1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code MaterializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void Dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } else if (Slot == Record.size()) { 303 return true; 304 } 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 405 return ::Error(DiagnosticHandler, make_error_code(E), Message); 406 } 407 408 std::error_code BitcodeReader::Error(const Twine &Message) { 409 return ::Error(DiagnosticHandler, 410 make_error_code(BitcodeError::CorruptedBitcode), Message); 411 } 412 413 std::error_code BitcodeReader::Error(BitcodeError E) { 414 return ::Error(DiagnosticHandler, make_error_code(E)); 415 } 416 417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 418 LLVMContext &C) { 419 if (F) 420 return F; 421 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 422 } 423 424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 425 DiagnosticHandlerFunction DiagnosticHandler) 426 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 427 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 428 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 429 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 430 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 435 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 436 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 437 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 438 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return Error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::FreeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// ConvertToString - Convert a string from a record into an std::string, return 496 /// true on failure. 497 template<typename StrTy> 498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 GetDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int GetDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 611 switch (Val) { 612 default: return -1; 613 case bitc::BINOP_ADD: 614 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 615 case bitc::BINOP_SUB: 616 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 617 case bitc::BINOP_MUL: 618 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 619 case bitc::BINOP_UDIV: return Instruction::UDiv; 620 case bitc::BINOP_SDIV: 621 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 622 case bitc::BINOP_UREM: return Instruction::URem; 623 case bitc::BINOP_SREM: 624 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 625 case bitc::BINOP_SHL: return Instruction::Shl; 626 case bitc::BINOP_LSHR: return Instruction::LShr; 627 case bitc::BINOP_ASHR: return Instruction::AShr; 628 case bitc::BINOP_AND: return Instruction::And; 629 case bitc::BINOP_OR: return Instruction::Or; 630 case bitc::BINOP_XOR: return Instruction::Xor; 631 } 632 } 633 634 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 635 switch (Val) { 636 default: return AtomicRMWInst::BAD_BINOP; 637 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 638 case bitc::RMW_ADD: return AtomicRMWInst::Add; 639 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 640 case bitc::RMW_AND: return AtomicRMWInst::And; 641 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 642 case bitc::RMW_OR: return AtomicRMWInst::Or; 643 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 644 case bitc::RMW_MAX: return AtomicRMWInst::Max; 645 case bitc::RMW_MIN: return AtomicRMWInst::Min; 646 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 647 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 648 } 649 } 650 651 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 652 switch (Val) { 653 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 654 case bitc::ORDERING_UNORDERED: return Unordered; 655 case bitc::ORDERING_MONOTONIC: return Monotonic; 656 case bitc::ORDERING_ACQUIRE: return Acquire; 657 case bitc::ORDERING_RELEASE: return Release; 658 case bitc::ORDERING_ACQREL: return AcquireRelease; 659 default: // Map unknown orderings to sequentially-consistent. 660 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 661 } 662 } 663 664 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 665 switch (Val) { 666 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 667 default: // Map unknown scopes to cross-thread. 668 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 669 } 670 } 671 672 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 673 switch (Val) { 674 default: // Map unknown selection kinds to any. 675 case bitc::COMDAT_SELECTION_KIND_ANY: 676 return Comdat::Any; 677 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 678 return Comdat::ExactMatch; 679 case bitc::COMDAT_SELECTION_KIND_LARGEST: 680 return Comdat::Largest; 681 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 682 return Comdat::NoDuplicates; 683 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 684 return Comdat::SameSize; 685 } 686 } 687 688 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 689 switch (Val) { 690 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 691 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 692 } 693 } 694 695 namespace llvm { 696 namespace { 697 /// @brief A class for maintaining the slot number definition 698 /// as a placeholder for the actual definition for forward constants defs. 699 class ConstantPlaceHolder : public ConstantExpr { 700 void operator=(const ConstantPlaceHolder &) = delete; 701 public: 702 // allocate space for exactly one operand 703 void *operator new(size_t s) { 704 return User::operator new(s, 1); 705 } 706 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 707 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 708 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 709 } 710 711 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 712 static bool classof(const Value *V) { 713 return isa<ConstantExpr>(V) && 714 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 715 } 716 717 718 /// Provide fast operand accessors 719 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 720 }; 721 } 722 723 // FIXME: can we inherit this from ConstantExpr? 724 template <> 725 struct OperandTraits<ConstantPlaceHolder> : 726 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 727 }; 728 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 729 } 730 731 732 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 733 if (Idx == size()) { 734 push_back(V); 735 return; 736 } 737 738 if (Idx >= size()) 739 resize(Idx+1); 740 741 WeakVH &OldV = ValuePtrs[Idx]; 742 if (!OldV) { 743 OldV = V; 744 return; 745 } 746 747 // Handle constants and non-constants (e.g. instrs) differently for 748 // efficiency. 749 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 750 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 751 OldV = V; 752 } else { 753 // If there was a forward reference to this value, replace it. 754 Value *PrevVal = OldV; 755 OldV->replaceAllUsesWith(V); 756 delete PrevVal; 757 } 758 } 759 760 761 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 762 Type *Ty) { 763 if (Idx >= size()) 764 resize(Idx + 1); 765 766 if (Value *V = ValuePtrs[Idx]) { 767 assert(Ty == V->getType() && "Type mismatch in constant table!"); 768 return cast<Constant>(V); 769 } 770 771 // Create and return a placeholder, which will later be RAUW'd. 772 Constant *C = new ConstantPlaceHolder(Ty, Context); 773 ValuePtrs[Idx] = C; 774 return C; 775 } 776 777 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 778 if (Idx >= size()) 779 resize(Idx + 1); 780 781 if (Value *V = ValuePtrs[Idx]) { 782 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 783 return V; 784 } 785 786 // No type specified, must be invalid reference. 787 if (!Ty) return nullptr; 788 789 // Create and return a placeholder, which will later be RAUW'd. 790 Value *V = new Argument(Ty); 791 ValuePtrs[Idx] = V; 792 return V; 793 } 794 795 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 796 /// resolves any forward references. The idea behind this is that we sometimes 797 /// get constants (such as large arrays) which reference *many* forward ref 798 /// constants. Replacing each of these causes a lot of thrashing when 799 /// building/reuniquing the constant. Instead of doing this, we look at all the 800 /// uses and rewrite all the place holders at once for any constant that uses 801 /// a placeholder. 802 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 803 // Sort the values by-pointer so that they are efficient to look up with a 804 // binary search. 805 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 806 807 SmallVector<Constant*, 64> NewOps; 808 809 while (!ResolveConstants.empty()) { 810 Value *RealVal = operator[](ResolveConstants.back().second); 811 Constant *Placeholder = ResolveConstants.back().first; 812 ResolveConstants.pop_back(); 813 814 // Loop over all users of the placeholder, updating them to reference the 815 // new value. If they reference more than one placeholder, update them all 816 // at once. 817 while (!Placeholder->use_empty()) { 818 auto UI = Placeholder->user_begin(); 819 User *U = *UI; 820 821 // If the using object isn't uniqued, just update the operands. This 822 // handles instructions and initializers for global variables. 823 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 824 UI.getUse().set(RealVal); 825 continue; 826 } 827 828 // Otherwise, we have a constant that uses the placeholder. Replace that 829 // constant with a new constant that has *all* placeholder uses updated. 830 Constant *UserC = cast<Constant>(U); 831 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 832 I != E; ++I) { 833 Value *NewOp; 834 if (!isa<ConstantPlaceHolder>(*I)) { 835 // Not a placeholder reference. 836 NewOp = *I; 837 } else if (*I == Placeholder) { 838 // Common case is that it just references this one placeholder. 839 NewOp = RealVal; 840 } else { 841 // Otherwise, look up the placeholder in ResolveConstants. 842 ResolveConstantsTy::iterator It = 843 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 844 std::pair<Constant*, unsigned>(cast<Constant>(*I), 845 0)); 846 assert(It != ResolveConstants.end() && It->first == *I); 847 NewOp = operator[](It->second); 848 } 849 850 NewOps.push_back(cast<Constant>(NewOp)); 851 } 852 853 // Make the new constant. 854 Constant *NewC; 855 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 856 NewC = ConstantArray::get(UserCA->getType(), NewOps); 857 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 858 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 859 } else if (isa<ConstantVector>(UserC)) { 860 NewC = ConstantVector::get(NewOps); 861 } else { 862 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 863 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 864 } 865 866 UserC->replaceAllUsesWith(NewC); 867 UserC->destroyConstant(); 868 NewOps.clear(); 869 } 870 871 // Update all ValueHandles, they should be the only users at this point. 872 Placeholder->replaceAllUsesWith(RealVal); 873 delete Placeholder; 874 } 875 } 876 877 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 878 if (Idx == size()) { 879 push_back(MD); 880 return; 881 } 882 883 if (Idx >= size()) 884 resize(Idx+1); 885 886 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 887 if (!OldMD) { 888 OldMD.reset(MD); 889 return; 890 } 891 892 // If there was a forward reference to this value, replace it. 893 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 894 PrevMD->replaceAllUsesWith(MD); 895 --NumFwdRefs; 896 } 897 898 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 899 if (Idx >= size()) 900 resize(Idx + 1); 901 902 if (Metadata *MD = MDValuePtrs[Idx]) 903 return MD; 904 905 // Track forward refs to be resolved later. 906 if (AnyFwdRefs) { 907 MinFwdRef = std::min(MinFwdRef, Idx); 908 MaxFwdRef = std::max(MaxFwdRef, Idx); 909 } else { 910 AnyFwdRefs = true; 911 MinFwdRef = MaxFwdRef = Idx; 912 } 913 ++NumFwdRefs; 914 915 // Create and return a placeholder, which will later be RAUW'd. 916 Metadata *MD = MDNode::getTemporary(Context, None).release(); 917 MDValuePtrs[Idx].reset(MD); 918 return MD; 919 } 920 921 void BitcodeReaderMDValueList::tryToResolveCycles() { 922 if (!AnyFwdRefs) 923 // Nothing to do. 924 return; 925 926 if (NumFwdRefs) 927 // Still forward references... can't resolve cycles. 928 return; 929 930 // Resolve any cycles. 931 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 932 auto &MD = MDValuePtrs[I]; 933 auto *N = dyn_cast_or_null<MDNode>(MD); 934 if (!N) 935 continue; 936 937 assert(!N->isTemporary() && "Unexpected forward reference"); 938 N->resolveCycles(); 939 } 940 941 // Make sure we return early again until there's another forward ref. 942 AnyFwdRefs = false; 943 } 944 945 Type *BitcodeReader::getTypeByID(unsigned ID) { 946 // The type table size is always specified correctly. 947 if (ID >= TypeList.size()) 948 return nullptr; 949 950 if (Type *Ty = TypeList[ID]) 951 return Ty; 952 953 // If we have a forward reference, the only possible case is when it is to a 954 // named struct. Just create a placeholder for now. 955 return TypeList[ID] = createIdentifiedStructType(Context); 956 } 957 958 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 959 StringRef Name) { 960 auto *Ret = StructType::create(Context, Name); 961 IdentifiedStructTypes.push_back(Ret); 962 return Ret; 963 } 964 965 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 966 auto *Ret = StructType::create(Context); 967 IdentifiedStructTypes.push_back(Ret); 968 return Ret; 969 } 970 971 972 //===----------------------------------------------------------------------===// 973 // Functions for parsing blocks from the bitcode file 974 //===----------------------------------------------------------------------===// 975 976 977 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 978 /// been decoded from the given integer. This function must stay in sync with 979 /// 'encodeLLVMAttributesForBitcode'. 980 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 981 uint64_t EncodedAttrs) { 982 // FIXME: Remove in 4.0. 983 984 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 985 // the bits above 31 down by 11 bits. 986 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 987 assert((!Alignment || isPowerOf2_32(Alignment)) && 988 "Alignment must be a power of two."); 989 990 if (Alignment) 991 B.addAlignmentAttr(Alignment); 992 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 993 (EncodedAttrs & 0xffff)); 994 } 995 996 std::error_code BitcodeReader::ParseAttributeBlock() { 997 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 998 return Error("Invalid record"); 999 1000 if (!MAttributes.empty()) 1001 return Error("Invalid multiple blocks"); 1002 1003 SmallVector<uint64_t, 64> Record; 1004 1005 SmallVector<AttributeSet, 8> Attrs; 1006 1007 // Read all the records. 1008 while (1) { 1009 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1010 1011 switch (Entry.Kind) { 1012 case BitstreamEntry::SubBlock: // Handled for us already. 1013 case BitstreamEntry::Error: 1014 return Error("Malformed block"); 1015 case BitstreamEntry::EndBlock: 1016 return std::error_code(); 1017 case BitstreamEntry::Record: 1018 // The interesting case. 1019 break; 1020 } 1021 1022 // Read a record. 1023 Record.clear(); 1024 switch (Stream.readRecord(Entry.ID, Record)) { 1025 default: // Default behavior: ignore. 1026 break; 1027 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1028 // FIXME: Remove in 4.0. 1029 if (Record.size() & 1) 1030 return Error("Invalid record"); 1031 1032 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1033 AttrBuilder B; 1034 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1035 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1036 } 1037 1038 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1039 Attrs.clear(); 1040 break; 1041 } 1042 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1043 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1044 Attrs.push_back(MAttributeGroups[Record[i]]); 1045 1046 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1047 Attrs.clear(); 1048 break; 1049 } 1050 } 1051 } 1052 } 1053 1054 // Returns Attribute::None on unrecognized codes. 