid record"); 4200 GEPIdx.push_back(Op); 4201 } 4202 4203 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4204 4205 InstructionList.push_back(I); 4206 if (InBounds) 4207 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4208 break; 4209 } 4210 4211 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4212 // EXTRACTVAL: [opty, opval, n x indices] 4213 unsigned OpNum = 0; 4214 Value *Agg; 4215 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4216 return error("Invalid record"); 4217 4218 unsigned RecSize = Record.size(); 4219 if (OpNum == RecSize) 4220 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4221 4222 SmallVector<unsigned, 4> EXTRACTVALIdx; 4223 Type *CurTy = Agg->getType(); 4224 for (; OpNum != RecSize; ++OpNum) { 4225 bool IsArray = CurTy->isArrayTy(); 4226 bool IsStruct = CurTy->isStructTy(); 4227 uint64_t Index = Record[OpNum]; 4228 4229 if (!IsStruct && !IsArray) 4230 return error("EXTRACTVAL: Invalid type"); 4231 if ((unsigned)Index != Index) 4232 return error("Invalid value"); 4233 if (IsStruct && Index >= CurTy->subtypes().size()) 4234 return error("EXTRACTVAL: Invalid struct index"); 4235 if (IsArray && Index >= CurTy->getArrayNumElements()) 4236 return error("EXTRACTVAL: Invalid array index"); 4237 EXTRACTVALIdx.push_back((unsigned)Index); 4238 4239 if (IsStruct) 4240 CurTy = CurTy->subtypes()[Index]; 4241 else 4242 CurTy = CurTy->subtypes()[0]; 4243 } 4244 4245 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4246 InstructionList.push_back(I); 4247 break; 4248 } 4249 4250 case bitc::FUNC_CODE_INST_INSERTVAL: { 4251 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4252 unsigned OpNum = 0; 4253 Value *Agg; 4254 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4255 return error("Invalid record"); 4256 Value *Val; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4258 return error("Invalid record"); 4259 4260 unsigned RecSize = Record.size(); 4261 if (OpNum == RecSize) 4262 return error("INSERTVAL: Invalid instruction with 0 indices"); 4263 4264 SmallVector<unsigned, 4> INSERTVALIdx; 4265 Type *CurTy = Agg->getType(); 4266 for (; OpNum != RecSize; ++OpNum) { 4267 bool IsArray = CurTy->isArrayTy(); 4268 bool IsStruct = CurTy->isStructTy(); 4269 uint64_t Index = Record[OpNum]; 4270 4271 if (!IsStruct && !IsArray) 4272 return error("INSERTVAL: Invalid type"); 4273 if ((unsigned)Index != Index) 4274 return error("Invalid value"); 4275 if (IsStruct && Index >= CurTy->subtypes().size()) 4276 return error("INSERTVAL: Invalid struct index"); 4277 if (IsArray && Index >= CurTy->getArrayNumElements()) 4278 return error("INSERTVAL: Invalid array index"); 4279 4280 INSERTVALIdx.push_back((unsigned)Index); 4281 if (IsStruct) 4282 CurTy = CurTy->subtypes()[Index]; 4283 else 4284 CurTy = CurTy->subtypes()[0]; 4285 } 4286 4287 if (CurTy != Val->getType()) 4288 return error("Inserted value type doesn't match aggregate type"); 4289 4290 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4291 InstructionList.push_back(I); 4292 break; 4293 } 4294 4295 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4296 // obsolete form of select 4297 // handles select i1 ... in old bitcode 4298 unsigned OpNum = 0; 4299 Value *TrueVal, *FalseVal, *Cond; 4300 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4301 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4302 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4303 return error("Invalid record"); 4304 4305 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4306 InstructionList.push_back(I); 4307 break; 4308 } 4309 4310 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4311 // new form of select 4312 // handles select i1 or select [N x i1] 4313 unsigned OpNum = 0; 4314 Value *TrueVal, *FalseVal, *Cond; 4315 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4316 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4317 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4318 return error("Invalid record"); 4319 4320 // select condition can be either i1 or [N x i1] 4321 if (VectorType* vector_type = 4322 dyn_cast<VectorType>(Cond->getType())) { 4323 // expect <n x i1> 4324 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4325 return error("Invalid type for value"); 4326 } else { 4327 // expect i1 4328 if (Cond->getType() != Type::getInt1Ty(Context)) 4329 return error("Invalid type for value"); 4330 } 4331 4332 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4333 InstructionList.push_back(I); 4334 break; 4335 } 4336 4337 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4338 unsigned OpNum = 0; 4339 Value *Vec, *Idx; 4340 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4341 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4342 return error("Invalid record"); 4343 if (!Vec->getType()->isVectorTy()) 4344 return error("Invalid type for value"); 4345 I = ExtractElementInst::Create(Vec, Idx); 4346 InstructionList.push_back(I); 4347 break; 4348 } 4349 4350 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4351 unsigned OpNum = 0; 4352 Value *Vec, *Elt, *Idx; 4353 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4354 return error("Invalid record"); 4355 if (!Vec->getType()->isVectorTy()) 4356 return error("Invalid type for value"); 4357 if (popValue(Record, OpNum, NextValueNo, 4358 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4359 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4360 return error("Invalid record"); 4361 I = InsertElementInst::Create(Vec, Elt, Idx); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 4366 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4367 unsigned OpNum = 0; 4368 Value *Vec1, *Vec2, *Mask; 4369 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4370 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4371 return error("Invalid record"); 4372 4373 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4374 return error("Invalid record"); 4375 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4376 return error("Invalid type for value"); 4377 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4378 InstructionList.push_back(I); 4379 break; 4380 } 4381 4382 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4383 // Old form of ICmp/FCmp returning bool 4384 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4385 // both legal on vectors but had different behaviour. 4386 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4387 // FCmp/ICmp returning bool or vector of bool 4388 4389 unsigned OpNum = 0; 4390 Value *LHS, *RHS; 4391 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4392 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4393 return error("Invalid record"); 4394 4395 unsigned PredVal = Record[OpNum]; 4396 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4397 FastMathFlags FMF; 4398 if (IsFP && Record.size() > OpNum+1) 4399 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4400 4401 if (OpNum+1 != Record.size()) 4402 return error("Invalid record"); 4403 4404 if (LHS->getType()->isFPOrFPVectorTy()) 4405 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4406 else 4407 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4408 4409 if (FMF.any()) 4410 I->setFastMathFlags(FMF); 4411 InstructionList.push_back(I); 4412 break; 4413 } 4414 4415 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4416 { 4417 unsigned Size = Record.size(); 4418 if (Size == 0) { 4419 I = ReturnInst::Create(Context); 4420 InstructionList.push_back(I); 4421 break; 4422 } 4423 4424 unsigned OpNum = 0; 4425 Value *Op = nullptr; 4426 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4427 return error("Invalid record"); 4428 if (OpNum != Record.size()) 4429 return error("Invalid record"); 4430 4431 I = ReturnInst::Create(Context, Op); 4432 InstructionList.push_back(I); 4433 break; 4434 } 4435 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4436 if (Record.size() != 1 && Record.size() != 3) 4437 return error("Invalid record"); 4438 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4439 if (!TrueDest) 4440 return error("Invalid record"); 4441 4442 if (Record.size() == 1) { 4443 I = BranchInst::Create(TrueDest); 4444 InstructionList.push_back(I); 4445 } 4446 else { 4447 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4448 Value *Cond = getValue(Record, 2, NextValueNo, 4449 Type::getInt1Ty(Context)); 4450 if (!FalseDest || !Cond) 4451 return error("Invalid record"); 4452 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4453 InstructionList.push_back(I); 4454 } 4455 break; 4456 } 4457 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4458 if (Record.size() != 1 && Record.size() != 2) 4459 return error("Invalid record"); 4460 unsigned Idx = 0; 4461 Value *CleanupPad = 4462 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4463 if (!CleanupPad) 4464 return error("Invalid record"); 4465 BasicBlock *UnwindDest = nullptr; 4466 if (Record.size() == 2) { 4467 UnwindDest = getBasicBlock(Record[Idx++]); 4468 if (!UnwindDest) 4469 return error("Invalid record"); 4470 } 4471 4472 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4473 InstructionList.push_back(I); 4474 break; 4475 } 4476 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4477 if (Record.size() != 2) 4478 return error("Invalid record"); 4479 unsigned Idx = 0; 4480 Value *CatchPad = 4481 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4482 if (!CatchPad) 4483 return error("Invalid record"); 4484 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4485 if (!BB) 4486 return error("Invalid record"); 4487 4488 I = CatchReturnInst::Create(CatchPad, BB); 4489 InstructionList.push_back(I); 4490 break; 4491 } 4492 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4493 // We must have, at minimum, the outer scope and the number of arguments. 