1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code MaterializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void Dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 405 return ::Error(DiagnosticHandler, make_error_code(E), Message); 406 } 407 408 std::error_code BitcodeReader::Error(const Twine &Message) { 409 return ::Error(DiagnosticHandler, 410 make_error_code(BitcodeError::CorruptedBitcode), Message); 411 } 412 413 std::error_code BitcodeReader::Error(BitcodeError E) { 414 return ::Error(DiagnosticHandler, make_error_code(E)); 415 } 416 417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 418 LLVMContext &C) { 419 if (F) 420 return F; 421 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 422 } 423 424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 425 DiagnosticHandlerFunction DiagnosticHandler) 426 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 427 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 428 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 429 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 430 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 435 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 436 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 437 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 438 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return Error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::FreeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// ConvertToString - Convert a string from a record into an std::string, return 496 /// true on failure. 497 template<typename StrTy> 498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 GetDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int GetDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 611 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 612 bool IsFP = Ty->isFPOrFPVectorTy(); 613 // BinOps are only valid for int/fp or vector of int/fp types 614 if (!IsFP && !Ty->isIntOrIntVectorTy()) 615 return -1; 616 617 switch (Val) { 618 default: 619 return -1; 620 case bitc::BINOP_ADD: 621 return IsFP ? Instruction::FAdd : Instruction::Add; 622 case bitc::BINOP_SUB: 623 return IsFP ? Instruction::FSub : Instruction::Sub; 624 case bitc::BINOP_MUL: 625 return IsFP ? Instruction::FMul : Instruction::Mul; 626 case bitc::BINOP_UDIV: 627 return IsFP ? -1 : Instruction::UDiv; 628 case bitc::BINOP_SDIV: 629 return IsFP ? Instruction::FDiv : Instruction::SDiv; 630 case bitc::BINOP_UREM: 631 return IsFP ? -1 : Instruction::URem; 632 case bitc::BINOP_SREM: 633 return IsFP ? Instruction::FRem : Instruction::SRem; 634 case bitc::BINOP_SHL: 635 return IsFP ? -1 : Instruction::Shl; 636 case bitc::BINOP_LSHR: 637 return IsFP ? -1 : Instruction::LShr; 638 case bitc::BINOP_ASHR: 639 return IsFP ? -1 : Instruction::AShr; 640 case bitc::BINOP_AND: 641 return IsFP ? -1 : Instruction::And; 642 case bitc::BINOP_OR: 643 return IsFP ? -1 : Instruction::Or; 644 case bitc::BINOP_XOR: 645 return IsFP ? -1 : Instruction::Xor; 646 } 647 } 648 649 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 650 switch (Val) { 651 default: return AtomicRMWInst::BAD_BINOP; 652 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 653 case bitc::RMW_ADD: return AtomicRMWInst::Add; 654 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 655 case bitc::RMW_AND: return AtomicRMWInst::And; 656 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 657 case bitc::RMW_OR: return AtomicRMWInst::Or; 658 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 659 case bitc::RMW_MAX: return AtomicRMWInst::Max; 660 case bitc::RMW_MIN: return AtomicRMWInst::Min; 661 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 662 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 663 } 664 } 665 666 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 667 switch (Val) { 668 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 669 case bitc::ORDERING_UNORDERED: return Unordered; 670 case bitc::ORDERING_MONOTONIC: return Monotonic; 671 case bitc::ORDERING_ACQUIRE: return Acquire; 672 case bitc::ORDERING_RELEASE: return Release; 673 case bitc::ORDERING_ACQREL: return AcquireRelease; 674 default: // Map unknown orderings to sequentially-consistent. 675 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 676 } 677 } 678 679 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 680 switch (Val) { 681 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 682 default: // Map unknown scopes to cross-thread. 683 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 684 } 685 } 686 687 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 688 switch (Val) { 689 default: // Map unknown selection kinds to any. 690 case bitc::COMDAT_SELECTION_KIND_ANY: 691 return Comdat::Any; 692 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 693 return Comdat::ExactMatch; 694 case bitc::COMDAT_SELECTION_KIND_LARGEST: 695 return Comdat::Largest; 696 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 697 return Comdat::NoDuplicates; 698 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 699 return Comdat::SameSize; 700 } 701 } 702 703 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 704 switch (Val) { 705 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 706 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 707 } 708 } 709 710 namespace llvm { 711 namespace { 712 /// @brief A class for maintaining the slot number definition 713 /// as a placeholder for the actual definition for forward constants defs. 714 class ConstantPlaceHolder : public ConstantExpr { 715 void operator=(const ConstantPlaceHolder &) = delete; 716 public: 717 // allocate space for exactly one operand 718 void *operator new(size_t s) { 719 return User::operator new(s, 1); 720 } 721 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 722 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 723 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 724 } 725 726 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 727 static bool classof(const Value *V) { 728 return isa<ConstantExpr>(V) && 729 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 730 } 731 732 733 /// Provide fast operand accessors 734 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 735 }; 736 } 737 738 // FIXME: can we inherit this from ConstantExpr? 739 template <> 740 struct OperandTraits<ConstantPlaceHolder> : 741 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 742 }; 743 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 744 } 745 746 747 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 748 if (Idx == size()) { 749 push_back(V); 750 return; 751 } 752 753 if (Idx >= size()) 754 resize(Idx+1); 755 756 WeakVH &OldV = ValuePtrs[Idx]; 757 if (!OldV) { 758 OldV = V; 759 return; 760 } 761 762 // Handle constants and non-constants (e.g. instrs) differently for 763 // efficiency. 764 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 765 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 766 OldV = V; 767 } else { 768 // If there was a forward reference to this value, replace it. 769 Value *PrevVal = OldV; 770 OldV->replaceAllUsesWith(V); 771 delete PrevVal; 772 } 773 } 774 775 776 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 777 Type *Ty) { 778 if (Idx >= size()) 779 resize(Idx + 1); 780 781 if (Value *V = ValuePtrs[Idx]) { 782 assert(Ty == V->getType() && "Type mismatch in constant table!"); 783 return cast<Constant>(V); 784 } 785 786 // Create and return a placeholder, which will later be RAUW'd. 787 Constant *C = new ConstantPlaceHolder(Ty, Context); 788 ValuePtrs[Idx] = C; 789 return C; 790 } 791 792 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 793 // Bail out for a clearly invalid value. This would make us call resize(0) 794 if (Idx == UINT_MAX) 795 return nullptr; 796 797 if (Idx >= size()) 798 resize(Idx + 1); 799 800 if (Value *V = ValuePtrs[Idx]) { 801 // If the types don't match, it's invalid. 802 if (Ty && Ty != V->getType()) 803 return nullptr; 804 return V; 805 } 806 807 // No type specified, must be invalid reference. 808 if (!Ty) return nullptr; 809 810 // Create and return a placeholder, which will later be RAUW'd. 811 Value *V = new Argument(Ty); 812 ValuePtrs[Idx] = V; 813 return V; 814 } 815 816 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 817 /// resolves any forward references. The idea behind this is that we sometimes 818 /// get constants (such as large arrays) which reference *many* forward ref 819 /// constants. Replacing each of these causes a lot of thrashing when 820 /// building/reuniquing the constant. Instead of doing this, we look at all the 821 /// uses and rewrite all the place holders at once for any constant that uses 822 /// a placeholder. 823 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 824 // Sort the values by-pointer so that they are efficient to look up with a 825 // binary search. 826 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 827 828 SmallVector<Constant*, 64> NewOps; 829 830 while (!ResolveConstants.empty()) { 831 Value *RealVal = operator[](ResolveConstants.back().second); 832 Constant *Placeholder = ResolveConstants.back().first; 833 ResolveConstants.pop_back(); 834 835 // Loop over all users of the placeholder, updating them to reference the 836 // new value. If they reference more than one placeholder, update them all 837 // at once. 838 while (!Placeholder->use_empty()) { 839 auto UI = Placeholder->user_begin(); 840 User *U = *UI; 841 842 // If the using object isn't uniqued, just update the operands. This 843 // handles instructions and initializers for global variables. 844 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 845 UI.getUse().set(RealVal); 846 continue; 847 } 848 849 // Otherwise, we have a constant that uses the placeholder. Replace that 850 // constant with a new constant that has *all* placeholder uses updated. 851 Constant *UserC = cast<Constant>(U); 852 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 853 I != E; ++I) { 854 Value *NewOp; 855 if (!isa<ConstantPlaceHolder>(*I)) { 856 // Not a placeholder reference. 857 NewOp = *I; 858 } else if (*I == Placeholder) { 859 // Common case is that it just references this one placeholder. 860 NewOp = RealVal; 861 } else { 862 // Otherwise, look up the placeholder in ResolveConstants. 863 ResolveConstantsTy::iterator It = 864 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 865 std::pair<Constant*, unsigned>(cast<Constant>(*I), 866 0)); 867 assert(It != ResolveConstants.end() && It->first == *I); 868 NewOp = operator[](It->second); 869 } 870 871 NewOps.push_back(cast<Constant>(NewOp)); 872 } 873 874 // Make the new constant. 875 Constant *NewC; 876 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 877 NewC = ConstantArray::get(UserCA->getType(), NewOps); 878 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 879 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 880 } else if (isa<ConstantVector>(UserC)) { 881 NewC = ConstantVector::get(NewOps); 882 } else { 883 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 884 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 885 } 886 887 UserC->replaceAllUsesWith(NewC); 888 UserC->destroyConstant(); 889 NewOps.clear(); 890 } 891 892 // Update all ValueHandles, they should be the only users at this point. 893 Placeholder->replaceAllUsesWith(RealVal); 894 delete Placeholder; 895 } 896 } 897 898 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 899 if (Idx == size()) { 900 push_back(MD); 901 return; 902 } 903 904 if (Idx >= size()) 905 resize(Idx+1); 906 907 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 908 if (!OldMD) { 909 OldMD.reset(MD); 910 return; 911 } 912 913 // If there was a forward reference to this value, replace it. 914 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 915 PrevMD->replaceAllUsesWith(MD); 916 --NumFwdRefs; 917 } 918 919 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 920 if (Idx >= size()) 921 resize(Idx + 1); 922 923 if (Metadata *MD = MDValuePtrs[Idx]) 924 return MD; 925 926 // Track forward refs to be resolved later. 927 if (AnyFwdRefs) { 928 MinFwdRef = std::min(MinFwdRef, Idx); 929 MaxFwdRef = std::max(MaxFwdRef, Idx); 930 } else { 931 AnyFwdRefs = true; 932 MinFwdRef = MaxFwdRef = Idx; 933 } 934 ++NumFwdRefs; 935 936 // Create and return a placeholder, which will later be RAUW'd. 937 Metadata *MD = MDNode::getTemporary(Context, None).release(); 938 MDValuePtrs[Idx].reset(MD); 939 return MD; 940 } 941 942 void BitcodeReaderMDValueList::tryToResolveCycles() { 943 if (!AnyFwdRefs) 944 // Nothing to do. 945 return; 946 947 if (NumFwdRefs) 948 // Still forward references... can't resolve cycles. 949 return; 950 951 // Resolve any cycles. 952 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 953 auto &MD = MDValuePtrs[I]; 954 auto *N = dyn_cast_or_null<MDNode>(MD); 955 if (!N) 956 continue; 957 958 assert(!N->isTemporary() && "Unexpected forward reference"); 959 N->resolveCycles(); 960 } 961 962 // Make sure we return early again until there's another forward ref. 963 AnyFwdRefs = false; 964 } 965 966 Type *BitcodeReader::getTypeByID(unsigned ID) { 967 // The type table size is always specified correctly. 968 if (ID >= TypeList.size()) 969 return nullptr; 970 971 if (Type *Ty = TypeList[ID]) 972 return Ty; 973 974 // If we have a forward reference, the only possible case is when it is to a 975 // named struct. Just create a placeholder for now. 976 return TypeList[ID] = createIdentifiedStructType(Context); 977 } 978 979 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 980 StringRef Name) { 981 auto *Ret = StructType::create(Context, Name); 982 IdentifiedStructTypes.push_back(Ret); 983 return Ret; 984 } 985 986 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 987 auto *Ret = StructType::create(Context); 988 IdentifiedStructTypes.push_back(Ret); 989 return Ret; 990 } 991 992 993 //===----------------------------------------------------------------------===// 994 // Functions for parsing blocks from the bitcode file 995 //===----------------------------------------------------------------------===// 996 997 998 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 999 /// been decoded from the given integer. This function must stay in sync with 1000 /// 'encodeLLVMAttributesForBitcode'. 1001 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1002 uint64_t EncodedAttrs) { 1003 // FIXME: Remove in 4.0. 1004 1005 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1006 // the bits above 31 down by 11 bits. 1007 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1008 assert((!Alignment || isPowerOf2_32(Alignment)) && 1009 "Alignment must be a power of two."); 1010 1011 if (Alignment) 1012 B.addAlignmentAttr(Alignment); 1013 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1014 (EncodedAttrs & 0xffff)); 1015 } 1016 1017 std::error_code BitcodeReader::ParseAttributeBlock() { 1018 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1019 return Error("Invalid record"); 1020 1021 if (!MAttributes.empty()) 1022 return Error("Invalid multiple blocks"); 1023 1024 SmallVector<uint64_t, 64> Record; 1025 1026 SmallVector<AttributeSet, 8> Attrs; 1027 1028 // Read all the records. 1029 while (1) { 1030 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1031 1032 switch (Entry.Kind) { 1033 case BitstreamEntry::SubBlock: // Handled for us already. 1034 case BitstreamEntry::Error: 1035 return Error("Malformed block"); 1036 case BitstreamEntry::EndBlock: 1037 return std::error_code(); 1038 case BitstreamEntry::Record: 1039 // The interesting case. 1040 break; 1041 } 1042 1043 // Read a record. 1044 Record.clear(); 1045 switch (Stream.readRecord(Entry.ID, Record)) { 1046 default: // Default behavior: ignore. 1047 break; 1048 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1049 // FIXME: Remove in 4.0. 1050 if (Record.size() & 1) 1051 return Error("Invalid record"); 1052 1053 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1054 AttrBuilder B; 1055 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1056 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1057 } 1058 1059 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1060 Attrs.clear(); 1061 break; 1062 } 1063 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1064 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1065 Attrs.push_back(MAttributeGroups[Record[i]]); 1066 1067 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1068 Attrs.clear(); 1069 break; 1070 } 1071 } 1072 } 1073 } 1074 1075 // Returns Attribute::None on unrecognized codes. 