1055 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1056 switch (Code) { 1057 default: 1058 return Attribute::None; 1059 case bitc::ATTR_KIND_ALIGNMENT: 1060 return Attribute::Alignment; 1061 case bitc::ATTR_KIND_ALWAYS_INLINE: 1062 return Attribute::AlwaysInline; 1063 case bitc::ATTR_KIND_BUILTIN: 1064 return Attribute::Builtin; 1065 case bitc::ATTR_KIND_BY_VAL: 1066 return Attribute::ByVal; 1067 case bitc::ATTR_KIND_IN_ALLOCA: 1068 return Attribute::InAlloca; 1069 case bitc::ATTR_KIND_COLD: 1070 return Attribute::Cold; 1071 case bitc::ATTR_KIND_INLINE_HINT: 1072 return Attribute::InlineHint; 1073 case bitc::ATTR_KIND_IN_REG: 1074 return Attribute::InReg; 1075 case bitc::ATTR_KIND_JUMP_TABLE: 1076 return Attribute::JumpTable; 1077 case bitc::ATTR_KIND_MIN_SIZE: 1078 return Attribute::MinSize; 1079 case bitc::ATTR_KIND_NAKED: 1080 return Attribute::Naked; 1081 case bitc::ATTR_KIND_NEST: 1082 return Attribute::Nest; 1083 case bitc::ATTR_KIND_NO_ALIAS: 1084 return Attribute::NoAlias; 1085 case bitc::ATTR_KIND_NO_BUILTIN: 1086 return Attribute::NoBuiltin; 1087 case bitc::ATTR_KIND_NO_CAPTURE: 1088 return Attribute::NoCapture; 1089 case bitc::ATTR_KIND_NO_DUPLICATE: 1090 return Attribute::NoDuplicate; 1091 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1092 return Attribute::NoImplicitFloat; 1093 case bitc::ATTR_KIND_NO_INLINE: 1094 return Attribute::NoInline; 1095 case bitc::ATTR_KIND_NON_LAZY_BIND: 1096 return Attribute::NonLazyBind; 1097 case bitc::ATTR_KIND_NON_NULL: 1098 return Attribute::NonNull; 1099 case bitc::ATTR_KIND_DEREFERENCEABLE: 1100 return Attribute::Dereferenceable; 1101 case bitc::ATTR_KIND_NO_RED_ZONE: 1102 return Attribute::NoRedZone; 1103 case bitc::ATTR_KIND_NO_RETURN: 1104 return Attribute::NoReturn; 1105 case bitc::ATTR_KIND_NO_UNWIND: 1106 return Attribute::NoUnwind; 1107 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1108 return Attribute::OptimizeForSize; 1109 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1110 return Attribute::OptimizeNone; 1111 case bitc::ATTR_KIND_READ_NONE: 1112 return Attribute::ReadNone; 1113 case bitc::ATTR_KIND_READ_ONLY: 1114 return Attribute::ReadOnly; 1115 case bitc::ATTR_KIND_RETURNED: 1116 return Attribute::Returned; 1117 case bitc::ATTR_KIND_RETURNS_TWICE: 1118 return Attribute::ReturnsTwice; 1119 case bitc::ATTR_KIND_S_EXT: 1120 return Attribute::SExt; 1121 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1122 return Attribute::StackAlignment; 1123 case bitc::ATTR_KIND_STACK_PROTECT: 1124 return Attribute::StackProtect; 1125 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1126 return Attribute::StackProtectReq; 1127 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1128 return Attribute::StackProtectStrong; 1129 case bitc::ATTR_KIND_STRUCT_RET: 1130 return Attribute::StructRet; 1131 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1132 return Attribute::SanitizeAddress; 1133 case bitc::ATTR_KIND_SANITIZE_THREAD: 1134 return Attribute::SanitizeThread; 1135 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1136 return Attribute::SanitizeMemory; 1137 case bitc::ATTR_KIND_UW_TABLE: 1138 return Attribute::UWTable; 1139 case bitc::ATTR_KIND_Z_EXT: 1140 return Attribute::ZExt; 1141 } 1142 } 1143 1144 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1145 unsigned &Alignment) { 1146 // Note: Alignment in bitcode files is incremented by 1, so that zero 1147 // can be used for default alignment. 1148 if (Exponent > Value::MaxAlignmentExponent + 1) 1149 return Error("Invalid alignment value"); 1150 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1151 return std::error_code(); 1152 } 1153 1154 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1155 Attribute::AttrKind *Kind) { 1156 *Kind = GetAttrFromCode(Code); 1157 if (*Kind == Attribute::None) 1158 return Error(BitcodeError::CorruptedBitcode, 1159 "Unknown attribute kind (" + Twine(Code) + ")"); 1160 return std::error_code(); 1161 } 1162 1163 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1164 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1165 return Error("Invalid record"); 1166 1167 if (!MAttributeGroups.empty()) 1168 return Error("Invalid multiple blocks"); 1169 1170 SmallVector<uint64_t, 64> Record; 1171 1172 // Read all the records. 1173 while (1) { 1174 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1175 1176 switch (Entry.Kind) { 1177 case BitstreamEntry::SubBlock: // Handled for us already. 1178 case BitstreamEntry::Error: 1179 return Error("Malformed block"); 1180 case BitstreamEntry::EndBlock: 1181 return std::error_code(); 1182 case BitstreamEntry::Record: 1183 // The interesting case. 1184 break; 1185 } 1186 1187 // Read a record. 1188 Record.clear(); 1189 switch (Stream.readRecord(Entry.ID, Record)) { 1190 default: // Default behavior: ignore. 1191 break; 1192 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1193 if (Record.size() < 3) 1194 return Error("Invalid record"); 1195 1196 uint64_t GrpID = Record[0]; 1197 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1198 1199 AttrBuilder B; 1200 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1201 if (Record[i] == 0) { // Enum attribute 1202 Attribute::AttrKind Kind; 1203 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1204 return EC; 1205 1206 B.addAttribute(Kind); 1207 } else if (Record[i] == 1) { // Integer attribute 1208 Attribute::AttrKind Kind; 1209 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1210 return EC; 1211 if (Kind == Attribute::Alignment) 1212 B.addAlignmentAttr(Record[++i]); 1213 else if (Kind == Attribute::StackAlignment) 1214 B.addStackAlignmentAttr(Record[++i]); 1215 else if (Kind == Attribute::Dereferenceable) 1216 B.addDereferenceableAttr(Record[++i]); 1217 } else { // String attribute 1218 assert((Record[i] == 3 || Record[i] == 4) && 1219 "Invalid attribute group entry"); 1220 bool HasValue = (Record[i++] == 4); 1221 SmallString<64> KindStr; 1222 SmallString<64> ValStr; 1223 1224 while (Record[i] != 0 && i != e) 1225 KindStr += Record[i++]; 1226 assert(Record[i] == 0 && "Kind string not null terminated"); 1227 1228 if (HasValue) { 1229 // Has a value associated with it. 1230 ++i; // Skip the '0' that terminates the "kind" string. 1231 while (Record[i] != 0 && i != e) 1232 ValStr += Record[i++]; 1233 assert(Record[i] == 0 && "Value string not null terminated"); 1234 } 1235 1236 B.addAttribute(KindStr.str(), ValStr.str()); 1237 } 1238 } 1239 1240 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1241 break; 1242 } 1243 } 1244 } 1245 } 1246 1247 std::error_code BitcodeReader::ParseTypeTable() { 1248 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1249 return Error("Invalid record"); 1250 1251 return ParseTypeTableBody(); 1252 } 1253 1254 std::error_code BitcodeReader::ParseTypeTableBody() { 1255 if (!TypeList.empty()) 1256 return Error("Invalid multiple blocks"); 1257 1258 SmallVector<uint64_t, 64> Record; 1259 unsigned NumRecords = 0; 1260 1261 SmallString<64> TypeName; 1262 1263 // Read all the records for this type table. 1264 while (1) { 1265 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1266 1267 switch (Entry.Kind) { 1268 case BitstreamEntry::SubBlock: // Handled for us already. 1269 case BitstreamEntry::Error: 1270 return Error("Malformed block"); 1271 case BitstreamEntry::EndBlock: 1272 if (NumRecords != TypeList.size()) 1273 return Error("Malformed block"); 1274 return std::error_code(); 1275 case BitstreamEntry::Record: 1276 // The interesting case. 1277 break; 1278 } 1279 1280 // Read a record. 1281 Record.clear(); 1282 Type *ResultTy = nullptr; 1283 switch (Stream.readRecord(Entry.ID, Record)) { 1284 default: 1285 return Error("Invalid value"); 1286 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1287 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1288 // type list. This allows us to reserve space. 1289 if (Record.size() < 1) 1290 return Error("Invalid record"); 1291 TypeList.resize(Record[0]); 1292 continue; 1293 case bitc::TYPE_CODE_VOID: // VOID 1294 ResultTy = Type::getVoidTy(Context); 1295 break; 1296 case bitc::TYPE_CODE_HALF: // HALF 1297 ResultTy = Type::getHalfTy(Context); 1298 break; 1299 case bitc::TYPE_CODE_FLOAT: // FLOAT 1300 ResultTy = Type::getFloatTy(Context); 1301 break; 1302 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1303 ResultTy = Type::getDoubleTy(Context); 1304 break; 1305 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1306 ResultTy = Type::getX86_FP80Ty(Context); 1307 break; 1308 case bitc::TYPE_CODE_FP128: // FP128 1309 ResultTy = Type::getFP128Ty(Context); 1310 break; 1311 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1312 ResultTy = Type::getPPC_FP128Ty(Context); 1313 break; 1314 case bitc::TYPE_CODE_LABEL: // LABEL 1315 ResultTy = Type::getLabelTy(Context); 1316 break; 1317 case bitc::TYPE_CODE_METADATA: // METADATA 1318 ResultTy = Type::getMetadataTy(Context); 1319 break; 1320 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1321 ResultTy = Type::getX86_MMXTy(Context); 1322 break; 1323 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1324 if (Record.size() < 1) 1325 return Error("Invalid record"); 1326 1327 uint64_t NumBits = Record[0]; 1328 if (NumBits < IntegerType::MIN_INT_BITS || 1329 NumBits > IntegerType::MAX_INT_BITS) 1330 return Error("Bitwidth for integer type out of range"); 1331 ResultTy = IntegerType::get(Context, NumBits); 1332 break; 1333 } 1334 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1335 // [pointee type, address space] 1336 if (Record.size() < 1) 1337 return Error("Invalid record"); 1338 unsigned AddressSpace = 0; 1339 if (Record.size() == 2) 1340 AddressSpace = Record[1]; 1341 ResultTy = getTypeByID(Record[0]); 1342 if (!ResultTy) 1343 return Error("Invalid type"); 1344 ResultTy = PointerType::get(ResultTy, AddressSpace); 1345 break; 1346 } 1347 case bitc::TYPE_CODE_FUNCTION_OLD: { 1348 // FIXME: attrid is dead, remove it in LLVM 4.0 1349 // FUNCTION: [vararg, attrid, retty, paramty x N] 1350 if (Record.size() < 3) 1351 return Error("Invalid record"); 1352 SmallVector<Type*, 8> ArgTys; 1353 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1354 if (Type *T = getTypeByID(Record[i])) 1355 ArgTys.push_back(T); 1356 else 1357 break; 1358 } 1359 1360 ResultTy = getTypeByID(Record[2]); 1361 if (!ResultTy || ArgTys.size() < Record.size()-3) 1362 return Error("Invalid type"); 1363 1364 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1365 break; 1366 } 1367 case bitc::TYPE_CODE_FUNCTION: { 1368 // FUNCTION: [vararg, retty, paramty x N] 1369 if (Record.size() < 2) 1370 return Error("Invalid record"); 1371 SmallVector<Type*, 8> ArgTys; 1372 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1373 if (Type *T = getTypeByID(Record[i])) 1374 ArgTys.push_back(T); 1375 else 1376 break; 1377 } 1378 1379 ResultTy = getTypeByID(Record[1]); 1380 if (!ResultTy || ArgTys.size() < Record.size()-2) 1381 return Error("Invalid type"); 1382 1383 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1384 break; 1385 } 1386 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1387 if (Record.size() < 1) 1388 return Error("Invalid record"); 1389 SmallVector<Type*, 8> EltTys; 1390 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1391 if (Type *T = getTypeByID(Record[i])) 1392 EltTys.push_back(T); 1393 else 1394 break; 1395 } 1396 if (EltTys.size() != Record.size()-1) 1397 return Error("Invalid type"); 1398 ResultTy = StructType::get(Context, EltTys, Record[0]); 1399 break; 1400 } 1401 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1402 if (ConvertToString(Record, 0, TypeName)) 1403 return Error("Invalid record"); 1404 continue; 1405 1406 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1407 if (Record.size() < 1) 1408 return Error("Invalid record"); 1409 1410 if (NumRecords >= TypeList.size()) 1411 return Error("Invalid TYPE table"); 1412 1413 // Check to see if this was forward referenced, if so fill in the temp. 1414 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1415 if (Res) { 1416 Res->setName(TypeName); 1417 TypeList[NumRecords] = nullptr; 1418 } else // Otherwise, create a new struct. 1419 Res = createIdentifiedStructType(Context, TypeName); 1420 TypeName.clear(); 1421 1422 SmallVector<Type*, 8> EltTys; 1423 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1424 if (Type *T = getTypeByID(Record[i])) 1425 EltTys.push_back(T); 1426 else 1427 break; 1428 } 1429 if (EltTys.size() != Record.size()-1) 1430 return Error("Invalid record"); 1431 Res->setBody(EltTys, Record[0]); 1432 ResultTy = Res; 1433 break; 1434 } 1435 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1436 if (Record.size() != 1) 1437 return Error("Invalid record"); 1438 1439 if (NumRecords >= TypeList.size()) 1440 return Error("Invalid TYPE table"); 1441 1442 // Check to see if this was forward referenced, if so fill in the temp. 1443 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1444 if (Res) { 1445 Res->setName(TypeName); 1446 TypeList[NumRecords] = nullptr; 1447 } else // Otherwise, create a new struct with no body. 1448 Res = createIdentifiedStructType(Context, TypeName); 1449 TypeName.clear(); 1450 ResultTy = Res; 1451 break; 1452 } 1453 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1454 if (Record.size() < 2) 1455 return Error("Invalid record"); 1456 if ((ResultTy = getTypeByID(Record[1]))) 1457 ResultTy = ArrayType::get(ResultTy, Record[0]); 1458 else 1459 return Error("Invalid type"); 1460 break; 1461 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1462 if (Record.size() < 2) 1463 return Error("Invalid record"); 1464 if ((ResultTy = getTypeByID(Record[1]))) 1465 ResultTy = VectorType::get(ResultTy, Record[0]); 1466 else 1467 return Error("Invalid type"); 1468 break; 1469 } 1470 1471 if (NumRecords >= TypeList.size()) 1472 return Error("Invalid TYPE table"); 1473 if (TypeList[NumRecords]) 1474 return Error( 1475 "Invalid TYPE table: Only named structs can be forward referenced"); 1476 assert(ResultTy && "Didn't read a type?"); 1477 TypeList[NumRecords++] = ResultTy; 1478 } 1479 } 1480 1481 std::error_code BitcodeReader::ParseValueSymbolTable() { 1482 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1483 return Error("Invalid record"); 1484 1485 SmallVector<uint64_t, 64> Record; 1486 1487 Triple TT(TheModule->getTargetTriple()); 1488 1489 // Read all the records for this value table. 1490 SmallString<128> ValueName; 1491 while (1) { 1492 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1493 1494 switch (Entry.Kind) { 1495 case BitstreamEntry::SubBlock: // Handled for us already. 1496 case BitstreamEntry::Error: 1497 return Error("Malformed block"); 1498 case BitstreamEntry::EndBlock: 1499 return std::error_code(); 1500 case BitstreamEntry::Record: 1501 // The interesting case. 1502 break; 1503 } 1504 1505 // Read a record. 1506 Record.clear(); 1507 switch (Stream.readRecord(Entry.ID, Record)) { 1508 default: // Default behavior: unknown type. 1509 break; 1510 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1511 if (ConvertToString(Record, 1, ValueName)) 1512 return Error("Invalid record"); 1513 unsigned ValueID = Record[0]; 1514 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1515 return Error("Invalid record"); 1516 Value *V = ValueList[ValueID]; 1517 1518 V->setName(StringRef(ValueName.data(), ValueName.size())); 1519 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1520 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1521 if (TT.isOSBinFormatMachO()) 1522 GO->setComdat(nullptr); 1523 else 1524 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1525 } 1526 } 1527 ValueName.clear(); 1528 break; 1529 } 1530 case bitc::VST_CODE_BBENTRY: { 1531 if (ConvertToString(Record, 1, ValueName)) 1532 return Error("Invalid record"); 1533 BasicBlock *BB = getBasicBlock(Record[0]); 1534 if (!BB) 1535 return Error("Invalid record"); 1536 1537 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1538 ValueName.clear(); 1539 break; 1540 } 1541 } 1542 } 1543 } 1544 1545 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1546 1547 std::error_code BitcodeReader::ParseMetadata() { 1548 IsMetadataMaterialized = true; 1549 unsigned NextMDValueNo = MDValueList.size(); 1550 1551 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1552 return Error("Invalid record"); 1553 1554 SmallVector<uint64_t, 64> Record; 1555 1556 auto getMD = 1557 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1558 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1559 if (ID) 1560 return getMD(ID - 1); 1561 return nullptr; 1562 }; 1563 auto getMDString = [&](unsigned ID) -> MDString *{ 1564 // This requires that the ID is not really a forward reference. In 1565 // particular, the MDString must already have been resolved. 1566 return cast_or_null<MDString>(getMDOrNull(ID)); 1567 }; 1568 1569 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1570 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1571 1572 // Read all the records. 1573 while (1) { 1574 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1575 1576 switch (Entry.Kind) { 1577 case BitstreamEntry::SubBlock: // Handled for us already. 1578 case BitstreamEntry::Error: 1579 return Error("Malformed block"); 1580 case BitstreamEntry::EndBlock: 1581 MDValueList.tryToResolveCycles(); 1582 return std::error_code(); 1583 case BitstreamEntry::Record: 1584 // The interesting case. 1585 break; 1586 } 1587 1588 // Read a record. 