1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 Error readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type *> TypeList; 487 /// Stores pointer element type for a given type ID. This is used during 488 /// upgrades of typed pointer IR in opaque pointer mode. 489 std::vector<Type *> ElementTypeList; 490 DenseMap<Function *, FunctionType *> FunctionTypes; 491 BitcodeReaderValueList ValueList; 492 Optional<MetadataLoader> MDLoader; 493 std::vector<Comdat *> ComdatList; 494 DenseSet<GlobalObject *> ImplicitComdatObjects; 495 SmallVector<Instruction *, 64> InstructionList; 496 497 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 498 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 499 500 struct FunctionOperandInfo { 501 Function *F; 502 unsigned PersonalityFn; 503 unsigned Prefix; 504 unsigned Prologue; 505 }; 506 std::vector<FunctionOperandInfo> FunctionOperands; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 Type *getPtrElementTypeByID(unsigned ID); 598 599 Value *getFnValueByID(unsigned ID, Type *Ty) { 600 if (Ty && Ty->isMetadataTy()) 601 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 602 return ValueList.getValueFwdRef(ID, Ty); 603 } 604 605 Metadata *getFnMetadataByID(unsigned ID) { 606 return MDLoader->getMetadataFwdRefOrLoad(ID); 607 } 608 609 BasicBlock *getBasicBlock(unsigned ID) const { 610 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 611 return FunctionBBs[ID]; 612 } 613 614 AttributeList getAttributes(unsigned i) const { 615 if (i-1 < MAttributes.size()) 616 return MAttributes[i-1]; 617 return AttributeList(); 618 } 619 620 /// Read a value/type pair out of the specified record from slot 'Slot'. 621 /// Increment Slot past the number of slots used in the record. Return true on 622 /// failure. 623 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 624 unsigned InstNum, Value *&ResVal) { 625 if (Slot == Record.size()) return true; 626 unsigned ValNo = (unsigned)Record[Slot++]; 627 // Adjust the ValNo, if it was encoded relative to the InstNum. 628 if (UseRelativeIDs) 629 ValNo = InstNum - ValNo; 630 if (ValNo < InstNum) { 631 // If this is not a forward reference, just return the value we already 632 // have. 633 ResVal = getFnValueByID(ValNo, nullptr); 634 return ResVal == nullptr; 635 } 636 if (Slot == Record.size()) 637 return true; 638 639 unsigned TypeNo = (unsigned)Record[Slot++]; 640 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 641 return ResVal == nullptr; 642 } 643 644 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 645 /// past the number of slots used by the value in the record. Return true if 646 /// there is an error. 647 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 648 unsigned InstNum, Type *Ty, Value *&ResVal) { 649 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 650 return true; 651 // All values currently take a single record slot. 652 ++Slot; 653 return false; 654 } 655 656 /// Like popValue, but does not increment the Slot number. 657 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 658 unsigned InstNum, Type *Ty, Value *&ResVal) { 659 ResVal = getValue(Record, Slot, InstNum, Ty); 660 return ResVal == nullptr; 661 } 662 663 /// Version of getValue that returns ResVal directly, or 0 if there is an 664 /// error. 665 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 666 unsigned InstNum, Type *Ty) { 667 if (Slot == Record.size()) return nullptr; 668 unsigned ValNo = (unsigned)Record[Slot]; 669 // Adjust the ValNo, if it was encoded relative to the InstNum. 670 if (UseRelativeIDs) 671 ValNo = InstNum - ValNo; 672 return getFnValueByID(ValNo, Ty); 673 } 674 675 /// Like getValue, but decodes signed VBRs. 676 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 677 unsigned InstNum, Type *Ty) { 678 if (Slot == Record.size()) return nullptr; 679 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 680 // Adjust the ValNo, if it was encoded relative to the InstNum. 681 if (UseRelativeIDs) 682 ValNo = InstNum - ValNo; 683 return getFnValueByID(ValNo, Ty); 684 } 685 686 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 687 /// corresponding argument's pointee type. Also upgrades intrinsics that now 688 /// require an elementtype attribute. 689 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 690 691 /// Converts alignment exponent (i.e. power of two (or zero)) to the 692 /// corresponding alignment to use. If alignment is too large, returns 693 /// a corresponding error code. 694 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 695 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 696 Error parseModule( 697 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 698 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 699 700 Error parseComdatRecord(ArrayRef<uint64_t> Record); 701 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 702 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 703 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 704 ArrayRef<uint64_t> Record); 705 706 Error parseAttributeBlock(); 707 Error parseAttributeGroupBlock(); 708 Error parseTypeTable(); 709 Error parseTypeTableBody(); 710 Error parseOperandBundleTags(); 711 Error parseSyncScopeNames(); 712 713 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 714 unsigned NameIndex, Triple &TT); 715 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 716 ArrayRef<uint64_t> Record); 717 Error parseValueSymbolTable(uint64_t Offset = 0); 718 Error parseGlobalValueSymbolTable(); 719 Error parseConstants(); 720 Error rememberAndSkipFunctionBodies(); 721 Error rememberAndSkipFunctionBody(); 722 /// Save the positions of the Metadata blocks and skip parsing the blocks. 723 Error rememberAndSkipMetadata(); 724 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 725 Error parseFunctionBody(Function *F); 726 Error globalCleanup(); 727 Error resolveGlobalAndIndirectSymbolInits(); 728 Error parseUseLists(); 729 Error findFunctionInStream( 730 Function *F, 731 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 732 733 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 734 }; 735 736 /// Class to manage reading and parsing function summary index bitcode 737 /// files/sections. 738 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 739 /// The module index built during parsing. 740 ModuleSummaryIndex &TheIndex; 741 742 /// Indicates whether we have encountered a global value summary section 743 /// yet during parsing. 744 bool SeenGlobalValSummary = false; 745 746 /// Indicates whether we have already parsed the VST, used for error checking. 747 bool SeenValueSymbolTable = false; 748 749 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 750 /// Used to enable on-demand parsing of the VST. 751 uint64_t VSTOffset = 0; 752 753 // Map to save ValueId to ValueInfo association that was recorded in the 754 // ValueSymbolTable. It is used after the VST is parsed to convert 755 // call graph edges read from the function summary from referencing 756 // callees by their ValueId to using the ValueInfo instead, which is how 757 // they are recorded in the summary index being built. 758 // We save a GUID which refers to the same global as the ValueInfo, but 759 // ignoring the linkage, i.e. for values other than local linkage they are 760 // identical. 761 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 762 ValueIdToValueInfoMap; 763 764 /// Map populated during module path string table parsing, from the 765 /// module ID to a string reference owned by the index's module 766 /// path string table, used to correlate with combined index 767 /// summary records. 768 DenseMap<uint64_t, StringRef> ModuleIdMap; 769 770 /// Original source file name recorded in a bitcode record. 771 std::string SourceFileName; 772 773 /// The string identifier given to this module by the client, normally the 774 /// path to the bitcode file. 775 StringRef ModulePath; 776 777 /// For per-module summary indexes, the unique numerical identifier given to 778 /// this module by the client. 779 unsigned ModuleId; 780 781 public: 782 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 783 ModuleSummaryIndex &TheIndex, 784 StringRef ModulePath, unsigned ModuleId); 785 786 Error parseModule(); 787 788 private: 789 void setValueGUID(uint64_t ValueID, StringRef ValueName, 790 GlobalValue::LinkageTypes Linkage, 791 StringRef SourceFileName); 792 Error parseValueSymbolTable( 793 uint64_t Offset, 794 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 795 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 796 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 797 bool IsOldProfileFormat, 798 bool HasProfile, 799 bool HasRelBF); 800 Error parseEntireSummary(unsigned ID); 801 Error parseModuleStringTable(); 802 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 803 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 804 TypeIdCompatibleVtableInfo &TypeId); 805 std::vector<FunctionSummary::ParamAccess> 806 parseParamAccesses(ArrayRef<uint64_t> Record); 807 808 std::pair<ValueInfo, GlobalValue::GUID> 809 getValueInfoFromValueId(unsigned ValueId); 810 811 void addThisModule(); 812 ModuleSummaryIndex::ModuleInfo *getThisModule(); 813 }; 814 815 } // end anonymous namespace 816 817 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 818 Error Err) { 819 if (Err) { 820 std::error_code EC; 821 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 822 EC = EIB.convertToErrorCode(); 823 Ctx.emitError(EIB.message()); 824 }); 825 return EC; 826 } 827 return std::error_code(); 828 } 829 830 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 831 StringRef ProducerIdentification, 832 LLVMContext &Context) 833 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 834 ValueList(Context, this->Stream.SizeInBytes()) { 835 this->ProducerIdentification = std::string(ProducerIdentification); 836 } 837 838 Error BitcodeReader::materializeForwardReferencedFunctions() { 839 if (WillMaterializeAllForwardRefs) 840 return Error::success(); 841 842 // Prevent recursion. 843 WillMaterializeAllForwardRefs = true; 844 845 while (!BasicBlockFwdRefQueue.empty()) { 846 Function *F = BasicBlockFwdRefQueue.front(); 847 BasicBlockFwdRefQueue.pop_front(); 848 assert(F && "Expected valid function"); 849 if (!BasicBlockFwdRefs.count(F)) 850 // Already materialized. 851 continue; 852 853 // Check for a function that isn't materializable to prevent an infinite 854 // loop. When parsing a blockaddress stored in a global variable, there 855 // isn't a trivial way to check if a function will have a body without a 856 // linear search through FunctionsWithBodies, so just check it here. 857 if (!F->isMaterializable()) 858 return error("Never resolved function from blockaddress"); 859 860 // Try to materialize F. 861 if (Error Err = materialize(F)) 862 return Err; 863 } 864 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 865 866 // Reset state. 867 WillMaterializeAllForwardRefs = false; 868 return Error::success(); 869 } 870 871 //===----------------------------------------------------------------------===// 872 // Helper functions to implement forward reference resolution, etc. 873 //===----------------------------------------------------------------------===// 874 875 static bool hasImplicitComdat(size_t Val) { 876 switch (Val) { 877 default: 878 return false; 879 case 1: // Old WeakAnyLinkage 880 case 4: // Old LinkOnceAnyLinkage 881 case 10: // Old WeakODRLinkage 882 case 11: // Old LinkOnceODRLinkage 883 return true; 884 } 885 } 886 887 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 888 switch (Val) { 889 default: // Map unknown/new linkages to external 890 case 0: 891 return GlobalValue::ExternalLinkage; 892 case 2: 893 return GlobalValue::AppendingLinkage; 894 case 3: 895 return GlobalValue::InternalLinkage; 896 case 5: 897 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 898 case 6: 899 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 900 case 7: 901 return GlobalValue::ExternalWeakLinkage; 902 case 8: 903 return GlobalValue::CommonLinkage; 904 case 9: 905 return GlobalValue::PrivateLinkage; 906 case 12: 907 return GlobalValue::AvailableExternallyLinkage; 908 case 13: 909 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 910 case 14: 911 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 912 case 15: 913 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 914 case 1: // Old value with implicit comdat. 915 case 16: 916 return GlobalValue::WeakAnyLinkage; 917 case 10: // Old value with implicit comdat. 918 case 17: 919 return GlobalValue::WeakODRLinkage; 920 case 4: // Old value with implicit comdat. 921 case 18: 922 return GlobalValue::LinkOnceAnyLinkage; 923 case 11: // Old value with implicit comdat. 924 case 19: 925 return GlobalValue::LinkOnceODRLinkage; 926 } 927 } 928 929 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 930 FunctionSummary::FFlags Flags; 931 Flags.ReadNone = RawFlags & 0x1; 932 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 933 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 934 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 935 Flags.NoInline = (RawFlags >> 4) & 0x1; 936 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 937 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 938 Flags.MayThrow = (RawFlags >> 7) & 0x1; 939 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 940 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 941 return Flags; 942 } 943 944 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 945 // 946 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 947 // visibility: [8, 10). 948 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 949 uint64_t Version) { 950 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 951 // like getDecodedLinkage() above. Any future change to the linkage enum and 952 // to getDecodedLinkage() will need to be taken into account here as above. 953 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 954 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 955 RawFlags = RawFlags >> 4; 956 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 957 // The Live flag wasn't introduced until version 3. For dead stripping 958 // to work correctly on earlier versions, we must conservatively treat all 959 // values as live. 960 bool Live = (RawFlags & 0x2) || Version < 3; 961 bool Local = (RawFlags & 0x4); 962 bool AutoHide = (RawFlags & 0x8); 963 964 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 965 Live, Local, AutoHide); 966 } 967 968 // Decode the flags for GlobalVariable in the summary 969 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 970 return GlobalVarSummary::GVarFlags( 971 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 972 (RawFlags & 0x4) ? true : false, 973 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 974 } 975 976 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 977 switch (Val) { 978 default: // Map unknown visibilities to default. 979 case 0: return GlobalValue::DefaultVisibility; 980 case 1: return GlobalValue::HiddenVisibility; 981 case 2: return GlobalValue::ProtectedVisibility; 982 } 983 } 984 985 static GlobalValue::DLLStorageClassTypes 986 getDecodedDLLStorageClass(unsigned Val) { 987 switch (Val) { 988 default: // Map unknown values to default. 989 case 0: return GlobalValue::DefaultStorageClass; 990 case 1: return GlobalValue::DLLImportStorageClass; 991 case 2: return GlobalValue::DLLExportStorageClass; 992 } 993 } 994 995 static bool getDecodedDSOLocal(unsigned Val) { 996 switch(Val) { 997 default: // Map unknown values to preemptable. 998 case 0: return false; 999 case 1: return true; 1000 } 1001 } 1002 1003 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1004 switch (Val) { 1005 case 0: return GlobalVariable::NotThreadLocal; 1006 default: // Map unknown non-zero value to general dynamic. 1007 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1008 case 2: return GlobalVariable::LocalDynamicTLSModel; 1009 case 3: return GlobalVariable::InitialExecTLSModel; 1010 case 4: return GlobalVariable::LocalExecTLSModel; 1011 } 1012 } 1013 1014 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown to UnnamedAddr::None. 1017 case 0: return GlobalVariable::UnnamedAddr::None; 1018 case 1: return GlobalVariable::UnnamedAddr::Global; 1019 case 2: return GlobalVariable::UnnamedAddr::Local; 1020 } 1021 } 1022 1023 static int getDecodedCastOpcode(unsigned Val) { 1024 switch (Val) { 1025 default: return -1; 1026 case bitc::CAST_TRUNC : return Instruction::Trunc; 1027 case bitc::CAST_ZEXT : return Instruction::ZExt; 1028 case bitc::CAST_SEXT : return Instruction::SExt; 1029 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1030 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1031 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1032 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1033 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1034 case bitc::CAST_FPEXT : return Instruction::FPExt; 1035 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1036 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1037 case bitc::CAST_BITCAST : return Instruction::BitCast; 1038 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1039 } 1040 } 1041 1042 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1043 bool IsFP = Ty->isFPOrFPVectorTy(); 1044 // UnOps are only valid for int/fp or vector of int/fp types 1045 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1046 return -1; 1047 1048 switch (Val) { 1049 default: 1050 return -1; 1051 case bitc::UNOP_FNEG: 1052 return IsFP ? Instruction::FNeg : -1; 1053 } 1054 } 1055 1056 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // BinOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::BINOP_ADD: 1066 return IsFP ? Instruction::FAdd : Instruction::Add; 1067 case bitc::BINOP_SUB: 1068 return IsFP ? Instruction::FSub : Instruction::Sub; 1069 case bitc::BINOP_MUL: 1070 return IsFP ? Instruction::FMul : Instruction::Mul; 1071 case bitc::BINOP_UDIV: 1072 return IsFP ? -1 : Instruction::UDiv; 1073 case bitc::BINOP_SDIV: 1074 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1075 case bitc::BINOP_UREM: 1076 return IsFP ? -1 : Instruction::URem; 1077 case bitc::BINOP_SREM: 1078 return IsFP ? Instruction::FRem : Instruction::SRem; 1079 case bitc::BINOP_SHL: 1080 return IsFP ? -1 : Instruction::Shl; 1081 case bitc::BINOP_LSHR: 1082 return IsFP ? -1 : Instruction::LShr; 1083 case bitc::BINOP_ASHR: 1084 return IsFP ? -1 : Instruction::AShr; 1085 case bitc::BINOP_AND: 1086 return IsFP ? -1 : Instruction::And; 1087 case bitc::BINOP_OR: 1088 return IsFP ? -1 : Instruction::Or; 1089 case bitc::BINOP_XOR: 1090 return IsFP ? -1 : Instruction::Xor; 1091 } 1092 } 1093 1094 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1095 switch (Val) { 1096 default: return AtomicRMWInst::BAD_BINOP; 1097 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1098 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1099 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1100 case bitc::RMW_AND: return AtomicRMWInst::And; 1101 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1102 case bitc::RMW_OR: return AtomicRMWInst::Or; 1103 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1104 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1105 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1106 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1107 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1108 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1109 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1110 } 1111 } 1112 1113 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1114 switch (Val) { 1115 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1116 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1117 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1118 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1119 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1120 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1121 default: // Map unknown orderings to sequentially-consistent. 1122 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1123 } 1124 } 1125 1126 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1127 switch (Val) { 1128 default: // Map unknown selection kinds to any. 1129 case bitc::COMDAT_SELECTION_KIND_ANY: 1130 return Comdat::Any; 1131 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1132 return Comdat::ExactMatch; 1133 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1134 return Comdat::Largest; 1135 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1136 return Comdat::NoDeduplicate; 1137 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1138 return Comdat::SameSize; 1139 } 1140 } 1141 1142 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1143 FastMathFlags FMF; 1144 if (0 != (Val & bitc::UnsafeAlgebra)) 1145 FMF.setFast(); 1146 if (0 != (Val & bitc::AllowReassoc)) 1147 FMF.setAllowReassoc(); 1148 if (0 != (Val & bitc::NoNaNs)) 1149 FMF.setNoNaNs(); 1150 if (0 != (Val & bitc::NoInfs)) 1151 FMF.setNoInfs(); 1152 if (0 != (Val & bitc::NoSignedZeros)) 1153 FMF.setNoSignedZeros(); 1154 if (0 != (Val & bitc::AllowReciprocal)) 1155 FMF.setAllowReciprocal(); 1156 if (0 != (Val & bitc::AllowContract)) 1157 FMF.setAllowContract(true); 1158 if (0 != (Val & bitc::ApproxFunc)) 1159 FMF.setApproxFunc(); 1160 return FMF; 1161 } 1162 1163 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1164 switch (Val) { 1165 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1166 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1167 } 1168 } 1169 1170 Type *BitcodeReader::getTypeByID(unsigned ID) { 1171 // The type table size is always specified correctly. 1172 if (ID >= TypeList.size()) 1173 return nullptr; 1174 1175 if (Type *Ty = TypeList[ID]) 1176 return Ty; 1177 1178 // If we have a forward reference, the only possible case is when it is to a 1179 // named struct. Just create a placeholder for now. 1180 return TypeList[ID] = createIdentifiedStructType(Context); 1181 } 1182 1183 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1184 if (ID >= TypeList.size()) 1185 return nullptr; 1186 1187 Type *Ty = TypeList[ID]; 1188 if (!Ty->isPointerTy()) 1189 return nullptr; 1190 1191 Type *ElemTy = ElementTypeList[ID]; 1192 if (!ElemTy) 1193 return nullptr; 1194 1195 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1196 "Incorrect element type"); 1197 return ElemTy; 1198 } 1199 1200 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1201 StringRef Name) { 1202 auto *Ret = StructType::create(Context, Name); 1203 IdentifiedStructTypes.push_back(Ret); 1204 return Ret; 1205 } 1206 1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1208 auto *Ret = StructType::create(Context); 1209 IdentifiedStructTypes.push_back(Ret); 1210 return Ret; 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // Functions for parsing blocks from the bitcode file 1215 //===----------------------------------------------------------------------===// 1216 1217 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1218 switch (Val) { 1219 case Attribute::EndAttrKinds: 1220 case Attribute::EmptyKey: 1221 case Attribute::TombstoneKey: 1222 llvm_unreachable("Synthetic enumerators which should never get here"); 1223 1224 case Attribute::None: return 0; 1225 case Attribute::ZExt: return 1 << 0; 1226 case Attribute::SExt: return 1 << 1; 1227 case Attribute::NoReturn: return 1 << 2; 1228 case Attribute::InReg: return 1 << 3; 1229 case Attribute::StructRet: return 1 << 4; 1230 case Attribute::NoUnwind: return 1 << 5; 1231 case Attribute::NoAlias: return 1 << 6; 1232 case Attribute::ByVal: return 1 << 7; 1233 case Attribute::Nest: return 1 << 8; 1234 case Attribute::ReadNone: return 1 << 9; 1235 case Attribute::ReadOnly: return 1 << 10; 1236 case Attribute::NoInline: return 1 << 11; 1237 case Attribute::AlwaysInline: return 1 << 12; 1238 case Attribute::OptimizeForSize: return 1 << 13; 1239 case Attribute::StackProtect: return 1 << 14; 1240 case Attribute::StackProtectReq: return 1 << 15; 1241 case Attribute::Alignment: return 31 << 16; 1242 case Attribute::NoCapture: return 1 << 21; 1243 case Attribute::NoRedZone: return 1 << 22; 1244 case Attribute::NoImplicitFloat: return 1 << 23; 1245 case Attribute::Naked: return 1 << 24; 1246 case Attribute::InlineHint: return 1 << 25; 1247 case Attribute::StackAlignment: return 7 << 26; 1248 case Attribute::ReturnsTwice: return 1 << 29; 1249 case Attribute::UWTable: return 1 << 30; 1250 case Attribute::NonLazyBind: return 1U << 31; 1251 case Attribute::SanitizeAddress: return 1ULL << 32; 1252 case Attribute::MinSize: return 1ULL << 33; 1253 case Attribute::NoDuplicate: return 1ULL << 34; 1254 case Attribute::StackProtectStrong: return 1ULL << 35; 1255 case Attribute::SanitizeThread: return 1ULL << 36; 1256 case Attribute::SanitizeMemory: return 1ULL << 37; 1257 case Attribute::NoBuiltin: return 1ULL << 38; 1258 case Attribute::Returned: return 1ULL << 39; 1259 case Attribute::Cold: return 1ULL << 40; 1260 case Attribute::Builtin: return 1ULL << 41; 1261 case Attribute::OptimizeNone: return 1ULL << 42; 1262 case Attribute::InAlloca: return 1ULL << 43; 1263 case Attribute::NonNull: return 1ULL << 44; 1264 case Attribute::JumpTable: return 1ULL << 45; 1265 case Attribute::Convergent: return 1ULL << 46; 1266 case Attribute::SafeStack: return 1ULL << 47; 1267 case Attribute::NoRecurse: return 1ULL << 48; 1268 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1269 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1270 case Attribute::SwiftSelf: return 1ULL << 51; 1271 case Attribute::SwiftError: return 1ULL << 52; 1272 case Attribute::WriteOnly: return 1ULL << 53; 1273 case Attribute::Speculatable: return 1ULL << 54; 1274 case Attribute::StrictFP: return 1ULL << 55; 1275 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1276 case Attribute::NoCfCheck: return 1ULL << 57; 1277 case Attribute::OptForFuzzing: return 1ULL << 58; 1278 case Attribute::ShadowCallStack: return 1ULL << 59; 1279 case Attribute::SpeculativeLoadHardening: 1280 return 1ULL << 60; 1281 case Attribute::ImmArg: 1282 return 1ULL << 61; 1283 case Attribute::WillReturn: 1284 return 1ULL << 62; 1285 case Attribute::NoFree: 1286 return 1ULL << 63; 1287 default: 1288 // Other attributes are not supported in the raw format, 1289 // as we ran out of space. 1290 return 0; 1291 } 1292 llvm_unreachable("Unsupported attribute type"); 1293 } 1294 1295 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1296 if (!Val) return; 1297 1298 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1299 I = Attribute::AttrKind(I + 1)) { 1300 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1301 if (I == Attribute::Alignment) 1302 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1303 else if (I == Attribute::StackAlignment) 1304 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1305 else if (Attribute::isTypeAttrKind(I)) 1306 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1307 else 1308 B.addAttribute(I); 1309 } 1310 } 1311 } 1312 1313 /// This fills an AttrBuilder object with the LLVM attributes that have 1314 /// been decoded from the given integer. This function must stay in sync with 1315 /// 'encodeLLVMAttributesForBitcode'. 1316 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1317 uint64_t EncodedAttrs) { 1318 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1319 // the bits above 31 down by 11 bits. 1320 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1321 assert((!Alignment || isPowerOf2_32(Alignment)) && 1322 "Alignment must be a power of two."); 1323 1324 if (Alignment) 1325 B.addAlignmentAttr(Alignment); 1326 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1327 (EncodedAttrs & 0xffff)); 1328 } 1329 1330 Error BitcodeReader::parseAttributeBlock() { 1331 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1332 return Err; 1333 1334 if (!MAttributes.empty()) 1335 return error("Invalid multiple blocks"); 1336 1337 SmallVector<uint64_t, 64> Record; 1338 1339 SmallVector<AttributeList, 8> Attrs; 1340 1341 // Read all the records. 1342 while (true) { 1343 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1344 if (!MaybeEntry) 1345 return MaybeEntry.takeError(); 1346 BitstreamEntry Entry = MaybeEntry.get(); 1347 1348 switch (Entry.Kind) { 1349 case BitstreamEntry::SubBlock: // Handled for us already. 1350 case BitstreamEntry::Error: 1351 return error("Malformed block"); 1352 case BitstreamEntry::EndBlock: 1353 return Error::success(); 1354 case BitstreamEntry::Record: 1355 // The interesting case. 1356 break; 1357 } 1358 1359 // Read a record. 1360 Record.clear(); 1361 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1362 if (!MaybeRecord) 1363 return MaybeRecord.takeError(); 1364 switch (MaybeRecord.get()) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1368 // Deprecated, but still needed to read old bitcode files. 