1076 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1077 switch (Code) { 1078 default: 1079 return Attribute::None; 1080 case bitc::ATTR_KIND_ALIGNMENT: 1081 return Attribute::Alignment; 1082 case bitc::ATTR_KIND_ALWAYS_INLINE: 1083 return Attribute::AlwaysInline; 1084 case bitc::ATTR_KIND_BUILTIN: 1085 return Attribute::Builtin; 1086 case bitc::ATTR_KIND_BY_VAL: 1087 return Attribute::ByVal; 1088 case bitc::ATTR_KIND_IN_ALLOCA: 1089 return Attribute::InAlloca; 1090 case bitc::ATTR_KIND_COLD: 1091 return Attribute::Cold; 1092 case bitc::ATTR_KIND_INLINE_HINT: 1093 return Attribute::InlineHint; 1094 case bitc::ATTR_KIND_IN_REG: 1095 return Attribute::InReg; 1096 case bitc::ATTR_KIND_JUMP_TABLE: 1097 return Attribute::JumpTable; 1098 case bitc::ATTR_KIND_MIN_SIZE: 1099 return Attribute::MinSize; 1100 case bitc::ATTR_KIND_NAKED: 1101 return Attribute::Naked; 1102 case bitc::ATTR_KIND_NEST: 1103 return Attribute::Nest; 1104 case bitc::ATTR_KIND_NO_ALIAS: 1105 return Attribute::NoAlias; 1106 case bitc::ATTR_KIND_NO_BUILTIN: 1107 return Attribute::NoBuiltin; 1108 case bitc::ATTR_KIND_NO_CAPTURE: 1109 return Attribute::NoCapture; 1110 case bitc::ATTR_KIND_NO_DUPLICATE: 1111 return Attribute::NoDuplicate; 1112 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1113 return Attribute::NoImplicitFloat; 1114 case bitc::ATTR_KIND_NO_INLINE: 1115 return Attribute::NoInline; 1116 case bitc::ATTR_KIND_NON_LAZY_BIND: 1117 return Attribute::NonLazyBind; 1118 case bitc::ATTR_KIND_NON_NULL: 1119 return Attribute::NonNull; 1120 case bitc::ATTR_KIND_DEREFERENCEABLE: 1121 return Attribute::Dereferenceable; 1122 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1123 return Attribute::DereferenceableOrNull; 1124 case bitc::ATTR_KIND_NO_RED_ZONE: 1125 return Attribute::NoRedZone; 1126 case bitc::ATTR_KIND_NO_RETURN: 1127 return Attribute::NoReturn; 1128 case bitc::ATTR_KIND_NO_UNWIND: 1129 return Attribute::NoUnwind; 1130 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1131 return Attribute::OptimizeForSize; 1132 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1133 return Attribute::OptimizeNone; 1134 case bitc::ATTR_KIND_READ_NONE: 1135 return Attribute::ReadNone; 1136 case bitc::ATTR_KIND_READ_ONLY: 1137 return Attribute::ReadOnly; 1138 case bitc::ATTR_KIND_RETURNED: 1139 return Attribute::Returned; 1140 case bitc::ATTR_KIND_RETURNS_TWICE: 1141 return Attribute::ReturnsTwice; 1142 case bitc::ATTR_KIND_S_EXT: 1143 return Attribute::SExt; 1144 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1145 return Attribute::StackAlignment; 1146 case bitc::ATTR_KIND_STACK_PROTECT: 1147 return Attribute::StackProtect; 1148 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1149 return Attribute::StackProtectReq; 1150 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1151 return Attribute::StackProtectStrong; 1152 case bitc::ATTR_KIND_STRUCT_RET: 1153 return Attribute::StructRet; 1154 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1155 return Attribute::SanitizeAddress; 1156 case bitc::ATTR_KIND_SANITIZE_THREAD: 1157 return Attribute::SanitizeThread; 1158 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1159 return Attribute::SanitizeMemory; 1160 case bitc::ATTR_KIND_UW_TABLE: 1161 return Attribute::UWTable; 1162 case bitc::ATTR_KIND_Z_EXT: 1163 return Attribute::ZExt; 1164 } 1165 } 1166 1167 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1168 unsigned &Alignment) { 1169 // Note: Alignment in bitcode files is incremented by 1, so that zero 1170 // can be used for default alignment. 1171 if (Exponent > Value::MaxAlignmentExponent + 1) 1172 return Error("Invalid alignment value"); 1173 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1174 return std::error_code(); 1175 } 1176 1177 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1178 Attribute::AttrKind *Kind) { 1179 *Kind = GetAttrFromCode(Code); 1180 if (*Kind == Attribute::None) 1181 return Error(BitcodeError::CorruptedBitcode, 1182 "Unknown attribute kind (" + Twine(Code) + ")"); 1183 return std::error_code(); 1184 } 1185 1186 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1187 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1188 return Error("Invalid record"); 1189 1190 if (!MAttributeGroups.empty()) 1191 return Error("Invalid multiple blocks"); 1192 1193 SmallVector<uint64_t, 64> Record; 1194 1195 // Read all the records. 1196 while (1) { 1197 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1198 1199 switch (Entry.Kind) { 1200 case BitstreamEntry::SubBlock: // Handled for us already. 1201 case BitstreamEntry::Error: 1202 return Error("Malformed block"); 1203 case BitstreamEntry::EndBlock: 1204 return std::error_code(); 1205 case BitstreamEntry::Record: 1206 // The interesting case. 1207 break; 1208 } 1209 1210 // Read a record. 1211 Record.clear(); 1212 switch (Stream.readRecord(Entry.ID, Record)) { 1213 default: // Default behavior: ignore. 1214 break; 1215 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1216 if (Record.size() < 3) 1217 return Error("Invalid record"); 1218 1219 uint64_t GrpID = Record[0]; 1220 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1221 1222 AttrBuilder B; 1223 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1224 if (Record[i] == 0) { // Enum attribute 1225 Attribute::AttrKind Kind; 1226 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1227 return EC; 1228 1229 B.addAttribute(Kind); 1230 } else if (Record[i] == 1) { // Integer attribute 1231 Attribute::AttrKind Kind; 1232 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1233 return EC; 1234 if (Kind == Attribute::Alignment) 1235 B.addAlignmentAttr(Record[++i]); 1236 else if (Kind == Attribute::StackAlignment) 1237 B.addStackAlignmentAttr(Record[++i]); 1238 else if (Kind == Attribute::Dereferenceable) 1239 B.addDereferenceableAttr(Record[++i]); 1240 else if (Kind == Attribute::DereferenceableOrNull) 1241 B.addDereferenceableOrNullAttr(Record[++i]); 1242 } else { // String attribute 1243 assert((Record[i] == 3 || Record[i] == 4) && 1244 "Invalid attribute group entry"); 1245 bool HasValue = (Record[i++] == 4); 1246 SmallString<64> KindStr; 1247 SmallString<64> ValStr; 1248 1249 while (Record[i] != 0 && i != e) 1250 KindStr += Record[i++]; 1251 assert(Record[i] == 0 && "Kind string not null terminated"); 1252 1253 if (HasValue) { 1254 // Has a value associated with it. 1255 ++i; // Skip the '0' that terminates the "kind" string. 1256 while (Record[i] != 0 && i != e) 1257 ValStr += Record[i++]; 1258 assert(Record[i] == 0 && "Value string not null terminated"); 1259 } 1260 1261 B.addAttribute(KindStr.str(), ValStr.str()); 1262 } 1263 } 1264 1265 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1266 break; 1267 } 1268 } 1269 } 1270 } 1271 1272 std::error_code BitcodeReader::ParseTypeTable() { 1273 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1274 return Error("Invalid record"); 1275 1276 return ParseTypeTableBody(); 1277 } 1278 1279 std::error_code BitcodeReader::ParseTypeTableBody() { 1280 if (!TypeList.empty()) 1281 return Error("Invalid multiple blocks"); 1282 1283 SmallVector<uint64_t, 64> Record; 1284 unsigned NumRecords = 0; 1285 1286 SmallString<64> TypeName; 1287 1288 // Read all the records for this type table. 1289 while (1) { 1290 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1291 1292 switch (Entry.Kind) { 1293 case BitstreamEntry::SubBlock: // Handled for us already. 1294 case BitstreamEntry::Error: 1295 return Error("Malformed block"); 1296 case BitstreamEntry::EndBlock: 1297 if (NumRecords != TypeList.size()) 1298 return Error("Malformed block"); 1299 return std::error_code(); 1300 case BitstreamEntry::Record: 1301 // The interesting case. 1302 break; 1303 } 1304 1305 // Read a record. 1306 Record.clear(); 1307 Type *ResultTy = nullptr; 1308 switch (Stream.readRecord(Entry.ID, Record)) { 1309 default: 1310 return Error("Invalid value"); 1311 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1312 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1313 // type list. This allows us to reserve space. 1314 if (Record.size() < 1) 1315 return Error("Invalid record"); 1316 TypeList.resize(Record[0]); 1317 continue; 1318 case bitc::TYPE_CODE_VOID: // VOID 1319 ResultTy = Type::getVoidTy(Context); 1320 break; 1321 case bitc::TYPE_CODE_HALF: // HALF 1322 ResultTy = Type::getHalfTy(Context); 1323 break; 1324 case bitc::TYPE_CODE_FLOAT: // FLOAT 1325 ResultTy = Type::getFloatTy(Context); 1326 break; 1327 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1328 ResultTy = Type::getDoubleTy(Context); 1329 break; 1330 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1331 ResultTy = Type::getX86_FP80Ty(Context); 1332 break; 1333 case bitc::TYPE_CODE_FP128: // FP128 1334 ResultTy = Type::getFP128Ty(Context); 1335 break; 1336 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1337 ResultTy = Type::getPPC_FP128Ty(Context); 1338 break; 1339 case bitc::TYPE_CODE_LABEL: // LABEL 1340 ResultTy = Type::getLabelTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_METADATA: // METADATA 1343 ResultTy = Type::getMetadataTy(Context); 1344 break; 1345 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1346 ResultTy = Type::getX86_MMXTy(Context); 1347 break; 1348 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1349 if (Record.size() < 1) 1350 return Error("Invalid record"); 1351 1352 uint64_t NumBits = Record[0]; 1353 if (NumBits < IntegerType::MIN_INT_BITS || 1354 NumBits > IntegerType::MAX_INT_BITS) 1355 return Error("Bitwidth for integer type out of range"); 1356 ResultTy = IntegerType::get(Context, NumBits); 1357 break; 1358 } 1359 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1360 // [pointee type, address space] 1361 if (Record.size() < 1) 1362 return Error("Invalid record"); 1363 unsigned AddressSpace = 0; 1364 if (Record.size() == 2) 1365 AddressSpace = Record[1]; 1366 ResultTy = getTypeByID(Record[0]); 1367 if (!ResultTy || 1368 !PointerType::isValidElementType(ResultTy)) 1369 return Error("Invalid type"); 1370 ResultTy = PointerType::get(ResultTy, AddressSpace); 1371 break; 1372 } 1373 case bitc::TYPE_CODE_FUNCTION_OLD: { 1374 // FIXME: attrid is dead, remove it in LLVM 4.0 1375 // FUNCTION: [vararg, attrid, retty, paramty x N] 1376 if (Record.size() < 3) 1377 return Error("Invalid record"); 1378 SmallVector<Type*, 8> ArgTys; 1379 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1380 if (Type *T = getTypeByID(Record[i])) 1381 ArgTys.push_back(T); 1382 else 1383 break; 1384 } 1385 1386 ResultTy = getTypeByID(Record[2]); 1387 if (!ResultTy || ArgTys.size() < Record.size()-3) 1388 return Error("Invalid type"); 1389 1390 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1391 break; 1392 } 1393 case bitc::TYPE_CODE_FUNCTION: { 1394 // FUNCTION: [vararg, retty, paramty x N] 1395 if (Record.size() < 2) 1396 return Error("Invalid record"); 1397 SmallVector<Type*, 8> ArgTys; 1398 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1399 if (Type *T = getTypeByID(Record[i])) 1400 ArgTys.push_back(T); 1401 else 1402 break; 1403 } 1404 1405 ResultTy = getTypeByID(Record[1]); 1406 if (!ResultTy || ArgTys.size() < Record.size()-2) 1407 return Error("Invalid type"); 1408 1409 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1410 break; 1411 } 1412 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1413 if (Record.size() < 1) 1414 return Error("Invalid record"); 1415 SmallVector<Type*, 8> EltTys; 1416 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1417 if (Type *T = getTypeByID(Record[i])) 1418 EltTys.push_back(T); 1419 else 1420 break; 1421 } 1422 if (EltTys.size() != Record.size()-1) 1423 return Error("Invalid type"); 1424 ResultTy = StructType::get(Context, EltTys, Record[0]); 1425 break; 1426 } 1427 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1428 if (ConvertToString(Record, 0, TypeName)) 1429 return Error("Invalid record"); 1430 continue; 1431 1432 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1433 if (Record.size() < 1) 1434 return Error("Invalid record"); 1435 1436 if (NumRecords >= TypeList.size()) 1437 return Error("Invalid TYPE table"); 1438 1439 // Check to see if this was forward referenced, if so fill in the temp. 1440 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1441 if (Res) { 1442 Res->setName(TypeName); 1443 TypeList[NumRecords] = nullptr; 1444 } else // Otherwise, create a new struct. 1445 Res = createIdentifiedStructType(Context, TypeName); 1446 TypeName.clear(); 1447 1448 SmallVector<Type*, 8> EltTys; 1449 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1450 if (Type *T = getTypeByID(Record[i])) 1451 EltTys.push_back(T); 1452 else 1453 break; 1454 } 1455 if (EltTys.size() != Record.size()-1) 1456 return Error("Invalid record"); 1457 Res->setBody(EltTys, Record[0]); 1458 ResultTy = Res; 1459 break; 1460 } 1461 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1462 if (Record.size() != 1) 1463 return Error("Invalid record"); 1464 1465 if (NumRecords >= TypeList.size()) 1466 return Error("Invalid TYPE table"); 1467 1468 // Check to see if this was forward referenced, if so fill in the temp. 1469 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1470 if (Res) { 1471 Res->setName(TypeName); 1472 TypeList[NumRecords] = nullptr; 1473 } else // Otherwise, create a new struct with no body. 1474 Res = createIdentifiedStructType(Context, TypeName); 1475 TypeName.clear(); 1476 ResultTy = Res; 1477 break; 1478 } 1479 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1480 if (Record.size() < 2) 1481 return Error("Invalid record"); 1482 ResultTy = getTypeByID(Record[1]); 1483 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1484 return Error("Invalid type"); 1485 ResultTy = ArrayType::get(ResultTy, Record[0]); 1486 break; 1487 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1488 if (Record.size() < 2) 1489 return Error("Invalid record"); 1490 ResultTy = getTypeByID(Record[1]); 1491 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1492 return Error("Invalid type"); 1493 ResultTy = VectorType::get(ResultTy, Record[0]); 1494 break; 1495 } 1496 1497 if (NumRecords >= TypeList.size()) 1498 return Error("Invalid TYPE table"); 1499 if (TypeList[NumRecords]) 1500 return Error( 1501 "Invalid TYPE table: Only named structs can be forward referenced"); 1502 assert(ResultTy && "Didn't read a type?"); 1503 TypeList[NumRecords++] = ResultTy; 1504 } 1505 } 1506 1507 std::error_code BitcodeReader::ParseValueSymbolTable() { 1508 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1509 return Error("Invalid record"); 1510 1511 SmallVector<uint64_t, 64> Record; 1512 1513 Triple TT(TheModule->getTargetTriple()); 1514 1515 // Read all the records for this value table. 1516 SmallString<128> ValueName; 1517 while (1) { 1518 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1519 1520 switch (Entry.Kind) { 1521 case BitstreamEntry::SubBlock: // Handled for us already. 1522 case BitstreamEntry::Error: 1523 return Error("Malformed block"); 1524 case BitstreamEntry::EndBlock: 1525 return std::error_code(); 1526 case BitstreamEntry::Record: 1527 // The interesting case. 1528 break; 1529 } 1530 1531 // Read a record. 1532 Record.clear(); 1533 switch (Stream.readRecord(Entry.ID, Record)) { 1534 default: // Default behavior: unknown type. 1535 break; 1536 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1537 if (ConvertToString(Record, 1, ValueName)) 1538 return Error("Invalid record"); 1539 unsigned ValueID = Record[0]; 1540 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1541 return Error("Invalid record"); 1542 Value *V = ValueList[ValueID]; 1543 1544 V->setName(StringRef(ValueName.data(), ValueName.size())); 1545 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1546 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1547 if (TT.isOSBinFormatMachO()) 1548 GO->setComdat(nullptr); 1549 else 1550 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1551 } 1552 } 1553 ValueName.clear(); 1554 break; 1555 } 1556 case bitc::VST_CODE_BBENTRY: { 1557 if (ConvertToString(Record, 1, ValueName)) 1558 return Error("Invalid record"); 1559 BasicBlock *BB = getBasicBlock(Record[0]); 1560 if (!BB) 1561 return Error("Invalid record"); 1562 1563 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1564 ValueName.clear(); 1565 break; 1566 } 1567 } 1568 } 1569 } 1570 1571 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1572 1573 std::error_code BitcodeReader::ParseMetadata() { 1574 IsMetadataMaterialized = true; 1575 unsigned NextMDValueNo = MDValueList.size(); 1576 1577 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1578 return Error("Invalid record"); 1579 1580 SmallVector<uint64_t, 64> Record; 1581 1582 auto getMD = 1583 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1584 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1585 if (ID) 1586 return getMD(ID - 1); 1587 return nullptr; 1588 }; 1589 auto getMDString = [&](unsigned ID) -> MDString *{ 1590 // This requires that the ID is not really a forward reference. In 1591 // particular, the MDString must already have been resolved. 1592 return cast_or_null<MDString>(getMDOrNull(ID)); 1593 }; 1594 1595 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1596 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1597 1598 // Read all the records. 1599 while (1) { 1600 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1601 1602 switch (Entry.Kind) { 1603 case BitstreamEntry::SubBlock: // Handled for us already. 1604 case BitstreamEntry::Error: 1605 return Error("Malformed block"); 1606 case BitstreamEntry::EndBlock: 1607 MDValueList.tryToResolveCycles(); 1608 return std::error_code(); 1609 case BitstreamEntry::Record: 1610 // The interesting case. 1611 break; 1612 } 1613 1614 // Read a record. 1615 Record.clear(); 1616 unsigned Code = Stream.readRecord(Entry.ID, Record); 1617 bool IsDistinct = false; 1618 switch (Code) { 1619 default: // Default behavior: ignore. 