4494 if (Record.size() < 2) 4495 return error("Invalid record"); 4496 4497 unsigned Idx = 0; 4498 4499 Value *ParentPad = 4500 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4501 4502 unsigned NumHandlers = Record[Idx++]; 4503 4504 SmallVector<BasicBlock *, 2> Handlers; 4505 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4506 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4507 if (!BB) 4508 return error("Invalid record"); 4509 Handlers.push_back(BB); 4510 } 4511 4512 BasicBlock *UnwindDest = nullptr; 4513 if (Idx + 1 == Record.size()) { 4514 UnwindDest = getBasicBlock(Record[Idx++]); 4515 if (!UnwindDest) 4516 return error("Invalid record"); 4517 } 4518 4519 if (Record.size() != Idx) 4520 return error("Invalid record"); 4521 4522 auto *CatchSwitch = 4523 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4524 for (BasicBlock *Handler : Handlers) 4525 CatchSwitch->addHandler(Handler); 4526 I = CatchSwitch; 4527 InstructionList.push_back(I); 4528 break; 4529 } 4530 case bitc::FUNC_CODE_INST_CATCHPAD: 4531 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4532 // We must have, at minimum, the outer scope and the number of arguments. 4533 if (Record.size() < 2) 4534 return error("Invalid record"); 4535 4536 unsigned Idx = 0; 4537 4538 Value *ParentPad = 4539 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4540 4541 unsigned NumArgOperands = Record[Idx++]; 4542 4543 SmallVector<Value *, 2> Args; 4544 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4545 Value *Val; 4546 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4547 return error("Invalid record"); 4548 Args.push_back(Val); 4549 } 4550 4551 if (Record.size() != Idx) 4552 return error("Invalid record"); 4553 4554 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4555 I = CleanupPadInst::Create(ParentPad, Args); 4556 else 4557 I = CatchPadInst::Create(ParentPad, Args); 4558 InstructionList.push_back(I); 4559 break; 4560 } 4561 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4562 // Check magic 4563 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4564 // "New" SwitchInst format with case ranges. The changes to write this 4565 // format were reverted but we still recognize bitcode that uses it. 4566 // Hopefully someday we will have support for case ranges and can use 4567 // this format again. 4568 4569 Type *OpTy = getTypeByID(Record[1]); 4570 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4571 4572 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4573 BasicBlock *Default = getBasicBlock(Record[3]); 4574 if (!OpTy || !Cond || !Default) 4575 return error("Invalid record"); 4576 4577 unsigned NumCases = Record[4]; 4578 4579 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4580 InstructionList.push_back(SI); 4581 4582 unsigned CurIdx = 5; 4583 for (unsigned i = 0; i != NumCases; ++i) { 4584 SmallVector<ConstantInt*, 1> CaseVals; 4585 unsigned NumItems = Record[CurIdx++]; 4586 for (unsigned ci = 0; ci != NumItems; ++ci) { 4587 bool isSingleNumber = Record[CurIdx++]; 4588 4589 APInt Low; 4590 unsigned ActiveWords = 1; 4591 if (ValueBitWidth > 64) 4592 ActiveWords = Record[CurIdx++]; 4593 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4594 ValueBitWidth); 4595 CurIdx += ActiveWords; 4596 4597 if (!isSingleNumber) { 4598 ActiveWords = 1; 4599 if (ValueBitWidth > 64) 4600 ActiveWords = Record[CurIdx++]; 4601 APInt High = readWideAPInt( 4602 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4603 CurIdx += ActiveWords; 4604 4605 // FIXME: It is not clear whether values in the range should be 4606 // compared as signed or unsigned values. The partially 4607 // implemented changes that used this format in the past used 4608 // unsigned comparisons. 4609 for ( ; Low.ule(High); ++Low) 4610 CaseVals.push_back(ConstantInt::get(Context, Low)); 4611 } else 4612 CaseVals.push_back(ConstantInt::get(Context, Low)); 4613 } 4614 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4615 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4616 cve = CaseVals.end(); cvi != cve; ++cvi) 4617 SI->addCase(*cvi, DestBB); 4618 } 4619 I = SI; 4620 break; 4621 } 4622 4623 // Old SwitchInst format without case ranges. 4624 4625 if (Record.size() < 3 || (Record.size() & 1) == 0) 4626 return error("Invalid record"); 4627 Type *OpTy = getTypeByID(Record[0]); 4628 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4629 BasicBlock *Default = getBasicBlock(Record[2]); 4630 if (!OpTy || !Cond || !Default) 4631 return error("Invalid record"); 4632 unsigned NumCases = (Record.size()-3)/2; 4633 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4634 InstructionList.push_back(SI); 4635 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4636 ConstantInt *CaseVal = 4637 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4638 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4639 if (!CaseVal || !DestBB) { 4640 delete SI; 4641 return error("Invalid record"); 4642 } 4643 SI->addCase(CaseVal, DestBB); 4644 } 4645 I = SI; 4646 break; 4647 } 4648 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4649 if (Record.size() < 2) 4650 return error("Invalid record"); 4651 Type *OpTy = getTypeByID(Record[0]); 4652 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4653 if (!OpTy || !Address) 4654 return error("Invalid record"); 4655 unsigned NumDests = Record.size()-2; 4656 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4657 InstructionList.push_back(IBI); 4658 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4659 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4660 IBI->addDestination(DestBB); 4661 } else { 4662 delete IBI; 4663 return error("Invalid record"); 4664 } 4665 } 4666 I = IBI; 4667 break; 4668 } 4669 4670 case bitc::FUNC_CODE_INST_INVOKE: { 4671 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4672 if (Record.size() < 4) 4673 return error("Invalid record"); 4674 unsigned OpNum = 0; 4675 AttributeSet PAL = getAttributes(Record[OpNum++]); 4676 unsigned CCInfo = Record[OpNum++]; 4677 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4678 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4679 4680 FunctionType *FTy = nullptr; 4681 if (CCInfo >> 13 & 1 && 4682 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4683 return error("Explicit invoke type is not a function type"); 4684 4685 Value *Callee; 4686 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4687 return error("Invalid record"); 4688 4689 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4690 if (!CalleeTy) 4691 return error("Callee is not a pointer"); 4692 if (!FTy) { 4693 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4694 if (!FTy) 4695 return error("Callee is not of pointer to function type"); 4696 } else if (CalleeTy->getElementType() != FTy) 4697 return error("Explicit invoke type does not match pointee type of " 4698 "callee operand"); 4699 if (Record.size() < FTy->getNumParams() + OpNum) 4700 return error("Insufficient operands to call"); 4701 4702 SmallVector<Value*, 16> Ops; 4703 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4704 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4705 FTy->getParamType(i))); 4706 if (!Ops.back()) 4707 return error("Invalid record"); 4708 } 4709 4710 if (!FTy->isVarArg()) { 4711 if (Record.size() != OpNum) 4712 return error("Invalid record"); 4713 } else { 4714 // Read type/value pairs for varargs params. 4715 while (OpNum != Record.size()) { 4716 Value *Op; 4717 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4718 return error("Invalid record"); 4719 Ops.push_back(Op); 4720 } 4721 } 4722 4723 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4724 OperandBundles.clear(); 4725 InstructionList.push_back(I); 4726 cast<InvokeInst>(I)->setCallingConv( 4727 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4728 cast<InvokeInst>(I)->setAttributes(PAL); 4729 break; 4730 } 4731 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4732 unsigned Idx = 0; 4733 Value *Val = nullptr; 4734 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4735 return error("Invalid record"); 4736 I = ResumeInst::Create(Val); 4737 InstructionList.push_back(I); 4738 break; 4739 } 4740 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4741 I = new UnreachableInst(Context); 4742 InstructionList.push_back(I); 4743 break; 4744 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4745 if (Record.size() < 1 || ((Record.size()-1)&1)) 4746 return error("Invalid record"); 4747 Type *Ty = getTypeByID(Record[0]); 4748 if (!Ty) 4749 return error("Invalid record"); 4750 4751 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4752 InstructionList.push_back(PN); 4753 4754 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4755 Value *V; 4756 // With the new function encoding, it is possible that operands have 4757 // negative IDs (for forward references). Use a signed VBR 4758 // representation to keep the encoding small. 