xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision eb9f7c28e5fe6d75fed3587023e17f2997c8024b)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](std::string) {
583         return None;
584       });
585 
586   static uint64_t decodeSignRotatedValue(uint64_t V);
587 
588   /// Materialize any deferred Metadata block.
589   Error materializeMetadata() override;
590 
591   void setStripDebugInfo() override;
592 
593 private:
594   std::vector<StructType *> IdentifiedStructTypes;
595   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
596   StructType *createIdentifiedStructType(LLVMContext &Context);
597 
598   /// Map all pointer types within \param Ty to the opaque pointer
599   /// type in the same address space if opaque pointers are being
600   /// used, otherwise nop. This converts a bitcode-reader internal
601   /// type into one suitable for use in a Value.
602   Type *flattenPointerTypes(Type *Ty) {
603     return Ty;
604   }
605 
606   /// Given a fully structured pointer type (i.e. not opaque), return
607   /// the flattened form of its element, suitable for use in a Value.
608   Type *getPointerElementFlatType(Type *Ty) {
609     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
610   }
611 
612   /// Given a fully structured pointer type, get its element type in
613   /// both fully structured form, and flattened form suitable for use
614   /// in a Value.
615   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
616     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
617     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
618   }
619 
620   /// Return the flattened type (suitable for use in a Value)
621   /// specified by the given \param ID .
622   Type *getTypeByID(unsigned ID) {
623     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
624   }
625 
626   /// Return the fully structured (bitcode-reader internal) type
627   /// corresponding to the given \param ID .
628   Type *getFullyStructuredTypeByID(unsigned ID);
629 
630   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
631     if (Ty && Ty->isMetadataTy())
632       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
633     return ValueList.getValueFwdRef(ID, Ty, FullTy);
634   }
635 
636   Metadata *getFnMetadataByID(unsigned ID) {
637     return MDLoader->getMetadataFwdRefOrLoad(ID);
638   }
639 
640   BasicBlock *getBasicBlock(unsigned ID) const {
641     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
642     return FunctionBBs[ID];
643   }
644 
645   AttributeList getAttributes(unsigned i) const {
646     if (i-1 < MAttributes.size())
647       return MAttributes[i-1];
648     return AttributeList();
649   }
650 
651   /// Read a value/type pair out of the specified record from slot 'Slot'.
652   /// Increment Slot past the number of slots used in the record. Return true on
653   /// failure.
654   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
655                         unsigned InstNum, Value *&ResVal,
656                         Type **FullTy = nullptr) {
657     if (Slot == Record.size()) return true;
658     unsigned ValNo = (unsigned)Record[Slot++];
659     // Adjust the ValNo, if it was encoded relative to the InstNum.
660     if (UseRelativeIDs)
661       ValNo = InstNum - ValNo;
662     if (ValNo < InstNum) {
663       // If this is not a forward reference, just return the value we already
664       // have.
665       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
666       return ResVal == nullptr;
667     }
668     if (Slot == Record.size())
669       return true;
670 
671     unsigned TypeNo = (unsigned)Record[Slot++];
672     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
673     if (FullTy)
674       *FullTy = getFullyStructuredTypeByID(TypeNo);
675     return ResVal == nullptr;
676   }
677 
678   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
679   /// past the number of slots used by the value in the record. Return true if
680   /// there is an error.
681   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
682                 unsigned InstNum, Type *Ty, Value *&ResVal) {
683     if (getValue(Record, Slot, InstNum, Ty, ResVal))
684       return true;
685     // All values currently take a single record slot.
686     ++Slot;
687     return false;
688   }
689 
690   /// Like popValue, but does not increment the Slot number.
691   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
692                 unsigned InstNum, Type *Ty, Value *&ResVal) {
693     ResVal = getValue(Record, Slot, InstNum, Ty);
694     return ResVal == nullptr;
695   }
696 
697   /// Version of getValue that returns ResVal directly, or 0 if there is an
698   /// error.
699   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
700                   unsigned InstNum, Type *Ty) {
701     if (Slot == Record.size()) return nullptr;
702     unsigned ValNo = (unsigned)Record[Slot];
703     // Adjust the ValNo, if it was encoded relative to the InstNum.
704     if (UseRelativeIDs)
705       ValNo = InstNum - ValNo;
706     return getFnValueByID(ValNo, Ty);
707   }
708 
709   /// Like getValue, but decodes signed VBRs.
710   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
711                         unsigned InstNum, Type *Ty) {
712     if (Slot == Record.size()) return nullptr;
713     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
714     // Adjust the ValNo, if it was encoded relative to the InstNum.
715     if (UseRelativeIDs)
716       ValNo = InstNum - ValNo;
717     return getFnValueByID(ValNo, Ty);
718   }
719 
720   /// Upgrades old-style typeless byval attributes by adding the corresponding
721   /// argument's pointee type.
722   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
723 
724   /// Converts alignment exponent (i.e. power of two (or zero)) to the
725   /// corresponding alignment to use. If alignment is too large, returns
726   /// a corresponding error code.
727   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
728   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
729   Error parseModule(
730       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
731       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
732 
733   Error parseComdatRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
735   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
736   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
737                                         ArrayRef<uint64_t> Record);
738 
739   Error parseAttributeBlock();
740   Error parseAttributeGroupBlock();
741   Error parseTypeTable();
742   Error parseTypeTableBody();
743   Error parseOperandBundleTags();
744   Error parseSyncScopeNames();
745 
746   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
747                                 unsigned NameIndex, Triple &TT);
748   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
749                                ArrayRef<uint64_t> Record);
750   Error parseValueSymbolTable(uint64_t Offset = 0);
751   Error parseGlobalValueSymbolTable();
752   Error parseConstants();
753   Error rememberAndSkipFunctionBodies();
754   Error rememberAndSkipFunctionBody();
755   /// Save the positions of the Metadata blocks and skip parsing the blocks.
756   Error rememberAndSkipMetadata();
757   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
758   Error parseFunctionBody(Function *F);
759   Error globalCleanup();
760   Error resolveGlobalAndIndirectSymbolInits();
761   Error parseUseLists();
762   Error findFunctionInStream(
763       Function *F,
764       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
765 
766   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
767 };
768 
769 /// Class to manage reading and parsing function summary index bitcode
770 /// files/sections.
771 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
772   /// The module index built during parsing.
773   ModuleSummaryIndex &TheIndex;
774 
775   /// Indicates whether we have encountered a global value summary section
776   /// yet during parsing.
777   bool SeenGlobalValSummary = false;
778 
779   /// Indicates whether we have already parsed the VST, used for error checking.
780   bool SeenValueSymbolTable = false;
781 
782   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
783   /// Used to enable on-demand parsing of the VST.
784   uint64_t VSTOffset = 0;
785 
786   // Map to save ValueId to ValueInfo association that was recorded in the
787   // ValueSymbolTable. It is used after the VST is parsed to convert
788   // call graph edges read from the function summary from referencing
789   // callees by their ValueId to using the ValueInfo instead, which is how
790   // they are recorded in the summary index being built.
791   // We save a GUID which refers to the same global as the ValueInfo, but
792   // ignoring the linkage, i.e. for values other than local linkage they are
793   // identical.
794   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
795       ValueIdToValueInfoMap;
796 
797   /// Map populated during module path string table parsing, from the
798   /// module ID to a string reference owned by the index's module
799   /// path string table, used to correlate with combined index
800   /// summary records.
801   DenseMap<uint64_t, StringRef> ModuleIdMap;
802 
803   /// Original source file name recorded in a bitcode record.
804   std::string SourceFileName;
805 
806   /// The string identifier given to this module by the client, normally the
807   /// path to the bitcode file.
808   StringRef ModulePath;
809 
810   /// For per-module summary indexes, the unique numerical identifier given to
811   /// this module by the client.
812   unsigned ModuleId;
813 
814 public:
815   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
816                                   ModuleSummaryIndex &TheIndex,
817                                   StringRef ModulePath, unsigned ModuleId);
818 
819   Error parseModule();
820 
821 private:
822   void setValueGUID(uint64_t ValueID, StringRef ValueName,
823                     GlobalValue::LinkageTypes Linkage,
824                     StringRef SourceFileName);
825   Error parseValueSymbolTable(
826       uint64_t Offset,
827       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
828   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
829   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
830                                                     bool IsOldProfileFormat,
831                                                     bool HasProfile,
832                                                     bool HasRelBF);
833   Error parseEntireSummary(unsigned ID);
834   Error parseModuleStringTable();
835   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
836   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
837                                        TypeIdCompatibleVtableInfo &TypeId);
838   std::vector<FunctionSummary::ParamAccess>
839   parseParamAccesses(ArrayRef<uint64_t> Record);
840 
841   std::pair<ValueInfo, GlobalValue::GUID>
842   getValueInfoFromValueId(unsigned ValueId);
843 
844   void addThisModule();
845   ModuleSummaryIndex::ModuleInfo *getThisModule();
846 };
847 
848 } // end anonymous namespace
849 
850 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
851                                                     Error Err) {
852   if (Err) {
853     std::error_code EC;
854     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
855       EC = EIB.convertToErrorCode();
856       Ctx.emitError(EIB.message());
857     });
858     return EC;
859   }
860   return std::error_code();
861 }
862 
863 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
864                              StringRef ProducerIdentification,
865                              LLVMContext &Context)
866     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
867       ValueList(Context, Stream.SizeInBytes()) {
868   this->ProducerIdentification = std::string(ProducerIdentification);
869 }
870 
871 Error BitcodeReader::materializeForwardReferencedFunctions() {
872   if (WillMaterializeAllForwardRefs)
873     return Error::success();
874 
875   // Prevent recursion.
876   WillMaterializeAllForwardRefs = true;
877 
878   while (!BasicBlockFwdRefQueue.empty()) {
879     Function *F = BasicBlockFwdRefQueue.front();
880     BasicBlockFwdRefQueue.pop_front();
881     assert(F && "Expected valid function");
882     if (!BasicBlockFwdRefs.count(F))
883       // Already materialized.
884       continue;
885 
886     // Check for a function that isn't materializable to prevent an infinite
887     // loop.  When parsing a blockaddress stored in a global variable, there
888     // isn't a trivial way to check if a function will have a body without a
889     // linear search through FunctionsWithBodies, so just check it here.
890     if (!F->isMaterializable())
891       return error("Never resolved function from blockaddress");
892 
893     // Try to materialize F.
894     if (Error Err = materialize(F))
895       return Err;
896   }
897   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
898 
899   // Reset state.
900   WillMaterializeAllForwardRefs = false;
901   return Error::success();
902 }
903 
904 //===----------------------------------------------------------------------===//
905 //  Helper functions to implement forward reference resolution, etc.
906 //===----------------------------------------------------------------------===//
907 
908 static bool hasImplicitComdat(size_t Val) {
909   switch (Val) {
910   default:
911     return false;
912   case 1:  // Old WeakAnyLinkage
913   case 4:  // Old LinkOnceAnyLinkage
914   case 10: // Old WeakODRLinkage
915   case 11: // Old LinkOnceODRLinkage
916     return true;
917   }
918 }
919 
920 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
921   switch (Val) {
922   default: // Map unknown/new linkages to external
923   case 0:
924     return GlobalValue::ExternalLinkage;
925   case 2:
926     return GlobalValue::AppendingLinkage;
927   case 3:
928     return GlobalValue::InternalLinkage;
929   case 5:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
931   case 6:
932     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
933   case 7:
934     return GlobalValue::ExternalWeakLinkage;
935   case 8:
936     return GlobalValue::CommonLinkage;
937   case 9:
938     return GlobalValue::PrivateLinkage;
939   case 12:
940     return GlobalValue::AvailableExternallyLinkage;
941   case 13:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
943   case 14:
944     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
945   case 15:
946     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
947   case 1: // Old value with implicit comdat.
948   case 16:
949     return GlobalValue::WeakAnyLinkage;
950   case 10: // Old value with implicit comdat.
951   case 17:
952     return GlobalValue::WeakODRLinkage;
953   case 4: // Old value with implicit comdat.
954   case 18:
955     return GlobalValue::LinkOnceAnyLinkage;
956   case 11: // Old value with implicit comdat.
957   case 19:
958     return GlobalValue::LinkOnceODRLinkage;
959   }
960 }
961 
962 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
963   FunctionSummary::FFlags Flags;
964   Flags.ReadNone = RawFlags & 0x1;
965   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
966   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
967   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
968   Flags.NoInline = (RawFlags >> 4) & 0x1;
969   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
970   return Flags;
971 }
972 
973 /// Decode the flags for GlobalValue in the summary.
974 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
975                                                             uint64_t Version) {
976   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
977   // like getDecodedLinkage() above. Any future change to the linkage enum and
978   // to getDecodedLinkage() will need to be taken into account here as above.
979   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
980   RawFlags = RawFlags >> 4;
981   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
982   // The Live flag wasn't introduced until version 3. For dead stripping
983   // to work correctly on earlier versions, we must conservatively treat all
984   // values as live.
985   bool Live = (RawFlags & 0x2) || Version < 3;
986   bool Local = (RawFlags & 0x4);
987   bool AutoHide = (RawFlags & 0x8);
988 
989   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
990 }
991 
992 // Decode the flags for GlobalVariable in the summary
993 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
994   return GlobalVarSummary::GVarFlags(
995       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
996       (RawFlags & 0x4) ? true : false,
997       (GlobalObject::VCallVisibility)(RawFlags >> 3));
998 }
999 
1000 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1001   switch (Val) {
1002   default: // Map unknown visibilities to default.
1003   case 0: return GlobalValue::DefaultVisibility;
1004   case 1: return GlobalValue::HiddenVisibility;
1005   case 2: return GlobalValue::ProtectedVisibility;
1006   }
1007 }
1008 
1009 static GlobalValue::DLLStorageClassTypes
1010 getDecodedDLLStorageClass(unsigned Val) {
1011   switch (Val) {
1012   default: // Map unknown values to default.
1013   case 0: return GlobalValue::DefaultStorageClass;
1014   case 1: return GlobalValue::DLLImportStorageClass;
1015   case 2: return GlobalValue::DLLExportStorageClass;
1016   }
1017 }
1018 
1019 static bool getDecodedDSOLocal(unsigned Val) {
1020   switch(Val) {
1021   default: // Map unknown values to preemptable.
1022   case 0:  return false;
1023   case 1:  return true;
1024   }
1025 }
1026 
1027 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1028   switch (Val) {
1029     case 0: return GlobalVariable::NotThreadLocal;
1030     default: // Map unknown non-zero value to general dynamic.
1031     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1032     case 2: return GlobalVariable::LocalDynamicTLSModel;
1033     case 3: return GlobalVariable::InitialExecTLSModel;
1034     case 4: return GlobalVariable::LocalExecTLSModel;
1035   }
1036 }
1037 
1038 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1039   switch (Val) {
1040     default: // Map unknown to UnnamedAddr::None.
1041     case 0: return GlobalVariable::UnnamedAddr::None;
1042     case 1: return GlobalVariable::UnnamedAddr::Global;
1043     case 2: return GlobalVariable::UnnamedAddr::Local;
1044   }
1045 }
1046 
1047 static int getDecodedCastOpcode(unsigned Val) {
1048   switch (Val) {
1049   default: return -1;
1050   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1051   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1052   case bitc::CAST_SEXT    : return Instruction::SExt;
1053   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1054   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1055   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1056   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1057   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1058   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1059   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1060   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1061   case bitc::CAST_BITCAST : return Instruction::BitCast;
1062   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1063   }
1064 }
1065 
1066 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1067   bool IsFP = Ty->isFPOrFPVectorTy();
1068   // UnOps are only valid for int/fp or vector of int/fp types
1069   if (!IsFP && !Ty->isIntOrIntVectorTy())
1070     return -1;
1071 
1072   switch (Val) {
1073   default:
1074     return -1;
1075   case bitc::UNOP_FNEG:
1076     return IsFP ? Instruction::FNeg : -1;
1077   }
1078 }
1079 
1080 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1081   bool IsFP = Ty->isFPOrFPVectorTy();
1082   // BinOps are only valid for int/fp or vector of int/fp types
1083   if (!IsFP && !Ty->isIntOrIntVectorTy())
1084     return -1;
1085 
1086   switch (Val) {
1087   default:
1088     return -1;
1089   case bitc::BINOP_ADD:
1090     return IsFP ? Instruction::FAdd : Instruction::Add;
1091   case bitc::BINOP_SUB:
1092     return IsFP ? Instruction::FSub : Instruction::Sub;
1093   case bitc::BINOP_MUL:
1094     return IsFP ? Instruction::FMul : Instruction::Mul;
1095   case bitc::BINOP_UDIV:
1096     return IsFP ? -1 : Instruction::UDiv;
1097   case bitc::BINOP_SDIV:
1098     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1099   case bitc::BINOP_UREM:
1100     return IsFP ? -1 : Instruction::URem;
1101   case bitc::BINOP_SREM:
1102     return IsFP ? Instruction::FRem : Instruction::SRem;
1103   case bitc::BINOP_SHL:
1104     return IsFP ? -1 : Instruction::Shl;
1105   case bitc::BINOP_LSHR:
1106     return IsFP ? -1 : Instruction::LShr;
1107   case bitc::BINOP_ASHR:
1108     return IsFP ? -1 : Instruction::AShr;
1109   case bitc::BINOP_AND:
1110     return IsFP ? -1 : Instruction::And;
1111   case bitc::BINOP_OR:
1112     return IsFP ? -1 : Instruction::Or;
1113   case bitc::BINOP_XOR:
1114     return IsFP ? -1 : Instruction::Xor;
1115   }
1116 }
1117 
1118 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1119   switch (Val) {
1120   default: return AtomicRMWInst::BAD_BINOP;
1121   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1122   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1123   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1124   case bitc::RMW_AND: return AtomicRMWInst::And;
1125   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1126   case bitc::RMW_OR: return AtomicRMWInst::Or;
1127   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1128   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1129   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1130   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1131   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1132   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1133   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1134   }
1135 }
1136 
1137 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1138   switch (Val) {
1139   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1140   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1141   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1142   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1143   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1144   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1145   default: // Map unknown orderings to sequentially-consistent.
1146   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1147   }
1148 }
1149 
1150 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1151   switch (Val) {
1152   default: // Map unknown selection kinds to any.
1153   case bitc::COMDAT_SELECTION_KIND_ANY:
1154     return Comdat::Any;
1155   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1156     return Comdat::ExactMatch;
1157   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1158     return Comdat::Largest;
1159   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1160     return Comdat::NoDuplicates;
1161   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1162     return Comdat::SameSize;
1163   }
1164 }
1165 
1166 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1167   FastMathFlags FMF;
1168   if (0 != (Val & bitc::UnsafeAlgebra))
1169     FMF.setFast();
1170   if (0 != (Val & bitc::AllowReassoc))
1171     FMF.setAllowReassoc();
1172   if (0 != (Val & bitc::NoNaNs))
1173     FMF.setNoNaNs();
1174   if (0 != (Val & bitc::NoInfs))
1175     FMF.setNoInfs();
1176   if (0 != (Val & bitc::NoSignedZeros))
1177     FMF.setNoSignedZeros();
1178   if (0 != (Val & bitc::AllowReciprocal))
1179     FMF.setAllowReciprocal();
1180   if (0 != (Val & bitc::AllowContract))
1181     FMF.setAllowContract(true);
1182   if (0 != (Val & bitc::ApproxFunc))
1183     FMF.setApproxFunc();
1184   return FMF;
1185 }
1186 
1187 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1188   switch (Val) {
1189   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1190   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1191   }
1192 }
1193 
1194 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1195   // The type table size is always specified correctly.
1196   if (ID >= TypeList.size())
1197     return nullptr;
1198 
1199   if (Type *Ty = TypeList[ID])
1200     return Ty;
1201 
1202   // If we have a forward reference, the only possible case is when it is to a
1203   // named struct.  Just create a placeholder for now.