1589 Record.clear(); 1590 unsigned Code = Stream.readRecord(Entry.ID, Record); 1591 bool IsDistinct = false; 1592 switch (Code) { 1593 default: // Default behavior: ignore. 1594 break; 1595 case bitc::METADATA_NAME: { 1596 // Read name of the named metadata. 1597 SmallString<8> Name(Record.begin(), Record.end()); 1598 Record.clear(); 1599 Code = Stream.ReadCode(); 1600 1601 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1602 unsigned NextBitCode = Stream.readRecord(Code, Record); 1603 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1604 1605 // Read named metadata elements. 1606 unsigned Size = Record.size(); 1607 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1608 for (unsigned i = 0; i != Size; ++i) { 1609 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1610 if (!MD) 1611 return Error("Invalid record"); 1612 NMD->addOperand(MD); 1613 } 1614 break; 1615 } 1616 case bitc::METADATA_OLD_FN_NODE: { 1617 // FIXME: Remove in 4.0. 1618 // This is a LocalAsMetadata record, the only type of function-local 1619 // metadata. 1620 if (Record.size() % 2 == 1) 1621 return Error("Invalid record"); 1622 1623 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1624 // to be legal, but there's no upgrade path. 1625 auto dropRecord = [&] { 1626 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1627 }; 1628 if (Record.size() != 2) { 1629 dropRecord(); 1630 break; 1631 } 1632 1633 Type *Ty = getTypeByID(Record[0]); 1634 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1635 dropRecord(); 1636 break; 1637 } 1638 1639 MDValueList.AssignValue( 1640 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1641 NextMDValueNo++); 1642 break; 1643 } 1644 case bitc::METADATA_OLD_NODE: { 1645 // FIXME: Remove in 4.0. 1646 if (Record.size() % 2 == 1) 1647 return Error("Invalid record"); 1648 1649 unsigned Size = Record.size(); 1650 SmallVector<Metadata *, 8> Elts; 1651 for (unsigned i = 0; i != Size; i += 2) { 1652 Type *Ty = getTypeByID(Record[i]); 1653 if (!Ty) 1654 return Error("Invalid record"); 1655 if (Ty->isMetadataTy()) 1656 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1657 else if (!Ty->isVoidTy()) { 1658 auto *MD = 1659 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1660 assert(isa<ConstantAsMetadata>(MD) && 1661 "Expected non-function-local metadata"); 1662 Elts.push_back(MD); 1663 } else 1664 Elts.push_back(nullptr); 1665 } 1666 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1667 break; 1668 } 1669 case bitc::METADATA_VALUE: { 1670 if (Record.size() != 2) 1671 return Error("Invalid record"); 1672 1673 Type *Ty = getTypeByID(Record[0]); 1674 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1675 return Error("Invalid record"); 1676 1677 MDValueList.AssignValue( 1678 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1679 NextMDValueNo++); 1680 break; 1681 } 1682 case bitc::METADATA_DISTINCT_NODE: 1683 IsDistinct = true; 1684 // fallthrough... 1685 case bitc::METADATA_NODE: { 1686 SmallVector<Metadata *, 8> Elts; 1687 Elts.reserve(Record.size()); 1688 for (unsigned ID : Record) 1689 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1690 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1691 : MDNode::get(Context, Elts), 1692 NextMDValueNo++); 1693 break; 1694 } 1695 case bitc::METADATA_LOCATION: { 1696 if (Record.size() != 5) 1697 return Error("Invalid record"); 1698 1699 unsigned Line = Record[1]; 1700 unsigned Column = Record[2]; 1701 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1702 Metadata *InlinedAt = 1703 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1704 MDValueList.AssignValue( 1705 GET_OR_DISTINCT(MDLocation, Record[0], 1706 (Context, Line, Column, Scope, InlinedAt)), 1707 NextMDValueNo++); 1708 break; 1709 } 1710 case bitc::METADATA_GENERIC_DEBUG: { 1711 if (Record.size() < 4) 1712 return Error("Invalid record"); 1713 1714 unsigned Tag = Record[1]; 1715 unsigned Version = Record[2]; 1716 1717 if (Tag >= 1u << 16 || Version != 0) 1718 return Error("Invalid record"); 1719 1720 auto *Header = getMDString(Record[3]); 1721 SmallVector<Metadata *, 8> DwarfOps; 1722 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1723 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1724 : nullptr); 1725 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1726 (Context, Tag, Header, DwarfOps)), 1727 NextMDValueNo++); 1728 break; 1729 } 1730 case bitc::METADATA_SUBRANGE: { 1731 if (Record.size() != 3) 1732 return Error("Invalid record"); 1733 1734 MDValueList.AssignValue( 1735 GET_OR_DISTINCT(MDSubrange, Record[0], 1736 (Context, Record[1], unrotateSign(Record[2]))), 1737 NextMDValueNo++); 1738 break; 1739 } 1740 case bitc::METADATA_ENUMERATOR: { 1741 if (Record.size() != 3) 1742 return Error("Invalid record"); 1743 1744 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1745 (Context, unrotateSign(Record[1]), 1746 getMDString(Record[2]))), 1747 NextMDValueNo++); 1748 break; 1749 } 1750 case bitc::METADATA_BASIC_TYPE: { 1751 if (Record.size() != 6) 1752 return Error("Invalid record"); 1753 1754 MDValueList.AssignValue( 1755 GET_OR_DISTINCT(MDBasicType, Record[0], 1756 (Context, Record[1], getMDString(Record[2]), 1757 Record[3], Record[4], Record[5])), 1758 NextMDValueNo++); 1759 break; 1760 } 1761 case bitc::METADATA_DERIVED_TYPE: { 1762 if (Record.size() != 12) 1763 return Error("Invalid record"); 1764 1765 MDValueList.AssignValue( 1766 GET_OR_DISTINCT(MDDerivedType, Record[0], 1767 (Context, Record[1], getMDString(Record[2]), 1768 getMDOrNull(Record[3]), Record[4], 1769 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1770 Record[7], Record[8], Record[9], Record[10], 1771 getMDOrNull(Record[11]))), 1772 NextMDValueNo++); 1773 break; 1774 } 1775 case bitc::METADATA_COMPOSITE_TYPE: { 1776 if (Record.size() != 16) 1777 return Error("Invalid record"); 1778 1779 MDValueList.AssignValue( 1780 GET_OR_DISTINCT(MDCompositeType, Record[0], 1781 (Context, Record[1], getMDString(Record[2]), 1782 getMDOrNull(Record[3]), Record[4], 1783 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1784 Record[7], Record[8], Record[9], Record[10], 1785 getMDOrNull(Record[11]), Record[12], 1786 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1787 getMDString(Record[15]))), 1788 NextMDValueNo++); 1789 break; 1790 } 1791 case bitc::METADATA_SUBROUTINE_TYPE: { 1792 if (Record.size() != 3) 1793 return Error("Invalid record"); 1794 1795 MDValueList.AssignValue( 1796 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1797 (Context, Record[1], getMDOrNull(Record[2]))), 1798 NextMDValueNo++); 1799 break; 1800 } 1801 case bitc::METADATA_FILE: { 1802 if (Record.size() != 3) 1803 return Error("Invalid record"); 1804 1805 MDValueList.AssignValue( 1806 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1807 getMDString(Record[2]))), 1808 NextMDValueNo++); 1809 break; 1810 } 1811 case bitc::METADATA_COMPILE_UNIT: { 1812 if (Record.size() != 14) 1813 return Error("Invalid record"); 1814 1815 MDValueList.AssignValue( 1816 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1817 (Context, Record[1], getMDOrNull(Record[2]), 1818 getMDString(Record[3]), Record[4], 1819 getMDString(Record[5]), Record[6], 1820 getMDString(Record[7]), Record[8], 1821 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1822 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1823 getMDOrNull(Record[13]))), 1824 NextMDValueNo++); 1825 break; 1826 } 1827 case bitc::METADATA_SUBPROGRAM: { 1828 if (Record.size() != 19) 1829 return Error("Invalid record"); 1830 1831 MDValueList.AssignValue( 1832 GET_OR_DISTINCT( 1833 MDSubprogram, Record[0], 1834 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1835 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1836 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1837 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1838 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1839 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1840 NextMDValueNo++); 1841 break; 1842 } 1843 case bitc::METADATA_LEXICAL_BLOCK: { 1844 if (Record.size() != 5) 1845 return Error("Invalid record"); 1846 1847 MDValueList.AssignValue( 1848 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1849 (Context, getMDOrNull(Record[1]), 1850 getMDOrNull(Record[2]), Record[3], Record[4])), 1851 NextMDValueNo++); 1852 break; 1853 } 1854 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1855 if (Record.size() != 4) 1856 return Error("Invalid record"); 1857 1858 MDValueList.AssignValue( 1859 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1860 (Context, getMDOrNull(Record[1]), 1861 getMDOrNull(Record[2]), Record[3])), 1862 NextMDValueNo++); 1863 break; 1864 } 1865 case bitc::METADATA_NAMESPACE: { 1866 if (Record.size() != 5) 1867 return Error("Invalid record"); 1868 1869 MDValueList.AssignValue( 1870 GET_OR_DISTINCT(MDNamespace, Record[0], 1871 (Context, getMDOrNull(Record[1]), 1872 getMDOrNull(Record[2]), getMDString(Record[3]), 1873 Record[4])), 1874 NextMDValueNo++); 1875 break; 1876 } 1877 case bitc::METADATA_TEMPLATE_TYPE: { 1878 if (Record.size() != 3) 1879 return Error("Invalid record"); 1880 1881 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1882 Record[0], 1883 (Context, getMDString(Record[1]), 1884 getMDOrNull(Record[2]))), 1885 NextMDValueNo++); 1886 break; 1887 } 1888 case bitc::METADATA_TEMPLATE_VALUE: { 1889 if (Record.size() != 5) 1890 return Error("Invalid record"); 1891 1892 MDValueList.AssignValue( 1893 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1894 (Context, Record[1], getMDString(Record[2]), 1895 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1896 NextMDValueNo++); 1897 break; 1898 } 1899 case bitc::METADATA_GLOBAL_VAR: { 1900 if (Record.size() != 11) 1901 return Error("Invalid record"); 1902 1903 MDValueList.AssignValue( 1904 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1905 (Context, getMDOrNull(Record[1]), 1906 getMDString(Record[2]), getMDString(Record[3]), 1907 getMDOrNull(Record[4]), Record[5], 1908 getMDOrNull(Record[6]), Record[7], Record[8], 1909 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1910 NextMDValueNo++); 1911 break; 1912 } 1913 case bitc::METADATA_LOCAL_VAR: { 1914 if (Record.size() != 10) 1915 return Error("Invalid record"); 1916 1917 MDValueList.AssignValue( 1918 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1919 (Context, Record[1], getMDOrNull(Record[2]), 1920 getMDString(Record[3]), getMDOrNull(Record[4]), 1921 Record[5], getMDOrNull(Record[6]), Record[7], 1922 Record[8], getMDOrNull(Record[9]))), 1923 NextMDValueNo++); 1924 break; 1925 } 1926 case bitc::METADATA_EXPRESSION: { 1927 if (Record.size() < 1) 1928 return Error("Invalid record"); 1929 1930 MDValueList.AssignValue( 1931 GET_OR_DISTINCT(MDExpression, Record[0], 1932 (Context, makeArrayRef(Record).slice(1))), 1933 NextMDValueNo++); 1934 break; 1935 } 1936 case bitc::METADATA_OBJC_PROPERTY: { 1937 if (Record.size() != 8) 1938 return Error("Invalid record"); 1939 1940 MDValueList.AssignValue( 1941 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1942 (Context, getMDString(Record[1]), 1943 getMDOrNull(Record[2]), Record[3], 1944 getMDString(Record[4]), getMDString(Record[5]), 1945 Record[6], getMDOrNull(Record[7]))), 1946 NextMDValueNo++); 1947 break; 1948 } 1949 case bitc::METADATA_IMPORTED_ENTITY: { 1950 if (Record.size() != 6) 1951 return Error("Invalid record"); 1952 1953 MDValueList.AssignValue( 1954 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1955 (Context, Record[1], getMDOrNull(Record[2]), 1956 getMDOrNull(Record[3]), Record[4], 1957 getMDString(Record[5]))), 1958 NextMDValueNo++); 1959 break; 1960 } 1961 case bitc::METADATA_STRING: { 1962 std::string String(Record.begin(), Record.end()); 1963 llvm::UpgradeMDStringConstant(String); 1964 Metadata *MD = MDString::get(Context, String); 1965 MDValueList.AssignValue(MD, NextMDValueNo++); 1966 break; 1967 } 1968 case bitc::METADATA_KIND: { 1969 if (Record.size() < 2) 1970 return Error("Invalid record"); 1971 1972 unsigned Kind = Record[0]; 1973 SmallString<8> Name(Record.begin()+1, Record.end()); 1974 1975 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1976 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1977 return Error("Conflicting METADATA_KIND records"); 1978 break; 1979 } 1980 } 1981 } 1982 #undef GET_OR_DISTINCT 1983 } 1984 1985 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1986 /// the LSB for dense VBR encoding. 1987 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1988 if ((V & 1) == 0) 1989 return V >> 1; 1990 if (V != 1) 1991 return -(V >> 1); 1992 // There is no such thing as -0 with integers. "-0" really means MININT. 1993 return 1ULL << 63; 1994 } 1995 1996 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1997 /// values and aliases that we can. 1998 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1999 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2000 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2001 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2002 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2003 2004 GlobalInitWorklist.swap(GlobalInits); 2005 AliasInitWorklist.swap(AliasInits); 2006 FunctionPrefixWorklist.swap(FunctionPrefixes); 2007 FunctionPrologueWorklist.swap(FunctionPrologues); 2008 2009 while (!GlobalInitWorklist.empty()) { 2010 unsigned ValID = GlobalInitWorklist.back().second; 2011 if (ValID >= ValueList.size()) { 2012 // Not ready to resolve this yet, it requires something later in the file. 2013 GlobalInits.push_back(GlobalInitWorklist.back()); 2014 } else { 2015 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2016 GlobalInitWorklist.back().first->setInitializer(C); 2017 else 2018 return Error("Expected a constant"); 2019 } 2020 GlobalInitWorklist.pop_back(); 2021 } 2022 2023 while (!AliasInitWorklist.empty()) { 2024 unsigned ValID = AliasInitWorklist.back().second; 2025 if (ValID >= ValueList.size()) { 2026 AliasInits.push_back(AliasInitWorklist.back()); 2027 } else { 2028 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2029 AliasInitWorklist.back().first->setAliasee(C); 2030 else 2031 return Error("Expected a constant"); 2032 } 2033 AliasInitWorklist.pop_back(); 2034 } 2035 2036 while (!FunctionPrefixWorklist.empty()) { 2037 unsigned ValID = FunctionPrefixWorklist.back().second; 2038 if (ValID >= ValueList.size()) { 2039 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2040 } else { 2041 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2042 FunctionPrefixWorklist.back().first->setPrefixData(C); 2043 else 2044 return Error("Expected a constant"); 2045 } 2046 FunctionPrefixWorklist.pop_back(); 2047 } 2048 2049 while (!FunctionPrologueWorklist.empty()) { 2050 unsigned ValID = FunctionPrologueWorklist.back().second; 2051 if (ValID >= ValueList.size()) { 2052 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2053 } else { 2054 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2055 FunctionPrologueWorklist.back().first->setPrologueData(C); 2056 else 2057 return Error("Expected a constant"); 2058 } 2059 FunctionPrologueWorklist.pop_back(); 2060 } 2061 2062 return std::error_code(); 2063 } 2064 2065 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2066 SmallVector<uint64_t, 8> Words(Vals.size()); 2067 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2068 BitcodeReader::decodeSignRotatedValue); 2069 2070 return APInt(TypeBits, Words); 2071 } 2072 2073 std::error_code BitcodeReader::ParseConstants() { 2074 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2075 return Error("Invalid record"); 2076 2077 SmallVector<uint64_t, 64> Record; 2078 2079 // Read all the records for this value table. 2080 Type *CurTy = Type::getInt32Ty(Context); 2081 unsigned NextCstNo = ValueList.size(); 2082 while (1) { 2083 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2084 2085 switch (Entry.Kind) { 2086 case BitstreamEntry::SubBlock: // Handled for us already. 2087 case BitstreamEntry::Error: 2088 return Error("Malformed block"); 2089 case BitstreamEntry::EndBlock: 2090 if (NextCstNo != ValueList.size()) 2091 return Error("Invalid ronstant reference"); 2092 2093 // Once all the constants have been read, go through and resolve forward 2094 // references. 2095 ValueList.ResolveConstantForwardRefs(); 2096 return std::error_code(); 2097 case BitstreamEntry::Record: 2098 // The interesting case. 2099 break; 2100 } 2101 2102 // Read a record. 2103 Record.clear(); 2104 Value *V = nullptr; 2105 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2106 switch (BitCode) { 2107 default: // Default behavior: unknown constant 2108 case bitc::CST_CODE_UNDEF: // UNDEF 2109 V = UndefValue::get(CurTy); 2110 break; 2111 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2112 if (Record.empty()) 2113 return Error("Invalid record"); 2114 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2115 return Error("Invalid record"); 2116 CurTy = TypeList[Record[0]]; 2117 continue; // Skip the ValueList manipulation. 