1369 if (Record.size() & 1) 1370 return error("Invalid record"); 1371 1372 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1373 AttrBuilder B(Context); 1374 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1375 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1376 } 1377 1378 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1379 Attrs.clear(); 1380 break; 1381 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1382 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1383 Attrs.push_back(MAttributeGroups[Record[i]]); 1384 1385 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1386 Attrs.clear(); 1387 break; 1388 } 1389 } 1390 } 1391 1392 // Returns Attribute::None on unrecognized codes. 1393 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1394 switch (Code) { 1395 default: 1396 return Attribute::None; 1397 case bitc::ATTR_KIND_ALIGNMENT: 1398 return Attribute::Alignment; 1399 case bitc::ATTR_KIND_ALWAYS_INLINE: 1400 return Attribute::AlwaysInline; 1401 case bitc::ATTR_KIND_ARGMEMONLY: 1402 return Attribute::ArgMemOnly; 1403 case bitc::ATTR_KIND_BUILTIN: 1404 return Attribute::Builtin; 1405 case bitc::ATTR_KIND_BY_VAL: 1406 return Attribute::ByVal; 1407 case bitc::ATTR_KIND_IN_ALLOCA: 1408 return Attribute::InAlloca; 1409 case bitc::ATTR_KIND_COLD: 1410 return Attribute::Cold; 1411 case bitc::ATTR_KIND_CONVERGENT: 1412 return Attribute::Convergent; 1413 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1414 return Attribute::DisableSanitizerInstrumentation; 1415 case bitc::ATTR_KIND_ELEMENTTYPE: 1416 return Attribute::ElementType; 1417 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1418 return Attribute::InaccessibleMemOnly; 1419 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1420 return Attribute::InaccessibleMemOrArgMemOnly; 1421 case bitc::ATTR_KIND_INLINE_HINT: 1422 return Attribute::InlineHint; 1423 case bitc::ATTR_KIND_IN_REG: 1424 return Attribute::InReg; 1425 case bitc::ATTR_KIND_JUMP_TABLE: 1426 return Attribute::JumpTable; 1427 case bitc::ATTR_KIND_MIN_SIZE: 1428 return Attribute::MinSize; 1429 case bitc::ATTR_KIND_NAKED: 1430 return Attribute::Naked; 1431 case bitc::ATTR_KIND_NEST: 1432 return Attribute::Nest; 1433 case bitc::ATTR_KIND_NO_ALIAS: 1434 return Attribute::NoAlias; 1435 case bitc::ATTR_KIND_NO_BUILTIN: 1436 return Attribute::NoBuiltin; 1437 case bitc::ATTR_KIND_NO_CALLBACK: 1438 return Attribute::NoCallback; 1439 case bitc::ATTR_KIND_NO_CAPTURE: 1440 return Attribute::NoCapture; 1441 case bitc::ATTR_KIND_NO_DUPLICATE: 1442 return Attribute::NoDuplicate; 1443 case bitc::ATTR_KIND_NOFREE: 1444 return Attribute::NoFree; 1445 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1446 return Attribute::NoImplicitFloat; 1447 case bitc::ATTR_KIND_NO_INLINE: 1448 return Attribute::NoInline; 1449 case bitc::ATTR_KIND_NO_RECURSE: 1450 return Attribute::NoRecurse; 1451 case bitc::ATTR_KIND_NO_MERGE: 1452 return Attribute::NoMerge; 1453 case bitc::ATTR_KIND_NON_LAZY_BIND: 1454 return Attribute::NonLazyBind; 1455 case bitc::ATTR_KIND_NON_NULL: 1456 return Attribute::NonNull; 1457 case bitc::ATTR_KIND_DEREFERENCEABLE: 1458 return Attribute::Dereferenceable; 1459 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1460 return Attribute::DereferenceableOrNull; 1461 case bitc::ATTR_KIND_ALLOC_SIZE: 1462 return Attribute::AllocSize; 1463 case bitc::ATTR_KIND_NO_RED_ZONE: 1464 return Attribute::NoRedZone; 1465 case bitc::ATTR_KIND_NO_RETURN: 1466 return Attribute::NoReturn; 1467 case bitc::ATTR_KIND_NOSYNC: 1468 return Attribute::NoSync; 1469 case bitc::ATTR_KIND_NOCF_CHECK: 1470 return Attribute::NoCfCheck; 1471 case bitc::ATTR_KIND_NO_PROFILE: 1472 return Attribute::NoProfile; 1473 case bitc::ATTR_KIND_NO_UNWIND: 1474 return Attribute::NoUnwind; 1475 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1476 return Attribute::NoSanitizeCoverage; 1477 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1478 return Attribute::NullPointerIsValid; 1479 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1480 return Attribute::OptForFuzzing; 1481 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1482 return Attribute::OptimizeForSize; 1483 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1484 return Attribute::OptimizeNone; 1485 case bitc::ATTR_KIND_READ_NONE: 1486 return Attribute::ReadNone; 1487 case bitc::ATTR_KIND_READ_ONLY: 1488 return Attribute::ReadOnly; 1489 case bitc::ATTR_KIND_RETURNED: 1490 return Attribute::Returned; 1491 case bitc::ATTR_KIND_RETURNS_TWICE: 1492 return Attribute::ReturnsTwice; 1493 case bitc::ATTR_KIND_S_EXT: 1494 return Attribute::SExt; 1495 case bitc::ATTR_KIND_SPECULATABLE: 1496 return Attribute::Speculatable; 1497 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1498 return Attribute::StackAlignment; 1499 case bitc::ATTR_KIND_STACK_PROTECT: 1500 return Attribute::StackProtect; 1501 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1502 return Attribute::StackProtectReq; 1503 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1504 return Attribute::StackProtectStrong; 1505 case bitc::ATTR_KIND_SAFESTACK: 1506 return Attribute::SafeStack; 1507 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1508 return Attribute::ShadowCallStack; 1509 case bitc::ATTR_KIND_STRICT_FP: 1510 return Attribute::StrictFP; 1511 case bitc::ATTR_KIND_STRUCT_RET: 1512 return Attribute::StructRet; 1513 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1514 return Attribute::SanitizeAddress; 1515 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1516 return Attribute::SanitizeHWAddress; 1517 case bitc::ATTR_KIND_SANITIZE_THREAD: 1518 return Attribute::SanitizeThread; 1519 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1520 return Attribute::SanitizeMemory; 1521 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1522 return Attribute::SpeculativeLoadHardening; 1523 case bitc::ATTR_KIND_SWIFT_ERROR: 1524 return Attribute::SwiftError; 1525 case bitc::ATTR_KIND_SWIFT_SELF: 1526 return Attribute::SwiftSelf; 1527 case bitc::ATTR_KIND_SWIFT_ASYNC: 1528 return Attribute::SwiftAsync; 1529 case bitc::ATTR_KIND_UW_TABLE: 1530 return Attribute::UWTable; 1531 case bitc::ATTR_KIND_VSCALE_RANGE: 1532 return Attribute::VScaleRange; 1533 case bitc::ATTR_KIND_WILLRETURN: 1534 return Attribute::WillReturn; 1535 case bitc::ATTR_KIND_WRITEONLY: 1536 return Attribute::WriteOnly; 1537 case bitc::ATTR_KIND_Z_EXT: 1538 return Attribute::ZExt; 1539 case bitc::ATTR_KIND_IMMARG: 1540 return Attribute::ImmArg; 1541 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1542 return Attribute::SanitizeMemTag; 1543 case bitc::ATTR_KIND_PREALLOCATED: 1544 return Attribute::Preallocated; 1545 case bitc::ATTR_KIND_NOUNDEF: 1546 return Attribute::NoUndef; 1547 case bitc::ATTR_KIND_BYREF: 1548 return Attribute::ByRef; 1549 case bitc::ATTR_KIND_MUSTPROGRESS: 1550 return Attribute::MustProgress; 1551 case bitc::ATTR_KIND_HOT: 1552 return Attribute::Hot; 1553 } 1554 } 1555 1556 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1557 MaybeAlign &Alignment) { 1558 // Note: Alignment in bitcode files is incremented by 1, so that zero 1559 // can be used for default alignment. 1560 if (Exponent > Value::MaxAlignmentExponent + 1) 1561 return error("Invalid alignment value"); 1562 Alignment = decodeMaybeAlign(Exponent); 1563 return Error::success(); 1564 } 1565 1566 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1567 *Kind = getAttrFromCode(Code); 1568 if (*Kind == Attribute::None) 1569 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1570 return Error::success(); 1571 } 1572 1573 Error BitcodeReader::parseAttributeGroupBlock() { 1574 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1575 return Err; 1576 1577 if (!MAttributeGroups.empty()) 1578 return error("Invalid multiple blocks"); 1579 1580 SmallVector<uint64_t, 64> Record; 1581 1582 // Read all the records. 1583 while (true) { 1584 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1585 if (!MaybeEntry) 1586 return MaybeEntry.takeError(); 1587 BitstreamEntry Entry = MaybeEntry.get(); 1588 1589 switch (Entry.Kind) { 1590 case BitstreamEntry::SubBlock: // Handled for us already. 1591 case BitstreamEntry::Error: 1592 return error("Malformed block"); 1593 case BitstreamEntry::EndBlock: 1594 return Error::success(); 1595 case BitstreamEntry::Record: 1596 // The interesting case. 1597 break; 1598 } 1599 1600 // Read a record. 1601 Record.clear(); 1602 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1603 if (!MaybeRecord) 1604 return MaybeRecord.takeError(); 1605 switch (MaybeRecord.get()) { 1606 default: // Default behavior: ignore. 1607 break; 1608 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1609 if (Record.size() < 3) 1610 return error("Invalid record"); 1611 1612 uint64_t GrpID = Record[0]; 1613 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1614 1615 AttrBuilder B(Context); 1616 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1617 if (Record[i] == 0) { // Enum attribute 1618 Attribute::AttrKind Kind; 1619 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1620 return Err; 1621 1622 // Upgrade old-style byval attribute to one with a type, even if it's 1623 // nullptr. We will have to insert the real type when we associate 1624 // this AttributeList with a function. 1625 if (Kind == Attribute::ByVal) 1626 B.addByValAttr(nullptr); 1627 else if (Kind == Attribute::StructRet) 1628 B.addStructRetAttr(nullptr); 1629 else if (Kind == Attribute::InAlloca) 1630 B.addInAllocaAttr(nullptr); 1631 else if (Kind == Attribute::UWTable) 1632 B.addUWTableAttr(UWTableKind::Default); 1633 else if (Attribute::isEnumAttrKind(Kind)) 1634 B.addAttribute(Kind); 1635 else 1636 return error("Not an enum attribute"); 1637 } else if (Record[i] == 1) { // Integer attribute 1638 Attribute::AttrKind Kind; 1639 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1640 return Err; 1641 if (!Attribute::isIntAttrKind(Kind)) 1642 return error("Not an int attribute"); 1643 if (Kind == Attribute::Alignment) 1644 B.addAlignmentAttr(Record[++i]); 1645 else if (Kind == Attribute::StackAlignment) 1646 B.addStackAlignmentAttr(Record[++i]); 1647 else if (Kind == Attribute::Dereferenceable) 1648 B.addDereferenceableAttr(Record[++i]); 1649 else if (Kind == Attribute::DereferenceableOrNull) 1650 B.addDereferenceableOrNullAttr(Record[++i]); 1651 else if (Kind == Attribute::AllocSize) 1652 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1653 else if (Kind == Attribute::VScaleRange) 1654 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1655 else if (Kind == Attribute::UWTable) 1656 B.addUWTableAttr(UWTableKind(Record[++i])); 1657 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1658 bool HasValue = (Record[i++] == 4); 1659 SmallString<64> KindStr; 1660 SmallString<64> ValStr; 1661 1662 while (Record[i] != 0 && i != e) 1663 KindStr += Record[i++]; 1664 assert(Record[i] == 0 && "Kind string not null terminated"); 1665 1666 if (HasValue) { 1667 // Has a value associated with it. 1668 ++i; // Skip the '0' that terminates the "kind" string. 1669 while (Record[i] != 0 && i != e) 1670 ValStr += Record[i++]; 1671 assert(Record[i] == 0 && "Value string not null terminated"); 1672 } 1673 1674 B.addAttribute(KindStr.str(), ValStr.str()); 1675 } else if (Record[i] == 5 || Record[i] == 6) { 1676 bool HasType = Record[i] == 6; 1677 Attribute::AttrKind Kind; 1678 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1679 return Err; 1680 if (!Attribute::isTypeAttrKind(Kind)) 1681 return error("Not a type attribute"); 1682 1683 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1684 } else { 1685 return error("Invalid attribute group entry"); 1686 } 1687 } 1688 1689 UpgradeAttributes(B); 1690 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1691 break; 1692 } 1693 } 1694 } 1695 } 1696 1697 Error BitcodeReader::parseTypeTable() { 1698 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1699 return Err; 1700 1701 return parseTypeTableBody(); 1702 } 1703 1704 Error BitcodeReader::parseTypeTableBody() { 1705 if (!TypeList.empty()) 1706 return error("Invalid multiple blocks"); 1707 1708 SmallVector<uint64_t, 64> Record; 1709 unsigned NumRecords = 0; 1710 1711 SmallString<64> TypeName; 1712 1713 // Read all the records for this type table. 1714 while (true) { 1715 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1716 if (!MaybeEntry) 1717 return MaybeEntry.takeError(); 1718 BitstreamEntry Entry = MaybeEntry.get(); 1719 1720 switch (Entry.Kind) { 1721 case BitstreamEntry::SubBlock: // Handled for us already. 1722 case BitstreamEntry::Error: 1723 return error("Malformed block"); 1724 case BitstreamEntry::EndBlock: 1725 if (NumRecords != TypeList.size()) 1726 return error("Malformed block"); 1727 return Error::success(); 1728 case BitstreamEntry::Record: 1729 // The interesting case. 1730 break; 1731 } 1732 1733 // Read a record. 1734 Record.clear(); 1735 Type *ResultTy = nullptr; 1736 Type *ElemTy = nullptr; 1737 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1738 if (!MaybeRecord) 1739 return MaybeRecord.takeError(); 1740 switch (MaybeRecord.get()) { 1741 default: 1742 return error("Invalid value"); 1743 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1744 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1745 // type list. This allows us to reserve space. 1746 if (Record.empty()) 1747 return error("Invalid record"); 1748 TypeList.resize(Record[0]); 1749 ElementTypeList.resize(Record[0]); 1750 continue; 1751 case bitc::TYPE_CODE_VOID: // VOID 1752 ResultTy = Type::getVoidTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_HALF: // HALF 1755 ResultTy = Type::getHalfTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1758 ResultTy = Type::getBFloatTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_FLOAT: // FLOAT 1761 ResultTy = Type::getFloatTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1764 ResultTy = Type::getDoubleTy(Context); 1765 break; 1766 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1767 ResultTy = Type::getX86_FP80Ty(Context); 1768 break; 1769 case bitc::TYPE_CODE_FP128: // FP128 1770 ResultTy = Type::getFP128Ty(Context); 1771 break; 1772 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1773 ResultTy = Type::getPPC_FP128Ty(Context); 1774 break; 1775 case bitc::TYPE_CODE_LABEL: // LABEL 1776 ResultTy = Type::getLabelTy(Context); 1777 break; 1778 case bitc::TYPE_CODE_METADATA: // METADATA 1779 ResultTy = Type::getMetadataTy(Context); 1780 break; 1781 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1782 ResultTy = Type::getX86_MMXTy(Context); 1783 break; 1784 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1785 ResultTy = Type::getX86_AMXTy(Context); 1786 break; 1787 case bitc::TYPE_CODE_TOKEN: // TOKEN 1788 ResultTy = Type::getTokenTy(Context); 1789 break; 1790 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1791 if (Record.empty()) 1792 return error("Invalid record"); 1793 1794 uint64_t NumBits = Record[0]; 1795 if (NumBits < IntegerType::MIN_INT_BITS || 1796 NumBits > IntegerType::MAX_INT_BITS) 1797 return error("Bitwidth for integer type out of range"); 1798 ResultTy = IntegerType::get(Context, NumBits); 1799 break; 1800 } 1801 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1802 // [pointee type, address space] 1803 if (Record.empty()) 1804 return error("Invalid record"); 1805 unsigned AddressSpace = 0; 1806 if (Record.size() == 2) 1807 AddressSpace = Record[1]; 1808 ResultTy = getTypeByID(Record[0]); 1809 if (!ResultTy || 1810 !PointerType::isValidElementType(ResultTy)) 1811 return error("Invalid type"); 1812 ElemTy = ResultTy; 1813 ResultTy = PointerType::get(ResultTy, AddressSpace); 1814 break; 1815 } 1816 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1817 if (Record.size() != 1) 1818 return error("Invalid record"); 1819 if (Context.supportsTypedPointers()) 1820 return error( 1821 "Opaque pointers are only supported in -opaque-pointers mode"); 1822 unsigned AddressSpace = Record[0]; 1823 ResultTy = PointerType::get(Context, AddressSpace); 1824 break; 1825 } 1826 case bitc::TYPE_CODE_FUNCTION_OLD: { 1827 // Deprecated, but still needed to read old bitcode files. 1828 // FUNCTION: [vararg, attrid, retty, paramty x N] 1829 if (Record.size() < 3) 1830 return error("Invalid record"); 1831 SmallVector<Type*, 8> ArgTys; 1832 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1833 if (Type *T = getTypeByID(Record[i])) 1834 ArgTys.push_back(T); 1835 else 1836 break; 1837 } 1838 1839 ResultTy = getTypeByID(Record[2]); 1840 if (!ResultTy || ArgTys.size() < Record.size()-3) 1841 return error("Invalid type"); 1842 1843 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1844 break; 1845 } 1846 case bitc::TYPE_CODE_FUNCTION: { 1847 // FUNCTION: [vararg, retty, paramty x N] 1848 if (Record.size() < 2) 1849 return error("Invalid record"); 1850 SmallVector<Type*, 8> ArgTys; 1851 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1852 if (Type *T = getTypeByID(Record[i])) { 1853 if (!FunctionType::isValidArgumentType(T)) 1854 return error("Invalid function argument type"); 1855 ArgTys.push_back(T); 1856 } 1857 else 1858 break; 1859 } 1860 1861 ResultTy = getTypeByID(Record[1]); 1862 if (!ResultTy || ArgTys.size() < Record.size()-2) 1863 return error("Invalid type"); 1864 1865 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1866 break; 1867 } 1868 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1869 if (Record.empty()) 1870 return error("Invalid record"); 1871 SmallVector<Type*, 8> EltTys; 1872 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1873 if (Type *T = getTypeByID(Record[i])) 1874 EltTys.push_back(T); 1875 else 1876 break; 1877 } 1878 if (EltTys.size() != Record.size()-1) 1879 return error("Invalid type"); 1880 ResultTy = StructType::get(Context, EltTys, Record[0]); 1881 break; 1882 } 1883 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1884 if (convertToString(Record, 0, TypeName)) 1885 return error("Invalid record"); 1886 continue; 1887 1888 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1889 if (Record.empty()) 1890 return error("Invalid record"); 1891 1892 if (NumRecords >= TypeList.size()) 1893 return error("Invalid TYPE table"); 1894 1895 // Check to see if this was forward referenced, if so fill in the temp. 1896 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1897 if (Res) { 1898 Res->setName(TypeName); 1899 TypeList[NumRecords] = nullptr; 1900 } else // Otherwise, create a new struct. 1901 Res = createIdentifiedStructType(Context, TypeName); 1902 TypeName.clear(); 1903 1904 SmallVector<Type*, 8> EltTys; 1905 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1906 if (Type *T = getTypeByID(Record[i])) 1907 EltTys.push_back(T); 1908 else 1909 break; 1910 } 1911 if (EltTys.size() != Record.size()-1) 1912 return error("Invalid record"); 1913 Res->setBody(EltTys, Record[0]); 1914 ResultTy = Res; 1915 break; 1916 } 1917 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1918 if (Record.size() != 1) 1919 return error("Invalid record"); 1920 1921 if (NumRecords >= TypeList.size()) 1922 return error("Invalid TYPE table"); 1923 1924 // Check to see if this was forward referenced, if so fill in the temp. 1925 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1926 if (Res) { 1927 Res->setName(TypeName); 1928 TypeList[NumRecords] = nullptr; 1929 } else // Otherwise, create a new struct with no body. 1930 Res = createIdentifiedStructType(Context, TypeName); 1931 TypeName.clear(); 1932 ResultTy = Res; 1933 break; 1934 } 1935 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1936 if (Record.size() < 2) 1937 return error("Invalid record"); 1938 ResultTy = getTypeByID(Record[1]); 1939 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1940 return error("Invalid type"); 1941 ResultTy = ArrayType::get(ResultTy, Record[0]); 1942 break; 1943 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1944 // [numelts, eltty, scalable] 1945 if (Record.size() < 2) 1946 return error("Invalid record"); 1947 if (Record[0] == 0) 1948 return error("Invalid vector length"); 1949 ResultTy = getTypeByID(Record[1]); 1950 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1951 return error("Invalid type"); 1952 bool Scalable = Record.size() > 2 ? Record[2] : false; 1953 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1954 break; 1955 } 1956 1957 if (NumRecords >= TypeList.size()) 1958 return error("Invalid TYPE table"); 1959 if (TypeList[NumRecords]) 1960 return error( 1961 "Invalid TYPE table: Only named structs can be forward referenced"); 1962 assert(ResultTy && "Didn't read a type?"); 1963 TypeList[NumRecords] = ResultTy; 1964 ElementTypeList[NumRecords] = ElemTy; 1965 ++NumRecords; 1966 } 1967 } 1968 1969 Error BitcodeReader::parseOperandBundleTags() { 1970 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1971 return Err; 1972 1973 if (!BundleTags.empty()) 1974 return error("Invalid multiple blocks"); 1975 1976 SmallVector<uint64_t, 64> Record; 1977 1978 while (true) { 1979 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1980 if (!MaybeEntry) 1981 return MaybeEntry.takeError(); 1982 BitstreamEntry Entry = MaybeEntry.get(); 1983 1984 switch (Entry.Kind) { 1985 case BitstreamEntry::SubBlock: // Handled for us already. 1986 case BitstreamEntry::Error: 1987 return error("Malformed block"); 1988 case BitstreamEntry::EndBlock: 1989 return Error::success(); 1990 case BitstreamEntry::Record: 1991 // The interesting case. 1992 break; 1993 } 1994 1995 // Tags are implicitly mapped to integers by their order. 1996 1997 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1998 if (!MaybeRecord) 1999 return MaybeRecord.takeError(); 2000 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2001 return error("Invalid record"); 2002 2003 // OPERAND_BUNDLE_TAG: [strchr x N] 2004 BundleTags.emplace_back(); 2005 if (convertToString(Record, 0, BundleTags.back())) 2006 return error("Invalid record"); 2007 Record.clear(); 2008 } 2009 } 2010 2011 Error BitcodeReader::parseSyncScopeNames() { 2012 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2013 return Err; 2014 2015 if (!SSIDs.empty()) 2016 return error("Invalid multiple synchronization scope names blocks"); 2017 2018 SmallVector<uint64_t, 64> Record; 2019 while (true) { 2020 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2021 if (!MaybeEntry) 2022 return MaybeEntry.takeError(); 2023 BitstreamEntry Entry = MaybeEntry.get(); 2024 2025 switch (Entry.Kind) { 2026 case BitstreamEntry::SubBlock: // Handled for us already. 2027 case BitstreamEntry::Error: 2028 return error("Malformed block"); 2029 case BitstreamEntry::EndBlock: 2030 if (SSIDs.empty()) 2031 return error("Invalid empty synchronization scope names block"); 2032 return Error::success(); 2033 case BitstreamEntry::Record: 2034 // The interesting case. 2035 break; 2036 } 2037 2038 // Synchronization scope names are implicitly mapped to synchronization 2039 // scope IDs by their order. 2040 2041 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2042 if (!MaybeRecord) 2043 return MaybeRecord.takeError(); 2044 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2045 return error("Invalid record"); 2046 2047 SmallString<16> SSN; 2048 if (convertToString(Record, 0, SSN)) 2049 return error("Invalid record"); 2050 2051 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2052 Record.clear(); 2053 } 2054 } 2055 2056 /// Associate a value with its name from the given index in the provided record. 2057 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2058 unsigned NameIndex, Triple &TT) { 2059 SmallString<128> ValueName; 2060 if (convertToString(Record, NameIndex, ValueName)) 2061 return error("Invalid record"); 2062 unsigned ValueID = Record[0]; 2063 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2064 return error("Invalid record"); 2065 Value *V = ValueList[ValueID]; 2066 2067 StringRef NameStr(ValueName.data(), ValueName.size()); 2068 if (NameStr.find_first_of(0) != StringRef::npos) 2069 return error("Invalid value name"); 2070 V->setName(NameStr); 2071 auto *GO = dyn_cast<GlobalObject>(V); 2072 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2073 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2074 return V; 2075 } 2076 2077 /// Helper to note and return the current location, and jump to the given 2078 /// offset. 2079 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2080 BitstreamCursor &Stream) { 2081 // Save the current parsing location so we can jump back at the end 2082 // of the VST read. 2083 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2084 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2085 return std::move(JumpFailed); 2086 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2087 if (!MaybeEntry) 2088 return MaybeEntry.takeError(); 2089 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2090 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2091 return error("Expected value symbol table subblock"); 2092 return CurrentBit; 2093 } 2094 2095 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2096 Function *F, 2097 ArrayRef<uint64_t> Record) { 2098 // Note that we subtract 1 here because the offset is relative to one word 2099 // before the start of the identification or module block, which was 2100 // historically always the start of the regular bitcode header. 2101 uint64_t FuncWordOffset = Record[1] - 1; 2102 uint64_t FuncBitOffset = FuncWordOffset * 32; 2103 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2104 // Set the LastFunctionBlockBit to point to the last function block. 2105 // Later when parsing is resumed after function materialization, 2106 // we can simply skip that last function block. 2107 if (FuncBitOffset > LastFunctionBlockBit) 2108 LastFunctionBlockBit = FuncBitOffset; 2109 } 2110 2111 /// Read a new-style GlobalValue symbol table. 2112 Error BitcodeReader::parseGlobalValueSymbolTable() { 2113 unsigned FuncBitcodeOffsetDelta = 2114 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2115 2116 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2117 return Err; 2118 2119 SmallVector<uint64_t, 64> Record; 2120 while (true) { 2121 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2122 if (!MaybeEntry) 2123 return MaybeEntry.takeError(); 2124 BitstreamEntry Entry = MaybeEntry.get(); 2125 2126 switch (Entry.Kind) { 2127 case BitstreamEntry::SubBlock: 2128 case BitstreamEntry::Error: 2129 return error("Malformed block"); 2130 case BitstreamEntry::EndBlock: 2131 return Error::success(); 2132 case BitstreamEntry::Record: 2133 break; 2134 } 2135 2136 Record.clear(); 2137 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2138 if (!MaybeRecord) 2139 return MaybeRecord.takeError(); 2140 switch (MaybeRecord.get()) { 2141 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2142 unsigned ValueID = Record[0]; 2143 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2144 return error("Invalid value reference in symbol table"); 2145 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2146 cast<Function>(ValueList[ValueID]), Record); 2147 break; 2148 } 2149 } 2150 } 2151 } 2152 2153 /// Parse the value symbol table at either the current parsing location or 2154 /// at the given bit offset if provided. 2155 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2156 uint64_t CurrentBit; 2157 // Pass in the Offset to distinguish between calling for the module-level 2158 // VST (where we want to jump to the VST offset) and the function-level 2159 // VST (where we don't). 2160 if (Offset > 0) { 2161 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2162 if (!MaybeCurrentBit) 2163 return MaybeCurrentBit.takeError(); 2164 CurrentBit = MaybeCurrentBit.get(); 2165 // If this module uses a string table, read this as a module-level VST. 2166 if (UseStrtab) { 2167 if (Error Err = parseGlobalValueSymbolTable()) 2168 return Err; 2169 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2170 return JumpFailed; 2171 return Error::success(); 2172 } 2173 // Otherwise, the VST will be in a similar format to a function-level VST, 2174 // and will contain symbol names. 2175 } 2176 2177 // Compute the delta between the bitcode indices in the VST (the word offset 2178 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2179 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2180 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2181 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2182 // just before entering the VST subblock because: 1) the EnterSubBlock 2183 // changes the AbbrevID width; 2) the VST block is nested within the same 2184 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2185 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2186 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2187 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2188 unsigned FuncBitcodeOffsetDelta = 2189 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2190 2191 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2192 return Err; 2193 2194 SmallVector<uint64_t, 64> Record; 2195 2196 Triple TT(TheModule->getTargetTriple()); 2197 2198 // Read all the records for this value table. 