4759 if (UseRelativeIDs) 4760 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4761 else 4762 V = getValue(Record, 1+i, NextValueNo, Ty); 4763 BasicBlock *BB = getBasicBlock(Record[2+i]); 4764 if (!V || !BB) 4765 return error("Invalid record"); 4766 PN->addIncoming(V, BB); 4767 } 4768 I = PN; 4769 break; 4770 } 4771 4772 case bitc::FUNC_CODE_INST_LANDINGPAD: 4773 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4774 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4775 unsigned Idx = 0; 4776 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4777 if (Record.size() < 3) 4778 return error("Invalid record"); 4779 } else { 4780 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4781 if (Record.size() < 4) 4782 return error("Invalid record"); 4783 } 4784 Type *Ty = getTypeByID(Record[Idx++]); 4785 if (!Ty) 4786 return error("Invalid record"); 4787 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4788 Value *PersFn = nullptr; 4789 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4790 return error("Invalid record"); 4791 4792 if (!F->hasPersonalityFn()) 4793 F->setPersonalityFn(cast<Constant>(PersFn)); 4794 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4795 return error("Personality function mismatch"); 4796 } 4797 4798 bool IsCleanup = !!Record[Idx++]; 4799 unsigned NumClauses = Record[Idx++]; 4800 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4801 LP->setCleanup(IsCleanup); 4802 for (unsigned J = 0; J != NumClauses; ++J) { 4803 LandingPadInst::ClauseType CT = 4804 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4805 Value *Val; 4806 4807 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4808 delete LP; 4809 return error("Invalid record"); 4810 } 4811 4812 assert((CT != LandingPadInst::Catch || 4813 !isa<ArrayType>(Val->getType())) && 4814 "Catch clause has a invalid type!"); 4815 assert((CT != LandingPadInst::Filter || 4816 isa<ArrayType>(Val->getType())) && 4817 "Filter clause has invalid type!"); 4818 LP->addClause(cast<Constant>(Val)); 4819 } 4820 4821 I = LP; 4822 InstructionList.push_back(I); 4823 break; 4824 } 4825 4826 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4827 if (Record.size() != 4) 4828 return error("Invalid record"); 4829 uint64_t AlignRecord = Record[3]; 4830 const uint64_t InAllocaMask = uint64_t(1) << 5; 4831 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4832 // Reserve bit 7 for SwiftError flag. 4833 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4834 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4835 bool InAlloca = AlignRecord & InAllocaMask; 4836 Type *Ty = getTypeByID(Record[0]); 4837 if ((AlignRecord & ExplicitTypeMask) == 0) { 4838 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4839 if (!PTy) 4840 return error("Old-style alloca with a non-pointer type"); 4841 Ty = PTy->getElementType(); 4842 } 4843 Type *OpTy = getTypeByID(Record[1]); 4844 Value *Size = getFnValueByID(Record[2], OpTy); 4845 unsigned Align; 4846 if (std::error_code EC = 4847 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4848 return EC; 4849 } 4850 if (!Ty || !Size) 4851 return error("Invalid record"); 4852 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4853 AI->setUsedWithInAlloca(InAlloca); 4854 I = AI; 4855 InstructionList.push_back(I); 4856 break; 4857 } 4858 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4859 unsigned OpNum = 0; 4860 Value *Op; 4861 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4862 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4863 return error("Invalid record"); 4864 4865 Type *Ty = nullptr; 4866 if (OpNum + 3 == Record.size()) 4867 Ty = getTypeByID(Record[OpNum++]); 4868 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4869 return EC; 4870 if (!Ty) 4871 Ty = cast<PointerType>(Op->getType())->getElementType(); 4872 4873 unsigned Align; 4874 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4875 return EC; 4876 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4877 4878 InstructionList.push_back(I); 4879 break; 4880 } 4881 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4882 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4883 unsigned OpNum = 0; 4884 Value *Op; 4885 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4886 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4887 return error("Invalid record"); 4888 4889 Type *Ty = nullptr; 4890 if (OpNum + 5 == Record.size()) 4891 Ty = getTypeByID(Record[OpNum++]); 4892 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4893 return EC; 4894 if (!Ty) 4895 Ty = cast<PointerType>(Op->getType())->getElementType(); 4896 4897 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4898 if (Ordering == NotAtomic || Ordering == Release || 4899 Ordering == AcquireRelease) 4900 return error("Invalid record"); 4901 if (Ordering != NotAtomic && Record[OpNum] == 0) 4902 return error("Invalid record"); 4903 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4904 4905 unsigned Align; 4906 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4907 return EC; 4908 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4909 4910 InstructionList.push_back(I); 4911 break; 4912 } 4913 case bitc::FUNC_CODE_INST_STORE: 4914 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4915 unsigned OpNum = 0; 4916 Value *Val, *Ptr; 4917 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4918 (BitCode == bitc::FUNC_CODE_INST_STORE 4919 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4920 : popValue(Record, OpNum, NextValueNo, 4921 cast<PointerType>(Ptr->getType())->getElementType(), 4922 Val)) || 4923 OpNum + 2 != Record.size()) 4924 return error("Invalid record"); 4925 4926 if (std::error_code EC = 4927 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4928 return EC; 4929 unsigned Align; 4930 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4931 return EC; 4932 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4933 InstructionList.push_back(I); 4934 break; 4935 } 4936 case bitc::FUNC_CODE_INST_STOREATOMIC: 4937 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4938 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4939 unsigned OpNum = 0; 4940 Value *Val, *Ptr; 4941 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4942 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4943 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4944 : popValue(Record, OpNum, NextValueNo, 4945 cast<PointerType>(Ptr->getType())->getElementType(), 4946 Val)) || 4947 OpNum + 4 != Record.size()) 4948 return error("Invalid record"); 4949 4950 if (std::error_code EC = 4951 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4952 return EC; 4953 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4954 if (Ordering == NotAtomic || Ordering == Acquire || 4955 Ordering == AcquireRelease) 4956 return error("Invalid record"); 4957 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4958 if (Ordering != NotAtomic && Record[OpNum] == 0) 4959 return error("Invalid record"); 4960 4961 unsigned Align; 4962 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4963 return EC; 4964 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4965 InstructionList.push_back(I); 4966 break; 4967 } 4968 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4969 case bitc::FUNC_CODE_INST_CMPXCHG: { 4970 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4971 // failureordering?, isweak?] 4972 unsigned OpNum = 0; 4973 Value *Ptr, *Cmp, *New; 4974 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4975 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4976 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4977 : popValue(Record, OpNum, NextValueNo, 4978 cast<PointerType>(Ptr->getType())->getElementType(), 4979 Cmp)) || 4980 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4981 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4982 return error("Invalid record"); 4983 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4984 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4985 return error("Invalid record"); 4986 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4987 4988 if (std::error_code EC = 4989 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4990 return EC; 4991 AtomicOrdering FailureOrdering; 4992 if (Record.size() < 7) 4993 FailureOrdering = 4994 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4995 else 4996 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4997 4998 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4999 SynchScope); 5000 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5001 5002 if (Record.size() < 8) { 5003 // Before weak cmpxchgs existed, the instruction simply returned the 5004 // value loaded from memory, so bitcode files from that era will be 5005 // expecting the first component of a modern cmpxchg. 