xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision ed8db7d9df395497d54ea9cecf1cecdad674cd7e)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<Type*>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140   public:
141     // allocate space for exactly one operand
142     void *operator new(size_t s) {
143       return User::operator new(s, 1);
144     }
145     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
146       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148     }
149 
150     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152     static bool classof(const Value *V) {
153       return isa<ConstantExpr>(V) &&
154              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155     }
156 
157 
158     /// Provide fast operand accessors
159     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160   };
161 }
162 
163 // FIXME: can we inherit this from ConstantExpr?
164 template <>
165 struct OperandTraits<ConstantPlaceHolder> :
166   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167 };
168 }
169 
170 
171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172   if (Idx == size()) {
173     push_back(V);
174     return;
175   }
176 
177   if (Idx >= size())
178     resize(Idx+1);
179 
180   WeakVH &OldV = ValuePtrs[Idx];
181   if (OldV == 0) {
182     OldV = V;
183     return;
184   }
185 
186   // Handle constants and non-constants (e.g. instrs) differently for
187   // efficiency.
188   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189     ResolveConstants.push_back(std::make_pair(PHC, Idx));
190     OldV = V;
191   } else {
192     // If there was a forward reference to this value, replace it.
193     Value *PrevVal = OldV;
194     OldV->replaceAllUsesWith(V);
195     delete PrevVal;
196   }
197 }
198 
199 
200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                     Type *Ty) {
202   if (Idx >= size())
203     resize(Idx + 1);
204 
205   if (Value *V = ValuePtrs[Idx]) {
206     assert(Ty == V->getType() && "Type mismatch in constant table!");
207     return cast<Constant>(V);
208   }
209 
210   // Create and return a placeholder, which will later be RAUW'd.
211   Constant *C = new ConstantPlaceHolder(Ty, Context);
212   ValuePtrs[Idx] = C;
213   return C;
214 }
215 
216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
217   if (Idx >= size())
218     resize(Idx + 1);
219 
220   if (Value *V = ValuePtrs[Idx]) {
221     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222     return V;
223   }
224 
225   // No type specified, must be invalid reference.
226   if (Ty == 0) return 0;
227 
228   // Create and return a placeholder, which will later be RAUW'd.
229   Value *V = new Argument(Ty);
230   ValuePtrs[Idx] = V;
231   return V;
232 }
233 
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references.  The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants.  Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant.  Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242   // Sort the values by-pointer so that they are efficient to look up with a
243   // binary search.
244   std::sort(ResolveConstants.begin(), ResolveConstants.end());
245 
246   SmallVector<Constant*, 64> NewOps;
247 
248   while (!ResolveConstants.empty()) {
249     Value *RealVal = operator[](ResolveConstants.back().second);
250     Constant *Placeholder = ResolveConstants.back().first;
251     ResolveConstants.pop_back();
252 
253     // Loop over all users of the placeholder, updating them to reference the
254     // new value.  If they reference more than one placeholder, update them all
255     // at once.
256     while (!Placeholder->use_empty()) {
257       Value::use_iterator UI = Placeholder->use_begin();
258       User *U = *UI;
259 
260       // If the using object isn't uniqued, just update the operands.  This
261       // handles instructions and initializers for global variables.
262       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263         UI.getUse().set(RealVal);
264         continue;
265       }
266 
267       // Otherwise, we have a constant that uses the placeholder.  Replace that
268       // constant with a new constant that has *all* placeholder uses updated.
269       Constant *UserC = cast<Constant>(U);
270       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271            I != E; ++I) {
272         Value *NewOp;
273         if (!isa<ConstantPlaceHolder>(*I)) {
274           // Not a placeholder reference.
275           NewOp = *I;
276         } else if (*I == Placeholder) {
277           // Common case is that it just references this one placeholder.
278           NewOp = RealVal;
279         } else {
280           // Otherwise, look up the placeholder in ResolveConstants.
281           ResolveConstantsTy::iterator It =
282             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                             0));
285           assert(It != ResolveConstants.end() && It->first == *I);
286           NewOp = operator[](It->second);
287         }
288 
289         NewOps.push_back(cast<Constant>(NewOp));
290       }
291 
292       // Make the new constant.
293       Constant *NewC;
294       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295         NewC = ConstantArray::get(UserCA->getType(), NewOps);
296       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
298       } else if (isa<ConstantVector>(UserC)) {
299         NewC = ConstantVector::get(NewOps);
300       } else {
301         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
302         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
303       }
304 
305       UserC->replaceAllUsesWith(NewC);
306       UserC->destroyConstant();
307       NewOps.clear();
308     }
309 
310     // Update all ValueHandles, they should be the only users at this point.
311     Placeholder->replaceAllUsesWith(RealVal);
312     delete Placeholder;
313   }
314 }
315 
316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317   if (Idx == size()) {
318     push_back(V);
319     return;
320   }
321 
322   if (Idx >= size())
323     resize(Idx+1);
324 
325   WeakVH &OldV = MDValuePtrs[Idx];
326   if (OldV == 0) {
327     OldV = V;
328     return;
329   }
330 
331   // If there was a forward reference to this value, replace it.
332   MDNode *PrevVal = cast<MDNode>(OldV);
333   OldV->replaceAllUsesWith(V);
334   MDNode::deleteTemporary(PrevVal);
335   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336   // value for Idx.
337   MDValuePtrs[Idx] = V;
338 }
339 
340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341   if (Idx >= size())
342     resize(Idx + 1);
343 
344   if (Value *V = MDValuePtrs[Idx]) {
345     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346     return V;
347   }
348 
349   // Create and return a placeholder, which will later be RAUW'd.
350   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
351   MDValuePtrs[Idx] = V;
352   return V;
353 }
354 
355 Type *BitcodeReader::getTypeByID(unsigned ID) {
356   // The type table size is always specified correctly.
357   if (ID >= TypeList.size())
358     return 0;
359 
360   if (Type *Ty = TypeList[ID])
361     return Ty;
362 
363   // If we have a forward reference, the only possible case is when it is to a
364   // named struct.  Just create a placeholder for now.
365   return TypeList[ID] = StructType::createNamed(Context, "");
366 }
367 
368 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
369 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
370   if (ID >= TypeList.size())
371     TypeList.resize(ID+1);
372 
373   return TypeList[ID];
374 }
375 
376 
377 //===----------------------------------------------------------------------===//
378 //  Functions for parsing blocks from the bitcode file
379 //===----------------------------------------------------------------------===//
380 
381 bool BitcodeReader::ParseAttributeBlock() {
382   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
383     return Error("Malformed block record");
384 
385   if (!MAttributes.empty())
386     return Error("Multiple PARAMATTR blocks found!");
387 
388   SmallVector<uint64_t, 64> Record;
389 
390   SmallVector<AttributeWithIndex, 8> Attrs;
391 
392   // Read all the records.
393   while (1) {
394     unsigned Code = Stream.ReadCode();
395     if (Code == bitc::END_BLOCK) {
396       if (Stream.ReadBlockEnd())
397         return Error("Error at end of PARAMATTR block");
398       return false;
399     }
400 
401     if (Code == bitc::ENTER_SUBBLOCK) {
402       // No known subblocks, always skip them.
403       Stream.ReadSubBlockID();
404       if (Stream.SkipBlock())
405         return Error("Malformed block record");
406       continue;
407     }
408 
409     if (Code == bitc::DEFINE_ABBREV) {
410       Stream.ReadAbbrevRecord();
411       continue;
412     }
413 
414     // Read a record.
415     Record.clear();
416     switch (Stream.ReadRecord(Code, Record)) {
417     default:  // Default behavior: ignore.
418       break;
419     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
420       if (Record.size() & 1)
421         return Error("Invalid ENTRY record");
422 
423       // FIXME : Remove this autoupgrade code in LLVM 3.0.
424       // If Function attributes are using index 0 then transfer them
425       // to index ~0. Index 0 is used for return value attributes but used to be
426       // used for function attributes.
427       Attributes RetAttribute = Attribute::None;
428       Attributes FnAttribute = Attribute::None;
429       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
430         // FIXME: remove in LLVM 3.0
431         // The alignment is stored as a 16-bit raw value from bits 31--16.
432         // We shift the bits above 31 down by 11 bits.
433 
434         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
435         if (Alignment && !isPowerOf2_32(Alignment))
436           return Error("Alignment is not a power of two.");
437 
438         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
439         if (Alignment)
440           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
441         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
442         Record[i+1] = ReconstitutedAttr;
443 
444         if (Record[i] == 0)
445           RetAttribute = Record[i+1];
446         else if (Record[i] == ~0U)
447           FnAttribute = Record[i+1];
448       }
449 
450       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
451                               Attribute::ReadOnly|Attribute::ReadNone);
452 
453       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
454           (RetAttribute & OldRetAttrs) != 0) {
455         if (FnAttribute == Attribute::None) { // add a slot so they get added.
456           Record.push_back(~0U);
457           Record.push_back(0);
458         }
459 
460         FnAttribute  |= RetAttribute & OldRetAttrs;
461         RetAttribute &= ~OldRetAttrs;
462       }
463 
464       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
465         if (Record[i] == 0) {
466           if (RetAttribute != Attribute::None)
467             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
468         } else if (Record[i] == ~0U) {
469           if (FnAttribute != Attribute::None)
470             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
471         } else if (Record[i+1] != Attribute::None)
472           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
473       }
474 
475       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
476       Attrs.clear();
477       break;
478     }
479     }
480   }
481 }
482 
483 bool BitcodeReader::ParseTypeTable() {
484   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
485     return Error("Malformed block record");
486 
487   return ParseTypeTableBody();
488 }
489 
490 bool BitcodeReader::ParseTypeTableBody() {
491   if (!TypeList.empty())
492     return Error("Multiple TYPE_BLOCKs found!");
493 
494   SmallVector<uint64_t, 64> Record;
495   unsigned NumRecords = 0;
496 
497   SmallString<64> TypeName;
498 
499   // Read all the records for this type table.
500   while (1) {
501     unsigned Code = Stream.ReadCode();
502     if (Code == bitc::END_BLOCK) {
503       if (NumRecords != TypeList.size())
504         return Error("Invalid type forward reference in TYPE_BLOCK");
505       if (Stream.ReadBlockEnd())
506         return Error("Error at end of type table block");
507       return false;
508     }
509 
510     if (Code == bitc::ENTER_SUBBLOCK) {
511       // No known subblocks, always skip them.
512       Stream.ReadSubBlockID();
513       if (Stream.SkipBlock())
514         return Error("Malformed block record");
515       continue;
516     }
517 
518     if (Code == bitc::DEFINE_ABBREV) {
519       Stream.ReadAbbrevRecord();
520       continue;
521     }
522 
523     // Read a record.