1204   return TypeList[ID] = createIdentifiedStructType(Context);
1205 }
1206 
1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1208                                                       StringRef Name) {
1209   auto *Ret = StructType::create(Context, Name);
1210   IdentifiedStructTypes.push_back(Ret);
1211   return Ret;
1212 }
1213 
1214 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1215   auto *Ret = StructType::create(Context);
1216   IdentifiedStructTypes.push_back(Ret);
1217   return Ret;
1218 }
1219 
1220 //===----------------------------------------------------------------------===//
1221 //  Functions for parsing blocks from the bitcode file
1222 //===----------------------------------------------------------------------===//
1223 
1224 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1225   switch (Val) {
1226   case Attribute::EndAttrKinds:
1227   case Attribute::EmptyKey:
1228   case Attribute::TombstoneKey:
1229     llvm_unreachable("Synthetic enumerators which should never get here");
1230 
1231   case Attribute::None:            return 0;
1232   case Attribute::ZExt:            return 1 << 0;
1233   case Attribute::SExt:            return 1 << 1;
1234   case Attribute::NoReturn:        return 1 << 2;
1235   case Attribute::InReg:           return 1 << 3;
1236   case Attribute::StructRet:       return 1 << 4;
1237   case Attribute::NoUnwind:        return 1 << 5;
1238   case Attribute::NoAlias:         return 1 << 6;
1239   case Attribute::ByVal:           return 1 << 7;
1240   case Attribute::Nest:            return 1 << 8;
1241   case Attribute::ReadNone:        return 1 << 9;
1242   case Attribute::ReadOnly:        return 1 << 10;
1243   case Attribute::NoInline:        return 1 << 11;
1244   case Attribute::AlwaysInline:    return 1 << 12;
1245   case Attribute::OptimizeForSize: return 1 << 13;
1246   case Attribute::StackProtect:    return 1 << 14;
1247   case Attribute::StackProtectReq: return 1 << 15;
1248   case Attribute::Alignment:       return 31 << 16;
1249   case Attribute::NoCapture:       return 1 << 21;
1250   case Attribute::NoRedZone:       return 1 << 22;
1251   case Attribute::NoImplicitFloat: return 1 << 23;
1252   case Attribute::Naked:           return 1 << 24;
1253   case Attribute::InlineHint:      return 1 << 25;
1254   case Attribute::StackAlignment:  return 7 << 26;
1255   case Attribute::ReturnsTwice:    return 1 << 29;
1256   case Attribute::UWTable:         return 1 << 30;
1257   case Attribute::NonLazyBind:     return 1U << 31;
1258   case Attribute::SanitizeAddress: return 1ULL << 32;
1259   case Attribute::MinSize:         return 1ULL << 33;
1260   case Attribute::NoDuplicate:     return 1ULL << 34;
1261   case Attribute::StackProtectStrong: return 1ULL << 35;
1262   case Attribute::SanitizeThread:  return 1ULL << 36;
1263   case Attribute::SanitizeMemory:  return 1ULL << 37;
1264   case Attribute::NoBuiltin:       return 1ULL << 38;
1265   case Attribute::Returned:        return 1ULL << 39;
1266   case Attribute::Cold:            return 1ULL << 40;
1267   case Attribute::Builtin:         return 1ULL << 41;
1268   case Attribute::OptimizeNone:    return 1ULL << 42;
1269   case Attribute::InAlloca:        return 1ULL << 43;
1270   case Attribute::NonNull:         return 1ULL << 44;
1271   case Attribute::JumpTable:       return 1ULL << 45;
1272   case Attribute::Convergent:      return 1ULL << 46;
1273   case Attribute::SafeStack:       return 1ULL << 47;
1274   case Attribute::NoRecurse:       return 1ULL << 48;
1275   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1276   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1277   case Attribute::SwiftSelf:       return 1ULL << 51;
1278   case Attribute::SwiftError:      return 1ULL << 52;
1279   case Attribute::WriteOnly:       return 1ULL << 53;
1280   case Attribute::Speculatable:    return 1ULL << 54;
1281   case Attribute::StrictFP:        return 1ULL << 55;
1282   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1283   case Attribute::NoCfCheck:       return 1ULL << 57;
1284   case Attribute::OptForFuzzing:   return 1ULL << 58;
1285   case Attribute::ShadowCallStack: return 1ULL << 59;
1286   case Attribute::SpeculativeLoadHardening:
1287     return 1ULL << 60;
1288   case Attribute::ImmArg:
1289     return 1ULL << 61;
1290   case Attribute::WillReturn:
1291     return 1ULL << 62;
1292   case Attribute::NoFree:
1293     return 1ULL << 63;
1294   default:
1295     // Other attributes are not supported in the raw format,
1296     // as we ran out of space.
1297     return 0;
1298   }
1299   llvm_unreachable("Unsupported attribute type");
1300 }
1301 
1302 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1303   if (!Val) return;
1304 
1305   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1306        I = Attribute::AttrKind(I + 1)) {
1307     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1308       if (I == Attribute::Alignment)
1309         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1310       else if (I == Attribute::StackAlignment)
1311         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1312       else
1313         B.addAttribute(I);
1314     }
1315   }
1316 }
1317 
1318 /// This fills an AttrBuilder object with the LLVM attributes that have
1319 /// been decoded from the given integer. This function must stay in sync with
1320 /// 'encodeLLVMAttributesForBitcode'.
1321 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1322                                            uint64_t EncodedAttrs) {
1323   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1324   // the bits above 31 down by 11 bits.
1325   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1326   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1327          "Alignment must be a power of two.");
1328 
1329   if (Alignment)
1330     B.addAlignmentAttr(Alignment);
1331   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1332                           (EncodedAttrs & 0xffff));
1333 }
1334 
1335 Error BitcodeReader::parseAttributeBlock() {
1336   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1337     return Err;
1338 
1339   if (!MAttributes.empty())
1340     return error("Invalid multiple blocks");
1341 
1342   SmallVector<uint64_t, 64> Record;
1343 
1344   SmallVector<AttributeList, 8> Attrs;
1345 
1346   // Read all the records.
1347   while (true) {
1348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1349     if (!MaybeEntry)
1350       return MaybeEntry.takeError();
1351     BitstreamEntry Entry = MaybeEntry.get();
1352 
1353     switch (Entry.Kind) {
1354     case BitstreamEntry::SubBlock: // Handled for us already.
1355     case BitstreamEntry::Error:
1356       return error("Malformed block");
1357     case BitstreamEntry::EndBlock:
1358       return Error::success();
1359     case BitstreamEntry::Record:
1360       // The interesting case.
1361       break;
1362     }
1363 
1364     // Read a record.
1365     Record.clear();
1366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1367     if (!MaybeRecord)
1368       return MaybeRecord.takeError();
1369     switch (MaybeRecord.get()) {
1370     default:  // Default behavior: ignore.
1371       break;
1372     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1373       // Deprecated, but still needed to read old bitcode files.
1374       if (Record.size() & 1)
1375         return error("Invalid record");
1376 
1377       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1378         AttrBuilder B;
1379         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1380         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1381       }
1382 
1383       MAttributes.push_back(AttributeList::get(Context, Attrs));
1384       Attrs.clear();
1385       break;
1386     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1387       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1388         Attrs.push_back(MAttributeGroups[Record[i]]);
1389 
1390       MAttributes.push_back(AttributeList::get(Context, Attrs));
1391       Attrs.clear();
1392       break;
1393     }
1394   }
1395 }
1396 
1397 // Returns Attribute::None on unrecognized codes.
1398 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1399   switch (Code) {
1400   default:
1401     return Attribute::None;
1402   case bitc::ATTR_KIND_ALIGNMENT:
1403     return Attribute::Alignment;
1404   case bitc::ATTR_KIND_ALWAYS_INLINE:
1405     return Attribute::AlwaysInline;
1406   case bitc::ATTR_KIND_ARGMEMONLY:
1407     return Attribute::ArgMemOnly;
1408   case bitc::ATTR_KIND_BUILTIN:
1409     return Attribute::Builtin;
1410   case bitc::ATTR_KIND_BY_VAL:
1411     return Attribute::ByVal;
1412   case bitc::ATTR_KIND_IN_ALLOCA:
1413     return Attribute::InAlloca;
1414   case bitc::ATTR_KIND_COLD:
1415     return Attribute::Cold;
1416   case bitc::ATTR_KIND_CONVERGENT:
1417     return Attribute::Convergent;
1418   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1419     return Attribute::InaccessibleMemOnly;
1420   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1421     return Attribute::InaccessibleMemOrArgMemOnly;
1422   case bitc::ATTR_KIND_INLINE_HINT:
1423     return Attribute::InlineHint;
1424   case bitc::ATTR_KIND_IN_REG:
1425     return Attribute::InReg;
1426   case bitc::ATTR_KIND_JUMP_TABLE:
1427     return Attribute::JumpTable;
1428   case bitc::ATTR_KIND_MIN_SIZE:
1429     return Attribute::MinSize;
1430   case bitc::ATTR_KIND_NAKED:
1431     return Attribute::Naked;
1432   case bitc::ATTR_KIND_NEST:
1433     return Attribute::Nest;
1434   case bitc::ATTR_KIND_NO_ALIAS:
1435     return Attribute::NoAlias;
1436   case bitc::ATTR_KIND_NO_BUILTIN:
1437     return Attribute::NoBuiltin;
1438   case bitc::ATTR_KIND_NO_CAPTURE:
1439     return Attribute::NoCapture;
1440   case bitc::ATTR_KIND_NO_DUPLICATE:
1441     return Attribute::NoDuplicate;
1442   case bitc::ATTR_KIND_NOFREE:
1443     return Attribute::NoFree;
1444   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1445     return Attribute::NoImplicitFloat;
1446   case bitc::ATTR_KIND_NO_INLINE:
1447     return Attribute::NoInline;
1448   case bitc::ATTR_KIND_NO_RECURSE:
1449     return Attribute::NoRecurse;
1450   case bitc::ATTR_KIND_NO_MERGE:
1451     return Attribute::NoMerge;
1452   case bitc::ATTR_KIND_NON_LAZY_BIND:
1453     return Attribute::NonLazyBind;
1454   case bitc::ATTR_KIND_NON_NULL:
1455     return Attribute::NonNull;
1456   case bitc::ATTR_KIND_DEREFERENCEABLE:
1457     return Attribute::Dereferenceable;
1458   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1459     return Attribute::DereferenceableOrNull;
1460   case bitc::ATTR_KIND_ALLOC_SIZE:
1461     return Attribute::AllocSize;
1462   case bitc::ATTR_KIND_NO_RED_ZONE:
1463     return Attribute::NoRedZone;
1464   case bitc::ATTR_KIND_NO_RETURN:
1465     return Attribute::NoReturn;
1466   case bitc::ATTR_KIND_NOSYNC:
1467     return Attribute::NoSync;
1468   case bitc::ATTR_KIND_NOCF_CHECK:
1469     return Attribute::NoCfCheck;
1470   case bitc::ATTR_KIND_NO_UNWIND:
1471     return Attribute::NoUnwind;
1472   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1473     return Attribute::NullPointerIsValid;
1474   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1475     return Attribute::OptForFuzzing;
1476   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1477     return Attribute::OptimizeForSize;
1478   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1479     return Attribute::OptimizeNone;
1480   case bitc::ATTR_KIND_READ_NONE:
1481     return Attribute::ReadNone;
1482   case bitc::ATTR_KIND_READ_ONLY:
1483     return Attribute::ReadOnly;
1484   case bitc::ATTR_KIND_RETURNED:
1485     return Attribute::Returned;
1486   case bitc::ATTR_KIND_RETURNS_TWICE:
1487     return Attribute::ReturnsTwice;
1488   case bitc::ATTR_KIND_S_EXT:
1489     return Attribute::SExt;
1490   case bitc::ATTR_KIND_SPECULATABLE:
1491     return Attribute::Speculatable;
1492   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1493     return Attribute::StackAlignment;
1494   case bitc::ATTR_KIND_STACK_PROTECT:
1495     return Attribute::StackProtect;
1496   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1497     return Attribute::StackProtectReq;
1498   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1499     return Attribute::StackProtectStrong;
1500   case bitc::ATTR_KIND_SAFESTACK:
1501     return Attribute::SafeStack;
1502   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1503     return Attribute::ShadowCallStack;
1504   case bitc::ATTR_KIND_STRICT_FP:
1505     return Attribute::StrictFP;
1506   case bitc::ATTR_KIND_STRUCT_RET:
1507     return Attribute::StructRet;
1508   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1509     return Attribute::SanitizeAddress;
1510   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1511     return Attribute::SanitizeHWAddress;
1512   case bitc::ATTR_KIND_SANITIZE_THREAD:
1513     return Attribute::SanitizeThread;
1514   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1515     return Attribute::SanitizeMemory;
1516   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1517     return Attribute::SpeculativeLoadHardening;
1518   case bitc::ATTR_KIND_SWIFT_ERROR:
1519     return Attribute::SwiftError;
1520   case bitc::ATTR_KIND_SWIFT_SELF:
1521     return Attribute::SwiftSelf;
1522   case bitc::ATTR_KIND_UW_TABLE:
1523     return Attribute::UWTable;
1524   case bitc::ATTR_KIND_WILLRETURN:
1525     return Attribute::WillReturn;
1526   case bitc::ATTR_KIND_WRITEONLY:
1527     return Attribute::WriteOnly;
1528   case bitc::ATTR_KIND_Z_EXT:
1529     return Attribute::ZExt;
1530   case bitc::ATTR_KIND_IMMARG:
1531     return Attribute::ImmArg;
1532   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1533     return Attribute::SanitizeMemTag;
1534   case bitc::ATTR_KIND_PREALLOCATED:
1535     return Attribute::Preallocated;
1536   case bitc::ATTR_KIND_NOUNDEF:
1537     return Attribute::NoUndef;
1538   case bitc::ATTR_KIND_BYREF:
1539     return Attribute::ByRef;
1540   }
1541 }
1542 
1543 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1544                                          MaybeAlign &Alignment) {
1545   // Note: Alignment in bitcode files is incremented by 1, so that zero
1546   // can be used for default alignment.
1547   if (Exponent > Value::MaxAlignmentExponent + 1)
1548     return error("Invalid alignment value");
1549   Alignment = decodeMaybeAlign(Exponent);
1550   return Error::success();
1551 }
1552 
1553 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1554   *Kind = getAttrFromCode(Code);
1555   if (*Kind == Attribute::None)
1556     return error("Unknown attribute kind (" + Twine(Code) + ")");
1557   return Error::success();
1558 }
1559 
1560 Error BitcodeReader::parseAttributeGroupBlock() {
1561   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1562     return Err;
1563 
1564   if (!MAttributeGroups.empty())
1565     return error("Invalid multiple blocks");
1566 
1567   SmallVector<uint64_t, 64> Record;
1568 
1569   // Read all the records.
1570   while (true) {
1571     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1572     if (!MaybeEntry)
1573       return MaybeEntry.takeError();
1574     BitstreamEntry Entry = MaybeEntry.get();
1575 
1576     switch (Entry.Kind) {
1577     case BitstreamEntry::SubBlock: // Handled for us already.
1578     case BitstreamEntry::Error:
1579       return error("Malformed block");
1580     case BitstreamEntry::EndBlock:
1581       return Error::success();
1582     case BitstreamEntry::Record:
1583       // The interesting case.
1584       break;
1585     }
1586 
1587     // Read a record.
1588     Record.clear();
1589     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1590     if (!MaybeRecord)
1591       return MaybeRecord.takeError();
1592     switch (MaybeRecord.get()) {
1593     default:  // Default behavior: ignore.
1594       break;
1595     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1596       if (Record.size() < 3)
1597         return error("Invalid record");
1598 
1599       uint64_t GrpID = Record[0];
1600       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1601 
1602       AttrBuilder B;
1603       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1604         if (Record[i] == 0) {        // Enum attribute
1605           Attribute::AttrKind Kind;
1606           if (Error Err = parseAttrKind(Record[++i], &Kind))
1607             return Err;
1608 
1609           // Upgrade old-style byval attribute to one with a type, even if it's
1610           // nullptr. We will have to insert the real type when we associate
1611           // this AttributeList with a function.
1612           if (Kind == Attribute::ByVal)
1613             B.addByValAttr(nullptr);
1614 
1615           B.addAttribute(Kind);
1616         } else if (Record[i] == 1) { // Integer attribute
1617           Attribute::AttrKind Kind;
1618           if (Error Err = parseAttrKind(Record[++i], &Kind))
1619             return Err;
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1631           bool HasValue = (Record[i++] == 4);
1632           SmallString<64> KindStr;
1633           SmallString<64> ValStr;
1634 
1635           while (Record[i] != 0 && i != e)
1636             KindStr += Record[i++];
1637           assert(Record[i] == 0 && "Kind string not null terminated");
1638 
1639           if (HasValue) {
1640             // Has a value associated with it.
1641             ++i; // Skip the '0' that terminates the "kind" string.
1642             while (Record[i] != 0 && i != e)
1643               ValStr += Record[i++];
1644             assert(Record[i] == 0 && "Value string not null terminated");
1645           }
1646 
1647           B.addAttribute(KindStr.str(), ValStr.str());
1648         } else {
1649           assert((Record[i] == 5 || Record[i] == 6) &&
1650                  "Invalid attribute group entry");
1651           bool HasType = Record[i] == 6;
1652           Attribute::AttrKind Kind;
1653           if (Error Err = parseAttrKind(Record[++i], &Kind))
1654             return Err;
1655           if (Kind == Attribute::ByVal) {
1656             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1657           } else if (Kind == Attribute::ByRef) {
1658             B.addByRefAttr(getTypeByID(Record[++i]));
1659           } else if (Kind == Attribute::Preallocated) {
1660             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1661           }
1662         }
1663       }
1664 
1665       UpgradeAttributes(B);
1666       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1667       break;
1668     }
1669     }
1670   }
1671 }
1672 
1673 Error BitcodeReader::parseTypeTable() {
1674   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1675     return Err;
1676 
1677   return parseTypeTableBody();
1678 }
1679 
1680 Error BitcodeReader::parseTypeTableBody() {
1681   if (!TypeList.empty())
1682     return error("Invalid multiple blocks");
1683 
1684   SmallVector<uint64_t, 64> Record;
1685   unsigned NumRecords = 0;
1686 
1687   SmallString<64> TypeName;
1688 
1689   // Read all the records for this type table.
1690   while (true) {
1691     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1692     if (!MaybeEntry)
1693       return MaybeEntry.takeError();
1694     BitstreamEntry Entry = MaybeEntry.get();
1695 
1696     switch (Entry.Kind) {
1697     case BitstreamEntry::SubBlock: // Handled for us already.
1698     case BitstreamEntry::Error:
1699       return error("Malformed block");
1700     case BitstreamEntry::EndBlock:
1701       if (NumRecords != TypeList.size())
1702         return error("Malformed block");
1703       return Error::success();
1704     case BitstreamEntry::Record:
1705       // The interesting case.
1706       break;
1707     }
1708 
1709     // Read a record.
1710     Record.clear();
1711     Type *ResultTy = nullptr;
1712     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1713     if (!MaybeRecord)
1714       return MaybeRecord.takeError();
1715     switch (MaybeRecord.get()) {
1716     default:
1717       return error("Invalid value");
1718     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1719       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1720       // type list.  This allows us to reserve space.
1721       if (Record.empty())
1722         return error("Invalid record");
1723       TypeList.resize(Record[0]);
1724       continue;
1725     case bitc::TYPE_CODE_VOID:      // VOID
1726       ResultTy = Type::getVoidTy(Context);
1727       break;
1728     case bitc::TYPE_CODE_HALF:     // HALF
1729       ResultTy = Type::getHalfTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1732       ResultTy = Type::getBFloatTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1735       ResultTy = Type::getFloatTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1738       ResultTy = Type::getDoubleTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1741       ResultTy = Type::getX86_FP80Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_FP128:     // FP128
1744       ResultTy = Type::getFP128Ty(Context);
1745       break;
1746     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1747       ResultTy = Type::getPPC_FP128Ty(Context);
1748       break;
1749     case bitc::TYPE_CODE_LABEL:     // LABEL
1750       ResultTy = Type::getLabelTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_METADATA:  // METADATA
1753       ResultTy = Type::getMetadataTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1756       ResultTy = Type::getX86_MMXTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1759       ResultTy = Type::getTokenTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1762       if (Record.empty())
1763         return error("Invalid record");
1764 
1765       uint64_t NumBits = Record[0];
1766       if (NumBits < IntegerType::MIN_INT_BITS ||
1767           NumBits > IntegerType::MAX_INT_BITS)
1768         return error("Bitwidth for integer type out of range");
1769       ResultTy = IntegerType::get(Context, NumBits);
1770       break;
1771     }
1772     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1773                                     //          [pointee type, address space]
1774       if (Record.empty())
1775         return error("Invalid record");
1776       unsigned AddressSpace = 0;
1777       if (Record.size() == 2)
1778         AddressSpace = Record[1];
1779       ResultTy = getTypeByID(Record[0]);
1780       if (!ResultTy ||
1781           !PointerType::isValidElementType(ResultTy))
1782         return error("Invalid type");
1783       ResultTy = PointerType::get(ResultTy, AddressSpace);
1784       break;
1785     }
1786     case bitc::TYPE_CODE_FUNCTION_OLD: {
1787       // Deprecated, but still needed to read old bitcode files.