5006 CurBB->getInstList().push_back(I); 5007 I = ExtractValueInst::Create(I, 0); 5008 } else { 5009 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5010 } 5011 5012 InstructionList.push_back(I); 5013 break; 5014 } 5015 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5016 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5017 unsigned OpNum = 0; 5018 Value *Ptr, *Val; 5019 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5020 popValue(Record, OpNum, NextValueNo, 5021 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5022 OpNum+4 != Record.size()) 5023 return error("Invalid record"); 5024 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5025 if (Operation < AtomicRMWInst::FIRST_BINOP || 5026 Operation > AtomicRMWInst::LAST_BINOP) 5027 return error("Invalid record"); 5028 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5029 if (Ordering == NotAtomic || Ordering == Unordered) 5030 return error("Invalid record"); 5031 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5032 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5033 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5034 InstructionList.push_back(I); 5035 break; 5036 } 5037 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5038 if (2 != Record.size()) 5039 return error("Invalid record"); 5040 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5041 if (Ordering == NotAtomic || Ordering == Unordered || 5042 Ordering == Monotonic) 5043 return error("Invalid record"); 5044 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5045 I = new FenceInst(Context, Ordering, SynchScope); 5046 InstructionList.push_back(I); 5047 break; 5048 } 5049 case bitc::FUNC_CODE_INST_CALL: { 5050 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5051 if (Record.size() < 3) 5052 return error("Invalid record"); 5053 5054 unsigned OpNum = 0; 5055 AttributeSet PAL = getAttributes(Record[OpNum++]); 5056 unsigned CCInfo = Record[OpNum++]; 5057 5058 FastMathFlags FMF; 5059 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5060 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5061 if (!FMF.any()) 5062 return error("Fast math flags indicator set for call with no FMF"); 5063 } 5064 5065 FunctionType *FTy = nullptr; 5066 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5067 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5068 return error("Explicit call type is not a function type"); 5069 5070 Value *Callee; 5071 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5072 return error("Invalid record"); 5073 5074 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5075 if (!OpTy) 5076 return error("Callee is not a pointer type"); 5077 if (!FTy) { 5078 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5079 if (!FTy) 5080 return error("Callee is not of pointer to function type"); 5081 } else if (OpTy->getElementType() != FTy) 5082 return error("Explicit call type does not match pointee type of " 5083 "callee operand"); 5084 if (Record.size() < FTy->getNumParams() + OpNum) 5085 return error("Insufficient operands to call"); 5086 5087 SmallVector<Value*, 16> Args; 5088 // Read the fixed params. 5089 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5090 if (FTy->getParamType(i)->isLabelTy()) 5091 Args.push_back(getBasicBlock(Record[OpNum])); 5092 else 5093 Args.push_back(getValue(Record, OpNum, NextValueNo, 5094 FTy->getParamType(i))); 5095 if (!Args.back()) 5096 return error("Invalid record"); 5097 } 5098 5099 // Read type/value pairs for varargs params. 5100 if (!FTy->isVarArg()) { 5101 if (OpNum != Record.size()) 5102 return error("Invalid record"); 5103 } else { 5104 while (OpNum != Record.size()) { 5105 Value *Op; 5106 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5107 return error("Invalid record"); 5108 Args.push_back(Op); 5109 } 5110 } 5111 5112 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5113 OperandBundles.clear(); 5114 InstructionList.push_back(I); 5115 cast<CallInst>(I)->setCallingConv( 5116 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5117 CallInst::TailCallKind TCK = CallInst::TCK_None; 5118 if (CCInfo & 1 << bitc::CALL_TAIL) 5119 TCK = CallInst::TCK_Tail; 5120 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5121 TCK = CallInst::TCK_MustTail; 5122 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5123 TCK = CallInst::TCK_NoTail; 5124 cast<CallInst>(I)->setTailCallKind(TCK); 5125 cast<CallInst>(I)->setAttributes(PAL); 5126 if (FMF.any()) { 5127 if (!isa<FPMathOperator>(I)) 5128 return error("Fast-math-flags specified for call without " 5129 "floating-point scalar or vector return type"); 5130 I->setFastMathFlags(FMF); 5131 } 5132 break; 5133 } 5134 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5135 if (Record.size() < 3) 5136 return error("Invalid record"); 5137 Type *OpTy = getTypeByID(Record[0]); 5138 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5139 Type *ResTy = getTypeByID(Record[2]); 5140 if (!OpTy || !Op || !ResTy) 5141 return error("Invalid record"); 5142 I = new VAArgInst(Op, ResTy); 5143 InstructionList.push_back(I); 5144 break; 5145 } 5146 5147 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5148 // A call or an invoke can be optionally prefixed with some variable 5149 // number of operand bundle blocks. These blocks are read into 5150 // OperandBundles and consumed at the next call or invoke instruction. 5151 5152 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5153 return error("Invalid record"); 5154 5155 std::vector<Value *> Inputs; 5156 5157 unsigned OpNum = 1; 5158 while (OpNum != Record.size()) { 5159 Value *Op; 5160 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5161 return error("Invalid record"); 5162 Inputs.push_back(Op); 5163 } 5164 5165 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5166 continue; 5167 } 5168 } 5169 5170 // Add instruction to end of current BB. If there is no current BB, reject 5171 // this file. 5172 if (!CurBB) { 5173 delete I; 5174 return error("Invalid instruction with no BB"); 5175 } 5176 if (!OperandBundles.empty()) { 5177 delete I; 5178 return error("Operand bundles found with no consumer"); 5179 } 5180 CurBB->getInstList().push_back(I); 5181 5182 // If this was a terminator instruction, move to the next block. 5183 if (isa<TerminatorInst>(I)) { 5184 ++CurBBNo; 5185 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5186 } 5187 5188 // Non-void values get registered in the value table for future use. 5189 if (I && !I->getType()->isVoidTy()) 5190 ValueList.assignValue(I, NextValueNo++); 5191 } 5192 5193 OutOfRecordLoop: 5194 5195 if (!OperandBundles.empty()) 5196 return error("Operand bundles found with no consumer"); 5197 5198 // Check the function list for unresolved values. 5199 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5200 if (!A->getParent()) { 5201 // We found at least one unresolved value. Nuke them all to avoid leaks. 5202 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5203 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5204 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5205 delete A; 5206 } 5207 } 5208 return error("Never resolved value found in function"); 5209 } 5210 } 5211 5212 // FIXME: Check for unresolved forward-declared metadata references 5213 // and clean up leaks. 5214 5215 // Trim the value list down to the size it was before we parsed this function. 5216 ValueList.shrinkTo(ModuleValueListSize); 5217 MetadataList.shrinkTo(ModuleMetadataListSize); 5218 std::vector<BasicBlock*>().swap(FunctionBBs); 5219 return std::error_code(); 5220 } 5221 5222 /// Find the function body in the bitcode stream 5223 std::error_code BitcodeReader::findFunctionInStream( 5224 Function *F, 5225 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5226 while (DeferredFunctionInfoIterator->second == 0) { 5227 // This is the fallback handling for the old format bitcode that 5228 // didn't contain the function index in the VST, or when we have 5229 // an anonymous function which would not have a VST entry. 5230 // Assert that we have one of those two cases. 5231 assert(VSTOffset == 0 || !F->hasName()); 5232 // Parse the next body in the stream and set its position in the 5233 // DeferredFunctionInfo map. 5234 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5235 return EC; 5236 } 5237 return std::error_code(); 5238 } 5239 5240 //===----------------------------------------------------------------------===// 5241 // GVMaterializer implementation 5242 //===----------------------------------------------------------------------===// 5243 5244 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5245 5246 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5247 if (std::error_code EC = materializeMetadata()) 5248 return EC; 5249 5250 Function *F = dyn_cast<Function>(GV); 5251 // If it's not a function or is already material, ignore the request. 