524     Record.clear();
525     Type *ResultTy = 0;
526     switch (Stream.ReadRecord(Code, Record)) {
527     default: return Error("unknown type in type table");
528     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
529       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
530       // type list.  This allows us to reserve space.
531       if (Record.size() < 1)
532         return Error("Invalid TYPE_CODE_NUMENTRY record");
533       TypeList.resize(Record[0]);
534       continue;
535     case bitc::TYPE_CODE_VOID:      // VOID
536       ResultTy = Type::getVoidTy(Context);
537       break;
538     case bitc::TYPE_CODE_FLOAT:     // FLOAT
539       ResultTy = Type::getFloatTy(Context);
540       break;
541     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
542       ResultTy = Type::getDoubleTy(Context);
543       break;
544     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
545       ResultTy = Type::getX86_FP80Ty(Context);
546       break;
547     case bitc::TYPE_CODE_FP128:     // FP128
548       ResultTy = Type::getFP128Ty(Context);
549       break;
550     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
551       ResultTy = Type::getPPC_FP128Ty(Context);
552       break;
553     case bitc::TYPE_CODE_LABEL:     // LABEL
554       ResultTy = Type::getLabelTy(Context);
555       break;
556     case bitc::TYPE_CODE_METADATA:  // METADATA
557       ResultTy = Type::getMetadataTy(Context);
558       break;
559     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
560       ResultTy = Type::getX86_MMXTy(Context);
561       break;
562     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
563       if (Record.size() < 1)
564         return Error("Invalid Integer type record");
565 
566       ResultTy = IntegerType::get(Context, Record[0]);
567       break;
568     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
569                                     //          [pointee type, address space]
570       if (Record.size() < 1)
571         return Error("Invalid POINTER type record");
572       unsigned AddressSpace = 0;
573       if (Record.size() == 2)
574         AddressSpace = Record[1];
575       ResultTy = getTypeByID(Record[0]);
576       if (ResultTy == 0) return Error("invalid element type in pointer type");
577       ResultTy = PointerType::get(ResultTy, AddressSpace);
578       break;
579     }
580     case bitc::TYPE_CODE_FUNCTION: {
581       // FIXME: attrid is dead, remove it in LLVM 3.0
582       // FUNCTION: [vararg, attrid, retty, paramty x N]
583       if (Record.size() < 3)
584         return Error("Invalid FUNCTION type record");
585       std::vector<Type*> ArgTys;
586       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
587         if (Type *T = getTypeByID(Record[i]))
588           ArgTys.push_back(T);
589         else
590           break;
591       }
592 
593       ResultTy = getTypeByID(Record[2]);
594       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
595         return Error("invalid type in function type");
596 
597       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
598       break;
599     }
600     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
601       if (Record.size() < 1)
602         return Error("Invalid STRUCT type record");
603       std::vector<Type*> EltTys;
604       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
605         if (Type *T = getTypeByID(Record[i]))
606           EltTys.push_back(T);
607         else
608           break;
609       }
610       if (EltTys.size() != Record.size()-1)
611         return Error("invalid type in struct type");
612       ResultTy = StructType::get(Context, EltTys, Record[0]);
613       break;
614     }
615     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
616       if (ConvertToString(Record, 0, TypeName))
617         return Error("Invalid STRUCT_NAME record");
618       continue;
619 
620     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
621       if (Record.size() < 1)
622         return Error("Invalid STRUCT type record");
623 
624       if (NumRecords >= TypeList.size())
625         return Error("invalid TYPE table");
626 
627       // Check to see if this was forward referenced, if so fill in the temp.
628       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
629       if (Res) {
630         Res->setName(TypeName);
631         TypeList[NumRecords] = 0;
632       } else  // Otherwise, create a new struct.
633         Res = StructType::createNamed(Context, TypeName);
634       TypeName.clear();
635 
636       SmallVector<Type*, 8> EltTys;
637       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
638         if (Type *T = getTypeByID(Record[i]))
639           EltTys.push_back(T);
640         else
641           break;
642       }
643       if (EltTys.size() != Record.size()-1)
644         return Error("invalid STRUCT type record");
645       Res->setBody(EltTys, Record[0]);
646       ResultTy = Res;
647       break;
648     }
649     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
650       if (Record.size() != 1)
651         return Error("Invalid OPAQUE type record");
652 
653       if (NumRecords >= TypeList.size())
654         return Error("invalid TYPE table");
655 
656       // Check to see if this was forward referenced, if so fill in the temp.
657       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
658       if (Res) {
659         Res->setName(TypeName);
660         TypeList[NumRecords] = 0;
661       } else  // Otherwise, create a new struct with no body.
662         Res = StructType::createNamed(Context, TypeName);
663       TypeName.clear();
664       ResultTy = Res;
665       break;
666     }
667     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
668       if (Record.size() < 2)
669         return Error("Invalid ARRAY type record");
670       if ((ResultTy = getTypeByID(Record[1])))
671         ResultTy = ArrayType::get(ResultTy, Record[0]);
672       else
673         return Error("Invalid ARRAY type element");
674       break;
675     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
676       if (Record.size() < 2)
677         return Error("Invalid VECTOR type record");
678       if ((ResultTy = getTypeByID(Record[1])))
679         ResultTy = VectorType::get(ResultTy, Record[0]);
680       else
681         return Error("Invalid ARRAY type element");
682       break;
683     }
684 
685     if (NumRecords >= TypeList.size())
686       return Error("invalid TYPE table");
687     assert(ResultTy && "Didn't read a type?");
688     assert(TypeList[NumRecords] == 0 && "Already read type?");
689     TypeList[NumRecords++] = ResultTy;
690   }
691 }
692 
693 // FIXME: Remove in LLVM 3.1
694 bool BitcodeReader::ParseOldTypeTable() {
695   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
696     return Error("Malformed block record");
697 
698   if (!TypeList.empty())
699     return Error("Multiple TYPE_BLOCKs found!");
700 
701 
702   // While horrible, we have no good ordering of types in the bc file.  Just
703   // iteratively parse types out of the bc file in multiple passes until we get
704   // them all.  Do this by saving a cursor for the start of the type block.
705   BitstreamCursor StartOfTypeBlockCursor(Stream);
706 
707   unsigned NumTypesRead = 0;
708 
709   SmallVector<uint64_t, 64> Record;
710 RestartScan:
711   unsigned NextTypeID = 0;
712   bool ReadAnyTypes = false;
713 
714   // Read all the records for this type table.
715   while (1) {
716     unsigned Code = Stream.ReadCode();
717     if (Code == bitc::END_BLOCK) {
718       if (NextTypeID != TypeList.size())
719         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
720 
721       // If we haven't read all of the types yet, iterate again.
722       if (NumTypesRead != TypeList.size()) {
723         // If we didn't successfully read any types in this pass, then we must
724         // have an unhandled forward reference.
725         if (!ReadAnyTypes)
726           return Error("Obsolete bitcode contains unhandled recursive type");
727 
728         Stream = StartOfTypeBlockCursor;
729         goto RestartScan;
730       }
731 
732       if (Stream.ReadBlockEnd())
733         return Error("Error at end of type table block");
734       return false;
735     }
736 
737     if (Code == bitc::ENTER_SUBBLOCK) {
738       // No known subblocks, always skip them.
739       Stream.ReadSubBlockID();
740       if (Stream.SkipBlock())
741         return Error("Malformed block record");
742       continue;
743     }
744 
745     if (Code == bitc::DEFINE_ABBREV) {
746       Stream.ReadAbbrevRecord();
747       continue;
748     }
749 
750     // Read a record.
751     Record.clear();
752     Type *ResultTy = 0;
753     switch (Stream.ReadRecord(Code, Record)) {
754     default: return Error("unknown type in type table");
755     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
756       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
757       // type list.  This allows us to reserve space.
758       if (Record.size() < 1)
759         return Error("Invalid TYPE_CODE_NUMENTRY record");
760       TypeList.resize(Record[0]);
761       continue;
762     case bitc::TYPE_CODE_VOID:      // VOID
763       ResultTy = Type::getVoidTy(Context);
764       break;
765     case bitc::TYPE_CODE_FLOAT:     // FLOAT
766       ResultTy = Type::getFloatTy(Context);
767       break;
768     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
769       ResultTy = Type::getDoubleTy(Context);
770       break;
771     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
772       ResultTy = Type::getX86_FP80Ty(Context);
773       break;
774     case bitc::TYPE_CODE_FP128:     // FP128
775       ResultTy = Type::getFP128Ty(Context);
776       break;
777     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
778       ResultTy = Type::getPPC_FP128Ty(Context);
779       break;
780     case bitc::TYPE_CODE_LABEL:     // LABEL
781       ResultTy = Type::getLabelTy(Context);
782       break;
783     case bitc::TYPE_CODE_METADATA:  // METADATA
784       ResultTy = Type::getMetadataTy(Context);
785       break;
786     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
787       ResultTy = Type::getX86_MMXTy(Context);
788       break;
789     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
790       if (Record.size() < 1)
791         return Error("Invalid Integer type record");
792       ResultTy = IntegerType::get(Context, Record[0]);
793       break;
794     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
795       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
796         ResultTy = StructType::createNamed(Context, "");
797       break;
798     case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
799       if (NextTypeID >= TypeList.size()) break;
800       // If we already read it, don't reprocess.
801       if (TypeList[NextTypeID] &&
802           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
803         break;
804 
805       // Set a type.
806       if (TypeList[NextTypeID] == 0)
807         TypeList[NextTypeID] = StructType::createNamed(Context, "");
808 
809       std::vector<Type*> EltTys;
810       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
811         if (Type *Elt = getTypeByIDOrNull(Record[i]))
812           EltTys.push_back(Elt);
813         else
814           break;
815       }
816 
817       if (EltTys.size() != Record.size()-1)
818         break;      // Not all elements are ready.
819 
820       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
821       ResultTy = TypeList[NextTypeID];
822       TypeList[NextTypeID] = 0;
823       break;
824     }
825     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
826       //          [pointee type, address space]
827       if (Record.size() < 1)
828         return Error("Invalid POINTER type record");
829       unsigned AddressSpace = 0;
830       if (Record.size() == 2)
831         AddressSpace = Record[1];
832       if ((ResultTy = getTypeByIDOrNull(Record[0])))
833         ResultTy = PointerType::get(ResultTy, AddressSpace);
834       break;
835     }
836     case bitc::TYPE_CODE_FUNCTION: {
837       // FIXME: attrid is dead, remove it in LLVM 3.0
838       // FUNCTION: [vararg, attrid, retty, paramty x N]
839       if (Record.size() < 3)
840         return Error("Invalid FUNCTION type record");
841       std::vector<Type*> ArgTys;
842       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
843         if (Type *Elt = getTypeByIDOrNull(Record[i]))
844           ArgTys.push_back(Elt);
845         else
846           break;
847       }
848       if (ArgTys.size()+3 != Record.size())
849         break;  // Something was null.