1788       // FUNCTION: [vararg, attrid, retty, paramty x N]
1789       if (Record.size() < 3)
1790         return error("Invalid record");
1791       SmallVector<Type*, 8> ArgTys;
1792       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1793         if (Type *T = getTypeByID(Record[i]))
1794           ArgTys.push_back(T);
1795         else
1796           break;
1797       }
1798 
1799       ResultTy = getTypeByID(Record[2]);
1800       if (!ResultTy || ArgTys.size() < Record.size()-3)
1801         return error("Invalid type");
1802 
1803       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1804       break;
1805     }
1806     case bitc::TYPE_CODE_FUNCTION: {
1807       // FUNCTION: [vararg, retty, paramty x N]
1808       if (Record.size() < 2)
1809         return error("Invalid record");
1810       SmallVector<Type*, 8> ArgTys;
1811       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1812         if (Type *T = getTypeByID(Record[i])) {
1813           if (!FunctionType::isValidArgumentType(T))
1814             return error("Invalid function argument type");
1815           ArgTys.push_back(T);
1816         }
1817         else
1818           break;
1819       }
1820 
1821       ResultTy = getTypeByID(Record[1]);
1822       if (!ResultTy || ArgTys.size() < Record.size()-2)
1823         return error("Invalid type");
1824 
1825       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1826       break;
1827     }
1828     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1829       if (Record.empty())
1830         return error("Invalid record");
1831       SmallVector<Type*, 8> EltTys;
1832       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1833         if (Type *T = getTypeByID(Record[i]))
1834           EltTys.push_back(T);
1835         else
1836           break;
1837       }
1838       if (EltTys.size() != Record.size()-1)
1839         return error("Invalid type");
1840       ResultTy = StructType::get(Context, EltTys, Record[0]);
1841       break;
1842     }
1843     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1844       if (convertToString(Record, 0, TypeName))
1845         return error("Invalid record");
1846       continue;
1847 
1848     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1849       if (Record.empty())
1850         return error("Invalid record");
1851 
1852       if (NumRecords >= TypeList.size())
1853         return error("Invalid TYPE table");
1854 
1855       // Check to see if this was forward referenced, if so fill in the temp.
1856       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1857       if (Res) {
1858         Res->setName(TypeName);
1859         TypeList[NumRecords] = nullptr;
1860       } else  // Otherwise, create a new struct.
1861         Res = createIdentifiedStructType(Context, TypeName);
1862       TypeName.clear();
1863 
1864       SmallVector<Type*, 8> EltTys;
1865       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1866         if (Type *T = getTypeByID(Record[i]))
1867           EltTys.push_back(T);
1868         else
1869           break;
1870       }
1871       if (EltTys.size() != Record.size()-1)
1872         return error("Invalid record");
1873       Res->setBody(EltTys, Record[0]);
1874       ResultTy = Res;
1875       break;
1876     }
1877     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1878       if (Record.size() != 1)
1879         return error("Invalid record");
1880 
1881       if (NumRecords >= TypeList.size())
1882         return error("Invalid TYPE table");
1883 
1884       // Check to see if this was forward referenced, if so fill in the temp.
1885       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1886       if (Res) {
1887         Res->setName(TypeName);
1888         TypeList[NumRecords] = nullptr;
1889       } else  // Otherwise, create a new struct with no body.
1890         Res = createIdentifiedStructType(Context, TypeName);
1891       TypeName.clear();
1892       ResultTy = Res;
1893       break;
1894     }
1895     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1896       if (Record.size() < 2)
1897         return error("Invalid record");
1898       ResultTy = getTypeByID(Record[1]);
1899       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1900         return error("Invalid type");
1901       ResultTy = ArrayType::get(ResultTy, Record[0]);
1902       break;
1903     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1904                                     //         [numelts, eltty, scalable]
1905       if (Record.size() < 2)
1906         return error("Invalid record");
1907       if (Record[0] == 0)
1908         return error("Invalid vector length");
1909       ResultTy = getTypeByID(Record[1]);
1910       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1911         return error("Invalid type");
1912       bool Scalable = Record.size() > 2 ? Record[2] : false;
1913       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1914       break;
1915     }
1916 
1917     if (NumRecords >= TypeList.size())
1918       return error("Invalid TYPE table");
1919     if (TypeList[NumRecords])
1920       return error(
1921           "Invalid TYPE table: Only named structs can be forward referenced");
1922     assert(ResultTy && "Didn't read a type?");
1923     TypeList[NumRecords++] = ResultTy;
1924   }
1925 }
1926 
1927 Error BitcodeReader::parseOperandBundleTags() {
1928   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1929     return Err;
1930 
1931   if (!BundleTags.empty())
1932     return error("Invalid multiple blocks");
1933 
1934   SmallVector<uint64_t, 64> Record;
1935 
1936   while (true) {
1937     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1938     if (!MaybeEntry)
1939       return MaybeEntry.takeError();
1940     BitstreamEntry Entry = MaybeEntry.get();
1941 
1942     switch (Entry.Kind) {
1943     case BitstreamEntry::SubBlock: // Handled for us already.
1944     case BitstreamEntry::Error:
1945       return error("Malformed block");
1946     case BitstreamEntry::EndBlock:
1947       return Error::success();
1948     case BitstreamEntry::Record:
1949       // The interesting case.
1950       break;
1951     }
1952 
1953     // Tags are implicitly mapped to integers by their order.
1954 
1955     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1956     if (!MaybeRecord)
1957       return MaybeRecord.takeError();
1958     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1959       return error("Invalid record");
1960 
1961     // OPERAND_BUNDLE_TAG: [strchr x N]
1962     BundleTags.emplace_back();
1963     if (convertToString(Record, 0, BundleTags.back()))
1964       return error("Invalid record");
1965     Record.clear();
1966   }
1967 }
1968 
1969 Error BitcodeReader::parseSyncScopeNames() {
1970   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1971     return Err;
1972 
1973   if (!SSIDs.empty())
1974     return error("Invalid multiple synchronization scope names blocks");
1975 
1976   SmallVector<uint64_t, 64> Record;
1977   while (true) {
1978     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1979     if (!MaybeEntry)
1980       return MaybeEntry.takeError();
1981     BitstreamEntry Entry = MaybeEntry.get();
1982 
1983     switch (Entry.Kind) {
1984     case BitstreamEntry::SubBlock: // Handled for us already.
1985     case BitstreamEntry::Error:
1986       return error("Malformed block");
1987     case BitstreamEntry::EndBlock:
1988       if (SSIDs.empty())
1989         return error("Invalid empty synchronization scope names block");
1990       return Error::success();
1991     case BitstreamEntry::Record:
1992       // The interesting case.
1993       break;
1994     }
1995 
1996     // Synchronization scope names are implicitly mapped to synchronization
1997     // scope IDs by their order.
1998 
1999     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2000     if (!MaybeRecord)
2001       return MaybeRecord.takeError();
2002     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2003       return error("Invalid record");
2004 
2005     SmallString<16> SSN;
2006     if (convertToString(Record, 0, SSN))
2007       return error("Invalid record");
2008 
2009     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2010     Record.clear();
2011   }
2012 }
2013 
2014 /// Associate a value with its name from the given index in the provided record.
2015 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2016                                              unsigned NameIndex, Triple &TT) {
2017   SmallString<128> ValueName;
2018   if (convertToString(Record, NameIndex, ValueName))
2019     return error("Invalid record");
2020   unsigned ValueID = Record[0];
2021   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2022     return error("Invalid record");
2023   Value *V = ValueList[ValueID];
2024 
2025   StringRef NameStr(ValueName.data(), ValueName.size());
2026   if (NameStr.find_first_of(0) != StringRef::npos)
2027     return error("Invalid value name");
2028   V->setName(NameStr);
2029   auto *GO = dyn_cast<GlobalObject>(V);
2030   if (GO) {
2031     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2032       if (TT.supportsCOMDAT())
2033         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2034       else
2035         GO->setComdat(nullptr);
2036     }
2037   }
2038   return V;
2039 }
2040 
2041 /// Helper to note and return the current location, and jump to the given
2042 /// offset.
2043 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2044                                                  BitstreamCursor &Stream) {
2045   // Save the current parsing location so we can jump back at the end
2046   // of the VST read.
2047   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2048   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2049     return std::move(JumpFailed);
2050   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2051   if (!MaybeEntry)
2052     return MaybeEntry.takeError();
2053   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2054   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2055   return CurrentBit;
2056 }
2057 
2058 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2059                                             Function *F,
2060                                             ArrayRef<uint64_t> Record) {
2061   // Note that we subtract 1 here because the offset is relative to one word
2062   // before the start of the identification or module block, which was
2063   // historically always the start of the regular bitcode header.
2064   uint64_t FuncWordOffset = Record[1] - 1;
2065   uint64_t FuncBitOffset = FuncWordOffset * 32;
2066   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2067   // Set the LastFunctionBlockBit to point to the last function block.
2068   // Later when parsing is resumed after function materialization,
2069   // we can simply skip that last function block.
2070   if (FuncBitOffset > LastFunctionBlockBit)
2071     LastFunctionBlockBit = FuncBitOffset;
2072 }
2073 
2074 /// Read a new-style GlobalValue symbol table.
2075 Error BitcodeReader::parseGlobalValueSymbolTable() {
2076   unsigned FuncBitcodeOffsetDelta =
2077       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2078 
2079   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2080     return Err;
2081 
2082   SmallVector<uint64_t, 64> Record;
2083   while (true) {
2084     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2085     if (!MaybeEntry)
2086       return MaybeEntry.takeError();
2087     BitstreamEntry Entry = MaybeEntry.get();
2088 
2089     switch (Entry.Kind) {
2090     case BitstreamEntry::SubBlock:
2091     case BitstreamEntry::Error:
2092       return error("Malformed block");
2093     case BitstreamEntry::EndBlock:
2094       return Error::success();
2095     case BitstreamEntry::Record:
2096       break;
2097     }
2098 
2099     Record.clear();
2100     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2101     if (!MaybeRecord)
2102       return MaybeRecord.takeError();
2103     switch (MaybeRecord.get()) {
2104     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2105       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2106                               cast<Function>(ValueList[Record[0]]), Record);
2107       break;
2108     }
2109   }
2110 }
2111 
2112 /// Parse the value symbol table at either the current parsing location or
2113 /// at the given bit offset if provided.
2114 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2115   uint64_t CurrentBit;
2116   // Pass in the Offset to distinguish between calling for the module-level
2117   // VST (where we want to jump to the VST offset) and the function-level
2118   // VST (where we don't).
2119   if (Offset > 0) {
2120     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2121     if (!MaybeCurrentBit)
2122       return MaybeCurrentBit.takeError();
2123     CurrentBit = MaybeCurrentBit.get();
2124     // If this module uses a string table, read this as a module-level VST.
2125     if (UseStrtab) {
2126       if (Error Err = parseGlobalValueSymbolTable())
2127         return Err;
2128       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2129         return JumpFailed;
2130       return Error::success();
2131     }
2132     // Otherwise, the VST will be in a similar format to a function-level VST,
2133     // and will contain symbol names.
2134   }
2135 
2136   // Compute the delta between the bitcode indices in the VST (the word offset
2137   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2138   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2139   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2140   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2141   // just before entering the VST subblock because: 1) the EnterSubBlock
2142   // changes the AbbrevID width; 2) the VST block is nested within the same
2143   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2144   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2145   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2146   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2147   unsigned FuncBitcodeOffsetDelta =
2148       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2149 
2150   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2151     return Err;
2152 
2153   SmallVector<uint64_t, 64> Record;
2154 
2155   Triple TT(TheModule->getTargetTriple());
2156 
2157   // Read all the records for this value table.
2158   SmallString<128> ValueName;
2159 
2160   while (true) {
2161     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2162     if (!MaybeEntry)
2163       return MaybeEntry.takeError();
2164     BitstreamEntry Entry = MaybeEntry.get();
2165 
2166     switch (Entry.Kind) {
2167     case BitstreamEntry::SubBlock: // Handled for us already.
2168     case BitstreamEntry::Error:
2169       return error("Malformed block");
2170     case BitstreamEntry::EndBlock:
2171       if (Offset > 0)
2172         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2173           return JumpFailed;
2174       return Error::success();
2175     case BitstreamEntry::Record:
2176       // The interesting case.
2177       break;
2178     }
2179 
2180     // Read a record.
2181     Record.clear();
2182     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2183     if (!MaybeRecord)
2184       return MaybeRecord.takeError();
2185     switch (MaybeRecord.get()) {
2186     default:  // Default behavior: unknown type.
2187       break;
2188     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2189       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2190       if (Error Err = ValOrErr.takeError())
2191         return Err;
2192       ValOrErr.get();
2193       break;
2194     }
2195     case bitc::VST_CODE_FNENTRY: {
2196       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2197       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2198       if (Error Err = ValOrErr.takeError())
2199         return Err;
2200       Value *V = ValOrErr.get();
2201 
2202       // Ignore function offsets emitted for aliases of functions in older
2203       // versions of LLVM.
2204       if (auto *F = dyn_cast<Function>(V))
2205         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2206       break;
2207     }
2208     case bitc::VST_CODE_BBENTRY: {
2209       if (convertToString(Record, 1, ValueName))
2210         return error("Invalid record");
2211       BasicBlock *BB = getBasicBlock(Record[0]);
2212       if (!BB)
2213         return error("Invalid record");
2214 
2215       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2216       ValueName.clear();
2217       break;
2218     }
2219     }
2220   }
2221 }
2222 
2223 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2224 /// encoding.
2225 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2226   if ((V & 1) == 0)
2227     return V >> 1;
2228   if (V != 1)
2229     return -(V >> 1);
2230   // There is no such thing as -0 with integers.  "-0" really means MININT.
2231   return 1ULL << 63;
2232 }
2233 
2234 /// Resolve all of the initializers for global values and aliases that we can.
2235 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2236   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2237   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2238       IndirectSymbolInitWorklist;
2239   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2240   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2241   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2242 
2243   GlobalInitWorklist.swap(GlobalInits);
2244   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2245   FunctionPrefixWorklist.swap(FunctionPrefixes);
2246   FunctionPrologueWorklist.swap(FunctionPrologues);
2247   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2248 
2249   while (!GlobalInitWorklist.empty()) {
2250     unsigned ValID = GlobalInitWorklist.back().second;
2251     if (ValID >= ValueList.size()) {
2252       // Not ready to resolve this yet, it requires something later in the file.
2253       GlobalInits.push_back(GlobalInitWorklist.back());
2254     } else {
2255       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2256         GlobalInitWorklist.back().first->setInitializer(C);
2257       else
2258         return error("Expected a constant");
2259     }
2260     GlobalInitWorklist.pop_back();
2261   }
2262 
2263   while (!IndirectSymbolInitWorklist.empty()) {
2264     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2265     if (ValID >= ValueList.size()) {
2266       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2267     } else {
2268       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2269       if (!C)
2270         return error("Expected a constant");
2271       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2272       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2273         return error("Alias and aliasee types don't match");
2274       GIS->setIndirectSymbol(C);
2275     }
2276     IndirectSymbolInitWorklist.pop_back();
2277   }
2278 
2279   while (!FunctionPrefixWorklist.empty()) {
2280     unsigned ValID = FunctionPrefixWorklist.back().second;
2281     if (ValID >= ValueList.size()) {
2282       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2283     } else {
2284       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2285         FunctionPrefixWorklist.back().first->setPrefixData(C);
2286       else
2287         return error("Expected a constant");
2288     }
2289     FunctionPrefixWorklist.pop_back();
2290   }
2291 
2292   while (!FunctionPrologueWorklist.empty()) {
2293     unsigned ValID = FunctionPrologueWorklist.back().second;
2294     if (ValID >= ValueList.size()) {
2295       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2296     } else {
2297       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2298         FunctionPrologueWorklist.back().first->setPrologueData(C);
2299       else
2300         return error("Expected a constant");
2301     }
2302     FunctionPrologueWorklist.pop_back();
2303   }
2304 
2305   while (!FunctionPersonalityFnWorklist.empty()) {
2306     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2307     if (ValID >= ValueList.size()) {
2308       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2309     } else {
2310       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2311         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2312       else
2313         return error("Expected a constant");
2314     }
2315     FunctionPersonalityFnWorklist.pop_back();
2316   }
2317 
2318   return Error::success();
2319 }
2320 
2321 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2322   SmallVector<uint64_t, 8> Words(Vals.size());
2323   transform(Vals, Words.begin(),
2324                  BitcodeReader::decodeSignRotatedValue);
2325 
2326   return APInt(TypeBits, Words);
2327 }
2328 
2329 Error BitcodeReader::parseConstants() {
2330   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2331     return Err;
2332 
2333   SmallVector<uint64_t, 64> Record;
2334 
2335   // Read all the records for this value table.
2336   Type *CurTy = Type::getInt32Ty(Context);
2337   Type *CurFullTy = Type::getInt32Ty(Context);
2338   unsigned NextCstNo = ValueList.size();
2339 
2340   struct DelayedShufTy {
2341     VectorType *OpTy;
2342     VectorType *RTy;
2343     Type *CurFullTy;
2344     uint64_t Op0Idx;
2345     uint64_t Op1Idx;
2346     uint64_t Op2Idx;
2347     unsigned CstNo;
2348   };
2349   std::vector<DelayedShufTy> DelayedShuffles;
2350   while (true) {
2351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2352     if (!MaybeEntry)
2353       return MaybeEntry.takeError();
2354     BitstreamEntry Entry = MaybeEntry.get();
2355 
2356     switch (Entry.Kind) {
2357     case BitstreamEntry::SubBlock: // Handled for us already.
2358     case BitstreamEntry::Error:
2359       return error("Malformed block");
2360     case BitstreamEntry::EndBlock:
2361       // Once all the constants have been read, go through and resolve forward
2362       // references.
2363       //
2364       // We have to treat shuffles specially because they don't have three
2365       // operands anymore.  We need to convert the shuffle mask into an array,
2366       // and we can't convert a forward reference.
2367       for (auto &DelayedShuffle : DelayedShuffles) {
2368         VectorType *OpTy = DelayedShuffle.OpTy;
2369         VectorType *RTy = DelayedShuffle.RTy;
2370         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2371         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2372         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2373         uint64_t CstNo = DelayedShuffle.CstNo;
2374         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2375         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2376         Type *ShufTy =
2377             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2378         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2379         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2380           return error("Invalid shufflevector operands");
2381         SmallVector<int, 16> Mask;
2382         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2383         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2384         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2385       }
2386 
2387       if (NextCstNo != ValueList.size())
2388         return error("Invalid constant reference");
2389 
2390       ValueList.resolveConstantForwardRefs();
2391       return Error::success();
2392     case BitstreamEntry::Record:
2393       // The interesting case.
2394       break;
2395     }
2396 
2397     // Read a record.
2398     Record.clear();
2399     Type *VoidType = Type::getVoidTy(Context);
2400     Value *V = nullptr;
2401     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2402     if (!MaybeBitCode)
2403       return MaybeBitCode.takeError();
2404     switch (unsigned BitCode = MaybeBitCode.get()) {
2405     default:  // Default behavior: unknown constant
2406     case bitc::CST_CODE_UNDEF:     // UNDEF
2407       V = UndefValue::get(CurTy);
2408       break;
2409     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2410       if (Record.empty())
2411         return error("Invalid record");
2412       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2413         return error("Invalid record");
2414       if (TypeList[Record[0]] == VoidType)
2415         return error("Invalid constant type");
2416       CurFullTy = TypeList[Record[0]];
2417       CurTy = flattenPointerTypes(CurFullTy);
2418       continue;  // Skip the ValueList manipulation.
2419     case bitc::CST_CODE_NULL:      // NULL
2420       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2421         return error("Invalid type for a constant null value");
2422       V = Constant::getNullValue(CurTy);
2423       break;
2424     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2425       if (!CurTy->isIntegerTy() || Record.empty())
2426         return error("Invalid record");
2427       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2428       break;
2429     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2430       if (!CurTy->isIntegerTy() || Record.empty())
2431         return error("Invalid record");
2432 
2433       APInt VInt =
2434           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2435       V = ConstantInt::get(Context, VInt);
2436 
2437       break;
2438     }
2439     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2440       if (Record.empty())
2441         return error("Invalid record");
2442       if (CurTy->isHalfTy())
2443         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2444                                              APInt(16, (uint16_t)Record[0])));
2445       else if (CurTy->isBFloatTy())
2446         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2447                                              APInt(16, (uint32_t)Record[0])));
2448       else if (CurTy->isFloatTy())
2449         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2450                                              APInt(32, (uint32_t)Record[0])));
2451       else if (CurTy->isDoubleTy())
2452         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2453                                              APInt(64, Record[0])));
2454       else if (CurTy->isX86_FP80Ty()) {
2455         // Bits are not stored the same way as a normal i80 APInt, compensate.