2118 case bitc::CST_CODE_NULL: // NULL 2119 V = Constant::getNullValue(CurTy); 2120 break; 2121 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2122 if (!CurTy->isIntegerTy() || Record.empty()) 2123 return Error("Invalid record"); 2124 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2125 break; 2126 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2127 if (!CurTy->isIntegerTy() || Record.empty()) 2128 return Error("Invalid record"); 2129 2130 APInt VInt = ReadWideAPInt(Record, 2131 cast<IntegerType>(CurTy)->getBitWidth()); 2132 V = ConstantInt::get(Context, VInt); 2133 2134 break; 2135 } 2136 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2137 if (Record.empty()) 2138 return Error("Invalid record"); 2139 if (CurTy->isHalfTy()) 2140 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2141 APInt(16, (uint16_t)Record[0]))); 2142 else if (CurTy->isFloatTy()) 2143 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2144 APInt(32, (uint32_t)Record[0]))); 2145 else if (CurTy->isDoubleTy()) 2146 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2147 APInt(64, Record[0]))); 2148 else if (CurTy->isX86_FP80Ty()) { 2149 // Bits are not stored the same way as a normal i80 APInt, compensate. 2150 uint64_t Rearrange[2]; 2151 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2152 Rearrange[1] = Record[0] >> 48; 2153 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2154 APInt(80, Rearrange))); 2155 } else if (CurTy->isFP128Ty()) 2156 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2157 APInt(128, Record))); 2158 else if (CurTy->isPPC_FP128Ty()) 2159 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2160 APInt(128, Record))); 2161 else 2162 V = UndefValue::get(CurTy); 2163 break; 2164 } 2165 2166 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2167 if (Record.empty()) 2168 return Error("Invalid record"); 2169 2170 unsigned Size = Record.size(); 2171 SmallVector<Constant*, 16> Elts; 2172 2173 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2174 for (unsigned i = 0; i != Size; ++i) 2175 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2176 STy->getElementType(i))); 2177 V = ConstantStruct::get(STy, Elts); 2178 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2179 Type *EltTy = ATy->getElementType(); 2180 for (unsigned i = 0; i != Size; ++i) 2181 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2182 V = ConstantArray::get(ATy, Elts); 2183 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2184 Type *EltTy = VTy->getElementType(); 2185 for (unsigned i = 0; i != Size; ++i) 2186 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2187 V = ConstantVector::get(Elts); 2188 } else { 2189 V = UndefValue::get(CurTy); 2190 } 2191 break; 2192 } 2193 case bitc::CST_CODE_STRING: // STRING: [values] 2194 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2195 if (Record.empty()) 2196 return Error("Invalid record"); 2197 2198 SmallString<16> Elts(Record.begin(), Record.end()); 2199 V = ConstantDataArray::getString(Context, Elts, 2200 BitCode == bitc::CST_CODE_CSTRING); 2201 break; 2202 } 2203 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2204 if (Record.empty()) 2205 return Error("Invalid record"); 2206 2207 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2208 unsigned Size = Record.size(); 2209 2210 if (EltTy->isIntegerTy(8)) { 2211 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2212 if (isa<VectorType>(CurTy)) 2213 V = ConstantDataVector::get(Context, Elts); 2214 else 2215 V = ConstantDataArray::get(Context, Elts); 2216 } else if (EltTy->isIntegerTy(16)) { 2217 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2218 if (isa<VectorType>(CurTy)) 2219 V = ConstantDataVector::get(Context, Elts); 2220 else 2221 V = ConstantDataArray::get(Context, Elts); 2222 } else if (EltTy->isIntegerTy(32)) { 2223 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2224 if (isa<VectorType>(CurTy)) 2225 V = ConstantDataVector::get(Context, Elts); 2226 else 2227 V = ConstantDataArray::get(Context, Elts); 2228 } else if (EltTy->isIntegerTy(64)) { 2229 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2230 if (isa<VectorType>(CurTy)) 2231 V = ConstantDataVector::get(Context, Elts); 2232 else 2233 V = ConstantDataArray::get(Context, Elts); 2234 } else if (EltTy->isFloatTy()) { 2235 SmallVector<float, 16> Elts(Size); 2236 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2237 if (isa<VectorType>(CurTy)) 2238 V = ConstantDataVector::get(Context, Elts); 2239 else 2240 V = ConstantDataArray::get(Context, Elts); 2241 } else if (EltTy->isDoubleTy()) { 2242 SmallVector<double, 16> Elts(Size); 2243 std::transform(Record.begin(), Record.end(), Elts.begin(), 2244 BitsToDouble); 2245 if (isa<VectorType>(CurTy)) 2246 V = ConstantDataVector::get(Context, Elts); 2247 else 2248 V = ConstantDataArray::get(Context, Elts); 2249 } else { 2250 return Error("Invalid type for value"); 2251 } 2252 break; 2253 } 2254 2255 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2256 if (Record.size() < 3) 2257 return Error("Invalid record"); 2258 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2259 if (Opc < 0) { 2260 V = UndefValue::get(CurTy); // Unknown binop. 2261 } else { 2262 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2263 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2264 unsigned Flags = 0; 2265 if (Record.size() >= 4) { 2266 if (Opc == Instruction::Add || 2267 Opc == Instruction::Sub || 2268 Opc == Instruction::Mul || 2269 Opc == Instruction::Shl) { 2270 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2271 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2272 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2273 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2274 } else if (Opc == Instruction::SDiv || 2275 Opc == Instruction::UDiv || 2276 Opc == Instruction::LShr || 2277 Opc == Instruction::AShr) { 2278 if (Record[3] & (1 << bitc::PEO_EXACT)) 2279 Flags |= SDivOperator::IsExact; 2280 } 2281 } 2282 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2283 } 2284 break; 2285 } 2286 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2287 if (Record.size() < 3) 2288 return Error("Invalid record"); 2289 int Opc = GetDecodedCastOpcode(Record[0]); 2290 if (Opc < 0) { 2291 V = UndefValue::get(CurTy); // Unknown cast. 2292 } else { 2293 Type *OpTy = getTypeByID(Record[1]); 2294 if (!OpTy) 2295 return Error("Invalid record"); 2296 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2297 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2298 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2299 } 2300 break; 2301 } 2302 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2303 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2304 unsigned OpNum = 0; 2305 Type *PointeeType = nullptr; 2306 if (Record.size() % 2) 2307 PointeeType = getTypeByID(Record[OpNum++]); 2308 SmallVector<Constant*, 16> Elts; 2309 while (OpNum != Record.size()) { 2310 Type *ElTy = getTypeByID(Record[OpNum++]); 2311 if (!ElTy) 2312 return Error("Invalid record"); 2313 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2314 } 2315 2316 if (PointeeType && 2317 PointeeType != 2318 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2319 ->getElementType()) 2320 return Error("Explicit gep operator type does not match pointee type " 2321 "of pointer operand"); 2322 2323 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2324 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2325 BitCode == 2326 bitc::CST_CODE_CE_INBOUNDS_GEP); 2327 break; 2328 } 2329 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2330 if (Record.size() < 3) 2331 return Error("Invalid record"); 2332 2333 Type *SelectorTy = Type::getInt1Ty(Context); 2334 2335 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2336 // vector. Otherwise, it must be a single bit. 2337 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2338 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2339 VTy->getNumElements()); 2340 2341 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2342 SelectorTy), 2343 ValueList.getConstantFwdRef(Record[1],CurTy), 2344 ValueList.getConstantFwdRef(Record[2],CurTy)); 2345 break; 2346 } 2347 case bitc::CST_CODE_CE_EXTRACTELT 2348 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2349 if (Record.size() < 3) 2350 return Error("Invalid record"); 2351 VectorType *OpTy = 2352 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2353 if (!OpTy) 2354 return Error("Invalid record"); 2355 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2356 Constant *Op1 = nullptr; 2357 if (Record.size() == 4) { 2358 Type *IdxTy = getTypeByID(Record[2]); 2359 if (!IdxTy) 2360 return Error("Invalid record"); 2361 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2362 } else // TODO: Remove with llvm 4.0 2363 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2364 if (!Op1) 2365 return Error("Invalid record"); 2366 V = ConstantExpr::getExtractElement(Op0, Op1); 2367 break; 2368 } 2369 case bitc::CST_CODE_CE_INSERTELT 2370 : { // CE_INSERTELT: [opval, opval, opty, opval] 2371 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2372 if (Record.size() < 3 || !OpTy) 2373 return Error("Invalid record"); 2374 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2375 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2376 OpTy->getElementType()); 2377 Constant *Op2 = nullptr; 2378 if (Record.size() == 4) { 2379 Type *IdxTy = getTypeByID(Record[2]); 2380 if (!IdxTy) 2381 return Error("Invalid record"); 2382 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2383 } else // TODO: Remove with llvm 4.0 2384 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2385 if (!Op2) 2386 return Error("Invalid record"); 2387 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2388 break; 2389 } 2390 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2391 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2392 if (Record.size() < 3 || !OpTy) 2393 return Error("Invalid record"); 2394 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2395 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2396 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2397 OpTy->getNumElements()); 2398 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2399 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2400 break; 2401 } 2402 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2403 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2404 VectorType *OpTy = 2405 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2406 if (Record.size() < 4 || !RTy || !OpTy) 2407 return Error("Invalid record"); 2408 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2409 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2410 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2411 RTy->getNumElements()); 2412 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2413 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2414 break; 2415 } 2416 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2417 if (Record.size() < 4) 2418 return Error("Invalid record"); 2419 Type *OpTy = getTypeByID(Record[0]); 2420 if (!OpTy) 2421 return Error("Invalid record"); 2422 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2423 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2424 2425 if (OpTy->isFPOrFPVectorTy()) 2426 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2427 else 2428 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2429 break; 2430 } 2431 // This maintains backward compatibility, pre-asm dialect keywords. 2432 // FIXME: Remove with the 4.0 release. 2433 case bitc::CST_CODE_INLINEASM_OLD: { 2434 if (Record.size() < 2) 2435 return Error("Invalid record"); 2436 std::string AsmStr, ConstrStr; 2437 bool HasSideEffects = Record[0] & 1; 2438 bool IsAlignStack = Record[0] >> 1; 2439 unsigned AsmStrSize = Record[1]; 2440 if (2+AsmStrSize >= Record.size()) 2441 return Error("Invalid record"); 2442 unsigned ConstStrSize = Record[2+AsmStrSize]; 2443 if (3+AsmStrSize+ConstStrSize > Record.size()) 2444 return Error("Invalid record"); 2445 2446 for (unsigned i = 0; i != AsmStrSize; ++i) 2447 AsmStr += (char)Record[2+i]; 2448 for (unsigned i = 0; i != ConstStrSize; ++i) 2449 ConstrStr += (char)Record[3+AsmStrSize+i]; 2450 PointerType *PTy = cast<PointerType>(CurTy); 2451 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2452 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2453 break; 2454 } 2455 // This version adds support for the asm dialect keywords (e.g., 2456 // inteldialect). 2457 case bitc::CST_CODE_INLINEASM: { 2458 if (Record.size() < 2) 2459 return Error("Invalid record"); 2460 std::string AsmStr, ConstrStr; 2461 bool HasSideEffects = Record[0] & 1; 2462 bool IsAlignStack = (Record[0] >> 1) & 1; 2463 unsigned AsmDialect = Record[0] >> 2; 2464 unsigned AsmStrSize = Record[1]; 2465 if (2+AsmStrSize >= Record.size()) 2466 return Error("Invalid record"); 2467 unsigned ConstStrSize = Record[2+AsmStrSize]; 2468 if (3+AsmStrSize+ConstStrSize > Record.size()) 2469 return Error("Invalid record"); 2470 2471 for (unsigned i = 0; i != AsmStrSize; ++i) 2472 AsmStr += (char)Record[2+i]; 2473 for (unsigned i = 0; i != ConstStrSize; ++i) 2474 ConstrStr += (char)Record[3+AsmStrSize+i]; 2475 PointerType *PTy = cast<PointerType>(CurTy); 2476 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2477 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2478 InlineAsm::AsmDialect(AsmDialect)); 2479 break; 2480 } 2481 case bitc::CST_CODE_BLOCKADDRESS:{ 2482 if (Record.size() < 3) 2483 return Error("Invalid record"); 2484 Type *FnTy = getTypeByID(Record[0]); 2485 if (!FnTy) 2486 return Error("Invalid record"); 2487 Function *Fn = 2488 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2489 if (!Fn) 2490 return Error("Invalid record"); 2491 2492 // Don't let Fn get dematerialized. 2493 BlockAddressesTaken.insert(Fn); 2494 2495 // If the function is already parsed we can insert the block address right 2496 // away. 2497 BasicBlock *BB; 2498 unsigned BBID = Record[2]; 2499 if (!BBID) 2500 // Invalid reference to entry block. 2501 return Error("Invalid ID"); 2502 if (!Fn->empty()) { 2503 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2504 for (size_t I = 0, E = BBID; I != E; ++I) { 2505 if (BBI == BBE) 2506 return Error("Invalid ID"); 2507 ++BBI; 2508 } 2509 BB = BBI; 2510 } else { 2511 // Otherwise insert a placeholder and remember it so it can be inserted 2512 // when the function is parsed. 2513 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2514 if (FwdBBs.empty()) 2515 BasicBlockFwdRefQueue.push_back(Fn); 2516 if (FwdBBs.size() < BBID + 1) 2517 FwdBBs.resize(BBID + 1); 2518 if (!FwdBBs[BBID]) 2519 FwdBBs[BBID] = BasicBlock::Create(Context); 2520 BB = FwdBBs[BBID]; 2521 } 2522 V = BlockAddress::get(Fn, BB); 2523 break; 2524 } 2525 } 2526 2527 ValueList.AssignValue(V, NextCstNo); 2528 ++NextCstNo; 2529 } 2530 } 2531 2532 std::error_code BitcodeReader::ParseUseLists() { 2533 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2534 return Error("Invalid record"); 2535 2536 // Read all the records. 2537 SmallVector<uint64_t, 64> Record; 2538 while (1) { 2539 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2540 2541 switch (Entry.Kind) { 2542 case BitstreamEntry::SubBlock: // Handled for us already. 2543 case BitstreamEntry::Error: 2544 return Error("Malformed block"); 2545 case BitstreamEntry::EndBlock: 2546 return std::error_code(); 2547 case BitstreamEntry::Record: 2548 // The interesting case. 2549 break; 2550 } 2551 2552 // Read a use list record. 2553 Record.clear(); 2554 bool IsBB = false; 2555 switch (Stream.readRecord(Entry.ID, Record)) { 2556 default: // Default behavior: unknown type. 2557 break; 2558 case bitc::USELIST_CODE_BB: 2559 IsBB = true; 2560 // fallthrough 2561 case bitc::USELIST_CODE_DEFAULT: { 2562 unsigned RecordLength = Record.size(); 2563 if (RecordLength < 3) 2564 // Records should have at least an ID and two indexes. 2565 return Error("Invalid record"); 2566 unsigned ID = Record.back(); 2567 Record.pop_back(); 2568 2569 Value *V; 2570 if (IsBB) { 2571 assert(ID < FunctionBBs.size() && "Basic block not found"); 2572 V = FunctionBBs[ID]; 2573 } else 2574 V = ValueList[ID]; 2575 unsigned NumUses = 0; 2576 SmallDenseMap<const Use *, unsigned, 16> Order; 2577 for (const Use &U : V->uses()) { 2578 if (++NumUses > Record.size()) 2579 break; 2580 Order[&U] = Record[NumUses - 1]; 2581 } 2582 if (Order.size() != Record.size() || NumUses > Record.size()) 2583 // Mismatches can happen if the functions are being materialized lazily 2584 // (out-of-order), or a value has been upgraded. 