850       if ((ResultTy = getTypeByIDOrNull(Record[2])))
851         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
852       break;
853     }
854     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
855       if (Record.size() < 2)
856         return Error("Invalid ARRAY type record");
857       if ((ResultTy = getTypeByIDOrNull(Record[1])))
858         ResultTy = ArrayType::get(ResultTy, Record[0]);
859       break;
860     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
861       if (Record.size() < 2)
862         return Error("Invalid VECTOR type record");
863       if ((ResultTy = getTypeByIDOrNull(Record[1])))
864         ResultTy = VectorType::get(ResultTy, Record[0]);
865       break;
866     }
867 
868     if (NextTypeID >= TypeList.size())
869       return Error("invalid TYPE table");
870 
871     if (ResultTy && TypeList[NextTypeID] == 0) {
872       ++NumTypesRead;
873       ReadAnyTypes = true;
874 
875       TypeList[NextTypeID] = ResultTy;
876     }
877 
878     ++NextTypeID;
879   }
880 }
881 
882 
883 bool BitcodeReader::ParseOldTypeSymbolTable() {
884   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
885     return Error("Malformed block record");
886 
887   SmallVector<uint64_t, 64> Record;
888 
889   // Read all the records for this type table.
890   std::string TypeName;
891   while (1) {
892     unsigned Code = Stream.ReadCode();
893     if (Code == bitc::END_BLOCK) {
894       if (Stream.ReadBlockEnd())
895         return Error("Error at end of type symbol table block");
896       return false;
897     }
898 
899     if (Code == bitc::ENTER_SUBBLOCK) {
900       // No known subblocks, always skip them.
901       Stream.ReadSubBlockID();
902       if (Stream.SkipBlock())
903         return Error("Malformed block record");
904       continue;
905     }
906 
907     if (Code == bitc::DEFINE_ABBREV) {
908       Stream.ReadAbbrevRecord();
909       continue;
910     }
911 
912     // Read a record.
913     Record.clear();
914     switch (Stream.ReadRecord(Code, Record)) {
915     default:  // Default behavior: unknown type.
916       break;
917     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
918       if (ConvertToString(Record, 1, TypeName))
919         return Error("Invalid TST_ENTRY record");
920       unsigned TypeID = Record[0];
921       if (TypeID >= TypeList.size())
922         return Error("Invalid Type ID in TST_ENTRY record");
923 
924       // Only apply the type name to a struct type with no name.
925       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
926         if (!STy->isAnonymous() && !STy->hasName())
927           STy->setName(TypeName);
928       TypeName.clear();
929       break;
930     }
931   }
932 }
933 
934 bool BitcodeReader::ParseValueSymbolTable() {
935   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
936     return Error("Malformed block record");
937 
938   SmallVector<uint64_t, 64> Record;
939 
940   // Read all the records for this value table.
941   SmallString<128> ValueName;
942   while (1) {
943     unsigned Code = Stream.ReadCode();
944     if (Code == bitc::END_BLOCK) {
945       if (Stream.ReadBlockEnd())
946         return Error("Error at end of value symbol table block");
947       return false;
948     }
949     if (Code == bitc::ENTER_SUBBLOCK) {
950       // No known subblocks, always skip them.
951       Stream.ReadSubBlockID();
952       if (Stream.SkipBlock())
953         return Error("Malformed block record");
954       continue;
955     }
956 
957     if (Code == bitc::DEFINE_ABBREV) {
958       Stream.ReadAbbrevRecord();
959       continue;
960     }
961 
962     // Read a record.
963     Record.clear();
964     switch (Stream.ReadRecord(Code, Record)) {
965     default:  // Default behavior: unknown type.
966       break;
967     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
968       if (ConvertToString(Record, 1, ValueName))
969         return Error("Invalid VST_ENTRY record");
970       unsigned ValueID = Record[0];
971       if (ValueID >= ValueList.size())
972         return Error("Invalid Value ID in VST_ENTRY record");
973       Value *V = ValueList[ValueID];
974 
975       V->setName(StringRef(ValueName.data(), ValueName.size()));
976       ValueName.clear();
977       break;
978     }
979     case bitc::VST_CODE_BBENTRY: {
980       if (ConvertToString(Record, 1, ValueName))
981         return Error("Invalid VST_BBENTRY record");
982       BasicBlock *BB = getBasicBlock(Record[0]);
983       if (BB == 0)
984         return Error("Invalid BB ID in VST_BBENTRY record");
985 
986       BB->setName(StringRef(ValueName.data(), ValueName.size()));
987       ValueName.clear();
988       break;
989     }
990     }
991   }
992 }
993 
994 bool BitcodeReader::ParseMetadata() {
995   unsigned NextMDValueNo = MDValueList.size();
996 
997   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
998     return Error("Malformed block record");
999 
1000   SmallVector<uint64_t, 64> Record;
1001 
1002   // Read all the records.
1003   while (1) {
1004     unsigned Code = Stream.ReadCode();
1005     if (Code == bitc::END_BLOCK) {
1006       if (Stream.ReadBlockEnd())
1007         return Error("Error at end of PARAMATTR block");
1008       return false;
1009     }
1010 
1011     if (Code == bitc::ENTER_SUBBLOCK) {
1012       // No known subblocks, always skip them.
1013       Stream.ReadSubBlockID();
1014       if (Stream.SkipBlock())
1015         return Error("Malformed block record");
1016       continue;
1017     }
1018 
1019     if (Code == bitc::DEFINE_ABBREV) {
1020       Stream.ReadAbbrevRecord();
1021       continue;
1022     }
1023 
1024     bool IsFunctionLocal = false;
1025     // Read a record.
1026     Record.clear();
1027     Code = Stream.ReadRecord(Code, Record);
1028     switch (Code) {
1029     default:  // Default behavior: ignore.
1030       break;
1031     case bitc::METADATA_NAME: {
1032       // Read named of the named metadata.
1033       unsigned NameLength = Record.size();
1034       SmallString<8> Name;
1035       Name.resize(NameLength);
1036       for (unsigned i = 0; i != NameLength; ++i)
1037         Name[i] = Record[i];
1038       Record.clear();
1039       Code = Stream.ReadCode();
1040 
1041       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1042       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1043       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1044 
1045       // Read named metadata elements.
1046       unsigned Size = Record.size();
1047       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1048       for (unsigned i = 0; i != Size; ++i) {
1049         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1050         if (MD == 0)
1051           return Error("Malformed metadata record");
1052         NMD->addOperand(MD);
1053       }
1054       break;
1055     }
1056     case bitc::METADATA_FN_NODE:
1057       IsFunctionLocal = true;
1058       // fall-through
1059     case bitc::METADATA_NODE: {
1060       if (Record.size() % 2 == 1)
1061         return Error("Invalid METADATA_NODE record");
1062 
1063       unsigned Size = Record.size();
1064       SmallVector<Value*, 8> Elts;
1065       for (unsigned i = 0; i != Size; i += 2) {
1066         Type *Ty = getTypeByID(Record[i]);
1067         if (!Ty) return Error("Invalid METADATA_NODE record");
1068         if (Ty->isMetadataTy())
1069           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1070         else if (!Ty->isVoidTy())
1071           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1072         else
1073           Elts.push_back(NULL);
1074       }
1075       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1076       IsFunctionLocal = false;
1077       MDValueList.AssignValue(V, NextMDValueNo++);
1078       break;
1079     }
1080     case bitc::METADATA_STRING: {
1081       unsigned MDStringLength = Record.size();
1082       SmallString<8> String;
1083       String.resize(MDStringLength);
1084       for (unsigned i = 0; i != MDStringLength; ++i)
1085         String[i] = Record[i];
1086       Value *V = MDString::get(Context,
1087                                StringRef(String.data(), String.size()));
1088       MDValueList.AssignValue(V, NextMDValueNo++);
1089       break;
1090     }
1091     case bitc::METADATA_KIND: {
1092       unsigned RecordLength = Record.size();
1093       if (Record.empty() || RecordLength < 2)
1094         return Error("Invalid METADATA_KIND record");
1095       SmallString<8> Name;
1096       Name.resize(RecordLength-1);
1097       unsigned Kind = Record[0];
1098       for (unsigned i = 1; i != RecordLength; ++i)
1099         Name[i-1] = Record[i];
1100 
1101       unsigned NewKind = TheModule->getMDKindID(Name.str());
1102       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1103         return Error("Conflicting METADATA_KIND records");
1104       break;
1105     }
1106     }
1107   }
1108 }
1109 
1110 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1111 /// the LSB for dense VBR encoding.
1112 static uint64_t DecodeSignRotatedValue(uint64_t V) {
1113   if ((V & 1) == 0)
1114     return V >> 1;
1115   if (V != 1)
1116     return -(V >> 1);
1117   // There is no such thing as -0 with integers.  "-0" really means MININT.
1118   return 1ULL << 63;
1119 }
1120 
1121 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1122 /// values and aliases that we can.
1123 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1124   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1125   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1126 
1127   GlobalInitWorklist.swap(GlobalInits);
1128   AliasInitWorklist.swap(AliasInits);
1129 
1130   while (!GlobalInitWorklist.empty()) {
1131     unsigned ValID = GlobalInitWorklist.back().second;
1132     if (ValID >= ValueList.size()) {
1133       // Not ready to resolve this yet, it requires something later in the file.
1134       GlobalInits.push_back(GlobalInitWorklist.back());
1135     } else {
1136       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1137         GlobalInitWorklist.back().first->setInitializer(C);
1138       else
1139         return Error("Global variable initializer is not a constant!");
1140     }
1141     GlobalInitWorklist.pop_back();
1142   }
1143 
1144   while (!AliasInitWorklist.empty()) {
1145     unsigned ValID = AliasInitWorklist.back().second;
1146     if (ValID >= ValueList.size()) {
1147       AliasInits.push_back(AliasInitWorklist.back());
1148     } else {
1149       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1150         AliasInitWorklist.back().first->setAliasee(C);
1151       else
1152         return Error("Alias initializer is not a constant!");
1153     }
1154     AliasInitWorklist.pop_back();
1155   }
1156   return false;
1157 }
1158 
1159 bool BitcodeReader::ParseConstants() {
1160   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1161     return Error("Malformed block record");
1162 
1163   SmallVector<uint64_t, 64> Record;
1164 
1165   // Read all the records for this value table.