2199 SmallString<128> ValueName; 2200 2201 while (true) { 2202 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2203 if (!MaybeEntry) 2204 return MaybeEntry.takeError(); 2205 BitstreamEntry Entry = MaybeEntry.get(); 2206 2207 switch (Entry.Kind) { 2208 case BitstreamEntry::SubBlock: // Handled for us already. 2209 case BitstreamEntry::Error: 2210 return error("Malformed block"); 2211 case BitstreamEntry::EndBlock: 2212 if (Offset > 0) 2213 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2214 return JumpFailed; 2215 return Error::success(); 2216 case BitstreamEntry::Record: 2217 // The interesting case. 2218 break; 2219 } 2220 2221 // Read a record. 2222 Record.clear(); 2223 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2224 if (!MaybeRecord) 2225 return MaybeRecord.takeError(); 2226 switch (MaybeRecord.get()) { 2227 default: // Default behavior: unknown type. 2228 break; 2229 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2230 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2231 if (Error Err = ValOrErr.takeError()) 2232 return Err; 2233 ValOrErr.get(); 2234 break; 2235 } 2236 case bitc::VST_CODE_FNENTRY: { 2237 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2238 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2239 if (Error Err = ValOrErr.takeError()) 2240 return Err; 2241 Value *V = ValOrErr.get(); 2242 2243 // Ignore function offsets emitted for aliases of functions in older 2244 // versions of LLVM. 2245 if (auto *F = dyn_cast<Function>(V)) 2246 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2247 break; 2248 } 2249 case bitc::VST_CODE_BBENTRY: { 2250 if (convertToString(Record, 1, ValueName)) 2251 return error("Invalid record"); 2252 BasicBlock *BB = getBasicBlock(Record[0]); 2253 if (!BB) 2254 return error("Invalid record"); 2255 2256 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2257 ValueName.clear(); 2258 break; 2259 } 2260 } 2261 } 2262 } 2263 2264 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2265 /// encoding. 2266 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2267 if ((V & 1) == 0) 2268 return V >> 1; 2269 if (V != 1) 2270 return -(V >> 1); 2271 // There is no such thing as -0 with integers. "-0" really means MININT. 2272 return 1ULL << 63; 2273 } 2274 2275 /// Resolve all of the initializers for global values and aliases that we can. 2276 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2277 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2278 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2279 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2280 2281 GlobalInitWorklist.swap(GlobalInits); 2282 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2283 FunctionOperandWorklist.swap(FunctionOperands); 2284 2285 while (!GlobalInitWorklist.empty()) { 2286 unsigned ValID = GlobalInitWorklist.back().second; 2287 if (ValID >= ValueList.size()) { 2288 // Not ready to resolve this yet, it requires something later in the file. 2289 GlobalInits.push_back(GlobalInitWorklist.back()); 2290 } else { 2291 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2292 GlobalInitWorklist.back().first->setInitializer(C); 2293 else 2294 return error("Expected a constant"); 2295 } 2296 GlobalInitWorklist.pop_back(); 2297 } 2298 2299 while (!IndirectSymbolInitWorklist.empty()) { 2300 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2301 if (ValID >= ValueList.size()) { 2302 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2303 } else { 2304 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2305 if (!C) 2306 return error("Expected a constant"); 2307 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2308 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2309 if (C->getType() != GV->getType()) 2310 return error("Alias and aliasee types don't match"); 2311 GA->setAliasee(C); 2312 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2313 Type *ResolverFTy = 2314 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2315 // Transparently fix up the type for compatiblity with older bitcode 2316 GI->setResolver( 2317 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2318 } else { 2319 return error("Expected an alias or an ifunc"); 2320 } 2321 } 2322 IndirectSymbolInitWorklist.pop_back(); 2323 } 2324 2325 while (!FunctionOperandWorklist.empty()) { 2326 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2327 if (Info.PersonalityFn) { 2328 unsigned ValID = Info.PersonalityFn - 1; 2329 if (ValID < ValueList.size()) { 2330 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2331 Info.F->setPersonalityFn(C); 2332 else 2333 return error("Expected a constant"); 2334 Info.PersonalityFn = 0; 2335 } 2336 } 2337 if (Info.Prefix) { 2338 unsigned ValID = Info.Prefix - 1; 2339 if (ValID < ValueList.size()) { 2340 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2341 Info.F->setPrefixData(C); 2342 else 2343 return error("Expected a constant"); 2344 Info.Prefix = 0; 2345 } 2346 } 2347 if (Info.Prologue) { 2348 unsigned ValID = Info.Prologue - 1; 2349 if (ValID < ValueList.size()) { 2350 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2351 Info.F->setPrologueData(C); 2352 else 2353 return error("Expected a constant"); 2354 Info.Prologue = 0; 2355 } 2356 } 2357 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2358 FunctionOperands.push_back(Info); 2359 FunctionOperandWorklist.pop_back(); 2360 } 2361 2362 return Error::success(); 2363 } 2364 2365 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2366 SmallVector<uint64_t, 8> Words(Vals.size()); 2367 transform(Vals, Words.begin(), 2368 BitcodeReader::decodeSignRotatedValue); 2369 2370 return APInt(TypeBits, Words); 2371 } 2372 2373 Error BitcodeReader::parseConstants() { 2374 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2375 return Err; 2376 2377 SmallVector<uint64_t, 64> Record; 2378 2379 // Read all the records for this value table. 2380 Type *CurTy = Type::getInt32Ty(Context); 2381 Type *CurElemTy = nullptr; 2382 unsigned NextCstNo = ValueList.size(); 2383 2384 struct DelayedShufTy { 2385 VectorType *OpTy; 2386 VectorType *RTy; 2387 uint64_t Op0Idx; 2388 uint64_t Op1Idx; 2389 uint64_t Op2Idx; 2390 unsigned CstNo; 2391 }; 2392 std::vector<DelayedShufTy> DelayedShuffles; 2393 struct DelayedSelTy { 2394 Type *OpTy; 2395 uint64_t Op0Idx; 2396 uint64_t Op1Idx; 2397 uint64_t Op2Idx; 2398 unsigned CstNo; 2399 }; 2400 std::vector<DelayedSelTy> DelayedSelectors; 2401 2402 while (true) { 2403 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2404 if (!MaybeEntry) 2405 return MaybeEntry.takeError(); 2406 BitstreamEntry Entry = MaybeEntry.get(); 2407 2408 switch (Entry.Kind) { 2409 case BitstreamEntry::SubBlock: // Handled for us already. 2410 case BitstreamEntry::Error: 2411 return error("Malformed block"); 2412 case BitstreamEntry::EndBlock: 2413 // Once all the constants have been read, go through and resolve forward 2414 // references. 2415 // 2416 // We have to treat shuffles specially because they don't have three 2417 // operands anymore. We need to convert the shuffle mask into an array, 2418 // and we can't convert a forward reference. 2419 for (auto &DelayedShuffle : DelayedShuffles) { 2420 VectorType *OpTy = DelayedShuffle.OpTy; 2421 VectorType *RTy = DelayedShuffle.RTy; 2422 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2423 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2424 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2425 uint64_t CstNo = DelayedShuffle.CstNo; 2426 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2427 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2428 Type *ShufTy = 2429 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2430 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2431 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2432 return error("Invalid shufflevector operands"); 2433 SmallVector<int, 16> Mask; 2434 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2435 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2436 ValueList.assignValue(V, CstNo); 2437 } 2438 for (auto &DelayedSelector : DelayedSelectors) { 2439 Type *OpTy = DelayedSelector.OpTy; 2440 Type *SelectorTy = Type::getInt1Ty(Context); 2441 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2442 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2443 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2444 uint64_t CstNo = DelayedSelector.CstNo; 2445 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2446 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2447 // The selector might be an i1 or an <n x i1> 2448 // Get the type from the ValueList before getting a forward ref. 2449 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2450 Value *V = ValueList[Op0Idx]; 2451 assert(V); 2452 if (SelectorTy != V->getType()) 2453 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2454 } 2455 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2456 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2457 ValueList.assignValue(V, CstNo); 2458 } 2459 2460 if (NextCstNo != ValueList.size()) 2461 return error("Invalid constant reference"); 2462 2463 ValueList.resolveConstantForwardRefs(); 2464 return Error::success(); 2465 case BitstreamEntry::Record: 2466 // The interesting case. 2467 break; 2468 } 2469 2470 // Read a record. 2471 Record.clear(); 2472 Type *VoidType = Type::getVoidTy(Context); 2473 Value *V = nullptr; 2474 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2475 if (!MaybeBitCode) 2476 return MaybeBitCode.takeError(); 2477 switch (unsigned BitCode = MaybeBitCode.get()) { 2478 default: // Default behavior: unknown constant 2479 case bitc::CST_CODE_UNDEF: // UNDEF 2480 V = UndefValue::get(CurTy); 2481 break; 2482 case bitc::CST_CODE_POISON: // POISON 2483 V = PoisonValue::get(CurTy); 2484 break; 2485 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2486 if (Record.empty()) 2487 return error("Invalid record"); 2488 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2489 return error("Invalid record"); 2490 if (TypeList[Record[0]] == VoidType) 2491 return error("Invalid constant type"); 2492 CurTy = TypeList[Record[0]]; 2493 CurElemTy = getPtrElementTypeByID(Record[0]); 2494 continue; // Skip the ValueList manipulation. 2495 case bitc::CST_CODE_NULL: // NULL 2496 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2497 return error("Invalid type for a constant null value"); 2498 V = Constant::getNullValue(CurTy); 2499 break; 2500 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2501 if (!CurTy->isIntegerTy() || Record.empty()) 2502 return error("Invalid record"); 2503 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2504 break; 2505 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2506 if (!CurTy->isIntegerTy() || Record.empty()) 2507 return error("Invalid record"); 2508 2509 APInt VInt = 2510 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2511 V = ConstantInt::get(Context, VInt); 2512 2513 break; 2514 } 2515 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2516 if (Record.empty()) 2517 return error("Invalid record"); 2518 if (CurTy->isHalfTy()) 2519 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2520 APInt(16, (uint16_t)Record[0]))); 2521 else if (CurTy->isBFloatTy()) 2522 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2523 APInt(16, (uint32_t)Record[0]))); 2524 else if (CurTy->isFloatTy()) 2525 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2526 APInt(32, (uint32_t)Record[0]))); 2527 else if (CurTy->isDoubleTy()) 2528 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2529 APInt(64, Record[0]))); 2530 else if (CurTy->isX86_FP80Ty()) { 2531 // Bits are not stored the same way as a normal i80 APInt, compensate. 2532 uint64_t Rearrange[2]; 2533 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2534 Rearrange[1] = Record[0] >> 48; 2535 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2536 APInt(80, Rearrange))); 2537 } else if (CurTy->isFP128Ty()) 2538 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2539 APInt(128, Record))); 2540 else if (CurTy->isPPC_FP128Ty()) 2541 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2542 APInt(128, Record))); 2543 else 2544 V = UndefValue::get(CurTy); 2545 break; 2546 } 2547 2548 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2549 if (Record.empty()) 2550 return error("Invalid record"); 2551 2552 unsigned Size = Record.size(); 2553 SmallVector<Constant*, 16> Elts; 2554 2555 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2556 for (unsigned i = 0; i != Size; ++i) 2557 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2558 STy->getElementType(i))); 2559 V = ConstantStruct::get(STy, Elts); 2560 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2561 Type *EltTy = ATy->getElementType(); 2562 for (unsigned i = 0; i != Size; ++i) 2563 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2564 V = ConstantArray::get(ATy, Elts); 2565 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2566 Type *EltTy = VTy->getElementType(); 2567 for (unsigned i = 0; i != Size; ++i) 2568 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2569 V = ConstantVector::get(Elts); 2570 } else { 2571 V = UndefValue::get(CurTy); 2572 } 2573 break; 2574 } 2575 case bitc::CST_CODE_STRING: // STRING: [values] 2576 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2577 if (Record.empty()) 2578 return error("Invalid record"); 2579 2580 SmallString<16> Elts(Record.begin(), Record.end()); 2581 V = ConstantDataArray::getString(Context, Elts, 2582 BitCode == bitc::CST_CODE_CSTRING); 2583 break; 2584 } 2585 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2586 if (Record.empty()) 2587 return error("Invalid record"); 2588 2589 Type *EltTy; 2590 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2591 EltTy = Array->getElementType(); 2592 else 2593 EltTy = cast<VectorType>(CurTy)->getElementType(); 2594 if (EltTy->isIntegerTy(8)) { 2595 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2596 if (isa<VectorType>(CurTy)) 2597 V = ConstantDataVector::get(Context, Elts); 2598 else 2599 V = ConstantDataArray::get(Context, Elts); 2600 } else if (EltTy->isIntegerTy(16)) { 2601 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2602 if (isa<VectorType>(CurTy)) 2603 V = ConstantDataVector::get(Context, Elts); 2604 else 2605 V = ConstantDataArray::get(Context, Elts); 2606 } else if (EltTy->isIntegerTy(32)) { 2607 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2608 if (isa<VectorType>(CurTy)) 2609 V = ConstantDataVector::get(Context, Elts); 2610 else 2611 V = ConstantDataArray::get(Context, Elts); 2612 } else if (EltTy->isIntegerTy(64)) { 2613 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2614 if (isa<VectorType>(CurTy)) 2615 V = ConstantDataVector::get(Context, Elts); 2616 else 2617 V = ConstantDataArray::get(Context, Elts); 2618 } else if (EltTy->isHalfTy()) { 2619 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2620 if (isa<VectorType>(CurTy)) 2621 V = ConstantDataVector::getFP(EltTy, Elts); 2622 else 2623 V = ConstantDataArray::getFP(EltTy, Elts); 2624 } else if (EltTy->isBFloatTy()) { 2625 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2626 if (isa<VectorType>(CurTy)) 2627 V = ConstantDataVector::getFP(EltTy, Elts); 2628 else 2629 V = ConstantDataArray::getFP(EltTy, Elts); 2630 } else if (EltTy->isFloatTy()) { 2631 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2632 if (isa<VectorType>(CurTy)) 2633 V = ConstantDataVector::getFP(EltTy, Elts); 2634 else 2635 V = ConstantDataArray::getFP(EltTy, Elts); 2636 } else if (EltTy->isDoubleTy()) { 2637 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2638 if (isa<VectorType>(CurTy)) 2639 V = ConstantDataVector::getFP(EltTy, Elts); 2640 else 2641 V = ConstantDataArray::getFP(EltTy, Elts); 2642 } else { 2643 return error("Invalid type for value"); 2644 } 2645 break; 2646 } 2647 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2648 if (Record.size() < 2) 2649 return error("Invalid record"); 2650 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2651 if (Opc < 0) { 2652 V = UndefValue::get(CurTy); // Unknown unop. 2653 } else { 2654 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2655 unsigned Flags = 0; 2656 V = ConstantExpr::get(Opc, LHS, Flags); 2657 } 2658 break; 2659 } 2660 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2661 if (Record.size() < 3) 2662 return error("Invalid record"); 2663 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2664 if (Opc < 0) { 2665 V = UndefValue::get(CurTy); // Unknown binop. 2666 } else { 2667 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2668 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2669 unsigned Flags = 0; 2670 if (Record.size() >= 4) { 2671 if (Opc == Instruction::Add || 2672 Opc == Instruction::Sub || 2673 Opc == Instruction::Mul || 2674 Opc == Instruction::Shl) { 2675 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2676 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2677 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2678 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2679 } else if (Opc == Instruction::SDiv || 2680 Opc == Instruction::UDiv || 2681 Opc == Instruction::LShr || 2682 Opc == Instruction::AShr) { 2683 if (Record[3] & (1 << bitc::PEO_EXACT)) 2684 Flags |= SDivOperator::IsExact; 2685 } 2686 } 2687 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2688 } 2689 break; 2690 } 2691 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2692 if (Record.size() < 3) 2693 return error("Invalid record"); 2694 int Opc = getDecodedCastOpcode(Record[0]); 2695 if (Opc < 0) { 2696 V = UndefValue::get(CurTy); // Unknown cast. 2697 } else { 2698 Type *OpTy = getTypeByID(Record[1]); 2699 if (!OpTy) 2700 return error("Invalid record"); 2701 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2702 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2703 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2704 } 2705 break; 2706 } 2707 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2708 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2709 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2710 // operands] 2711 if (Record.size() < 2) 2712 return error("Constant GEP record must have at least two elements"); 2713 unsigned OpNum = 0; 2714 Type *PointeeType = nullptr; 2715 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2716 Record.size() % 2) 2717 PointeeType = getTypeByID(Record[OpNum++]); 2718 2719 bool InBounds = false; 2720 Optional<unsigned> InRangeIndex; 2721 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2722 uint64_t Op = Record[OpNum++]; 2723 InBounds = Op & 1; 2724 InRangeIndex = Op >> 1; 2725 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2726 InBounds = true; 2727 2728 SmallVector<Constant*, 16> Elts; 2729 Type *Elt0FullTy = nullptr; 2730 while (OpNum != Record.size()) { 2731 if (!Elt0FullTy) 2732 Elt0FullTy = getTypeByID(Record[OpNum]); 2733 Type *ElTy = getTypeByID(Record[OpNum++]); 2734 if (!ElTy) 2735 return error("Invalid record"); 2736 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2737 } 2738 2739 if (Elts.size() < 1) 2740 return error("Invalid gep with no operands"); 2741 2742 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2743 if (!PointeeType) 2744 PointeeType = OrigPtrTy->getPointerElementType(); 2745 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2746 return error("Explicit gep operator type does not match pointee type " 2747 "of pointer operand"); 2748 2749 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2750 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2751 InBounds, InRangeIndex); 2752 break; 2753 } 2754 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2755 if (Record.size() < 3) 2756 return error("Invalid record"); 2757 2758 DelayedSelectors.push_back( 2759 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2760 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2761 ++NextCstNo; 2762 continue; 2763 } 2764 case bitc::CST_CODE_CE_EXTRACTELT 2765 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2766 if (Record.size() < 3) 2767 return error("Invalid record"); 2768 VectorType *OpTy = 2769 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2770 if (!OpTy) 2771 return error("Invalid record"); 2772 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2773 Constant *Op1 = nullptr; 2774 if (Record.size() == 4) { 2775 Type *IdxTy = getTypeByID(Record[2]); 2776 if (!IdxTy) 2777 return error("Invalid record"); 2778 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2779 } else { 2780 // Deprecated, but still needed to read old bitcode files. 2781 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2782 } 2783 if (!Op1) 2784 return error("Invalid record"); 2785 V = ConstantExpr::getExtractElement(Op0, Op1); 2786 break; 2787 } 2788 case bitc::CST_CODE_CE_INSERTELT 2789 : { // CE_INSERTELT: [opval, opval, opty, opval] 2790 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2791 if (Record.size() < 3 || !OpTy) 2792 return error("Invalid record"); 2793 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2794 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2795 OpTy->getElementType()); 2796 Constant *Op2 = nullptr; 2797 if (Record.size() == 4) { 2798 Type *IdxTy = getTypeByID(Record[2]); 2799 if (!IdxTy) 2800 return error("Invalid record"); 2801 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2802 } else { 2803 // Deprecated, but still needed to read old bitcode files. 2804 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2805 } 2806 if (!Op2) 2807 return error("Invalid record"); 2808 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2809 break; 2810 } 2811 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2812 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2813 if (Record.size() < 3 || !OpTy) 2814 return error("Invalid record"); 2815 DelayedShuffles.push_back( 2816 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2817 ++NextCstNo; 2818 continue; 2819 } 2820 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2821 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2822 VectorType *OpTy = 2823 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2824 if (Record.size() < 4 || !RTy || !OpTy) 2825 return error("Invalid record"); 2826 DelayedShuffles.push_back( 2827 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2828 ++NextCstNo; 2829 continue; 2830 } 2831 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2832 if (Record.size() < 4) 2833 return error("Invalid record"); 2834 Type *OpTy = getTypeByID(Record[0]); 2835 if (!OpTy) 2836 return error("Invalid record"); 2837 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2838 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2839 2840 if (OpTy->isFPOrFPVectorTy()) 2841 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2842 else 2843 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2844 break; 2845 } 2846 // This maintains backward compatibility, pre-asm dialect keywords. 2847 // Deprecated, but still needed to read old bitcode files. 2848 case bitc::CST_CODE_INLINEASM_OLD: { 2849 if (Record.size() < 2) 2850 return error("Invalid record"); 2851 std::string AsmStr, ConstrStr; 2852 bool HasSideEffects = Record[0] & 1; 2853 bool IsAlignStack = Record[0] >> 1; 2854 unsigned AsmStrSize = Record[1]; 2855 if (2+AsmStrSize >= Record.size()) 2856 return error("Invalid record"); 2857 unsigned ConstStrSize = Record[2+AsmStrSize]; 2858 if (3+AsmStrSize+ConstStrSize > Record.size()) 2859 return error("Invalid record"); 2860 2861 for (unsigned i = 0; i != AsmStrSize; ++i) 2862 AsmStr += (char)Record[2+i]; 2863 for (unsigned i = 0; i != ConstStrSize; ++i) 2864 ConstrStr += (char)Record[3+AsmStrSize+i]; 2865 UpgradeInlineAsmString(&AsmStr); 2866 if (!CurElemTy) 2867 return error("Missing element type for old-style inlineasm"); 2868 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2869 HasSideEffects, IsAlignStack); 2870 break; 2871 } 2872 // This version adds support for the asm dialect keywords (e.g., 2873 // inteldialect). 2874 case bitc::CST_CODE_INLINEASM_OLD2: { 2875 if (Record.size() < 2) 2876 return error("Invalid record"); 2877 std::string AsmStr, ConstrStr; 2878 bool HasSideEffects = Record[0] & 1; 2879 bool IsAlignStack = (Record[0] >> 1) & 1; 2880 unsigned AsmDialect = Record[0] >> 2; 2881 unsigned AsmStrSize = Record[1]; 2882 if (2+AsmStrSize >= Record.size()) 2883 return error("Invalid record"); 2884 unsigned ConstStrSize = Record[2+AsmStrSize]; 2885 if (3+AsmStrSize+ConstStrSize > Record.size()) 2886 return error("Invalid record"); 2887 2888 for (unsigned i = 0; i != AsmStrSize; ++i) 2889 AsmStr += (char)Record[2+i]; 2890 for (unsigned i = 0; i != ConstStrSize; ++i) 2891 ConstrStr += (char)Record[3+AsmStrSize+i]; 2892 UpgradeInlineAsmString(&AsmStr); 2893 if (!CurElemTy) 2894 return error("Missing element type for old-style inlineasm"); 2895 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2896 HasSideEffects, IsAlignStack, 2897 InlineAsm::AsmDialect(AsmDialect)); 2898 break; 2899 } 2900 // This version adds support for the unwind keyword. 2901 case bitc::CST_CODE_INLINEASM_OLD3: { 2902 if (Record.size() < 2) 2903 return error("Invalid record"); 2904 unsigned OpNum = 0; 2905 std::string AsmStr, ConstrStr; 2906 bool HasSideEffects = Record[OpNum] & 1; 2907 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2908 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2909 bool CanThrow = (Record[OpNum] >> 3) & 1; 2910 ++OpNum; 2911 unsigned AsmStrSize = Record[OpNum]; 2912 ++OpNum; 2913 if (OpNum + AsmStrSize >= Record.size()) 2914 return error("Invalid record"); 2915 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2916 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2917 return error("Invalid record"); 2918 2919 for (unsigned i = 0; i != AsmStrSize; ++i) 2920 AsmStr += (char)Record[OpNum + i]; 2921 ++OpNum; 2922 for (unsigned i = 0; i != ConstStrSize; ++i) 2923 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2924 UpgradeInlineAsmString(&AsmStr); 2925 if (!CurElemTy) 2926 return error("Missing element type for old-style inlineasm"); 2927 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2928 HasSideEffects, IsAlignStack, 2929 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2930 break; 2931 } 2932 // This version adds explicit function type. 2933 case bitc::CST_CODE_INLINEASM: { 2934 if (Record.size() < 3) 2935 return error("Invalid record"); 2936 unsigned OpNum = 0; 2937 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2938 ++OpNum; 2939 if (!FnTy) 2940 return error("Invalid record"); 2941 std::string AsmStr, ConstrStr; 2942 bool HasSideEffects = Record[OpNum] & 1; 2943 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2944 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2945 bool CanThrow = (Record[OpNum] >> 3) & 1; 2946 ++OpNum; 2947 unsigned AsmStrSize = Record[OpNum]; 2948 ++OpNum; 2949 if (OpNum + AsmStrSize >= Record.size()) 2950 return error("Invalid record"); 2951 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2952 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2953 return error("Invalid record"); 2954 2955 for (unsigned i = 0; i != AsmStrSize; ++i) 2956 AsmStr += (char)Record[OpNum + i]; 2957 ++OpNum; 2958 for (unsigned i = 0; i != ConstStrSize; ++i) 2959 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2960 UpgradeInlineAsmString(&AsmStr); 2961 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2962 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2963 break; 2964 } 2965 case bitc::CST_CODE_BLOCKADDRESS:{ 2966 if (Record.size() < 3) 2967 return error("Invalid record"); 2968 Type *FnTy = getTypeByID(Record[0]); 2969 if (!FnTy) 2970 return error("Invalid record"); 2971 Function *Fn = 2972 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2973 if (!Fn) 2974 return error("Invalid record"); 2975 2976 // If the function is already parsed we can insert the block address right 2977 // away. 2978 BasicBlock *BB; 2979 unsigned BBID = Record[2]; 2980 if (!BBID) 2981 // Invalid reference to entry block. 2982 return error("Invalid ID"); 2983 if (!Fn->empty()) { 2984 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2985 for (size_t I = 0, E = BBID; I != E; ++I) { 2986 if (BBI == BBE) 2987 return error("Invalid ID"); 2988 ++BBI; 2989 } 2990 BB = &*BBI; 2991 } else { 2992 // Otherwise insert a placeholder and remember it so it can be inserted 2993 // when the function is parsed. 