2585 break; 2586 2587 V->sortUseList([&](const Use &L, const Use &R) { 2588 return Order.lookup(&L) < Order.lookup(&R); 2589 }); 2590 break; 2591 } 2592 } 2593 } 2594 } 2595 2596 /// When we see the block for metadata, remember where it is and then skip it. 2597 /// This lets us lazily deserialize the metadata. 2598 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2599 // Save the current stream state. 2600 uint64_t CurBit = Stream.GetCurrentBitNo(); 2601 DeferredMetadataInfo.push_back(CurBit); 2602 2603 // Skip over the block for now. 2604 if (Stream.SkipBlock()) 2605 return Error("Invalid record"); 2606 return std::error_code(); 2607 } 2608 2609 std::error_code BitcodeReader::materializeMetadata() { 2610 for (uint64_t BitPos : DeferredMetadataInfo) { 2611 // Move the bit stream to the saved position. 2612 Stream.JumpToBit(BitPos); 2613 if (std::error_code EC = ParseMetadata()) 2614 return EC; 2615 } 2616 DeferredMetadataInfo.clear(); 2617 return std::error_code(); 2618 } 2619 2620 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2621 2622 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2623 /// remember where it is and then skip it. This lets us lazily deserialize the 2624 /// functions. 2625 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2626 // Get the function we are talking about. 2627 if (FunctionsWithBodies.empty()) 2628 return Error("Insufficient function protos"); 2629 2630 Function *Fn = FunctionsWithBodies.back(); 2631 FunctionsWithBodies.pop_back(); 2632 2633 // Save the current stream state. 2634 uint64_t CurBit = Stream.GetCurrentBitNo(); 2635 DeferredFunctionInfo[Fn] = CurBit; 2636 2637 // Skip over the function block for now. 2638 if (Stream.SkipBlock()) 2639 return Error("Invalid record"); 2640 return std::error_code(); 2641 } 2642 2643 std::error_code BitcodeReader::GlobalCleanup() { 2644 // Patch the initializers for globals and aliases up. 2645 ResolveGlobalAndAliasInits(); 2646 if (!GlobalInits.empty() || !AliasInits.empty()) 2647 return Error("Malformed global initializer set"); 2648 2649 // Look for intrinsic functions which need to be upgraded at some point 2650 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2651 FI != FE; ++FI) { 2652 Function *NewFn; 2653 if (UpgradeIntrinsicFunction(FI, NewFn)) 2654 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2655 } 2656 2657 // Look for global variables which need to be renamed. 2658 for (Module::global_iterator 2659 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2660 GI != GE;) { 2661 GlobalVariable *GV = GI++; 2662 UpgradeGlobalVariable(GV); 2663 } 2664 2665 // Force deallocation of memory for these vectors to favor the client that 2666 // want lazy deserialization. 2667 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2668 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2669 return std::error_code(); 2670 } 2671 2672 std::error_code BitcodeReader::ParseModule(bool Resume, 2673 bool ShouldLazyLoadMetadata) { 2674 if (Resume) 2675 Stream.JumpToBit(NextUnreadBit); 2676 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2677 return Error("Invalid record"); 2678 2679 SmallVector<uint64_t, 64> Record; 2680 std::vector<std::string> SectionTable; 2681 std::vector<std::string> GCTable; 2682 2683 // Read all the records for this module. 2684 while (1) { 2685 BitstreamEntry Entry = Stream.advance(); 2686 2687 switch (Entry.Kind) { 2688 case BitstreamEntry::Error: 2689 return Error("Malformed block"); 2690 case BitstreamEntry::EndBlock: 2691 return GlobalCleanup(); 2692 2693 case BitstreamEntry::SubBlock: 2694 switch (Entry.ID) { 2695 default: // Skip unknown content. 2696 if (Stream.SkipBlock()) 2697 return Error("Invalid record"); 2698 break; 2699 case bitc::BLOCKINFO_BLOCK_ID: 2700 if (Stream.ReadBlockInfoBlock()) 2701 return Error("Malformed block"); 2702 break; 2703 case bitc::PARAMATTR_BLOCK_ID: 2704 if (std::error_code EC = ParseAttributeBlock()) 2705 return EC; 2706 break; 2707 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2708 if (std::error_code EC = ParseAttributeGroupBlock()) 2709 return EC; 2710 break; 2711 case bitc::TYPE_BLOCK_ID_NEW: 2712 if (std::error_code EC = ParseTypeTable()) 2713 return EC; 2714 break; 2715 case bitc::VALUE_SYMTAB_BLOCK_ID: 2716 if (std::error_code EC = ParseValueSymbolTable()) 2717 return EC; 2718 SeenValueSymbolTable = true; 2719 break; 2720 case bitc::CONSTANTS_BLOCK_ID: 2721 if (std::error_code EC = ParseConstants()) 2722 return EC; 2723 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2724 return EC; 2725 break; 2726 case bitc::METADATA_BLOCK_ID: 2727 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2728 if (std::error_code EC = rememberAndSkipMetadata()) 2729 return EC; 2730 break; 2731 } 2732 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2733 if (std::error_code EC = ParseMetadata()) 2734 return EC; 2735 break; 2736 case bitc::FUNCTION_BLOCK_ID: 2737 // If this is the first function body we've seen, reverse the 2738 // FunctionsWithBodies list. 2739 if (!SeenFirstFunctionBody) { 2740 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2741 if (std::error_code EC = GlobalCleanup()) 2742 return EC; 2743 SeenFirstFunctionBody = true; 2744 } 2745 2746 if (std::error_code EC = RememberAndSkipFunctionBody()) 2747 return EC; 2748 // For streaming bitcode, suspend parsing when we reach the function 2749 // bodies. Subsequent materialization calls will resume it when 2750 // necessary. For streaming, the function bodies must be at the end of 2751 // the bitcode. If the bitcode file is old, the symbol table will be 2752 // at the end instead and will not have been seen yet. In this case, 2753 // just finish the parse now. 2754 if (LazyStreamer && SeenValueSymbolTable) { 2755 NextUnreadBit = Stream.GetCurrentBitNo(); 2756 return std::error_code(); 2757 } 2758 break; 2759 case bitc::USELIST_BLOCK_ID: 2760 if (std::error_code EC = ParseUseLists()) 2761 return EC; 2762 break; 2763 } 2764 continue; 2765 2766 case BitstreamEntry::Record: 2767 // The interesting case. 2768 break; 2769 } 2770 2771 2772 // Read a record. 2773 switch (Stream.readRecord(Entry.ID, Record)) { 2774 default: break; // Default behavior, ignore unknown content. 2775 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2776 if (Record.size() < 1) 2777 return Error("Invalid record"); 2778 // Only version #0 and #1 are supported so far. 2779 unsigned module_version = Record[0]; 2780 switch (module_version) { 2781 default: 2782 return Error("Invalid value"); 2783 case 0: 2784 UseRelativeIDs = false; 2785 break; 2786 case 1: 2787 UseRelativeIDs = true; 2788 break; 2789 } 2790 break; 2791 } 2792 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2793 std::string S; 2794 if (ConvertToString(Record, 0, S)) 2795 return Error("Invalid record"); 2796 TheModule->setTargetTriple(S); 2797 break; 2798 } 2799 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2800 std::string S; 2801 if (ConvertToString(Record, 0, S)) 2802 return Error("Invalid record"); 2803 TheModule->setDataLayout(S); 2804 break; 2805 } 2806 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2807 std::string S; 2808 if (ConvertToString(Record, 0, S)) 2809 return Error("Invalid record"); 2810 TheModule->setModuleInlineAsm(S); 2811 break; 2812 } 2813 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2814 // FIXME: Remove in 4.0. 2815 std::string S; 2816 if (ConvertToString(Record, 0, S)) 2817 return Error("Invalid record"); 2818 // Ignore value. 2819 break; 2820 } 2821 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2822 std::string S; 2823 if (ConvertToString(Record, 0, S)) 2824 return Error("Invalid record"); 2825 SectionTable.push_back(S); 2826 break; 2827 } 2828 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2829 std::string S; 2830 if (ConvertToString(Record, 0, S)) 2831 return Error("Invalid record"); 2832 GCTable.push_back(S); 2833 break; 2834 } 2835 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2836 if (Record.size() < 2) 2837 return Error("Invalid record"); 2838 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2839 unsigned ComdatNameSize = Record[1]; 2840 std::string ComdatName; 2841 ComdatName.reserve(ComdatNameSize); 2842 for (unsigned i = 0; i != ComdatNameSize; ++i) 2843 ComdatName += (char)Record[2 + i]; 2844 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2845 C->setSelectionKind(SK); 2846 ComdatList.push_back(C); 2847 break; 2848 } 2849 // GLOBALVAR: [pointer type, isconst, initid, 2850 // linkage, alignment, section, visibility, threadlocal, 2851 // unnamed_addr, externally_initialized, dllstorageclass, 2852 // comdat] 2853 case bitc::MODULE_CODE_GLOBALVAR: { 2854 if (Record.size() < 6) 2855 return Error("Invalid record"); 2856 Type *Ty = getTypeByID(Record[0]); 2857 if (!Ty) 2858 return Error("Invalid record"); 2859 if (!Ty->isPointerTy()) 2860 return Error("Invalid type for value"); 2861 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2862 Ty = cast<PointerType>(Ty)->getElementType(); 2863 2864 bool isConstant = Record[1]; 2865 uint64_t RawLinkage = Record[3]; 2866 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2867 unsigned Alignment; 2868 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2869 return EC; 2870 std::string Section; 2871 if (Record[5]) { 2872 if (Record[5]-1 >= SectionTable.size()) 2873 return Error("Invalid ID"); 2874 Section = SectionTable[Record[5]-1]; 2875 } 2876 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2877 // Local linkage must have default visibility. 2878 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2879 // FIXME: Change to an error if non-default in 4.0. 2880 Visibility = GetDecodedVisibility(Record[6]); 2881 2882 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2883 if (Record.size() > 7) 2884 TLM = GetDecodedThreadLocalMode(Record[7]); 2885 2886 bool UnnamedAddr = false; 2887 if (Record.size() > 8) 2888 UnnamedAddr = Record[8]; 2889 2890 bool ExternallyInitialized = false; 2891 if (Record.size() > 9) 2892 ExternallyInitialized = Record[9]; 2893 2894 GlobalVariable *NewGV = 2895 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2896 TLM, AddressSpace, ExternallyInitialized); 2897 NewGV->setAlignment(Alignment); 2898 if (!Section.empty()) 2899 NewGV->setSection(Section); 2900 NewGV->setVisibility(Visibility); 2901 NewGV->setUnnamedAddr(UnnamedAddr); 2902 2903 if (Record.size() > 10) 2904 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2905 else 2906 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2907 2908 ValueList.push_back(NewGV); 2909 2910 // Remember which value to use for the global initializer. 2911 if (unsigned InitID = Record[2]) 2912 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2913 2914 if (Record.size() > 11) { 2915 if (unsigned ComdatID = Record[11]) { 2916 assert(ComdatID <= ComdatList.size()); 2917 NewGV->setComdat(ComdatList[ComdatID - 1]); 2918 } 2919 } else if (hasImplicitComdat(RawLinkage)) { 2920 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2921 } 2922 break; 2923 } 2924 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2925 // alignment, section, visibility, gc, unnamed_addr, 2926 // prologuedata, dllstorageclass, comdat, prefixdata] 2927 case bitc::MODULE_CODE_FUNCTION: { 2928 if (Record.size() < 8) 2929 return Error("Invalid record"); 2930 Type *Ty = getTypeByID(Record[0]); 2931 if (!Ty) 2932 return Error("Invalid record"); 2933 if (!Ty->isPointerTy()) 2934 return Error("Invalid type for value"); 2935 FunctionType *FTy = 2936 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2937 if (!FTy) 2938 return Error("Invalid type for value"); 2939 2940 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2941 "", TheModule); 2942 2943 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2944 bool isProto = Record[2]; 2945 uint64_t RawLinkage = Record[3]; 2946 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2947 Func->setAttributes(getAttributes(Record[4])); 2948 2949 unsigned Alignment; 2950 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2951 return EC; 2952 Func->setAlignment(Alignment); 2953 if (Record[6]) { 2954 if (Record[6]-1 >= SectionTable.size()) 2955 return Error("Invalid ID"); 2956 Func->setSection(SectionTable[Record[6]-1]); 2957 } 2958 // Local linkage must have default visibility. 2959 if (!Func->hasLocalLinkage()) 2960 // FIXME: Change to an error if non-default in 4.0. 2961 Func->setVisibility(GetDecodedVisibility(Record[7])); 2962 if (Record.size() > 8 && Record[8]) { 2963 if (Record[8]-1 > GCTable.size()) 2964 return Error("Invalid ID"); 2965 Func->setGC(GCTable[Record[8]-1].c_str()); 2966 } 2967 bool UnnamedAddr = false; 2968 if (Record.size() > 9) 2969 UnnamedAddr = Record[9]; 2970 Func->setUnnamedAddr(UnnamedAddr); 2971 if (Record.size() > 10 && Record[10] != 0) 2972 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2973 2974 if (Record.size() > 11) 2975 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2976 else 2977 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2978 2979 if (Record.size() > 12) { 2980 if (unsigned ComdatID = Record[12]) { 2981 assert(ComdatID <= ComdatList.size()); 2982 Func->setComdat(ComdatList[ComdatID - 1]); 2983 } 2984 } else if (hasImplicitComdat(RawLinkage)) { 2985 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2986 } 2987 2988 if (Record.size() > 13 && Record[13] != 0) 2989 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2990 2991 ValueList.push_back(Func); 2992 2993 // If this is a function with a body, remember the prototype we are 2994 // creating now, so that we can match up the body with them later. 2995 if (!isProto) { 2996 Func->setIsMaterializable(true); 2997 FunctionsWithBodies.push_back(Func); 2998 if (LazyStreamer) 2999 DeferredFunctionInfo[Func] = 0; 3000 } 3001 break; 3002 } 3003 // ALIAS: [alias type, aliasee val#, linkage] 3004 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3005 case bitc::MODULE_CODE_ALIAS: { 3006 if (Record.size() < 3) 3007 return Error("Invalid record"); 3008 Type *Ty = getTypeByID(Record[0]); 3009 if (!Ty) 3010 return Error("Invalid record"); 3011 auto *PTy = dyn_cast<PointerType>(Ty); 3012 if (!PTy) 3013 return Error("Invalid type for value"); 3014 3015 auto *NewGA = 3016 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3017 getDecodedLinkage(Record[2]), "", TheModule); 3018 // Old bitcode files didn't have visibility field. 3019 // Local linkage must have default visibility. 3020 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3021 // FIXME: Change to an error if non-default in 4.0. 3022 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3023 if (Record.size() > 4) 3024 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3025 else 3026 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3027 if (Record.size() > 5) 3028 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3029 if (Record.size() > 6) 3030 NewGA->setUnnamedAddr(Record[6]); 3031 ValueList.push_back(NewGA); 3032 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3033 break; 3034 } 3035 /// MODULE_CODE_PURGEVALS: [numvals] 3036 case bitc::MODULE_CODE_PURGEVALS: 3037 // Trim down the value list to the specified size. 3038 if (Record.size() < 1 || Record[0] > ValueList.size()) 3039 return Error("Invalid record"); 3040 ValueList.shrinkTo(Record[0]); 3041 break; 3042 } 3043 Record.clear(); 3044 } 3045 } 3046 3047 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3048 bool ShouldLazyLoadMetadata) { 3049 TheModule = nullptr; 3050 3051 if (std::error_code EC = InitStream()) 3052 return EC; 3053 3054 // Sniff for the signature. 3055 if (Stream.Read(8) != 'B' || 3056 Stream.Read(8) != 'C' || 3057 Stream.Read(4) != 0x0 || 3058 Stream.Read(4) != 0xC || 3059 Stream.Read(4) != 0xE || 3060 Stream.Read(4) != 0xD) 3061 return Error("Invalid bitcode signature"); 3062 3063 // We expect a number of well-defined blocks, though we don't necessarily 3064 // need to understand them all. 3065 while (1) { 3066 if (Stream.AtEndOfStream()) 3067 return std::error_code(); 3068 3069 BitstreamEntry Entry = 3070 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3071 3072 switch (Entry.Kind) { 3073 case BitstreamEntry::Error: 3074 return Error("Malformed block"); 3075 case BitstreamEntry::EndBlock: 3076 return std::error_code(); 3077 3078 case BitstreamEntry::SubBlock: 3079 switch (Entry.ID) { 3080 case bitc::BLOCKINFO_BLOCK_ID: 3081 if (Stream.ReadBlockInfoBlock()) 3082 return Error("Malformed block"); 3083 break; 3084 case bitc::MODULE_BLOCK_ID: 3085 // Reject multiple MODULE_BLOCK's in a single bitstream. 3086 if (TheModule) 3087 return Error("Invalid multiple blocks"); 3088 TheModule = M; 3089 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3090 return EC; 3091 if (LazyStreamer) 3092 return std::error_code(); 3093 break; 3094 default: 3095 if (Stream.SkipBlock()) 3096 return Error("Invalid record"); 3097 break; 3098 } 3099 continue; 3100 case BitstreamEntry::Record: 3101 // There should be no records in the top-level of blocks. 