1166   Type *CurTy = Type::getInt32Ty(Context);
1167   unsigned NextCstNo = ValueList.size();
1168   while (1) {
1169     unsigned Code = Stream.ReadCode();
1170     if (Code == bitc::END_BLOCK)
1171       break;
1172 
1173     if (Code == bitc::ENTER_SUBBLOCK) {
1174       // No known subblocks, always skip them.
1175       Stream.ReadSubBlockID();
1176       if (Stream.SkipBlock())
1177         return Error("Malformed block record");
1178       continue;
1179     }
1180 
1181     if (Code == bitc::DEFINE_ABBREV) {
1182       Stream.ReadAbbrevRecord();
1183       continue;
1184     }
1185 
1186     // Read a record.
1187     Record.clear();
1188     Value *V = 0;
1189     unsigned BitCode = Stream.ReadRecord(Code, Record);
1190     switch (BitCode) {
1191     default:  // Default behavior: unknown constant
1192     case bitc::CST_CODE_UNDEF:     // UNDEF
1193       V = UndefValue::get(CurTy);
1194       break;
1195     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1196       if (Record.empty())
1197         return Error("Malformed CST_SETTYPE record");
1198       if (Record[0] >= TypeList.size())
1199         return Error("Invalid Type ID in CST_SETTYPE record");
1200       CurTy = TypeList[Record[0]];
1201       continue;  // Skip the ValueList manipulation.
1202     case bitc::CST_CODE_NULL:      // NULL
1203       V = Constant::getNullValue(CurTy);
1204       break;
1205     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1206       if (!CurTy->isIntegerTy() || Record.empty())
1207         return Error("Invalid CST_INTEGER record");
1208       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1209       break;
1210     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1211       if (!CurTy->isIntegerTy() || Record.empty())
1212         return Error("Invalid WIDE_INTEGER record");
1213 
1214       unsigned NumWords = Record.size();
1215       SmallVector<uint64_t, 8> Words;
1216       Words.resize(NumWords);
1217       for (unsigned i = 0; i != NumWords; ++i)
1218         Words[i] = DecodeSignRotatedValue(Record[i]);
1219       V = ConstantInt::get(Context,
1220                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1221                                  Words));
1222       break;
1223     }
1224     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1225       if (Record.empty())
1226         return Error("Invalid FLOAT record");
1227       if (CurTy->isFloatTy())
1228         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1229       else if (CurTy->isDoubleTy())
1230         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1231       else if (CurTy->isX86_FP80Ty()) {
1232         // Bits are not stored the same way as a normal i80 APInt, compensate.
1233         uint64_t Rearrange[2];
1234         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1235         Rearrange[1] = Record[0] >> 48;
1236         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1237       } else if (CurTy->isFP128Ty())
1238         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1239       else if (CurTy->isPPC_FP128Ty())
1240         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1241       else
1242         V = UndefValue::get(CurTy);
1243       break;
1244     }
1245 
1246     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1247       if (Record.empty())
1248         return Error("Invalid CST_AGGREGATE record");
1249 
1250       unsigned Size = Record.size();
1251       std::vector<Constant*> Elts;
1252 
1253       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1254         for (unsigned i = 0; i != Size; ++i)
1255           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1256                                                      STy->getElementType(i)));
1257         V = ConstantStruct::get(STy, Elts);
1258       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1259         Type *EltTy = ATy->getElementType();
1260         for (unsigned i = 0; i != Size; ++i)
1261           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1262         V = ConstantArray::get(ATy, Elts);
1263       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1264         Type *EltTy = VTy->getElementType();
1265         for (unsigned i = 0; i != Size; ++i)
1266           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1267         V = ConstantVector::get(Elts);
1268       } else {
1269         V = UndefValue::get(CurTy);
1270       }
1271       break;
1272     }
1273     case bitc::CST_CODE_STRING: { // STRING: [values]
1274       if (Record.empty())
1275         return Error("Invalid CST_AGGREGATE record");
1276 
1277       ArrayType *ATy = cast<ArrayType>(CurTy);
1278       Type *EltTy = ATy->getElementType();
1279 
1280       unsigned Size = Record.size();
1281       std::vector<Constant*> Elts;
1282       for (unsigned i = 0; i != Size; ++i)
1283         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1284       V = ConstantArray::get(ATy, Elts);
1285       break;
1286     }
1287     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1288       if (Record.empty())
1289         return Error("Invalid CST_AGGREGATE record");
1290 
1291       ArrayType *ATy = cast<ArrayType>(CurTy);
1292       Type *EltTy = ATy->getElementType();
1293 
1294       unsigned Size = Record.size();
1295       std::vector<Constant*> Elts;
1296       for (unsigned i = 0; i != Size; ++i)
1297         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1298       Elts.push_back(Constant::getNullValue(EltTy));
1299       V = ConstantArray::get(ATy, Elts);
1300       break;
1301     }
1302     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1303       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1304       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1305       if (Opc < 0) {
1306         V = UndefValue::get(CurTy);  // Unknown binop.
1307       } else {
1308         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1309         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1310         unsigned Flags = 0;
1311         if (Record.size() >= 4) {
1312           if (Opc == Instruction::Add ||
1313               Opc == Instruction::Sub ||
1314               Opc == Instruction::Mul ||
1315               Opc == Instruction::Shl) {
1316             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1317               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1318             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1319               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1320           } else if (Opc == Instruction::SDiv ||
1321                      Opc == Instruction::UDiv ||
1322                      Opc == Instruction::LShr ||
1323                      Opc == Instruction::AShr) {
1324             if (Record[3] & (1 << bitc::PEO_EXACT))
1325               Flags |= SDivOperator::IsExact;
1326           }
1327         }
1328         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1329       }
1330       break;
1331     }
1332     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1333       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1334       int Opc = GetDecodedCastOpcode(Record[0]);
1335       if (Opc < 0) {
1336         V = UndefValue::get(CurTy);  // Unknown cast.
1337       } else {
1338         Type *OpTy = getTypeByID(Record[1]);
1339         if (!OpTy) return Error("Invalid CE_CAST record");
1340         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1341         V = ConstantExpr::getCast(Opc, Op, CurTy);
1342       }
1343       break;
1344     }
1345     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1346     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1347       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1348       SmallVector<Constant*, 16> Elts;
1349       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1350         Type *ElTy = getTypeByID(Record[i]);
1351         if (!ElTy) return Error("Invalid CE_GEP record");
1352         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1353       }
1354       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1355       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1356         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], Indices);
1357       else
1358         V = ConstantExpr::getGetElementPtr(Elts[0], Indices);
1359       break;
1360     }
1361     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1362       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1363       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1364                                                               Type::getInt1Ty(Context)),
1365                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1366                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1367       break;
1368     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1369       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1370       VectorType *OpTy =
1371         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1372       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1373       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1374       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1375       V = ConstantExpr::getExtractElement(Op0, Op1);
1376       break;
1377     }
1378     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1379       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1380       if (Record.size() < 3 || OpTy == 0)
1381         return Error("Invalid CE_INSERTELT record");
1382       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1383       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1384                                                   OpTy->getElementType());
1385       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1386       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1387       break;
1388     }
1389     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1390       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1391       if (Record.size() < 3 || OpTy == 0)
1392         return Error("Invalid CE_SHUFFLEVEC record");
1393       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1394       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1395       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1396                                                  OpTy->getNumElements());
1397       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1398       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1399       break;
1400     }
1401     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1402       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1403       VectorType *OpTy =
1404         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1405       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1406         return Error("Invalid CE_SHUFVEC_EX record");
1407       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1408       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1409       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1410                                                  RTy->getNumElements());
1411       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1412       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1413       break;
1414     }
1415     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1416       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1417       Type *OpTy = getTypeByID(Record[0]);
1418       if (OpTy == 0) return Error("Invalid CE_CMP record");
1419       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1420       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1421 
1422       if (OpTy->isFPOrFPVectorTy())
1423         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1424       else
1425         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1426       break;
1427     }
1428     case bitc::CST_CODE_INLINEASM: {
1429       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1430       std::string AsmStr, ConstrStr;
1431       bool HasSideEffects = Record[0] & 1;
1432       bool IsAlignStack = Record[0] >> 1;
1433       unsigned AsmStrSize = Record[1];
1434       if (2+AsmStrSize >= Record.size())
1435         return Error("Invalid INLINEASM record");
1436       unsigned ConstStrSize = Record[2+AsmStrSize];
1437       if (3+AsmStrSize+ConstStrSize > Record.size())
1438         return Error("Invalid INLINEASM record");
1439 
1440       for (unsigned i = 0; i != AsmStrSize; ++i)
1441         AsmStr += (char)Record[2+i];
1442       for (unsigned i = 0; i != ConstStrSize; ++i)
1443         ConstrStr += (char)Record[3+AsmStrSize+i];
1444       PointerType *PTy = cast<PointerType>(CurTy);
1445       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1446                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1447       break;
1448     }
1449     case bitc::CST_CODE_BLOCKADDRESS:{
1450       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1451       Type *FnTy = getTypeByID(Record[0]);
1452       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1453       Function *Fn =
1454         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1455       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1456 
1457       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1458                                                   Type::getInt8Ty(Context),
1459                                             false, GlobalValue::InternalLinkage,
1460                                                   0, "");
1461       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1462       V = FwdRef;
1463       break;
1464     }
1465     }
1466 
1467     ValueList.AssignValue(V, NextCstNo);
1468     ++NextCstNo;
1469   }
1470 
1471   if (NextCstNo != ValueList.size())
1472     return Error("Invalid constant reference!");
1473 
1474   if (Stream.ReadBlockEnd())
1475     return Error("Error at end of constants block");
1476 
1477   // Once all the constants have been read, go through and resolve forward
1478   // references.
1479   ValueList.ResolveConstantForwardRefs();
1480   return false;
1481 }
1482 
1483 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1484 /// remember where it is and then skip it.  This lets us lazily deserialize the
1485 /// functions.
1486 bool BitcodeReader::RememberAndSkipFunctionBody() {
1487   // Get the function we are talking about.
1488   if (FunctionsWithBodies.empty())
1489     return Error("Insufficient function protos");
1490 
1491   Function *Fn = FunctionsWithBodies.back();
1492   FunctionsWithBodies.pop_back();
1493 
1494   // Save the current stream state.