5252 if (!F || !F->isMaterializable()) 5253 return std::error_code(); 5254 5255 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5256 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5257 // If its position is recorded as 0, its body is somewhere in the stream 5258 // but we haven't seen it yet. 5259 if (DFII->second == 0) 5260 if (std::error_code EC = findFunctionInStream(F, DFII)) 5261 return EC; 5262 5263 // Move the bit stream to the saved position of the deferred function body. 5264 Stream.JumpToBit(DFII->second); 5265 5266 if (std::error_code EC = parseFunctionBody(F)) 5267 return EC; 5268 F->setIsMaterializable(false); 5269 5270 if (StripDebugInfo) 5271 stripDebugInfo(*F); 5272 5273 // Upgrade any old intrinsic calls in the function. 5274 for (auto &I : UpgradedIntrinsics) { 5275 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5276 UI != UE;) { 5277 User *U = *UI; 5278 ++UI; 5279 if (CallInst *CI = dyn_cast<CallInst>(U)) 5280 UpgradeIntrinsicCall(CI, I.second); 5281 } 5282 } 5283 5284 // Finish fn->subprogram upgrade for materialized functions. 5285 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5286 F->setSubprogram(SP); 5287 5288 // Bring in any functions that this function forward-referenced via 5289 // blockaddresses. 5290 return materializeForwardReferencedFunctions(); 5291 } 5292 5293 std::error_code BitcodeReader::materializeModule() { 5294 if (std::error_code EC = materializeMetadata()) 5295 return EC; 5296 5297 // Promise to materialize all forward references. 5298 WillMaterializeAllForwardRefs = true; 5299 5300 // Iterate over the module, deserializing any functions that are still on 5301 // disk. 5302 for (Function &F : *TheModule) { 5303 if (std::error_code EC = materialize(&F)) 5304 return EC; 5305 } 5306 // At this point, if there are any function bodies, parse the rest of 5307 // the bits in the module past the last function block we have recorded 5308 // through either lazy scanning or the VST. 5309 if (LastFunctionBlockBit || NextUnreadBit) 5310 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5311 : NextUnreadBit); 5312 5313 // Check that all block address forward references got resolved (as we 5314 // promised above). 5315 if (!BasicBlockFwdRefs.empty()) 5316 return error("Never resolved function from blockaddress"); 5317 5318 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5319 // to prevent this instructions with TBAA tags should be upgraded first. 5320 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5321 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5322 5323 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5324 // delete the old functions to clean up. We can't do this unless the entire 5325 // module is materialized because there could always be another function body 5326 // with calls to the old function. 5327 for (auto &I : UpgradedIntrinsics) { 5328 for (auto *U : I.first->users()) { 5329 if (CallInst *CI = dyn_cast<CallInst>(U)) 5330 UpgradeIntrinsicCall(CI, I.second); 5331 } 5332 if (!I.first->use_empty()) 5333 I.first->replaceAllUsesWith(I.second); 5334 I.first->eraseFromParent(); 5335 } 5336 UpgradedIntrinsics.clear(); 5337 5338 UpgradeDebugInfo(*TheModule); 5339 return std::error_code(); 5340 } 5341 5342 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5343 return IdentifiedStructTypes; 5344 } 5345 5346 std::error_code 5347 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5348 if (Streamer) 5349 return initLazyStream(std::move(Streamer)); 5350 return initStreamFromBuffer(); 5351 } 5352 5353 std::error_code BitcodeReader::initStreamFromBuffer() { 5354 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5355 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5356 5357 if (Buffer->getBufferSize() & 3) 5358 return error("Invalid bitcode signature"); 5359 5360 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5361 // The magic number is 0x0B17C0DE stored in little endian. 5362 if (isBitcodeWrapper(BufPtr, BufEnd)) 5363 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5364 return error("Invalid bitcode wrapper header"); 5365 5366 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5367 Stream.init(&*StreamFile); 5368 5369 return std::error_code(); 5370 } 5371 5372 std::error_code 5373 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5374 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5375 // see it. 5376 auto OwnedBytes = 5377 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5378 StreamingMemoryObject &Bytes = *OwnedBytes; 5379 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5380 Stream.init(&*StreamFile); 5381 5382 unsigned char buf[16]; 5383 if (Bytes.readBytes(buf, 16, 0) != 16) 5384 return error("Invalid bitcode signature"); 5385 5386 if (!isBitcode(buf, buf + 16)) 5387 return error("Invalid bitcode signature"); 5388 5389 if (isBitcodeWrapper(buf, buf + 4)) { 5390 const unsigned char *bitcodeStart = buf; 5391 const unsigned char *bitcodeEnd = buf + 16; 5392 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5393 Bytes.dropLeadingBytes(bitcodeStart - buf); 5394 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5395 } 5396 return std::error_code(); 5397 } 5398 5399 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5400 const Twine &Message) { 5401 return ::error(DiagnosticHandler, make_error_code(E), Message); 5402 } 5403 5404 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5405 return ::error(DiagnosticHandler, 5406 make_error_code(BitcodeError::CorruptedBitcode), Message); 5407 } 5408 5409 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5410 return ::error(DiagnosticHandler, make_error_code(E)); 5411 } 5412 5413 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5414 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5415 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5416 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5417 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5418 5419 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5420 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5421 bool CheckGlobalValSummaryPresenceOnly) 5422 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5423 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5424 5425 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5426 5427 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5428 5429 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5430 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5431 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5432 return VGI->second; 5433 } 5434 5435 GlobalValueInfo * 5436 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5437 auto I = SummaryOffsetToInfoMap.find(Offset); 5438 assert(I != SummaryOffsetToInfoMap.end()); 5439 return I->second; 5440 } 5441 5442 // Specialized value symbol table parser used when reading module index 5443 // blocks where we don't actually create global values. 5444 // At the end of this routine the module index is populated with a map 5445 // from global value name to GlobalValueInfo. The global value info contains 5446 // the function block's bitcode offset (if applicable), or the offset into the 5447 // summary section for the combined index. 5448 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5449 uint64_t Offset, 5450 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5451 assert(Offset > 0 && "Expected non-zero VST offset"); 5452 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5453 5454 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5455 return error("Invalid record"); 5456 5457 SmallVector<uint64_t, 64> Record; 5458 5459 // Read all the records for this value table. 5460 SmallString<128> ValueName; 5461 while (1) { 5462 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5463 5464 switch (Entry.Kind) { 5465 case BitstreamEntry::SubBlock: // Handled for us already. 5466 case BitstreamEntry::Error: 5467 return error("Malformed block"); 5468 case BitstreamEntry::EndBlock: 5469 // Done parsing VST, jump back to wherever we came from. 5470 Stream.JumpToBit(CurrentBit); 5471 return std::error_code(); 5472 case BitstreamEntry::Record: 5473 // The interesting case. 5474 break; 5475 } 5476 5477 // Read a record. 