2994 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2995 if (FwdBBs.empty()) 2996 BasicBlockFwdRefQueue.push_back(Fn); 2997 if (FwdBBs.size() < BBID + 1) 2998 FwdBBs.resize(BBID + 1); 2999 if (!FwdBBs[BBID]) 3000 FwdBBs[BBID] = BasicBlock::Create(Context); 3001 BB = FwdBBs[BBID]; 3002 } 3003 V = BlockAddress::get(Fn, BB); 3004 break; 3005 } 3006 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3007 if (Record.size() < 2) 3008 return error("Invalid record"); 3009 Type *GVTy = getTypeByID(Record[0]); 3010 if (!GVTy) 3011 return error("Invalid record"); 3012 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3013 ValueList.getConstantFwdRef(Record[1], GVTy)); 3014 if (!GV) 3015 return error("Invalid record"); 3016 3017 V = DSOLocalEquivalent::get(GV); 3018 break; 3019 } 3020 case bitc::CST_CODE_NO_CFI_VALUE: { 3021 if (Record.size() < 2) 3022 return error("Invalid record"); 3023 Type *GVTy = getTypeByID(Record[0]); 3024 if (!GVTy) 3025 return error("Invalid record"); 3026 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3027 ValueList.getConstantFwdRef(Record[1], GVTy)); 3028 if (!GV) 3029 return error("Invalid record"); 3030 V = NoCFIValue::get(GV); 3031 break; 3032 } 3033 } 3034 3035 ValueList.assignValue(V, NextCstNo); 3036 ++NextCstNo; 3037 } 3038 } 3039 3040 Error BitcodeReader::parseUseLists() { 3041 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3042 return Err; 3043 3044 // Read all the records. 3045 SmallVector<uint64_t, 64> Record; 3046 3047 while (true) { 3048 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3049 if (!MaybeEntry) 3050 return MaybeEntry.takeError(); 3051 BitstreamEntry Entry = MaybeEntry.get(); 3052 3053 switch (Entry.Kind) { 3054 case BitstreamEntry::SubBlock: // Handled for us already. 3055 case BitstreamEntry::Error: 3056 return error("Malformed block"); 3057 case BitstreamEntry::EndBlock: 3058 return Error::success(); 3059 case BitstreamEntry::Record: 3060 // The interesting case. 3061 break; 3062 } 3063 3064 // Read a use list record. 3065 Record.clear(); 3066 bool IsBB = false; 3067 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3068 if (!MaybeRecord) 3069 return MaybeRecord.takeError(); 3070 switch (MaybeRecord.get()) { 3071 default: // Default behavior: unknown type. 3072 break; 3073 case bitc::USELIST_CODE_BB: 3074 IsBB = true; 3075 LLVM_FALLTHROUGH; 3076 case bitc::USELIST_CODE_DEFAULT: { 3077 unsigned RecordLength = Record.size(); 3078 if (RecordLength < 3) 3079 // Records should have at least an ID and two indexes. 3080 return error("Invalid record"); 3081 unsigned ID = Record.pop_back_val(); 3082 3083 Value *V; 3084 if (IsBB) { 3085 assert(ID < FunctionBBs.size() && "Basic block not found"); 3086 V = FunctionBBs[ID]; 3087 } else 3088 V = ValueList[ID]; 3089 unsigned NumUses = 0; 3090 SmallDenseMap<const Use *, unsigned, 16> Order; 3091 for (const Use &U : V->materialized_uses()) { 3092 if (++NumUses > Record.size()) 3093 break; 3094 Order[&U] = Record[NumUses - 1]; 3095 } 3096 if (Order.size() != Record.size() || NumUses > Record.size()) 3097 // Mismatches can happen if the functions are being materialized lazily 3098 // (out-of-order), or a value has been upgraded. 3099 break; 3100 3101 V->sortUseList([&](const Use &L, const Use &R) { 3102 return Order.lookup(&L) < Order.lookup(&R); 3103 }); 3104 break; 3105 } 3106 } 3107 } 3108 } 3109 3110 /// When we see the block for metadata, remember where it is and then skip it. 3111 /// This lets us lazily deserialize the metadata. 3112 Error BitcodeReader::rememberAndSkipMetadata() { 3113 // Save the current stream state. 3114 uint64_t CurBit = Stream.GetCurrentBitNo(); 3115 DeferredMetadataInfo.push_back(CurBit); 3116 3117 // Skip over the block for now. 3118 if (Error Err = Stream.SkipBlock()) 3119 return Err; 3120 return Error::success(); 3121 } 3122 3123 Error BitcodeReader::materializeMetadata() { 3124 for (uint64_t BitPos : DeferredMetadataInfo) { 3125 // Move the bit stream to the saved position. 3126 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3127 return JumpFailed; 3128 if (Error Err = MDLoader->parseModuleMetadata()) 3129 return Err; 3130 } 3131 3132 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3133 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3134 // multiple times. 3135 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3136 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3137 NamedMDNode *LinkerOpts = 3138 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3139 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3140 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3141 } 3142 } 3143 3144 DeferredMetadataInfo.clear(); 3145 return Error::success(); 3146 } 3147 3148 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3149 3150 /// When we see the block for a function body, remember where it is and then 3151 /// skip it. This lets us lazily deserialize the functions. 3152 Error BitcodeReader::rememberAndSkipFunctionBody() { 3153 // Get the function we are talking about. 3154 if (FunctionsWithBodies.empty()) 3155 return error("Insufficient function protos"); 3156 3157 Function *Fn = FunctionsWithBodies.back(); 3158 FunctionsWithBodies.pop_back(); 3159 3160 // Save the current stream state. 3161 uint64_t CurBit = Stream.GetCurrentBitNo(); 3162 assert( 3163 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3164 "Mismatch between VST and scanned function offsets"); 3165 DeferredFunctionInfo[Fn] = CurBit; 3166 3167 // Skip over the function block for now. 3168 if (Error Err = Stream.SkipBlock()) 3169 return Err; 3170 return Error::success(); 3171 } 3172 3173 Error BitcodeReader::globalCleanup() { 3174 // Patch the initializers for globals and aliases up. 3175 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3176 return Err; 3177 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3178 return error("Malformed global initializer set"); 3179 3180 // Look for intrinsic functions which need to be upgraded at some point 3181 // and functions that need to have their function attributes upgraded. 3182 for (Function &F : *TheModule) { 3183 MDLoader->upgradeDebugIntrinsics(F); 3184 Function *NewFn; 3185 if (UpgradeIntrinsicFunction(&F, NewFn)) 3186 UpgradedIntrinsics[&F] = NewFn; 3187 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3188 // Some types could be renamed during loading if several modules are 3189 // loaded in the same LLVMContext (LTO scenario). In this case we should 3190 // remangle intrinsics names as well. 3191 RemangledIntrinsics[&F] = Remangled.getValue(); 3192 // Look for functions that rely on old function attribute behavior. 3193 UpgradeFunctionAttributes(F); 3194 } 3195 3196 // Look for global variables which need to be renamed. 3197 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3198 for (GlobalVariable &GV : TheModule->globals()) 3199 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3200 UpgradedVariables.emplace_back(&GV, Upgraded); 3201 for (auto &Pair : UpgradedVariables) { 3202 Pair.first->eraseFromParent(); 3203 TheModule->getGlobalList().push_back(Pair.second); 3204 } 3205 3206 // Force deallocation of memory for these vectors to favor the client that 3207 // want lazy deserialization. 3208 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3209 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3210 return Error::success(); 3211 } 3212 3213 /// Support for lazy parsing of function bodies. This is required if we 3214 /// either have an old bitcode file without a VST forward declaration record, 3215 /// or if we have an anonymous function being materialized, since anonymous 3216 /// functions do not have a name and are therefore not in the VST. 3217 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3218 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3219 return JumpFailed; 3220 3221 if (Stream.AtEndOfStream()) 3222 return error("Could not find function in stream"); 3223 3224 if (!SeenFirstFunctionBody) 3225 return error("Trying to materialize functions before seeing function blocks"); 3226 3227 // An old bitcode file with the symbol table at the end would have 3228 // finished the parse greedily. 3229 assert(SeenValueSymbolTable); 3230 3231 SmallVector<uint64_t, 64> Record; 3232 3233 while (true) { 3234 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3235 if (!MaybeEntry) 3236 return MaybeEntry.takeError(); 3237 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3238 3239 switch (Entry.Kind) { 3240 default: 3241 return error("Expect SubBlock"); 3242 case BitstreamEntry::SubBlock: 3243 switch (Entry.ID) { 3244 default: 3245 return error("Expect function block"); 3246 case bitc::FUNCTION_BLOCK_ID: 3247 if (Error Err = rememberAndSkipFunctionBody()) 3248 return Err; 3249 NextUnreadBit = Stream.GetCurrentBitNo(); 3250 return Error::success(); 3251 } 3252 } 3253 } 3254 } 3255 3256 Error BitcodeReaderBase::readBlockInfo() { 3257 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3258 Stream.ReadBlockInfoBlock(); 3259 if (!MaybeNewBlockInfo) 3260 return MaybeNewBlockInfo.takeError(); 3261 Optional<BitstreamBlockInfo> NewBlockInfo = 3262 std::move(MaybeNewBlockInfo.get()); 3263 if (!NewBlockInfo) 3264 return error("Malformed block"); 3265 BlockInfo = std::move(*NewBlockInfo); 3266 return Error::success(); 3267 } 3268 3269 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3270 // v1: [selection_kind, name] 3271 // v2: [strtab_offset, strtab_size, selection_kind] 3272 StringRef Name; 3273 std::tie(Name, Record) = readNameFromStrtab(Record); 3274 3275 if (Record.empty()) 3276 return error("Invalid record"); 3277 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3278 std::string OldFormatName; 3279 if (!UseStrtab) { 3280 if (Record.size() < 2) 3281 return error("Invalid record"); 3282 unsigned ComdatNameSize = Record[1]; 3283 if (ComdatNameSize > Record.size() - 2) 3284 return error("Comdat name size too large"); 3285 OldFormatName.reserve(ComdatNameSize); 3286 for (unsigned i = 0; i != ComdatNameSize; ++i) 3287 OldFormatName += (char)Record[2 + i]; 3288 Name = OldFormatName; 3289 } 3290 Comdat *C = TheModule->getOrInsertComdat(Name); 3291 C->setSelectionKind(SK); 3292 ComdatList.push_back(C); 3293 return Error::success(); 3294 } 3295 3296 static void inferDSOLocal(GlobalValue *GV) { 3297 // infer dso_local from linkage and visibility if it is not encoded. 3298 if (GV->hasLocalLinkage() || 3299 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3300 GV->setDSOLocal(true); 3301 } 3302 3303 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3304 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3305 // visibility, threadlocal, unnamed_addr, externally_initialized, 3306 // dllstorageclass, comdat, attributes, preemption specifier, 3307 // partition strtab offset, partition strtab size] (name in VST) 3308 // v2: [strtab_offset, strtab_size, v1] 3309 StringRef Name; 3310 std::tie(Name, Record) = readNameFromStrtab(Record); 3311 3312 if (Record.size() < 6) 3313 return error("Invalid record"); 3314 Type *Ty = getTypeByID(Record[0]); 3315 if (!Ty) 3316 return error("Invalid record"); 3317 bool isConstant = Record[1] & 1; 3318 bool explicitType = Record[1] & 2; 3319 unsigned AddressSpace; 3320 if (explicitType) { 3321 AddressSpace = Record[1] >> 2; 3322 } else { 3323 if (!Ty->isPointerTy()) 3324 return error("Invalid type for value"); 3325 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3326 Ty = getPtrElementTypeByID(Record[0]); 3327 if (!Ty) 3328 return error("Missing element type for old-style global"); 3329 } 3330 3331 uint64_t RawLinkage = Record[3]; 3332 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3333 MaybeAlign Alignment; 3334 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3335 return Err; 3336 std::string Section; 3337 if (Record[5]) { 3338 if (Record[5] - 1 >= SectionTable.size()) 3339 return error("Invalid ID"); 3340 Section = SectionTable[Record[5] - 1]; 3341 } 3342 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3343 // Local linkage must have default visibility. 3344 // auto-upgrade `hidden` and `protected` for old bitcode. 3345 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3346 Visibility = getDecodedVisibility(Record[6]); 3347 3348 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3349 if (Record.size() > 7) 3350 TLM = getDecodedThreadLocalMode(Record[7]); 3351 3352 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3353 if (Record.size() > 8) 3354 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3355 3356 bool ExternallyInitialized = false; 3357 if (Record.size() > 9) 3358 ExternallyInitialized = Record[9]; 3359 3360 GlobalVariable *NewGV = 3361 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3362 nullptr, TLM, AddressSpace, ExternallyInitialized); 3363 NewGV->setAlignment(Alignment); 3364 if (!Section.empty()) 3365 NewGV->setSection(Section); 3366 NewGV->setVisibility(Visibility); 3367 NewGV->setUnnamedAddr(UnnamedAddr); 3368 3369 if (Record.size() > 10) 3370 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3371 else 3372 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3373 3374 ValueList.push_back(NewGV); 3375 3376 // Remember which value to use for the global initializer. 3377 if (unsigned InitID = Record[2]) 3378 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3379 3380 if (Record.size() > 11) { 3381 if (unsigned ComdatID = Record[11]) { 3382 if (ComdatID > ComdatList.size()) 3383 return error("Invalid global variable comdat ID"); 3384 NewGV->setComdat(ComdatList[ComdatID - 1]); 3385 } 3386 } else if (hasImplicitComdat(RawLinkage)) { 3387 ImplicitComdatObjects.insert(NewGV); 3388 } 3389 3390 if (Record.size() > 12) { 3391 auto AS = getAttributes(Record[12]).getFnAttrs(); 3392 NewGV->setAttributes(AS); 3393 } 3394 3395 if (Record.size() > 13) { 3396 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3397 } 3398 inferDSOLocal(NewGV); 3399 3400 // Check whether we have enough values to read a partition name. 3401 if (Record.size() > 15) 3402 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3403 3404 return Error::success(); 3405 } 3406 3407 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3408 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3409 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3410 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3411 // v2: [strtab_offset, strtab_size, v1] 3412 StringRef Name; 3413 std::tie(Name, Record) = readNameFromStrtab(Record); 3414 3415 if (Record.size() < 8) 3416 return error("Invalid record"); 3417 Type *FTy = getTypeByID(Record[0]); 3418 if (!FTy) 3419 return error("Invalid record"); 3420 if (isa<PointerType>(FTy)) { 3421 FTy = getPtrElementTypeByID(Record[0]); 3422 if (!FTy) 3423 return error("Missing element type for old-style function"); 3424 } 3425 3426 if (!isa<FunctionType>(FTy)) 3427 return error("Invalid type for value"); 3428 auto CC = static_cast<CallingConv::ID>(Record[1]); 3429 if (CC & ~CallingConv::MaxID) 3430 return error("Invalid calling convention ID"); 3431 3432 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3433 if (Record.size() > 16) 3434 AddrSpace = Record[16]; 3435 3436 Function *Func = 3437 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3438 AddrSpace, Name, TheModule); 3439 3440 assert(Func->getFunctionType() == FTy && 3441 "Incorrect fully specified type provided for function"); 3442 FunctionTypes[Func] = cast<FunctionType>(FTy); 3443 3444 Func->setCallingConv(CC); 3445 bool isProto = Record[2]; 3446 uint64_t RawLinkage = Record[3]; 3447 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3448 Func->setAttributes(getAttributes(Record[4])); 3449 3450 // Upgrade any old-style byval or sret without a type by propagating the 3451 // argument's pointee type. There should be no opaque pointers where the byval 3452 // type is implicit. 3453 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3454 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3455 Attribute::InAlloca}) { 3456 if (!Func->hasParamAttribute(i, Kind)) 3457 continue; 3458 3459 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3460 continue; 3461 3462 Func->removeParamAttr(i, Kind); 3463 3464 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3465 Type *PtrEltTy = PTy->getPointerElementType(); 3466 Attribute NewAttr; 3467 switch (Kind) { 3468 case Attribute::ByVal: 3469 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3470 break; 3471 case Attribute::StructRet: 3472 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3473 break; 3474 case Attribute::InAlloca: 3475 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3476 break; 3477 default: 3478 llvm_unreachable("not an upgraded type attribute"); 3479 } 3480 3481 Func->addParamAttr(i, NewAttr); 3482 } 3483 } 3484 3485 MaybeAlign Alignment; 3486 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3487 return Err; 3488 Func->setAlignment(Alignment); 3489 if (Record[6]) { 3490 if (Record[6] - 1 >= SectionTable.size()) 3491 return error("Invalid ID"); 3492 Func->setSection(SectionTable[Record[6] - 1]); 3493 } 3494 // Local linkage must have default visibility. 3495 // auto-upgrade `hidden` and `protected` for old bitcode. 3496 if (!Func->hasLocalLinkage()) 3497 Func->setVisibility(getDecodedVisibility(Record[7])); 3498 if (Record.size() > 8 && Record[8]) { 3499 if (Record[8] - 1 >= GCTable.size()) 3500 return error("Invalid ID"); 3501 Func->setGC(GCTable[Record[8] - 1]); 3502 } 3503 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3504 if (Record.size() > 9) 3505 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3506 Func->setUnnamedAddr(UnnamedAddr); 3507 3508 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3509 if (Record.size() > 10) 3510 OperandInfo.Prologue = Record[10]; 3511 3512 if (Record.size() > 11) 3513 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3514 else 3515 upgradeDLLImportExportLinkage(Func, RawLinkage); 3516 3517 if (Record.size() > 12) { 3518 if (unsigned ComdatID = Record[12]) { 3519 if (ComdatID > ComdatList.size()) 3520 return error("Invalid function comdat ID"); 3521 Func->setComdat(ComdatList[ComdatID - 1]); 3522 } 3523 } else if (hasImplicitComdat(RawLinkage)) { 3524 ImplicitComdatObjects.insert(Func); 3525 } 3526 3527 if (Record.size() > 13) 3528 OperandInfo.Prefix = Record[13]; 3529 3530 if (Record.size() > 14) 3531 OperandInfo.PersonalityFn = Record[14]; 3532 3533 if (Record.size() > 15) { 3534 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3535 } 3536 inferDSOLocal(Func); 3537 3538 // Record[16] is the address space number. 3539 3540 // Check whether we have enough values to read a partition name. Also make 3541 // sure Strtab has enough values. 3542 if (Record.size() > 18 && Strtab.data() && 3543 Record[17] + Record[18] <= Strtab.size()) { 3544 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3545 } 3546 3547 ValueList.push_back(Func); 3548 3549 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3550 FunctionOperands.push_back(OperandInfo); 3551 3552 // If this is a function with a body, remember the prototype we are 3553 // creating now, so that we can match up the body with them later. 3554 if (!isProto) { 3555 Func->setIsMaterializable(true); 3556 FunctionsWithBodies.push_back(Func); 3557 DeferredFunctionInfo[Func] = 0; 3558 } 3559 return Error::success(); 3560 } 3561 3562 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3563 unsigned BitCode, ArrayRef<uint64_t> Record) { 3564 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3565 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3566 // dllstorageclass, threadlocal, unnamed_addr, 3567 // preemption specifier] (name in VST) 3568 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3569 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3570 // preemption specifier] (name in VST) 3571 // v2: [strtab_offset, strtab_size, v1] 3572 StringRef Name; 3573 std::tie(Name, Record) = readNameFromStrtab(Record); 3574 3575 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3576 if (Record.size() < (3 + (unsigned)NewRecord)) 3577 return error("Invalid record"); 3578 unsigned OpNum = 0; 3579 unsigned TypeID = Record[OpNum++]; 3580 Type *Ty = getTypeByID(TypeID); 3581 if (!Ty) 3582 return error("Invalid record"); 3583 3584 unsigned AddrSpace; 3585 if (!NewRecord) { 3586 auto *PTy = dyn_cast<PointerType>(Ty); 3587 if (!PTy) 3588 return error("Invalid type for value"); 3589 AddrSpace = PTy->getAddressSpace(); 3590 Ty = getPtrElementTypeByID(TypeID); 3591 if (!Ty) 3592 return error("Missing element type for old-style indirect symbol"); 3593 } else { 3594 AddrSpace = Record[OpNum++]; 3595 } 3596 3597 auto Val = Record[OpNum++]; 3598 auto Linkage = Record[OpNum++]; 3599 GlobalValue *NewGA; 3600 if (BitCode == bitc::MODULE_CODE_ALIAS || 3601 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3602 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3603 TheModule); 3604 else 3605 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3606 nullptr, TheModule); 3607 3608 // Local linkage must have default visibility. 3609 // auto-upgrade `hidden` and `protected` for old bitcode. 3610 if (OpNum != Record.size()) { 3611 auto VisInd = OpNum++; 3612 if (!NewGA->hasLocalLinkage()) 3613 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3614 } 3615 if (BitCode == bitc::MODULE_CODE_ALIAS || 3616 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3617 if (OpNum != Record.size()) 3618 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3619 else 3620 upgradeDLLImportExportLinkage(NewGA, Linkage); 3621 if (OpNum != Record.size()) 3622 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3623 if (OpNum != Record.size()) 3624 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3625 } 3626 if (OpNum != Record.size()) 3627 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3628 inferDSOLocal(NewGA); 3629 3630 // Check whether we have enough values to read a partition name. 3631 if (OpNum + 1 < Record.size()) { 3632 NewGA->setPartition( 3633 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3634 OpNum += 2; 3635 } 3636 3637 ValueList.push_back(NewGA); 3638 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3639 return Error::success(); 3640 } 3641 3642 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3643 bool ShouldLazyLoadMetadata, 3644 DataLayoutCallbackTy DataLayoutCallback) { 3645 if (ResumeBit) { 3646 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3647 return JumpFailed; 3648 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3649 return Err; 3650 3651 SmallVector<uint64_t, 64> Record; 3652 3653 // Parts of bitcode parsing depend on the datalayout. Make sure we 3654 // finalize the datalayout before we run any of that code. 3655 bool ResolvedDataLayout = false; 3656 auto ResolveDataLayout = [&] { 3657 if (ResolvedDataLayout) 3658 return; 3659 3660 // datalayout and triple can't be parsed after this point. 3661 ResolvedDataLayout = true; 3662 3663 // Upgrade data layout string. 3664 std::string DL = llvm::UpgradeDataLayoutString( 3665 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3666 TheModule->setDataLayout(DL); 3667 3668 if (auto LayoutOverride = 3669 DataLayoutCallback(TheModule->getTargetTriple())) 3670 TheModule->setDataLayout(*LayoutOverride); 3671 }; 3672 3673 // Read all the records for this module. 3674 while (true) { 3675 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3676 if (!MaybeEntry) 3677 return MaybeEntry.takeError(); 3678 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3679 3680 switch (Entry.Kind) { 3681 case BitstreamEntry::Error: 3682 return error("Malformed block"); 3683 case BitstreamEntry::EndBlock: 3684 ResolveDataLayout(); 3685 return globalCleanup(); 3686 3687 case BitstreamEntry::SubBlock: 3688 switch (Entry.ID) { 3689 default: // Skip unknown content. 3690 if (Error Err = Stream.SkipBlock()) 3691 return Err; 3692 break; 3693 case bitc::BLOCKINFO_BLOCK_ID: 3694 if (Error Err = readBlockInfo()) 3695 return Err; 3696 break; 3697 case bitc::PARAMATTR_BLOCK_ID: 3698 if (Error Err = parseAttributeBlock()) 3699 return Err; 3700 break; 3701 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3702 if (Error Err = parseAttributeGroupBlock()) 3703 return Err; 3704 break; 3705 case bitc::TYPE_BLOCK_ID_NEW: 3706 if (Error Err = parseTypeTable()) 3707 return Err; 3708 break; 3709 case bitc::VALUE_SYMTAB_BLOCK_ID: 3710 if (!SeenValueSymbolTable) { 3711 // Either this is an old form VST without function index and an 3712 // associated VST forward declaration record (which would have caused 3713 // the VST to be jumped to and parsed before it was encountered 3714 // normally in the stream), or there were no function blocks to 3715 // trigger an earlier parsing of the VST. 3716 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3717 if (Error Err = parseValueSymbolTable()) 3718 return Err; 3719 SeenValueSymbolTable = true; 3720 } else { 3721 // We must have had a VST forward declaration record, which caused 3722 // the parser to jump to and parse the VST earlier. 3723 assert(VSTOffset > 0); 3724 if (Error Err = Stream.SkipBlock()) 3725 return Err; 3726 } 3727 break; 3728 case bitc::CONSTANTS_BLOCK_ID: 3729 if (Error Err = parseConstants()) 3730 return Err; 3731 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3732 return Err; 3733 break; 3734 case bitc::METADATA_BLOCK_ID: 3735 if (ShouldLazyLoadMetadata) { 3736 if (Error Err = rememberAndSkipMetadata()) 3737 return Err; 3738 break; 3739 } 3740 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3741 if (Error Err = MDLoader->parseModuleMetadata()) 3742 return Err; 3743 break; 3744 case bitc::METADATA_KIND_BLOCK_ID: 3745 if (Error Err = MDLoader->parseMetadataKinds()) 3746 return Err; 3747 break; 3748 case bitc::FUNCTION_BLOCK_ID: 3749 ResolveDataLayout(); 3750 3751 // If this is the first function body we've seen, reverse the 3752 // FunctionsWithBodies list. 3753 if (!SeenFirstFunctionBody) { 3754 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3755 if (Error Err = globalCleanup()) 3756 return Err; 3757 SeenFirstFunctionBody = true; 3758 } 3759 3760 if (VSTOffset > 0) { 3761 // If we have a VST forward declaration record, make sure we 3762 // parse the VST now if we haven't already. It is needed to 3763 // set up the DeferredFunctionInfo vector for lazy reading. 3764 if (!SeenValueSymbolTable) { 3765 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3766 return Err; 3767 SeenValueSymbolTable = true; 3768 // Fall through so that we record the NextUnreadBit below. 3769 // This is necessary in case we have an anonymous function that 3770 // is later materialized. Since it will not have a VST entry we 3771 // need to fall back to the lazy parse to find its offset. 3772 } else { 3773 // If we have a VST forward declaration record, but have already 3774 // parsed the VST (just above, when the first function body was 3775 // encountered here), then we are resuming the parse after 3776 // materializing functions. The ResumeBit points to the 3777 // start of the last function block recorded in the 3778 // DeferredFunctionInfo map. Skip it. 3779 if (Error Err = Stream.SkipBlock()) 3780 return Err; 3781 continue; 3782 } 3783 } 3784 3785 // Support older bitcode files that did not have the function 3786 // index in the VST, nor a VST forward declaration record, as 3787 // well as anonymous functions that do not have VST entries. 3788 // Build the DeferredFunctionInfo vector on the fly. 3789 if (Error Err = rememberAndSkipFunctionBody()) 3790 return Err; 3791 3792 // Suspend parsing when we reach the function bodies. Subsequent 3793 // materialization calls will resume it when necessary. If the bitcode 3794 // file is old, the symbol table will be at the end instead and will not 3795 // have been seen yet. In this case, just finish the parse now. 3796 if (SeenValueSymbolTable) { 3797 NextUnreadBit = Stream.GetCurrentBitNo(); 3798 // After the VST has been parsed, we need to make sure intrinsic name 3799 // are auto-upgraded. 3800 return globalCleanup(); 3801 } 3802 break; 3803 case bitc::USELIST_BLOCK_ID: 3804 if (Error Err = parseUseLists()) 3805 return Err; 3806 break; 3807 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3808 if (Error Err = parseOperandBundleTags()) 3809 return Err; 3810 break; 3811 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3812 if (Error Err = parseSyncScopeNames()) 3813 return Err; 3814 break; 3815 } 3816 continue; 3817 3818 case BitstreamEntry::Record: 3819 // The interesting case. 3820 break; 3821 } 3822 3823 // Read a record. 3824 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3825 if (!MaybeBitCode) 3826 return MaybeBitCode.takeError(); 3827 switch (unsigned BitCode = MaybeBitCode.get()) { 3828 default: break; // Default behavior, ignore unknown content. 