1495   uint64_t CurBit = Stream.GetCurrentBitNo();
1496   DeferredFunctionInfo[Fn] = CurBit;
1497 
1498   // Skip over the function block for now.
1499   if (Stream.SkipBlock())
1500     return Error("Malformed block record");
1501   return false;
1502 }
1503 
1504 bool BitcodeReader::ParseModule() {
1505   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1506     return Error("Malformed block record");
1507 
1508   SmallVector<uint64_t, 64> Record;
1509   std::vector<std::string> SectionTable;
1510   std::vector<std::string> GCTable;
1511 
1512   // Read all the records for this module.
1513   while (!Stream.AtEndOfStream()) {
1514     unsigned Code = Stream.ReadCode();
1515     if (Code == bitc::END_BLOCK) {
1516       if (Stream.ReadBlockEnd())
1517         return Error("Error at end of module block");
1518 
1519       // Patch the initializers for globals and aliases up.
1520       ResolveGlobalAndAliasInits();
1521       if (!GlobalInits.empty() || !AliasInits.empty())
1522         return Error("Malformed global initializer set");
1523       if (!FunctionsWithBodies.empty())
1524         return Error("Too few function bodies found");
1525 
1526       // Look for intrinsic functions which need to be upgraded at some point
1527       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1528            FI != FE; ++FI) {
1529         Function* NewFn;
1530         if (UpgradeIntrinsicFunction(FI, NewFn))
1531           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1532       }
1533 
1534       // Look for global variables which need to be renamed.
1535       for (Module::global_iterator
1536              GI = TheModule->global_begin(), GE = TheModule->global_end();
1537            GI != GE; ++GI)
1538         UpgradeGlobalVariable(GI);
1539 
1540       // Force deallocation of memory for these vectors to favor the client that
1541       // want lazy deserialization.
1542       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1543       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1544       std::vector<Function*>().swap(FunctionsWithBodies);
1545       return false;
1546     }
1547 
1548     if (Code == bitc::ENTER_SUBBLOCK) {
1549       switch (Stream.ReadSubBlockID()) {
1550       default:  // Skip unknown content.
1551         if (Stream.SkipBlock())
1552           return Error("Malformed block record");
1553         break;
1554       case bitc::BLOCKINFO_BLOCK_ID:
1555         if (Stream.ReadBlockInfoBlock())
1556           return Error("Malformed BlockInfoBlock");
1557         break;
1558       case bitc::PARAMATTR_BLOCK_ID:
1559         if (ParseAttributeBlock())
1560           return true;
1561         break;
1562       case bitc::TYPE_BLOCK_ID_NEW:
1563         if (ParseTypeTable())
1564           return true;
1565         break;
1566       case bitc::TYPE_BLOCK_ID_OLD:
1567         if (ParseOldTypeTable())
1568           return true;
1569         break;
1570       case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1571         if (ParseOldTypeSymbolTable())
1572           return true;
1573         break;
1574       case bitc::VALUE_SYMTAB_BLOCK_ID:
1575         if (ParseValueSymbolTable())
1576           return true;
1577         break;
1578       case bitc::CONSTANTS_BLOCK_ID:
1579         if (ParseConstants() || ResolveGlobalAndAliasInits())
1580           return true;
1581         break;
1582       case bitc::METADATA_BLOCK_ID:
1583         if (ParseMetadata())
1584           return true;
1585         break;
1586       case bitc::FUNCTION_BLOCK_ID:
1587         // If this is the first function body we've seen, reverse the
1588         // FunctionsWithBodies list.
1589         if (!HasReversedFunctionsWithBodies) {
1590           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1591           HasReversedFunctionsWithBodies = true;
1592         }
1593 
1594         if (RememberAndSkipFunctionBody())
1595           return true;
1596         break;
1597       }
1598       continue;
1599     }
1600 
1601     if (Code == bitc::DEFINE_ABBREV) {
1602       Stream.ReadAbbrevRecord();
1603       continue;
1604     }
1605 
1606     // Read a record.
1607     switch (Stream.ReadRecord(Code, Record)) {
1608     default: break;  // Default behavior, ignore unknown content.
1609     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1610       if (Record.size() < 1)
1611         return Error("Malformed MODULE_CODE_VERSION");
1612       // Only version #0 is supported so far.
1613       if (Record[0] != 0)
1614         return Error("Unknown bitstream version!");
1615       break;
1616     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1617       std::string S;
1618       if (ConvertToString(Record, 0, S))
1619         return Error("Invalid MODULE_CODE_TRIPLE record");
1620       TheModule->setTargetTriple(S);
1621       break;
1622     }
1623     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1624       std::string S;
1625       if (ConvertToString(Record, 0, S))
1626         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1627       TheModule->setDataLayout(S);
1628       break;
1629     }
1630     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1631       std::string S;
1632       if (ConvertToString(Record, 0, S))
1633         return Error("Invalid MODULE_CODE_ASM record");
1634       TheModule->setModuleInlineAsm(S);
1635       break;
1636     }
1637     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1638       std::string S;
1639       if (ConvertToString(Record, 0, S))
1640         return Error("Invalid MODULE_CODE_DEPLIB record");
1641       TheModule->addLibrary(S);
1642       break;
1643     }
1644     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1645       std::string S;
1646       if (ConvertToString(Record, 0, S))
1647         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1648       SectionTable.push_back(S);
1649       break;
1650     }
1651     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1652       std::string S;
1653       if (ConvertToString(Record, 0, S))
1654         return Error("Invalid MODULE_CODE_GCNAME record");
1655       GCTable.push_back(S);
1656       break;
1657     }
1658     // GLOBALVAR: [pointer type, isconst, initid,
1659     //             linkage, alignment, section, visibility, threadlocal,
1660     //             unnamed_addr]
1661     case bitc::MODULE_CODE_GLOBALVAR: {
1662       if (Record.size() < 6)
1663         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1664       Type *Ty = getTypeByID(Record[0]);
1665       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1666       if (!Ty->isPointerTy())
1667         return Error("Global not a pointer type!");
1668       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1669       Ty = cast<PointerType>(Ty)->getElementType();
1670 
1671       bool isConstant = Record[1];
1672       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1673       unsigned Alignment = (1 << Record[4]) >> 1;
1674       std::string Section;
1675       if (Record[5]) {
1676         if (Record[5]-1 >= SectionTable.size())
1677           return Error("Invalid section ID");
1678         Section = SectionTable[Record[5]-1];
1679       }
1680       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1681       if (Record.size() > 6)
1682         Visibility = GetDecodedVisibility(Record[6]);
1683       bool isThreadLocal = false;
1684       if (Record.size() > 7)
1685         isThreadLocal = Record[7];
1686 
1687       bool UnnamedAddr = false;
1688       if (Record.size() > 8)
1689         UnnamedAddr = Record[8];
1690 
1691       GlobalVariable *NewGV =
1692         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1693                            isThreadLocal, AddressSpace);
1694       NewGV->setAlignment(Alignment);
1695       if (!Section.empty())
1696         NewGV->setSection(Section);
1697       NewGV->setVisibility(Visibility);
1698       NewGV->setThreadLocal(isThreadLocal);
1699       NewGV->setUnnamedAddr(UnnamedAddr);
1700 
1701       ValueList.push_back(NewGV);
1702 
1703       // Remember which value to use for the global initializer.
1704       if (unsigned InitID = Record[2])
1705         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1706       break;
1707     }
1708     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1709     //             alignment, section, visibility, gc, unnamed_addr]
1710     case bitc::MODULE_CODE_FUNCTION: {
1711       if (Record.size() < 8)
1712         return Error("Invalid MODULE_CODE_FUNCTION record");
1713       Type *Ty = getTypeByID(Record[0]);
1714       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1715       if (!Ty->isPointerTy())
1716         return Error("Function not a pointer type!");
1717       FunctionType *FTy =
1718         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1719       if (!FTy)
1720         return Error("Function not a pointer to function type!");
1721 
1722       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1723                                         "", TheModule);
1724 
1725       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1726       bool isProto = Record[2];
1727       Func->setLinkage(GetDecodedLinkage(Record[3]));
1728       Func->setAttributes(getAttributes(Record[4]));
1729 
1730       Func->setAlignment((1 << Record[5]) >> 1);
1731       if (Record[6]) {
1732         if (Record[6]-1 >= SectionTable.size())
1733           return Error("Invalid section ID");
1734         Func->setSection(SectionTable[Record[6]-1]);
1735       }
1736       Func->setVisibility(GetDecodedVisibility(Record[7]));
1737       if (Record.size() > 8 && Record[8]) {
1738         if (Record[8]-1 > GCTable.size())
1739           return Error("Invalid GC ID");
1740         Func->setGC(GCTable[Record[8]-1].c_str());
1741       }
1742       bool UnnamedAddr = false;
1743       if (Record.size() > 9)
1744         UnnamedAddr = Record[9];
1745       Func->setUnnamedAddr(UnnamedAddr);
1746       ValueList.push_back(Func);
1747 
1748       // If this is a function with a body, remember the prototype we are
1749       // creating now, so that we can match up the body with them later.
1750       if (!isProto)
1751         FunctionsWithBodies.push_back(Func);
1752       break;
1753     }
1754     // ALIAS: [alias type, aliasee val#, linkage]
1755     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1756     case bitc::MODULE_CODE_ALIAS: {
1757       if (Record.size() < 3)
1758         return Error("Invalid MODULE_ALIAS record");
1759       Type *Ty = getTypeByID(Record[0]);
1760       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1761       if (!Ty->isPointerTy())
1762         return Error("Function not a pointer type!");
1763 
1764       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1765                                            "", 0, TheModule);
1766       // Old bitcode files didn't have visibility field.
1767       if (Record.size() > 3)
1768         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1769       ValueList.push_back(NewGA);
1770       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1771       break;
1772     }
1773     /// MODULE_CODE_PURGEVALS: [numvals]
1774     case bitc::MODULE_CODE_PURGEVALS:
1775       // Trim down the value list to the specified size.
1776       if (Record.size() < 1 || Record[0] > ValueList.size())
1777         return Error("Invalid MODULE_PURGEVALS record");
1778       ValueList.shrinkTo(Record[0]);
1779       break;
1780     }
1781     Record.clear();
1782   }
1783 
1784   return Error("Premature end of bitstream");
1785 }
1786 
1787 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1788   TheModule = 0;
1789 
1790   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1791   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1792 
1793   if (Buffer->getBufferSize() & 3) {
1794     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1795       return Error("Invalid bitcode signature");
1796     else
1797       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1798   }
1799 
1800   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1801   // The magic number is 0x0B17C0DE stored in little endian.