1620 break; 1621 case bitc::METADATA_NAME: { 1622 // Read name of the named metadata. 1623 SmallString<8> Name(Record.begin(), Record.end()); 1624 Record.clear(); 1625 Code = Stream.ReadCode(); 1626 1627 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1628 unsigned NextBitCode = Stream.readRecord(Code, Record); 1629 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1630 1631 // Read named metadata elements. 1632 unsigned Size = Record.size(); 1633 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1634 for (unsigned i = 0; i != Size; ++i) { 1635 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1636 if (!MD) 1637 return Error("Invalid record"); 1638 NMD->addOperand(MD); 1639 } 1640 break; 1641 } 1642 case bitc::METADATA_OLD_FN_NODE: { 1643 // FIXME: Remove in 4.0. 1644 // This is a LocalAsMetadata record, the only type of function-local 1645 // metadata. 1646 if (Record.size() % 2 == 1) 1647 return Error("Invalid record"); 1648 1649 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1650 // to be legal, but there's no upgrade path. 1651 auto dropRecord = [&] { 1652 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1653 }; 1654 if (Record.size() != 2) { 1655 dropRecord(); 1656 break; 1657 } 1658 1659 Type *Ty = getTypeByID(Record[0]); 1660 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1661 dropRecord(); 1662 break; 1663 } 1664 1665 MDValueList.AssignValue( 1666 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1667 NextMDValueNo++); 1668 break; 1669 } 1670 case bitc::METADATA_OLD_NODE: { 1671 // FIXME: Remove in 4.0. 1672 if (Record.size() % 2 == 1) 1673 return Error("Invalid record"); 1674 1675 unsigned Size = Record.size(); 1676 SmallVector<Metadata *, 8> Elts; 1677 for (unsigned i = 0; i != Size; i += 2) { 1678 Type *Ty = getTypeByID(Record[i]); 1679 if (!Ty) 1680 return Error("Invalid record"); 1681 if (Ty->isMetadataTy()) 1682 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1683 else if (!Ty->isVoidTy()) { 1684 auto *MD = 1685 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1686 assert(isa<ConstantAsMetadata>(MD) && 1687 "Expected non-function-local metadata"); 1688 Elts.push_back(MD); 1689 } else 1690 Elts.push_back(nullptr); 1691 } 1692 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1693 break; 1694 } 1695 case bitc::METADATA_VALUE: { 1696 if (Record.size() != 2) 1697 return Error("Invalid record"); 1698 1699 Type *Ty = getTypeByID(Record[0]); 1700 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1701 return Error("Invalid record"); 1702 1703 MDValueList.AssignValue( 1704 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1705 NextMDValueNo++); 1706 break; 1707 } 1708 case bitc::METADATA_DISTINCT_NODE: 1709 IsDistinct = true; 1710 // fallthrough... 1711 case bitc::METADATA_NODE: { 1712 SmallVector<Metadata *, 8> Elts; 1713 Elts.reserve(Record.size()); 1714 for (unsigned ID : Record) 1715 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1716 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1717 : MDNode::get(Context, Elts), 1718 NextMDValueNo++); 1719 break; 1720 } 1721 case bitc::METADATA_LOCATION: { 1722 if (Record.size() != 5) 1723 return Error("Invalid record"); 1724 1725 unsigned Line = Record[1]; 1726 unsigned Column = Record[2]; 1727 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1728 Metadata *InlinedAt = 1729 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1730 MDValueList.AssignValue( 1731 GET_OR_DISTINCT(DILocation, Record[0], 1732 (Context, Line, Column, Scope, InlinedAt)), 1733 NextMDValueNo++); 1734 break; 1735 } 1736 case bitc::METADATA_GENERIC_DEBUG: { 1737 if (Record.size() < 4) 1738 return Error("Invalid record"); 1739 1740 unsigned Tag = Record[1]; 1741 unsigned Version = Record[2]; 1742 1743 if (Tag >= 1u << 16 || Version != 0) 1744 return Error("Invalid record"); 1745 1746 auto *Header = getMDString(Record[3]); 1747 SmallVector<Metadata *, 8> DwarfOps; 1748 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1749 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1750 : nullptr); 1751 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1752 (Context, Tag, Header, DwarfOps)), 1753 NextMDValueNo++); 1754 break; 1755 } 1756 case bitc::METADATA_SUBRANGE: { 1757 if (Record.size() != 3) 1758 return Error("Invalid record"); 1759 1760 MDValueList.AssignValue( 1761 GET_OR_DISTINCT(DISubrange, Record[0], 1762 (Context, Record[1], unrotateSign(Record[2]))), 1763 NextMDValueNo++); 1764 break; 1765 } 1766 case bitc::METADATA_ENUMERATOR: { 1767 if (Record.size() != 3) 1768 return Error("Invalid record"); 1769 1770 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1771 (Context, unrotateSign(Record[1]), 1772 getMDString(Record[2]))), 1773 NextMDValueNo++); 1774 break; 1775 } 1776 case bitc::METADATA_BASIC_TYPE: { 1777 if (Record.size() != 6) 1778 return Error("Invalid record"); 1779 1780 MDValueList.AssignValue( 1781 GET_OR_DISTINCT(DIBasicType, Record[0], 1782 (Context, Record[1], getMDString(Record[2]), 1783 Record[3], Record[4], Record[5])), 1784 NextMDValueNo++); 1785 break; 1786 } 1787 case bitc::METADATA_DERIVED_TYPE: { 1788 if (Record.size() != 12) 1789 return Error("Invalid record"); 1790 1791 MDValueList.AssignValue( 1792 GET_OR_DISTINCT(DIDerivedType, Record[0], 1793 (Context, Record[1], getMDString(Record[2]), 1794 getMDOrNull(Record[3]), Record[4], 1795 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1796 Record[7], Record[8], Record[9], Record[10], 1797 getMDOrNull(Record[11]))), 1798 NextMDValueNo++); 1799 break; 1800 } 1801 case bitc::METADATA_COMPOSITE_TYPE: { 1802 if (Record.size() != 16) 1803 return Error("Invalid record"); 1804 1805 MDValueList.AssignValue( 1806 GET_OR_DISTINCT(DICompositeType, Record[0], 1807 (Context, Record[1], getMDString(Record[2]), 1808 getMDOrNull(Record[3]), Record[4], 1809 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1810 Record[7], Record[8], Record[9], Record[10], 1811 getMDOrNull(Record[11]), Record[12], 1812 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1813 getMDString(Record[15]))), 1814 NextMDValueNo++); 1815 break; 1816 } 1817 case bitc::METADATA_SUBROUTINE_TYPE: { 1818 if (Record.size() != 3) 1819 return Error("Invalid record"); 1820 1821 MDValueList.AssignValue( 1822 GET_OR_DISTINCT(DISubroutineType, Record[0], 1823 (Context, Record[1], getMDOrNull(Record[2]))), 1824 NextMDValueNo++); 1825 break; 1826 } 1827 case bitc::METADATA_FILE: { 1828 if (Record.size() != 3) 1829 return Error("Invalid record"); 1830 1831 MDValueList.AssignValue( 1832 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1833 getMDString(Record[2]))), 1834 NextMDValueNo++); 1835 break; 1836 } 1837 case bitc::METADATA_COMPILE_UNIT: { 1838 if (Record.size() != 14) 1839 return Error("Invalid record"); 1840 1841 MDValueList.AssignValue( 1842 GET_OR_DISTINCT(DICompileUnit, Record[0], 1843 (Context, Record[1], getMDOrNull(Record[2]), 1844 getMDString(Record[3]), Record[4], 1845 getMDString(Record[5]), Record[6], 1846 getMDString(Record[7]), Record[8], 1847 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1848 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1849 getMDOrNull(Record[13]))), 1850 NextMDValueNo++); 1851 break; 1852 } 1853 case bitc::METADATA_SUBPROGRAM: { 1854 if (Record.size() != 19) 1855 return Error("Invalid record"); 1856 1857 MDValueList.AssignValue( 1858 GET_OR_DISTINCT( 1859 DISubprogram, Record[0], 1860 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1861 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1862 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1863 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1864 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1865 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1866 NextMDValueNo++); 1867 break; 1868 } 1869 case bitc::METADATA_LEXICAL_BLOCK: { 1870 if (Record.size() != 5) 1871 return Error("Invalid record"); 1872 1873 MDValueList.AssignValue( 1874 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1875 (Context, getMDOrNull(Record[1]), 1876 getMDOrNull(Record[2]), Record[3], Record[4])), 1877 NextMDValueNo++); 1878 break; 1879 } 1880 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1881 if (Record.size() != 4) 1882 return Error("Invalid record"); 1883 1884 MDValueList.AssignValue( 1885 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1886 (Context, getMDOrNull(Record[1]), 1887 getMDOrNull(Record[2]), Record[3])), 1888 NextMDValueNo++); 1889 break; 1890 } 1891 case bitc::METADATA_NAMESPACE: { 1892 if (Record.size() != 5) 1893 return Error("Invalid record"); 1894 1895 MDValueList.AssignValue( 1896 GET_OR_DISTINCT(DINamespace, Record[0], 1897 (Context, getMDOrNull(Record[1]), 1898 getMDOrNull(Record[2]), getMDString(Record[3]), 1899 Record[4])), 1900 NextMDValueNo++); 1901 break; 1902 } 1903 case bitc::METADATA_TEMPLATE_TYPE: { 1904 if (Record.size() != 3) 1905 return Error("Invalid record"); 1906 1907 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1908 Record[0], 1909 (Context, getMDString(Record[1]), 1910 getMDOrNull(Record[2]))), 1911 NextMDValueNo++); 1912 break; 1913 } 1914 case bitc::METADATA_TEMPLATE_VALUE: { 1915 if (Record.size() != 5) 1916 return Error("Invalid record"); 1917 1918 MDValueList.AssignValue( 1919 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1920 (Context, Record[1], getMDString(Record[2]), 1921 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1922 NextMDValueNo++); 1923 break; 1924 } 1925 case bitc::METADATA_GLOBAL_VAR: { 1926 if (Record.size() != 11) 1927 return Error("Invalid record"); 1928 1929 MDValueList.AssignValue( 1930 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1931 (Context, getMDOrNull(Record[1]), 1932 getMDString(Record[2]), getMDString(Record[3]), 1933 getMDOrNull(Record[4]), Record[5], 1934 getMDOrNull(Record[6]), Record[7], Record[8], 1935 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1936 NextMDValueNo++); 1937 break; 1938 } 1939 case bitc::METADATA_LOCAL_VAR: { 1940 // 10th field is for the obseleted 'inlinedAt:' field. 1941 if (Record.size() != 9 && Record.size() != 10) 1942 return Error("Invalid record"); 1943 1944 MDValueList.AssignValue( 1945 GET_OR_DISTINCT(DILocalVariable, Record[0], 1946 (Context, Record[1], getMDOrNull(Record[2]), 1947 getMDString(Record[3]), getMDOrNull(Record[4]), 1948 Record[5], getMDOrNull(Record[6]), Record[7], 1949 Record[8])), 1950 NextMDValueNo++); 1951 break; 1952 } 1953 case bitc::METADATA_EXPRESSION: { 1954 if (Record.size() < 1) 1955 return Error("Invalid record"); 1956 1957 MDValueList.AssignValue( 1958 GET_OR_DISTINCT(DIExpression, Record[0], 1959 (Context, makeArrayRef(Record).slice(1))), 1960 NextMDValueNo++); 1961 break; 1962 } 1963 case bitc::METADATA_OBJC_PROPERTY: { 1964 if (Record.size() != 8) 1965 return Error("Invalid record"); 1966 1967 MDValueList.AssignValue( 1968 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1969 (Context, getMDString(Record[1]), 1970 getMDOrNull(Record[2]), Record[3], 1971 getMDString(Record[4]), getMDString(Record[5]), 1972 Record[6], getMDOrNull(Record[7]))), 1973 NextMDValueNo++); 1974 break; 1975 } 1976 case bitc::METADATA_IMPORTED_ENTITY: { 1977 if (Record.size() != 6) 1978 return Error("Invalid record"); 1979 1980 MDValueList.AssignValue( 1981 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1982 (Context, Record[1], getMDOrNull(Record[2]), 1983 getMDOrNull(Record[3]), Record[4], 1984 getMDString(Record[5]))), 1985 NextMDValueNo++); 1986 break; 1987 } 1988 case bitc::METADATA_STRING: { 1989 std::string String(Record.begin(), Record.end()); 1990 llvm::UpgradeMDStringConstant(String); 1991 Metadata *MD = MDString::get(Context, String); 1992 MDValueList.AssignValue(MD, NextMDValueNo++); 1993 break; 1994 } 1995 case bitc::METADATA_KIND: { 1996 if (Record.size() < 2) 1997 return Error("Invalid record"); 1998 1999 unsigned Kind = Record[0]; 2000 SmallString<8> Name(Record.begin()+1, Record.end()); 2001 2002 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2003 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2004 return Error("Conflicting METADATA_KIND records"); 2005 break; 2006 } 2007 } 2008 } 2009 #undef GET_OR_DISTINCT 2010 } 2011 2012 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2013 /// the LSB for dense VBR encoding. 2014 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2015 if ((V & 1) == 0) 2016 return V >> 1; 2017 if (V != 1) 2018 return -(V >> 1); 2019 // There is no such thing as -0 with integers. "-0" really means MININT. 2020 return 1ULL << 63; 2021 } 2022 2023 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2024 /// values and aliases that we can. 2025 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2026 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2027 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2028 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2029 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2030 2031 GlobalInitWorklist.swap(GlobalInits); 2032 AliasInitWorklist.swap(AliasInits); 2033 FunctionPrefixWorklist.swap(FunctionPrefixes); 2034 FunctionPrologueWorklist.swap(FunctionPrologues); 2035 2036 while (!GlobalInitWorklist.empty()) { 2037 unsigned ValID = GlobalInitWorklist.back().second; 2038 if (ValID >= ValueList.size()) { 2039 // Not ready to resolve this yet, it requires something later in the file. 2040 GlobalInits.push_back(GlobalInitWorklist.back()); 2041 } else { 2042 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2043 GlobalInitWorklist.back().first->setInitializer(C); 2044 else 2045 return Error("Expected a constant"); 2046 } 2047 GlobalInitWorklist.pop_back(); 2048 } 2049 2050 while (!AliasInitWorklist.empty()) { 2051 unsigned ValID = AliasInitWorklist.back().second; 2052 if (ValID >= ValueList.size()) { 2053 AliasInits.push_back(AliasInitWorklist.back()); 2054 } else { 2055 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2056 AliasInitWorklist.back().first->setAliasee(C); 2057 else 2058 return Error("Expected a constant"); 2059 } 2060 AliasInitWorklist.pop_back(); 2061 } 2062 2063 while (!FunctionPrefixWorklist.empty()) { 2064 unsigned ValID = FunctionPrefixWorklist.back().second; 2065 if (ValID >= ValueList.size()) { 2066 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2067 } else { 2068 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2069 FunctionPrefixWorklist.back().first->setPrefixData(C); 2070 else 2071 return Error("Expected a constant"); 2072 } 2073 FunctionPrefixWorklist.pop_back(); 2074 } 2075 2076 while (!FunctionPrologueWorklist.empty()) { 2077 unsigned ValID = FunctionPrologueWorklist.back().second; 2078 if (ValID >= ValueList.size()) { 2079 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2080 } else { 2081 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2082 FunctionPrologueWorklist.back().first->setPrologueData(C); 2083 else 2084 return Error("Expected a constant"); 2085 } 2086 FunctionPrologueWorklist.pop_back(); 2087 } 2088 2089 return std::error_code(); 2090 } 2091 2092 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2093 SmallVector<uint64_t, 8> Words(Vals.size()); 2094 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2095 BitcodeReader::decodeSignRotatedValue); 2096 2097 return APInt(TypeBits, Words); 2098 } 2099 2100 std::error_code BitcodeReader::ParseConstants() { 2101 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2102 return Error("Invalid record"); 2103 2104 SmallVector<uint64_t, 64> Record; 2105 2106 // Read all the records for this value table. 2107 Type *CurTy = Type::getInt32Ty(Context); 2108 unsigned NextCstNo = ValueList.size(); 2109 while (1) { 2110 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2111 2112 switch (Entry.Kind) { 2113 case BitstreamEntry::SubBlock: // Handled for us already. 2114 case BitstreamEntry::Error: 2115 return Error("Malformed block"); 2116 case BitstreamEntry::EndBlock: 2117 if (NextCstNo != ValueList.size()) 2118 return Error("Invalid ronstant reference"); 2119 2120 // Once all the constants have been read, go through and resolve forward 2121 // references. 2122 ValueList.ResolveConstantForwardRefs(); 2123 return std::error_code(); 2124 case BitstreamEntry::Record: 2125 // The interesting case. 2126 break; 2127 } 2128 2129 // Read a record. 2130 Record.clear(); 2131 Value *V = nullptr; 2132 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2133 switch (BitCode) { 2134 default: // Default behavior: unknown constant 2135 case bitc::CST_CODE_UNDEF: // UNDEF 2136 V = UndefValue::get(CurTy); 2137 break; 2138 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2139 if (Record.empty()) 2140 return Error("Invalid record"); 2141 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2142 return Error("Invalid record"); 2143 CurTy = TypeList[Record[0]]; 2144 continue; // Skip the ValueList manipulation. 