3829 case bitc::MODULE_CODE_VERSION: { 3830 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3831 if (!VersionOrErr) 3832 return VersionOrErr.takeError(); 3833 UseRelativeIDs = *VersionOrErr >= 1; 3834 break; 3835 } 3836 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3837 if (ResolvedDataLayout) 3838 return error("target triple too late in module"); 3839 std::string S; 3840 if (convertToString(Record, 0, S)) 3841 return error("Invalid record"); 3842 TheModule->setTargetTriple(S); 3843 break; 3844 } 3845 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3846 if (ResolvedDataLayout) 3847 return error("datalayout too late in module"); 3848 std::string S; 3849 if (convertToString(Record, 0, S)) 3850 return error("Invalid record"); 3851 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3852 if (!MaybeDL) 3853 return MaybeDL.takeError(); 3854 TheModule->setDataLayout(MaybeDL.get()); 3855 break; 3856 } 3857 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3858 std::string S; 3859 if (convertToString(Record, 0, S)) 3860 return error("Invalid record"); 3861 TheModule->setModuleInlineAsm(S); 3862 break; 3863 } 3864 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3865 // Deprecated, but still needed to read old bitcode files. 3866 std::string S; 3867 if (convertToString(Record, 0, S)) 3868 return error("Invalid record"); 3869 // Ignore value. 3870 break; 3871 } 3872 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3873 std::string S; 3874 if (convertToString(Record, 0, S)) 3875 return error("Invalid record"); 3876 SectionTable.push_back(S); 3877 break; 3878 } 3879 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3880 std::string S; 3881 if (convertToString(Record, 0, S)) 3882 return error("Invalid record"); 3883 GCTable.push_back(S); 3884 break; 3885 } 3886 case bitc::MODULE_CODE_COMDAT: 3887 if (Error Err = parseComdatRecord(Record)) 3888 return Err; 3889 break; 3890 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 3891 // written by ThinLinkBitcodeWriter. See 3892 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 3893 // record 3894 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 3895 case bitc::MODULE_CODE_GLOBALVAR: 3896 if (Error Err = parseGlobalVarRecord(Record)) 3897 return Err; 3898 break; 3899 case bitc::MODULE_CODE_FUNCTION: 3900 ResolveDataLayout(); 3901 if (Error Err = parseFunctionRecord(Record)) 3902 return Err; 3903 break; 3904 case bitc::MODULE_CODE_IFUNC: 3905 case bitc::MODULE_CODE_ALIAS: 3906 case bitc::MODULE_CODE_ALIAS_OLD: 3907 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3908 return Err; 3909 break; 3910 /// MODULE_CODE_VSTOFFSET: [offset] 3911 case bitc::MODULE_CODE_VSTOFFSET: 3912 if (Record.empty()) 3913 return error("Invalid record"); 3914 // Note that we subtract 1 here because the offset is relative to one word 3915 // before the start of the identification or module block, which was 3916 // historically always the start of the regular bitcode header. 3917 VSTOffset = Record[0] - 1; 3918 break; 3919 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3920 case bitc::MODULE_CODE_SOURCE_FILENAME: 3921 SmallString<128> ValueName; 3922 if (convertToString(Record, 0, ValueName)) 3923 return error("Invalid record"); 3924 TheModule->setSourceFileName(ValueName); 3925 break; 3926 } 3927 Record.clear(); 3928 } 3929 } 3930 3931 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3932 bool IsImporting, 3933 DataLayoutCallbackTy DataLayoutCallback) { 3934 TheModule = M; 3935 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3936 [&](unsigned ID) { return getTypeByID(ID); }); 3937 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3938 } 3939 3940 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3941 if (!isa<PointerType>(PtrType)) 3942 return error("Load/Store operand is not a pointer type"); 3943 3944 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3945 return error("Explicit load/store type does not match pointee " 3946 "type of pointer operand"); 3947 if (!PointerType::isLoadableOrStorableType(ValType)) 3948 return error("Cannot load/store from pointer"); 3949 return Error::success(); 3950 } 3951 3952 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3953 ArrayRef<Type *> ArgsTys) { 3954 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3955 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3956 Attribute::InAlloca}) { 3957 if (!CB->paramHasAttr(i, Kind) || 3958 CB->getParamAttr(i, Kind).getValueAsType()) 3959 continue; 3960 3961 CB->removeParamAttr(i, Kind); 3962 3963 Type *PtrEltTy = ArgsTys[i]->getPointerElementType(); 3964 Attribute NewAttr; 3965 switch (Kind) { 3966 case Attribute::ByVal: 3967 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3968 break; 3969 case Attribute::StructRet: 3970 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3971 break; 3972 case Attribute::InAlloca: 3973 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3974 break; 3975 default: 3976 llvm_unreachable("not an upgraded type attribute"); 3977 } 3978 3979 CB->addParamAttr(i, NewAttr); 3980 } 3981 } 3982 3983 if (CB->isInlineAsm()) { 3984 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3985 unsigned ArgNo = 0; 3986 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3987 if (!CI.hasArg()) 3988 continue; 3989 3990 if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) { 3991 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType(); 3992 CB->addParamAttr( 3993 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 3994 } 3995 3996 ArgNo++; 3997 } 3998 } 3999 4000 switch (CB->getIntrinsicID()) { 4001 case Intrinsic::preserve_array_access_index: 4002 case Intrinsic::preserve_struct_access_index: 4003 if (!CB->getAttributes().getParamElementType(0)) { 4004 Type *ElTy = ArgsTys[0]->getPointerElementType(); 4005 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4006 CB->addParamAttr(0, NewAttr); 4007 } 4008 break; 4009 default: 4010 break; 4011 } 4012 } 4013 4014 /// Lazily parse the specified function body block. 4015 Error BitcodeReader::parseFunctionBody(Function *F) { 4016 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4017 return Err; 4018 4019 // Unexpected unresolved metadata when parsing function. 4020 if (MDLoader->hasFwdRefs()) 4021 return error("Invalid function metadata: incoming forward references"); 4022 4023 InstructionList.clear(); 4024 unsigned ModuleValueListSize = ValueList.size(); 4025 unsigned ModuleMDLoaderSize = MDLoader->size(); 4026 4027 // Add all the function arguments to the value table. 4028 #ifndef NDEBUG 4029 unsigned ArgNo = 0; 4030 FunctionType *FTy = FunctionTypes[F]; 4031 #endif 4032 for (Argument &I : F->args()) { 4033 assert(I.getType() == FTy->getParamType(ArgNo++) && 4034 "Incorrect fully specified type for Function Argument"); 4035 ValueList.push_back(&I); 4036 } 4037 unsigned NextValueNo = ValueList.size(); 4038 BasicBlock *CurBB = nullptr; 4039 unsigned CurBBNo = 0; 4040 4041 DebugLoc LastLoc; 4042 auto getLastInstruction = [&]() -> Instruction * { 4043 if (CurBB && !CurBB->empty()) 4044 return &CurBB->back(); 4045 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4046 !FunctionBBs[CurBBNo - 1]->empty()) 4047 return &FunctionBBs[CurBBNo - 1]->back(); 4048 return nullptr; 4049 }; 4050 4051 std::vector<OperandBundleDef> OperandBundles; 4052 4053 // Read all the records. 4054 SmallVector<uint64_t, 64> Record; 4055 4056 while (true) { 4057 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4058 if (!MaybeEntry) 4059 return MaybeEntry.takeError(); 4060 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4061 4062 switch (Entry.Kind) { 4063 case BitstreamEntry::Error: 4064 return error("Malformed block"); 4065 case BitstreamEntry::EndBlock: 4066 goto OutOfRecordLoop; 4067 4068 case BitstreamEntry::SubBlock: 4069 switch (Entry.ID) { 4070 default: // Skip unknown content. 4071 if (Error Err = Stream.SkipBlock()) 4072 return Err; 4073 break; 4074 case bitc::CONSTANTS_BLOCK_ID: 4075 if (Error Err = parseConstants()) 4076 return Err; 4077 NextValueNo = ValueList.size(); 4078 break; 4079 case bitc::VALUE_SYMTAB_BLOCK_ID: 4080 if (Error Err = parseValueSymbolTable()) 4081 return Err; 4082 break; 4083 case bitc::METADATA_ATTACHMENT_ID: 4084 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4085 return Err; 4086 break; 4087 case bitc::METADATA_BLOCK_ID: 4088 assert(DeferredMetadataInfo.empty() && 4089 "Must read all module-level metadata before function-level"); 4090 if (Error Err = MDLoader->parseFunctionMetadata()) 4091 return Err; 4092 break; 4093 case bitc::USELIST_BLOCK_ID: 4094 if (Error Err = parseUseLists()) 4095 return Err; 4096 break; 4097 } 4098 continue; 4099 4100 case BitstreamEntry::Record: 4101 // The interesting case. 4102 break; 4103 } 4104 4105 // Read a record. 4106 Record.clear(); 4107 Instruction *I = nullptr; 4108 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4109 if (!MaybeBitCode) 4110 return MaybeBitCode.takeError(); 4111 switch (unsigned BitCode = MaybeBitCode.get()) { 4112 default: // Default behavior: reject 4113 return error("Invalid value"); 4114 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4115 if (Record.empty() || Record[0] == 0) 4116 return error("Invalid record"); 4117 // Create all the basic blocks for the function. 4118 FunctionBBs.resize(Record[0]); 4119 4120 // See if anything took the address of blocks in this function. 4121 auto BBFRI = BasicBlockFwdRefs.find(F); 4122 if (BBFRI == BasicBlockFwdRefs.end()) { 4123 for (BasicBlock *&BB : FunctionBBs) 4124 BB = BasicBlock::Create(Context, "", F); 4125 } else { 4126 auto &BBRefs = BBFRI->second; 4127 // Check for invalid basic block references. 4128 if (BBRefs.size() > FunctionBBs.size()) 4129 return error("Invalid ID"); 4130 assert(!BBRefs.empty() && "Unexpected empty array"); 4131 assert(!BBRefs.front() && "Invalid reference to entry block"); 4132 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4133 ++I) 4134 if (I < RE && BBRefs[I]) { 4135 BBRefs[I]->insertInto(F); 4136 FunctionBBs[I] = BBRefs[I]; 4137 } else { 4138 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4139 } 4140 4141 // Erase from the table. 4142 BasicBlockFwdRefs.erase(BBFRI); 4143 } 4144 4145 CurBB = FunctionBBs[0]; 4146 continue; 4147 } 4148 4149 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4150 // This record indicates that the last instruction is at the same 4151 // location as the previous instruction with a location. 4152 I = getLastInstruction(); 4153 4154 if (!I) 4155 return error("Invalid record"); 4156 I->setDebugLoc(LastLoc); 4157 I = nullptr; 4158 continue; 4159 4160 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4161 I = getLastInstruction(); 4162 if (!I || Record.size() < 4) 4163 return error("Invalid record"); 4164 4165 unsigned Line = Record[0], Col = Record[1]; 4166 unsigned ScopeID = Record[2], IAID = Record[3]; 4167 bool isImplicitCode = Record.size() == 5 && Record[4]; 4168 4169 MDNode *Scope = nullptr, *IA = nullptr; 4170 if (ScopeID) { 4171 Scope = dyn_cast_or_null<MDNode>( 4172 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4173 if (!Scope) 4174 return error("Invalid record"); 4175 } 4176 if (IAID) { 4177 IA = dyn_cast_or_null<MDNode>( 4178 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4179 if (!IA) 4180 return error("Invalid record"); 4181 } 4182 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4183 isImplicitCode); 4184 I->setDebugLoc(LastLoc); 4185 I = nullptr; 4186 continue; 4187 } 4188 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4189 unsigned OpNum = 0; 4190 Value *LHS; 4191 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4192 OpNum+1 > Record.size()) 4193 return error("Invalid record"); 4194 4195 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4196 if (Opc == -1) 4197 return error("Invalid record"); 4198 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4199 InstructionList.push_back(I); 4200 if (OpNum < Record.size()) { 4201 if (isa<FPMathOperator>(I)) { 4202 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4203 if (FMF.any()) 4204 I->setFastMathFlags(FMF); 4205 } 4206 } 4207 break; 4208 } 4209 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4210 unsigned OpNum = 0; 4211 Value *LHS, *RHS; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4213 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4214 OpNum+1 > Record.size()) 4215 return error("Invalid record"); 4216 4217 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4218 if (Opc == -1) 4219 return error("Invalid record"); 4220 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4221 InstructionList.push_back(I); 4222 if (OpNum < Record.size()) { 4223 if (Opc == Instruction::Add || 4224 Opc == Instruction::Sub || 4225 Opc == Instruction::Mul || 4226 Opc == Instruction::Shl) { 4227 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4228 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4229 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4230 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4231 } else if (Opc == Instruction::SDiv || 4232 Opc == Instruction::UDiv || 4233 Opc == Instruction::LShr || 4234 Opc == Instruction::AShr) { 4235 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4236 cast<BinaryOperator>(I)->setIsExact(true); 4237 } else if (isa<FPMathOperator>(I)) { 4238 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4239 if (FMF.any()) 4240 I->setFastMathFlags(FMF); 4241 } 4242 4243 } 4244 break; 4245 } 4246 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4247 unsigned OpNum = 0; 4248 Value *Op; 4249 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4250 OpNum+2 != Record.size()) 4251 return error("Invalid record"); 4252 4253 Type *ResTy = getTypeByID(Record[OpNum]); 4254 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4255 if (Opc == -1 || !ResTy) 4256 return error("Invalid record"); 4257 Instruction *Temp = nullptr; 4258 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4259 if (Temp) { 4260 InstructionList.push_back(Temp); 4261 assert(CurBB && "No current BB?"); 4262 CurBB->getInstList().push_back(Temp); 4263 } 4264 } else { 4265 auto CastOp = (Instruction::CastOps)Opc; 4266 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4267 return error("Invalid cast"); 4268 I = CastInst::Create(CastOp, Op, ResTy); 4269 } 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4274 case bitc::FUNC_CODE_INST_GEP_OLD: 4275 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4276 unsigned OpNum = 0; 4277 4278 Type *Ty; 4279 bool InBounds; 4280 4281 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4282 InBounds = Record[OpNum++]; 4283 Ty = getTypeByID(Record[OpNum++]); 4284 } else { 4285 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4286 Ty = nullptr; 4287 } 4288 4289 Value *BasePtr; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4291 return error("Invalid record"); 4292 4293 if (!Ty) { 4294 Ty = BasePtr->getType()->getScalarType()->getPointerElementType(); 4295 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4296 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4297 return error( 4298 "Explicit gep type does not match pointee type of pointer operand"); 4299 } 4300 4301 SmallVector<Value*, 16> GEPIdx; 4302 while (OpNum != Record.size()) { 4303 Value *Op; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4305 return error("Invalid record"); 4306 GEPIdx.push_back(Op); 4307 } 4308 4309 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4310 4311 InstructionList.push_back(I); 4312 if (InBounds) 4313 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4314 break; 4315 } 4316 4317 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4318 // EXTRACTVAL: [opty, opval, n x indices] 4319 unsigned OpNum = 0; 4320 Value *Agg; 4321 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4322 return error("Invalid record"); 4323 Type *Ty = Agg->getType(); 4324 4325 unsigned RecSize = Record.size(); 4326 if (OpNum == RecSize) 4327 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4328 4329 SmallVector<unsigned, 4> EXTRACTVALIdx; 4330 for (; OpNum != RecSize; ++OpNum) { 4331 bool IsArray = Ty->isArrayTy(); 4332 bool IsStruct = Ty->isStructTy(); 4333 uint64_t Index = Record[OpNum]; 4334 4335 if (!IsStruct && !IsArray) 4336 return error("EXTRACTVAL: Invalid type"); 4337 if ((unsigned)Index != Index) 4338 return error("Invalid value"); 4339 if (IsStruct && Index >= Ty->getStructNumElements()) 4340 return error("EXTRACTVAL: Invalid struct index"); 4341 if (IsArray && Index >= Ty->getArrayNumElements()) 4342 return error("EXTRACTVAL: Invalid array index"); 4343 EXTRACTVALIdx.push_back((unsigned)Index); 4344 4345 if (IsStruct) 4346 Ty = Ty->getStructElementType(Index); 4347 else 4348 Ty = Ty->getArrayElementType(); 4349 } 4350 4351 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4352 InstructionList.push_back(I); 4353 break; 4354 } 4355 4356 case bitc::FUNC_CODE_INST_INSERTVAL: { 4357 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4358 unsigned OpNum = 0; 4359 Value *Agg; 4360 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4361 return error("Invalid record"); 4362 Value *Val; 4363 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4364 return error("Invalid record"); 4365 4366 unsigned RecSize = Record.size(); 4367 if (OpNum == RecSize) 4368 return error("INSERTVAL: Invalid instruction with 0 indices"); 4369 4370 SmallVector<unsigned, 4> INSERTVALIdx; 4371 Type *CurTy = Agg->getType(); 4372 for (; OpNum != RecSize; ++OpNum) { 4373 bool IsArray = CurTy->isArrayTy(); 4374 bool IsStruct = CurTy->isStructTy(); 4375 uint64_t Index = Record[OpNum]; 4376 4377 if (!IsStruct && !IsArray) 4378 return error("INSERTVAL: Invalid type"); 4379 if ((unsigned)Index != Index) 4380 return error("Invalid value"); 4381 if (IsStruct && Index >= CurTy->getStructNumElements()) 4382 return error("INSERTVAL: Invalid struct index"); 4383 if (IsArray && Index >= CurTy->getArrayNumElements()) 4384 return error("INSERTVAL: Invalid array index"); 4385 4386 INSERTVALIdx.push_back((unsigned)Index); 4387 if (IsStruct) 4388 CurTy = CurTy->getStructElementType(Index); 4389 else 4390 CurTy = CurTy->getArrayElementType(); 4391 } 4392 4393 if (CurTy != Val->getType()) 4394 return error("Inserted value type doesn't match aggregate type"); 4395 4396 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4397 InstructionList.push_back(I); 4398 break; 4399 } 4400 4401 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4402 // obsolete form of select 4403 // handles select i1 ... in old bitcode 4404 unsigned OpNum = 0; 4405 Value *TrueVal, *FalseVal, *Cond; 4406 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4407 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4408 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4409 return error("Invalid record"); 4410 4411 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4412 InstructionList.push_back(I); 4413 break; 4414 } 4415 4416 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4417 // new form of select 4418 // handles select i1 or select [N x i1] 4419 unsigned OpNum = 0; 4420 Value *TrueVal, *FalseVal, *Cond; 4421 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4422 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4423 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4424 return error("Invalid record"); 4425 4426 // select condition can be either i1 or [N x i1] 4427 if (VectorType* vector_type = 4428 dyn_cast<VectorType>(Cond->getType())) { 4429 // expect <n x i1> 4430 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4431 return error("Invalid type for value"); 4432 } else { 4433 // expect i1 4434 if (Cond->getType() != Type::getInt1Ty(Context)) 4435 return error("Invalid type for value"); 4436 } 4437 4438 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4439 InstructionList.push_back(I); 4440 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4441 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4442 if (FMF.any()) 4443 I->setFastMathFlags(FMF); 4444 } 4445 break; 4446 } 4447 4448 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4449 unsigned OpNum = 0; 4450 Value *Vec, *Idx; 4451 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4452 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4453 return error("Invalid record"); 4454 if (!Vec->getType()->isVectorTy()) 4455 return error("Invalid type for value"); 4456 I = ExtractElementInst::Create(Vec, Idx); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 4461 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4462 unsigned OpNum = 0; 4463 Value *Vec, *Elt, *Idx; 4464 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4465 return error("Invalid record"); 4466 if (!Vec->getType()->isVectorTy()) 4467 return error("Invalid type for value"); 4468 if (popValue(Record, OpNum, NextValueNo, 4469 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4470 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4471 return error("Invalid record"); 4472 I = InsertElementInst::Create(Vec, Elt, Idx); 4473 InstructionList.push_back(I); 4474 break; 4475 } 4476 4477 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4478 unsigned OpNum = 0; 4479 Value *Vec1, *Vec2, *Mask; 4480 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4481 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4482 return error("Invalid record"); 4483 4484 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4485 return error("Invalid record"); 4486 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4487 return error("Invalid type for value"); 4488 4489 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4490 InstructionList.push_back(I); 4491 break; 4492 } 4493 4494 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4495 // Old form of ICmp/FCmp returning bool 4496 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4497 // both legal on vectors but had different behaviour. 4498 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4499 // FCmp/ICmp returning bool or vector of bool 4500 4501 unsigned OpNum = 0; 4502 Value *LHS, *RHS; 4503 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4504 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4505 return error("Invalid record"); 4506 4507 if (OpNum >= Record.size()) 4508 return error( 4509 "Invalid record: operand number exceeded available operands"); 4510 4511 unsigned PredVal = Record[OpNum]; 4512 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4513 FastMathFlags FMF; 4514 if (IsFP && Record.size() > OpNum+1) 4515 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4516 4517 if (OpNum+1 != Record.size()) 4518 return error("Invalid record"); 4519 4520 if (LHS->getType()->isFPOrFPVectorTy()) 4521 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4522 else 4523 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4524 4525 if (FMF.any()) 4526 I->setFastMathFlags(FMF); 4527 InstructionList.push_back(I); 4528 break; 4529 } 4530 4531 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4532 { 4533 unsigned Size = Record.size(); 4534 if (Size == 0) { 4535 I = ReturnInst::Create(Context); 4536 InstructionList.push_back(I); 4537 break; 4538 } 4539 4540 unsigned OpNum = 0; 4541 Value *Op = nullptr; 4542 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4543 return error("Invalid record"); 4544 if (OpNum != Record.size()) 4545 return error("Invalid record"); 4546 4547 I = ReturnInst::Create(Context, Op); 4548 InstructionList.push_back(I); 4549 break; 4550 } 4551 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4552 if (Record.size() != 1 && Record.size() != 3) 4553 return error("Invalid record"); 4554 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4555 if (!TrueDest) 4556 return error("Invalid record"); 4557 4558 if (Record.size() == 1) { 4559 I = BranchInst::Create(TrueDest); 4560 InstructionList.push_back(I); 4561 } 4562 else { 4563 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4564 Value *Cond = getValue(Record, 2, NextValueNo, 4565 Type::getInt1Ty(Context)); 4566 if (!FalseDest || !Cond) 4567 return error("Invalid record"); 4568 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4569 InstructionList.push_back(I); 4570 } 4571 break; 4572 } 4573 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4574 if (Record.size() != 1 && Record.size() != 2) 4575 return error("Invalid record"); 4576 unsigned Idx = 0; 4577 Value *CleanupPad = 4578 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4579 if (!CleanupPad) 4580 return error("Invalid record"); 4581 BasicBlock *UnwindDest = nullptr; 4582 if (Record.size() == 2) { 4583 UnwindDest = getBasicBlock(Record[Idx++]); 4584 if (!UnwindDest) 4585 return error("Invalid record"); 4586 } 4587 4588 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4589 InstructionList.push_back(I); 4590 break; 4591 } 4592 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4593 if (Record.size() != 2) 4594 return error("Invalid record"); 4595 unsigned Idx = 0; 4596 Value *CatchPad = 4597 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4598 if (!CatchPad) 4599 return error("Invalid record"); 4600 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4601 if (!BB) 4602 return error("Invalid record"); 4603 4604 I = CatchReturnInst::Create(CatchPad, BB); 4605 InstructionList.push_back(I); 4606 break; 4607 } 4608 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4609 // We must have, at minimum, the outer scope and the number of arguments. 4610 if (Record.size() < 2) 4611 return error("Invalid record"); 4612 4613 unsigned Idx = 0; 4614 4615 Value *ParentPad = 4616 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4617 4618 unsigned NumHandlers = Record[Idx++]; 4619 4620 SmallVector<BasicBlock *, 2> Handlers; 4621 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4622 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4623 if (!BB) 4624 return error("Invalid record"); 4625 Handlers.push_back(BB); 4626 } 4627 4628 BasicBlock *UnwindDest = nullptr; 4629 if (Idx + 1 == Record.size()) { 4630 UnwindDest = getBasicBlock(Record[Idx++]); 4631 if (!UnwindDest) 4632 return error("Invalid record"); 4633 } 4634 4635 if (Record.size() != Idx) 4636 return error("Invalid record"); 4637 4638 auto *CatchSwitch = 4639 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4640 for (BasicBlock *Handler : Handlers) 4641 CatchSwitch->addHandler(Handler); 4642 I = CatchSwitch; 4643 InstructionList.push_back(I); 4644 break; 4645 } 4646 case bitc::FUNC_CODE_INST_CATCHPAD: 4647 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4648 // We must have, at minimum, the outer scope and the number of arguments. 4649 if (Record.size() < 2) 4650 return error("Invalid record"); 4651 4652 unsigned Idx = 0; 4653 4654 Value *ParentPad = 4655 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4656 4657 unsigned NumArgOperands = Record[Idx++]; 4658 4659 SmallVector<Value *, 2> Args; 4660 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4661 Value *Val; 4662 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4663 return error("Invalid record"); 4664 Args.push_back(Val); 4665 } 4666 4667 if (Record.size() != Idx) 4668 return error("Invalid record"); 4669 4670 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4671 I = CleanupPadInst::Create(ParentPad, Args); 4672 else 4673 I = CatchPadInst::Create(ParentPad, Args); 4674 InstructionList.push_back(I); 4675 break; 4676 } 4677 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4678 // Check magic 4679 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4680 // "New" SwitchInst format with case ranges. The changes to write this 4681 // format were reverted but we still recognize bitcode that uses it. 4682 // Hopefully someday we will have support for case ranges and can use 4683 // this format again. 4684 4685 Type *OpTy = getTypeByID(Record[1]); 4686 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4687 4688 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4689 BasicBlock *Default = getBasicBlock(Record[3]); 4690 if (!OpTy || !Cond || !Default) 4691 return error("Invalid record"); 4692 4693 unsigned NumCases = Record[4]; 4694 4695 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4696 InstructionList.push_back(SI); 4697 4698 unsigned CurIdx = 5; 4699 for (unsigned i = 0; i != NumCases; ++i) { 4700 SmallVector<ConstantInt*, 1> CaseVals; 4701 unsigned NumItems = Record[CurIdx++]; 4702 for (unsigned ci = 0; ci != NumItems; ++ci) { 4703 bool isSingleNumber = Record[CurIdx++]; 4704 4705 APInt Low; 4706 unsigned ActiveWords = 1; 4707 if (ValueBitWidth > 64) 4708 ActiveWords = Record[CurIdx++]; 4709 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4710 ValueBitWidth); 4711 CurIdx += ActiveWords; 4712 4713 if (!isSingleNumber) { 4714 ActiveWords = 1; 4715 if (ValueBitWidth > 64) 4716 ActiveWords = Record[CurIdx++]; 4717 APInt High = readWideAPInt( 4718 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4719 CurIdx += ActiveWords; 4720 4721 // FIXME: It is not clear whether values in the range should be 4722 // compared as signed or unsigned values. The partially 4723 // implemented changes that used this format in the past used 4724 // unsigned comparisons. 