1802   if (isBitcodeWrapper(BufPtr, BufEnd))
1803     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1804       return Error("Invalid bitcode wrapper header");
1805 
1806   StreamFile.init(BufPtr, BufEnd);
1807   Stream.init(StreamFile);
1808 
1809   // Sniff for the signature.
1810   if (Stream.Read(8) != 'B' ||
1811       Stream.Read(8) != 'C' ||
1812       Stream.Read(4) != 0x0 ||
1813       Stream.Read(4) != 0xC ||
1814       Stream.Read(4) != 0xE ||
1815       Stream.Read(4) != 0xD)
1816     return Error("Invalid bitcode signature");
1817 
1818   // We expect a number of well-defined blocks, though we don't necessarily
1819   // need to understand them all.
1820   while (!Stream.AtEndOfStream()) {
1821     unsigned Code = Stream.ReadCode();
1822 
1823     if (Code != bitc::ENTER_SUBBLOCK) {
1824 
1825       // The ranlib in xcode 4 will align archive members by appending newlines to the
1826       // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1827       // ignore these final 4 bytes :-(
1828       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1829           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1830 	  Stream.AtEndOfStream())
1831         return false;
1832 
1833       return Error("Invalid record at top-level");
1834     }
1835 
1836     unsigned BlockID = Stream.ReadSubBlockID();
1837 
1838     // We only know the MODULE subblock ID.
1839     switch (BlockID) {
1840     case bitc::BLOCKINFO_BLOCK_ID:
1841       if (Stream.ReadBlockInfoBlock())
1842         return Error("Malformed BlockInfoBlock");
1843       break;
1844     case bitc::MODULE_BLOCK_ID:
1845       // Reject multiple MODULE_BLOCK's in a single bitstream.
1846       if (TheModule)
1847         return Error("Multiple MODULE_BLOCKs in same stream");
1848       TheModule = M;
1849       if (ParseModule())
1850         return true;
1851       break;
1852     default:
1853       if (Stream.SkipBlock())
1854         return Error("Malformed block record");
1855       break;
1856     }
1857   }
1858 
1859   return false;
1860 }
1861 
1862 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1863   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1864     return Error("Malformed block record");
1865 
1866   SmallVector<uint64_t, 64> Record;
1867 
1868   // Read all the records for this module.
1869   while (!Stream.AtEndOfStream()) {
1870     unsigned Code = Stream.ReadCode();
1871     if (Code == bitc::END_BLOCK) {
1872       if (Stream.ReadBlockEnd())
1873         return Error("Error at end of module block");
1874 
1875       return false;
1876     }
1877 
1878     if (Code == bitc::ENTER_SUBBLOCK) {
1879       switch (Stream.ReadSubBlockID()) {
1880       default:  // Skip unknown content.
1881         if (Stream.SkipBlock())
1882           return Error("Malformed block record");
1883         break;
1884       }
1885       continue;
1886     }
1887 
1888     if (Code == bitc::DEFINE_ABBREV) {
1889       Stream.ReadAbbrevRecord();
1890       continue;
1891     }
1892 
1893     // Read a record.
1894     switch (Stream.ReadRecord(Code, Record)) {
1895     default: break;  // Default behavior, ignore unknown content.
1896     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1897       if (Record.size() < 1)
1898         return Error("Malformed MODULE_CODE_VERSION");
1899       // Only version #0 is supported so far.
1900       if (Record[0] != 0)
1901         return Error("Unknown bitstream version!");
1902       break;
1903     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1904       std::string S;
1905       if (ConvertToString(Record, 0, S))
1906         return Error("Invalid MODULE_CODE_TRIPLE record");
1907       Triple = S;
1908       break;
1909     }
1910     }
1911     Record.clear();
1912   }
1913 
1914   return Error("Premature end of bitstream");
1915 }
1916 
1917 bool BitcodeReader::ParseTriple(std::string &Triple) {
1918   if (Buffer->getBufferSize() & 3)
1919     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1920 
1921   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1922   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1923 
1924   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1925   // The magic number is 0x0B17C0DE stored in little endian.
1926   if (isBitcodeWrapper(BufPtr, BufEnd))
1927     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1928       return Error("Invalid bitcode wrapper header");
1929 
1930   StreamFile.init(BufPtr, BufEnd);
1931   Stream.init(StreamFile);
1932 
1933   // Sniff for the signature.
1934   if (Stream.Read(8) != 'B' ||
1935       Stream.Read(8) != 'C' ||
1936       Stream.Read(4) != 0x0 ||
1937       Stream.Read(4) != 0xC ||
1938       Stream.Read(4) != 0xE ||
1939       Stream.Read(4) != 0xD)
1940     return Error("Invalid bitcode signature");
1941 
1942   // We expect a number of well-defined blocks, though we don't necessarily
1943   // need to understand them all.
1944   while (!Stream.AtEndOfStream()) {
1945     unsigned Code = Stream.ReadCode();
1946 
1947     if (Code != bitc::ENTER_SUBBLOCK)
1948       return Error("Invalid record at top-level");
1949 
1950     unsigned BlockID = Stream.ReadSubBlockID();
1951 
1952     // We only know the MODULE subblock ID.
1953     switch (BlockID) {
1954     case bitc::MODULE_BLOCK_ID:
1955       if (ParseModuleTriple(Triple))
1956         return true;
1957       break;
1958     default:
1959       if (Stream.SkipBlock())
1960         return Error("Malformed block record");
1961       break;
1962     }
1963   }
1964 
1965   return false;
1966 }
1967 
1968 /// ParseMetadataAttachment - Parse metadata attachments.
1969 bool BitcodeReader::ParseMetadataAttachment() {
1970   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1971     return Error("Malformed block record");
1972 
1973   SmallVector<uint64_t, 64> Record;
1974   while(1) {
1975     unsigned Code = Stream.ReadCode();
1976     if (Code == bitc::END_BLOCK) {
1977       if (Stream.ReadBlockEnd())
1978         return Error("Error at end of PARAMATTR block");
1979       break;
1980     }
1981     if (Code == bitc::DEFINE_ABBREV) {
1982       Stream.ReadAbbrevRecord();
1983       continue;
1984     }
1985     // Read a metadata attachment record.
1986     Record.clear();
1987     switch (Stream.ReadRecord(Code, Record)) {
1988     default:  // Default behavior: ignore.
1989       break;
1990     case bitc::METADATA_ATTACHMENT: {
1991       unsigned RecordLength = Record.size();
1992       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1993         return Error ("Invalid METADATA_ATTACHMENT reader!");
1994       Instruction *Inst = InstructionList[Record[0]];
1995       for (unsigned i = 1; i != RecordLength; i = i+2) {
1996         unsigned Kind = Record[i];
1997         DenseMap<unsigned, unsigned>::iterator I =
1998           MDKindMap.find(Kind);
1999         if (I == MDKindMap.end())
2000           return Error("Invalid metadata kind ID");
2001         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2002         Inst->setMetadata(I->second, cast<MDNode>(Node));
2003       }
2004       break;
2005     }
2006     }
2007   }
2008   return false;
2009 }
2010 
2011 /// ParseFunctionBody - Lazily parse the specified function body block.
2012 bool BitcodeReader::ParseFunctionBody(Function *F) {
2013   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2014     return Error("Malformed block record");
2015 
2016   InstructionList.clear();
2017   unsigned ModuleValueListSize = ValueList.size();
2018   unsigned ModuleMDValueListSize = MDValueList.size();
2019 
2020   // Add all the function arguments to the value table.
2021   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2022     ValueList.push_back(I);
2023 
2024   unsigned NextValueNo = ValueList.size();
2025   BasicBlock *CurBB = 0;
2026   unsigned CurBBNo = 0;
2027 
2028   DebugLoc LastLoc;
2029 
2030   // Read all the records.
2031   SmallVector<uint64_t, 64> Record;
2032   while (1) {
2033     unsigned Code = Stream.ReadCode();
2034     if (Code == bitc::END_BLOCK) {
2035       if (Stream.ReadBlockEnd())
2036         return Error("Error at end of function block");
2037       break;
2038     }
2039 
2040     if (Code == bitc::ENTER_SUBBLOCK) {
2041       switch (Stream.ReadSubBlockID()) {
2042       default:  // Skip unknown content.
2043         if (Stream.SkipBlock())
2044           return Error("Malformed block record");
2045         break;
2046       case bitc::CONSTANTS_BLOCK_ID:
2047         if (ParseConstants()) return true;
2048         NextValueNo = ValueList.size();
2049         break;
2050       case bitc::VALUE_SYMTAB_BLOCK_ID:
2051         if (ParseValueSymbolTable()) return true;
2052         break;
2053       case bitc::METADATA_ATTACHMENT_ID:
2054         if (ParseMetadataAttachment()) return true;
2055         break;
2056       case bitc::METADATA_BLOCK_ID:
2057         if (ParseMetadata()) return true;
2058         break;
2059       }
2060       continue;
2061     }
2062 
2063     if (Code == bitc::DEFINE_ABBREV) {
2064       Stream.ReadAbbrevRecord();
2065       continue;
2066     }
2067 
2068     // Read a record.
2069     Record.clear();
2070     Instruction *I = 0;
2071     unsigned BitCode = Stream.ReadRecord(Code, Record);
2072     switch (BitCode) {
2073     default: // Default behavior: reject
2074       return Error("Unknown instruction");
2075     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2076       if (Record.size() < 1 || Record[0] == 0)
2077         return Error("Invalid DECLAREBLOCKS record");
2078       // Create all the basic blocks for the function.
2079       FunctionBBs.resize(Record[0]);
2080       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2081         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2082       CurBB = FunctionBBs[0];
2083       continue;
2084 
2085     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2086       // This record indicates that the last instruction is at the same
2087       // location as the previous instruction with a location.
2088       I = 0;
2089 
2090       // Get the last instruction emitted.
2091       if (CurBB && !CurBB->empty())
2092         I = &CurBB->back();
2093       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2094                !FunctionBBs[CurBBNo-1]->empty())
2095         I = &FunctionBBs[CurBBNo-1]->back();
2096 
2097       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2098       I->setDebugLoc(LastLoc);
2099       I = 0;
2100       continue;
2101 
2102     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2103       I = 0;     // Get the last instruction emitted.