2145 case bitc::CST_CODE_NULL: // NULL 2146 V = Constant::getNullValue(CurTy); 2147 break; 2148 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2149 if (!CurTy->isIntegerTy() || Record.empty()) 2150 return Error("Invalid record"); 2151 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2152 break; 2153 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2154 if (!CurTy->isIntegerTy() || Record.empty()) 2155 return Error("Invalid record"); 2156 2157 APInt VInt = ReadWideAPInt(Record, 2158 cast<IntegerType>(CurTy)->getBitWidth()); 2159 V = ConstantInt::get(Context, VInt); 2160 2161 break; 2162 } 2163 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2164 if (Record.empty()) 2165 return Error("Invalid record"); 2166 if (CurTy->isHalfTy()) 2167 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2168 APInt(16, (uint16_t)Record[0]))); 2169 else if (CurTy->isFloatTy()) 2170 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2171 APInt(32, (uint32_t)Record[0]))); 2172 else if (CurTy->isDoubleTy()) 2173 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2174 APInt(64, Record[0]))); 2175 else if (CurTy->isX86_FP80Ty()) { 2176 // Bits are not stored the same way as a normal i80 APInt, compensate. 2177 uint64_t Rearrange[2]; 2178 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2179 Rearrange[1] = Record[0] >> 48; 2180 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2181 APInt(80, Rearrange))); 2182 } else if (CurTy->isFP128Ty()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2184 APInt(128, Record))); 2185 else if (CurTy->isPPC_FP128Ty()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2187 APInt(128, Record))); 2188 else 2189 V = UndefValue::get(CurTy); 2190 break; 2191 } 2192 2193 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2194 if (Record.empty()) 2195 return Error("Invalid record"); 2196 2197 unsigned Size = Record.size(); 2198 SmallVector<Constant*, 16> Elts; 2199 2200 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2201 for (unsigned i = 0; i != Size; ++i) 2202 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2203 STy->getElementType(i))); 2204 V = ConstantStruct::get(STy, Elts); 2205 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2206 Type *EltTy = ATy->getElementType(); 2207 for (unsigned i = 0; i != Size; ++i) 2208 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2209 V = ConstantArray::get(ATy, Elts); 2210 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2211 Type *EltTy = VTy->getElementType(); 2212 for (unsigned i = 0; i != Size; ++i) 2213 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2214 V = ConstantVector::get(Elts); 2215 } else { 2216 V = UndefValue::get(CurTy); 2217 } 2218 break; 2219 } 2220 case bitc::CST_CODE_STRING: // STRING: [values] 2221 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2222 if (Record.empty()) 2223 return Error("Invalid record"); 2224 2225 SmallString<16> Elts(Record.begin(), Record.end()); 2226 V = ConstantDataArray::getString(Context, Elts, 2227 BitCode == bitc::CST_CODE_CSTRING); 2228 break; 2229 } 2230 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2231 if (Record.empty()) 2232 return Error("Invalid record"); 2233 2234 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2235 unsigned Size = Record.size(); 2236 2237 if (EltTy->isIntegerTy(8)) { 2238 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2239 if (isa<VectorType>(CurTy)) 2240 V = ConstantDataVector::get(Context, Elts); 2241 else 2242 V = ConstantDataArray::get(Context, Elts); 2243 } else if (EltTy->isIntegerTy(16)) { 2244 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2245 if (isa<VectorType>(CurTy)) 2246 V = ConstantDataVector::get(Context, Elts); 2247 else 2248 V = ConstantDataArray::get(Context, Elts); 2249 } else if (EltTy->isIntegerTy(32)) { 2250 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2251 if (isa<VectorType>(CurTy)) 2252 V = ConstantDataVector::get(Context, Elts); 2253 else 2254 V = ConstantDataArray::get(Context, Elts); 2255 } else if (EltTy->isIntegerTy(64)) { 2256 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2257 if (isa<VectorType>(CurTy)) 2258 V = ConstantDataVector::get(Context, Elts); 2259 else 2260 V = ConstantDataArray::get(Context, Elts); 2261 } else if (EltTy->isFloatTy()) { 2262 SmallVector<float, 16> Elts(Size); 2263 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2264 if (isa<VectorType>(CurTy)) 2265 V = ConstantDataVector::get(Context, Elts); 2266 else 2267 V = ConstantDataArray::get(Context, Elts); 2268 } else if (EltTy->isDoubleTy()) { 2269 SmallVector<double, 16> Elts(Size); 2270 std::transform(Record.begin(), Record.end(), Elts.begin(), 2271 BitsToDouble); 2272 if (isa<VectorType>(CurTy)) 2273 V = ConstantDataVector::get(Context, Elts); 2274 else 2275 V = ConstantDataArray::get(Context, Elts); 2276 } else { 2277 return Error("Invalid type for value"); 2278 } 2279 break; 2280 } 2281 2282 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2283 if (Record.size() < 3) 2284 return Error("Invalid record"); 2285 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2286 if (Opc < 0) { 2287 V = UndefValue::get(CurTy); // Unknown binop. 2288 } else { 2289 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2290 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2291 unsigned Flags = 0; 2292 if (Record.size() >= 4) { 2293 if (Opc == Instruction::Add || 2294 Opc == Instruction::Sub || 2295 Opc == Instruction::Mul || 2296 Opc == Instruction::Shl) { 2297 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2298 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2299 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2300 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2301 } else if (Opc == Instruction::SDiv || 2302 Opc == Instruction::UDiv || 2303 Opc == Instruction::LShr || 2304 Opc == Instruction::AShr) { 2305 if (Record[3] & (1 << bitc::PEO_EXACT)) 2306 Flags |= SDivOperator::IsExact; 2307 } 2308 } 2309 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2310 } 2311 break; 2312 } 2313 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2314 if (Record.size() < 3) 2315 return Error("Invalid record"); 2316 int Opc = GetDecodedCastOpcode(Record[0]); 2317 if (Opc < 0) { 2318 V = UndefValue::get(CurTy); // Unknown cast. 2319 } else { 2320 Type *OpTy = getTypeByID(Record[1]); 2321 if (!OpTy) 2322 return Error("Invalid record"); 2323 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2324 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2325 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2326 } 2327 break; 2328 } 2329 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2330 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2331 unsigned OpNum = 0; 2332 Type *PointeeType = nullptr; 2333 if (Record.size() % 2) 2334 PointeeType = getTypeByID(Record[OpNum++]); 2335 SmallVector<Constant*, 16> Elts; 2336 while (OpNum != Record.size()) { 2337 Type *ElTy = getTypeByID(Record[OpNum++]); 2338 if (!ElTy) 2339 return Error("Invalid record"); 2340 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2341 } 2342 2343 if (PointeeType && 2344 PointeeType != 2345 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2346 ->getElementType()) 2347 return Error("Explicit gep operator type does not match pointee type " 2348 "of pointer operand"); 2349 2350 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2351 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2352 BitCode == 2353 bitc::CST_CODE_CE_INBOUNDS_GEP); 2354 break; 2355 } 2356 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2357 if (Record.size() < 3) 2358 return Error("Invalid record"); 2359 2360 Type *SelectorTy = Type::getInt1Ty(Context); 2361 2362 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2363 // vector. Otherwise, it must be a single bit. 2364 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2365 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2366 VTy->getNumElements()); 2367 2368 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2369 SelectorTy), 2370 ValueList.getConstantFwdRef(Record[1],CurTy), 2371 ValueList.getConstantFwdRef(Record[2],CurTy)); 2372 break; 2373 } 2374 case bitc::CST_CODE_CE_EXTRACTELT 2375 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2376 if (Record.size() < 3) 2377 return Error("Invalid record"); 2378 VectorType *OpTy = 2379 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2380 if (!OpTy) 2381 return Error("Invalid record"); 2382 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2383 Constant *Op1 = nullptr; 2384 if (Record.size() == 4) { 2385 Type *IdxTy = getTypeByID(Record[2]); 2386 if (!IdxTy) 2387 return Error("Invalid record"); 2388 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2389 } else // TODO: Remove with llvm 4.0 2390 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2391 if (!Op1) 2392 return Error("Invalid record"); 2393 V = ConstantExpr::getExtractElement(Op0, Op1); 2394 break; 2395 } 2396 case bitc::CST_CODE_CE_INSERTELT 2397 : { // CE_INSERTELT: [opval, opval, opty, opval] 2398 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2399 if (Record.size() < 3 || !OpTy) 2400 return Error("Invalid record"); 2401 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2402 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2403 OpTy->getElementType()); 2404 Constant *Op2 = nullptr; 2405 if (Record.size() == 4) { 2406 Type *IdxTy = getTypeByID(Record[2]); 2407 if (!IdxTy) 2408 return Error("Invalid record"); 2409 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2410 } else // TODO: Remove with llvm 4.0 2411 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2412 if (!Op2) 2413 return Error("Invalid record"); 2414 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2415 break; 2416 } 2417 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2418 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2419 if (Record.size() < 3 || !OpTy) 2420 return Error("Invalid record"); 2421 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2422 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2423 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2424 OpTy->getNumElements()); 2425 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2426 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2427 break; 2428 } 2429 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2430 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2431 VectorType *OpTy = 2432 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2433 if (Record.size() < 4 || !RTy || !OpTy) 2434 return Error("Invalid record"); 2435 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2436 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2437 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2438 RTy->getNumElements()); 2439 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2440 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2441 break; 2442 } 2443 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2444 if (Record.size() < 4) 2445 return Error("Invalid record"); 2446 Type *OpTy = getTypeByID(Record[0]); 2447 if (!OpTy) 2448 return Error("Invalid record"); 2449 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2450 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2451 2452 if (OpTy->isFPOrFPVectorTy()) 2453 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2454 else 2455 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2456 break; 2457 } 2458 // This maintains backward compatibility, pre-asm dialect keywords. 2459 // FIXME: Remove with the 4.0 release. 2460 case bitc::CST_CODE_INLINEASM_OLD: { 2461 if (Record.size() < 2) 2462 return Error("Invalid record"); 2463 std::string AsmStr, ConstrStr; 2464 bool HasSideEffects = Record[0] & 1; 2465 bool IsAlignStack = Record[0] >> 1; 2466 unsigned AsmStrSize = Record[1]; 2467 if (2+AsmStrSize >= Record.size()) 2468 return Error("Invalid record"); 2469 unsigned ConstStrSize = Record[2+AsmStrSize]; 2470 if (3+AsmStrSize+ConstStrSize > Record.size()) 2471 return Error("Invalid record"); 2472 2473 for (unsigned i = 0; i != AsmStrSize; ++i) 2474 AsmStr += (char)Record[2+i]; 2475 for (unsigned i = 0; i != ConstStrSize; ++i) 2476 ConstrStr += (char)Record[3+AsmStrSize+i]; 2477 PointerType *PTy = cast<PointerType>(CurTy); 2478 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2479 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2480 break; 2481 } 2482 // This version adds support for the asm dialect keywords (e.g., 2483 // inteldialect). 2484 case bitc::CST_CODE_INLINEASM: { 2485 if (Record.size() < 2) 2486 return Error("Invalid record"); 2487 std::string AsmStr, ConstrStr; 2488 bool HasSideEffects = Record[0] & 1; 2489 bool IsAlignStack = (Record[0] >> 1) & 1; 2490 unsigned AsmDialect = Record[0] >> 2; 2491 unsigned AsmStrSize = Record[1]; 2492 if (2+AsmStrSize >= Record.size()) 2493 return Error("Invalid record"); 2494 unsigned ConstStrSize = Record[2+AsmStrSize]; 2495 if (3+AsmStrSize+ConstStrSize > Record.size()) 2496 return Error("Invalid record"); 2497 2498 for (unsigned i = 0; i != AsmStrSize; ++i) 2499 AsmStr += (char)Record[2+i]; 2500 for (unsigned i = 0; i != ConstStrSize; ++i) 2501 ConstrStr += (char)Record[3+AsmStrSize+i]; 2502 PointerType *PTy = cast<PointerType>(CurTy); 2503 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2504 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2505 InlineAsm::AsmDialect(AsmDialect)); 2506 break; 2507 } 2508 case bitc::CST_CODE_BLOCKADDRESS:{ 2509 if (Record.size() < 3) 2510 return Error("Invalid record"); 2511 Type *FnTy = getTypeByID(Record[0]); 2512 if (!FnTy) 2513 return Error("Invalid record"); 2514 Function *Fn = 2515 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2516 if (!Fn) 2517 return Error("Invalid record"); 2518 2519 // Don't let Fn get dematerialized. 2520 BlockAddressesTaken.insert(Fn); 2521 2522 // If the function is already parsed we can insert the block address right 2523 // away. 2524 BasicBlock *BB; 2525 unsigned BBID = Record[2]; 2526 if (!BBID) 2527 // Invalid reference to entry block. 2528 return Error("Invalid ID"); 2529 if (!Fn->empty()) { 2530 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2531 for (size_t I = 0, E = BBID; I != E; ++I) { 2532 if (BBI == BBE) 2533 return Error("Invalid ID"); 2534 ++BBI; 2535 } 2536 BB = BBI; 2537 } else { 2538 // Otherwise insert a placeholder and remember it so it can be inserted 2539 // when the function is parsed. 2540 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2541 if (FwdBBs.empty()) 2542 BasicBlockFwdRefQueue.push_back(Fn); 2543 if (FwdBBs.size() < BBID + 1) 2544 FwdBBs.resize(BBID + 1); 2545 if (!FwdBBs[BBID]) 2546 FwdBBs[BBID] = BasicBlock::Create(Context); 2547 BB = FwdBBs[BBID]; 2548 } 2549 V = BlockAddress::get(Fn, BB); 2550 break; 2551 } 2552 } 2553 2554 ValueList.AssignValue(V, NextCstNo); 2555 ++NextCstNo; 2556 } 2557 } 2558 2559 std::error_code BitcodeReader::ParseUseLists() { 2560 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2561 return Error("Invalid record"); 2562 2563 // Read all the records. 2564 SmallVector<uint64_t, 64> Record; 2565 while (1) { 2566 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2567 2568 switch (Entry.Kind) { 2569 case BitstreamEntry::SubBlock: // Handled for us already. 2570 case BitstreamEntry::Error: 2571 return Error("Malformed block"); 2572 case BitstreamEntry::EndBlock: 2573 return std::error_code(); 2574 case BitstreamEntry::Record: 2575 // The interesting case. 2576 break; 2577 } 2578 2579 // Read a use list record. 2580 Record.clear(); 2581 bool IsBB = false; 2582 switch (Stream.readRecord(Entry.ID, Record)) { 2583 default: // Default behavior: unknown type. 2584 break; 2585 case bitc::USELIST_CODE_BB: 2586 IsBB = true; 2587 // fallthrough 2588 case bitc::USELIST_CODE_DEFAULT: { 2589 unsigned RecordLength = Record.size(); 2590 if (RecordLength < 3) 2591 // Records should have at least an ID and two indexes. 2592 return Error("Invalid record"); 2593 unsigned ID = Record.back(); 2594 Record.pop_back(); 2595 2596 Value *V; 2597 if (IsBB) { 2598 assert(ID < FunctionBBs.size() && "Basic block not found"); 2599 V = FunctionBBs[ID]; 2600 } else 2601 V = ValueList[ID]; 2602 unsigned NumUses = 0; 2603 SmallDenseMap<const Use *, unsigned, 16> Order; 2604 for (const Use &U : V->uses()) { 2605 if (++NumUses > Record.size()) 2606 break; 2607 Order[&U] = Record[NumUses - 1]; 2608 } 2609 if (Order.size() != Record.size() || NumUses > Record.size()) 2610 // Mismatches can happen if the functions are being materialized lazily 2611 // (out-of-order), or a value has been upgraded. 2612 break; 2613 2614 V->sortUseList([&](const Use &L, const Use &R) { 2615 return Order.lookup(&L) < Order.lookup(&R); 2616 }); 2617 break; 2618 } 2619 } 2620 } 2621 } 2622 2623 /// When we see the block for metadata, remember where it is and then skip it. 2624 /// This lets us lazily deserialize the metadata. 2625 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2626 // Save the current stream state. 2627 uint64_t CurBit = Stream.GetCurrentBitNo(); 2628 DeferredMetadataInfo.push_back(CurBit); 2629 2630 // Skip over the block for now. 2631 if (Stream.SkipBlock()) 2632 return Error("Invalid record"); 2633 return std::error_code(); 2634 } 2635 2636 std::error_code BitcodeReader::materializeMetadata() { 2637 for (uint64_t BitPos : DeferredMetadataInfo) { 2638 // Move the bit stream to the saved position. 