4725 for ( ; Low.ule(High); ++Low) 4726 CaseVals.push_back(ConstantInt::get(Context, Low)); 4727 } else 4728 CaseVals.push_back(ConstantInt::get(Context, Low)); 4729 } 4730 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4731 for (ConstantInt *Cst : CaseVals) 4732 SI->addCase(Cst, DestBB); 4733 } 4734 I = SI; 4735 break; 4736 } 4737 4738 // Old SwitchInst format without case ranges. 4739 4740 if (Record.size() < 3 || (Record.size() & 1) == 0) 4741 return error("Invalid record"); 4742 Type *OpTy = getTypeByID(Record[0]); 4743 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4744 BasicBlock *Default = getBasicBlock(Record[2]); 4745 if (!OpTy || !Cond || !Default) 4746 return error("Invalid record"); 4747 unsigned NumCases = (Record.size()-3)/2; 4748 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4749 InstructionList.push_back(SI); 4750 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4751 ConstantInt *CaseVal = 4752 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4753 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4754 if (!CaseVal || !DestBB) { 4755 delete SI; 4756 return error("Invalid record"); 4757 } 4758 SI->addCase(CaseVal, DestBB); 4759 } 4760 I = SI; 4761 break; 4762 } 4763 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4764 if (Record.size() < 2) 4765 return error("Invalid record"); 4766 Type *OpTy = getTypeByID(Record[0]); 4767 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4768 if (!OpTy || !Address) 4769 return error("Invalid record"); 4770 unsigned NumDests = Record.size()-2; 4771 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4772 InstructionList.push_back(IBI); 4773 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4774 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4775 IBI->addDestination(DestBB); 4776 } else { 4777 delete IBI; 4778 return error("Invalid record"); 4779 } 4780 } 4781 I = IBI; 4782 break; 4783 } 4784 4785 case bitc::FUNC_CODE_INST_INVOKE: { 4786 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4787 if (Record.size() < 4) 4788 return error("Invalid record"); 4789 unsigned OpNum = 0; 4790 AttributeList PAL = getAttributes(Record[OpNum++]); 4791 unsigned CCInfo = Record[OpNum++]; 4792 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4793 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4794 4795 FunctionType *FTy = nullptr; 4796 if ((CCInfo >> 13) & 1) { 4797 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4798 if (!FTy) 4799 return error("Explicit invoke type is not a function type"); 4800 } 4801 4802 Value *Callee; 4803 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4804 return error("Invalid record"); 4805 4806 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4807 if (!CalleeTy) 4808 return error("Callee is not a pointer"); 4809 if (!FTy) { 4810 FTy = 4811 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4812 if (!FTy) 4813 return error("Callee is not of pointer to function type"); 4814 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4815 return error("Explicit invoke type does not match pointee type of " 4816 "callee operand"); 4817 if (Record.size() < FTy->getNumParams() + OpNum) 4818 return error("Insufficient operands to call"); 4819 4820 SmallVector<Value*, 16> Ops; 4821 SmallVector<Type *, 16> ArgsTys; 4822 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4823 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4824 FTy->getParamType(i))); 4825 ArgsTys.push_back(FTy->getParamType(i)); 4826 if (!Ops.back()) 4827 return error("Invalid record"); 4828 } 4829 4830 if (!FTy->isVarArg()) { 4831 if (Record.size() != OpNum) 4832 return error("Invalid record"); 4833 } else { 4834 // Read type/value pairs for varargs params. 4835 while (OpNum != Record.size()) { 4836 Value *Op; 4837 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4838 return error("Invalid record"); 4839 Ops.push_back(Op); 4840 ArgsTys.push_back(Op->getType()); 4841 } 4842 } 4843 4844 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4845 OperandBundles); 4846 OperandBundles.clear(); 4847 InstructionList.push_back(I); 4848 cast<InvokeInst>(I)->setCallingConv( 4849 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4850 cast<InvokeInst>(I)->setAttributes(PAL); 4851 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4852 4853 break; 4854 } 4855 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4856 unsigned Idx = 0; 4857 Value *Val = nullptr; 4858 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4859 return error("Invalid record"); 4860 I = ResumeInst::Create(Val); 4861 InstructionList.push_back(I); 4862 break; 4863 } 4864 case bitc::FUNC_CODE_INST_CALLBR: { 4865 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4866 unsigned OpNum = 0; 4867 AttributeList PAL = getAttributes(Record[OpNum++]); 4868 unsigned CCInfo = Record[OpNum++]; 4869 4870 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4871 unsigned NumIndirectDests = Record[OpNum++]; 4872 SmallVector<BasicBlock *, 16> IndirectDests; 4873 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4874 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4875 4876 FunctionType *FTy = nullptr; 4877 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4878 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4879 if (!FTy) 4880 return error("Explicit call type is not a function type"); 4881 } 4882 4883 Value *Callee; 4884 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4885 return error("Invalid record"); 4886 4887 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4888 if (!OpTy) 4889 return error("Callee is not a pointer type"); 4890 if (!FTy) { 4891 FTy = 4892 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4893 if (!FTy) 4894 return error("Callee is not of pointer to function type"); 4895 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 4896 return error("Explicit call type does not match pointee type of " 4897 "callee operand"); 4898 if (Record.size() < FTy->getNumParams() + OpNum) 4899 return error("Insufficient operands to call"); 4900 4901 SmallVector<Value*, 16> Args; 4902 SmallVector<Type *, 16> ArgsTys; 4903 // Read the fixed params. 4904 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4905 Value *Arg; 4906 if (FTy->getParamType(i)->isLabelTy()) 4907 Arg = getBasicBlock(Record[OpNum]); 4908 else 4909 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i)); 4910 if (!Arg) 4911 return error("Invalid record"); 4912 Args.push_back(Arg); 4913 ArgsTys.push_back(Arg->getType()); 4914 } 4915 4916 // Read type/value pairs for varargs params. 4917 if (!FTy->isVarArg()) { 4918 if (OpNum != Record.size()) 4919 return error("Invalid record"); 4920 } else { 4921 while (OpNum != Record.size()) { 4922 Value *Op; 4923 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4924 return error("Invalid record"); 4925 Args.push_back(Op); 4926 ArgsTys.push_back(Op->getType()); 4927 } 4928 } 4929 4930 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4931 OperandBundles); 4932 OperandBundles.clear(); 4933 InstructionList.push_back(I); 4934 cast<CallBrInst>(I)->setCallingConv( 4935 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4936 cast<CallBrInst>(I)->setAttributes(PAL); 4937 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4938 break; 4939 } 4940 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4941 I = new UnreachableInst(Context); 4942 InstructionList.push_back(I); 4943 break; 4944 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4945 if (Record.empty()) 4946 return error("Invalid record"); 4947 // The first record specifies the type. 4948 Type *Ty = getTypeByID(Record[0]); 4949 if (!Ty) 4950 return error("Invalid record"); 4951 4952 // Phi arguments are pairs of records of [value, basic block]. 4953 // There is an optional final record for fast-math-flags if this phi has a 4954 // floating-point type. 4955 size_t NumArgs = (Record.size() - 1) / 2; 4956 PHINode *PN = PHINode::Create(Ty, NumArgs); 4957 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4958 return error("Invalid record"); 4959 InstructionList.push_back(PN); 4960 4961 for (unsigned i = 0; i != NumArgs; i++) { 4962 Value *V; 4963 // With the new function encoding, it is possible that operands have 4964 // negative IDs (for forward references). Use a signed VBR 4965 // representation to keep the encoding small. 4966 if (UseRelativeIDs) 4967 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4968 else 4969 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4970 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4971 if (!V || !BB) 4972 return error("Invalid record"); 4973 PN->addIncoming(V, BB); 4974 } 4975 I = PN; 4976 4977 // If there are an even number of records, the final record must be FMF. 4978 if (Record.size() % 2 == 0) { 4979 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4980 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4981 if (FMF.any()) 4982 I->setFastMathFlags(FMF); 4983 } 4984 4985 break; 4986 } 4987 4988 case bitc::FUNC_CODE_INST_LANDINGPAD: 4989 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4990 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4991 unsigned Idx = 0; 4992 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4993 if (Record.size() < 3) 4994 return error("Invalid record"); 4995 } else { 4996 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4997 if (Record.size() < 4) 4998 return error("Invalid record"); 4999 } 5000 Type *Ty = getTypeByID(Record[Idx++]); 5001 if (!Ty) 5002 return error("Invalid record"); 5003 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5004 Value *PersFn = nullptr; 5005 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5006 return error("Invalid record"); 5007 5008 if (!F->hasPersonalityFn()) 5009 F->setPersonalityFn(cast<Constant>(PersFn)); 5010 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5011 return error("Personality function mismatch"); 5012 } 5013 5014 bool IsCleanup = !!Record[Idx++]; 5015 unsigned NumClauses = Record[Idx++]; 5016 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5017 LP->setCleanup(IsCleanup); 5018 for (unsigned J = 0; J != NumClauses; ++J) { 5019 LandingPadInst::ClauseType CT = 5020 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5021 Value *Val; 5022 5023 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5024 delete LP; 5025 return error("Invalid record"); 5026 } 5027 5028 assert((CT != LandingPadInst::Catch || 5029 !isa<ArrayType>(Val->getType())) && 5030 "Catch clause has a invalid type!"); 5031 assert((CT != LandingPadInst::Filter || 5032 isa<ArrayType>(Val->getType())) && 5033 "Filter clause has invalid type!"); 5034 LP->addClause(cast<Constant>(Val)); 5035 } 5036 5037 I = LP; 5038 InstructionList.push_back(I); 5039 break; 5040 } 5041 5042 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5043 if (Record.size() != 4) 5044 return error("Invalid record"); 5045 using APV = AllocaPackedValues; 5046 const uint64_t Rec = Record[3]; 5047 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5048 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5049 Type *Ty = getTypeByID(Record[0]); 5050 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5051 Ty = getPtrElementTypeByID(Record[0]); 5052 if (!Ty) 5053 return error("Missing element type for old-style alloca"); 5054 } 5055 Type *OpTy = getTypeByID(Record[1]); 5056 Value *Size = getFnValueByID(Record[2], OpTy); 5057 MaybeAlign Align; 5058 uint64_t AlignExp = 5059 Bitfield::get<APV::AlignLower>(Rec) | 5060 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5061 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5062 return Err; 5063 } 5064 if (!Ty || !Size) 5065 return error("Invalid record"); 5066 5067 // FIXME: Make this an optional field. 5068 const DataLayout &DL = TheModule->getDataLayout(); 5069 unsigned AS = DL.getAllocaAddrSpace(); 5070 5071 SmallPtrSet<Type *, 4> Visited; 5072 if (!Align && !Ty->isSized(&Visited)) 5073 return error("alloca of unsized type"); 5074 if (!Align) 5075 Align = DL.getPrefTypeAlign(Ty); 5076 5077 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5078 AI->setUsedWithInAlloca(InAlloca); 5079 AI->setSwiftError(SwiftError); 5080 I = AI; 5081 InstructionList.push_back(I); 5082 break; 5083 } 5084 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5085 unsigned OpNum = 0; 5086 Value *Op; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5088 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5089 return error("Invalid record"); 5090 5091 if (!isa<PointerType>(Op->getType())) 5092 return error("Load operand is not a pointer type"); 5093 5094 Type *Ty = nullptr; 5095 if (OpNum + 3 == Record.size()) { 5096 Ty = getTypeByID(Record[OpNum++]); 5097 } else { 5098 Ty = Op->getType()->getPointerElementType(); 5099 } 5100 5101 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5102 return Err; 5103 5104 MaybeAlign Align; 5105 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5106 return Err; 5107 SmallPtrSet<Type *, 4> Visited; 5108 if (!Align && !Ty->isSized(&Visited)) 5109 return error("load of unsized type"); 5110 if (!Align) 5111 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5112 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5113 InstructionList.push_back(I); 5114 break; 5115 } 5116 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5117 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5118 unsigned OpNum = 0; 5119 Value *Op; 5120 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5121 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5122 return error("Invalid record"); 5123 5124 if (!isa<PointerType>(Op->getType())) 5125 return error("Load operand is not a pointer type"); 5126 5127 Type *Ty = nullptr; 5128 if (OpNum + 5 == Record.size()) { 5129 Ty = getTypeByID(Record[OpNum++]); 5130 } else { 5131 Ty = Op->getType()->getPointerElementType(); 5132 } 5133 5134 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5135 return Err; 5136 5137 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5138 if (Ordering == AtomicOrdering::NotAtomic || 5139 Ordering == AtomicOrdering::Release || 5140 Ordering == AtomicOrdering::AcquireRelease) 5141 return error("Invalid record"); 5142 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5143 return error("Invalid record"); 5144 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5145 5146 MaybeAlign Align; 5147 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5148 return Err; 5149 if (!Align) 5150 return error("Alignment missing from atomic load"); 5151 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5152 InstructionList.push_back(I); 5153 break; 5154 } 5155 case bitc::FUNC_CODE_INST_STORE: 5156 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5157 unsigned OpNum = 0; 5158 Value *Val, *Ptr; 5159 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5160 (BitCode == bitc::FUNC_CODE_INST_STORE 5161 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5162 : popValue(Record, OpNum, NextValueNo, 5163 Ptr->getType()->getPointerElementType(), Val)) || 5164 OpNum + 2 != Record.size()) 5165 return error("Invalid record"); 5166 5167 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5168 return Err; 5169 MaybeAlign Align; 5170 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5171 return Err; 5172 SmallPtrSet<Type *, 4> Visited; 5173 if (!Align && !Val->getType()->isSized(&Visited)) 5174 return error("store of unsized type"); 5175 if (!Align) 5176 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5177 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5178 InstructionList.push_back(I); 5179 break; 5180 } 5181 case bitc::FUNC_CODE_INST_STOREATOMIC: 5182 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5183 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5184 unsigned OpNum = 0; 5185 Value *Val, *Ptr; 5186 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5187 !isa<PointerType>(Ptr->getType()) || 5188 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5189 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5190 : popValue(Record, OpNum, NextValueNo, 5191 Ptr->getType()->getPointerElementType(), Val)) || 5192 OpNum + 4 != Record.size()) 5193 return error("Invalid record"); 5194 5195 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5196 return Err; 5197 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5198 if (Ordering == AtomicOrdering::NotAtomic || 5199 Ordering == AtomicOrdering::Acquire || 5200 Ordering == AtomicOrdering::AcquireRelease) 5201 return error("Invalid record"); 5202 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5203 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5204 return error("Invalid record"); 5205 5206 MaybeAlign Align; 5207 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5208 return Err; 5209 if (!Align) 5210 return error("Alignment missing from atomic store"); 5211 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5212 InstructionList.push_back(I); 5213 break; 5214 } 5215 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5216 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5217 // failure_ordering?, weak?] 5218 const size_t NumRecords = Record.size(); 5219 unsigned OpNum = 0; 5220 Value *Ptr = nullptr; 5221 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5222 return error("Invalid record"); 5223 5224 if (!isa<PointerType>(Ptr->getType())) 5225 return error("Cmpxchg operand is not a pointer type"); 5226 5227 Value *Cmp = nullptr; 5228 if (popValue(Record, OpNum, NextValueNo, 5229 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5230 Cmp)) 5231 return error("Invalid record"); 5232 5233 Value *New = nullptr; 5234 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5235 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5236 return error("Invalid record"); 5237 5238 const AtomicOrdering SuccessOrdering = 5239 getDecodedOrdering(Record[OpNum + 1]); 5240 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5241 SuccessOrdering == AtomicOrdering::Unordered) 5242 return error("Invalid record"); 5243 5244 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5245 5246 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5247 return Err; 5248 5249 const AtomicOrdering FailureOrdering = 5250 NumRecords < 7 5251 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5252 : getDecodedOrdering(Record[OpNum + 3]); 5253 5254 if (FailureOrdering == AtomicOrdering::NotAtomic || 5255 FailureOrdering == AtomicOrdering::Unordered) 5256 return error("Invalid record"); 5257 5258 const Align Alignment( 5259 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5260 5261 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5262 FailureOrdering, SSID); 5263 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5264 5265 if (NumRecords < 8) { 5266 // Before weak cmpxchgs existed, the instruction simply returned the 5267 // value loaded from memory, so bitcode files from that era will be 5268 // expecting the first component of a modern cmpxchg. 5269 CurBB->getInstList().push_back(I); 5270 I = ExtractValueInst::Create(I, 0); 5271 } else { 5272 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5273 } 5274 5275 InstructionList.push_back(I); 5276 break; 5277 } 5278 case bitc::FUNC_CODE_INST_CMPXCHG: { 5279 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5280 // failure_ordering, weak, align?] 5281 const size_t NumRecords = Record.size(); 5282 unsigned OpNum = 0; 5283 Value *Ptr = nullptr; 5284 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5285 return error("Invalid record"); 5286 5287 if (!isa<PointerType>(Ptr->getType())) 5288 return error("Cmpxchg operand is not a pointer type"); 5289 5290 Value *Cmp = nullptr; 5291 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5292 return error("Invalid record"); 5293 5294 Value *Val = nullptr; 5295 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5296 return error("Invalid record"); 5297 5298 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5299 return error("Invalid record"); 5300 5301 const bool IsVol = Record[OpNum]; 5302 5303 const AtomicOrdering SuccessOrdering = 5304 getDecodedOrdering(Record[OpNum + 1]); 5305 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5306 return error("Invalid cmpxchg success ordering"); 5307 5308 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5309 5310 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5311 return Err; 5312 5313 const AtomicOrdering FailureOrdering = 5314 getDecodedOrdering(Record[OpNum + 3]); 5315 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5316 return error("Invalid cmpxchg failure ordering"); 5317 5318 const bool IsWeak = Record[OpNum + 4]; 5319 5320 MaybeAlign Alignment; 5321 5322 if (NumRecords == (OpNum + 6)) { 5323 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5324 return Err; 5325 } 5326 if (!Alignment) 5327 Alignment = 5328 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5329 5330 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5331 FailureOrdering, SSID); 5332 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5333 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5334 5335 InstructionList.push_back(I); 5336 break; 5337 } 5338 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5339 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5340 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5341 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5342 const size_t NumRecords = Record.size(); 5343 unsigned OpNum = 0; 5344 5345 Value *Ptr = nullptr; 5346 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5347 return error("Invalid record"); 5348 5349 if (!isa<PointerType>(Ptr->getType())) 5350 return error("Invalid record"); 5351 5352 Value *Val = nullptr; 5353 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5354 if (popValue(Record, OpNum, NextValueNo, 5355 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5356 Val)) 5357 return error("Invalid record"); 5358 } else { 5359 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5360 return error("Invalid record"); 5361 } 5362 5363 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5364 return error("Invalid record"); 5365 5366 const AtomicRMWInst::BinOp Operation = 5367 getDecodedRMWOperation(Record[OpNum]); 5368 if (Operation < AtomicRMWInst::FIRST_BINOP || 5369 Operation > AtomicRMWInst::LAST_BINOP) 5370 return error("Invalid record"); 5371 5372 const bool IsVol = Record[OpNum + 1]; 5373 5374 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5375 if (Ordering == AtomicOrdering::NotAtomic || 5376 Ordering == AtomicOrdering::Unordered) 5377 return error("Invalid record"); 5378 5379 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5380 5381 MaybeAlign Alignment; 5382 5383 if (NumRecords == (OpNum + 5)) { 5384 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5385 return Err; 5386 } 5387 5388 if (!Alignment) 5389 Alignment = 5390 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5391 5392 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5393 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5394 5395 InstructionList.push_back(I); 5396 break; 5397 } 5398 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5399 if (2 != Record.size()) 5400 return error("Invalid record"); 5401 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5402 if (Ordering == AtomicOrdering::NotAtomic || 5403 Ordering == AtomicOrdering::Unordered || 5404 Ordering == AtomicOrdering::Monotonic) 5405 return error("Invalid record"); 5406 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5407 I = new FenceInst(Context, Ordering, SSID); 5408 InstructionList.push_back(I); 5409 break; 5410 } 5411 case bitc::FUNC_CODE_INST_CALL: { 5412 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5413 if (Record.size() < 3) 5414 return error("Invalid record"); 5415 5416 unsigned OpNum = 0; 5417 AttributeList PAL = getAttributes(Record[OpNum++]); 5418 unsigned CCInfo = Record[OpNum++]; 5419 5420 FastMathFlags FMF; 5421 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5422 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5423 if (!FMF.any()) 5424 return error("Fast math flags indicator set for call with no FMF"); 5425 } 5426 5427 FunctionType *FTy = nullptr; 5428 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5429 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5430 if (!FTy) 5431 return error("Explicit call type is not a function type"); 5432 } 5433 5434 Value *Callee; 5435 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5436 return error("Invalid record"); 5437 5438 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5439 if (!OpTy) 5440 return error("Callee is not a pointer type"); 5441 if (!FTy) { 5442 FTy = 5443 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5444 if (!FTy) 5445 return error("Callee is not of pointer to function type"); 5446 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5447 return error("Explicit call type does not match pointee type of " 5448 "callee operand"); 5449 if (Record.size() < FTy->getNumParams() + OpNum) 5450 return error("Insufficient operands to call"); 5451 5452 SmallVector<Value*, 16> Args; 5453 SmallVector<Type *, 16> ArgsTys; 5454 // Read the fixed params. 5455 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5456 if (FTy->getParamType(i)->isLabelTy()) 5457 Args.push_back(getBasicBlock(Record[OpNum])); 5458 else 5459 Args.push_back(getValue(Record, OpNum, NextValueNo, 5460 FTy->getParamType(i))); 5461 ArgsTys.push_back(FTy->getParamType(i)); 5462 if (!Args.back()) 5463 return error("Invalid record"); 5464 } 5465 5466 // Read type/value pairs for varargs params. 5467 if (!FTy->isVarArg()) { 5468 if (OpNum != Record.size()) 5469 return error("Invalid record"); 5470 } else { 5471 while (OpNum != Record.size()) { 5472 Value *Op; 5473 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5474 return error("Invalid record"); 5475 Args.push_back(Op); 5476 ArgsTys.push_back(Op->getType()); 5477 } 5478 } 5479 5480 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5481 OperandBundles.clear(); 5482 InstructionList.push_back(I); 5483 cast<CallInst>(I)->setCallingConv( 5484 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5485 CallInst::TailCallKind TCK = CallInst::TCK_None; 5486 if (CCInfo & 1 << bitc::CALL_TAIL) 5487 TCK = CallInst::TCK_Tail; 5488 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5489 TCK = CallInst::TCK_MustTail; 5490 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5491 TCK = CallInst::TCK_NoTail; 5492 cast<CallInst>(I)->setTailCallKind(TCK); 5493 cast<CallInst>(I)->setAttributes(PAL); 5494 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5495 if (FMF.any()) { 5496 if (!isa<FPMathOperator>(I)) 5497 return error("Fast-math-flags specified for call without " 5498 "floating-point scalar or vector return type"); 5499 I->setFastMathFlags(FMF); 5500 } 5501 break; 5502 } 5503 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5504 if (Record.size() < 3) 5505 return error("Invalid record"); 5506 Type *OpTy = getTypeByID(Record[0]); 5507 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5508 Type *ResTy = getTypeByID(Record[2]); 5509 if (!OpTy || !Op || !ResTy) 5510 return error("Invalid record"); 5511 I = new VAArgInst(Op, ResTy); 5512 InstructionList.push_back(I); 5513 break; 5514 } 5515 5516 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5517 // A call or an invoke can be optionally prefixed with some variable 5518 // number of operand bundle blocks. These blocks are read into 5519 // OperandBundles and consumed at the next call or invoke instruction. 5520 5521 if (Record.empty() || Record[0] >= BundleTags.size()) 5522 return error("Invalid record"); 5523 5524 std::vector<Value *> Inputs; 5525 5526 unsigned OpNum = 1; 5527 while (OpNum != Record.size()) { 5528 Value *Op; 5529 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5530 return error("Invalid record"); 5531 Inputs.push_back(Op); 5532 } 5533 5534 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5535 continue; 5536 } 5537 5538 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5539 unsigned OpNum = 0; 5540 Value *Op = nullptr; 5541 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5542 return error("Invalid record"); 5543 if (OpNum != Record.size()) 5544 return error("Invalid record"); 5545 5546 I = new FreezeInst(Op); 5547 InstructionList.push_back(I); 5548 break; 5549 } 5550 } 5551 5552 // Add instruction to end of current BB. If there is no current BB, reject 5553 // this file. 5554 if (!CurBB) { 5555 I->deleteValue(); 5556 return error("Invalid instruction with no BB"); 5557 } 5558 if (!OperandBundles.empty()) { 5559 I->deleteValue(); 5560 return error("Operand bundles found with no consumer"); 5561 } 5562 CurBB->getInstList().push_back(I); 5563 5564 // If this was a terminator instruction, move to the next block. 