2104       if (CurBB && !CurBB->empty())
2105         I = &CurBB->back();
2106       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2107                !FunctionBBs[CurBBNo-1]->empty())
2108         I = &FunctionBBs[CurBBNo-1]->back();
2109       if (I == 0 || Record.size() < 4)
2110         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2111 
2112       unsigned Line = Record[0], Col = Record[1];
2113       unsigned ScopeID = Record[2], IAID = Record[3];
2114 
2115       MDNode *Scope = 0, *IA = 0;
2116       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2117       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2118       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2119       I->setDebugLoc(LastLoc);
2120       I = 0;
2121       continue;
2122     }
2123 
2124     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2125       unsigned OpNum = 0;
2126       Value *LHS, *RHS;
2127       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2128           getValue(Record, OpNum, LHS->getType(), RHS) ||
2129           OpNum+1 > Record.size())
2130         return Error("Invalid BINOP record");
2131 
2132       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2133       if (Opc == -1) return Error("Invalid BINOP record");
2134       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2135       InstructionList.push_back(I);
2136       if (OpNum < Record.size()) {
2137         if (Opc == Instruction::Add ||
2138             Opc == Instruction::Sub ||
2139             Opc == Instruction::Mul ||
2140             Opc == Instruction::Shl) {
2141           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2142             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2143           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2144             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2145         } else if (Opc == Instruction::SDiv ||
2146                    Opc == Instruction::UDiv ||
2147                    Opc == Instruction::LShr ||
2148                    Opc == Instruction::AShr) {
2149           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2150             cast<BinaryOperator>(I)->setIsExact(true);
2151         }
2152       }
2153       break;
2154     }
2155     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2156       unsigned OpNum = 0;
2157       Value *Op;
2158       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2159           OpNum+2 != Record.size())
2160         return Error("Invalid CAST record");
2161 
2162       Type *ResTy = getTypeByID(Record[OpNum]);
2163       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2164       if (Opc == -1 || ResTy == 0)
2165         return Error("Invalid CAST record");
2166       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2167       InstructionList.push_back(I);
2168       break;
2169     }
2170     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2171     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2172       unsigned OpNum = 0;
2173       Value *BasePtr;
2174       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2175         return Error("Invalid GEP record");
2176 
2177       SmallVector<Value*, 16> GEPIdx;
2178       while (OpNum != Record.size()) {
2179         Value *Op;
2180         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2181           return Error("Invalid GEP record");
2182         GEPIdx.push_back(Op);
2183       }
2184 
2185       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
2186       InstructionList.push_back(I);
2187       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2188         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2189       break;
2190     }
2191 
2192     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2193                                        // EXTRACTVAL: [opty, opval, n x indices]
2194       unsigned OpNum = 0;
2195       Value *Agg;
2196       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2197         return Error("Invalid EXTRACTVAL record");
2198 
2199       SmallVector<unsigned, 4> EXTRACTVALIdx;
2200       for (unsigned RecSize = Record.size();
2201            OpNum != RecSize; ++OpNum) {
2202         uint64_t Index = Record[OpNum];
2203         if ((unsigned)Index != Index)
2204           return Error("Invalid EXTRACTVAL index");
2205         EXTRACTVALIdx.push_back((unsigned)Index);
2206       }
2207 
2208       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2209       InstructionList.push_back(I);
2210       break;
2211     }
2212 
2213     case bitc::FUNC_CODE_INST_INSERTVAL: {
2214                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2215       unsigned OpNum = 0;
2216       Value *Agg;
2217       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2218         return Error("Invalid INSERTVAL record");
2219       Value *Val;
2220       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2221         return Error("Invalid INSERTVAL record");
2222 
2223       SmallVector<unsigned, 4> INSERTVALIdx;
2224       for (unsigned RecSize = Record.size();
2225            OpNum != RecSize; ++OpNum) {
2226         uint64_t Index = Record[OpNum];
2227         if ((unsigned)Index != Index)
2228           return Error("Invalid INSERTVAL index");
2229         INSERTVALIdx.push_back((unsigned)Index);
2230       }
2231 
2232       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2233       InstructionList.push_back(I);
2234       break;
2235     }
2236 
2237     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2238       // obsolete form of select
2239       // handles select i1 ... in old bitcode
2240       unsigned OpNum = 0;
2241       Value *TrueVal, *FalseVal, *Cond;
2242       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2243           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2244           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2245         return Error("Invalid SELECT record");
2246 
2247       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2248       InstructionList.push_back(I);
2249       break;
2250     }
2251 
2252     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2253       // new form of select
2254       // handles select i1 or select [N x i1]
2255       unsigned OpNum = 0;
2256       Value *TrueVal, *FalseVal, *Cond;
2257       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2258           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2259           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2260         return Error("Invalid SELECT record");
2261 
2262       // select condition can be either i1 or [N x i1]
2263       if (VectorType* vector_type =
2264           dyn_cast<VectorType>(Cond->getType())) {
2265         // expect <n x i1>
2266         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2267           return Error("Invalid SELECT condition type");
2268       } else {
2269         // expect i1
2270         if (Cond->getType() != Type::getInt1Ty(Context))
2271           return Error("Invalid SELECT condition type");
2272       }
2273 
2274       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2275       InstructionList.push_back(I);
2276       break;
2277     }
2278 
2279     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2280       unsigned OpNum = 0;
2281       Value *Vec, *Idx;
2282       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2283           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2284         return Error("Invalid EXTRACTELT record");
2285       I = ExtractElementInst::Create(Vec, Idx);
2286       InstructionList.push_back(I);
2287       break;
2288     }
2289 
2290     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2291       unsigned OpNum = 0;
2292       Value *Vec, *Elt, *Idx;
2293       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2294           getValue(Record, OpNum,
2295                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2296           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2297         return Error("Invalid INSERTELT record");
2298       I = InsertElementInst::Create(Vec, Elt, Idx);
2299       InstructionList.push_back(I);
2300       break;
2301     }
2302 
2303     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2304       unsigned OpNum = 0;
2305       Value *Vec1, *Vec2, *Mask;
2306       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2307           getValue(Record, OpNum, Vec1->getType(), Vec2))
2308         return Error("Invalid SHUFFLEVEC record");
2309 
2310       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2311         return Error("Invalid SHUFFLEVEC record");
2312       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2313       InstructionList.push_back(I);
2314       break;
2315     }
2316 
2317     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2318       // Old form of ICmp/FCmp returning bool
2319       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2320       // both legal on vectors but had different behaviour.
2321     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2322       // FCmp/ICmp returning bool or vector of bool
2323 
2324       unsigned OpNum = 0;
2325       Value *LHS, *RHS;
2326       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2327           getValue(Record, OpNum, LHS->getType(), RHS) ||
2328           OpNum+1 != Record.size())
2329         return Error("Invalid CMP record");
2330 
2331       if (LHS->getType()->isFPOrFPVectorTy())
2332         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2333       else
2334         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2335       InstructionList.push_back(I);
2336       break;
2337     }
2338 
2339     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2340       {
2341         unsigned Size = Record.size();
2342         if (Size == 0) {
2343           I = ReturnInst::Create(Context);
2344           InstructionList.push_back(I);
2345           break;
2346         }
2347 
2348         unsigned OpNum = 0;
2349         Value *Op = NULL;
2350         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2351           return Error("Invalid RET record");
2352         if (OpNum != Record.size())
2353           return Error("Invalid RET record");
2354 
2355         I = ReturnInst::Create(Context, Op);
2356         InstructionList.push_back(I);
2357         break;
2358       }
2359     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2360       if (Record.size() != 1 && Record.size() != 3)
2361         return Error("Invalid BR record");
2362       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2363       if (TrueDest == 0)
2364         return Error("Invalid BR record");
2365 
2366       if (Record.size() == 1) {
2367         I = BranchInst::Create(TrueDest);
2368         InstructionList.push_back(I);
2369       }
2370       else {
2371         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2372         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2373         if (FalseDest == 0 || Cond == 0)
2374           return Error("Invalid BR record");
2375         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2376         InstructionList.push_back(I);
2377       }
2378       break;
2379     }
2380     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2381       if (Record.size() < 3 || (Record.size() & 1) == 0)
2382         return Error("Invalid SWITCH record");
2383       Type *OpTy = getTypeByID(Record[0]);
2384       Value *Cond = getFnValueByID(Record[1], OpTy);
2385       BasicBlock *Default = getBasicBlock(Record[2]);
2386       if (OpTy == 0 || Cond == 0 || Default == 0)
2387         return Error("Invalid SWITCH record");
2388       unsigned NumCases = (Record.size()-3)/2;
2389       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2390       InstructionList.push_back(SI);
2391       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2392         ConstantInt *CaseVal =
2393           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2394         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2395         if (CaseVal == 0 || DestBB == 0) {
2396           delete SI;
2397           return Error("Invalid SWITCH record!");
2398         }
2399         SI->addCase(CaseVal, DestBB);
2400       }
2401       I = SI;
2402       break;
2403     }
2404     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2405       if (Record.size() < 2)
2406         return Error("Invalid INDIRECTBR record");
2407       Type *OpTy = getTypeByID(Record[0]);
2408       Value *Address = getFnValueByID(Record[1], OpTy);
2409       if (OpTy == 0 || Address == 0)
2410         return Error("Invalid INDIRECTBR record");
2411       unsigned NumDests = Record.size()-2;
2412       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2413       InstructionList.push_back(IBI);
2414       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2415         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2416           IBI->addDestination(DestBB);
2417         } else {
2418           delete IBI;
2419           return Error("Invalid INDIRECTBR record!");
2420         }
2421       }
2422       I = IBI;
2423       break;
2424     }
2425 
2426     case bitc::FUNC_CODE_INST_INVOKE: {
2427       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2428       if (Record.size() < 4) return Error("Invalid INVOKE record");
2429       AttrListPtr PAL = getAttributes(Record[0]);
2430       unsigned CCInfo = Record[1];
2431       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2432       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2433 
2434       unsigned OpNum = 4;
2435       Value *Callee;
2436       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2437         return Error("Invalid INVOKE record");
2438 
2439       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2440       FunctionType *FTy = !CalleeTy ? 0 :
2441         dyn_cast<FunctionType>(CalleeTy->getElementType());
2442 
2443       // Check that the right number of fixed parameters are here.
2444       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2445           Record.size() < OpNum+FTy->getNumParams())
2446         return Error("Invalid INVOKE record");
2447 
2448       SmallVector<Value*, 16> Ops;
2449       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2450         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2451         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2452       }
2453 
2454       if (!FTy->isVarArg()) {
2455         if (Record.size() != OpNum)
2456           return Error("Invalid INVOKE record");
2457       } else {
2458         // Read type/value pairs for varargs params.