2456         uint64_t Rearrange[2];
2457         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2458         Rearrange[1] = Record[0] >> 48;
2459         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2460                                              APInt(80, Rearrange)));
2461       } else if (CurTy->isFP128Ty())
2462         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2463                                              APInt(128, Record)));
2464       else if (CurTy->isPPC_FP128Ty())
2465         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2466                                              APInt(128, Record)));
2467       else
2468         V = UndefValue::get(CurTy);
2469       break;
2470     }
2471 
2472     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2473       if (Record.empty())
2474         return error("Invalid record");
2475 
2476       unsigned Size = Record.size();
2477       SmallVector<Constant*, 16> Elts;
2478 
2479       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2480         for (unsigned i = 0; i != Size; ++i)
2481           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2482                                                      STy->getElementType(i)));
2483         V = ConstantStruct::get(STy, Elts);
2484       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2485         Type *EltTy = ATy->getElementType();
2486         for (unsigned i = 0; i != Size; ++i)
2487           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2488         V = ConstantArray::get(ATy, Elts);
2489       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2490         Type *EltTy = VTy->getElementType();
2491         for (unsigned i = 0; i != Size; ++i)
2492           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2493         V = ConstantVector::get(Elts);
2494       } else {
2495         V = UndefValue::get(CurTy);
2496       }
2497       break;
2498     }
2499     case bitc::CST_CODE_STRING:    // STRING: [values]
2500     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2501       if (Record.empty())
2502         return error("Invalid record");
2503 
2504       SmallString<16> Elts(Record.begin(), Record.end());
2505       V = ConstantDataArray::getString(Context, Elts,
2506                                        BitCode == bitc::CST_CODE_CSTRING);
2507       break;
2508     }
2509     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2510       if (Record.empty())
2511         return error("Invalid record");
2512 
2513       Type *EltTy;
2514       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2515         EltTy = Array->getElementType();
2516       else
2517         EltTy = cast<VectorType>(CurTy)->getElementType();
2518       if (EltTy->isIntegerTy(8)) {
2519         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2520         if (isa<VectorType>(CurTy))
2521           V = ConstantDataVector::get(Context, Elts);
2522         else
2523           V = ConstantDataArray::get(Context, Elts);
2524       } else if (EltTy->isIntegerTy(16)) {
2525         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2526         if (isa<VectorType>(CurTy))
2527           V = ConstantDataVector::get(Context, Elts);
2528         else
2529           V = ConstantDataArray::get(Context, Elts);
2530       } else if (EltTy->isIntegerTy(32)) {
2531         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2532         if (isa<VectorType>(CurTy))
2533           V = ConstantDataVector::get(Context, Elts);
2534         else
2535           V = ConstantDataArray::get(Context, Elts);
2536       } else if (EltTy->isIntegerTy(64)) {
2537         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2538         if (isa<VectorType>(CurTy))
2539           V = ConstantDataVector::get(Context, Elts);
2540         else
2541           V = ConstantDataArray::get(Context, Elts);
2542       } else if (EltTy->isHalfTy()) {
2543         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2544         if (isa<VectorType>(CurTy))
2545           V = ConstantDataVector::getFP(EltTy, Elts);
2546         else
2547           V = ConstantDataArray::getFP(EltTy, Elts);
2548       } else if (EltTy->isBFloatTy()) {
2549         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2550         if (isa<VectorType>(CurTy))
2551           V = ConstantDataVector::getFP(EltTy, Elts);
2552         else
2553           V = ConstantDataArray::getFP(EltTy, Elts);
2554       } else if (EltTy->isFloatTy()) {
2555         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2556         if (isa<VectorType>(CurTy))
2557           V = ConstantDataVector::getFP(EltTy, Elts);
2558         else
2559           V = ConstantDataArray::getFP(EltTy, Elts);
2560       } else if (EltTy->isDoubleTy()) {
2561         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2562         if (isa<VectorType>(CurTy))
2563           V = ConstantDataVector::getFP(EltTy, Elts);
2564         else
2565           V = ConstantDataArray::getFP(EltTy, Elts);
2566       } else {
2567         return error("Invalid type for value");
2568       }
2569       break;
2570     }
2571     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2572       if (Record.size() < 2)
2573         return error("Invalid record");
2574       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2575       if (Opc < 0) {
2576         V = UndefValue::get(CurTy);  // Unknown unop.
2577       } else {
2578         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2579         unsigned Flags = 0;
2580         V = ConstantExpr::get(Opc, LHS, Flags);
2581       }
2582       break;
2583     }
2584     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2585       if (Record.size() < 3)
2586         return error("Invalid record");
2587       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2588       if (Opc < 0) {
2589         V = UndefValue::get(CurTy);  // Unknown binop.
2590       } else {
2591         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2592         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2593         unsigned Flags = 0;
2594         if (Record.size() >= 4) {
2595           if (Opc == Instruction::Add ||
2596               Opc == Instruction::Sub ||
2597               Opc == Instruction::Mul ||
2598               Opc == Instruction::Shl) {
2599             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2600               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2601             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2602               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2603           } else if (Opc == Instruction::SDiv ||
2604                      Opc == Instruction::UDiv ||
2605                      Opc == Instruction::LShr ||
2606                      Opc == Instruction::AShr) {
2607             if (Record[3] & (1 << bitc::PEO_EXACT))
2608               Flags |= SDivOperator::IsExact;
2609           }
2610         }
2611         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2612       }
2613       break;
2614     }
2615     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2616       if (Record.size() < 3)
2617         return error("Invalid record");
2618       int Opc = getDecodedCastOpcode(Record[0]);
2619       if (Opc < 0) {
2620         V = UndefValue::get(CurTy);  // Unknown cast.
2621       } else {
2622         Type *OpTy = getTypeByID(Record[1]);
2623         if (!OpTy)
2624           return error("Invalid record");
2625         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2626         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2627         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2628       }
2629       break;
2630     }
2631     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2632     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2633     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2634                                                      // operands]
2635       unsigned OpNum = 0;
2636       Type *PointeeType = nullptr;
2637       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2638           Record.size() % 2)
2639         PointeeType = getTypeByID(Record[OpNum++]);
2640 
2641       bool InBounds = false;
2642       Optional<unsigned> InRangeIndex;
2643       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2644         uint64_t Op = Record[OpNum++];
2645         InBounds = Op & 1;
2646         InRangeIndex = Op >> 1;
2647       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2648         InBounds = true;
2649 
2650       SmallVector<Constant*, 16> Elts;
2651       Type *Elt0FullTy = nullptr;
2652       while (OpNum != Record.size()) {
2653         if (!Elt0FullTy)
2654           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2655         Type *ElTy = getTypeByID(Record[OpNum++]);
2656         if (!ElTy)
2657           return error("Invalid record");
2658         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2659       }
2660 
2661       if (Elts.size() < 1)
2662         return error("Invalid gep with no operands");
2663 
2664       Type *ImplicitPointeeType =
2665           getPointerElementFlatType(Elt0FullTy->getScalarType());
2666       if (!PointeeType)
2667         PointeeType = ImplicitPointeeType;
2668       else if (PointeeType != ImplicitPointeeType)
2669         return error("Explicit gep operator type does not match pointee type "
2670                      "of pointer operand");
2671 
2672       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2673       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2674                                          InBounds, InRangeIndex);
2675       break;
2676     }
2677     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2678       if (Record.size() < 3)
2679         return error("Invalid record");
2680 
2681       Type *SelectorTy = Type::getInt1Ty(Context);
2682 
2683       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2684       // Get the type from the ValueList before getting a forward ref.
2685       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2686         if (Value *V = ValueList[Record[0]])
2687           if (SelectorTy != V->getType())
2688             SelectorTy = VectorType::get(SelectorTy,
2689                                          VTy->getElementCount());
2690 
2691       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2692                                                               SelectorTy),
2693                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2694                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2695       break;
2696     }
2697     case bitc::CST_CODE_CE_EXTRACTELT
2698         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2699       if (Record.size() < 3)
2700         return error("Invalid record");
2701       VectorType *OpTy =
2702         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2703       if (!OpTy)
2704         return error("Invalid record");
2705       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2706       Constant *Op1 = nullptr;
2707       if (Record.size() == 4) {
2708         Type *IdxTy = getTypeByID(Record[2]);
2709         if (!IdxTy)
2710           return error("Invalid record");
2711         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2712       } else {
2713         // Deprecated, but still needed to read old bitcode files.
2714         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2715       }
2716       if (!Op1)
2717         return error("Invalid record");
2718       V = ConstantExpr::getExtractElement(Op0, Op1);
2719       break;
2720     }
2721     case bitc::CST_CODE_CE_INSERTELT
2722         : { // CE_INSERTELT: [opval, opval, opty, opval]
2723       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2724       if (Record.size() < 3 || !OpTy)
2725         return error("Invalid record");
2726       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2727       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2728                                                   OpTy->getElementType());
2729       Constant *Op2 = nullptr;
2730       if (Record.size() == 4) {
2731         Type *IdxTy = getTypeByID(Record[2]);
2732         if (!IdxTy)
2733           return error("Invalid record");
2734         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2735       } else {
2736         // Deprecated, but still needed to read old bitcode files.
2737         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2738       }
2739       if (!Op2)
2740         return error("Invalid record");
2741       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2742       break;
2743     }
2744     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2745       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2746       if (Record.size() < 3 || !OpTy)
2747         return error("Invalid record");
2748       DelayedShuffles.push_back(
2749           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2750       ++NextCstNo;
2751       continue;
2752     }
2753     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2754       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2755       VectorType *OpTy =
2756         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2757       if (Record.size() < 4 || !RTy || !OpTy)
2758         return error("Invalid record");
2759       DelayedShuffles.push_back(
2760           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2761       ++NextCstNo;
2762       continue;
2763     }
2764     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2765       if (Record.size() < 4)
2766         return error("Invalid record");
2767       Type *OpTy = getTypeByID(Record[0]);
2768       if (!OpTy)
2769         return error("Invalid record");
2770       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2771       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2772 
2773       if (OpTy->isFPOrFPVectorTy())
2774         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2775       else
2776         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2777       break;
2778     }
2779     // This maintains backward compatibility, pre-asm dialect keywords.
2780     // Deprecated, but still needed to read old bitcode files.
2781     case bitc::CST_CODE_INLINEASM_OLD: {
2782       if (Record.size() < 2)
2783         return error("Invalid record");
2784       std::string AsmStr, ConstrStr;
2785       bool HasSideEffects = Record[0] & 1;
2786       bool IsAlignStack = Record[0] >> 1;
2787       unsigned AsmStrSize = Record[1];
2788       if (2+AsmStrSize >= Record.size())
2789         return error("Invalid record");
2790       unsigned ConstStrSize = Record[2+AsmStrSize];
2791       if (3+AsmStrSize+ConstStrSize > Record.size())
2792         return error("Invalid record");
2793 
2794       for (unsigned i = 0; i != AsmStrSize; ++i)
2795         AsmStr += (char)Record[2+i];
2796       for (unsigned i = 0; i != ConstStrSize; ++i)
2797         ConstrStr += (char)Record[3+AsmStrSize+i];
2798       UpgradeInlineAsmString(&AsmStr);
2799       V = InlineAsm::get(
2800           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2801           ConstrStr, HasSideEffects, IsAlignStack);
2802       break;
2803     }
2804     // This version adds support for the asm dialect keywords (e.g.,
2805     // inteldialect).
2806     case bitc::CST_CODE_INLINEASM: {
2807       if (Record.size() < 2)
2808         return error("Invalid record");
2809       std::string AsmStr, ConstrStr;
2810       bool HasSideEffects = Record[0] & 1;
2811       bool IsAlignStack = (Record[0] >> 1) & 1;
2812       unsigned AsmDialect = Record[0] >> 2;
2813       unsigned AsmStrSize = Record[1];
2814       if (2+AsmStrSize >= Record.size())
2815         return error("Invalid record");
2816       unsigned ConstStrSize = Record[2+AsmStrSize];
2817       if (3+AsmStrSize+ConstStrSize > Record.size())
2818         return error("Invalid record");
2819 
2820       for (unsigned i = 0; i != AsmStrSize; ++i)
2821         AsmStr += (char)Record[2+i];
2822       for (unsigned i = 0; i != ConstStrSize; ++i)
2823         ConstrStr += (char)Record[3+AsmStrSize+i];
2824       UpgradeInlineAsmString(&AsmStr);
2825       V = InlineAsm::get(
2826           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2827           ConstrStr, HasSideEffects, IsAlignStack,
2828           InlineAsm::AsmDialect(AsmDialect));
2829       break;
2830     }
2831     case bitc::CST_CODE_BLOCKADDRESS:{
2832       if (Record.size() < 3)
2833         return error("Invalid record");
2834       Type *FnTy = getTypeByID(Record[0]);
2835       if (!FnTy)
2836         return error("Invalid record");
2837       Function *Fn =
2838         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2839       if (!Fn)
2840         return error("Invalid record");
2841 
2842       // If the function is already parsed we can insert the block address right
2843       // away.
2844       BasicBlock *BB;
2845       unsigned BBID = Record[2];
2846       if (!BBID)
2847         // Invalid reference to entry block.
2848         return error("Invalid ID");
2849       if (!Fn->empty()) {
2850         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2851         for (size_t I = 0, E = BBID; I != E; ++I) {
2852           if (BBI == BBE)
2853             return error("Invalid ID");
2854           ++BBI;
2855         }
2856         BB = &*BBI;
2857       } else {
2858         // Otherwise insert a placeholder and remember it so it can be inserted
2859         // when the function is parsed.
2860         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2861         if (FwdBBs.empty())
2862           BasicBlockFwdRefQueue.push_back(Fn);
2863         if (FwdBBs.size() < BBID + 1)
2864           FwdBBs.resize(BBID + 1);
2865         if (!FwdBBs[BBID])
2866           FwdBBs[BBID] = BasicBlock::Create(Context);
2867         BB = FwdBBs[BBID];
2868       }
2869       V = BlockAddress::get(Fn, BB);
2870       break;
2871     }
2872     }
2873 
2874     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2875            "Incorrect fully structured type provided for Constant");
2876     ValueList.assignValue(V, NextCstNo, CurFullTy);
2877     ++NextCstNo;
2878   }
2879 }
2880 
2881 Error BitcodeReader::parseUseLists() {
2882   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2883     return Err;
2884 
2885   // Read all the records.
2886   SmallVector<uint64_t, 64> Record;
2887 
2888   while (true) {
2889     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2890     if (!MaybeEntry)
2891       return MaybeEntry.takeError();
2892     BitstreamEntry Entry = MaybeEntry.get();
2893 
2894     switch (Entry.Kind) {
2895     case BitstreamEntry::SubBlock: // Handled for us already.
2896     case BitstreamEntry::Error:
2897       return error("Malformed block");
2898     case BitstreamEntry::EndBlock:
2899       return Error::success();
2900     case BitstreamEntry::Record:
2901       // The interesting case.
2902       break;
2903     }
2904 
2905     // Read a use list record.
2906     Record.clear();
2907     bool IsBB = false;
2908     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2909     if (!MaybeRecord)
2910       return MaybeRecord.takeError();
2911     switch (MaybeRecord.get()) {
2912     default:  // Default behavior: unknown type.
2913       break;
2914     case bitc::USELIST_CODE_BB:
2915       IsBB = true;
2916       LLVM_FALLTHROUGH;
2917     case bitc::USELIST_CODE_DEFAULT: {
2918       unsigned RecordLength = Record.size();
2919       if (RecordLength < 3)
2920         // Records should have at least an ID and two indexes.
2921         return error("Invalid record");
2922       unsigned ID = Record.back();
2923       Record.pop_back();
2924 
2925       Value *V;
2926       if (IsBB) {
2927         assert(ID < FunctionBBs.size() && "Basic block not found");
2928         V = FunctionBBs[ID];
2929       } else
2930         V = ValueList[ID];
2931       unsigned NumUses = 0;
2932       SmallDenseMap<const Use *, unsigned, 16> Order;
2933       for (const Use &U : V->materialized_uses()) {
2934         if (++NumUses > Record.size())
2935           break;
2936         Order[&U] = Record[NumUses - 1];
2937       }
2938       if (Order.size() != Record.size() || NumUses > Record.size())
2939         // Mismatches can happen if the functions are being materialized lazily
2940         // (out-of-order), or a value has been upgraded.
2941         break;
2942 
2943       V->sortUseList([&](const Use &L, const Use &R) {
2944         return Order.lookup(&L) < Order.lookup(&R);
2945       });
2946       break;
2947     }
2948     }
2949   }
2950 }
2951 
2952 /// When we see the block for metadata, remember where it is and then skip it.
2953 /// This lets us lazily deserialize the metadata.
2954 Error BitcodeReader::rememberAndSkipMetadata() {
2955   // Save the current stream state.
2956   uint64_t CurBit = Stream.GetCurrentBitNo();
2957   DeferredMetadataInfo.push_back(CurBit);
2958 
2959   // Skip over the block for now.
2960   if (Error Err = Stream.SkipBlock())
2961     return Err;
2962   return Error::success();
2963 }
2964 
2965 Error BitcodeReader::materializeMetadata() {
2966   for (uint64_t BitPos : DeferredMetadataInfo) {
2967     // Move the bit stream to the saved position.
2968     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2969       return JumpFailed;
2970     if (Error Err = MDLoader->parseModuleMetadata())
2971       return Err;
2972   }
2973 
2974   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2975   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
2976   // multiple times.
2977   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
2978     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2979       NamedMDNode *LinkerOpts =
2980           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2981       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2982         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2983     }
2984   }
2985 
2986   DeferredMetadataInfo.clear();
2987   return Error::success();
2988 }
2989 
2990 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2991 
2992 /// When we see the block for a function body, remember where it is and then
2993 /// skip it.  This lets us lazily deserialize the functions.
2994 Error BitcodeReader::rememberAndSkipFunctionBody() {
2995   // Get the function we are talking about.
2996   if (FunctionsWithBodies.empty())
2997     return error("Insufficient function protos");
2998 
2999   Function *Fn = FunctionsWithBodies.back();
3000   FunctionsWithBodies.pop_back();
3001 
3002   // Save the current stream state.
3003   uint64_t CurBit = Stream.GetCurrentBitNo();
3004   assert(
3005       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3006       "Mismatch between VST and scanned function offsets");
3007   DeferredFunctionInfo[Fn] = CurBit;
3008 
3009   // Skip over the function block for now.
3010   if (Error Err = Stream.SkipBlock())
3011     return Err;
3012   return Error::success();
3013 }
3014 
3015 Error BitcodeReader::globalCleanup() {
3016   // Patch the initializers for globals and aliases up.
3017   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3018     return Err;
3019   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3020     return error("Malformed global initializer set");
3021 
3022   // Look for intrinsic functions which need to be upgraded at some point
3023   // and functions that need to have their function attributes upgraded.
3024   for (Function &F : *TheModule) {
3025     MDLoader->upgradeDebugIntrinsics(F);
3026     Function *NewFn;
3027     if (UpgradeIntrinsicFunction(&F, NewFn))
3028       UpgradedIntrinsics[&F] = NewFn;
3029     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3030       // Some types could be renamed during loading if several modules are
3031       // loaded in the same LLVMContext (LTO scenario). In this case we should
3032       // remangle intrinsics names as well.
3033       RemangledIntrinsics[&F] = Remangled.getValue();
3034     // Look for functions that rely on old function attribute behavior.
3035     UpgradeFunctionAttributes(F);
3036   }
3037 
3038   // Look for global variables which need to be renamed.
3039   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3040   for (GlobalVariable &GV : TheModule->globals())
3041     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3042       UpgradedVariables.emplace_back(&GV, Upgraded);
3043   for (auto &Pair : UpgradedVariables) {
3044     Pair.first->eraseFromParent();
3045     TheModule->getGlobalList().push_back(Pair.second);
3046   }
3047 
3048   // Force deallocation of memory for these vectors to favor the client that
3049   // want lazy deserialization.
3050   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3051   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3052       IndirectSymbolInits);
3053   return Error::success();
3054 }
3055 
3056 /// Support for lazy parsing of function bodies. This is required if we
3057 /// either have an old bitcode file without a VST forward declaration record,
3058 /// or if we have an anonymous function being materialized, since anonymous
3059 /// functions do not have a name and are therefore not in the VST.
3060 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3061   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3062     return JumpFailed;
3063 
3064   if (Stream.AtEndOfStream())
3065     return error("Could not find function in stream");
3066 
3067   if (!SeenFirstFunctionBody)
3068     return error("Trying to materialize functions before seeing function blocks");
3069 
3070   // An old bitcode file with the symbol table at the end would have
3071   // finished the parse greedily.
3072   assert(SeenValueSymbolTable);
3073 
3074   SmallVector<uint64_t, 64> Record;
3075 
3076   while (true) {
3077     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3078     if (!MaybeEntry)
3079       return MaybeEntry.takeError();
3080     llvm::BitstreamEntry Entry = MaybeEntry.get();
3081 
3082     switch (Entry.Kind) {
3083     default:
3084       return error("Expect SubBlock");
3085     case BitstreamEntry::SubBlock:
3086       switch (Entry.ID) {
3087       default:
3088         return error("Expect function block");
3089       case bitc::FUNCTION_BLOCK_ID:
3090         if (Error Err = rememberAndSkipFunctionBody())
3091           return Err;
3092         NextUnreadBit = Stream.GetCurrentBitNo();
3093         return Error::success();
3094       }
3095     }
3096   }
3097 }
3098 
3099 bool BitcodeReaderBase::readBlockInfo() {
3100   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3101       Stream.ReadBlockInfoBlock();
3102   if (!MaybeNewBlockInfo)
3103     return true; // FIXME Handle the error.