5478 Record.clear(); 5479 switch (Stream.readRecord(Entry.ID, Record)) { 5480 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5481 break; 5482 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5483 if (convertToString(Record, 1, ValueName)) 5484 return error("Invalid record"); 5485 unsigned ValueID = Record[0]; 5486 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5487 llvm::make_unique<GlobalValueInfo>(); 5488 assert(!SourceFileName.empty()); 5489 auto VLI = ValueIdToLinkageMap.find(ValueID); 5490 assert(VLI != ValueIdToLinkageMap.end() && 5491 "No linkage found for VST entry?"); 5492 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5493 ValueName, VLI->second, SourceFileName); 5494 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5495 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5496 ValueName.clear(); 5497 break; 5498 } 5499 case bitc::VST_CODE_FNENTRY: { 5500 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5501 if (convertToString(Record, 2, ValueName)) 5502 return error("Invalid record"); 5503 unsigned ValueID = Record[0]; 5504 uint64_t FuncOffset = Record[1]; 5505 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5506 std::unique_ptr<GlobalValueInfo> FuncInfo = 5507 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5508 assert(!SourceFileName.empty()); 5509 auto VLI = ValueIdToLinkageMap.find(ValueID); 5510 assert(VLI != ValueIdToLinkageMap.end() && 5511 "No linkage found for VST entry?"); 5512 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5513 ValueName, VLI->second, SourceFileName); 5514 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5515 ValueIdToCallGraphGUIDMap[ValueID] = 5516 GlobalValue::getGUID(FunctionGlobalId); 5517 5518 ValueName.clear(); 5519 break; 5520 } 5521 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5522 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5523 unsigned ValueID = Record[0]; 5524 uint64_t GlobalValSummaryOffset = Record[1]; 5525 uint64_t GlobalValGUID = Record[2]; 5526 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5527 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5528 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5529 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5530 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5531 break; 5532 } 5533 case bitc::VST_CODE_COMBINED_ENTRY: { 5534 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5535 unsigned ValueID = Record[0]; 5536 uint64_t RefGUID = Record[1]; 5537 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5538 break; 5539 } 5540 } 5541 } 5542 } 5543 5544 // Parse just the blocks needed for building the index out of the module. 5545 // At the end of this routine the module Index is populated with a map 5546 // from global value name to GlobalValueInfo. The global value info contains 5547 // either the parsed summary information (when parsing summaries 5548 // eagerly), or just to the summary record's offset 5549 // if parsing lazily (IsLazy). 5550 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5551 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5552 return error("Invalid record"); 5553 5554 SmallVector<uint64_t, 64> Record; 5555 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5556 unsigned ValueId = 0; 5557 5558 // Read the index for this module. 5559 while (1) { 5560 BitstreamEntry Entry = Stream.advance(); 5561 5562 switch (Entry.Kind) { 5563 case BitstreamEntry::Error: 5564 return error("Malformed block"); 5565 case BitstreamEntry::EndBlock: 5566 return std::error_code(); 5567 5568 case BitstreamEntry::SubBlock: 5569 if (CheckGlobalValSummaryPresenceOnly) { 5570 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5571 SeenGlobalValSummary = true; 5572 // No need to parse the rest since we found the summary. 5573 return std::error_code(); 5574 } 5575 if (Stream.SkipBlock()) 5576 return error("Invalid record"); 5577 continue; 5578 } 5579 switch (Entry.ID) { 5580 default: // Skip unknown content. 5581 if (Stream.SkipBlock()) 5582 return error("Invalid record"); 5583 break; 5584 case bitc::BLOCKINFO_BLOCK_ID: 5585 // Need to parse these to get abbrev ids (e.g. for VST) 5586 if (Stream.ReadBlockInfoBlock()) 5587 return error("Malformed block"); 5588 break; 5589 case bitc::VALUE_SYMTAB_BLOCK_ID: 5590 // Should have been parsed earlier via VSTOffset, unless there 5591 // is no summary section. 5592 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5593 !SeenGlobalValSummary) && 5594 "Expected early VST parse via VSTOffset record"); 5595 if (Stream.SkipBlock()) 5596 return error("Invalid record"); 5597 break; 5598 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5599 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5600 assert(!SeenValueSymbolTable && 5601 "Already read VST when parsing summary block?"); 5602 if (std::error_code EC = 5603 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5604 return EC; 5605 SeenValueSymbolTable = true; 5606 SeenGlobalValSummary = true; 5607 if (IsLazy) { 5608 // Lazy parsing of summary info, skip it. 5609 if (Stream.SkipBlock()) 5610 return error("Invalid record"); 5611 } else if (std::error_code EC = parseEntireSummary()) 5612 return EC; 5613 break; 5614 case bitc::MODULE_STRTAB_BLOCK_ID: 5615 if (std::error_code EC = parseModuleStringTable()) 5616 return EC; 5617 break; 5618 } 5619 continue; 5620 5621 case BitstreamEntry::Record: 5622 // Once we find the last record of interest, skip the rest. 5623 if (VSTOffset > 0) 5624 Stream.skipRecord(Entry.ID); 5625 else { 5626 Record.clear(); 5627 auto BitCode = Stream.readRecord(Entry.ID, Record); 5628 switch (BitCode) { 5629 default: 5630 break; // Default behavior, ignore unknown content. 5631 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5632 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5633 SmallString<128> ValueName; 5634 if (convertToString(Record, 0, ValueName)) 5635 return error("Invalid record"); 5636 SourceFileName = ValueName.c_str(); 5637 break; 5638 } 5639 /// MODULE_CODE_VSTOFFSET: [offset] 5640 case bitc::MODULE_CODE_VSTOFFSET: 5641 if (Record.size() < 1) 5642 return error("Invalid record"); 5643 VSTOffset = Record[0]; 5644 break; 5645 // GLOBALVAR: [pointer type, isconst, initid, 5646 // linkage, alignment, section, visibility, threadlocal, 5647 // unnamed_addr, externally_initialized, dllstorageclass, 5648 // comdat] 5649 case bitc::MODULE_CODE_GLOBALVAR: { 5650 if (Record.size() < 6) 5651 return error("Invalid record"); 5652 uint64_t RawLinkage = Record[3]; 5653 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5654 ValueIdToLinkageMap[ValueId++] = Linkage; 5655 break; 5656 } 5657 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5658 // alignment, section, visibility, gc, unnamed_addr, 5659 // prologuedata, dllstorageclass, comdat, prefixdata] 5660 case bitc::MODULE_CODE_FUNCTION: { 5661 if (Record.size() < 8) 5662 return error("Invalid record"); 5663 uint64_t RawLinkage = Record[3]; 5664 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5665 ValueIdToLinkageMap[ValueId++] = Linkage; 5666 break; 5667 } 5668 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5669 // dllstorageclass] 5670 case bitc::MODULE_CODE_ALIAS: { 5671 if (Record.size() < 6) 5672 return error("Invalid record"); 5673 uint64_t RawLinkage = Record[3]; 5674 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5675 ValueIdToLinkageMap[ValueId++] = Linkage; 5676 break; 5677 } 5678 } 5679 } 5680 continue; 5681 } 5682 } 5683 } 5684 5685 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5686 // objects in the index. 5687 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5688 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5689 return error("Invalid record"); 5690 5691 SmallVector<uint64_t, 64> Record; 5692 5693 bool Combined = false; 5694 while (1) { 5695 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5696 5697 switch (Entry.Kind) { 5698 case BitstreamEntry::SubBlock: // Handled for us already. 5699 case BitstreamEntry::Error: 5700 return error("Malformed block"); 5701 case BitstreamEntry::EndBlock: 5702 // For a per-module index, remove any entries that still have empty 5703 // summaries. The VST parsing creates entries eagerly for all symbols, 5704 // but not all have associated summaries (e.g. it doesn't know how to 5705 // distinguish between VST_CODE_ENTRY for function declarations vs global 5706 // variables with initializers that end up with a summary). Remove those 5707 // entries now so that we don't need to rely on the combined index merger 5708 // to clean them up (especially since that may not run for the first 5709 // module's index if we merge into that). 5710 if (!Combined) 5711 TheIndex->removeEmptySummaryEntries(); 5712 return std::error_code(); 5713 case BitstreamEntry::Record: 5714 // The interesting case. 5715 break; 5716 } 5717 5718 // Read a record. The record format depends on whether this 5719 // is a per-module index or a combined index file. In the per-module 5720 // case the records contain the associated value's ID for correlation 5721 // with VST entries. In the combined index the correlation is done 5722 // via the bitcode offset of the summary records (which were saved 5723 // in the combined index VST entries). The records also contain 5724 // information used for ThinLTO renaming and importing. 5725 Record.clear(); 5726 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5727 auto BitCode = Stream.readRecord(Entry.ID, Record); 5728 switch (BitCode) { 5729 default: // Default behavior: ignore. 5730 break; 5731 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5732 // n x (valueid, callsitecount)] 5733 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5734 // numrefs x valueid, 5735 // n x (valueid, callsitecount, profilecount)] 5736 case bitc::FS_PERMODULE: 5737 case bitc::FS_PERMODULE_PROFILE: { 5738 unsigned ValueID = Record[0]; 5739 uint64_t RawLinkage = Record[1]; 5740 unsigned InstCount = Record[2]; 5741 unsigned NumRefs = Record[3]; 5742 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5743 getDecodedLinkage(RawLinkage), InstCount); 5744 // The module path string ref set in the summary must be owned by the 5745 // index's module string table. Since we don't have a module path 5746 // string table section in the per-module index, we create a single 5747 // module path string table entry with an empty (0) ID to take 5748 // ownership. 