2459         while (OpNum != Record.size()) {
2460           Value *Op;
2461           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2462             return Error("Invalid INVOKE record");
2463           Ops.push_back(Op);
2464         }
2465       }
2466 
2467       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2468       InstructionList.push_back(I);
2469       cast<InvokeInst>(I)->setCallingConv(
2470         static_cast<CallingConv::ID>(CCInfo));
2471       cast<InvokeInst>(I)->setAttributes(PAL);
2472       break;
2473     }
2474     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2475       I = new UnwindInst(Context);
2476       InstructionList.push_back(I);
2477       break;
2478     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2479       I = new UnreachableInst(Context);
2480       InstructionList.push_back(I);
2481       break;
2482     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2483       if (Record.size() < 1 || ((Record.size()-1)&1))
2484         return Error("Invalid PHI record");
2485       Type *Ty = getTypeByID(Record[0]);
2486       if (!Ty) return Error("Invalid PHI record");
2487 
2488       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2489       InstructionList.push_back(PN);
2490 
2491       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2492         Value *V = getFnValueByID(Record[1+i], Ty);
2493         BasicBlock *BB = getBasicBlock(Record[2+i]);
2494         if (!V || !BB) return Error("Invalid PHI record");
2495         PN->addIncoming(V, BB);
2496       }
2497       I = PN;
2498       break;
2499     }
2500 
2501     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2502       if (Record.size() != 4)
2503         return Error("Invalid ALLOCA record");
2504       PointerType *Ty =
2505         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2506       Type *OpTy = getTypeByID(Record[1]);
2507       Value *Size = getFnValueByID(Record[2], OpTy);
2508       unsigned Align = Record[3];
2509       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2510       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2511       InstructionList.push_back(I);
2512       break;
2513     }
2514     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2515       unsigned OpNum = 0;
2516       Value *Op;
2517       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2518           OpNum+2 != Record.size())
2519         return Error("Invalid LOAD record");
2520 
2521       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2522       InstructionList.push_back(I);
2523       break;
2524     }
2525     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2526       unsigned OpNum = 0;
2527       Value *Val, *Ptr;
2528       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2529           getValue(Record, OpNum,
2530                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2531           OpNum+2 != Record.size())
2532         return Error("Invalid STORE record");
2533 
2534       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2535       InstructionList.push_back(I);
2536       break;
2537     }
2538     case bitc::FUNC_CODE_INST_CALL: {
2539       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2540       if (Record.size() < 3)
2541         return Error("Invalid CALL record");
2542 
2543       AttrListPtr PAL = getAttributes(Record[0]);
2544       unsigned CCInfo = Record[1];
2545 
2546       unsigned OpNum = 2;
2547       Value *Callee;
2548       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2549         return Error("Invalid CALL record");
2550 
2551       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2552       FunctionType *FTy = 0;
2553       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2554       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2555         return Error("Invalid CALL record");
2556 
2557       SmallVector<Value*, 16> Args;
2558       // Read the fixed params.
2559       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2560         if (FTy->getParamType(i)->isLabelTy())
2561           Args.push_back(getBasicBlock(Record[OpNum]));
2562         else
2563           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2564         if (Args.back() == 0) return Error("Invalid CALL record");
2565       }
2566 
2567       // Read type/value pairs for varargs params.
2568       if (!FTy->isVarArg()) {
2569         if (OpNum != Record.size())
2570           return Error("Invalid CALL record");
2571       } else {
2572         while (OpNum != Record.size()) {
2573           Value *Op;
2574           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2575             return Error("Invalid CALL record");
2576           Args.push_back(Op);
2577         }
2578       }
2579 
2580       I = CallInst::Create(Callee, Args);
2581       InstructionList.push_back(I);
2582       cast<CallInst>(I)->setCallingConv(
2583         static_cast<CallingConv::ID>(CCInfo>>1));
2584       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2585       cast<CallInst>(I)->setAttributes(PAL);
2586       break;
2587     }
2588     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2589       if (Record.size() < 3)
2590         return Error("Invalid VAARG record");
2591       Type *OpTy = getTypeByID(Record[0]);
2592       Value *Op = getFnValueByID(Record[1], OpTy);
2593       Type *ResTy = getTypeByID(Record[2]);
2594       if (!OpTy || !Op || !ResTy)
2595         return Error("Invalid VAARG record");
2596       I = new VAArgInst(Op, ResTy);
2597       InstructionList.push_back(I);
2598       break;
2599     }
2600     }
2601 
2602     // Add instruction to end of current BB.  If there is no current BB, reject
2603     // this file.
2604     if (CurBB == 0) {
2605       delete I;
2606       return Error("Invalid instruction with no BB");
2607     }
2608     CurBB->getInstList().push_back(I);
2609 
2610     // If this was a terminator instruction, move to the next block.
2611     if (isa<TerminatorInst>(I)) {
2612       ++CurBBNo;
2613       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2614     }
2615 
2616     // Non-void values get registered in the value table for future use.
2617     if (I && !I->getType()->isVoidTy())
2618       ValueList.AssignValue(I, NextValueNo++);
2619   }
2620 
2621   // Check the function list for unresolved values.
2622   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2623     if (A->getParent() == 0) {
2624       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2625       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2626         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2627           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2628           delete A;
2629         }
2630       }
2631       return Error("Never resolved value found in function!");
2632     }
2633   }
2634 
2635   // FIXME: Check for unresolved forward-declared metadata references
2636   // and clean up leaks.
2637 
2638   // See if anything took the address of blocks in this function.  If so,
2639   // resolve them now.
2640   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2641     BlockAddrFwdRefs.find(F);
2642   if (BAFRI != BlockAddrFwdRefs.end()) {
2643     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2644     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2645       unsigned BlockIdx = RefList[i].first;
2646       if (BlockIdx >= FunctionBBs.size())
2647         return Error("Invalid blockaddress block #");
2648 
2649       GlobalVariable *FwdRef = RefList[i].second;
2650       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2651       FwdRef->eraseFromParent();
2652     }
2653 
2654     BlockAddrFwdRefs.erase(BAFRI);
2655   }
2656 
2657   // Trim the value list down to the size it was before we parsed this function.
2658   ValueList.shrinkTo(ModuleValueListSize);
2659   MDValueList.shrinkTo(ModuleMDValueListSize);
2660   std::vector<BasicBlock*>().swap(FunctionBBs);
2661   return false;
2662 }
2663 
2664 //===----------------------------------------------------------------------===//
2665 // GVMaterializer implementation
2666 //===----------------------------------------------------------------------===//
2667 
2668 
2669 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2670   if (const Function *F = dyn_cast<Function>(GV)) {
2671     return F->isDeclaration() &&
2672       DeferredFunctionInfo.count(const_cast<Function*>(F));
2673   }
2674   return false;
2675 }
2676 
2677 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2678   Function *F = dyn_cast<Function>(GV);
2679   // If it's not a function or is already material, ignore the request.
2680   if (!F || !F->isMaterializable()) return false;
2681 
2682   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2683   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2684 
2685   // Move the bit stream to the saved position of the deferred function body.
2686   Stream.JumpToBit(DFII->second);
2687 
2688   if (ParseFunctionBody(F)) {
2689     if (ErrInfo) *ErrInfo = ErrorString;
2690     return true;
2691   }
2692 
2693   // Upgrade any old intrinsic calls in the function.
2694   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2695        E = UpgradedIntrinsics.end(); I != E; ++I) {
2696     if (I->first != I->second) {
2697       for (Value::use_iterator UI = I->first->use_begin(),
2698            UE = I->first->use_end(); UI != UE; ) {
2699         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2700           UpgradeIntrinsicCall(CI, I->second);
2701       }
2702     }
2703   }
2704 
2705   return false;
2706 }
2707 
2708 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2709   const Function *F = dyn_cast<Function>(GV);
2710   if (!F || F->isDeclaration())
2711     return false;
2712   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2713 }
2714 
2715 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2716   Function *F = dyn_cast<Function>(GV);
2717   // If this function isn't dematerializable, this is a noop.
2718   if (!F || !isDematerializable(F))
2719     return;
2720 
2721   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2722 
2723   // Just forget the function body, we can remat it later.
2724   F->deleteBody();
2725 }
2726 
2727 
2728 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2729   assert(M == TheModule &&
2730          "Can only Materialize the Module this BitcodeReader is attached to.");
2731   // Iterate over the module, deserializing any functions that are still on
2732   // disk.
2733   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2734        F != E; ++F)
2735     if (F->isMaterializable() &&
2736         Materialize(F, ErrInfo))
2737       return true;
2738 
2739   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2740   // delete the old functions to clean up. We can't do this unless the entire
2741   // module is materialized because there could always be another function body
2742   // with calls to the old function.
2743   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2744        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2745     if (I->first != I->second) {
2746       for (Value::use_iterator UI = I->first->use_begin(),
2747            UE = I->first->use_end(); UI != UE; ) {
2748         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2749           UpgradeIntrinsicCall(CI, I->second);
2750       }
2751       if (!I->first->use_empty())
2752         I->first->replaceAllUsesWith(I->second);
2753       I->first->eraseFromParent();
2754     }
2755   }
2756   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2757 
2758   // Check debug info intrinsics.
2759   CheckDebugInfoIntrinsics(TheModule);
2760 
2761   return false;
2762 }
2763 
2764 
2765 //===----------------------------------------------------------------------===//
2766 // External interface
2767 //===----------------------------------------------------------------------===//
2768 
2769 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2770 ///
2771 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2772                                    LLVMContext& Context,
2773                                    std::string *ErrMsg) {
2774   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2775   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2776   M->setMaterializer(R);
2777   if (R->ParseBitcodeInto(M)) {
2778     if (ErrMsg)
2779       *ErrMsg = R->getErrorString();
2780 
2781     delete M;  // Also deletes R.
2782     return 0;
2783   }
2784   // Have the BitcodeReader dtor delete 'Buffer'.
2785   R->setBufferOwned(true);
2786   return M;
2787 }
2788 
2789 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2790 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2791 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2792                                std::string *ErrMsg){
2793   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2794   if (!M) return 0;
2795 
2796   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2797   // there was an error.
2798   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2799 
2800   // Read in the entire module, and destroy the BitcodeReader.
2801   if (M->MaterializeAllPermanently(ErrMsg)) {
2802     delete M;
2803     return 0;
2804   }
2805 
2806   return M;
2807 }
2808 
2809 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2810                                          LLVMContext& Context,
2811                                          std::string *ErrMsg) {
2812   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2813   // Don't let the BitcodeReader dtor delete 'Buffer'.
2814   R->setBufferOwned(false);
2815 
2816   std::string Triple("");
2817   if (R->ParseTriple(Triple))
2818     if (ErrMsg)
2819       *ErrMsg = R->getErrorString();
2820 
2821   delete R;
2822   return Triple;
2823 }
2824