5565 if (I->isTerminator()) { 5566 ++CurBBNo; 5567 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5568 } 5569 5570 // Non-void values get registered in the value table for future use. 5571 if (!I->getType()->isVoidTy()) 5572 ValueList.assignValue(I, NextValueNo++); 5573 } 5574 5575 OutOfRecordLoop: 5576 5577 if (!OperandBundles.empty()) 5578 return error("Operand bundles found with no consumer"); 5579 5580 // Check the function list for unresolved values. 5581 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5582 if (!A->getParent()) { 5583 // We found at least one unresolved value. Nuke them all to avoid leaks. 5584 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5585 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5586 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5587 delete A; 5588 } 5589 } 5590 return error("Never resolved value found in function"); 5591 } 5592 } 5593 5594 // Unexpected unresolved metadata about to be dropped. 5595 if (MDLoader->hasFwdRefs()) 5596 return error("Invalid function metadata: outgoing forward refs"); 5597 5598 // Trim the value list down to the size it was before we parsed this function. 5599 ValueList.shrinkTo(ModuleValueListSize); 5600 MDLoader->shrinkTo(ModuleMDLoaderSize); 5601 std::vector<BasicBlock*>().swap(FunctionBBs); 5602 return Error::success(); 5603 } 5604 5605 /// Find the function body in the bitcode stream 5606 Error BitcodeReader::findFunctionInStream( 5607 Function *F, 5608 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5609 while (DeferredFunctionInfoIterator->second == 0) { 5610 // This is the fallback handling for the old format bitcode that 5611 // didn't contain the function index in the VST, or when we have 5612 // an anonymous function which would not have a VST entry. 5613 // Assert that we have one of those two cases. 5614 assert(VSTOffset == 0 || !F->hasName()); 5615 // Parse the next body in the stream and set its position in the 5616 // DeferredFunctionInfo map. 5617 if (Error Err = rememberAndSkipFunctionBodies()) 5618 return Err; 5619 } 5620 return Error::success(); 5621 } 5622 5623 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5624 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5625 return SyncScope::ID(Val); 5626 if (Val >= SSIDs.size()) 5627 return SyncScope::System; // Map unknown synchronization scopes to system. 5628 return SSIDs[Val]; 5629 } 5630 5631 //===----------------------------------------------------------------------===// 5632 // GVMaterializer implementation 5633 //===----------------------------------------------------------------------===// 5634 5635 Error BitcodeReader::materialize(GlobalValue *GV) { 5636 Function *F = dyn_cast<Function>(GV); 5637 // If it's not a function or is already material, ignore the request. 5638 if (!F || !F->isMaterializable()) 5639 return Error::success(); 5640 5641 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5642 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5643 // If its position is recorded as 0, its body is somewhere in the stream 5644 // but we haven't seen it yet. 5645 if (DFII->second == 0) 5646 if (Error Err = findFunctionInStream(F, DFII)) 5647 return Err; 5648 5649 // Materialize metadata before parsing any function bodies. 5650 if (Error Err = materializeMetadata()) 5651 return Err; 5652 5653 // Move the bit stream to the saved position of the deferred function body. 5654 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5655 return JumpFailed; 5656 if (Error Err = parseFunctionBody(F)) 5657 return Err; 5658 F->setIsMaterializable(false); 5659 5660 if (StripDebugInfo) 5661 stripDebugInfo(*F); 5662 5663 // Upgrade any old intrinsic calls in the function. 5664 for (auto &I : UpgradedIntrinsics) { 5665 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5666 if (CallInst *CI = dyn_cast<CallInst>(U)) 5667 UpgradeIntrinsicCall(CI, I.second); 5668 } 5669 5670 // Update calls to the remangled intrinsics 5671 for (auto &I : RemangledIntrinsics) 5672 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5673 // Don't expect any other users than call sites 5674 cast<CallBase>(U)->setCalledFunction(I.second); 5675 5676 // Finish fn->subprogram upgrade for materialized functions. 5677 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5678 F->setSubprogram(SP); 5679 5680 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5681 if (!MDLoader->isStrippingTBAA()) { 5682 for (auto &I : instructions(F)) { 5683 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5684 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5685 continue; 5686 MDLoader->setStripTBAA(true); 5687 stripTBAA(F->getParent()); 5688 } 5689 } 5690 5691 for (auto &I : instructions(F)) { 5692 // "Upgrade" older incorrect branch weights by dropping them. 5693 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5694 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5695 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5696 StringRef ProfName = MDS->getString(); 5697 // Check consistency of !prof branch_weights metadata. 5698 if (!ProfName.equals("branch_weights")) 5699 continue; 5700 unsigned ExpectedNumOperands = 0; 5701 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5702 ExpectedNumOperands = BI->getNumSuccessors(); 5703 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5704 ExpectedNumOperands = SI->getNumSuccessors(); 5705 else if (isa<CallInst>(&I)) 5706 ExpectedNumOperands = 1; 5707 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5708 ExpectedNumOperands = IBI->getNumDestinations(); 5709 else if (isa<SelectInst>(&I)) 5710 ExpectedNumOperands = 2; 5711 else 5712 continue; // ignore and continue. 5713 5714 // If branch weight doesn't match, just strip branch weight. 5715 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5716 I.setMetadata(LLVMContext::MD_prof, nullptr); 5717 } 5718 } 5719 5720 // Remove incompatible attributes on function calls. 5721 if (auto *CI = dyn_cast<CallBase>(&I)) { 5722 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5723 CI->getFunctionType()->getReturnType())); 5724 5725 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5726 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5727 CI->getArgOperand(ArgNo)->getType())); 5728 } 5729 } 5730 5731 // Look for functions that rely on old function attribute behavior. 5732 UpgradeFunctionAttributes(*F); 5733 5734 // Bring in any functions that this function forward-referenced via 5735 // blockaddresses. 5736 return materializeForwardReferencedFunctions(); 5737 } 5738 5739 Error BitcodeReader::materializeModule() { 5740 if (Error Err = materializeMetadata()) 5741 return Err; 5742 5743 // Promise to materialize all forward references. 5744 WillMaterializeAllForwardRefs = true; 5745 5746 // Iterate over the module, deserializing any functions that are still on 5747 // disk. 5748 for (Function &F : *TheModule) { 5749 if (Error Err = materialize(&F)) 5750 return Err; 5751 } 5752 // At this point, if there are any function bodies, parse the rest of 5753 // the bits in the module past the last function block we have recorded 5754 // through either lazy scanning or the VST. 5755 if (LastFunctionBlockBit || NextUnreadBit) 5756 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5757 ? LastFunctionBlockBit 5758 : NextUnreadBit)) 5759 return Err; 5760 5761 // Check that all block address forward references got resolved (as we 5762 // promised above). 5763 if (!BasicBlockFwdRefs.empty()) 5764 return error("Never resolved function from blockaddress"); 5765 5766 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5767 // delete the old functions to clean up. We can't do this unless the entire 5768 // module is materialized because there could always be another function body 5769 // with calls to the old function. 5770 for (auto &I : UpgradedIntrinsics) { 5771 for (auto *U : I.first->users()) { 5772 if (CallInst *CI = dyn_cast<CallInst>(U)) 5773 UpgradeIntrinsicCall(CI, I.second); 5774 } 5775 if (!I.first->use_empty()) 5776 I.first->replaceAllUsesWith(I.second); 5777 I.first->eraseFromParent(); 5778 } 5779 UpgradedIntrinsics.clear(); 5780 // Do the same for remangled intrinsics 5781 for (auto &I : RemangledIntrinsics) { 5782 I.first->replaceAllUsesWith(I.second); 5783 I.first->eraseFromParent(); 5784 } 5785 RemangledIntrinsics.clear(); 5786 5787 UpgradeDebugInfo(*TheModule); 5788 5789 UpgradeModuleFlags(*TheModule); 5790 5791 UpgradeARCRuntime(*TheModule); 5792 5793 return Error::success(); 5794 } 5795 5796 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5797 return IdentifiedStructTypes; 5798 } 5799 5800 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5801 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5802 StringRef ModulePath, unsigned ModuleId) 5803 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5804 ModulePath(ModulePath), ModuleId(ModuleId) {} 5805 5806 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5807 TheIndex.addModule(ModulePath, ModuleId); 5808 } 5809 5810 ModuleSummaryIndex::ModuleInfo * 5811 ModuleSummaryIndexBitcodeReader::getThisModule() { 5812 return TheIndex.getModule(ModulePath); 5813 } 5814 5815 std::pair<ValueInfo, GlobalValue::GUID> 5816 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5817 auto VGI = ValueIdToValueInfoMap[ValueId]; 5818 assert(VGI.first); 5819 return VGI; 5820 } 5821 5822 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5823 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5824 StringRef SourceFileName) { 5825 std::string GlobalId = 5826 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5827 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5828 auto OriginalNameID = ValueGUID; 5829 if (GlobalValue::isLocalLinkage(Linkage)) 5830 OriginalNameID = GlobalValue::getGUID(ValueName); 5831 if (PrintSummaryGUIDs) 5832 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5833 << ValueName << "\n"; 5834 5835 // UseStrtab is false for legacy summary formats and value names are 5836 // created on stack. In that case we save the name in a string saver in 5837 // the index so that the value name can be recorded. 5838 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5839 TheIndex.getOrInsertValueInfo( 5840 ValueGUID, 5841 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5842 OriginalNameID); 5843 } 5844 5845 // Specialized value symbol table parser used when reading module index 5846 // blocks where we don't actually create global values. The parsed information 5847 // is saved in the bitcode reader for use when later parsing summaries. 5848 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5849 uint64_t Offset, 5850 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5851 // With a strtab the VST is not required to parse the summary. 5852 if (UseStrtab) 5853 return Error::success(); 5854 5855 assert(Offset > 0 && "Expected non-zero VST offset"); 5856 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5857 if (!MaybeCurrentBit) 5858 return MaybeCurrentBit.takeError(); 5859 uint64_t CurrentBit = MaybeCurrentBit.get(); 5860 5861 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5862 return Err; 5863 5864 SmallVector<uint64_t, 64> Record; 5865 5866 // Read all the records for this value table. 5867 SmallString<128> ValueName; 5868 5869 while (true) { 5870 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5871 if (!MaybeEntry) 5872 return MaybeEntry.takeError(); 5873 BitstreamEntry Entry = MaybeEntry.get(); 5874 5875 switch (Entry.Kind) { 5876 case BitstreamEntry::SubBlock: // Handled for us already. 5877 case BitstreamEntry::Error: 5878 return error("Malformed block"); 5879 case BitstreamEntry::EndBlock: 5880 // Done parsing VST, jump back to wherever we came from. 5881 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5882 return JumpFailed; 5883 return Error::success(); 5884 case BitstreamEntry::Record: 5885 // The interesting case. 5886 break; 5887 } 5888 5889 // Read a record. 5890 Record.clear(); 5891 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5892 if (!MaybeRecord) 5893 return MaybeRecord.takeError(); 5894 switch (MaybeRecord.get()) { 5895 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5896 break; 5897 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5898 if (convertToString(Record, 1, ValueName)) 5899 return error("Invalid record"); 5900 unsigned ValueID = Record[0]; 5901 assert(!SourceFileName.empty()); 5902 auto VLI = ValueIdToLinkageMap.find(ValueID); 5903 assert(VLI != ValueIdToLinkageMap.end() && 5904 "No linkage found for VST entry?"); 5905 auto Linkage = VLI->second; 5906 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5907 ValueName.clear(); 5908 break; 5909 } 5910 case bitc::VST_CODE_FNENTRY: { 5911 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5912 if (convertToString(Record, 2, ValueName)) 5913 return error("Invalid record"); 5914 unsigned ValueID = Record[0]; 5915 assert(!SourceFileName.empty()); 5916 auto VLI = ValueIdToLinkageMap.find(ValueID); 5917 assert(VLI != ValueIdToLinkageMap.end() && 5918 "No linkage found for VST entry?"); 5919 auto Linkage = VLI->second; 5920 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5921 ValueName.clear(); 5922 break; 5923 } 5924 case bitc::VST_CODE_COMBINED_ENTRY: { 5925 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5926 unsigned ValueID = Record[0]; 5927 GlobalValue::GUID RefGUID = Record[1]; 5928 // The "original name", which is the second value of the pair will be 5929 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5930 ValueIdToValueInfoMap[ValueID] = 5931 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5932 break; 5933 } 5934 } 5935 } 5936 } 5937 5938 // Parse just the blocks needed for building the index out of the module. 5939 // At the end of this routine the module Index is populated with a map 5940 // from global value id to GlobalValueSummary objects. 5941 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5942 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5943 return Err; 5944 5945 SmallVector<uint64_t, 64> Record; 5946 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5947 unsigned ValueId = 0; 5948 5949 // Read the index for this module. 5950 while (true) { 5951 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5952 if (!MaybeEntry) 5953 return MaybeEntry.takeError(); 5954 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5955 5956 switch (Entry.Kind) { 5957 case BitstreamEntry::Error: 5958 return error("Malformed block"); 5959 case BitstreamEntry::EndBlock: 5960 return Error::success(); 5961 5962 case BitstreamEntry::SubBlock: 5963 switch (Entry.ID) { 5964 default: // Skip unknown content. 5965 if (Error Err = Stream.SkipBlock()) 5966 return Err; 5967 break; 5968 case bitc::BLOCKINFO_BLOCK_ID: 5969 // Need to parse these to get abbrev ids (e.g. for VST) 5970 if (Error Err = readBlockInfo()) 5971 return Err; 5972 break; 5973 case bitc::VALUE_SYMTAB_BLOCK_ID: 5974 // Should have been parsed earlier via VSTOffset, unless there 5975 // is no summary section. 5976 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5977 !SeenGlobalValSummary) && 5978 "Expected early VST parse via VSTOffset record"); 5979 if (Error Err = Stream.SkipBlock()) 5980 return Err; 5981 break; 5982 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5983 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5984 // Add the module if it is a per-module index (has a source file name). 5985 if (!SourceFileName.empty()) 5986 addThisModule(); 5987 assert(!SeenValueSymbolTable && 5988 "Already read VST when parsing summary block?"); 5989 // We might not have a VST if there were no values in the 5990 // summary. An empty summary block generated when we are 5991 // performing ThinLTO compiles so we don't later invoke 5992 // the regular LTO process on them. 5993 if (VSTOffset > 0) { 5994 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5995 return Err; 5996 SeenValueSymbolTable = true; 5997 } 5998 SeenGlobalValSummary = true; 5999 if (Error Err = parseEntireSummary(Entry.ID)) 6000 return Err; 6001 break; 6002 case bitc::MODULE_STRTAB_BLOCK_ID: 6003 if (Error Err = parseModuleStringTable()) 6004 return Err; 6005 break; 6006 } 6007 continue; 6008 6009 case BitstreamEntry::Record: { 6010 Record.clear(); 6011 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6012 if (!MaybeBitCode) 6013 return MaybeBitCode.takeError(); 6014 switch (MaybeBitCode.get()) { 6015 default: 6016 break; // Default behavior, ignore unknown content. 6017 case bitc::MODULE_CODE_VERSION: { 6018 if (Error Err = parseVersionRecord(Record).takeError()) 6019 return Err; 6020 break; 6021 } 6022 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6023 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6024 SmallString<128> ValueName; 6025 if (convertToString(Record, 0, ValueName)) 6026 return error("Invalid record"); 6027 SourceFileName = ValueName.c_str(); 6028 break; 6029 } 6030 /// MODULE_CODE_HASH: [5*i32] 6031 case bitc::MODULE_CODE_HASH: { 6032 if (Record.size() != 5) 6033 return error("Invalid hash length " + Twine(Record.size()).str()); 6034 auto &Hash = getThisModule()->second.second; 6035 int Pos = 0; 6036 for (auto &Val : Record) { 6037 assert(!(Val >> 32) && "Unexpected high bits set"); 6038 Hash[Pos++] = Val; 6039 } 6040 break; 6041 } 6042 /// MODULE_CODE_VSTOFFSET: [offset] 6043 case bitc::MODULE_CODE_VSTOFFSET: 6044 if (Record.empty()) 6045 return error("Invalid record"); 6046 // Note that we subtract 1 here because the offset is relative to one 6047 // word before the start of the identification or module block, which 6048 // was historically always the start of the regular bitcode header. 6049 VSTOffset = Record[0] - 1; 6050 break; 6051 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6052 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6053 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6054 // v2: [strtab offset, strtab size, v1] 6055 case bitc::MODULE_CODE_GLOBALVAR: 6056 case bitc::MODULE_CODE_FUNCTION: 6057 case bitc::MODULE_CODE_ALIAS: { 6058 StringRef Name; 6059 ArrayRef<uint64_t> GVRecord; 6060 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6061 if (GVRecord.size() <= 3) 6062 return error("Invalid record"); 6063 uint64_t RawLinkage = GVRecord[3]; 6064 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6065 if (!UseStrtab) { 6066 ValueIdToLinkageMap[ValueId++] = Linkage; 6067 break; 6068 } 6069 6070 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6071 break; 6072 } 6073 } 6074 } 6075 continue; 6076 } 6077 } 6078 } 6079 6080 std::vector<ValueInfo> 6081 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6082 std::vector<ValueInfo> Ret; 6083 Ret.reserve(Record.size()); 6084 for (uint64_t RefValueId : Record) 6085 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6086 return Ret; 6087 } 6088 6089 std::vector<FunctionSummary::EdgeTy> 6090 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6091 bool IsOldProfileFormat, 6092 bool HasProfile, bool HasRelBF) { 6093 std::vector<FunctionSummary::EdgeTy> Ret; 6094 Ret.reserve(Record.size()); 6095 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6096 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6097 uint64_t RelBF = 0; 6098 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6099 if (IsOldProfileFormat) { 6100 I += 1; // Skip old callsitecount field 6101 if (HasProfile) 6102 I += 1; // Skip old profilecount field 6103 } else if (HasProfile) 6104 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6105 else if (HasRelBF) 6106 RelBF = Record[++I]; 6107 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6108 } 6109 return Ret; 6110 } 6111 6112 static void 6113 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6114 WholeProgramDevirtResolution &Wpd) { 6115 uint64_t ArgNum = Record[Slot++]; 6116 WholeProgramDevirtResolution::ByArg &B = 6117 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6118 Slot += ArgNum; 6119 6120 B.TheKind = 6121 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6122 B.Info = Record[Slot++]; 6123 B.Byte = Record[Slot++]; 6124 B.Bit = Record[Slot++]; 6125 } 6126 6127 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6128 StringRef Strtab, size_t &Slot, 6129 TypeIdSummary &TypeId) { 6130 uint64_t Id = Record[Slot++]; 6131 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6132 6133 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6134 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6135 static_cast<size_t>(Record[Slot + 1])}; 6136 Slot += 2; 6137 6138 uint64_t ResByArgNum = Record[Slot++]; 6139 for (uint64_t I = 0; I != ResByArgNum; ++I) 6140 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6141 } 6142 6143 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6144 StringRef Strtab, 6145 ModuleSummaryIndex &TheIndex) { 6146 size_t Slot = 0; 6147 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6148 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6149 Slot += 2; 6150 6151 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6152 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6153 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6154 TypeId.TTRes.SizeM1 = Record[Slot++]; 6155 TypeId.TTRes.BitMask = Record[Slot++]; 6156 TypeId.TTRes.InlineBits = Record[Slot++]; 6157 6158 while (Slot < Record.size()) 6159 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6160 } 6161 6162 std::vector<FunctionSummary::ParamAccess> 6163 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6164 auto ReadRange = [&]() { 6165 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6166 BitcodeReader::decodeSignRotatedValue(Record.front())); 6167 Record = Record.drop_front(); 6168 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6169 BitcodeReader::decodeSignRotatedValue(Record.front())); 6170 Record = Record.drop_front(); 6171 ConstantRange Range{Lower, Upper}; 6172 assert(!Range.isFullSet()); 6173 assert(!Range.isUpperSignWrapped()); 6174 return Range; 6175 }; 6176 6177 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6178 while (!Record.empty()) { 6179 PendingParamAccesses.emplace_back(); 6180 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6181 ParamAccess.ParamNo = Record.front(); 6182 Record = Record.drop_front(); 6183 ParamAccess.Use = ReadRange(); 6184 ParamAccess.Calls.resize(Record.front()); 6185 Record = Record.drop_front(); 6186 for (auto &Call : ParamAccess.Calls) { 6187 Call.ParamNo = Record.front(); 6188 Record = Record.drop_front(); 6189 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6190 Record = Record.drop_front(); 6191 Call.Offsets = ReadRange(); 6192 } 6193 } 6194 return PendingParamAccesses; 6195 } 6196 6197 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6198 ArrayRef<uint64_t> Record, size_t &Slot, 6199 TypeIdCompatibleVtableInfo &TypeId) { 6200 uint64_t Offset = Record[Slot++]; 6201 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6202 TypeId.push_back({Offset, Callee}); 6203 } 6204 6205 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6206 ArrayRef<uint64_t> Record) { 6207 size_t Slot = 0; 6208 TypeIdCompatibleVtableInfo &TypeId = 6209 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6210 {Strtab.data() + Record[Slot], 6211 static_cast<size_t>(Record[Slot + 1])}); 6212 Slot += 2; 6213 6214 while (Slot < Record.size()) 6215 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6216 } 6217 6218 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6219 unsigned WOCnt) { 6220 // Readonly and writeonly refs are in the end of the refs list. 6221 assert(ROCnt + WOCnt <= Refs.size()); 6222 unsigned FirstWORef = Refs.size() - WOCnt; 6223 unsigned RefNo = FirstWORef - ROCnt; 6224 for (; RefNo < FirstWORef; ++RefNo) 6225 Refs[RefNo].setReadOnly(); 6226 for (; RefNo < Refs.size(); ++RefNo) 6227 Refs[RefNo].setWriteOnly(); 6228 } 6229 6230 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6231 // objects in the index. 6232 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6233 if (Error Err = Stream.EnterSubBlock(ID)) 6234 return Err; 6235 SmallVector<uint64_t, 64> Record; 6236 6237 // Parse version 6238 { 6239 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6240 if (!MaybeEntry) 6241 return MaybeEntry.takeError(); 6242 BitstreamEntry Entry = MaybeEntry.get(); 6243 6244 if (Entry.Kind != BitstreamEntry::Record) 6245 return error("Invalid Summary Block: record for version expected"); 6246 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6247 if (!MaybeRecord) 6248 return MaybeRecord.takeError(); 6249 if (MaybeRecord.get() != bitc::FS_VERSION) 6250 return error("Invalid Summary Block: version expected"); 6251 } 6252 const uint64_t Version = Record[0]; 6253 const bool IsOldProfileFormat = Version == 1; 6254 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6255 return error("Invalid summary version " + Twine(Version) + 6256 ". Version should be in the range [1-" + 6257 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6258 "]."); 6259 Record.clear(); 6260 6261 // Keep around the last seen summary to be used when we see an optional 6262 // "OriginalName" attachement. 6263 GlobalValueSummary *LastSeenSummary = nullptr; 6264 GlobalValue::GUID LastSeenGUID = 0; 6265 6266 // We can expect to see any number of type ID information records before 6267 // each function summary records; these variables store the information 6268 // collected so far so that it can be used to create the summary object. 6269 std::vector<GlobalValue::GUID> PendingTypeTests; 6270 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6271 PendingTypeCheckedLoadVCalls; 6272 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6273 PendingTypeCheckedLoadConstVCalls; 6274 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6275 6276 while (true) { 6277 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6278 if (!MaybeEntry) 6279 return MaybeEntry.takeError(); 6280 BitstreamEntry Entry = MaybeEntry.get(); 6281 6282 switch (Entry.Kind) { 6283 case BitstreamEntry::SubBlock: // Handled for us already. 6284 case BitstreamEntry::Error: 6285 return error("Malformed block"); 6286 case BitstreamEntry::EndBlock: 6287 return Error::success(); 6288 case BitstreamEntry::Record: 6289 // The interesting case. 6290 break; 6291 } 6292 6293 // Read a record. The record format depends on whether this 6294 // is a per-module index or a combined index file. In the per-module 6295 // case the records contain the associated value's ID for correlation 6296 // with VST entries. In the combined index the correlation is done 6297 // via the bitcode offset of the summary records (which were saved 6298 // in the combined index VST entries). The records also contain 6299 // information used for ThinLTO renaming and importing. 6300 Record.clear(); 6301 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6302 if (!MaybeBitCode) 6303 return MaybeBitCode.takeError(); 6304 switch (unsigned BitCode = MaybeBitCode.get()) { 6305 default: // Default behavior: ignore. 6306 break; 6307 case bitc::FS_FLAGS: { // [flags] 6308 TheIndex.setFlags(Record[0]); 6309 break; 6310 } 6311 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6312 uint64_t ValueID = Record[0]; 6313 GlobalValue::GUID RefGUID = Record[1]; 6314 ValueIdToValueInfoMap[ValueID] = 6315 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6316 break; 6317 } 6318 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6319 // numrefs x valueid, n x (valueid)] 6320 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6321 // numrefs x valueid, 6322 // n x (valueid, hotness)] 6323 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6324 // numrefs x valueid, 6325 // n x (valueid, relblockfreq)] 6326 case bitc::FS_PERMODULE: 6327 case bitc::FS_PERMODULE_RELBF: 6328 case bitc::FS_PERMODULE_PROFILE: { 6329 unsigned ValueID = Record[0]; 6330 uint64_t RawFlags = Record[1]; 6331 unsigned InstCount = Record[2]; 6332 uint64_t RawFunFlags = 0; 6333 unsigned NumRefs = Record[3]; 6334 unsigned NumRORefs = 0, NumWORefs = 0; 6335 int RefListStartIndex = 4; 6336 if (Version >= 4) { 6337 RawFunFlags = Record[3]; 6338 NumRefs = Record[4]; 6339 RefListStartIndex = 5; 6340 if (Version >= 5) { 6341 NumRORefs = Record[5]; 6342 RefListStartIndex = 6; 6343 if (Version >= 7) { 6344 NumWORefs = Record[6]; 6345 RefListStartIndex = 7; 6346 } 6347 } 6348 } 6349 6350 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6351 // The module path string ref set in the summary must be owned by the 6352 // index's module string table. Since we don't have a module path 6353 // string table section in the per-module index, we create a single 6354 // module path string table entry with an empty (0) ID to take 6355 // ownership. 