3104   Optional<BitstreamBlockInfo> NewBlockInfo =
3105       std::move(MaybeNewBlockInfo.get());
3106   if (!NewBlockInfo)
3107     return true;
3108   BlockInfo = std::move(*NewBlockInfo);
3109   return false;
3110 }
3111 
3112 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3113   // v1: [selection_kind, name]
3114   // v2: [strtab_offset, strtab_size, selection_kind]
3115   StringRef Name;
3116   std::tie(Name, Record) = readNameFromStrtab(Record);
3117 
3118   if (Record.empty())
3119     return error("Invalid record");
3120   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3121   std::string OldFormatName;
3122   if (!UseStrtab) {
3123     if (Record.size() < 2)
3124       return error("Invalid record");
3125     unsigned ComdatNameSize = Record[1];
3126     OldFormatName.reserve(ComdatNameSize);
3127     for (unsigned i = 0; i != ComdatNameSize; ++i)
3128       OldFormatName += (char)Record[2 + i];
3129     Name = OldFormatName;
3130   }
3131   Comdat *C = TheModule->getOrInsertComdat(Name);
3132   C->setSelectionKind(SK);
3133   ComdatList.push_back(C);
3134   return Error::success();
3135 }
3136 
3137 static void inferDSOLocal(GlobalValue *GV) {
3138   // infer dso_local from linkage and visibility if it is not encoded.
3139   if (GV->hasLocalLinkage() ||
3140       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3141     GV->setDSOLocal(true);
3142 }
3143 
3144 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3145   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3146   // visibility, threadlocal, unnamed_addr, externally_initialized,
3147   // dllstorageclass, comdat, attributes, preemption specifier,
3148   // partition strtab offset, partition strtab size] (name in VST)
3149   // v2: [strtab_offset, strtab_size, v1]
3150   StringRef Name;
3151   std::tie(Name, Record) = readNameFromStrtab(Record);
3152 
3153   if (Record.size() < 6)
3154     return error("Invalid record");
3155   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3156   Type *Ty = flattenPointerTypes(FullTy);
3157   if (!Ty)
3158     return error("Invalid record");
3159   bool isConstant = Record[1] & 1;
3160   bool explicitType = Record[1] & 2;
3161   unsigned AddressSpace;
3162   if (explicitType) {
3163     AddressSpace = Record[1] >> 2;
3164   } else {
3165     if (!Ty->isPointerTy())
3166       return error("Invalid type for value");
3167     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3168     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3169   }
3170 
3171   uint64_t RawLinkage = Record[3];
3172   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3173   MaybeAlign Alignment;
3174   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3175     return Err;
3176   std::string Section;
3177   if (Record[5]) {
3178     if (Record[5] - 1 >= SectionTable.size())
3179       return error("Invalid ID");
3180     Section = SectionTable[Record[5] - 1];
3181   }
3182   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3183   // Local linkage must have default visibility.
3184   // auto-upgrade `hidden` and `protected` for old bitcode.
3185   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3186     Visibility = getDecodedVisibility(Record[6]);
3187 
3188   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3189   if (Record.size() > 7)
3190     TLM = getDecodedThreadLocalMode(Record[7]);
3191 
3192   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3193   if (Record.size() > 8)
3194     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3195 
3196   bool ExternallyInitialized = false;
3197   if (Record.size() > 9)
3198     ExternallyInitialized = Record[9];
3199 
3200   GlobalVariable *NewGV =
3201       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3202                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3203   NewGV->setAlignment(Alignment);
3204   if (!Section.empty())
3205     NewGV->setSection(Section);
3206   NewGV->setVisibility(Visibility);
3207   NewGV->setUnnamedAddr(UnnamedAddr);
3208 
3209   if (Record.size() > 10)
3210     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3211   else
3212     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3213 
3214   FullTy = PointerType::get(FullTy, AddressSpace);
3215   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3216          "Incorrect fully specified type for GlobalVariable");
3217   ValueList.push_back(NewGV, FullTy);
3218 
3219   // Remember which value to use for the global initializer.
3220   if (unsigned InitID = Record[2])
3221     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3222 
3223   if (Record.size() > 11) {
3224     if (unsigned ComdatID = Record[11]) {
3225       if (ComdatID > ComdatList.size())
3226         return error("Invalid global variable comdat ID");
3227       NewGV->setComdat(ComdatList[ComdatID - 1]);
3228     }
3229   } else if (hasImplicitComdat(RawLinkage)) {
3230     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3231   }
3232 
3233   if (Record.size() > 12) {
3234     auto AS = getAttributes(Record[12]).getFnAttributes();
3235     NewGV->setAttributes(AS);
3236   }
3237 
3238   if (Record.size() > 13) {
3239     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3240   }
3241   inferDSOLocal(NewGV);
3242 
3243   // Check whether we have enough values to read a partition name.
3244   if (Record.size() > 15)
3245     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3246 
3247   return Error::success();
3248 }
3249 
3250 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3251   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3252   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3253   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3254   // v2: [strtab_offset, strtab_size, v1]
3255   StringRef Name;
3256   std::tie(Name, Record) = readNameFromStrtab(Record);
3257 
3258   if (Record.size() < 8)
3259     return error("Invalid record");
3260   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3261   Type *FTy = flattenPointerTypes(FullFTy);
3262   if (!FTy)
3263     return error("Invalid record");
3264   if (isa<PointerType>(FTy))
3265     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3266 
3267   if (!isa<FunctionType>(FTy))
3268     return error("Invalid type for value");
3269   auto CC = static_cast<CallingConv::ID>(Record[1]);
3270   if (CC & ~CallingConv::MaxID)
3271     return error("Invalid calling convention ID");
3272 
3273   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3274   if (Record.size() > 16)
3275     AddrSpace = Record[16];
3276 
3277   Function *Func =
3278       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3279                        AddrSpace, Name, TheModule);
3280 
3281   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3282          "Incorrect fully specified type provided for function");
3283   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3284 
3285   Func->setCallingConv(CC);
3286   bool isProto = Record[2];
3287   uint64_t RawLinkage = Record[3];
3288   Func->setLinkage(getDecodedLinkage(RawLinkage));
3289   Func->setAttributes(getAttributes(Record[4]));
3290 
3291   // Upgrade any old-style byval without a type by propagating the argument's
3292   // pointee type. There should be no opaque pointers where the byval type is
3293   // implicit.
3294   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3295     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3296       continue;
3297 
3298     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3299     Func->removeParamAttr(i, Attribute::ByVal);
3300     Func->addParamAttr(i, Attribute::getWithByValType(
3301                               Context, getPointerElementFlatType(PTy)));
3302   }
3303 
3304   MaybeAlign Alignment;
3305   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3306     return Err;
3307   Func->setAlignment(Alignment);
3308   if (Record[6]) {
3309     if (Record[6] - 1 >= SectionTable.size())
3310       return error("Invalid ID");
3311     Func->setSection(SectionTable[Record[6] - 1]);
3312   }
3313   // Local linkage must have default visibility.
3314   // auto-upgrade `hidden` and `protected` for old bitcode.
3315   if (!Func->hasLocalLinkage())
3316     Func->setVisibility(getDecodedVisibility(Record[7]));
3317   if (Record.size() > 8 && Record[8]) {
3318     if (Record[8] - 1 >= GCTable.size())
3319       return error("Invalid ID");
3320     Func->setGC(GCTable[Record[8] - 1]);
3321   }
3322   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3323   if (Record.size() > 9)
3324     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3325   Func->setUnnamedAddr(UnnamedAddr);
3326   if (Record.size() > 10 && Record[10] != 0)
3327     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3328 
3329   if (Record.size() > 11)
3330     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3331   else
3332     upgradeDLLImportExportLinkage(Func, RawLinkage);
3333 
3334   if (Record.size() > 12) {
3335     if (unsigned ComdatID = Record[12]) {
3336       if (ComdatID > ComdatList.size())
3337         return error("Invalid function comdat ID");
3338       Func->setComdat(ComdatList[ComdatID - 1]);
3339     }
3340   } else if (hasImplicitComdat(RawLinkage)) {
3341     Func->setComdat(reinterpret_cast<Comdat *>(1));
3342   }
3343 
3344   if (Record.size() > 13 && Record[13] != 0)
3345     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3346 
3347   if (Record.size() > 14 && Record[14] != 0)
3348     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3349 
3350   if (Record.size() > 15) {
3351     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3352   }
3353   inferDSOLocal(Func);
3354 
3355   // Record[16] is the address space number.
3356 
3357   // Check whether we have enough values to read a partition name.
3358   if (Record.size() > 18)
3359     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3360 
3361   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3362   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3363          "Incorrect fully specified type provided for Function");
3364   ValueList.push_back(Func, FullTy);
3365 
3366   // If this is a function with a body, remember the prototype we are
3367   // creating now, so that we can match up the body with them later.
3368   if (!isProto) {
3369     Func->setIsMaterializable(true);
3370     FunctionsWithBodies.push_back(Func);
3371     DeferredFunctionInfo[Func] = 0;
3372   }
3373   return Error::success();
3374 }
3375 
3376 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3377     unsigned BitCode, ArrayRef<uint64_t> Record) {
3378   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3379   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3380   // dllstorageclass, threadlocal, unnamed_addr,
3381   // preemption specifier] (name in VST)
3382   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3383   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3384   // preemption specifier] (name in VST)
3385   // v2: [strtab_offset, strtab_size, v1]
3386   StringRef Name;
3387   std::tie(Name, Record) = readNameFromStrtab(Record);
3388 
3389   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3390   if (Record.size() < (3 + (unsigned)NewRecord))
3391     return error("Invalid record");
3392   unsigned OpNum = 0;
3393   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3394   Type *Ty = flattenPointerTypes(FullTy);
3395   if (!Ty)
3396     return error("Invalid record");
3397 
3398   unsigned AddrSpace;
3399   if (!NewRecord) {
3400     auto *PTy = dyn_cast<PointerType>(Ty);
3401     if (!PTy)
3402       return error("Invalid type for value");
3403     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3404     AddrSpace = PTy->getAddressSpace();
3405   } else {
3406     AddrSpace = Record[OpNum++];
3407   }
3408 
3409   auto Val = Record[OpNum++];
3410   auto Linkage = Record[OpNum++];
3411   GlobalIndirectSymbol *NewGA;
3412   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3413       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3414     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3415                                 TheModule);
3416   else
3417     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3418                                 nullptr, TheModule);
3419 
3420   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3421          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3422   // Local linkage must have default visibility.
3423   // auto-upgrade `hidden` and `protected` for old bitcode.
3424   if (OpNum != Record.size()) {
3425     auto VisInd = OpNum++;
3426     if (!NewGA->hasLocalLinkage())
3427       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3428   }
3429   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3430       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3431     if (OpNum != Record.size())
3432       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3433     else
3434       upgradeDLLImportExportLinkage(NewGA, Linkage);
3435     if (OpNum != Record.size())
3436       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3437     if (OpNum != Record.size())
3438       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3439   }
3440   if (OpNum != Record.size())
3441     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3442   inferDSOLocal(NewGA);
3443 
3444   // Check whether we have enough values to read a partition name.
3445   if (OpNum + 1 < Record.size()) {
3446     NewGA->setPartition(
3447         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3448     OpNum += 2;
3449   }
3450 
3451   FullTy = PointerType::get(FullTy, AddrSpace);
3452   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3453          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3454   ValueList.push_back(NewGA, FullTy);
3455   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3456   return Error::success();
3457 }
3458 
3459 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3460                                  bool ShouldLazyLoadMetadata,
3461                                  DataLayoutCallbackTy DataLayoutCallback) {
3462   if (ResumeBit) {
3463     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3464       return JumpFailed;
3465   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3466     return Err;
3467 
3468   SmallVector<uint64_t, 64> Record;
3469 
3470   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3471   // finalize the datalayout before we run any of that code.
3472   bool ResolvedDataLayout = false;
3473   auto ResolveDataLayout = [&] {
3474     if (ResolvedDataLayout)
3475       return;
3476 
3477     // datalayout and triple can't be parsed after this point.
3478     ResolvedDataLayout = true;
3479 
3480     // Upgrade data layout string.
3481     std::string DL = llvm::UpgradeDataLayoutString(
3482         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3483     TheModule->setDataLayout(DL);
3484 
3485     if (auto LayoutOverride =
3486             DataLayoutCallback(TheModule->getTargetTriple()))
3487       TheModule->setDataLayout(*LayoutOverride);
3488   };
3489 
3490   // Read all the records for this module.
3491   while (true) {
3492     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3493     if (!MaybeEntry)
3494       return MaybeEntry.takeError();
3495     llvm::BitstreamEntry Entry = MaybeEntry.get();
3496 
3497     switch (Entry.Kind) {
3498     case BitstreamEntry::Error:
3499       return error("Malformed block");
3500     case BitstreamEntry::EndBlock:
3501       ResolveDataLayout();
3502       return globalCleanup();
3503 
3504     case BitstreamEntry::SubBlock:
3505       switch (Entry.ID) {
3506       default:  // Skip unknown content.
3507         if (Error Err = Stream.SkipBlock())
3508           return Err;
3509         break;
3510       case bitc::BLOCKINFO_BLOCK_ID:
3511         if (readBlockInfo())
3512           return error("Malformed block");
3513         break;
3514       case bitc::PARAMATTR_BLOCK_ID:
3515         if (Error Err = parseAttributeBlock())
3516           return Err;
3517         break;
3518       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3519         if (Error Err = parseAttributeGroupBlock())
3520           return Err;
3521         break;
3522       case bitc::TYPE_BLOCK_ID_NEW:
3523         if (Error Err = parseTypeTable())
3524           return Err;
3525         break;
3526       case bitc::VALUE_SYMTAB_BLOCK_ID:
3527         if (!SeenValueSymbolTable) {
3528           // Either this is an old form VST without function index and an
3529           // associated VST forward declaration record (which would have caused
3530           // the VST to be jumped to and parsed before it was encountered
3531           // normally in the stream), or there were no function blocks to
3532           // trigger an earlier parsing of the VST.
3533           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3534           if (Error Err = parseValueSymbolTable())
3535             return Err;
3536           SeenValueSymbolTable = true;
3537         } else {
3538           // We must have had a VST forward declaration record, which caused
3539           // the parser to jump to and parse the VST earlier.
3540           assert(VSTOffset > 0);
3541           if (Error Err = Stream.SkipBlock())
3542             return Err;
3543         }
3544         break;
3545       case bitc::CONSTANTS_BLOCK_ID:
3546         if (Error Err = parseConstants())
3547           return Err;
3548         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3549           return Err;
3550         break;
3551       case bitc::METADATA_BLOCK_ID:
3552         if (ShouldLazyLoadMetadata) {
3553           if (Error Err = rememberAndSkipMetadata())
3554             return Err;
3555           break;
3556         }
3557         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3558         if (Error Err = MDLoader->parseModuleMetadata())
3559           return Err;
3560         break;
3561       case bitc::METADATA_KIND_BLOCK_ID:
3562         if (Error Err = MDLoader->parseMetadataKinds())
3563           return Err;
3564         break;
3565       case bitc::FUNCTION_BLOCK_ID:
3566         ResolveDataLayout();
3567 
3568         // If this is the first function body we've seen, reverse the
3569         // FunctionsWithBodies list.
3570         if (!SeenFirstFunctionBody) {
3571           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3572           if (Error Err = globalCleanup())
3573             return Err;
3574           SeenFirstFunctionBody = true;
3575         }
3576 
3577         if (VSTOffset > 0) {
3578           // If we have a VST forward declaration record, make sure we
3579           // parse the VST now if we haven't already. It is needed to
3580           // set up the DeferredFunctionInfo vector for lazy reading.
3581           if (!SeenValueSymbolTable) {
3582             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3583               return Err;
3584             SeenValueSymbolTable = true;
3585             // Fall through so that we record the NextUnreadBit below.
3586             // This is necessary in case we have an anonymous function that
3587             // is later materialized. Since it will not have a VST entry we
3588             // need to fall back to the lazy parse to find its offset.
3589           } else {
3590             // If we have a VST forward declaration record, but have already
3591             // parsed the VST (just above, when the first function body was
3592             // encountered here), then we are resuming the parse after
3593             // materializing functions. The ResumeBit points to the
3594             // start of the last function block recorded in the
3595             // DeferredFunctionInfo map. Skip it.
3596             if (Error Err = Stream.SkipBlock())
3597               return Err;
3598             continue;
3599           }
3600         }
3601 
3602         // Support older bitcode files that did not have the function
3603         // index in the VST, nor a VST forward declaration record, as
3604         // well as anonymous functions that do not have VST entries.
3605         // Build the DeferredFunctionInfo vector on the fly.
3606         if (Error Err = rememberAndSkipFunctionBody())
3607           return Err;
3608 
3609         // Suspend parsing when we reach the function bodies. Subsequent
3610         // materialization calls will resume it when necessary. If the bitcode
3611         // file is old, the symbol table will be at the end instead and will not
3612         // have been seen yet. In this case, just finish the parse now.
3613         if (SeenValueSymbolTable) {
3614           NextUnreadBit = Stream.GetCurrentBitNo();
3615           // After the VST has been parsed, we need to make sure intrinsic name
3616           // are auto-upgraded.
3617           return globalCleanup();
3618         }
3619         break;
3620       case bitc::USELIST_BLOCK_ID:
3621         if (Error Err = parseUseLists())
3622           return Err;
3623         break;
3624       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3625         if (Error Err = parseOperandBundleTags())
3626           return Err;
3627         break;
3628       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3629         if (Error Err = parseSyncScopeNames())
3630           return Err;
3631         break;
3632       }
3633       continue;
3634 
3635     case BitstreamEntry::Record:
3636       // The interesting case.
3637       break;
3638     }
3639 
3640     // Read a record.
3641     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3642     if (!MaybeBitCode)
3643       return MaybeBitCode.takeError();
3644     switch (unsigned BitCode = MaybeBitCode.get()) {
3645     default: break;  // Default behavior, ignore unknown content.
3646     case bitc::MODULE_CODE_VERSION: {
3647       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3648       if (!VersionOrErr)
3649         return VersionOrErr.takeError();
3650       UseRelativeIDs = *VersionOrErr >= 1;
3651       break;
3652     }
3653     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3654       if (ResolvedDataLayout)
3655         return error("target triple too late in module");
3656       std::string S;
3657       if (convertToString(Record, 0, S))
3658         return error("Invalid record");
3659       TheModule->setTargetTriple(S);
3660       break;
3661     }
3662     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3663       if (ResolvedDataLayout)
3664         return error("datalayout too late in module");
3665       std::string S;
3666       if (convertToString(Record, 0, S))
3667         return error("Invalid record");
3668       TheModule->setDataLayout(S);
3669       break;
3670     }
3671     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3672       std::string S;
3673       if (convertToString(Record, 0, S))
3674         return error("Invalid record");
3675       TheModule->setModuleInlineAsm(S);
3676       break;
3677     }
3678     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3679       // Deprecated, but still needed to read old bitcode files.
3680       std::string S;
3681       if (convertToString(Record, 0, S))
3682         return error("Invalid record");
3683       // Ignore value.
3684       break;
3685     }
3686     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3687       std::string S;
3688       if (convertToString(Record, 0, S))
3689         return error("Invalid record");
3690       SectionTable.push_back(S);
3691       break;
3692     }
3693     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3694       std::string S;
3695       if (convertToString(Record, 0, S))
3696         return error("Invalid record");
3697       GCTable.push_back(S);
3698       break;
3699     }
3700     case bitc::MODULE_CODE_COMDAT:
3701       if (Error Err = parseComdatRecord(Record))
3702         return Err;
3703       break;
3704     case bitc::MODULE_CODE_GLOBALVAR:
3705       if (Error Err = parseGlobalVarRecord(Record))
3706         return Err;
3707       break;
3708     case bitc::MODULE_CODE_FUNCTION:
3709       ResolveDataLayout();
3710       if (Error Err = parseFunctionRecord(Record))
3711         return Err;
3712       break;
3713     case bitc::MODULE_CODE_IFUNC:
3714     case bitc::MODULE_CODE_ALIAS:
3715     case bitc::MODULE_CODE_ALIAS_OLD:
3716       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3717         return Err;
3718       break;
3719     /// MODULE_CODE_VSTOFFSET: [offset]
3720     case bitc::MODULE_CODE_VSTOFFSET:
3721       if (Record.empty())
3722         return error("Invalid record");
3723       // Note that we subtract 1 here because the offset is relative to one word
3724       // before the start of the identification or module block, which was
3725       // historically always the start of the regular bitcode header.