2639 Stream.JumpToBit(BitPos); 2640 if (std::error_code EC = ParseMetadata()) 2641 return EC; 2642 } 2643 DeferredMetadataInfo.clear(); 2644 return std::error_code(); 2645 } 2646 2647 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2648 2649 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2650 /// remember where it is and then skip it. This lets us lazily deserialize the 2651 /// functions. 2652 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2653 // Get the function we are talking about. 2654 if (FunctionsWithBodies.empty()) 2655 return Error("Insufficient function protos"); 2656 2657 Function *Fn = FunctionsWithBodies.back(); 2658 FunctionsWithBodies.pop_back(); 2659 2660 // Save the current stream state. 2661 uint64_t CurBit = Stream.GetCurrentBitNo(); 2662 DeferredFunctionInfo[Fn] = CurBit; 2663 2664 // Skip over the function block for now. 2665 if (Stream.SkipBlock()) 2666 return Error("Invalid record"); 2667 return std::error_code(); 2668 } 2669 2670 std::error_code BitcodeReader::GlobalCleanup() { 2671 // Patch the initializers for globals and aliases up. 2672 ResolveGlobalAndAliasInits(); 2673 if (!GlobalInits.empty() || !AliasInits.empty()) 2674 return Error("Malformed global initializer set"); 2675 2676 // Look for intrinsic functions which need to be upgraded at some point 2677 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2678 FI != FE; ++FI) { 2679 Function *NewFn; 2680 if (UpgradeIntrinsicFunction(FI, NewFn)) 2681 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2682 } 2683 2684 // Look for global variables which need to be renamed. 2685 for (Module::global_iterator 2686 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2687 GI != GE;) { 2688 GlobalVariable *GV = GI++; 2689 UpgradeGlobalVariable(GV); 2690 } 2691 2692 // Force deallocation of memory for these vectors to favor the client that 2693 // want lazy deserialization. 2694 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2695 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2696 return std::error_code(); 2697 } 2698 2699 std::error_code BitcodeReader::ParseModule(bool Resume, 2700 bool ShouldLazyLoadMetadata) { 2701 if (Resume) 2702 Stream.JumpToBit(NextUnreadBit); 2703 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2704 return Error("Invalid record"); 2705 2706 SmallVector<uint64_t, 64> Record; 2707 std::vector<std::string> SectionTable; 2708 std::vector<std::string> GCTable; 2709 2710 // Read all the records for this module. 2711 while (1) { 2712 BitstreamEntry Entry = Stream.advance(); 2713 2714 switch (Entry.Kind) { 2715 case BitstreamEntry::Error: 2716 return Error("Malformed block"); 2717 case BitstreamEntry::EndBlock: 2718 return GlobalCleanup(); 2719 2720 case BitstreamEntry::SubBlock: 2721 switch (Entry.ID) { 2722 default: // Skip unknown content. 2723 if (Stream.SkipBlock()) 2724 return Error("Invalid record"); 2725 break; 2726 case bitc::BLOCKINFO_BLOCK_ID: 2727 if (Stream.ReadBlockInfoBlock()) 2728 return Error("Malformed block"); 2729 break; 2730 case bitc::PARAMATTR_BLOCK_ID: 2731 if (std::error_code EC = ParseAttributeBlock()) 2732 return EC; 2733 break; 2734 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2735 if (std::error_code EC = ParseAttributeGroupBlock()) 2736 return EC; 2737 break; 2738 case bitc::TYPE_BLOCK_ID_NEW: 2739 if (std::error_code EC = ParseTypeTable()) 2740 return EC; 2741 break; 2742 case bitc::VALUE_SYMTAB_BLOCK_ID: 2743 if (std::error_code EC = ParseValueSymbolTable()) 2744 return EC; 2745 SeenValueSymbolTable = true; 2746 break; 2747 case bitc::CONSTANTS_BLOCK_ID: 2748 if (std::error_code EC = ParseConstants()) 2749 return EC; 2750 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2751 return EC; 2752 break; 2753 case bitc::METADATA_BLOCK_ID: 2754 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2755 if (std::error_code EC = rememberAndSkipMetadata()) 2756 return EC; 2757 break; 2758 } 2759 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2760 if (std::error_code EC = ParseMetadata()) 2761 return EC; 2762 break; 2763 case bitc::FUNCTION_BLOCK_ID: 2764 // If this is the first function body we've seen, reverse the 2765 // FunctionsWithBodies list. 2766 if (!SeenFirstFunctionBody) { 2767 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2768 if (std::error_code EC = GlobalCleanup()) 2769 return EC; 2770 SeenFirstFunctionBody = true; 2771 } 2772 2773 if (std::error_code EC = RememberAndSkipFunctionBody()) 2774 return EC; 2775 // For streaming bitcode, suspend parsing when we reach the function 2776 // bodies. Subsequent materialization calls will resume it when 2777 // necessary. For streaming, the function bodies must be at the end of 2778 // the bitcode. If the bitcode file is old, the symbol table will be 2779 // at the end instead and will not have been seen yet. In this case, 2780 // just finish the parse now. 2781 if (LazyStreamer && SeenValueSymbolTable) { 2782 NextUnreadBit = Stream.GetCurrentBitNo(); 2783 return std::error_code(); 2784 } 2785 break; 2786 case bitc::USELIST_BLOCK_ID: 2787 if (std::error_code EC = ParseUseLists()) 2788 return EC; 2789 break; 2790 } 2791 continue; 2792 2793 case BitstreamEntry::Record: 2794 // The interesting case. 2795 break; 2796 } 2797 2798 2799 // Read a record. 2800 switch (Stream.readRecord(Entry.ID, Record)) { 2801 default: break; // Default behavior, ignore unknown content. 2802 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2803 if (Record.size() < 1) 2804 return Error("Invalid record"); 2805 // Only version #0 and #1 are supported so far. 2806 unsigned module_version = Record[0]; 2807 switch (module_version) { 2808 default: 2809 return Error("Invalid value"); 2810 case 0: 2811 UseRelativeIDs = false; 2812 break; 2813 case 1: 2814 UseRelativeIDs = true; 2815 break; 2816 } 2817 break; 2818 } 2819 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2820 std::string S; 2821 if (ConvertToString(Record, 0, S)) 2822 return Error("Invalid record"); 2823 TheModule->setTargetTriple(S); 2824 break; 2825 } 2826 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2827 std::string S; 2828 if (ConvertToString(Record, 0, S)) 2829 return Error("Invalid record"); 2830 TheModule->setDataLayout(S); 2831 break; 2832 } 2833 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2834 std::string S; 2835 if (ConvertToString(Record, 0, S)) 2836 return Error("Invalid record"); 2837 TheModule->setModuleInlineAsm(S); 2838 break; 2839 } 2840 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2841 // FIXME: Remove in 4.0. 2842 std::string S; 2843 if (ConvertToString(Record, 0, S)) 2844 return Error("Invalid record"); 2845 // Ignore value. 2846 break; 2847 } 2848 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2849 std::string S; 2850 if (ConvertToString(Record, 0, S)) 2851 return Error("Invalid record"); 2852 SectionTable.push_back(S); 2853 break; 2854 } 2855 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2856 std::string S; 2857 if (ConvertToString(Record, 0, S)) 2858 return Error("Invalid record"); 2859 GCTable.push_back(S); 2860 break; 2861 } 2862 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2863 if (Record.size() < 2) 2864 return Error("Invalid record"); 2865 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2866 unsigned ComdatNameSize = Record[1]; 2867 std::string ComdatName; 2868 ComdatName.reserve(ComdatNameSize); 2869 for (unsigned i = 0; i != ComdatNameSize; ++i) 2870 ComdatName += (char)Record[2 + i]; 2871 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2872 C->setSelectionKind(SK); 2873 ComdatList.push_back(C); 2874 break; 2875 } 2876 // GLOBALVAR: [pointer type, isconst, initid, 2877 // linkage, alignment, section, visibility, threadlocal, 2878 // unnamed_addr, externally_initialized, dllstorageclass, 2879 // comdat] 2880 case bitc::MODULE_CODE_GLOBALVAR: { 2881 if (Record.size() < 6) 2882 return Error("Invalid record"); 2883 Type *Ty = getTypeByID(Record[0]); 2884 if (!Ty) 2885 return Error("Invalid record"); 2886 bool isConstant = Record[1] & 1; 2887 bool explicitType = Record[1] & 2; 2888 unsigned AddressSpace; 2889 if (explicitType) { 2890 AddressSpace = Record[1] >> 2; 2891 } else { 2892 if (!Ty->isPointerTy()) 2893 return Error("Invalid type for value"); 2894 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2895 Ty = cast<PointerType>(Ty)->getElementType(); 2896 } 2897 2898 uint64_t RawLinkage = Record[3]; 2899 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2900 unsigned Alignment; 2901 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2902 return EC; 2903 std::string Section; 2904 if (Record[5]) { 2905 if (Record[5]-1 >= SectionTable.size()) 2906 return Error("Invalid ID"); 2907 Section = SectionTable[Record[5]-1]; 2908 } 2909 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2910 // Local linkage must have default visibility. 2911 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2912 // FIXME: Change to an error if non-default in 4.0. 2913 Visibility = GetDecodedVisibility(Record[6]); 2914 2915 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2916 if (Record.size() > 7) 2917 TLM = GetDecodedThreadLocalMode(Record[7]); 2918 2919 bool UnnamedAddr = false; 2920 if (Record.size() > 8) 2921 UnnamedAddr = Record[8]; 2922 2923 bool ExternallyInitialized = false; 2924 if (Record.size() > 9) 2925 ExternallyInitialized = Record[9]; 2926 2927 GlobalVariable *NewGV = 2928 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2929 TLM, AddressSpace, ExternallyInitialized); 2930 NewGV->setAlignment(Alignment); 2931 if (!Section.empty()) 2932 NewGV->setSection(Section); 2933 NewGV->setVisibility(Visibility); 2934 NewGV->setUnnamedAddr(UnnamedAddr); 2935 2936 if (Record.size() > 10) 2937 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2938 else 2939 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2940 2941 ValueList.push_back(NewGV); 2942 2943 // Remember which value to use for the global initializer. 2944 if (unsigned InitID = Record[2]) 2945 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2946 2947 if (Record.size() > 11) { 2948 if (unsigned ComdatID = Record[11]) { 2949 assert(ComdatID <= ComdatList.size()); 2950 NewGV->setComdat(ComdatList[ComdatID - 1]); 2951 } 2952 } else if (hasImplicitComdat(RawLinkage)) { 2953 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2954 } 2955 break; 2956 } 2957 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2958 // alignment, section, visibility, gc, unnamed_addr, 2959 // prologuedata, dllstorageclass, comdat, prefixdata] 2960 case bitc::MODULE_CODE_FUNCTION: { 2961 if (Record.size() < 8) 2962 return Error("Invalid record"); 2963 Type *Ty = getTypeByID(Record[0]); 2964 if (!Ty) 2965 return Error("Invalid record"); 2966 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2967 Ty = PTy->getElementType(); 2968 auto *FTy = dyn_cast<FunctionType>(Ty); 2969 if (!FTy) 2970 return Error("Invalid type for value"); 2971 2972 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2973 "", TheModule); 2974 2975 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2976 bool isProto = Record[2]; 2977 uint64_t RawLinkage = Record[3]; 2978 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2979 Func->setAttributes(getAttributes(Record[4])); 2980 2981 unsigned Alignment; 2982 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2983 return EC; 2984 Func->setAlignment(Alignment); 2985 if (Record[6]) { 2986 if (Record[6]-1 >= SectionTable.size()) 2987 return Error("Invalid ID"); 2988 Func->setSection(SectionTable[Record[6]-1]); 2989 } 2990 // Local linkage must have default visibility. 2991 if (!Func->hasLocalLinkage()) 2992 // FIXME: Change to an error if non-default in 4.0. 2993 Func->setVisibility(GetDecodedVisibility(Record[7])); 2994 if (Record.size() > 8 && Record[8]) { 2995 if (Record[8]-1 >= GCTable.size()) 2996 return Error("Invalid ID"); 2997 Func->setGC(GCTable[Record[8]-1].c_str()); 2998 } 2999 bool UnnamedAddr = false; 3000 if (Record.size() > 9) 3001 UnnamedAddr = Record[9]; 3002 Func->setUnnamedAddr(UnnamedAddr); 3003 if (Record.size() > 10 && Record[10] != 0) 3004 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3005 3006 if (Record.size() > 11) 3007 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3008 else 3009 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3010 3011 if (Record.size() > 12) { 3012 if (unsigned ComdatID = Record[12]) { 3013 assert(ComdatID <= ComdatList.size()); 3014 Func->setComdat(ComdatList[ComdatID - 1]); 3015 } 3016 } else if (hasImplicitComdat(RawLinkage)) { 3017 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3018 } 3019 3020 if (Record.size() > 13 && Record[13] != 0) 3021 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3022 3023 ValueList.push_back(Func); 3024 3025 // If this is a function with a body, remember the prototype we are 3026 // creating now, so that we can match up the body with them later. 3027 if (!isProto) { 3028 Func->setIsMaterializable(true); 3029 FunctionsWithBodies.push_back(Func); 3030 if (LazyStreamer) 3031 DeferredFunctionInfo[Func] = 0; 3032 } 3033 break; 3034 } 3035 // ALIAS: [alias type, aliasee val#, linkage] 3036 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3037 case bitc::MODULE_CODE_ALIAS: { 3038 if (Record.size() < 3) 3039 return Error("Invalid record"); 3040 Type *Ty = getTypeByID(Record[0]); 3041 if (!Ty) 3042 return Error("Invalid record"); 3043 auto *PTy = dyn_cast<PointerType>(Ty); 3044 if (!PTy) 3045 return Error("Invalid type for value"); 3046 3047 auto *NewGA = 3048 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3049 // Old bitcode files didn't have visibility field. 3050 // Local linkage must have default visibility. 3051 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3052 // FIXME: Change to an error if non-default in 4.0. 3053 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3054 if (Record.size() > 4) 3055 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3056 else 3057 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3058 if (Record.size() > 5) 3059 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3060 if (Record.size() > 6) 3061 NewGA->setUnnamedAddr(Record[6]); 3062 ValueList.push_back(NewGA); 3063 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3064 break; 3065 } 3066 /// MODULE_CODE_PURGEVALS: [numvals] 3067 case bitc::MODULE_CODE_PURGEVALS: 3068 // Trim down the value list to the specified size. 3069 if (Record.size() < 1 || Record[0] > ValueList.size()) 3070 return Error("Invalid record"); 3071 ValueList.shrinkTo(Record[0]); 3072 break; 3073 } 3074 Record.clear(); 3075 } 3076 } 3077 3078 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3079 bool ShouldLazyLoadMetadata) { 3080 TheModule = nullptr; 3081 3082 if (std::error_code EC = InitStream()) 3083 return EC; 3084 3085 // Sniff for the signature. 3086 if (Stream.Read(8) != 'B' || 3087 Stream.Read(8) != 'C' || 3088 Stream.Read(4) != 0x0 || 3089 Stream.Read(4) != 0xC || 3090 Stream.Read(4) != 0xE || 3091 Stream.Read(4) != 0xD) 3092 return Error("Invalid bitcode signature"); 3093 3094 // We expect a number of well-defined blocks, though we don't necessarily 3095 // need to understand them all. 3096 while (1) { 3097 if (Stream.AtEndOfStream()) { 3098 if (TheModule) 3099 return std::error_code(); 3100 // We didn't really read a proper Module. 3101 return Error("Malformed IR file"); 3102 } 3103 3104 BitstreamEntry Entry = 3105 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3106 3107 switch (Entry.Kind) { 3108 case BitstreamEntry::Error: 3109 return Error("Malformed block"); 3110 case BitstreamEntry::EndBlock: 3111 return std::error_code(); 3112 3113 case BitstreamEntry::SubBlock: 3114 switch (Entry.ID) { 3115 case bitc::BLOCKINFO_BLOCK_ID: 3116 if (Stream.ReadBlockInfoBlock()) 3117 return Error("Malformed block"); 3118 break; 3119 case bitc::MODULE_BLOCK_ID: 3120 // Reject multiple MODULE_BLOCK's in a single bitstream. 3121 if (TheModule) 3122 return Error("Invalid multiple blocks"); 3123 TheModule = M; 3124 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3125 return EC; 3126 if (LazyStreamer) 3127 return std::error_code(); 3128 break; 3129 default: 3130 if (Stream.SkipBlock()) 3131 return Error("Invalid record"); 3132 break; 3133 } 3134 continue; 3135 case BitstreamEntry::Record: 3136 // There should be no records in the top-level of blocks. 3137 3138 // The ranlib in Xcode 4 will align archive members by appending newlines 3139 // to the end of them. If this file size is a multiple of 4 but not 8, we 3140 // have to read and ignore these final 4 bytes :-( 3141 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3142 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3143 Stream.AtEndOfStream()) 3144 return std::error_code(); 3145 3146 return Error("Invalid record"); 3147 } 3148 } 3149 } 3150 3151 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3152 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3153 return Error("Invalid record"); 3154 3155 SmallVector<uint64_t, 64> Record; 3156 3157 std::string Triple; 3158 // Read all the records for this module. 3159 while (1) { 3160 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3161 3162 switch (Entry.Kind) { 3163 case BitstreamEntry::SubBlock: // Handled for us already. 