6356 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6357 assert(Record.size() >= RefListStartIndex + NumRefs && 6358 "Record size inconsistent with number of references"); 6359 std::vector<ValueInfo> Refs = makeRefList( 6360 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6361 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6362 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6363 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6364 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6365 IsOldProfileFormat, HasProfile, HasRelBF); 6366 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6367 auto FS = std::make_unique<FunctionSummary>( 6368 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6369 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6370 std::move(PendingTypeTestAssumeVCalls), 6371 std::move(PendingTypeCheckedLoadVCalls), 6372 std::move(PendingTypeTestAssumeConstVCalls), 6373 std::move(PendingTypeCheckedLoadConstVCalls), 6374 std::move(PendingParamAccesses)); 6375 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6376 FS->setModulePath(getThisModule()->first()); 6377 FS->setOriginalName(VIAndOriginalGUID.second); 6378 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6379 break; 6380 } 6381 // FS_ALIAS: [valueid, flags, valueid] 6382 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6383 // they expect all aliasee summaries to be available. 6384 case bitc::FS_ALIAS: { 6385 unsigned ValueID = Record[0]; 6386 uint64_t RawFlags = Record[1]; 6387 unsigned AliaseeID = Record[2]; 6388 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6389 auto AS = std::make_unique<AliasSummary>(Flags); 6390 // The module path string ref set in the summary must be owned by the 6391 // index's module string table. Since we don't have a module path 6392 // string table section in the per-module index, we create a single 6393 // module path string table entry with an empty (0) ID to take 6394 // ownership. 6395 AS->setModulePath(getThisModule()->first()); 6396 6397 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6398 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6399 if (!AliaseeInModule) 6400 return error("Alias expects aliasee summary to be parsed"); 6401 AS->setAliasee(AliaseeVI, AliaseeInModule); 6402 6403 auto GUID = getValueInfoFromValueId(ValueID); 6404 AS->setOriginalName(GUID.second); 6405 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6406 break; 6407 } 6408 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6409 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6410 unsigned ValueID = Record[0]; 6411 uint64_t RawFlags = Record[1]; 6412 unsigned RefArrayStart = 2; 6413 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6414 /* WriteOnly */ false, 6415 /* Constant */ false, 6416 GlobalObject::VCallVisibilityPublic); 6417 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6418 if (Version >= 5) { 6419 GVF = getDecodedGVarFlags(Record[2]); 6420 RefArrayStart = 3; 6421 } 6422 std::vector<ValueInfo> Refs = 6423 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6424 auto FS = 6425 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6426 FS->setModulePath(getThisModule()->first()); 6427 auto GUID = getValueInfoFromValueId(ValueID); 6428 FS->setOriginalName(GUID.second); 6429 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6430 break; 6431 } 6432 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6433 // numrefs, numrefs x valueid, 6434 // n x (valueid, offset)] 6435 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6436 unsigned ValueID = Record[0]; 6437 uint64_t RawFlags = Record[1]; 6438 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6439 unsigned NumRefs = Record[3]; 6440 unsigned RefListStartIndex = 4; 6441 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6442 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6443 std::vector<ValueInfo> Refs = makeRefList( 6444 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6445 VTableFuncList VTableFuncs; 6446 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6447 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6448 uint64_t Offset = Record[++I]; 6449 VTableFuncs.push_back({Callee, Offset}); 6450 } 6451 auto VS = 6452 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6453 VS->setModulePath(getThisModule()->first()); 6454 VS->setVTableFuncs(VTableFuncs); 6455 auto GUID = getValueInfoFromValueId(ValueID); 6456 VS->setOriginalName(GUID.second); 6457 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6458 break; 6459 } 6460 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6461 // numrefs x valueid, n x (valueid)] 6462 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6463 // numrefs x valueid, n x (valueid, hotness)] 6464 case bitc::FS_COMBINED: 6465 case bitc::FS_COMBINED_PROFILE: { 6466 unsigned ValueID = Record[0]; 6467 uint64_t ModuleId = Record[1]; 6468 uint64_t RawFlags = Record[2]; 6469 unsigned InstCount = Record[3]; 6470 uint64_t RawFunFlags = 0; 6471 uint64_t EntryCount = 0; 6472 unsigned NumRefs = Record[4]; 6473 unsigned NumRORefs = 0, NumWORefs = 0; 6474 int RefListStartIndex = 5; 6475 6476 if (Version >= 4) { 6477 RawFunFlags = Record[4]; 6478 RefListStartIndex = 6; 6479 size_t NumRefsIndex = 5; 6480 if (Version >= 5) { 6481 unsigned NumRORefsOffset = 1; 6482 RefListStartIndex = 7; 6483 if (Version >= 6) { 6484 NumRefsIndex = 6; 6485 EntryCount = Record[5]; 6486 RefListStartIndex = 8; 6487 if (Version >= 7) { 6488 RefListStartIndex = 9; 6489 NumWORefs = Record[8]; 6490 NumRORefsOffset = 2; 6491 } 6492 } 6493 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6494 } 6495 NumRefs = Record[NumRefsIndex]; 6496 } 6497 6498 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6499 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6500 assert(Record.size() >= RefListStartIndex + NumRefs && 6501 "Record size inconsistent with number of references"); 6502 std::vector<ValueInfo> Refs = makeRefList( 6503 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6504 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6505 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6506 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6507 IsOldProfileFormat, HasProfile, false); 6508 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6509 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6510 auto FS = std::make_unique<FunctionSummary>( 6511 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6512 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6513 std::move(PendingTypeTestAssumeVCalls), 6514 std::move(PendingTypeCheckedLoadVCalls), 6515 std::move(PendingTypeTestAssumeConstVCalls), 6516 std::move(PendingTypeCheckedLoadConstVCalls), 6517 std::move(PendingParamAccesses)); 6518 LastSeenSummary = FS.get(); 6519 LastSeenGUID = VI.getGUID(); 6520 FS->setModulePath(ModuleIdMap[ModuleId]); 6521 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6522 break; 6523 } 6524 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6525 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6526 // they expect all aliasee summaries to be available. 6527 case bitc::FS_COMBINED_ALIAS: { 6528 unsigned ValueID = Record[0]; 6529 uint64_t ModuleId = Record[1]; 6530 uint64_t RawFlags = Record[2]; 6531 unsigned AliaseeValueId = Record[3]; 6532 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6533 auto AS = std::make_unique<AliasSummary>(Flags); 6534 LastSeenSummary = AS.get(); 6535 AS->setModulePath(ModuleIdMap[ModuleId]); 6536 6537 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6538 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6539 AS->setAliasee(AliaseeVI, AliaseeInModule); 6540 6541 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6542 LastSeenGUID = VI.getGUID(); 6543 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6544 break; 6545 } 6546 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6547 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6548 unsigned ValueID = Record[0]; 6549 uint64_t ModuleId = Record[1]; 6550 uint64_t RawFlags = Record[2]; 6551 unsigned RefArrayStart = 3; 6552 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6553 /* WriteOnly */ false, 6554 /* Constant */ false, 6555 GlobalObject::VCallVisibilityPublic); 6556 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6557 if (Version >= 5) { 6558 GVF = getDecodedGVarFlags(Record[3]); 6559 RefArrayStart = 4; 6560 } 6561 std::vector<ValueInfo> Refs = 6562 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6563 auto FS = 6564 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6565 LastSeenSummary = FS.get(); 6566 FS->setModulePath(ModuleIdMap[ModuleId]); 6567 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6568 LastSeenGUID = VI.getGUID(); 6569 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6570 break; 6571 } 6572 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6573 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6574 uint64_t OriginalName = Record[0]; 6575 if (!LastSeenSummary) 6576 return error("Name attachment that does not follow a combined record"); 6577 LastSeenSummary->setOriginalName(OriginalName); 6578 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6579 // Reset the LastSeenSummary 6580 LastSeenSummary = nullptr; 6581 LastSeenGUID = 0; 6582 break; 6583 } 6584 case bitc::FS_TYPE_TESTS: 6585 assert(PendingTypeTests.empty()); 6586 llvm::append_range(PendingTypeTests, Record); 6587 break; 6588 6589 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6590 assert(PendingTypeTestAssumeVCalls.empty()); 6591 for (unsigned I = 0; I != Record.size(); I += 2) 6592 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6593 break; 6594 6595 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6596 assert(PendingTypeCheckedLoadVCalls.empty()); 6597 for (unsigned I = 0; I != Record.size(); I += 2) 6598 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6599 break; 6600 6601 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6602 PendingTypeTestAssumeConstVCalls.push_back( 6603 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6604 break; 6605 6606 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6607 PendingTypeCheckedLoadConstVCalls.push_back( 6608 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6609 break; 6610 6611 case bitc::FS_CFI_FUNCTION_DEFS: { 6612 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6613 for (unsigned I = 0; I != Record.size(); I += 2) 6614 CfiFunctionDefs.insert( 6615 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6616 break; 6617 } 6618 6619 case bitc::FS_CFI_FUNCTION_DECLS: { 6620 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6621 for (unsigned I = 0; I != Record.size(); I += 2) 6622 CfiFunctionDecls.insert( 6623 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6624 break; 6625 } 6626 6627 case bitc::FS_TYPE_ID: 6628 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6629 break; 6630 6631 case bitc::FS_TYPE_ID_METADATA: 6632 parseTypeIdCompatibleVtableSummaryRecord(Record); 6633 break; 6634 6635 case bitc::FS_BLOCK_COUNT: 6636 TheIndex.addBlockCount(Record[0]); 6637 break; 6638 6639 case bitc::FS_PARAM_ACCESS: { 6640 PendingParamAccesses = parseParamAccesses(Record); 6641 break; 6642 } 6643 } 6644 } 6645 llvm_unreachable("Exit infinite loop"); 6646 } 6647 6648 // Parse the module string table block into the Index. 6649 // This populates the ModulePathStringTable map in the index. 6650 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6651 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6652 return Err; 6653 6654 SmallVector<uint64_t, 64> Record; 6655 6656 SmallString<128> ModulePath; 6657 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6658 6659 while (true) { 6660 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6661 if (!MaybeEntry) 6662 return MaybeEntry.takeError(); 6663 BitstreamEntry Entry = MaybeEntry.get(); 6664 6665 switch (Entry.Kind) { 6666 case BitstreamEntry::SubBlock: // Handled for us already. 6667 case BitstreamEntry::Error: 6668 return error("Malformed block"); 6669 case BitstreamEntry::EndBlock: 6670 return Error::success(); 6671 case BitstreamEntry::Record: 6672 // The interesting case. 6673 break; 6674 } 6675 6676 Record.clear(); 6677 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6678 if (!MaybeRecord) 6679 return MaybeRecord.takeError(); 6680 switch (MaybeRecord.get()) { 6681 default: // Default behavior: ignore. 6682 break; 6683 case bitc::MST_CODE_ENTRY: { 6684 // MST_ENTRY: [modid, namechar x N] 6685 uint64_t ModuleId = Record[0]; 6686 6687 if (convertToString(Record, 1, ModulePath)) 6688 return error("Invalid record"); 6689 6690 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6691 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6692 6693 ModulePath.clear(); 6694 break; 6695 } 6696 /// MST_CODE_HASH: [5*i32] 6697 case bitc::MST_CODE_HASH: { 6698 if (Record.size() != 5) 6699 return error("Invalid hash length " + Twine(Record.size()).str()); 6700 if (!LastSeenModule) 6701 return error("Invalid hash that does not follow a module path"); 6702 int Pos = 0; 6703 for (auto &Val : Record) { 6704 assert(!(Val >> 32) && "Unexpected high bits set"); 6705 LastSeenModule->second.second[Pos++] = Val; 6706 } 6707 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6708 LastSeenModule = nullptr; 6709 break; 6710 } 6711 } 6712 } 6713 llvm_unreachable("Exit infinite loop"); 6714 } 6715 6716 namespace { 6717 6718 // FIXME: This class is only here to support the transition to llvm::Error. It 6719 // will be removed once this transition is complete. Clients should prefer to 6720 // deal with the Error value directly, rather than converting to error_code. 6721 class BitcodeErrorCategoryType : public std::error_category { 6722 const char *name() const noexcept override { 6723 return "llvm.bitcode"; 6724 } 6725 6726 std::string message(int IE) const override { 6727 BitcodeError E = static_cast<BitcodeError>(IE); 6728 switch (E) { 6729 case BitcodeError::CorruptedBitcode: 6730 return "Corrupted bitcode"; 6731 } 6732 llvm_unreachable("Unknown error type!"); 6733 } 6734 }; 6735 6736 } // end anonymous namespace 6737 6738 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6739 6740 const std::error_category &llvm::BitcodeErrorCategory() { 6741 return *ErrorCategory; 6742 } 6743 6744 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6745 unsigned Block, unsigned RecordID) { 6746 if (Error Err = Stream.EnterSubBlock(Block)) 6747 return std::move(Err); 6748 6749 StringRef Strtab; 6750 while (true) { 6751 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6752 if (!MaybeEntry) 6753 return MaybeEntry.takeError(); 6754 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6755 6756 switch (Entry.Kind) { 6757 case BitstreamEntry::EndBlock: 6758 return Strtab; 6759 6760 case BitstreamEntry::Error: 6761 return error("Malformed block"); 6762 6763 case BitstreamEntry::SubBlock: 6764 if (Error Err = Stream.SkipBlock()) 6765 return std::move(Err); 6766 break; 6767 6768 case BitstreamEntry::Record: 6769 StringRef Blob; 6770 SmallVector<uint64_t, 1> Record; 6771 Expected<unsigned> MaybeRecord = 6772 Stream.readRecord(Entry.ID, Record, &Blob); 6773 if (!MaybeRecord) 6774 return MaybeRecord.takeError(); 6775 if (MaybeRecord.get() == RecordID) 6776 Strtab = Blob; 6777 break; 6778 } 6779 } 6780 } 6781 6782 //===----------------------------------------------------------------------===// 6783 // External interface 6784 //===----------------------------------------------------------------------===// 6785 6786 Expected<std::vector<BitcodeModule>> 6787 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6788 auto FOrErr = getBitcodeFileContents(Buffer); 6789 if (!FOrErr) 6790 return FOrErr.takeError(); 6791 return std::move(FOrErr->Mods); 6792 } 6793 6794 Expected<BitcodeFileContents> 6795 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6796 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6797 if (!StreamOrErr) 6798 return StreamOrErr.takeError(); 6799 BitstreamCursor &Stream = *StreamOrErr; 6800 6801 BitcodeFileContents F; 6802 while (true) { 6803 uint64_t BCBegin = Stream.getCurrentByteNo(); 6804 6805 // We may be consuming bitcode from a client that leaves garbage at the end 6806 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6807 // the end that there cannot possibly be another module, stop looking. 6808 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6809 return F; 6810 6811 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6812 if (!MaybeEntry) 6813 return MaybeEntry.takeError(); 6814 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6815 6816 switch (Entry.Kind) { 6817 case BitstreamEntry::EndBlock: 6818 case BitstreamEntry::Error: 6819 return error("Malformed block"); 6820 6821 case BitstreamEntry::SubBlock: { 6822 uint64_t IdentificationBit = -1ull; 6823 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6824 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6825 if (Error Err = Stream.SkipBlock()) 6826 return std::move(Err); 6827 6828 { 6829 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6830 if (!MaybeEntry) 6831 return MaybeEntry.takeError(); 6832 Entry = MaybeEntry.get(); 6833 } 6834 6835 if (Entry.Kind != BitstreamEntry::SubBlock || 6836 Entry.ID != bitc::MODULE_BLOCK_ID) 6837 return error("Malformed block"); 6838 } 6839 6840 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6841 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6842 if (Error Err = Stream.SkipBlock()) 6843 return std::move(Err); 6844 6845 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6846 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6847 Buffer.getBufferIdentifier(), IdentificationBit, 6848 ModuleBit}); 6849 continue; 6850 } 6851 6852 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6853 Expected<StringRef> Strtab = 6854 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6855 if (!Strtab) 6856 return Strtab.takeError(); 6857 // This string table is used by every preceding bitcode module that does 6858 // not have its own string table. A bitcode file may have multiple 6859 // string tables if it was created by binary concatenation, for example 6860 // with "llvm-cat -b". 6861 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6862 if (!I.Strtab.empty()) 6863 break; 6864 I.Strtab = *Strtab; 6865 } 6866 // Similarly, the string table is used by every preceding symbol table; 6867 // normally there will be just one unless the bitcode file was created 6868 // by binary concatenation. 6869 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6870 F.StrtabForSymtab = *Strtab; 6871 continue; 6872 } 6873 6874 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6875 Expected<StringRef> SymtabOrErr = 6876 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6877 if (!SymtabOrErr) 6878 return SymtabOrErr.takeError(); 6879 6880 // We can expect the bitcode file to have multiple symbol tables if it 6881 // was created by binary concatenation. In that case we silently 6882 // ignore any subsequent symbol tables, which is fine because this is a 6883 // low level function. The client is expected to notice that the number 6884 // of modules in the symbol table does not match the number of modules 6885 // in the input file and regenerate the symbol table. 6886 if (F.Symtab.empty()) 6887 F.Symtab = *SymtabOrErr; 6888 continue; 6889 } 6890 6891 if (Error Err = Stream.SkipBlock()) 6892 return std::move(Err); 6893 continue; 6894 } 6895 case BitstreamEntry::Record: 6896 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6897 return std::move(E); 6898 continue; 6899 } 6900 } 6901 } 6902 6903 /// Get a lazy one-at-time loading module from bitcode. 6904 /// 6905 /// This isn't always used in a lazy context. In particular, it's also used by 6906 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6907 /// in forward-referenced functions from block address references. 6908 /// 6909 /// \param[in] MaterializeAll Set to \c true if we should materialize 6910 /// everything. 6911 Expected<std::unique_ptr<Module>> 6912 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6913 bool ShouldLazyLoadMetadata, bool IsImporting, 6914 DataLayoutCallbackTy DataLayoutCallback) { 6915 BitstreamCursor Stream(Buffer); 6916 6917 std::string ProducerIdentification; 6918 if (IdentificationBit != -1ull) { 6919 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6920 return std::move(JumpFailed); 6921 if (Error E = 6922 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6923 return std::move(E); 6924 } 6925 6926 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6927 return std::move(JumpFailed); 6928 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6929 Context); 6930 6931 std::unique_ptr<Module> M = 6932 std::make_unique<Module>(ModuleIdentifier, Context); 6933 M->setMaterializer(R); 6934 6935 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6936 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6937 IsImporting, DataLayoutCallback)) 6938 return std::move(Err); 6939 6940 if (MaterializeAll) { 6941 // Read in the entire module, and destroy the BitcodeReader. 6942 if (Error Err = M->materializeAll()) 6943 return std::move(Err); 6944 } else { 6945 // Resolve forward references from blockaddresses. 6946 if (Error Err = R->materializeForwardReferencedFunctions()) 6947 return std::move(Err); 6948 } 6949 return std::move(M); 6950 } 6951 6952 Expected<std::unique_ptr<Module>> 6953 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6954 bool IsImporting) { 6955 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6956 [](StringRef) { return None; }); 6957 } 6958 6959 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6960 // We don't use ModuleIdentifier here because the client may need to control the 6961 // module path used in the combined summary (e.g. when reading summaries for 6962 // regular LTO modules). 6963 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6964 StringRef ModulePath, uint64_t ModuleId) { 6965 BitstreamCursor Stream(Buffer); 6966 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6967 return JumpFailed; 6968 6969 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6970 ModulePath, ModuleId); 6971 return R.parseModule(); 6972 } 6973 6974 // Parse the specified bitcode buffer, returning the function info index. 6975 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6976 BitstreamCursor Stream(Buffer); 6977 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6978 return std::move(JumpFailed); 6979 6980 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6981 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6982 ModuleIdentifier, 0); 6983 6984 if (Error Err = R.parseModule()) 6985 return std::move(Err); 6986 6987 return std::move(Index); 6988 } 6989 6990 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6991 unsigned ID) { 6992 if (Error Err = Stream.EnterSubBlock(ID)) 6993 return std::move(Err); 6994 SmallVector<uint64_t, 64> Record; 6995 6996 while (true) { 6997 BitstreamEntry Entry; 6998 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6999 return std::move(E); 7000 7001 switch (Entry.Kind) { 7002 case BitstreamEntry::SubBlock: // Handled for us already. 7003 case BitstreamEntry::Error: 7004 return error("Malformed block"); 7005 case BitstreamEntry::EndBlock: 7006 // If no flags record found, conservatively return true to mimic 7007 // behavior before this flag was added. 7008 return true; 7009 case BitstreamEntry::Record: 7010 // The interesting case. 7011 break; 7012 } 7013 7014 // Look for the FS_FLAGS record. 7015 Record.clear(); 7016 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7017 if (!MaybeBitCode) 7018 return MaybeBitCode.takeError(); 7019 switch (MaybeBitCode.get()) { 7020 default: // Default behavior: ignore. 7021 break; 7022 case bitc::FS_FLAGS: { // [flags] 7023 uint64_t Flags = Record[0]; 7024 // Scan flags. 7025 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7026 7027 return Flags & 0x8; 7028 } 7029 } 7030 } 7031 llvm_unreachable("Exit infinite loop"); 7032 } 7033 7034 // Check if the given bitcode buffer contains a global value summary block. 7035 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7036 BitstreamCursor Stream(Buffer); 7037 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7038 return std::move(JumpFailed); 7039 7040 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7041 return std::move(Err); 7042 7043 while (true) { 7044 llvm::BitstreamEntry Entry; 7045 if (Error E = Stream.advance().moveInto(Entry)) 7046 return std::move(E); 7047 7048 switch (Entry.Kind) { 7049 case BitstreamEntry::Error: 7050 return error("Malformed block"); 7051 case BitstreamEntry::EndBlock: 7052 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7053 /*EnableSplitLTOUnit=*/false}; 7054 7055 case BitstreamEntry::SubBlock: 7056 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7057 Expected<bool> EnableSplitLTOUnit = 7058 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7059 if (!EnableSplitLTOUnit) 7060 return EnableSplitLTOUnit.takeError(); 7061 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7062 *EnableSplitLTOUnit}; 7063 } 7064 7065 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7066 Expected<bool> EnableSplitLTOUnit = 7067 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7068 if (!EnableSplitLTOUnit) 7069 return EnableSplitLTOUnit.takeError(); 7070 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7071 *EnableSplitLTOUnit}; 7072 } 7073 7074 // Ignore other sub-blocks. 7075 if (Error Err = Stream.SkipBlock()) 7076 return std::move(Err); 7077 continue; 7078 7079 case BitstreamEntry::Record: 7080 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7081 continue; 7082 else 7083 return StreamFailed.takeError(); 7084 } 7085 } 7086 } 7087 7088 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7089 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7090 if (!MsOrErr) 7091 return MsOrErr.takeError(); 7092 7093 if (MsOrErr->size() != 1) 7094 return error("Expected a single module"); 7095 7096 return (*MsOrErr)[0]; 7097 } 7098 7099 Expected<std::unique_ptr<Module>> 7100 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7101 bool ShouldLazyLoadMetadata, bool IsImporting) { 7102 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7103 if (!BM) 7104 return BM.takeError(); 7105 7106 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7107 } 7108 7109 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7110 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7111 bool ShouldLazyLoadMetadata, bool IsImporting) { 7112 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7113 IsImporting); 7114 if (MOrErr) 7115 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7116 return MOrErr; 7117 } 7118 7119 Expected<std::unique_ptr<Module>> 7120 BitcodeModule::parseModule(LLVMContext &Context, 7121 DataLayoutCallbackTy DataLayoutCallback) { 7122 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7123 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7124 // written. We must defer until the Module has been fully materialized. 7125 } 7126 7127 Expected<std::unique_ptr<Module>> 7128 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7129 DataLayoutCallbackTy DataLayoutCallback) { 7130 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7131 if (!BM) 7132 return BM.takeError(); 7133 7134 return BM->parseModule(Context, DataLayoutCallback); 7135 } 7136 7137 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7138 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7139 if (!StreamOrErr) 7140 return StreamOrErr.takeError(); 7141 7142 return readTriple(*StreamOrErr); 7143 } 7144 7145 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7146 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7147 if (!StreamOrErr) 7148 return StreamOrErr.takeError(); 7149 7150 return hasObjCCategory(*StreamOrErr); 7151 } 7152 7153 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7154 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7155 if (!StreamOrErr) 7156 return StreamOrErr.takeError(); 7157 7158 return readIdentificationCode(*StreamOrErr); 7159 } 7160 7161 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7162 ModuleSummaryIndex &CombinedIndex, 7163 uint64_t ModuleId) { 7164 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7165 if (!BM) 7166 return BM.takeError(); 7167 7168 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7169 } 7170 7171 Expected<std::unique_ptr<ModuleSummaryIndex>> 7172 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7173 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7174 if (!BM) 7175 return BM.takeError(); 7176 7177 return BM->getSummary(); 7178 } 7179 7180 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7181 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7182 if (!BM) 7183 return BM.takeError(); 7184 7185 return BM->getLTOInfo(); 7186 } 7187 7188 Expected<std::unique_ptr<ModuleSummaryIndex>> 7189 llvm::getModuleSummaryIndexForFile(StringRef Path, 7190 bool IgnoreEmptyThinLTOIndexFile) { 7191 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7192 MemoryBuffer::getFileOrSTDIN(Path); 7193 if (!FileOrErr) 7194 return errorCodeToError(FileOrErr.getError()); 7195 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7196 return nullptr; 7197 return getModuleSummaryIndex(**FileOrErr); 7198 } 7199