3726       VSTOffset = Record[0] - 1;
3727       break;
3728     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3729     case bitc::MODULE_CODE_SOURCE_FILENAME:
3730       SmallString<128> ValueName;
3731       if (convertToString(Record, 0, ValueName))
3732         return error("Invalid record");
3733       TheModule->setSourceFileName(ValueName);
3734       break;
3735     }
3736     Record.clear();
3737   }
3738 }
3739 
3740 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3741                                       bool IsImporting,
3742                                       DataLayoutCallbackTy DataLayoutCallback) {
3743   TheModule = M;
3744   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3745                             [&](unsigned ID) { return getTypeByID(ID); });
3746   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3747 }
3748 
3749 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3750   if (!isa<PointerType>(PtrType))
3751     return error("Load/Store operand is not a pointer type");
3752   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3753 
3754   if (ValType && ValType != ElemType)
3755     return error("Explicit load/store type does not match pointee "
3756                  "type of pointer operand");
3757   if (!PointerType::isLoadableOrStorableType(ElemType))
3758     return error("Cannot load/store from pointer");
3759   return Error::success();
3760 }
3761 
3762 void BitcodeReader::propagateByValTypes(CallBase *CB,
3763                                         ArrayRef<Type *> ArgsFullTys) {
3764   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3765     if (!CB->paramHasAttr(i, Attribute::ByVal))
3766       continue;
3767 
3768     CB->removeParamAttr(i, Attribute::ByVal);
3769     CB->addParamAttr(
3770         i, Attribute::getWithByValType(
3771                Context, getPointerElementFlatType(ArgsFullTys[i])));
3772   }
3773 }
3774 
3775 /// Lazily parse the specified function body block.
3776 Error BitcodeReader::parseFunctionBody(Function *F) {
3777   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3778     return Err;
3779 
3780   // Unexpected unresolved metadata when parsing function.
3781   if (MDLoader->hasFwdRefs())
3782     return error("Invalid function metadata: incoming forward references");
3783 
3784   InstructionList.clear();
3785   unsigned ModuleValueListSize = ValueList.size();
3786   unsigned ModuleMDLoaderSize = MDLoader->size();
3787 
3788   // Add all the function arguments to the value table.
3789   unsigned ArgNo = 0;
3790   FunctionType *FullFTy = FunctionTypes[F];
3791   for (Argument &I : F->args()) {
3792     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3793            "Incorrect fully specified type for Function Argument");
3794     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3795   }
3796   unsigned NextValueNo = ValueList.size();
3797   BasicBlock *CurBB = nullptr;
3798   unsigned CurBBNo = 0;
3799 
3800   DebugLoc LastLoc;
3801   auto getLastInstruction = [&]() -> Instruction * {
3802     if (CurBB && !CurBB->empty())
3803       return &CurBB->back();
3804     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3805              !FunctionBBs[CurBBNo - 1]->empty())
3806       return &FunctionBBs[CurBBNo - 1]->back();
3807     return nullptr;
3808   };
3809 
3810   std::vector<OperandBundleDef> OperandBundles;
3811 
3812   // Read all the records.
3813   SmallVector<uint64_t, 64> Record;
3814 
3815   while (true) {
3816     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3817     if (!MaybeEntry)
3818       return MaybeEntry.takeError();
3819     llvm::BitstreamEntry Entry = MaybeEntry.get();
3820 
3821     switch (Entry.Kind) {
3822     case BitstreamEntry::Error:
3823       return error("Malformed block");
3824     case BitstreamEntry::EndBlock:
3825       goto OutOfRecordLoop;
3826 
3827     case BitstreamEntry::SubBlock:
3828       switch (Entry.ID) {
3829       default:  // Skip unknown content.
3830         if (Error Err = Stream.SkipBlock())
3831           return Err;
3832         break;
3833       case bitc::CONSTANTS_BLOCK_ID:
3834         if (Error Err = parseConstants())
3835           return Err;
3836         NextValueNo = ValueList.size();
3837         break;
3838       case bitc::VALUE_SYMTAB_BLOCK_ID:
3839         if (Error Err = parseValueSymbolTable())
3840           return Err;
3841         break;
3842       case bitc::METADATA_ATTACHMENT_ID:
3843         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3844           return Err;
3845         break;
3846       case bitc::METADATA_BLOCK_ID:
3847         assert(DeferredMetadataInfo.empty() &&
3848                "Must read all module-level metadata before function-level");
3849         if (Error Err = MDLoader->parseFunctionMetadata())
3850           return Err;
3851         break;
3852       case bitc::USELIST_BLOCK_ID:
3853         if (Error Err = parseUseLists())
3854           return Err;
3855         break;
3856       }
3857       continue;
3858 
3859     case BitstreamEntry::Record:
3860       // The interesting case.
3861       break;
3862     }
3863 
3864     // Read a record.
3865     Record.clear();
3866     Instruction *I = nullptr;
3867     Type *FullTy = nullptr;
3868     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3869     if (!MaybeBitCode)
3870       return MaybeBitCode.takeError();
3871     switch (unsigned BitCode = MaybeBitCode.get()) {
3872     default: // Default behavior: reject
3873       return error("Invalid value");
3874     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3875       if (Record.empty() || Record[0] == 0)
3876         return error("Invalid record");
3877       // Create all the basic blocks for the function.
3878       FunctionBBs.resize(Record[0]);
3879 
3880       // See if anything took the address of blocks in this function.
3881       auto BBFRI = BasicBlockFwdRefs.find(F);
3882       if (BBFRI == BasicBlockFwdRefs.end()) {
3883         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3884           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3885       } else {
3886         auto &BBRefs = BBFRI->second;
3887         // Check for invalid basic block references.
3888         if (BBRefs.size() > FunctionBBs.size())
3889           return error("Invalid ID");
3890         assert(!BBRefs.empty() && "Unexpected empty array");
3891         assert(!BBRefs.front() && "Invalid reference to entry block");
3892         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3893              ++I)
3894           if (I < RE && BBRefs[I]) {
3895             BBRefs[I]->insertInto(F);
3896             FunctionBBs[I] = BBRefs[I];
3897           } else {
3898             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3899           }
3900 
3901         // Erase from the table.
3902         BasicBlockFwdRefs.erase(BBFRI);
3903       }
3904 
3905       CurBB = FunctionBBs[0];
3906       continue;
3907     }
3908 
3909     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3910       // This record indicates that the last instruction is at the same
3911       // location as the previous instruction with a location.
3912       I = getLastInstruction();
3913 
3914       if (!I)
3915         return error("Invalid record");
3916       I->setDebugLoc(LastLoc);
3917       I = nullptr;
3918       continue;
3919 
3920     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3921       I = getLastInstruction();
3922       if (!I || Record.size() < 4)
3923         return error("Invalid record");
3924 
3925       unsigned Line = Record[0], Col = Record[1];
3926       unsigned ScopeID = Record[2], IAID = Record[3];
3927       bool isImplicitCode = Record.size() == 5 && Record[4];
3928 
3929       MDNode *Scope = nullptr, *IA = nullptr;
3930       if (ScopeID) {
3931         Scope = dyn_cast_or_null<MDNode>(
3932             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3933         if (!Scope)
3934           return error("Invalid record");
3935       }
3936       if (IAID) {
3937         IA = dyn_cast_or_null<MDNode>(
3938             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3939         if (!IA)
3940           return error("Invalid record");
3941       }
3942       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3943       I->setDebugLoc(LastLoc);
3944       I = nullptr;
3945       continue;
3946     }
3947     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3948       unsigned OpNum = 0;
3949       Value *LHS;
3950       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3951           OpNum+1 > Record.size())
3952         return error("Invalid record");
3953 
3954       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3955       if (Opc == -1)
3956         return error("Invalid record");
3957       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3958       InstructionList.push_back(I);
3959       if (OpNum < Record.size()) {
3960         if (isa<FPMathOperator>(I)) {
3961           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3962           if (FMF.any())
3963             I->setFastMathFlags(FMF);
3964         }
3965       }
3966       break;
3967     }
3968     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3969       unsigned OpNum = 0;
3970       Value *LHS, *RHS;
3971       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3972           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3973           OpNum+1 > Record.size())
3974         return error("Invalid record");
3975 
3976       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3977       if (Opc == -1)
3978         return error("Invalid record");
3979       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3980       InstructionList.push_back(I);
3981       if (OpNum < Record.size()) {
3982         if (Opc == Instruction::Add ||
3983             Opc == Instruction::Sub ||
3984             Opc == Instruction::Mul ||
3985             Opc == Instruction::Shl) {
3986           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3987             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3988           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3989             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3990         } else if (Opc == Instruction::SDiv ||
3991                    Opc == Instruction::UDiv ||
3992                    Opc == Instruction::LShr ||
3993                    Opc == Instruction::AShr) {
3994           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3995             cast<BinaryOperator>(I)->setIsExact(true);
3996         } else if (isa<FPMathOperator>(I)) {
3997           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3998           if (FMF.any())
3999             I->setFastMathFlags(FMF);
4000         }
4001 
4002       }
4003       break;
4004     }
4005     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4006       unsigned OpNum = 0;
4007       Value *Op;
4008       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4009           OpNum+2 != Record.size())
4010         return error("Invalid record");
4011 
4012       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4013       Type *ResTy = flattenPointerTypes(FullTy);
4014       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4015       if (Opc == -1 || !ResTy)
4016         return error("Invalid record");
4017       Instruction *Temp = nullptr;
4018       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4019         if (Temp) {
4020           InstructionList.push_back(Temp);
4021           assert(CurBB && "No current BB?");
4022           CurBB->getInstList().push_back(Temp);
4023         }
4024       } else {
4025         auto CastOp = (Instruction::CastOps)Opc;
4026         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4027           return error("Invalid cast");
4028         I = CastInst::Create(CastOp, Op, ResTy);
4029       }
4030       InstructionList.push_back(I);
4031       break;
4032     }
4033     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4034     case bitc::FUNC_CODE_INST_GEP_OLD:
4035     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4036       unsigned OpNum = 0;
4037 
4038       Type *Ty;
4039       bool InBounds;
4040 
4041       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4042         InBounds = Record[OpNum++];
4043         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4044         Ty = flattenPointerTypes(FullTy);
4045       } else {
4046         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4047         Ty = nullptr;
4048       }
4049 
4050       Value *BasePtr;
4051       Type *FullBaseTy = nullptr;
4052       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4053         return error("Invalid record");
4054 
4055       if (!Ty) {
4056         std::tie(FullTy, Ty) =
4057             getPointerElementTypes(FullBaseTy->getScalarType());
4058       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4059         return error(
4060             "Explicit gep type does not match pointee type of pointer operand");
4061 
4062       SmallVector<Value*, 16> GEPIdx;
4063       while (OpNum != Record.size()) {
4064         Value *Op;
4065         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4066           return error("Invalid record");
4067         GEPIdx.push_back(Op);
4068       }
4069 
4070       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4071       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4072 
4073       InstructionList.push_back(I);
4074       if (InBounds)
4075         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4076       break;
4077     }
4078 
4079     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4080                                        // EXTRACTVAL: [opty, opval, n x indices]
4081       unsigned OpNum = 0;
4082       Value *Agg;
4083       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4084         return error("Invalid record");
4085 
4086       unsigned RecSize = Record.size();
4087       if (OpNum == RecSize)
4088         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4089 
4090       SmallVector<unsigned, 4> EXTRACTVALIdx;
4091       for (; OpNum != RecSize; ++OpNum) {
4092         bool IsArray = FullTy->isArrayTy();
4093         bool IsStruct = FullTy->isStructTy();
4094         uint64_t Index = Record[OpNum];
4095 
4096         if (!IsStruct && !IsArray)
4097           return error("EXTRACTVAL: Invalid type");
4098         if ((unsigned)Index != Index)
4099           return error("Invalid value");
4100         if (IsStruct && Index >= FullTy->getStructNumElements())
4101           return error("EXTRACTVAL: Invalid struct index");
4102         if (IsArray && Index >= FullTy->getArrayNumElements())
4103           return error("EXTRACTVAL: Invalid array index");
4104         EXTRACTVALIdx.push_back((unsigned)Index);
4105 
4106         if (IsStruct)
4107           FullTy = FullTy->getStructElementType(Index);
4108         else
4109           FullTy = FullTy->getArrayElementType();
4110       }
4111 
4112       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4113       InstructionList.push_back(I);
4114       break;
4115     }
4116 
4117     case bitc::FUNC_CODE_INST_INSERTVAL: {
4118                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4119       unsigned OpNum = 0;
4120       Value *Agg;
4121       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4122         return error("Invalid record");
4123       Value *Val;
4124       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4125         return error("Invalid record");
4126 
4127       unsigned RecSize = Record.size();
4128       if (OpNum == RecSize)
4129         return error("INSERTVAL: Invalid instruction with 0 indices");
4130 
4131       SmallVector<unsigned, 4> INSERTVALIdx;
4132       Type *CurTy = Agg->getType();
4133       for (; OpNum != RecSize; ++OpNum) {
4134         bool IsArray = CurTy->isArrayTy();
4135         bool IsStruct = CurTy->isStructTy();
4136         uint64_t Index = Record[OpNum];
4137 
4138         if (!IsStruct && !IsArray)
4139           return error("INSERTVAL: Invalid type");
4140         if ((unsigned)Index != Index)
4141           return error("Invalid value");
4142         if (IsStruct && Index >= CurTy->getStructNumElements())
4143           return error("INSERTVAL: Invalid struct index");
4144         if (IsArray && Index >= CurTy->getArrayNumElements())
4145           return error("INSERTVAL: Invalid array index");
4146 
4147         INSERTVALIdx.push_back((unsigned)Index);
4148         if (IsStruct)
4149           CurTy = CurTy->getStructElementType(Index);
4150         else
4151           CurTy = CurTy->getArrayElementType();
4152       }
4153 
4154       if (CurTy != Val->getType())
4155         return error("Inserted value type doesn't match aggregate type");
4156 
4157       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4158       InstructionList.push_back(I);
4159       break;
4160     }
4161 
4162     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4163       // obsolete form of select
4164       // handles select i1 ... in old bitcode
4165       unsigned OpNum = 0;
4166       Value *TrueVal, *FalseVal, *Cond;
4167       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4168           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4169           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4170         return error("Invalid record");
4171 
4172       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4173       InstructionList.push_back(I);
4174       break;
4175     }
4176 
4177     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4178       // new form of select
4179       // handles select i1 or select [N x i1]
4180       unsigned OpNum = 0;
4181       Value *TrueVal, *FalseVal, *Cond;
4182       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4183           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4184           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4185         return error("Invalid record");
4186 
4187       // select condition can be either i1 or [N x i1]
4188       if (VectorType* vector_type =
4189           dyn_cast<VectorType>(Cond->getType())) {
4190         // expect <n x i1>
4191         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4192           return error("Invalid type for value");
4193       } else {
4194         // expect i1
4195         if (Cond->getType() != Type::getInt1Ty(Context))
4196           return error("Invalid type for value");
4197       }
4198 
4199       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4200       InstructionList.push_back(I);
4201       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4202         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4203         if (FMF.any())
4204           I->setFastMathFlags(FMF);
4205       }
4206       break;
4207     }
4208 
4209     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4210       unsigned OpNum = 0;
4211       Value *Vec, *Idx;
4212       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4213           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4214         return error("Invalid record");
4215       if (!Vec->getType()->isVectorTy())
4216         return error("Invalid type for value");
4217       I = ExtractElementInst::Create(Vec, Idx);
4218       FullTy = cast<VectorType>(FullTy)->getElementType();
4219       InstructionList.push_back(I);
4220       break;
4221     }
4222 
4223     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4224       unsigned OpNum = 0;
4225       Value *Vec, *Elt, *Idx;
4226       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4227         return error("Invalid record");
4228       if (!Vec->getType()->isVectorTy())
4229         return error("Invalid type for value");
4230       if (popValue(Record, OpNum, NextValueNo,
4231                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4232           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4233         return error("Invalid record");
4234       I = InsertElementInst::Create(Vec, Elt, Idx);
4235       InstructionList.push_back(I);
4236       break;
4237     }
4238 
4239     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4240       unsigned OpNum = 0;
4241       Value *Vec1, *Vec2, *Mask;
4242       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4243           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4244         return error("Invalid record");
4245 
4246       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4247         return error("Invalid record");
4248       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4249         return error("Invalid type for value");
4250 
4251       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4252       FullTy =
4253           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4254                           cast<VectorType>(Mask->getType())->getElementCount());
4255       InstructionList.push_back(I);
4256       break;
4257     }
4258 
4259     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4260       // Old form of ICmp/FCmp returning bool
4261       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4262       // both legal on vectors but had different behaviour.
4263     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4264       // FCmp/ICmp returning bool or vector of bool
4265 
4266       unsigned OpNum = 0;
4267       Value *LHS, *RHS;
4268       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4269           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4270         return error("Invalid record");
4271 
4272       if (OpNum >= Record.size())
4273         return error(
4274             "Invalid record: operand number exceeded available operands");
4275 
4276       unsigned PredVal = Record[OpNum];
4277       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4278       FastMathFlags FMF;
4279       if (IsFP && Record.size() > OpNum+1)
4280         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4281 
4282       if (OpNum+1 != Record.size())
4283         return error("Invalid record");
4284 
4285       if (LHS->getType()->isFPOrFPVectorTy())
4286         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4287       else
4288         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4289 
4290       if (FMF.any())
4291         I->setFastMathFlags(FMF);
4292       InstructionList.push_back(I);
4293       break;
4294     }
4295 
4296     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4297       {
4298         unsigned Size = Record.size();
4299         if (Size == 0) {
4300           I = ReturnInst::Create(Context);
4301           InstructionList.push_back(I);
4302           break;
4303         }
4304 
4305         unsigned OpNum = 0;
4306         Value *Op = nullptr;
4307         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4308           return error("Invalid record");
4309         if (OpNum != Record.size())
4310           return error("Invalid record");
4311 
4312         I = ReturnInst::Create(Context, Op);
4313         InstructionList.push_back(I);
4314         break;
4315       }
4316     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4317       if (Record.size() != 1 && Record.size() != 3)
4318         return error("Invalid record");
4319       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4320       if (!TrueDest)
4321         return error("Invalid record");
4322 
4323       if (Record.size() == 1) {
4324         I = BranchInst::Create(TrueDest);
4325         InstructionList.push_back(I);
4326       }
4327       else {
4328         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4329         Value *Cond = getValue(Record, 2, NextValueNo,
4330                                Type::getInt1Ty(Context));
4331         if (!FalseDest || !Cond)
4332           return error("Invalid record");
4333         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4334         InstructionList.push_back(I);
4335       }
4336       break;
4337     }
4338     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4339       if (Record.size() != 1 && Record.size() != 2)
4340         return error("Invalid record");
4341       unsigned Idx = 0;
4342       Value *CleanupPad =
4343           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4344       if (!CleanupPad)
4345         return error("Invalid record");
4346       BasicBlock *UnwindDest = nullptr;
4347       if (Record.size() == 2) {
4348         UnwindDest = getBasicBlock(Record[Idx++]);
4349         if (!UnwindDest)
4350           return error("Invalid record");
4351       }
4352 
4353       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4354       InstructionList.push_back(I);
4355       break;
4356     }
4357     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4358       if (Record.size() != 2)
4359         return error("Invalid record");
4360       unsigned Idx = 0;
4361       Value *CatchPad =
4362           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4363       if (!CatchPad)
4364         return error("Invalid record");
4365       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4366       if (!BB)
4367         return error("Invalid record");
4368 
4369       I = CatchReturnInst::Create(CatchPad, BB);
4370       InstructionList.push_back(I);
4371       break;
4372     }
4373     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4374       // We must have, at minimum, the outer scope and the number of arguments.
4375       if (Record.size() < 2)
4376         return error("Invalid record");
4377 
4378       unsigned Idx = 0;
4379 
4380       Value *ParentPad =
4381           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4382 
4383       unsigned NumHandlers = Record[Idx++];
4384 
4385       SmallVector<BasicBlock *, 2> Handlers;
4386       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4387         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4388         if (!BB)
4389           return error("Invalid record");
4390         Handlers.push_back(BB);
4391       }
4392 
4393       BasicBlock *UnwindDest = nullptr;
4394       if (Idx + 1 == Record.size()) {
4395         UnwindDest = getBasicBlock(Record[Idx++]);
4396         if (!UnwindDest)
4397           return error("Invalid record");
4398       }
4399 
4400       if (Record.size() != Idx)
4401         return error("Invalid record");
4402 
4403       auto *CatchSwitch =
4404           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4405       for (BasicBlock *Handler : Handlers)
4406         CatchSwitch->addHandler(Handler);
4407       I = CatchSwitch;
4408       InstructionList.push_back(I);
4409       break;
4410     }
4411     case bitc::FUNC_CODE_INST_CATCHPAD:
4412     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4413       // We must have, at minimum, the outer scope and the number of arguments.
4414       if (Record.size() < 2)
4415         return error("Invalid record");
4416 
4417       unsigned Idx = 0;
4418 
4419       Value *ParentPad =
4420           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4421 
4422       unsigned NumArgOperands = Record[Idx++];
4423 
4424       SmallVector<Value *, 2> Args;
4425       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4426         Value *Val;
4427         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4428           return error("Invalid record");
4429         Args.push_back(Val);
4430       }
4431 
4432       if (Record.size() != Idx)
4433         return error("Invalid record");
4434 
4435       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4436         I = CleanupPadInst::Create(ParentPad, Args);
4437       else
4438         I = CatchPadInst::Create(ParentPad, Args);
4439       InstructionList.push_back(I);
4440       break;
4441     }
4442     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4443       // Check magic
4444       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4445         // "New" SwitchInst format with case ranges. The changes to write this
4446         // format were reverted but we still recognize bitcode that uses it.