5749 FS->setModulePath( 5750 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5751 static int RefListStartIndex = 4; 5752 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5753 assert(Record.size() >= RefListStartIndex + NumRefs && 5754 "Record size inconsistent with number of references"); 5755 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5756 unsigned RefValueId = Record[I]; 5757 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5758 FS->addRefEdge(RefGUID); 5759 } 5760 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5761 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5762 ++I) { 5763 unsigned CalleeValueId = Record[I]; 5764 unsigned CallsiteCount = Record[++I]; 5765 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5766 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5767 FS->addCallGraphEdge(CalleeGUID, 5768 CalleeInfo(CallsiteCount, ProfileCount)); 5769 } 5770 uint64_t GUID = getGUIDFromValueId(ValueID); 5771 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5772 assert(InfoList != TheIndex->end() && 5773 "Expected VST parse to create GlobalValueInfo entry"); 5774 assert(InfoList->second.size() == 1 && 5775 "Expected a single GlobalValueInfo per GUID in module"); 5776 auto &Info = InfoList->second[0]; 5777 assert(!Info->summary() && "Expected a single summary per VST entry"); 5778 Info->setSummary(std::move(FS)); 5779 break; 5780 } 5781 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5782 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5783 unsigned ValueID = Record[0]; 5784 uint64_t RawLinkage = Record[1]; 5785 std::unique_ptr<GlobalVarSummary> FS = 5786 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5787 FS->setModulePath( 5788 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5789 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5790 unsigned RefValueId = Record[I]; 5791 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5792 FS->addRefEdge(RefGUID); 5793 } 5794 uint64_t GUID = getGUIDFromValueId(ValueID); 5795 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5796 assert(InfoList != TheIndex->end() && 5797 "Expected VST parse to create GlobalValueInfo entry"); 5798 assert(InfoList->second.size() == 1 && 5799 "Expected a single GlobalValueInfo per GUID in module"); 5800 auto &Info = InfoList->second[0]; 5801 assert(!Info->summary() && "Expected a single summary per VST entry"); 5802 Info->setSummary(std::move(FS)); 5803 break; 5804 } 5805 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5806 // n x (valueid, callsitecount)] 5807 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5808 // numrefs x valueid, 5809 // n x (valueid, callsitecount, profilecount)] 5810 case bitc::FS_COMBINED: 5811 case bitc::FS_COMBINED_PROFILE: { 5812 uint64_t ModuleId = Record[0]; 5813 uint64_t RawLinkage = Record[1]; 5814 unsigned InstCount = Record[2]; 5815 unsigned NumRefs = Record[3]; 5816 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5817 getDecodedLinkage(RawLinkage), InstCount); 5818 FS->setModulePath(ModuleIdMap[ModuleId]); 5819 static int RefListStartIndex = 4; 5820 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5821 assert(Record.size() >= RefListStartIndex + NumRefs && 5822 "Record size inconsistent with number of references"); 5823 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5824 unsigned RefValueId = Record[I]; 5825 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5826 FS->addRefEdge(RefGUID); 5827 } 5828 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5829 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5830 ++I) { 5831 unsigned CalleeValueId = Record[I]; 5832 unsigned CallsiteCount = Record[++I]; 5833 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5834 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5835 FS->addCallGraphEdge(CalleeGUID, 5836 CalleeInfo(CallsiteCount, ProfileCount)); 5837 } 5838 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5839 assert(!Info->summary() && "Expected a single summary per VST entry"); 5840 Info->setSummary(std::move(FS)); 5841 Combined = true; 5842 break; 5843 } 5844 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5845 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5846 uint64_t ModuleId = Record[0]; 5847 uint64_t RawLinkage = Record[1]; 5848 std::unique_ptr<GlobalVarSummary> FS = 5849 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5850 FS->setModulePath(ModuleIdMap[ModuleId]); 5851 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5852 unsigned RefValueId = Record[I]; 5853 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5854 FS->addRefEdge(RefGUID); 5855 } 5856 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5857 assert(!Info->summary() && "Expected a single summary per VST entry"); 5858 Info->setSummary(std::move(FS)); 5859 Combined = true; 5860 break; 5861 } 5862 } 5863 } 5864 llvm_unreachable("Exit infinite loop"); 5865 } 5866 5867 // Parse the module string table block into the Index. 5868 // This populates the ModulePathStringTable map in the index. 5869 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5870 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5871 return error("Invalid record"); 5872 5873 SmallVector<uint64_t, 64> Record; 5874 5875 SmallString<128> ModulePath; 5876 while (1) { 5877 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5878 5879 switch (Entry.Kind) { 5880 case BitstreamEntry::SubBlock: // Handled for us already. 5881 case BitstreamEntry::Error: 5882 return error("Malformed block"); 5883 case BitstreamEntry::EndBlock: 5884 return std::error_code(); 5885 case BitstreamEntry::Record: 5886 // The interesting case. 5887 break; 5888 } 5889 5890 Record.clear(); 5891 switch (Stream.readRecord(Entry.ID, Record)) { 5892 default: // Default behavior: ignore. 5893 break; 5894 case bitc::MST_CODE_ENTRY: { 5895 // MST_ENTRY: [modid, namechar x N] 5896 if (convertToString(Record, 1, ModulePath)) 5897 return error("Invalid record"); 5898 uint64_t ModuleId = Record[0]; 5899 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5900 ModuleIdMap[ModuleId] = ModulePathInMap; 5901 ModulePath.clear(); 5902 break; 5903 } 5904 } 5905 } 5906 llvm_unreachable("Exit infinite loop"); 5907 } 5908 5909 // Parse the function info index from the bitcode streamer into the given index. 5910 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5911 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5912 TheIndex = I; 5913 5914 if (std::error_code EC = initStream(std::move(Streamer))) 5915 return EC; 5916 5917 // Sniff for the signature. 5918 if (!hasValidBitcodeHeader(Stream)) 5919 return error("Invalid bitcode signature"); 5920 5921 // We expect a number of well-defined blocks, though we don't necessarily 5922 // need to understand them all. 5923 while (1) { 5924 if (Stream.AtEndOfStream()) { 5925 // We didn't really read a proper Module block. 5926 return error("Malformed block"); 5927 } 5928 5929 BitstreamEntry Entry = 5930 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5931 5932 if (Entry.Kind != BitstreamEntry::SubBlock) 5933 return error("Malformed block"); 5934 5935 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5936 // building the function summary index. 5937 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5938 return parseModule(); 5939 5940 if (Stream.SkipBlock()) 5941 return error("Invalid record"); 5942 } 5943 } 5944 5945 // Parse the summary information at the given offset in the buffer into 5946 // the index. Used to support lazy parsing of summaries from the 5947 // combined index during importing. 5948 // TODO: This function is not yet complete as it won't have a consumer 5949 // until ThinLTO function importing is added. 5950 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 5951 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 5952 size_t SummaryOffset) { 5953 TheIndex = I; 5954 5955 if (std::error_code EC = initStream(std::move(Streamer))) 5956 return EC; 5957 5958 // Sniff for the signature. 5959 if (!hasValidBitcodeHeader(Stream)) 5960 return error("Invalid bitcode signature"); 5961 5962 Stream.JumpToBit(SummaryOffset); 5963 5964 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5965 5966 switch (Entry.Kind) { 5967 default: 5968 return error("Malformed block"); 5969 case BitstreamEntry::Record: 5970 // The expected case. 5971 break; 5972 } 5973 5974 // TODO: Read a record. This interface will be completed when ThinLTO 5975 // importing is added so that it can be tested. 5976 SmallVector<uint64_t, 64> Record; 5977 switch (Stream.readRecord(Entry.ID, Record)) { 5978 case bitc::FS_COMBINED: 5979 case bitc::FS_COMBINED_PROFILE: 5980 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 5981 default: 5982 return error("Invalid record"); 5983 } 5984 5985 return std::error_code(); 5986 } 5987 5988 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 5989 std::unique_ptr<DataStreamer> Streamer) { 5990 if (Streamer) 5991 return initLazyStream(std::move(Streamer)); 5992 return initStreamFromBuffer(); 5993 } 5994 5995 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 5996 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5997 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5998 5999 if (Buffer->getBufferSize() & 3) 6000 return error("Invalid bitcode signature"); 6001 6002 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6003 // The magic number is 0x0B17C0DE stored in little endian. 