3164 case BitstreamEntry::Error: 3165 return Error("Malformed block"); 3166 case BitstreamEntry::EndBlock: 3167 return Triple; 3168 case BitstreamEntry::Record: 3169 // The interesting case. 3170 break; 3171 } 3172 3173 // Read a record. 3174 switch (Stream.readRecord(Entry.ID, Record)) { 3175 default: break; // Default behavior, ignore unknown content. 3176 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3177 std::string S; 3178 if (ConvertToString(Record, 0, S)) 3179 return Error("Invalid record"); 3180 Triple = S; 3181 break; 3182 } 3183 } 3184 Record.clear(); 3185 } 3186 llvm_unreachable("Exit infinite loop"); 3187 } 3188 3189 ErrorOr<std::string> BitcodeReader::parseTriple() { 3190 if (std::error_code EC = InitStream()) 3191 return EC; 3192 3193 // Sniff for the signature. 3194 if (Stream.Read(8) != 'B' || 3195 Stream.Read(8) != 'C' || 3196 Stream.Read(4) != 0x0 || 3197 Stream.Read(4) != 0xC || 3198 Stream.Read(4) != 0xE || 3199 Stream.Read(4) != 0xD) 3200 return Error("Invalid bitcode signature"); 3201 3202 // We expect a number of well-defined blocks, though we don't necessarily 3203 // need to understand them all. 3204 while (1) { 3205 BitstreamEntry Entry = Stream.advance(); 3206 3207 switch (Entry.Kind) { 3208 case BitstreamEntry::Error: 3209 return Error("Malformed block"); 3210 case BitstreamEntry::EndBlock: 3211 return std::error_code(); 3212 3213 case BitstreamEntry::SubBlock: 3214 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3215 return parseModuleTriple(); 3216 3217 // Ignore other sub-blocks. 3218 if (Stream.SkipBlock()) 3219 return Error("Malformed block"); 3220 continue; 3221 3222 case BitstreamEntry::Record: 3223 Stream.skipRecord(Entry.ID); 3224 continue; 3225 } 3226 } 3227 } 3228 3229 /// ParseMetadataAttachment - Parse metadata attachments. 3230 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3231 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3232 return Error("Invalid record"); 3233 3234 SmallVector<uint64_t, 64> Record; 3235 while (1) { 3236 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3237 3238 switch (Entry.Kind) { 3239 case BitstreamEntry::SubBlock: // Handled for us already. 3240 case BitstreamEntry::Error: 3241 return Error("Malformed block"); 3242 case BitstreamEntry::EndBlock: 3243 return std::error_code(); 3244 case BitstreamEntry::Record: 3245 // The interesting case. 3246 break; 3247 } 3248 3249 // Read a metadata attachment record. 3250 Record.clear(); 3251 switch (Stream.readRecord(Entry.ID, Record)) { 3252 default: // Default behavior: ignore. 3253 break; 3254 case bitc::METADATA_ATTACHMENT: { 3255 unsigned RecordLength = Record.size(); 3256 if (Record.empty()) 3257 return Error("Invalid record"); 3258 if (RecordLength % 2 == 0) { 3259 // A function attachment. 3260 for (unsigned I = 0; I != RecordLength; I += 2) { 3261 auto K = MDKindMap.find(Record[I]); 3262 if (K == MDKindMap.end()) 3263 return Error("Invalid ID"); 3264 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3265 F.setMetadata(K->second, cast<MDNode>(MD)); 3266 } 3267 continue; 3268 } 3269 3270 // An instruction attachment. 3271 Instruction *Inst = InstructionList[Record[0]]; 3272 for (unsigned i = 1; i != RecordLength; i = i+2) { 3273 unsigned Kind = Record[i]; 3274 DenseMap<unsigned, unsigned>::iterator I = 3275 MDKindMap.find(Kind); 3276 if (I == MDKindMap.end()) 3277 return Error("Invalid ID"); 3278 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3279 if (isa<LocalAsMetadata>(Node)) 3280 // Drop the attachment. This used to be legal, but there's no 3281 // upgrade path. 3282 break; 3283 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3284 if (I->second == LLVMContext::MD_tbaa) 3285 InstsWithTBAATag.push_back(Inst); 3286 } 3287 break; 3288 } 3289 } 3290 } 3291 } 3292 3293 /// ParseFunctionBody - Lazily parse the specified function body block. 3294 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3295 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3296 return Error("Invalid record"); 3297 3298 InstructionList.clear(); 3299 unsigned ModuleValueListSize = ValueList.size(); 3300 unsigned ModuleMDValueListSize = MDValueList.size(); 3301 3302 // Add all the function arguments to the value table. 3303 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3304 ValueList.push_back(I); 3305 3306 unsigned NextValueNo = ValueList.size(); 3307 BasicBlock *CurBB = nullptr; 3308 unsigned CurBBNo = 0; 3309 3310 DebugLoc LastLoc; 3311 auto getLastInstruction = [&]() -> Instruction * { 3312 if (CurBB && !CurBB->empty()) 3313 return &CurBB->back(); 3314 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3315 !FunctionBBs[CurBBNo - 1]->empty()) 3316 return &FunctionBBs[CurBBNo - 1]->back(); 3317 return nullptr; 3318 }; 3319 3320 // Read all the records. 3321 SmallVector<uint64_t, 64> Record; 3322 while (1) { 3323 BitstreamEntry Entry = Stream.advance(); 3324 3325 switch (Entry.Kind) { 3326 case BitstreamEntry::Error: 3327 return Error("Malformed block"); 3328 case BitstreamEntry::EndBlock: 3329 goto OutOfRecordLoop; 3330 3331 case BitstreamEntry::SubBlock: 3332 switch (Entry.ID) { 3333 default: // Skip unknown content. 3334 if (Stream.SkipBlock()) 3335 return Error("Invalid record"); 3336 break; 3337 case bitc::CONSTANTS_BLOCK_ID: 3338 if (std::error_code EC = ParseConstants()) 3339 return EC; 3340 NextValueNo = ValueList.size(); 3341 break; 3342 case bitc::VALUE_SYMTAB_BLOCK_ID: 3343 if (std::error_code EC = ParseValueSymbolTable()) 3344 return EC; 3345 break; 3346 case bitc::METADATA_ATTACHMENT_ID: 3347 if (std::error_code EC = ParseMetadataAttachment(*F)) 3348 return EC; 3349 break; 3350 case bitc::METADATA_BLOCK_ID: 3351 if (std::error_code EC = ParseMetadata()) 3352 return EC; 3353 break; 3354 case bitc::USELIST_BLOCK_ID: 3355 if (std::error_code EC = ParseUseLists()) 3356 return EC; 3357 break; 3358 } 3359 continue; 3360 3361 case BitstreamEntry::Record: 3362 // The interesting case. 3363 break; 3364 } 3365 3366 // Read a record. 3367 Record.clear(); 3368 Instruction *I = nullptr; 3369 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3370 switch (BitCode) { 3371 default: // Default behavior: reject 3372 return Error("Invalid value"); 3373 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3374 if (Record.size() < 1 || Record[0] == 0) 3375 return Error("Invalid record"); 3376 // Create all the basic blocks for the function. 3377 FunctionBBs.resize(Record[0]); 3378 3379 // See if anything took the address of blocks in this function. 3380 auto BBFRI = BasicBlockFwdRefs.find(F); 3381 if (BBFRI == BasicBlockFwdRefs.end()) { 3382 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3383 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3384 } else { 3385 auto &BBRefs = BBFRI->second; 3386 // Check for invalid basic block references. 3387 if (BBRefs.size() > FunctionBBs.size()) 3388 return Error("Invalid ID"); 3389 assert(!BBRefs.empty() && "Unexpected empty array"); 3390 assert(!BBRefs.front() && "Invalid reference to entry block"); 3391 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3392 ++I) 3393 if (I < RE && BBRefs[I]) { 3394 BBRefs[I]->insertInto(F); 3395 FunctionBBs[I] = BBRefs[I]; 3396 } else { 3397 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3398 } 3399 3400 // Erase from the table. 3401 BasicBlockFwdRefs.erase(BBFRI); 3402 } 3403 3404 CurBB = FunctionBBs[0]; 3405 continue; 3406 } 3407 3408 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3409 // This record indicates that the last instruction is at the same 3410 // location as the previous instruction with a location. 3411 I = getLastInstruction(); 3412 3413 if (!I) 3414 return Error("Invalid record"); 3415 I->setDebugLoc(LastLoc); 3416 I = nullptr; 3417 continue; 3418 3419 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3420 I = getLastInstruction(); 3421 if (!I || Record.size() < 4) 3422 return Error("Invalid record"); 3423 3424 unsigned Line = Record[0], Col = Record[1]; 3425 unsigned ScopeID = Record[2], IAID = Record[3]; 3426 3427 MDNode *Scope = nullptr, *IA = nullptr; 3428 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3429 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3430 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3431 I->setDebugLoc(LastLoc); 3432 I = nullptr; 3433 continue; 3434 } 3435 3436 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3437 unsigned OpNum = 0; 3438 Value *LHS, *RHS; 3439 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3440 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3441 OpNum+1 > Record.size()) 3442 return Error("Invalid record"); 3443 3444 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3445 if (Opc == -1) 3446 return Error("Invalid record"); 3447 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3448 InstructionList.push_back(I); 3449 if (OpNum < Record.size()) { 3450 if (Opc == Instruction::Add || 3451 Opc == Instruction::Sub || 3452 Opc == Instruction::Mul || 3453 Opc == Instruction::Shl) { 3454 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3455 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3456 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3457 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3458 } else if (Opc == Instruction::SDiv || 3459 Opc == Instruction::UDiv || 3460 Opc == Instruction::LShr || 3461 Opc == Instruction::AShr) { 3462 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3463 cast<BinaryOperator>(I)->setIsExact(true); 3464 } else if (isa<FPMathOperator>(I)) { 3465 FastMathFlags FMF; 3466 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3467 FMF.setUnsafeAlgebra(); 3468 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3469 FMF.setNoNaNs(); 3470 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3471 FMF.setNoInfs(); 3472 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3473 FMF.setNoSignedZeros(); 3474 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3475 FMF.setAllowReciprocal(); 3476 if (FMF.any()) 3477 I->setFastMathFlags(FMF); 3478 } 3479 3480 } 3481 break; 3482 } 3483 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3484 unsigned OpNum = 0; 3485 Value *Op; 3486 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3487 OpNum+2 != Record.size()) 3488 return Error("Invalid record"); 3489 3490 Type *ResTy = getTypeByID(Record[OpNum]); 3491 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3492 if (Opc == -1 || !ResTy) 3493 return Error("Invalid record"); 3494 Instruction *Temp = nullptr; 3495 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3496 if (Temp) { 3497 InstructionList.push_back(Temp); 3498 CurBB->getInstList().push_back(Temp); 3499 } 3500 } else { 3501 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3502 } 3503 InstructionList.push_back(I); 3504 break; 3505 } 3506 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3507 case bitc::FUNC_CODE_INST_GEP_OLD: 3508 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3509 unsigned OpNum = 0; 3510 3511 Type *Ty; 3512 bool InBounds; 3513 3514 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3515 InBounds = Record[OpNum++]; 3516 Ty = getTypeByID(Record[OpNum++]); 3517 } else { 3518 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3519 Ty = nullptr; 3520 } 3521 3522 Value *BasePtr; 3523 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3524 return Error("Invalid record"); 3525 3526 if (Ty && 3527 Ty != 3528 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3529 ->getElementType()) 3530 return Error( 3531 "Explicit gep type does not match pointee type of pointer operand"); 3532 3533 SmallVector<Value*, 16> GEPIdx; 3534 while (OpNum != Record.size()) { 3535 Value *Op; 3536 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3537 return Error("Invalid record"); 3538 GEPIdx.push_back(Op); 3539 } 3540 3541 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3542 3543 InstructionList.push_back(I); 3544 if (InBounds) 3545 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3546 break; 3547 } 3548 3549 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3550 // EXTRACTVAL: [opty, opval, n x indices] 3551 unsigned OpNum = 0; 3552 Value *Agg; 3553 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3554 return Error("Invalid record"); 3555 3556 SmallVector<unsigned, 4> EXTRACTVALIdx; 3557 Type *CurTy = Agg->getType(); 3558 for (unsigned RecSize = Record.size(); 3559 OpNum != RecSize; ++OpNum) { 3560 bool IsArray = CurTy->isArrayTy(); 3561 bool IsStruct = CurTy->isStructTy(); 3562 uint64_t Index = Record[OpNum]; 3563 3564 if (!IsStruct && !IsArray) 3565 return Error("EXTRACTVAL: Invalid type"); 3566 if ((unsigned)Index != Index) 3567 return Error("Invalid value"); 3568 if (IsStruct && Index >= CurTy->subtypes().size()) 3569 return Error("EXTRACTVAL: Invalid struct index"); 3570 if (IsArray && Index >= CurTy->getArrayNumElements()) 3571 return Error("EXTRACTVAL: Invalid array index"); 3572 EXTRACTVALIdx.push_back((unsigned)Index); 3573 3574 if (IsStruct) 3575 CurTy = CurTy->subtypes()[Index]; 3576 else 3577 CurTy = CurTy->subtypes()[0]; 3578 } 3579 3580 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3581 InstructionList.push_back(I); 3582 break; 3583 } 3584 3585 case bitc::FUNC_CODE_INST_INSERTVAL: { 3586 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3587 unsigned OpNum = 0; 3588 Value *Agg; 3589 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3590 return Error("Invalid record"); 3591 Value *Val; 3592 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3593 return Error("Invalid record"); 3594 3595 SmallVector<unsigned, 4> INSERTVALIdx; 3596 Type *CurTy = Agg->getType(); 3597 for (unsigned RecSize = Record.size(); 3598 OpNum != RecSize; ++OpNum) { 3599 bool IsArray = CurTy->isArrayTy(); 3600 bool IsStruct = CurTy->isStructTy(); 3601 uint64_t Index = Record[OpNum]; 3602 3603 if (!IsStruct && !IsArray) 3604 return Error("INSERTVAL: Invalid type"); 3605 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3606 return Error("Invalid type"); 3607 if ((unsigned)Index != Index) 3608 return Error("Invalid value"); 3609 if (IsStruct && Index >= CurTy->subtypes().size()) 3610 return Error("INSERTVAL: Invalid struct index"); 3611 if (IsArray && Index >= CurTy->getArrayNumElements()) 3612 return Error("INSERTVAL: Invalid array index"); 3613 3614 INSERTVALIdx.push_back((unsigned)Index); 3615 if (IsStruct) 3616 CurTy = CurTy->subtypes()[Index]; 3617 else 3618 CurTy = CurTy->subtypes()[0]; 3619 } 3620 3621 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3622 InstructionList.push_back(I); 3623 break; 3624 } 3625 3626 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3627 // obsolete form of select 3628 // handles select i1 ... in old bitcode 3629 unsigned OpNum = 0; 3630 Value *TrueVal, *FalseVal, *Cond; 3631 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3632 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3633 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3634 return Error("Invalid record"); 3635 3636 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3637 InstructionList.push_back(I); 3638 break; 3639 } 3640 3641 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3642 // new form of select 3643 // handles select i1 or select [N x i1] 3644 unsigned OpNum = 0; 3645 Value *TrueVal, *FalseVal, *Cond; 3646 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3647 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3648 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3649 return Error("Invalid record"); 3650 3651 // select condition can be either i1 or [N x i1] 3652 if (VectorType* vector_type = 3653 dyn_cast<VectorType>(Cond->getType())) { 3654 // expect <n x i1> 3655 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3656 return Error("Invalid type for value"); 3657 } else { 3658 // expect i1 3659 if (Cond->getType() != Type::getInt1Ty(Context)) 3660 return Error("Invalid type for value"); 3661 } 3662 3663 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3664 InstructionList.push_back(I); 3665 break; 3666 } 3667 3668 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3669 unsigned OpNum = 0; 3670 Value *Vec, *Idx; 3671 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3672 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3673 return Error("Invalid record"); 3674 if (!Vec->getType()->isVectorTy()) 3675 return Error("Invalid type for value"); 3676 I = ExtractElementInst::Create(Vec, Idx); 3677 InstructionList.push_back(I); 3678 break; 3679 } 3680 3681 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3682 unsigned OpNum = 0; 3683 Value *Vec, *Elt, *Idx; 3684 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3685 return Error("Invalid record"); 3686 if (!Vec->getType()->isVectorTy()) 3687 return Error("Invalid type for value"); 3688 if (popValue(Record, OpNum, NextValueNo, 3689 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3690 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3691 return Error("Invalid record"); 3692 I = InsertElementInst::Create(Vec, Elt, Idx); 3693 InstructionList.push_back(I); 3694 break; 3695 } 3696 3697 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3698 unsigned OpNum = 0; 3699 Value *Vec1, *Vec2, *Mask; 3700 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3701 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3702 return Error("Invalid record"); 3703 3704 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3705 return Error("Invalid record"); 3706 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3707 return Error("Invalid type for value"); 3708 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3709 InstructionList.push_back(I); 3710 break; 3711 } 3712 3713 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3714 // Old form of ICmp/FCmp returning bool 3715 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3716 // both legal on vectors but had different behaviour. 