4447         // Hopefully someday we will have support for case ranges and can use
4448         // this format again.
4449 
4450         Type *OpTy = getTypeByID(Record[1]);
4451         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4452 
4453         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4454         BasicBlock *Default = getBasicBlock(Record[3]);
4455         if (!OpTy || !Cond || !Default)
4456           return error("Invalid record");
4457 
4458         unsigned NumCases = Record[4];
4459 
4460         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4461         InstructionList.push_back(SI);
4462 
4463         unsigned CurIdx = 5;
4464         for (unsigned i = 0; i != NumCases; ++i) {
4465           SmallVector<ConstantInt*, 1> CaseVals;
4466           unsigned NumItems = Record[CurIdx++];
4467           for (unsigned ci = 0; ci != NumItems; ++ci) {
4468             bool isSingleNumber = Record[CurIdx++];
4469 
4470             APInt Low;
4471             unsigned ActiveWords = 1;
4472             if (ValueBitWidth > 64)
4473               ActiveWords = Record[CurIdx++];
4474             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4475                                 ValueBitWidth);
4476             CurIdx += ActiveWords;
4477 
4478             if (!isSingleNumber) {
4479               ActiveWords = 1;
4480               if (ValueBitWidth > 64)
4481                 ActiveWords = Record[CurIdx++];
4482               APInt High = readWideAPInt(
4483                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4484               CurIdx += ActiveWords;
4485 
4486               // FIXME: It is not clear whether values in the range should be
4487               // compared as signed or unsigned values. The partially
4488               // implemented changes that used this format in the past used
4489               // unsigned comparisons.
4490               for ( ; Low.ule(High); ++Low)
4491                 CaseVals.push_back(ConstantInt::get(Context, Low));
4492             } else
4493               CaseVals.push_back(ConstantInt::get(Context, Low));
4494           }
4495           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4496           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4497                  cve = CaseVals.end(); cvi != cve; ++cvi)
4498             SI->addCase(*cvi, DestBB);
4499         }
4500         I = SI;
4501         break;
4502       }
4503 
4504       // Old SwitchInst format without case ranges.
4505 
4506       if (Record.size() < 3 || (Record.size() & 1) == 0)
4507         return error("Invalid record");
4508       Type *OpTy = getTypeByID(Record[0]);
4509       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4510       BasicBlock *Default = getBasicBlock(Record[2]);
4511       if (!OpTy || !Cond || !Default)
4512         return error("Invalid record");
4513       unsigned NumCases = (Record.size()-3)/2;
4514       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4515       InstructionList.push_back(SI);
4516       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4517         ConstantInt *CaseVal =
4518           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4519         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4520         if (!CaseVal || !DestBB) {
4521           delete SI;
4522           return error("Invalid record");
4523         }
4524         SI->addCase(CaseVal, DestBB);
4525       }
4526       I = SI;
4527       break;
4528     }
4529     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4530       if (Record.size() < 2)
4531         return error("Invalid record");
4532       Type *OpTy = getTypeByID(Record[0]);
4533       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4534       if (!OpTy || !Address)
4535         return error("Invalid record");
4536       unsigned NumDests = Record.size()-2;
4537       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4538       InstructionList.push_back(IBI);
4539       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4540         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4541           IBI->addDestination(DestBB);
4542         } else {
4543           delete IBI;
4544           return error("Invalid record");
4545         }
4546       }
4547       I = IBI;
4548       break;
4549     }
4550 
4551     case bitc::FUNC_CODE_INST_INVOKE: {
4552       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4553       if (Record.size() < 4)
4554         return error("Invalid record");
4555       unsigned OpNum = 0;
4556       AttributeList PAL = getAttributes(Record[OpNum++]);
4557       unsigned CCInfo = Record[OpNum++];
4558       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4559       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4560 
4561       FunctionType *FTy = nullptr;
4562       FunctionType *FullFTy = nullptr;
4563       if ((CCInfo >> 13) & 1) {
4564         FullFTy =
4565             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4566         if (!FullFTy)
4567           return error("Explicit invoke type is not a function type");
4568         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4569       }
4570 
4571       Value *Callee;
4572       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4573         return error("Invalid record");
4574 
4575       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4576       if (!CalleeTy)
4577         return error("Callee is not a pointer");
4578       if (!FTy) {
4579         FullFTy =
4580             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4581         if (!FullFTy)
4582           return error("Callee is not of pointer to function type");
4583         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4584       } else if (getPointerElementFlatType(FullTy) != FTy)
4585         return error("Explicit invoke type does not match pointee type of "
4586                      "callee operand");
4587       if (Record.size() < FTy->getNumParams() + OpNum)
4588         return error("Insufficient operands to call");
4589 
4590       SmallVector<Value*, 16> Ops;
4591       SmallVector<Type *, 16> ArgsFullTys;
4592       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4593         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4594                                FTy->getParamType(i)));
4595         ArgsFullTys.push_back(FullFTy->getParamType(i));
4596         if (!Ops.back())
4597           return error("Invalid record");
4598       }
4599 
4600       if (!FTy->isVarArg()) {
4601         if (Record.size() != OpNum)
4602           return error("Invalid record");
4603       } else {
4604         // Read type/value pairs for varargs params.
4605         while (OpNum != Record.size()) {
4606           Value *Op;
4607           Type *FullTy;
4608           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4609             return error("Invalid record");
4610           Ops.push_back(Op);
4611           ArgsFullTys.push_back(FullTy);
4612         }
4613       }
4614 
4615       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4616                              OperandBundles);
4617       FullTy = FullFTy->getReturnType();
4618       OperandBundles.clear();
4619       InstructionList.push_back(I);
4620       cast<InvokeInst>(I)->setCallingConv(
4621           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4622       cast<InvokeInst>(I)->setAttributes(PAL);
4623       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4624 
4625       break;
4626     }
4627     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4628       unsigned Idx = 0;
4629       Value *Val = nullptr;
4630       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4631         return error("Invalid record");
4632       I = ResumeInst::Create(Val);
4633       InstructionList.push_back(I);
4634       break;
4635     }
4636     case bitc::FUNC_CODE_INST_CALLBR: {
4637       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4638       unsigned OpNum = 0;
4639       AttributeList PAL = getAttributes(Record[OpNum++]);
4640       unsigned CCInfo = Record[OpNum++];
4641 
4642       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4643       unsigned NumIndirectDests = Record[OpNum++];
4644       SmallVector<BasicBlock *, 16> IndirectDests;
4645       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4646         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4647 
4648       FunctionType *FTy = nullptr;
4649       FunctionType *FullFTy = nullptr;
4650       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4651         FullFTy =
4652             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4653         if (!FullFTy)
4654           return error("Explicit call type is not a function type");
4655         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4656       }
4657 
4658       Value *Callee;
4659       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4660         return error("Invalid record");
4661 
4662       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4663       if (!OpTy)
4664         return error("Callee is not a pointer type");
4665       if (!FTy) {
4666         FullFTy =
4667             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4668         if (!FullFTy)
4669           return error("Callee is not of pointer to function type");
4670         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4671       } else if (getPointerElementFlatType(FullTy) != FTy)
4672         return error("Explicit call type does not match pointee type of "
4673                      "callee operand");
4674       if (Record.size() < FTy->getNumParams() + OpNum)
4675         return error("Insufficient operands to call");
4676 
4677       SmallVector<Value*, 16> Args;
4678       // Read the fixed params.
4679       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4680         if (FTy->getParamType(i)->isLabelTy())
4681           Args.push_back(getBasicBlock(Record[OpNum]));
4682         else
4683           Args.push_back(getValue(Record, OpNum, NextValueNo,
4684                                   FTy->getParamType(i)));
4685         if (!Args.back())
4686           return error("Invalid record");
4687       }
4688 
4689       // Read type/value pairs for varargs params.
4690       if (!FTy->isVarArg()) {
4691         if (OpNum != Record.size())
4692           return error("Invalid record");
4693       } else {
4694         while (OpNum != Record.size()) {
4695           Value *Op;
4696           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4697             return error("Invalid record");
4698           Args.push_back(Op);
4699         }
4700       }
4701 
4702       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4703                              OperandBundles);
4704       FullTy = FullFTy->getReturnType();
4705       OperandBundles.clear();
4706       InstructionList.push_back(I);
4707       cast<CallBrInst>(I)->setCallingConv(
4708           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4709       cast<CallBrInst>(I)->setAttributes(PAL);
4710       break;
4711     }
4712     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4713       I = new UnreachableInst(Context);
4714       InstructionList.push_back(I);
4715       break;
4716     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4717       if (Record.empty())
4718         return error("Invalid record");
4719       // The first record specifies the type.
4720       FullTy = getFullyStructuredTypeByID(Record[0]);
4721       Type *Ty = flattenPointerTypes(FullTy);
4722       if (!Ty)
4723         return error("Invalid record");
4724 
4725       // Phi arguments are pairs of records of [value, basic block].
4726       // There is an optional final record for fast-math-flags if this phi has a
4727       // floating-point type.
4728       size_t NumArgs = (Record.size() - 1) / 2;
4729       PHINode *PN = PHINode::Create(Ty, NumArgs);
4730       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4731         return error("Invalid record");
4732       InstructionList.push_back(PN);
4733 
4734       for (unsigned i = 0; i != NumArgs; i++) {
4735         Value *V;
4736         // With the new function encoding, it is possible that operands have
4737         // negative IDs (for forward references).  Use a signed VBR
4738         // representation to keep the encoding small.
4739         if (UseRelativeIDs)
4740           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4741         else
4742           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4743         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4744         if (!V || !BB)
4745           return error("Invalid record");
4746         PN->addIncoming(V, BB);
4747       }
4748       I = PN;
4749 
4750       // If there are an even number of records, the final record must be FMF.
4751       if (Record.size() % 2 == 0) {
4752         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4753         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4754         if (FMF.any())
4755           I->setFastMathFlags(FMF);
4756       }
4757 
4758       break;
4759     }
4760 
4761     case bitc::FUNC_CODE_INST_LANDINGPAD:
4762     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4763       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4764       unsigned Idx = 0;
4765       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4766         if (Record.size() < 3)
4767           return error("Invalid record");
4768       } else {
4769         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4770         if (Record.size() < 4)
4771           return error("Invalid record");
4772       }
4773       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4774       Type *Ty = flattenPointerTypes(FullTy);
4775       if (!Ty)
4776         return error("Invalid record");
4777       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4778         Value *PersFn = nullptr;
4779         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4780           return error("Invalid record");
4781 
4782         if (!F->hasPersonalityFn())
4783           F->setPersonalityFn(cast<Constant>(PersFn));
4784         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4785           return error("Personality function mismatch");
4786       }
4787 
4788       bool IsCleanup = !!Record[Idx++];
4789       unsigned NumClauses = Record[Idx++];
4790       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4791       LP->setCleanup(IsCleanup);
4792       for (unsigned J = 0; J != NumClauses; ++J) {
4793         LandingPadInst::ClauseType CT =
4794           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4795         Value *Val;
4796 
4797         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4798           delete LP;
4799           return error("Invalid record");
4800         }
4801 
4802         assert((CT != LandingPadInst::Catch ||
4803                 !isa<ArrayType>(Val->getType())) &&
4804                "Catch clause has a invalid type!");
4805         assert((CT != LandingPadInst::Filter ||
4806                 isa<ArrayType>(Val->getType())) &&
4807                "Filter clause has invalid type!");
4808         LP->addClause(cast<Constant>(Val));
4809       }
4810 
4811       I = LP;
4812       InstructionList.push_back(I);
4813       break;
4814     }
4815 
4816     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4817       if (Record.size() != 4)
4818         return error("Invalid record");
4819       using APV = AllocaPackedValues;
4820       const uint64_t Rec = Record[3];
4821       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4822       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4823       FullTy = getFullyStructuredTypeByID(Record[0]);
4824       Type *Ty = flattenPointerTypes(FullTy);
4825       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4826         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4827         if (!PTy)
4828           return error("Old-style alloca with a non-pointer type");
4829         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4830       }
4831       Type *OpTy = getTypeByID(Record[1]);
4832       Value *Size = getFnValueByID(Record[2], OpTy);
4833       MaybeAlign Align;
4834       if (Error Err =
4835               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4836         return Err;
4837       }
4838       if (!Ty || !Size)
4839         return error("Invalid record");
4840 
4841       // FIXME: Make this an optional field.
4842       const DataLayout &DL = TheModule->getDataLayout();
4843       unsigned AS = DL.getAllocaAddrSpace();
4844 
4845       SmallPtrSet<Type *, 4> Visited;
4846       if (!Align && !Ty->isSized(&Visited))
4847         return error("alloca of unsized type");
4848       if (!Align)
4849         Align = DL.getPrefTypeAlign(Ty);
4850 
4851       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4852       AI->setUsedWithInAlloca(InAlloca);
4853       AI->setSwiftError(SwiftError);
4854       I = AI;
4855       FullTy = PointerType::get(FullTy, AS);
4856       InstructionList.push_back(I);
4857       break;
4858     }
4859     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4860       unsigned OpNum = 0;
4861       Value *Op;
4862       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4863           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4864         return error("Invalid record");
4865 
4866       if (!isa<PointerType>(Op->getType()))
4867         return error("Load operand is not a pointer type");
4868 
4869       Type *Ty = nullptr;
4870       if (OpNum + 3 == Record.size()) {
4871         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4872         Ty = flattenPointerTypes(FullTy);
4873       } else
4874         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4875 
4876       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4877         return Err;
4878 
4879       MaybeAlign Align;
4880       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4881         return Err;
4882       SmallPtrSet<Type *, 4> Visited;
4883       if (!Align && !Ty->isSized(&Visited))
4884         return error("load of unsized type");
4885       if (!Align)
4886         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4887       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4888       InstructionList.push_back(I);
4889       break;
4890     }
4891     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4892        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4893       unsigned OpNum = 0;
4894       Value *Op;
4895       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4896           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4897         return error("Invalid record");
4898 
4899       if (!isa<PointerType>(Op->getType()))
4900         return error("Load operand is not a pointer type");
4901 
4902       Type *Ty = nullptr;
4903       if (OpNum + 5 == Record.size()) {
4904         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4905         Ty = flattenPointerTypes(FullTy);
4906       } else
4907         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4908 
4909       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4910         return Err;
4911 
4912       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4913       if (Ordering == AtomicOrdering::NotAtomic ||
4914           Ordering == AtomicOrdering::Release ||
4915           Ordering == AtomicOrdering::AcquireRelease)
4916         return error("Invalid record");
4917       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4918         return error("Invalid record");
4919       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4920 
4921       MaybeAlign Align;
4922       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4923         return Err;
4924       if (!Align)
4925         return error("Alignment missing from atomic load");
4926       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4927       InstructionList.push_back(I);
4928       break;
4929     }
4930     case bitc::FUNC_CODE_INST_STORE:
4931     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4932       unsigned OpNum = 0;
4933       Value *Val, *Ptr;
4934       Type *FullTy;
4935       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4936           (BitCode == bitc::FUNC_CODE_INST_STORE
4937                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4938                : popValue(Record, OpNum, NextValueNo,
4939                           getPointerElementFlatType(FullTy), Val)) ||
4940           OpNum + 2 != Record.size())
4941         return error("Invalid record");
4942 
4943       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4944         return Err;
4945       MaybeAlign Align;
4946       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4947         return Err;
4948       SmallPtrSet<Type *, 4> Visited;
4949       if (!Align && !Val->getType()->isSized(&Visited))
4950         return error("store of unsized type");
4951       if (!Align)
4952         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4953       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4954       InstructionList.push_back(I);
4955       break;
4956     }
4957     case bitc::FUNC_CODE_INST_STOREATOMIC:
4958     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4959       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4960       unsigned OpNum = 0;
4961       Value *Val, *Ptr;
4962       Type *FullTy;
4963       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4964           !isa<PointerType>(Ptr->getType()) ||
4965           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4966                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4967                : popValue(Record, OpNum, NextValueNo,
4968                           getPointerElementFlatType(FullTy), Val)) ||
4969           OpNum + 4 != Record.size())
4970         return error("Invalid record");
4971 
4972       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4973         return Err;
4974       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4975       if (Ordering == AtomicOrdering::NotAtomic ||
4976           Ordering == AtomicOrdering::Acquire ||
4977           Ordering == AtomicOrdering::AcquireRelease)
4978         return error("Invalid record");
4979       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4980       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4981         return error("Invalid record");
4982 
4983       MaybeAlign Align;
4984       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4985         return Err;
4986       if (!Align)
4987         return error("Alignment missing from atomic store");
4988       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
4989       InstructionList.push_back(I);
4990       break;
4991     }
4992     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
4993       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
4994       // failure_ordering?, weak?]
4995       const size_t NumRecords = Record.size();
4996       unsigned OpNum = 0;
4997       Value *Ptr = nullptr;
4998       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4999         return error("Invalid record");
5000 
5001       if (!isa<PointerType>(Ptr->getType()))
5002         return error("Cmpxchg operand is not a pointer type");
5003 
5004       Value *Cmp = nullptr;
5005       if (popValue(Record, OpNum, NextValueNo,
5006                    getPointerElementFlatType(FullTy), Cmp))
5007         return error("Invalid record");
5008 
5009       FullTy = cast<PointerType>(FullTy)->getElementType();
5010 
5011       Value *New = nullptr;
5012       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5013           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5014         return error("Invalid record");
5015 
5016       const AtomicOrdering SuccessOrdering =
5017           getDecodedOrdering(Record[OpNum + 1]);
5018       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5019           SuccessOrdering == AtomicOrdering::Unordered)
5020         return error("Invalid record");
5021 
5022       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5023 
5024       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5025         return Err;
5026 
5027       const AtomicOrdering FailureOrdering =
5028           NumRecords < 7
5029               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5030               : getDecodedOrdering(Record[OpNum + 3]);
5031 
5032       const Align Alignment(
5033           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5034 
5035       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5036                                 FailureOrdering, SSID);
5037       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5038       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5039 
5040       if (NumRecords < 8) {
5041         // Before weak cmpxchgs existed, the instruction simply returned the
5042         // value loaded from memory, so bitcode files from that era will be
5043         // expecting the first component of a modern cmpxchg.
5044         CurBB->getInstList().push_back(I);
5045         I = ExtractValueInst::Create(I, 0);
5046         FullTy = cast<StructType>(FullTy)->getElementType(0);
5047       } else {
5048         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5049       }
5050 
5051       InstructionList.push_back(I);
5052       break;
5053     }
5054     case bitc::FUNC_CODE_INST_CMPXCHG: {
5055       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5056       // failure_ordering, weak]
5057       const size_t NumRecords = Record.size();
5058       unsigned OpNum = 0;
5059       Value *Ptr = nullptr;
5060       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5061         return error("Invalid record");
5062 
5063       if (!isa<PointerType>(Ptr->getType()))
5064         return error("Cmpxchg operand is not a pointer type");
5065 
5066       Value *Cmp = nullptr;
5067       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5068         return error("Invalid record");
5069 
5070       Value *Val = nullptr;
5071       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) ||
5072           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5073         return error("Invalid record");
5074 
5075       const AtomicOrdering SuccessOrdering =
5076           getDecodedOrdering(Record[OpNum + 1]);
5077       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5078           SuccessOrdering == AtomicOrdering::Unordered)
5079         return error("Invalid record");
5080 
5081       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5082 
5083       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5084         return Err;
5085 
5086       const AtomicOrdering FailureOrdering =
5087           getDecodedOrdering(Record[OpNum + 3]);
5088 
5089       const Align Alignment(
5090           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5091 
5092       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering,
5093                                 FailureOrdering, SSID);
5094       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5095       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5096       cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5097 
5098       InstructionList.push_back(I);
5099       break;
5100     }
5101     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5102       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5103       unsigned OpNum = 0;
5104       Value *Ptr, *Val;
5105       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5106           !isa<PointerType>(Ptr->getType()) ||
5107           popValue(Record, OpNum, NextValueNo,
5108                    getPointerElementFlatType(FullTy), Val) ||
5109           OpNum + 4 != Record.size())
5110         return error("Invalid record");
5111       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5112       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5113           Operation > AtomicRMWInst::LAST_BINOP)
5114         return error("Invalid record");
5115       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5116       if (Ordering == AtomicOrdering::NotAtomic ||
5117           Ordering == AtomicOrdering::Unordered)
5118         return error("Invalid record");
5119       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5120       Align Alignment(
5121           TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5122       I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5123       FullTy = getPointerElementFlatType(FullTy);
5124       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5125       InstructionList.push_back(I);
5126       break;
5127     }
5128     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5129       if (2 != Record.size())
5130         return error("Invalid record");
5131       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5132       if (Ordering == AtomicOrdering::NotAtomic ||
5133           Ordering == AtomicOrdering::Unordered ||
5134           Ordering == AtomicOrdering::Monotonic)
5135         return error("Invalid record");
5136       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5137       I = new FenceInst(Context, Ordering, SSID);
5138       InstructionList.push_back(I);
5139       break;
5140     }
5141     case bitc::FUNC_CODE_INST_CALL: {
5142       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5143       if (Record.size() < 3)
5144         return error("Invalid record");
5145 
5146       unsigned OpNum = 0;
5147       AttributeList PAL = getAttributes(Record[OpNum++]);
5148       unsigned CCInfo = Record[OpNum++];
5149 
5150       FastMathFlags FMF;
5151       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5152         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5153         if (!FMF.any())
5154           return error("Fast math flags indicator set for call with no FMF");
5155       }
5156 
5157       FunctionType *FTy = nullptr;
5158       FunctionType *FullFTy = nullptr;
5159       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5160         FullFTy =
5161             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5162         if (!FullFTy)
5163           return error("Explicit call type is not a function type");
5164         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5165       }
5166 
5167       Value *Callee;
5168       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5169         return error("Invalid record");
5170 
5171       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5172       if (!OpTy)
5173         return error("Callee is not a pointer type");
5174       if (!FTy) {
5175         FullFTy =
5176             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5177         if (!FullFTy)
5178           return error("Callee is not of pointer to function type");
5179         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5180       } else if (getPointerElementFlatType(FullTy) != FTy)
5181         return error("Explicit call type does not match pointee type of "
5182                      "callee operand");
5183       if (Record.size() < FTy->getNumParams() + OpNum)
5184         return error("Insufficient operands to call");
5185 
5186       SmallVector<Value*, 16> Args;
5187       SmallVector<Type*, 16> ArgsFullTys;
5188       // Read the fixed params.