6004 if (isBitcodeWrapper(BufPtr, BufEnd)) 6005 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6006 return error("Invalid bitcode wrapper header"); 6007 6008 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6009 Stream.init(&*StreamFile); 6010 6011 return std::error_code(); 6012 } 6013 6014 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6015 std::unique_ptr<DataStreamer> Streamer) { 6016 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6017 // see it. 6018 auto OwnedBytes = 6019 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6020 StreamingMemoryObject &Bytes = *OwnedBytes; 6021 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6022 Stream.init(&*StreamFile); 6023 6024 unsigned char buf[16]; 6025 if (Bytes.readBytes(buf, 16, 0) != 16) 6026 return error("Invalid bitcode signature"); 6027 6028 if (!isBitcode(buf, buf + 16)) 6029 return error("Invalid bitcode signature"); 6030 6031 if (isBitcodeWrapper(buf, buf + 4)) { 6032 const unsigned char *bitcodeStart = buf; 6033 const unsigned char *bitcodeEnd = buf + 16; 6034 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6035 Bytes.dropLeadingBytes(bitcodeStart - buf); 6036 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6037 } 6038 return std::error_code(); 6039 } 6040 6041 namespace { 6042 class BitcodeErrorCategoryType : public std::error_category { 6043 const char *name() const LLVM_NOEXCEPT override { 6044 return "llvm.bitcode"; 6045 } 6046 std::string message(int IE) const override { 6047 BitcodeError E = static_cast<BitcodeError>(IE); 6048 switch (E) { 6049 case BitcodeError::InvalidBitcodeSignature: 6050 return "Invalid bitcode signature"; 6051 case BitcodeError::CorruptedBitcode: 6052 return "Corrupted bitcode"; 6053 } 6054 llvm_unreachable("Unknown error type!"); 6055 } 6056 }; 6057 } // end anonymous namespace 6058 6059 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6060 6061 const std::error_category &llvm::BitcodeErrorCategory() { 6062 return *ErrorCategory; 6063 } 6064 6065 //===----------------------------------------------------------------------===// 6066 // External interface 6067 //===----------------------------------------------------------------------===// 6068 6069 static ErrorOr<std::unique_ptr<Module>> 6070 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6071 BitcodeReader *R, LLVMContext &Context, 6072 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6073 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6074 M->setMaterializer(R); 6075 6076 auto cleanupOnError = [&](std::error_code EC) { 6077 R->releaseBuffer(); // Never take ownership on error. 6078 return EC; 6079 }; 6080 6081 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6082 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6083 ShouldLazyLoadMetadata)) 6084 return cleanupOnError(EC); 6085 6086 if (MaterializeAll) { 6087 // Read in the entire module, and destroy the BitcodeReader. 6088 if (std::error_code EC = M->materializeAll()) 6089 return cleanupOnError(EC); 6090 } else { 6091 // Resolve forward references from blockaddresses. 6092 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6093 return cleanupOnError(EC); 6094 } 6095 return std::move(M); 6096 } 6097 6098 /// \brief Get a lazy one-at-time loading module from bitcode. 6099 /// 6100 /// This isn't always used in a lazy context. In particular, it's also used by 6101 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6102 /// in forward-referenced functions from block address references. 6103 /// 6104 /// \param[in] MaterializeAll Set to \c true if we should materialize 6105 /// everything. 6106 static ErrorOr<std::unique_ptr<Module>> 6107 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6108 LLVMContext &Context, bool MaterializeAll, 6109 bool ShouldLazyLoadMetadata = false) { 6110 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6111 6112 ErrorOr<std::unique_ptr<Module>> Ret = 6113 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6114 MaterializeAll, ShouldLazyLoadMetadata); 6115 if (!Ret) 6116 return Ret; 6117 6118 Buffer.release(); // The BitcodeReader owns it now. 6119 return Ret; 6120 } 6121 6122 ErrorOr<std::unique_ptr<Module>> 6123 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6124 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6125 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6126 ShouldLazyLoadMetadata); 6127 } 6128 6129 ErrorOr<std::unique_ptr<Module>> 6130 llvm::getStreamedBitcodeModule(StringRef Name, 6131 std::unique_ptr<DataStreamer> Streamer, 6132 LLVMContext &Context) { 6133 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6134 BitcodeReader *R = new BitcodeReader(Context); 6135 6136 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6137 false); 6138 } 6139 6140 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6141 LLVMContext &Context) { 6142 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6143 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6144 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6145 // written. We must defer until the Module has been fully materialized. 6146 } 6147 6148 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6149 LLVMContext &Context) { 6150 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6151 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6152 ErrorOr<std::string> Triple = R->parseTriple(); 6153 if (Triple.getError()) 6154 return ""; 6155 return Triple.get(); 6156 } 6157 6158 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6159 LLVMContext &Context) { 6160 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6161 BitcodeReader R(Buf.release(), Context); 6162 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6163 if (ProducerString.getError()) 6164 return ""; 6165 return ProducerString.get(); 6166 } 6167 6168 // Parse the specified bitcode buffer, returning the function info index. 6169 // If IsLazy is false, parse the entire function summary into 6170 // the index. Otherwise skip the function summary section, and only create 6171 // an index object with a map from function name to function summary offset. 6172 // The index is used to perform lazy function summary reading later. 6173 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6174 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6175 DiagnosticHandlerFunction DiagnosticHandler, 6176 bool IsLazy) { 6177 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6178 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6179 6180 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6181 6182 auto cleanupOnError = [&](std::error_code EC) { 6183 R.releaseBuffer(); // Never take ownership on error. 6184 return EC; 6185 }; 6186 6187 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6188 return cleanupOnError(EC); 6189 6190 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6191 return std::move(Index); 6192 } 6193 6194 // Check if the given bitcode buffer contains a global value summary block. 6195 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6196 DiagnosticHandlerFunction DiagnosticHandler) { 6197 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6198 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6199 6200 auto cleanupOnError = [&](std::error_code EC) { 6201 R.releaseBuffer(); // Never take ownership on error. 6202 return false; 6203 }; 6204 6205 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6206 return cleanupOnError(EC); 6207 6208 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6209 return R.foundGlobalValSummary(); 6210 } 6211 6212 // This method supports lazy reading of summary data from the combined 6213 // index during ThinLTO function importing. When reading the combined index 6214 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6215 // Then this method is called for each value considered for importing, 6216 // to parse the summary information for the given value name into 6217 // the index. 6218 std::error_code llvm::readGlobalValueSummary( 6219 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6220 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6221 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6222 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6223 6224 auto cleanupOnError = [&](std::error_code EC) { 6225 R.releaseBuffer(); // Never take ownership on error. 6226 return EC; 6227 }; 6228 6229 // Lookup the given value name in the GlobalValueMap, which may 6230 // contain a list of global value infos in the case of a COMDAT. Walk through 6231 // and parse each summary info at the summary offset 6232 // recorded when parsing the value symbol table. 6233 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6234 size_t SummaryOffset = FI->bitcodeIndex(); 6235 if (std::error_code EC = 6236 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6237 return cleanupOnError(EC); 6238 } 6239 6240 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6241 return std::error_code(); 6242 } 6243