3717 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3718 // FCmp/ICmp returning bool or vector of bool 3719 3720 unsigned OpNum = 0; 3721 Value *LHS, *RHS; 3722 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3723 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3724 OpNum+1 != Record.size()) 3725 return Error("Invalid record"); 3726 3727 if (LHS->getType()->isFPOrFPVectorTy()) 3728 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3729 else 3730 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3731 InstructionList.push_back(I); 3732 break; 3733 } 3734 3735 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3736 { 3737 unsigned Size = Record.size(); 3738 if (Size == 0) { 3739 I = ReturnInst::Create(Context); 3740 InstructionList.push_back(I); 3741 break; 3742 } 3743 3744 unsigned OpNum = 0; 3745 Value *Op = nullptr; 3746 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3747 return Error("Invalid record"); 3748 if (OpNum != Record.size()) 3749 return Error("Invalid record"); 3750 3751 I = ReturnInst::Create(Context, Op); 3752 InstructionList.push_back(I); 3753 break; 3754 } 3755 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3756 if (Record.size() != 1 && Record.size() != 3) 3757 return Error("Invalid record"); 3758 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3759 if (!TrueDest) 3760 return Error("Invalid record"); 3761 3762 if (Record.size() == 1) { 3763 I = BranchInst::Create(TrueDest); 3764 InstructionList.push_back(I); 3765 } 3766 else { 3767 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3768 Value *Cond = getValue(Record, 2, NextValueNo, 3769 Type::getInt1Ty(Context)); 3770 if (!FalseDest || !Cond) 3771 return Error("Invalid record"); 3772 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3773 InstructionList.push_back(I); 3774 } 3775 break; 3776 } 3777 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3778 // Check magic 3779 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3780 // "New" SwitchInst format with case ranges. The changes to write this 3781 // format were reverted but we still recognize bitcode that uses it. 3782 // Hopefully someday we will have support for case ranges and can use 3783 // this format again. 3784 3785 Type *OpTy = getTypeByID(Record[1]); 3786 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3787 3788 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3789 BasicBlock *Default = getBasicBlock(Record[3]); 3790 if (!OpTy || !Cond || !Default) 3791 return Error("Invalid record"); 3792 3793 unsigned NumCases = Record[4]; 3794 3795 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3796 InstructionList.push_back(SI); 3797 3798 unsigned CurIdx = 5; 3799 for (unsigned i = 0; i != NumCases; ++i) { 3800 SmallVector<ConstantInt*, 1> CaseVals; 3801 unsigned NumItems = Record[CurIdx++]; 3802 for (unsigned ci = 0; ci != NumItems; ++ci) { 3803 bool isSingleNumber = Record[CurIdx++]; 3804 3805 APInt Low; 3806 unsigned ActiveWords = 1; 3807 if (ValueBitWidth > 64) 3808 ActiveWords = Record[CurIdx++]; 3809 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3810 ValueBitWidth); 3811 CurIdx += ActiveWords; 3812 3813 if (!isSingleNumber) { 3814 ActiveWords = 1; 3815 if (ValueBitWidth > 64) 3816 ActiveWords = Record[CurIdx++]; 3817 APInt High = 3818 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3819 ValueBitWidth); 3820 CurIdx += ActiveWords; 3821 3822 // FIXME: It is not clear whether values in the range should be 3823 // compared as signed or unsigned values. The partially 3824 // implemented changes that used this format in the past used 3825 // unsigned comparisons. 3826 for ( ; Low.ule(High); ++Low) 3827 CaseVals.push_back(ConstantInt::get(Context, Low)); 3828 } else 3829 CaseVals.push_back(ConstantInt::get(Context, Low)); 3830 } 3831 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3832 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3833 cve = CaseVals.end(); cvi != cve; ++cvi) 3834 SI->addCase(*cvi, DestBB); 3835 } 3836 I = SI; 3837 break; 3838 } 3839 3840 // Old SwitchInst format without case ranges. 3841 3842 if (Record.size() < 3 || (Record.size() & 1) == 0) 3843 return Error("Invalid record"); 3844 Type *OpTy = getTypeByID(Record[0]); 3845 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3846 BasicBlock *Default = getBasicBlock(Record[2]); 3847 if (!OpTy || !Cond || !Default) 3848 return Error("Invalid record"); 3849 unsigned NumCases = (Record.size()-3)/2; 3850 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3851 InstructionList.push_back(SI); 3852 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3853 ConstantInt *CaseVal = 3854 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3855 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3856 if (!CaseVal || !DestBB) { 3857 delete SI; 3858 return Error("Invalid record"); 3859 } 3860 SI->addCase(CaseVal, DestBB); 3861 } 3862 I = SI; 3863 break; 3864 } 3865 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3866 if (Record.size() < 2) 3867 return Error("Invalid record"); 3868 Type *OpTy = getTypeByID(Record[0]); 3869 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3870 if (!OpTy || !Address) 3871 return Error("Invalid record"); 3872 unsigned NumDests = Record.size()-2; 3873 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3874 InstructionList.push_back(IBI); 3875 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3876 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3877 IBI->addDestination(DestBB); 3878 } else { 3879 delete IBI; 3880 return Error("Invalid record"); 3881 } 3882 } 3883 I = IBI; 3884 break; 3885 } 3886 3887 case bitc::FUNC_CODE_INST_INVOKE: { 3888 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3889 if (Record.size() < 4) 3890 return Error("Invalid record"); 3891 unsigned OpNum = 0; 3892 AttributeSet PAL = getAttributes(Record[OpNum++]); 3893 unsigned CCInfo = Record[OpNum++]; 3894 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3895 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3896 3897 FunctionType *FTy = nullptr; 3898 if (CCInfo >> 13 & 1 && 3899 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3900 return Error("Explicit invoke type is not a function type"); 3901 3902 Value *Callee; 3903 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3904 return Error("Invalid record"); 3905 3906 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3907 if (!CalleeTy) 3908 return Error("Callee is not a pointer"); 3909 if (!FTy) { 3910 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3911 if (!FTy) 3912 return Error("Callee is not of pointer to function type"); 3913 } else if (CalleeTy->getElementType() != FTy) 3914 return Error("Explicit invoke type does not match pointee type of " 3915 "callee operand"); 3916 if (Record.size() < FTy->getNumParams() + OpNum) 3917 return Error("Insufficient operands to call"); 3918 3919 SmallVector<Value*, 16> Ops; 3920 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3921 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3922 FTy->getParamType(i))); 3923 if (!Ops.back()) 3924 return Error("Invalid record"); 3925 } 3926 3927 if (!FTy->isVarArg()) { 3928 if (Record.size() != OpNum) 3929 return Error("Invalid record"); 3930 } else { 3931 // Read type/value pairs for varargs params. 3932 while (OpNum != Record.size()) { 3933 Value *Op; 3934 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3935 return Error("Invalid record"); 3936 Ops.push_back(Op); 3937 } 3938 } 3939 3940 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3941 InstructionList.push_back(I); 3942 cast<InvokeInst>(I) 3943 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3944 cast<InvokeInst>(I)->setAttributes(PAL); 3945 break; 3946 } 3947 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3948 unsigned Idx = 0; 3949 Value *Val = nullptr; 3950 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3951 return Error("Invalid record"); 3952 I = ResumeInst::Create(Val); 3953 InstructionList.push_back(I); 3954 break; 3955 } 3956 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3957 I = new UnreachableInst(Context); 3958 InstructionList.push_back(I); 3959 break; 3960 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3961 if (Record.size() < 1 || ((Record.size()-1)&1)) 3962 return Error("Invalid record"); 3963 Type *Ty = getTypeByID(Record[0]); 3964 if (!Ty) 3965 return Error("Invalid record"); 3966 3967 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3968 InstructionList.push_back(PN); 3969 3970 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3971 Value *V; 3972 // With the new function encoding, it is possible that operands have 3973 // negative IDs (for forward references). Use a signed VBR 3974 // representation to keep the encoding small. 3975 if (UseRelativeIDs) 3976 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3977 else 3978 V = getValue(Record, 1+i, NextValueNo, Ty); 3979 BasicBlock *BB = getBasicBlock(Record[2+i]); 3980 if (!V || !BB) 3981 return Error("Invalid record"); 3982 PN->addIncoming(V, BB); 3983 } 3984 I = PN; 3985 break; 3986 } 3987 3988 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3989 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3990 unsigned Idx = 0; 3991 if (Record.size() < 4) 3992 return Error("Invalid record"); 3993 Type *Ty = getTypeByID(Record[Idx++]); 3994 if (!Ty) 3995 return Error("Invalid record"); 3996 Value *PersFn = nullptr; 3997 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3998 return Error("Invalid record"); 3999 4000 bool IsCleanup = !!Record[Idx++]; 4001 unsigned NumClauses = Record[Idx++]; 4002 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4003 LP->setCleanup(IsCleanup); 4004 for (unsigned J = 0; J != NumClauses; ++J) { 4005 LandingPadInst::ClauseType CT = 4006 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4007 Value *Val; 4008 4009 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4010 delete LP; 4011 return Error("Invalid record"); 4012 } 4013 4014 assert((CT != LandingPadInst::Catch || 4015 !isa<ArrayType>(Val->getType())) && 4016 "Catch clause has a invalid type!"); 4017 assert((CT != LandingPadInst::Filter || 4018 isa<ArrayType>(Val->getType())) && 4019 "Filter clause has invalid type!"); 4020 LP->addClause(cast<Constant>(Val)); 4021 } 4022 4023 I = LP; 4024 InstructionList.push_back(I); 4025 break; 4026 } 4027 4028 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4029 if (Record.size() != 4) 4030 return Error("Invalid record"); 4031 uint64_t AlignRecord = Record[3]; 4032 const uint64_t InAllocaMask = uint64_t(1) << 5; 4033 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4034 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4035 bool InAlloca = AlignRecord & InAllocaMask; 4036 Type *Ty = getTypeByID(Record[0]); 4037 if ((AlignRecord & ExplicitTypeMask) == 0) { 4038 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4039 if (!PTy) 4040 return Error("Old-style alloca with a non-pointer type"); 4041 Ty = PTy->getElementType(); 4042 } 4043 Type *OpTy = getTypeByID(Record[1]); 4044 Value *Size = getFnValueByID(Record[2], OpTy); 4045 unsigned Align; 4046 if (std::error_code EC = 4047 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4048 return EC; 4049 } 4050 if (!Ty || !Size) 4051 return Error("Invalid record"); 4052 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4053 AI->setUsedWithInAlloca(InAlloca); 4054 I = AI; 4055 InstructionList.push_back(I); 4056 break; 4057 } 4058 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4059 unsigned OpNum = 0; 4060 Value *Op; 4061 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4062 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4063 return Error("Invalid record"); 4064 4065 Type *Ty = nullptr; 4066 if (OpNum + 3 == Record.size()) 4067 Ty = getTypeByID(Record[OpNum++]); 4068 if (!isa<PointerType>(Op->getType())) 4069 return Error("Load operand is not a pointer type"); 4070 if (!Ty) 4071 Ty = cast<PointerType>(Op->getType())->getElementType(); 4072 else if (Ty != cast<PointerType>(Op->getType())->getElementType()) 4073 return Error("Explicit load type does not match pointee type of " 4074 "pointer operand"); 4075 4076 unsigned Align; 4077 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4078 return EC; 4079 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4080 4081 InstructionList.push_back(I); 4082 break; 4083 } 4084 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4085 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4086 unsigned OpNum = 0; 4087 Value *Op; 4088 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4089 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4090 return Error("Invalid record"); 4091 4092 Type *Ty = nullptr; 4093 if (OpNum + 5 == Record.size()) 4094 Ty = getTypeByID(Record[OpNum++]); 4095 4096 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4097 if (Ordering == NotAtomic || Ordering == Release || 4098 Ordering == AcquireRelease) 4099 return Error("Invalid record"); 4100 if (Ordering != NotAtomic && Record[OpNum] == 0) 4101 return Error("Invalid record"); 4102 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4103 4104 unsigned Align; 4105 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4106 return EC; 4107 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4108 4109 (void)Ty; 4110 assert((!Ty || Ty == I->getType()) && 4111 "Explicit type doesn't match pointee type of the first operand"); 4112 4113 InstructionList.push_back(I); 4114 break; 4115 } 4116 case bitc::FUNC_CODE_INST_STORE: 4117 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4118 unsigned OpNum = 0; 4119 Value *Val, *Ptr; 4120 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4121 (BitCode == bitc::FUNC_CODE_INST_STORE 4122 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4123 : popValue(Record, OpNum, NextValueNo, 4124 cast<PointerType>(Ptr->getType())->getElementType(), 4125 Val)) || 4126 OpNum + 2 != Record.size()) 4127 return Error("Invalid record"); 4128 unsigned Align; 4129 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4130 return EC; 4131 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4132 InstructionList.push_back(I); 4133 break; 4134 } 4135 case bitc::FUNC_CODE_INST_STOREATOMIC: 4136 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4137 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4138 unsigned OpNum = 0; 4139 Value *Val, *Ptr; 4140 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4141 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4142 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4143 : popValue(Record, OpNum, NextValueNo, 4144 cast<PointerType>(Ptr->getType())->getElementType(), 4145 Val)) || 4146 OpNum + 4 != Record.size()) 4147 return Error("Invalid record"); 4148 4149 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4150 if (Ordering == NotAtomic || Ordering == Acquire || 4151 Ordering == AcquireRelease) 4152 return Error("Invalid record"); 4153 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4154 if (Ordering != NotAtomic && Record[OpNum] == 0) 4155 return Error("Invalid record"); 4156 4157 unsigned Align; 4158 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4159 return EC; 4160 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4161 InstructionList.push_back(I); 4162 break; 4163 } 4164 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4165 case bitc::FUNC_CODE_INST_CMPXCHG: { 4166 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4167 // failureordering?, isweak?] 4168 unsigned OpNum = 0; 4169 Value *Ptr, *Cmp, *New; 4170 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4171 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4172 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4173 : popValue(Record, OpNum, NextValueNo, 4174 cast<PointerType>(Ptr->getType())->getElementType(), 4175 Cmp)) || 4176 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4177 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4178 return Error("Invalid record"); 4179 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4180 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4181 return Error("Invalid record"); 4182 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4183 4184 AtomicOrdering FailureOrdering; 4185 if (Record.size() < 7) 4186 FailureOrdering = 4187 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4188 else 4189 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4190 4191 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4192 SynchScope); 4193 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4194 4195 if (Record.size() < 8) { 4196 // Before weak cmpxchgs existed, the instruction simply returned the 4197 // value loaded from memory, so bitcode files from that era will be 4198 // expecting the first component of a modern cmpxchg. 