3102 3103 // The ranlib in Xcode 4 will align archive members by appending newlines 3104 // to the end of them. If this file size is a multiple of 4 but not 8, we 3105 // have to read and ignore these final 4 bytes :-( 3106 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3107 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3108 Stream.AtEndOfStream()) 3109 return std::error_code(); 3110 3111 return Error("Invalid record"); 3112 } 3113 } 3114 } 3115 3116 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3117 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3118 return Error("Invalid record"); 3119 3120 SmallVector<uint64_t, 64> Record; 3121 3122 std::string Triple; 3123 // Read all the records for this module. 3124 while (1) { 3125 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3126 3127 switch (Entry.Kind) { 3128 case BitstreamEntry::SubBlock: // Handled for us already. 3129 case BitstreamEntry::Error: 3130 return Error("Malformed block"); 3131 case BitstreamEntry::EndBlock: 3132 return Triple; 3133 case BitstreamEntry::Record: 3134 // The interesting case. 3135 break; 3136 } 3137 3138 // Read a record. 3139 switch (Stream.readRecord(Entry.ID, Record)) { 3140 default: break; // Default behavior, ignore unknown content. 3141 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3142 std::string S; 3143 if (ConvertToString(Record, 0, S)) 3144 return Error("Invalid record"); 3145 Triple = S; 3146 break; 3147 } 3148 } 3149 Record.clear(); 3150 } 3151 llvm_unreachable("Exit infinite loop"); 3152 } 3153 3154 ErrorOr<std::string> BitcodeReader::parseTriple() { 3155 if (std::error_code EC = InitStream()) 3156 return EC; 3157 3158 // Sniff for the signature. 3159 if (Stream.Read(8) != 'B' || 3160 Stream.Read(8) != 'C' || 3161 Stream.Read(4) != 0x0 || 3162 Stream.Read(4) != 0xC || 3163 Stream.Read(4) != 0xE || 3164 Stream.Read(4) != 0xD) 3165 return Error("Invalid bitcode signature"); 3166 3167 // We expect a number of well-defined blocks, though we don't necessarily 3168 // need to understand them all. 3169 while (1) { 3170 BitstreamEntry Entry = Stream.advance(); 3171 3172 switch (Entry.Kind) { 3173 case BitstreamEntry::Error: 3174 return Error("Malformed block"); 3175 case BitstreamEntry::EndBlock: 3176 return std::error_code(); 3177 3178 case BitstreamEntry::SubBlock: 3179 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3180 return parseModuleTriple(); 3181 3182 // Ignore other sub-blocks. 3183 if (Stream.SkipBlock()) 3184 return Error("Malformed block"); 3185 continue; 3186 3187 case BitstreamEntry::Record: 3188 Stream.skipRecord(Entry.ID); 3189 continue; 3190 } 3191 } 3192 } 3193 3194 /// ParseMetadataAttachment - Parse metadata attachments. 3195 std::error_code BitcodeReader::ParseMetadataAttachment() { 3196 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3197 return Error("Invalid record"); 3198 3199 SmallVector<uint64_t, 64> Record; 3200 while (1) { 3201 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3202 3203 switch (Entry.Kind) { 3204 case BitstreamEntry::SubBlock: // Handled for us already. 3205 case BitstreamEntry::Error: 3206 return Error("Malformed block"); 3207 case BitstreamEntry::EndBlock: 3208 return std::error_code(); 3209 case BitstreamEntry::Record: 3210 // The interesting case. 3211 break; 3212 } 3213 3214 // Read a metadata attachment record. 3215 Record.clear(); 3216 switch (Stream.readRecord(Entry.ID, Record)) { 3217 default: // Default behavior: ignore. 3218 break; 3219 case bitc::METADATA_ATTACHMENT: { 3220 unsigned RecordLength = Record.size(); 3221 if (Record.empty() || (RecordLength - 1) % 2 == 1) 3222 return Error("Invalid record"); 3223 Instruction *Inst = InstructionList[Record[0]]; 3224 for (unsigned i = 1; i != RecordLength; i = i+2) { 3225 unsigned Kind = Record[i]; 3226 DenseMap<unsigned, unsigned>::iterator I = 3227 MDKindMap.find(Kind); 3228 if (I == MDKindMap.end()) 3229 return Error("Invalid ID"); 3230 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3231 if (isa<LocalAsMetadata>(Node)) 3232 // Drop the attachment. This used to be legal, but there's no 3233 // upgrade path. 3234 break; 3235 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3236 if (I->second == LLVMContext::MD_tbaa) 3237 InstsWithTBAATag.push_back(Inst); 3238 } 3239 break; 3240 } 3241 } 3242 } 3243 } 3244 3245 /// ParseFunctionBody - Lazily parse the specified function body block. 3246 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3247 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3248 return Error("Invalid record"); 3249 3250 InstructionList.clear(); 3251 unsigned ModuleValueListSize = ValueList.size(); 3252 unsigned ModuleMDValueListSize = MDValueList.size(); 3253 3254 // Add all the function arguments to the value table. 3255 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3256 ValueList.push_back(I); 3257 3258 unsigned NextValueNo = ValueList.size(); 3259 BasicBlock *CurBB = nullptr; 3260 unsigned CurBBNo = 0; 3261 3262 DebugLoc LastLoc; 3263 auto getLastInstruction = [&]() -> Instruction * { 3264 if (CurBB && !CurBB->empty()) 3265 return &CurBB->back(); 3266 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3267 !FunctionBBs[CurBBNo - 1]->empty()) 3268 return &FunctionBBs[CurBBNo - 1]->back(); 3269 return nullptr; 3270 }; 3271 3272 // Read all the records. 3273 SmallVector<uint64_t, 64> Record; 3274 while (1) { 3275 BitstreamEntry Entry = Stream.advance(); 3276 3277 switch (Entry.Kind) { 3278 case BitstreamEntry::Error: 3279 return Error("Malformed block"); 3280 case BitstreamEntry::EndBlock: 3281 goto OutOfRecordLoop; 3282 3283 case BitstreamEntry::SubBlock: 3284 switch (Entry.ID) { 3285 default: // Skip unknown content. 3286 if (Stream.SkipBlock()) 3287 return Error("Invalid record"); 3288 break; 3289 case bitc::CONSTANTS_BLOCK_ID: 3290 if (std::error_code EC = ParseConstants()) 3291 return EC; 3292 NextValueNo = ValueList.size(); 3293 break; 3294 case bitc::VALUE_SYMTAB_BLOCK_ID: 3295 if (std::error_code EC = ParseValueSymbolTable()) 3296 return EC; 3297 break; 3298 case bitc::METADATA_ATTACHMENT_ID: 3299 if (std::error_code EC = ParseMetadataAttachment()) 3300 return EC; 3301 break; 3302 case bitc::METADATA_BLOCK_ID: 3303 if (std::error_code EC = ParseMetadata()) 3304 return EC; 3305 break; 3306 case bitc::USELIST_BLOCK_ID: 3307 if (std::error_code EC = ParseUseLists()) 3308 return EC; 3309 break; 3310 } 3311 continue; 3312 3313 case BitstreamEntry::Record: 3314 // The interesting case. 3315 break; 3316 } 3317 3318 // Read a record. 3319 Record.clear(); 3320 Instruction *I = nullptr; 3321 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3322 switch (BitCode) { 3323 default: // Default behavior: reject 3324 return Error("Invalid value"); 3325 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3326 if (Record.size() < 1 || Record[0] == 0) 3327 return Error("Invalid record"); 3328 // Create all the basic blocks for the function. 3329 FunctionBBs.resize(Record[0]); 3330 3331 // See if anything took the address of blocks in this function. 3332 auto BBFRI = BasicBlockFwdRefs.find(F); 3333 if (BBFRI == BasicBlockFwdRefs.end()) { 3334 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3335 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3336 } else { 3337 auto &BBRefs = BBFRI->second; 3338 // Check for invalid basic block references. 3339 if (BBRefs.size() > FunctionBBs.size()) 3340 return Error("Invalid ID"); 3341 assert(!BBRefs.empty() && "Unexpected empty array"); 3342 assert(!BBRefs.front() && "Invalid reference to entry block"); 3343 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3344 ++I) 3345 if (I < RE && BBRefs[I]) { 3346 BBRefs[I]->insertInto(F); 3347 FunctionBBs[I] = BBRefs[I]; 3348 } else { 3349 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3350 } 3351 3352 // Erase from the table. 3353 BasicBlockFwdRefs.erase(BBFRI); 3354 } 3355 3356 CurBB = FunctionBBs[0]; 3357 continue; 3358 } 3359 3360 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3361 // This record indicates that the last instruction is at the same 3362 // location as the previous instruction with a location. 3363 I = getLastInstruction(); 3364 3365 if (!I) 3366 return Error("Invalid record"); 3367 I->setDebugLoc(LastLoc); 3368 I = nullptr; 3369 continue; 3370 3371 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3372 I = getLastInstruction(); 3373 if (!I || Record.size() < 4) 3374 return Error("Invalid record"); 3375 3376 unsigned Line = Record[0], Col = Record[1]; 3377 unsigned ScopeID = Record[2], IAID = Record[3]; 3378 3379 MDNode *Scope = nullptr, *IA = nullptr; 3380 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3381 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3382 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3383 I->setDebugLoc(LastLoc); 3384 I = nullptr; 3385 continue; 3386 } 3387 3388 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3389 unsigned OpNum = 0; 3390 Value *LHS, *RHS; 3391 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3392 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3393 OpNum+1 > Record.size()) 3394 return Error("Invalid record"); 3395 3396 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3397 if (Opc == -1) 3398 return Error("Invalid record"); 3399 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3400 InstructionList.push_back(I); 3401 if (OpNum < Record.size()) { 3402 if (Opc == Instruction::Add || 3403 Opc == Instruction::Sub || 3404 Opc == Instruction::Mul || 3405 Opc == Instruction::Shl) { 3406 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3407 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3408 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3409 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3410 } else if (Opc == Instruction::SDiv || 3411 Opc == Instruction::UDiv || 3412 Opc == Instruction::LShr || 3413 Opc == Instruction::AShr) { 3414 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3415 cast<BinaryOperator>(I)->setIsExact(true); 3416 } else if (isa<FPMathOperator>(I)) { 3417 FastMathFlags FMF; 3418 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3419 FMF.setUnsafeAlgebra(); 3420 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3421 FMF.setNoNaNs(); 3422 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3423 FMF.setNoInfs(); 3424 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3425 FMF.setNoSignedZeros(); 3426 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3427 FMF.setAllowReciprocal(); 3428 if (FMF.any()) 3429 I->setFastMathFlags(FMF); 3430 } 3431 3432 } 3433 break; 3434 } 3435 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3436 unsigned OpNum = 0; 3437 Value *Op; 3438 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3439 OpNum+2 != Record.size()) 3440 return Error("Invalid record"); 3441 3442 Type *ResTy = getTypeByID(Record[OpNum]); 3443 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3444 if (Opc == -1 || !ResTy) 3445 return Error("Invalid record"); 3446 Instruction *Temp = nullptr; 3447 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3448 if (Temp) { 3449 InstructionList.push_back(Temp); 3450 CurBB->getInstList().push_back(Temp); 3451 } 3452 } else { 3453 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3454 } 3455 InstructionList.push_back(I); 3456 break; 3457 } 3458 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3459 case bitc::FUNC_CODE_INST_GEP_OLD: 3460 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3461 unsigned OpNum = 0; 3462 3463 Type *Ty; 3464 bool InBounds; 3465 3466 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3467 InBounds = Record[OpNum++]; 3468 Ty = getTypeByID(Record[OpNum++]); 3469 } else { 3470 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3471 Ty = nullptr; 3472 } 3473 3474 Value *BasePtr; 3475 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3476 return Error("Invalid record"); 3477 3478 if (Ty && 3479 Ty != 3480 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3481 ->getElementType()) 3482 return Error( 3483 "Explicit gep type does not match pointee type of pointer operand"); 3484 3485 SmallVector<Value*, 16> GEPIdx; 3486 while (OpNum != Record.size()) { 3487 Value *Op; 3488 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3489 return Error("Invalid record"); 3490 GEPIdx.push_back(Op); 3491 } 3492 3493 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3494 3495 InstructionList.push_back(I); 3496 if (InBounds) 3497 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3498 break; 3499 } 3500 3501 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3502 // EXTRACTVAL: [opty, opval, n x indices] 3503 unsigned OpNum = 0; 3504 Value *Agg; 3505 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3506 return Error("Invalid record"); 3507 3508 SmallVector<unsigned, 4> EXTRACTVALIdx; 3509 Type *CurTy = Agg->getType(); 3510 for (unsigned RecSize = Record.size(); 3511 OpNum != RecSize; ++OpNum) { 3512 bool IsArray = CurTy->isArrayTy(); 3513 bool IsStruct = CurTy->isStructTy(); 3514 uint64_t Index = Record[OpNum]; 3515 3516 if (!IsStruct && !IsArray) 3517 return Error("EXTRACTVAL: Invalid type"); 3518 if ((unsigned)Index != Index) 3519 return Error("Invalid value"); 3520 if (IsStruct && Index >= CurTy->subtypes().size()) 3521 return Error("EXTRACTVAL: Invalid struct index"); 3522 if (IsArray && Index >= CurTy->getArrayNumElements()) 3523 return Error("EXTRACTVAL: Invalid array index"); 3524 EXTRACTVALIdx.push_back((unsigned)Index); 3525 3526 if (IsStruct) 3527 CurTy = CurTy->subtypes()[Index]; 3528 else 3529 CurTy = CurTy->subtypes()[0]; 3530 } 3531 3532 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3533 InstructionList.push_back(I); 3534 break; 3535 } 3536 3537 case bitc::FUNC_CODE_INST_INSERTVAL: { 3538 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3539 unsigned OpNum = 0; 3540 Value *Agg; 3541 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3542 return Error("Invalid record"); 3543 Value *Val; 3544 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3545 return Error("Invalid record"); 3546 3547 SmallVector<unsigned, 4> INSERTVALIdx; 3548 Type *CurTy = Agg->getType(); 3549 for (unsigned RecSize = Record.size(); 3550 OpNum != RecSize; ++OpNum) { 3551 bool IsArray = CurTy->isArrayTy(); 3552 bool IsStruct = CurTy->isStructTy(); 3553 uint64_t Index = Record[OpNum]; 3554 3555 if (!IsStruct && !IsArray) 3556 return Error("INSERTVAL: Invalid type"); 3557 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3558 return Error("Invalid type"); 3559 if ((unsigned)Index != Index) 3560 return Error("Invalid value"); 3561 if (IsStruct && Index >= CurTy->subtypes().size()) 3562 return Error("INSERTVAL: Invalid struct index"); 3563 if (IsArray && Index >= CurTy->getArrayNumElements()) 3564 return Error("INSERTVAL: Invalid array index"); 3565 3566 INSERTVALIdx.push_back((unsigned)Index); 3567 if (IsStruct) 3568 CurTy = CurTy->subtypes()[Index]; 3569 else 3570 CurTy = CurTy->subtypes()[0]; 3571 } 3572 3573 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3574 InstructionList.push_back(I); 3575 break; 3576 } 3577 3578 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3579 // obsolete form of select 3580 // handles select i1 ... in old bitcode 3581 unsigned OpNum = 0; 3582 Value *TrueVal, *FalseVal, *Cond; 3583 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3584 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3585 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3586 return Error("Invalid record"); 3587 3588 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3589 InstructionList.push_back(I); 3590 break; 3591 } 3592 3593 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3594 // new form of select 3595 // handles select i1 or select [N x i1] 3596 unsigned OpNum = 0; 3597 Value *TrueVal, *FalseVal, *Cond; 3598 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3599 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3600 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3601 return Error("Invalid record"); 3602 3603 // select condition can be either i1 or [N x i1] 3604 if (VectorType* vector_type = 3605 dyn_cast<VectorType>(Cond->getType())) { 3606 // expect <n x i1> 3607 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3608 return Error("Invalid type for value"); 3609 } else { 3610 // expect i1 3611 if (Cond->getType() != Type::getInt1Ty(Context)) 3612 return Error("Invalid type for value"); 3613 } 3614 3615 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3616 InstructionList.push_back(I); 3617 break; 3618 } 3619 3620 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3621 unsigned OpNum = 0; 3622 Value *Vec, *Idx; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3624 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3625 return Error("Invalid record"); 3626 I = ExtractElementInst::Create(Vec, Idx); 3627 InstructionList.push_back(I); 3628 break; 3629 } 3630 3631 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3632 unsigned OpNum = 0; 3633 Value *Vec, *Elt, *Idx; 3634 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3635 popValue(Record, OpNum, NextValueNo, 3636 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3637 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3638 return Error("Invalid record"); 3639 I = InsertElementInst::Create(Vec, Elt, Idx); 3640 InstructionList.push_back(I); 3641 break; 3642 } 3643 3644 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3645 unsigned OpNum = 0; 3646 Value *Vec1, *Vec2, *Mask; 3647 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3648 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3649 return Error("Invalid record"); 3650 3651 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3652 return Error("Invalid record"); 3653 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3654 InstructionList.push_back(I); 3655 break; 3656 } 3657 3658 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3659 // Old form of ICmp/FCmp returning bool 3660 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3661 // both legal on vectors but had different behaviour. 