4199 CurBB->getInstList().push_back(I); 4200 I = ExtractValueInst::Create(I, 0); 4201 } else { 4202 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4203 } 4204 4205 InstructionList.push_back(I); 4206 break; 4207 } 4208 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4209 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4210 unsigned OpNum = 0; 4211 Value *Ptr, *Val; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4213 popValue(Record, OpNum, NextValueNo, 4214 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4215 OpNum+4 != Record.size()) 4216 return Error("Invalid record"); 4217 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4218 if (Operation < AtomicRMWInst::FIRST_BINOP || 4219 Operation > AtomicRMWInst::LAST_BINOP) 4220 return Error("Invalid record"); 4221 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4222 if (Ordering == NotAtomic || Ordering == Unordered) 4223 return Error("Invalid record"); 4224 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4225 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4226 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4231 if (2 != Record.size()) 4232 return Error("Invalid record"); 4233 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4234 if (Ordering == NotAtomic || Ordering == Unordered || 4235 Ordering == Monotonic) 4236 return Error("Invalid record"); 4237 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4238 I = new FenceInst(Context, Ordering, SynchScope); 4239 InstructionList.push_back(I); 4240 break; 4241 } 4242 case bitc::FUNC_CODE_INST_CALL: { 4243 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4244 if (Record.size() < 3) 4245 return Error("Invalid record"); 4246 4247 unsigned OpNum = 0; 4248 AttributeSet PAL = getAttributes(Record[OpNum++]); 4249 unsigned CCInfo = Record[OpNum++]; 4250 4251 FunctionType *FTy = nullptr; 4252 if (CCInfo >> 15 & 1 && 4253 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4254 return Error("Explicit call type is not a function type"); 4255 4256 Value *Callee; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4258 return Error("Invalid record"); 4259 4260 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4261 if (!OpTy) 4262 return Error("Callee is not a pointer type"); 4263 if (!FTy) { 4264 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4265 if (!FTy) 4266 return Error("Callee is not of pointer to function type"); 4267 } else if (OpTy->getElementType() != FTy) 4268 return Error("Explicit call type does not match pointee type of " 4269 "callee operand"); 4270 if (Record.size() < FTy->getNumParams() + OpNum) 4271 return Error("Insufficient operands to call"); 4272 4273 SmallVector<Value*, 16> Args; 4274 // Read the fixed params. 4275 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4276 if (FTy->getParamType(i)->isLabelTy()) 4277 Args.push_back(getBasicBlock(Record[OpNum])); 4278 else 4279 Args.push_back(getValue(Record, OpNum, NextValueNo, 4280 FTy->getParamType(i))); 4281 if (!Args.back()) 4282 return Error("Invalid record"); 4283 } 4284 4285 // Read type/value pairs for varargs params. 4286 if (!FTy->isVarArg()) { 4287 if (OpNum != Record.size()) 4288 return Error("Invalid record"); 4289 } else { 4290 while (OpNum != Record.size()) { 4291 Value *Op; 4292 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4293 return Error("Invalid record"); 4294 Args.push_back(Op); 4295 } 4296 } 4297 4298 I = CallInst::Create(FTy, Callee, Args); 4299 InstructionList.push_back(I); 4300 cast<CallInst>(I)->setCallingConv( 4301 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4302 CallInst::TailCallKind TCK = CallInst::TCK_None; 4303 if (CCInfo & 1) 4304 TCK = CallInst::TCK_Tail; 4305 if (CCInfo & (1 << 14)) 4306 TCK = CallInst::TCK_MustTail; 4307 cast<CallInst>(I)->setTailCallKind(TCK); 4308 cast<CallInst>(I)->setAttributes(PAL); 4309 break; 4310 } 4311 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4312 if (Record.size() < 3) 4313 return Error("Invalid record"); 4314 Type *OpTy = getTypeByID(Record[0]); 4315 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4316 Type *ResTy = getTypeByID(Record[2]); 4317 if (!OpTy || !Op || !ResTy) 4318 return Error("Invalid record"); 4319 I = new VAArgInst(Op, ResTy); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 } 4324 4325 // Add instruction to end of current BB. If there is no current BB, reject 4326 // this file. 4327 if (!CurBB) { 4328 delete I; 4329 return Error("Invalid instruction with no BB"); 4330 } 4331 CurBB->getInstList().push_back(I); 4332 4333 // If this was a terminator instruction, move to the next block. 4334 if (isa<TerminatorInst>(I)) { 4335 ++CurBBNo; 4336 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4337 } 4338 4339 // Non-void values get registered in the value table for future use. 4340 if (I && !I->getType()->isVoidTy()) 4341 ValueList.AssignValue(I, NextValueNo++); 4342 } 4343 4344 OutOfRecordLoop: 4345 4346 // Check the function list for unresolved values. 4347 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4348 if (!A->getParent()) { 4349 // We found at least one unresolved value. Nuke them all to avoid leaks. 4350 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4351 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4352 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4353 delete A; 4354 } 4355 } 4356 return Error("Never resolved value found in function"); 4357 } 4358 } 4359 4360 // FIXME: Check for unresolved forward-declared metadata references 4361 // and clean up leaks. 4362 4363 // Trim the value list down to the size it was before we parsed this function. 4364 ValueList.shrinkTo(ModuleValueListSize); 4365 MDValueList.shrinkTo(ModuleMDValueListSize); 4366 std::vector<BasicBlock*>().swap(FunctionBBs); 4367 return std::error_code(); 4368 } 4369 4370 /// Find the function body in the bitcode stream 4371 std::error_code BitcodeReader::FindFunctionInStream( 4372 Function *F, 4373 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4374 while (DeferredFunctionInfoIterator->second == 0) { 4375 if (Stream.AtEndOfStream()) 4376 return Error("Could not find function in stream"); 4377 // ParseModule will parse the next body in the stream and set its 4378 // position in the DeferredFunctionInfo map. 4379 if (std::error_code EC = ParseModule(true)) 4380 return EC; 4381 } 4382 return std::error_code(); 4383 } 4384 4385 //===----------------------------------------------------------------------===// 4386 // GVMaterializer implementation 4387 //===----------------------------------------------------------------------===// 4388 4389 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4390 4391 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4392 if (std::error_code EC = materializeMetadata()) 4393 return EC; 4394 4395 Function *F = dyn_cast<Function>(GV); 4396 // If it's not a function or is already material, ignore the request. 4397 if (!F || !F->isMaterializable()) 4398 return std::error_code(); 4399 4400 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4401 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4402 // If its position is recorded as 0, its body is somewhere in the stream 4403 // but we haven't seen it yet. 4404 if (DFII->second == 0 && LazyStreamer) 4405 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4406 return EC; 4407 4408 // Move the bit stream to the saved position of the deferred function body. 4409 Stream.JumpToBit(DFII->second); 4410 4411 if (std::error_code EC = ParseFunctionBody(F)) 4412 return EC; 4413 F->setIsMaterializable(false); 4414 4415 if (StripDebugInfo) 4416 stripDebugInfo(*F); 4417 4418 // Upgrade any old intrinsic calls in the function. 4419 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4420 E = UpgradedIntrinsics.end(); I != E; ++I) { 4421 if (I->first != I->second) { 4422 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4423 UI != UE;) { 4424 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4425 UpgradeIntrinsicCall(CI, I->second); 4426 } 4427 } 4428 } 4429 4430 // Bring in any functions that this function forward-referenced via 4431 // blockaddresses. 4432 return materializeForwardReferencedFunctions(); 4433 } 4434 4435 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4436 const Function *F = dyn_cast<Function>(GV); 4437 if (!F || F->isDeclaration()) 4438 return false; 4439 4440 // Dematerializing F would leave dangling references that wouldn't be 4441 // reconnected on re-materialization. 4442 if (BlockAddressesTaken.count(F)) 4443 return false; 4444 4445 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4446 } 4447 4448 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4449 Function *F = dyn_cast<Function>(GV); 4450 // If this function isn't dematerializable, this is a noop. 4451 if (!F || !isDematerializable(F)) 4452 return; 4453 4454 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4455 4456 // Just forget the function body, we can remat it later. 4457 F->dropAllReferences(); 4458 F->setIsMaterializable(true); 4459 } 4460 4461 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4462 assert(M == TheModule && 4463 "Can only Materialize the Module this BitcodeReader is attached to."); 4464 4465 if (std::error_code EC = materializeMetadata()) 4466 return EC; 4467 4468 // Promise to materialize all forward references. 4469 WillMaterializeAllForwardRefs = true; 4470 4471 // Iterate over the module, deserializing any functions that are still on 4472 // disk. 4473 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4474 F != E; ++F) { 4475 if (std::error_code EC = materialize(F)) 4476 return EC; 4477 } 4478 // At this point, if there are any function bodies, the current bit is 4479 // pointing to the END_BLOCK record after them. Now make sure the rest 4480 // of the bits in the module have been read. 4481 if (NextUnreadBit) 4482 ParseModule(true); 4483 4484 // Check that all block address forward references got resolved (as we 4485 // promised above). 4486 if (!BasicBlockFwdRefs.empty()) 4487 return Error("Never resolved function from blockaddress"); 4488 4489 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4490 // delete the old functions to clean up. We can't do this unless the entire 4491 // module is materialized because there could always be another function body 4492 // with calls to the old function. 4493 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4494 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4495 if (I->first != I->second) { 4496 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4497 UI != UE;) { 4498 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4499 UpgradeIntrinsicCall(CI, I->second); 4500 } 4501 if (!I->first->use_empty()) 4502 I->first->replaceAllUsesWith(I->second); 4503 I->first->eraseFromParent(); 4504 } 4505 } 4506 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4507 4508 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4509 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4510 4511 UpgradeDebugInfo(*M); 4512 return std::error_code(); 4513 } 4514 4515 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4516 return IdentifiedStructTypes; 4517 } 4518 4519 std::error_code BitcodeReader::InitStream() { 4520 if (LazyStreamer) 4521 return InitLazyStream(); 4522 return InitStreamFromBuffer(); 4523 } 4524 4525 std::error_code BitcodeReader::InitStreamFromBuffer() { 4526 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4527 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4528 4529 if (Buffer->getBufferSize() & 3) 4530 return Error("Invalid bitcode signature"); 4531 4532 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4533 // The magic number is 0x0B17C0DE stored in little endian. 4534 if (isBitcodeWrapper(BufPtr, BufEnd)) 4535 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4536 return Error("Invalid bitcode wrapper header"); 4537 4538 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4539 Stream.init(&*StreamFile); 4540 4541 return std::error_code(); 4542 } 4543 4544 std::error_code BitcodeReader::InitLazyStream() { 4545 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4546 // see it. 4547 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4548 StreamingMemoryObject &Bytes = *OwnedBytes; 4549 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4550 Stream.init(&*StreamFile); 4551 4552 unsigned char buf[16]; 4553 if (Bytes.readBytes(buf, 16, 0) != 16) 4554 return Error("Invalid bitcode signature"); 4555 4556 if (!isBitcode(buf, buf + 16)) 4557 return Error("Invalid bitcode signature"); 4558 4559 if (isBitcodeWrapper(buf, buf + 4)) { 4560 const unsigned char *bitcodeStart = buf; 4561 const unsigned char *bitcodeEnd = buf + 16; 4562 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4563 Bytes.dropLeadingBytes(bitcodeStart - buf); 4564 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4565 } 4566 return std::error_code(); 4567 } 4568 4569 namespace { 4570 class BitcodeErrorCategoryType : public std::error_category { 4571 const char *name() const LLVM_NOEXCEPT override { 4572 return "llvm.bitcode"; 4573 } 4574 std::string message(int IE) const override { 4575 BitcodeError E = static_cast<BitcodeError>(IE); 4576 switch (E) { 4577 case BitcodeError::InvalidBitcodeSignature: 4578 return "Invalid bitcode signature"; 4579 case BitcodeError::CorruptedBitcode: 4580 return "Corrupted bitcode"; 4581 } 4582 llvm_unreachable("Unknown error type!"); 4583 } 4584 }; 4585 } 4586 4587 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4588 4589 const std::error_category &llvm::BitcodeErrorCategory() { 4590 return *ErrorCategory; 4591 } 4592 4593 //===----------------------------------------------------------------------===// 4594 // External interface 4595 //===----------------------------------------------------------------------===// 4596 4597 /// \brief Get a lazy one-at-time loading module from bitcode. 4598 /// 4599 /// This isn't always used in a lazy context. In particular, it's also used by 4600 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4601 /// in forward-referenced functions from block address references. 4602 /// 4603 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4604 /// materialize everything -- in particular, if this isn't truly lazy. 4605 static ErrorOr<Module *> 4606 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4607 LLVMContext &Context, bool WillMaterializeAll, 4608 DiagnosticHandlerFunction DiagnosticHandler, 4609 bool ShouldLazyLoadMetadata = false) { 4610 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4611 BitcodeReader *R = 4612 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4613 M->setMaterializer(R); 4614 4615 auto cleanupOnError = [&](std::error_code EC) { 4616 R->releaseBuffer(); // Never take ownership on error. 4617 delete M; // Also deletes R. 4618 return EC; 4619 }; 4620 4621 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4622 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4623 return cleanupOnError(EC); 4624 4625 if (!WillMaterializeAll) 4626 // Resolve forward references from blockaddresses. 4627 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4628 return cleanupOnError(EC); 4629 4630 Buffer.release(); // The BitcodeReader owns it now. 4631 return M; 4632 } 4633 4634 ErrorOr<Module *> 4635 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4636 LLVMContext &Context, 4637 DiagnosticHandlerFunction DiagnosticHandler, 4638 bool ShouldLazyLoadMetadata) { 4639 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4640 DiagnosticHandler, ShouldLazyLoadMetadata); 4641 } 4642 4643 ErrorOr<std::unique_ptr<Module>> 4644 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4645 LLVMContext &Context, 4646 DiagnosticHandlerFunction DiagnosticHandler) { 4647 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4648 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4649 M->setMaterializer(R); 4650 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4651 return EC; 4652 return std::move(M); 4653 } 4654 4655 ErrorOr<Module *> 4656 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4657 DiagnosticHandlerFunction DiagnosticHandler) { 4658 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4659 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4660 std::move(Buf), Context, true, DiagnosticHandler); 4661 if (!ModuleOrErr) 4662 return ModuleOrErr; 4663 Module *M = ModuleOrErr.get(); 4664 // Read in the entire module, and destroy the BitcodeReader. 4665 if (std::error_code EC = M->materializeAllPermanently()) { 4666 delete M; 4667 return EC; 4668 } 4669 4670 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4671 // written. We must defer until the Module has been fully materialized. 4672 4673 return M; 4674 } 4675 4676 std::string 4677 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4678 DiagnosticHandlerFunction DiagnosticHandler) { 4679 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4680 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4681 DiagnosticHandler); 4682 ErrorOr<std::string> Triple = R->parseTriple(); 4683 if (Triple.getError()) 4684 return ""; 4685 return Triple.get(); 4686 } 4687