3662 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3663 // FCmp/ICmp returning bool or vector of bool 3664 3665 unsigned OpNum = 0; 3666 Value *LHS, *RHS; 3667 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3668 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3669 OpNum+1 != Record.size()) 3670 return Error("Invalid record"); 3671 3672 if (LHS->getType()->isFPOrFPVectorTy()) 3673 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3674 else 3675 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3676 InstructionList.push_back(I); 3677 break; 3678 } 3679 3680 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3681 { 3682 unsigned Size = Record.size(); 3683 if (Size == 0) { 3684 I = ReturnInst::Create(Context); 3685 InstructionList.push_back(I); 3686 break; 3687 } 3688 3689 unsigned OpNum = 0; 3690 Value *Op = nullptr; 3691 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3692 return Error("Invalid record"); 3693 if (OpNum != Record.size()) 3694 return Error("Invalid record"); 3695 3696 I = ReturnInst::Create(Context, Op); 3697 InstructionList.push_back(I); 3698 break; 3699 } 3700 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3701 if (Record.size() != 1 && Record.size() != 3) 3702 return Error("Invalid record"); 3703 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3704 if (!TrueDest) 3705 return Error("Invalid record"); 3706 3707 if (Record.size() == 1) { 3708 I = BranchInst::Create(TrueDest); 3709 InstructionList.push_back(I); 3710 } 3711 else { 3712 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3713 Value *Cond = getValue(Record, 2, NextValueNo, 3714 Type::getInt1Ty(Context)); 3715 if (!FalseDest || !Cond) 3716 return Error("Invalid record"); 3717 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3718 InstructionList.push_back(I); 3719 } 3720 break; 3721 } 3722 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3723 // Check magic 3724 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3725 // "New" SwitchInst format with case ranges. The changes to write this 3726 // format were reverted but we still recognize bitcode that uses it. 3727 // Hopefully someday we will have support for case ranges and can use 3728 // this format again. 3729 3730 Type *OpTy = getTypeByID(Record[1]); 3731 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3732 3733 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3734 BasicBlock *Default = getBasicBlock(Record[3]); 3735 if (!OpTy || !Cond || !Default) 3736 return Error("Invalid record"); 3737 3738 unsigned NumCases = Record[4]; 3739 3740 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3741 InstructionList.push_back(SI); 3742 3743 unsigned CurIdx = 5; 3744 for (unsigned i = 0; i != NumCases; ++i) { 3745 SmallVector<ConstantInt*, 1> CaseVals; 3746 unsigned NumItems = Record[CurIdx++]; 3747 for (unsigned ci = 0; ci != NumItems; ++ci) { 3748 bool isSingleNumber = Record[CurIdx++]; 3749 3750 APInt Low; 3751 unsigned ActiveWords = 1; 3752 if (ValueBitWidth > 64) 3753 ActiveWords = Record[CurIdx++]; 3754 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3755 ValueBitWidth); 3756 CurIdx += ActiveWords; 3757 3758 if (!isSingleNumber) { 3759 ActiveWords = 1; 3760 if (ValueBitWidth > 64) 3761 ActiveWords = Record[CurIdx++]; 3762 APInt High = 3763 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3764 ValueBitWidth); 3765 CurIdx += ActiveWords; 3766 3767 // FIXME: It is not clear whether values in the range should be 3768 // compared as signed or unsigned values. The partially 3769 // implemented changes that used this format in the past used 3770 // unsigned comparisons. 3771 for ( ; Low.ule(High); ++Low) 3772 CaseVals.push_back(ConstantInt::get(Context, Low)); 3773 } else 3774 CaseVals.push_back(ConstantInt::get(Context, Low)); 3775 } 3776 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3777 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3778 cve = CaseVals.end(); cvi != cve; ++cvi) 3779 SI->addCase(*cvi, DestBB); 3780 } 3781 I = SI; 3782 break; 3783 } 3784 3785 // Old SwitchInst format without case ranges. 3786 3787 if (Record.size() < 3 || (Record.size() & 1) == 0) 3788 return Error("Invalid record"); 3789 Type *OpTy = getTypeByID(Record[0]); 3790 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3791 BasicBlock *Default = getBasicBlock(Record[2]); 3792 if (!OpTy || !Cond || !Default) 3793 return Error("Invalid record"); 3794 unsigned NumCases = (Record.size()-3)/2; 3795 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3796 InstructionList.push_back(SI); 3797 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3798 ConstantInt *CaseVal = 3799 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3800 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3801 if (!CaseVal || !DestBB) { 3802 delete SI; 3803 return Error("Invalid record"); 3804 } 3805 SI->addCase(CaseVal, DestBB); 3806 } 3807 I = SI; 3808 break; 3809 } 3810 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3811 if (Record.size() < 2) 3812 return Error("Invalid record"); 3813 Type *OpTy = getTypeByID(Record[0]); 3814 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3815 if (!OpTy || !Address) 3816 return Error("Invalid record"); 3817 unsigned NumDests = Record.size()-2; 3818 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3819 InstructionList.push_back(IBI); 3820 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3821 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3822 IBI->addDestination(DestBB); 3823 } else { 3824 delete IBI; 3825 return Error("Invalid record"); 3826 } 3827 } 3828 I = IBI; 3829 break; 3830 } 3831 3832 case bitc::FUNC_CODE_INST_INVOKE: { 3833 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3834 if (Record.size() < 4) 3835 return Error("Invalid record"); 3836 AttributeSet PAL = getAttributes(Record[0]); 3837 unsigned CCInfo = Record[1]; 3838 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3839 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3840 3841 unsigned OpNum = 4; 3842 Value *Callee; 3843 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3844 return Error("Invalid record"); 3845 3846 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3847 FunctionType *FTy = !CalleeTy ? nullptr : 3848 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3849 3850 // Check that the right number of fixed parameters are here. 3851 if (!FTy || !NormalBB || !UnwindBB || 3852 Record.size() < OpNum+FTy->getNumParams()) 3853 return Error("Invalid record"); 3854 3855 SmallVector<Value*, 16> Ops; 3856 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3857 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3858 FTy->getParamType(i))); 3859 if (!Ops.back()) 3860 return Error("Invalid record"); 3861 } 3862 3863 if (!FTy->isVarArg()) { 3864 if (Record.size() != OpNum) 3865 return Error("Invalid record"); 3866 } else { 3867 // Read type/value pairs for varargs params. 3868 while (OpNum != Record.size()) { 3869 Value *Op; 3870 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3871 return Error("Invalid record"); 3872 Ops.push_back(Op); 3873 } 3874 } 3875 3876 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3877 InstructionList.push_back(I); 3878 cast<InvokeInst>(I)->setCallingConv( 3879 static_cast<CallingConv::ID>(CCInfo)); 3880 cast<InvokeInst>(I)->setAttributes(PAL); 3881 break; 3882 } 3883 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3884 unsigned Idx = 0; 3885 Value *Val = nullptr; 3886 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3887 return Error("Invalid record"); 3888 I = ResumeInst::Create(Val); 3889 InstructionList.push_back(I); 3890 break; 3891 } 3892 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3893 I = new UnreachableInst(Context); 3894 InstructionList.push_back(I); 3895 break; 3896 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3897 if (Record.size() < 1 || ((Record.size()-1)&1)) 3898 return Error("Invalid record"); 3899 Type *Ty = getTypeByID(Record[0]); 3900 if (!Ty) 3901 return Error("Invalid record"); 3902 3903 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3904 InstructionList.push_back(PN); 3905 3906 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3907 Value *V; 3908 // With the new function encoding, it is possible that operands have 3909 // negative IDs (for forward references). Use a signed VBR 3910 // representation to keep the encoding small. 3911 if (UseRelativeIDs) 3912 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3913 else 3914 V = getValue(Record, 1+i, NextValueNo, Ty); 3915 BasicBlock *BB = getBasicBlock(Record[2+i]); 3916 if (!V || !BB) 3917 return Error("Invalid record"); 3918 PN->addIncoming(V, BB); 3919 } 3920 I = PN; 3921 break; 3922 } 3923 3924 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3925 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3926 unsigned Idx = 0; 3927 if (Record.size() < 4) 3928 return Error("Invalid record"); 3929 Type *Ty = getTypeByID(Record[Idx++]); 3930 if (!Ty) 3931 return Error("Invalid record"); 3932 Value *PersFn = nullptr; 3933 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3934 return Error("Invalid record"); 3935 3936 bool IsCleanup = !!Record[Idx++]; 3937 unsigned NumClauses = Record[Idx++]; 3938 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3939 LP->setCleanup(IsCleanup); 3940 for (unsigned J = 0; J != NumClauses; ++J) { 3941 LandingPadInst::ClauseType CT = 3942 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3943 Value *Val; 3944 3945 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3946 delete LP; 3947 return Error("Invalid record"); 3948 } 3949 3950 assert((CT != LandingPadInst::Catch || 3951 !isa<ArrayType>(Val->getType())) && 3952 "Catch clause has a invalid type!"); 3953 assert((CT != LandingPadInst::Filter || 3954 isa<ArrayType>(Val->getType())) && 3955 "Filter clause has invalid type!"); 3956 LP->addClause(cast<Constant>(Val)); 3957 } 3958 3959 I = LP; 3960 InstructionList.push_back(I); 3961 break; 3962 } 3963 3964 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3965 if (Record.size() != 4) 3966 return Error("Invalid record"); 3967 PointerType *Ty = 3968 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3969 Type *OpTy = getTypeByID(Record[1]); 3970 Value *Size = getFnValueByID(Record[2], OpTy); 3971 uint64_t AlignRecord = Record[3]; 3972 const uint64_t InAllocaMask = uint64_t(1) << 5; 3973 bool InAlloca = AlignRecord & InAllocaMask; 3974 unsigned Align; 3975 if (std::error_code EC = 3976 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3977 return EC; 3978 } 3979 if (!Ty || !Size) 3980 return Error("Invalid record"); 3981 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3982 AI->setUsedWithInAlloca(InAlloca); 3983 I = AI; 3984 InstructionList.push_back(I); 3985 break; 3986 } 3987 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3988 unsigned OpNum = 0; 3989 Value *Op; 3990 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3991 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3992 return Error("Invalid record"); 3993 3994 Type *Ty = nullptr; 3995 if (OpNum + 3 == Record.size()) 3996 Ty = getTypeByID(Record[OpNum++]); 3997 3998 unsigned Align; 3999 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4000 return EC; 4001 I = new LoadInst(Op, "", Record[OpNum+1], Align); 4002 4003 if (Ty && Ty != I->getType()) 4004 return Error("Explicit load type does not match pointee type of " 4005 "pointer operand"); 4006 4007 InstructionList.push_back(I); 4008 break; 4009 } 4010 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4011 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4012 unsigned OpNum = 0; 4013 Value *Op; 4014 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4015 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4016 return Error("Invalid record"); 4017 4018 Type *Ty = nullptr; 4019 if (OpNum + 5 == Record.size()) 4020 Ty = getTypeByID(Record[OpNum++]); 4021 4022 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4023 if (Ordering == NotAtomic || Ordering == Release || 4024 Ordering == AcquireRelease) 4025 return Error("Invalid record"); 4026 if (Ordering != NotAtomic && Record[OpNum] == 0) 4027 return Error("Invalid record"); 4028 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4029 4030 unsigned Align; 4031 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4032 return EC; 4033 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4034 4035 (void)Ty; 4036 assert((!Ty || Ty == I->getType()) && 4037 "Explicit type doesn't match pointee type of the first operand"); 4038 4039 InstructionList.push_back(I); 4040 break; 4041 } 4042 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 4043 unsigned OpNum = 0; 4044 Value *Val, *Ptr; 4045 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4046 popValue(Record, OpNum, NextValueNo, 4047 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4048 OpNum+2 != Record.size()) 4049 return Error("Invalid record"); 4050 unsigned Align; 4051 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4052 return EC; 4053 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4054 InstructionList.push_back(I); 4055 break; 4056 } 4057 case bitc::FUNC_CODE_INST_STOREATOMIC: { 4058 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4059 unsigned OpNum = 0; 4060 Value *Val, *Ptr; 4061 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4062 popValue(Record, OpNum, NextValueNo, 4063 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4064 OpNum+4 != Record.size()) 4065 return Error("Invalid record"); 4066 4067 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4068 if (Ordering == NotAtomic || Ordering == Acquire || 4069 Ordering == AcquireRelease) 4070 return Error("Invalid record"); 4071 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4072 if (Ordering != NotAtomic && Record[OpNum] == 0) 4073 return Error("Invalid record"); 4074 4075 unsigned Align; 4076 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4077 return EC; 4078 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4079 InstructionList.push_back(I); 4080 break; 4081 } 4082 case bitc::FUNC_CODE_INST_CMPXCHG: { 4083 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4084 // failureordering?, isweak?] 4085 unsigned OpNum = 0; 4086 Value *Ptr, *Cmp, *New; 4087 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4088 popValue(Record, OpNum, NextValueNo, 4089 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 4090 popValue(Record, OpNum, NextValueNo, 4091 cast<PointerType>(Ptr->getType())->getElementType(), New) || 4092 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 4093 return Error("Invalid record"); 4094 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4095 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4096 return Error("Invalid record"); 4097 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4098 4099 AtomicOrdering FailureOrdering; 4100 if (Record.size() < 7) 4101 FailureOrdering = 4102 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4103 else 4104 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4105 4106 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4107 SynchScope); 4108 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4109 4110 if (Record.size() < 8) { 4111 // Before weak cmpxchgs existed, the instruction simply returned the 4112 // value loaded from memory, so bitcode files from that era will be 4113 // expecting the first component of a modern cmpxchg. 4114 CurBB->getInstList().push_back(I); 4115 I = ExtractValueInst::Create(I, 0); 4116 } else { 4117 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4118 } 4119 4120 InstructionList.push_back(I); 4121 break; 4122 } 4123 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4124 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4125 unsigned OpNum = 0; 4126 Value *Ptr, *Val; 4127 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4128 popValue(Record, OpNum, NextValueNo, 4129 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4130 OpNum+4 != Record.size()) 4131 return Error("Invalid record"); 4132 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4133 if (Operation < AtomicRMWInst::FIRST_BINOP || 4134 Operation > AtomicRMWInst::LAST_BINOP) 4135 return Error("Invalid record"); 4136 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4137 if (Ordering == NotAtomic || Ordering == Unordered) 4138 return Error("Invalid record"); 4139 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4140 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4141 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4142 InstructionList.push_back(I); 4143 break; 4144 } 4145 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4146 if (2 != Record.size()) 4147 return Error("Invalid record"); 4148 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4149 if (Ordering == NotAtomic || Ordering == Unordered || 4150 Ordering == Monotonic) 4151 return Error("Invalid record"); 4152 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4153 I = new FenceInst(Context, Ordering, SynchScope); 4154 InstructionList.push_back(I); 4155 break; 4156 } 4157 case bitc::FUNC_CODE_INST_CALL: { 4158 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4159 if (Record.size() < 3) 4160 return Error("Invalid record"); 4161 4162 AttributeSet PAL = getAttributes(Record[0]); 4163 unsigned CCInfo = Record[1]; 4164 4165 unsigned OpNum = 2; 4166 Value *Callee; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4168 return Error("Invalid record"); 4169 4170 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4171 FunctionType *FTy = nullptr; 4172 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4173 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 4174 return Error("Invalid record"); 4175 4176 SmallVector<Value*, 16> Args; 4177 // Read the fixed params. 4178 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4179 if (FTy->getParamType(i)->isLabelTy()) 4180 Args.push_back(getBasicBlock(Record[OpNum])); 4181 else 4182 Args.push_back(getValue(Record, OpNum, NextValueNo, 4183 FTy->getParamType(i))); 4184 if (!Args.back()) 4185 return Error("Invalid record"); 4186 } 4187 4188 // Read type/value pairs for varargs params. 4189 if (!FTy->isVarArg()) { 4190 if (OpNum != Record.size()) 4191 return Error("Invalid record"); 4192 } else { 4193 while (OpNum != Record.size()) { 4194 Value *Op; 4195 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4196 return Error("Invalid record"); 4197 Args.push_back(Op); 4198 } 4199 } 4200 4201 I = CallInst::Create(Callee, Args); 4202 InstructionList.push_back(I); 4203 cast<CallInst>(I)->setCallingConv( 4204 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4205 CallInst::TailCallKind TCK = CallInst::TCK_None; 4206 if (CCInfo & 1) 4207 TCK = CallInst::TCK_Tail; 4208 if (CCInfo & (1 << 14)) 4209 TCK = CallInst::TCK_MustTail; 4210 cast<CallInst>(I)->setTailCallKind(TCK); 4211 cast<CallInst>(I)->setAttributes(PAL); 4212 break; 4213 } 4214 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4215 if (Record.size() < 3) 4216 return Error("Invalid record"); 4217 Type *OpTy = getTypeByID(Record[0]); 4218 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4219 Type *ResTy = getTypeByID(Record[2]); 4220 if (!OpTy || !Op || !ResTy) 4221 return Error("Invalid record"); 4222 I = new VAArgInst(Op, ResTy); 4223 InstructionList.push_back(I); 4224 break; 4225 } 4226 } 4227 4228 // Add instruction to end of current BB. If there is no current BB, reject 4229 // this file. 4230 if (!CurBB) { 4231 delete I; 4232 return Error("Invalid instruction with no BB"); 4233 } 4234 CurBB->getInstList().push_back(I); 4235 4236 // If this was a terminator instruction, move to the next block. 4237 if (isa<TerminatorInst>(I)) { 4238 ++CurBBNo; 4239 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4240 } 4241 4242 // Non-void values get registered in the value table for future use. 4243 if (I && !I->getType()->isVoidTy()) 4244 ValueList.AssignValue(I, NextValueNo++); 4245 } 4246 4247 OutOfRecordLoop: 4248 4249 // Check the function list for unresolved values. 4250 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4251 if (!A->getParent()) { 4252 // We found at least one unresolved value. Nuke them all to avoid leaks. 4253 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4254 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4255 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4256 delete A; 4257 } 4258 } 4259 return Error("Never resolved value found in function"); 4260 } 4261 } 4262 4263 // FIXME: Check for unresolved forward-declared metadata references 4264 // and clean up leaks. 4265 4266 // Trim the value list down to the size it was before we parsed this function. 4267 ValueList.shrinkTo(ModuleValueListSize); 4268 MDValueList.shrinkTo(ModuleMDValueListSize); 4269 std::vector<BasicBlock*>().swap(FunctionBBs); 4270 return std::error_code(); 4271 } 4272 4273 /// Find the function body in the bitcode stream 4274 std::error_code BitcodeReader::FindFunctionInStream( 4275 Function *F, 4276 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4277 while (DeferredFunctionInfoIterator->second == 0) { 4278 if (Stream.AtEndOfStream()) 4279 return Error("Could not find function in stream"); 4280 // ParseModule will parse the next body in the stream and set its 4281 // position in the DeferredFunctionInfo map. 4282 if (std::error_code EC = ParseModule(true)) 4283 return EC; 4284 } 4285 return std::error_code(); 4286 } 4287 4288 //===----------------------------------------------------------------------===// 4289 // GVMaterializer implementation 4290 //===----------------------------------------------------------------------===// 4291 4292 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4293 4294 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4295 if (std::error_code EC = materializeMetadata()) 4296 return EC; 4297 4298 Function *F = dyn_cast<Function>(GV); 4299 // If it's not a function or is already material, ignore the request. 4300 if (!F || !F->isMaterializable()) 4301 return std::error_code(); 4302 4303 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4304 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4305 // If its position is recorded as 0, its body is somewhere in the stream 4306 // but we haven't seen it yet. 4307 if (DFII->second == 0 && LazyStreamer) 4308 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4309 return EC; 4310 4311 // Move the bit stream to the saved position of the deferred function body. 4312 Stream.JumpToBit(DFII->second); 4313 4314 if (std::error_code EC = ParseFunctionBody(F)) 4315 return EC; 4316 F->setIsMaterializable(false); 4317 4318 if (StripDebugInfo) 4319 stripDebugInfo(*F); 4320 4321 // Upgrade any old intrinsic calls in the function. 4322 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4323 E = UpgradedIntrinsics.end(); I != E; ++I) { 4324 if (I->first != I->second) { 4325 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4326 UI != UE;) { 4327 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4328 UpgradeIntrinsicCall(CI, I->second); 4329 } 4330 } 4331 } 4332 4333 // Bring in any functions that this function forward-referenced via 4334 // blockaddresses. 4335 return materializeForwardReferencedFunctions(); 4336 } 4337 4338 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4339 const Function *F = dyn_cast<Function>(GV); 4340 if (!F || F->isDeclaration()) 4341 return false; 4342 4343 // Dematerializing F would leave dangling references that wouldn't be 4344 // reconnected on re-materialization. 4345 if (BlockAddressesTaken.count(F)) 4346 return false; 4347 4348 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4349 } 4350 4351 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4352 Function *F = dyn_cast<Function>(GV); 4353 // If this function isn't dematerializable, this is a noop. 4354 if (!F || !isDematerializable(F)) 4355 return; 4356 4357 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4358 4359 // Just forget the function body, we can remat it later. 4360 F->dropAllReferences(); 4361 F->setIsMaterializable(true); 4362 } 4363 4364 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4365 assert(M == TheModule && 4366 "Can only Materialize the Module this BitcodeReader is attached to."); 4367 4368 if (std::error_code EC = materializeMetadata()) 4369 return EC; 4370 4371 // Promise to materialize all forward references. 4372 WillMaterializeAllForwardRefs = true; 4373 4374 // Iterate over the module, deserializing any functions that are still on 4375 // disk. 4376 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4377 F != E; ++F) { 4378 if (std::error_code EC = materialize(F)) 4379 return EC; 4380 } 4381 // At this point, if there are any function bodies, the current bit is 4382 // pointing to the END_BLOCK record after them. Now make sure the rest 4383 // of the bits in the module have been read. 4384 if (NextUnreadBit) 4385 ParseModule(true); 4386 4387 // Check that all block address forward references got resolved (as we 4388 // promised above). 4389 if (!BasicBlockFwdRefs.empty()) 4390 return Error("Never resolved function from blockaddress"); 4391 4392 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4393 // delete the old functions to clean up. We can't do this unless the entire 4394 // module is materialized because there could always be another function body 4395 // with calls to the old function. 4396 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4397 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4398 if (I->first != I->second) { 4399 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4400 UI != UE;) { 4401 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4402 UpgradeIntrinsicCall(CI, I->second); 4403 } 4404 if (!I->first->use_empty()) 4405 I->first->replaceAllUsesWith(I->second); 4406 I->first->eraseFromParent(); 4407 } 4408 } 4409 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4410 4411 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4412 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4413 4414 UpgradeDebugInfo(*M); 4415 return std::error_code(); 4416 } 4417 4418 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4419 return IdentifiedStructTypes; 4420 } 4421 4422 std::error_code BitcodeReader::InitStream() { 4423 if (LazyStreamer) 4424 return InitLazyStream(); 4425 return InitStreamFromBuffer(); 4426 } 4427 4428 std::error_code BitcodeReader::InitStreamFromBuffer() { 4429 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4430 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4431 4432 if (Buffer->getBufferSize() & 3) 4433 return Error("Invalid bitcode signature"); 4434 4435 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4436 // The magic number is 0x0B17C0DE stored in little endian. 4437 if (isBitcodeWrapper(BufPtr, BufEnd)) 4438 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4439 return Error("Invalid bitcode wrapper header"); 4440 4441 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4442 Stream.init(&*StreamFile); 4443 4444 return std::error_code(); 4445 } 4446 4447 std::error_code BitcodeReader::InitLazyStream() { 4448 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4449 // see it. 4450 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4451 StreamingMemoryObject &Bytes = *OwnedBytes; 4452 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4453 Stream.init(&*StreamFile); 4454 4455 unsigned char buf[16]; 4456 if (Bytes.readBytes(buf, 16, 0) != 16) 4457 return Error("Invalid bitcode signature"); 4458 4459 if (!isBitcode(buf, buf + 16)) 4460 return Error("Invalid bitcode signature"); 4461 4462 if (isBitcodeWrapper(buf, buf + 4)) { 4463 const unsigned char *bitcodeStart = buf; 4464 const unsigned char *bitcodeEnd = buf + 16; 4465 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4466 Bytes.dropLeadingBytes(bitcodeStart - buf); 4467 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4468 } 4469 return std::error_code(); 4470 } 4471 4472 namespace { 4473 class BitcodeErrorCategoryType : public std::error_category { 4474 const char *name() const LLVM_NOEXCEPT override { 4475 return "llvm.bitcode"; 4476 } 4477 std::string message(int IE) const override { 4478 BitcodeError E = static_cast<BitcodeError>(IE); 4479 switch (E) { 4480 case BitcodeError::InvalidBitcodeSignature: 4481 return "Invalid bitcode signature"; 4482 case BitcodeError::CorruptedBitcode: 4483 return "Corrupted bitcode"; 4484 } 4485 llvm_unreachable("Unknown error type!"); 4486 } 4487 }; 4488 } 4489 4490 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4491 4492 const std::error_category &llvm::BitcodeErrorCategory() { 4493 return *ErrorCategory; 4494 } 4495 4496 //===----------------------------------------------------------------------===// 4497 // External interface 4498 //===----------------------------------------------------------------------===// 4499 4500 /// \brief Get a lazy one-at-time loading module from bitcode. 4501 /// 4502 /// This isn't always used in a lazy context. In particular, it's also used by 4503 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4504 /// in forward-referenced functions from block address references. 4505 /// 4506 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4507 /// materialize everything -- in particular, if this isn't truly lazy. 4508 static ErrorOr<Module *> 4509 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4510 LLVMContext &Context, bool WillMaterializeAll, 4511 DiagnosticHandlerFunction DiagnosticHandler, 4512 bool ShouldLazyLoadMetadata = false) { 4513 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4514 BitcodeReader *R = 4515 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4516 M->setMaterializer(R); 4517 4518 auto cleanupOnError = [&](std::error_code EC) { 4519 R->releaseBuffer(); // Never take ownership on error. 4520 delete M; // Also deletes R. 4521 return EC; 4522 }; 4523 4524 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4525 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4526 return cleanupOnError(EC); 4527 4528 if (!WillMaterializeAll) 4529 // Resolve forward references from blockaddresses. 4530 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4531 return cleanupOnError(EC); 4532 4533 Buffer.release(); // The BitcodeReader owns it now. 4534 return M; 4535 } 4536 4537 ErrorOr<Module *> 4538 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4539 LLVMContext &Context, 4540 DiagnosticHandlerFunction DiagnosticHandler, 4541 bool ShouldLazyLoadMetadata) { 4542 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4543 DiagnosticHandler, ShouldLazyLoadMetadata); 4544 } 4545 4546 ErrorOr<std::unique_ptr<Module>> 4547 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4548 LLVMContext &Context, 4549 DiagnosticHandlerFunction DiagnosticHandler) { 4550 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4551 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4552 M->setMaterializer(R); 4553 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4554 return EC; 4555 return std::move(M); 4556 } 4557 4558 ErrorOr<Module *> 4559 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4560 DiagnosticHandlerFunction DiagnosticHandler) { 4561 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4562 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4563 std::move(Buf), Context, true, DiagnosticHandler); 4564 if (!ModuleOrErr) 4565 return ModuleOrErr; 4566 Module *M = ModuleOrErr.get(); 4567 // Read in the entire module, and destroy the BitcodeReader. 4568 if (std::error_code EC = M->materializeAllPermanently()) { 4569 delete M; 4570 return EC; 4571 } 4572 4573 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4574 // written. We must defer until the Module has been fully materialized. 4575 4576 return M; 4577 } 4578 4579 std::string 4580 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4581 DiagnosticHandlerFunction DiagnosticHandler) { 4582 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4583 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4584 DiagnosticHandler); 4585 ErrorOr<std::string> Triple = R->parseTriple(); 4586 if (Triple.getError()) 4587 return ""; 4588 return Triple.get(); 4589 } 4590