5189       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5190         if (FTy->getParamType(i)->isLabelTy())
5191           Args.push_back(getBasicBlock(Record[OpNum]));
5192         else
5193           Args.push_back(getValue(Record, OpNum, NextValueNo,
5194                                   FTy->getParamType(i)));
5195         ArgsFullTys.push_back(FullFTy->getParamType(i));
5196         if (!Args.back())
5197           return error("Invalid record");
5198       }
5199 
5200       // Read type/value pairs for varargs params.
5201       if (!FTy->isVarArg()) {
5202         if (OpNum != Record.size())
5203           return error("Invalid record");
5204       } else {
5205         while (OpNum != Record.size()) {
5206           Value *Op;
5207           Type *FullTy;
5208           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5209             return error("Invalid record");
5210           Args.push_back(Op);
5211           ArgsFullTys.push_back(FullTy);
5212         }
5213       }
5214 
5215       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5216       FullTy = FullFTy->getReturnType();
5217       OperandBundles.clear();
5218       InstructionList.push_back(I);
5219       cast<CallInst>(I)->setCallingConv(
5220           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5221       CallInst::TailCallKind TCK = CallInst::TCK_None;
5222       if (CCInfo & 1 << bitc::CALL_TAIL)
5223         TCK = CallInst::TCK_Tail;
5224       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5225         TCK = CallInst::TCK_MustTail;
5226       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5227         TCK = CallInst::TCK_NoTail;
5228       cast<CallInst>(I)->setTailCallKind(TCK);
5229       cast<CallInst>(I)->setAttributes(PAL);
5230       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5231       if (FMF.any()) {
5232         if (!isa<FPMathOperator>(I))
5233           return error("Fast-math-flags specified for call without "
5234                        "floating-point scalar or vector return type");
5235         I->setFastMathFlags(FMF);
5236       }
5237       break;
5238     }
5239     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5240       if (Record.size() < 3)
5241         return error("Invalid record");
5242       Type *OpTy = getTypeByID(Record[0]);
5243       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5244       FullTy = getFullyStructuredTypeByID(Record[2]);
5245       Type *ResTy = flattenPointerTypes(FullTy);
5246       if (!OpTy || !Op || !ResTy)
5247         return error("Invalid record");
5248       I = new VAArgInst(Op, ResTy);
5249       InstructionList.push_back(I);
5250       break;
5251     }
5252 
5253     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5254       // A call or an invoke can be optionally prefixed with some variable
5255       // number of operand bundle blocks.  These blocks are read into
5256       // OperandBundles and consumed at the next call or invoke instruction.
5257 
5258       if (Record.empty() || Record[0] >= BundleTags.size())
5259         return error("Invalid record");
5260 
5261       std::vector<Value *> Inputs;
5262 
5263       unsigned OpNum = 1;
5264       while (OpNum != Record.size()) {
5265         Value *Op;
5266         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5267           return error("Invalid record");
5268         Inputs.push_back(Op);
5269       }
5270 
5271       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5272       continue;
5273     }
5274 
5275     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5276       unsigned OpNum = 0;
5277       Value *Op = nullptr;
5278       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5279         return error("Invalid record");
5280       if (OpNum != Record.size())
5281         return error("Invalid record");
5282 
5283       I = new FreezeInst(Op);
5284       InstructionList.push_back(I);
5285       break;
5286     }
5287     }
5288 
5289     // Add instruction to end of current BB.  If there is no current BB, reject
5290     // this file.
5291     if (!CurBB) {
5292       I->deleteValue();
5293       return error("Invalid instruction with no BB");
5294     }
5295     if (!OperandBundles.empty()) {
5296       I->deleteValue();
5297       return error("Operand bundles found with no consumer");
5298     }
5299     CurBB->getInstList().push_back(I);
5300 
5301     // If this was a terminator instruction, move to the next block.
5302     if (I->isTerminator()) {
5303       ++CurBBNo;
5304       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5305     }
5306 
5307     // Non-void values get registered in the value table for future use.
5308     if (!I->getType()->isVoidTy()) {
5309       if (!FullTy) {
5310         FullTy = I->getType();
5311         assert(
5312             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5313             !isa<ArrayType>(FullTy) &&
5314             (!isa<VectorType>(FullTy) ||
5315              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5316              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5317             "Structured types must be assigned with corresponding non-opaque "
5318             "pointer type");
5319       }
5320 
5321       assert(I->getType() == flattenPointerTypes(FullTy) &&
5322              "Incorrect fully structured type provided for Instruction");
5323       ValueList.assignValue(I, NextValueNo++, FullTy);
5324     }
5325   }
5326 
5327 OutOfRecordLoop:
5328 
5329   if (!OperandBundles.empty())
5330     return error("Operand bundles found with no consumer");
5331 
5332   // Check the function list for unresolved values.
5333   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5334     if (!A->getParent()) {
5335       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5336       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5337         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5338           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5339           delete A;
5340         }
5341       }
5342       return error("Never resolved value found in function");
5343     }
5344   }
5345 
5346   // Unexpected unresolved metadata about to be dropped.
5347   if (MDLoader->hasFwdRefs())
5348     return error("Invalid function metadata: outgoing forward refs");
5349 
5350   // Trim the value list down to the size it was before we parsed this function.
5351   ValueList.shrinkTo(ModuleValueListSize);
5352   MDLoader->shrinkTo(ModuleMDLoaderSize);
5353   std::vector<BasicBlock*>().swap(FunctionBBs);
5354   return Error::success();
5355 }
5356 
5357 /// Find the function body in the bitcode stream
5358 Error BitcodeReader::findFunctionInStream(
5359     Function *F,
5360     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5361   while (DeferredFunctionInfoIterator->second == 0) {
5362     // This is the fallback handling for the old format bitcode that
5363     // didn't contain the function index in the VST, or when we have
5364     // an anonymous function which would not have a VST entry.
5365     // Assert that we have one of those two cases.
5366     assert(VSTOffset == 0 || !F->hasName());
5367     // Parse the next body in the stream and set its position in the
5368     // DeferredFunctionInfo map.
5369     if (Error Err = rememberAndSkipFunctionBodies())
5370       return Err;
5371   }
5372   return Error::success();
5373 }
5374 
5375 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5376   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5377     return SyncScope::ID(Val);
5378   if (Val >= SSIDs.size())
5379     return SyncScope::System; // Map unknown synchronization scopes to system.
5380   return SSIDs[Val];
5381 }
5382 
5383 //===----------------------------------------------------------------------===//
5384 // GVMaterializer implementation
5385 //===----------------------------------------------------------------------===//
5386 
5387 Error BitcodeReader::materialize(GlobalValue *GV) {
5388   Function *F = dyn_cast<Function>(GV);
5389   // If it's not a function or is already material, ignore the request.
5390   if (!F || !F->isMaterializable())
5391     return Error::success();
5392 
5393   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5394   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5395   // If its position is recorded as 0, its body is somewhere in the stream
5396   // but we haven't seen it yet.
5397   if (DFII->second == 0)
5398     if (Error Err = findFunctionInStream(F, DFII))
5399       return Err;
5400 
5401   // Materialize metadata before parsing any function bodies.
5402   if (Error Err = materializeMetadata())
5403     return Err;
5404 
5405   // Move the bit stream to the saved position of the deferred function body.
5406   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5407     return JumpFailed;
5408   if (Error Err = parseFunctionBody(F))
5409     return Err;
5410   F->setIsMaterializable(false);
5411 
5412   if (StripDebugInfo)
5413     stripDebugInfo(*F);
5414 
5415   // Upgrade any old intrinsic calls in the function.
5416   for (auto &I : UpgradedIntrinsics) {
5417     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5418          UI != UE;) {
5419       User *U = *UI;
5420       ++UI;
5421       if (CallInst *CI = dyn_cast<CallInst>(U))
5422         UpgradeIntrinsicCall(CI, I.second);
5423     }
5424   }
5425 
5426   // Update calls to the remangled intrinsics
5427   for (auto &I : RemangledIntrinsics)
5428     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5429          UI != UE;)
5430       // Don't expect any other users than call sites
5431       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5432 
5433   // Finish fn->subprogram upgrade for materialized functions.
5434   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5435     F->setSubprogram(SP);
5436 
5437   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5438   if (!MDLoader->isStrippingTBAA()) {
5439     for (auto &I : instructions(F)) {
5440       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5441       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5442         continue;
5443       MDLoader->setStripTBAA(true);
5444       stripTBAA(F->getParent());
5445     }
5446   }
5447 
5448   // "Upgrade" older incorrect branch weights by dropping them.
5449   for (auto &I : instructions(F)) {
5450     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5451       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5452         MDString *MDS = cast<MDString>(MD->getOperand(0));
5453         StringRef ProfName = MDS->getString();
5454         // Check consistency of !prof branch_weights metadata.
5455         if (!ProfName.equals("branch_weights"))
5456           continue;
5457         unsigned ExpectedNumOperands = 0;
5458         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5459           ExpectedNumOperands = BI->getNumSuccessors();
5460         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5461           ExpectedNumOperands = SI->getNumSuccessors();
5462         else if (isa<CallInst>(&I))
5463           ExpectedNumOperands = 1;
5464         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5465           ExpectedNumOperands = IBI->getNumDestinations();
5466         else if (isa<SelectInst>(&I))
5467           ExpectedNumOperands = 2;
5468         else
5469           continue; // ignore and continue.
5470 
5471         // If branch weight doesn't match, just strip branch weight.
5472         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5473           I.setMetadata(LLVMContext::MD_prof, nullptr);
5474       }
5475     }
5476   }
5477 
5478   // Look for functions that rely on old function attribute behavior.
5479   UpgradeFunctionAttributes(*F);
5480 
5481   // Bring in any functions that this function forward-referenced via
5482   // blockaddresses.
5483   return materializeForwardReferencedFunctions();
5484 }
5485 
5486 Error BitcodeReader::materializeModule() {
5487   if (Error Err = materializeMetadata())
5488     return Err;
5489 
5490   // Promise to materialize all forward references.
5491   WillMaterializeAllForwardRefs = true;
5492 
5493   // Iterate over the module, deserializing any functions that are still on
5494   // disk.
5495   for (Function &F : *TheModule) {
5496     if (Error Err = materialize(&F))
5497       return Err;
5498   }
5499   // At this point, if there are any function bodies, parse the rest of
5500   // the bits in the module past the last function block we have recorded
5501   // through either lazy scanning or the VST.
5502   if (LastFunctionBlockBit || NextUnreadBit)
5503     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5504                                     ? LastFunctionBlockBit
5505                                     : NextUnreadBit))
5506       return Err;
5507 
5508   // Check that all block address forward references got resolved (as we
5509   // promised above).
5510   if (!BasicBlockFwdRefs.empty())
5511     return error("Never resolved function from blockaddress");
5512 
5513   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5514   // delete the old functions to clean up. We can't do this unless the entire
5515   // module is materialized because there could always be another function body
5516   // with calls to the old function.
5517   for (auto &I : UpgradedIntrinsics) {
5518     for (auto *U : I.first->users()) {
5519       if (CallInst *CI = dyn_cast<CallInst>(U))
5520         UpgradeIntrinsicCall(CI, I.second);
5521     }
5522     if (!I.first->use_empty())
5523       I.first->replaceAllUsesWith(I.second);
5524     I.first->eraseFromParent();
5525   }
5526   UpgradedIntrinsics.clear();
5527   // Do the same for remangled intrinsics
5528   for (auto &I : RemangledIntrinsics) {
5529     I.first->replaceAllUsesWith(I.second);
5530     I.first->eraseFromParent();
5531   }
5532   RemangledIntrinsics.clear();
5533 
5534   UpgradeDebugInfo(*TheModule);
5535 
5536   UpgradeModuleFlags(*TheModule);
5537 
5538   UpgradeARCRuntime(*TheModule);
5539 
5540   return Error::success();
5541 }
5542 
5543 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5544   return IdentifiedStructTypes;
5545 }
5546 
5547 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5548     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5549     StringRef ModulePath, unsigned ModuleId)
5550     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5551       ModulePath(ModulePath), ModuleId(ModuleId) {}
5552 
5553 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5554   TheIndex.addModule(ModulePath, ModuleId);
5555 }
5556 
5557 ModuleSummaryIndex::ModuleInfo *
5558 ModuleSummaryIndexBitcodeReader::getThisModule() {
5559   return TheIndex.getModule(ModulePath);
5560 }
5561 
5562 std::pair<ValueInfo, GlobalValue::GUID>
5563 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5564   auto VGI = ValueIdToValueInfoMap[ValueId];
5565   assert(VGI.first);
5566   return VGI;
5567 }
5568 
5569 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5570     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5571     StringRef SourceFileName) {
5572   std::string GlobalId =
5573       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5574   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5575   auto OriginalNameID = ValueGUID;
5576   if (GlobalValue::isLocalLinkage(Linkage))
5577     OriginalNameID = GlobalValue::getGUID(ValueName);
5578   if (PrintSummaryGUIDs)
5579     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5580            << ValueName << "\n";
5581 
5582   // UseStrtab is false for legacy summary formats and value names are
5583   // created on stack. In that case we save the name in a string saver in
5584   // the index so that the value name can be recorded.
5585   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5586       TheIndex.getOrInsertValueInfo(
5587           ValueGUID,
5588           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5589       OriginalNameID);
5590 }
5591 
5592 // Specialized value symbol table parser used when reading module index
5593 // blocks where we don't actually create global values. The parsed information
5594 // is saved in the bitcode reader for use when later parsing summaries.
5595 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5596     uint64_t Offset,
5597     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5598   // With a strtab the VST is not required to parse the summary.
5599   if (UseStrtab)
5600     return Error::success();
5601 
5602   assert(Offset > 0 && "Expected non-zero VST offset");
5603   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5604   if (!MaybeCurrentBit)
5605     return MaybeCurrentBit.takeError();
5606   uint64_t CurrentBit = MaybeCurrentBit.get();
5607 
5608   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5609     return Err;
5610 
5611   SmallVector<uint64_t, 64> Record;
5612 
5613   // Read all the records for this value table.
5614   SmallString<128> ValueName;
5615 
5616   while (true) {
5617     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5618     if (!MaybeEntry)
5619       return MaybeEntry.takeError();
5620     BitstreamEntry Entry = MaybeEntry.get();
5621 
5622     switch (Entry.Kind) {
5623     case BitstreamEntry::SubBlock: // Handled for us already.
5624     case BitstreamEntry::Error:
5625       return error("Malformed block");
5626     case BitstreamEntry::EndBlock:
5627       // Done parsing VST, jump back to wherever we came from.
5628       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5629         return JumpFailed;
5630       return Error::success();
5631     case BitstreamEntry::Record:
5632       // The interesting case.
5633       break;
5634     }
5635 
5636     // Read a record.
5637     Record.clear();
5638     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5639     if (!MaybeRecord)
5640       return MaybeRecord.takeError();
5641     switch (MaybeRecord.get()) {
5642     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5643       break;
5644     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5645       if (convertToString(Record, 1, ValueName))
5646         return error("Invalid record");
5647       unsigned ValueID = Record[0];
5648       assert(!SourceFileName.empty());
5649       auto VLI = ValueIdToLinkageMap.find(ValueID);
5650       assert(VLI != ValueIdToLinkageMap.end() &&
5651              "No linkage found for VST entry?");
5652       auto Linkage = VLI->second;
5653       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5654       ValueName.clear();
5655       break;
5656     }
5657     case bitc::VST_CODE_FNENTRY: {
5658       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5659       if (convertToString(Record, 2, ValueName))
5660         return error("Invalid record");
5661       unsigned ValueID = Record[0];
5662       assert(!SourceFileName.empty());
5663       auto VLI = ValueIdToLinkageMap.find(ValueID);
5664       assert(VLI != ValueIdToLinkageMap.end() &&
5665              "No linkage found for VST entry?");
5666       auto Linkage = VLI->second;
5667       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5668       ValueName.clear();
5669       break;
5670     }
5671     case bitc::VST_CODE_COMBINED_ENTRY: {
5672       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5673       unsigned ValueID = Record[0];
5674       GlobalValue::GUID RefGUID = Record[1];
5675       // The "original name", which is the second value of the pair will be
5676       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5677       ValueIdToValueInfoMap[ValueID] =
5678           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5679       break;
5680     }
5681     }
5682   }
5683 }
5684 
5685 // Parse just the blocks needed for building the index out of the module.
5686 // At the end of this routine the module Index is populated with a map
5687 // from global value id to GlobalValueSummary objects.
5688 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5689   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5690     return Err;
5691 
5692   SmallVector<uint64_t, 64> Record;
5693   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5694   unsigned ValueId = 0;
5695 
5696   // Read the index for this module.
5697   while (true) {
5698     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5699     if (!MaybeEntry)
5700       return MaybeEntry.takeError();
5701     llvm::BitstreamEntry Entry = MaybeEntry.get();
5702 
5703     switch (Entry.Kind) {
5704     case BitstreamEntry::Error:
5705       return error("Malformed block");
5706     case BitstreamEntry::EndBlock:
5707       return Error::success();
5708 
5709     case BitstreamEntry::SubBlock:
5710       switch (Entry.ID) {
5711       default: // Skip unknown content.
5712         if (Error Err = Stream.SkipBlock())
5713           return Err;
5714         break;
5715       case bitc::BLOCKINFO_BLOCK_ID:
5716         // Need to parse these to get abbrev ids (e.g. for VST)
5717         if (readBlockInfo())
5718           return error("Malformed block");
5719         break;
5720       case bitc::VALUE_SYMTAB_BLOCK_ID:
5721         // Should have been parsed earlier via VSTOffset, unless there
5722         // is no summary section.
5723         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5724                 !SeenGlobalValSummary) &&
5725                "Expected early VST parse via VSTOffset record");
5726         if (Error Err = Stream.SkipBlock())
5727           return Err;
5728         break;
5729       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5730       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5731         // Add the module if it is a per-module index (has a source file name).
5732         if (!SourceFileName.empty())
5733           addThisModule();
5734         assert(!SeenValueSymbolTable &&
5735                "Already read VST when parsing summary block?");
5736         // We might not have a VST if there were no values in the
5737         // summary. An empty summary block generated when we are
5738         // performing ThinLTO compiles so we don't later invoke
5739         // the regular LTO process on them.
5740         if (VSTOffset > 0) {
5741           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5742             return Err;
5743           SeenValueSymbolTable = true;
5744         }
5745         SeenGlobalValSummary = true;
5746         if (Error Err = parseEntireSummary(Entry.ID))
5747           return Err;
5748         break;
5749       case bitc::MODULE_STRTAB_BLOCK_ID:
5750         if (Error Err = parseModuleStringTable())
5751           return Err;
5752         break;
5753       }
5754       continue;
5755 
5756     case BitstreamEntry::Record: {
5757         Record.clear();
5758         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5759         if (!MaybeBitCode)
5760           return MaybeBitCode.takeError();
5761         switch (MaybeBitCode.get()) {
5762         default:
5763           break; // Default behavior, ignore unknown content.
5764         case bitc::MODULE_CODE_VERSION: {
5765           if (Error Err = parseVersionRecord(Record).takeError())
5766             return Err;
5767           break;
5768         }
5769         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5770         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5771           SmallString<128> ValueName;
5772           if (convertToString(Record, 0, ValueName))
5773             return error("Invalid record");
5774           SourceFileName = ValueName.c_str();
5775           break;
5776         }
5777         /// MODULE_CODE_HASH: [5*i32]
5778         case bitc::MODULE_CODE_HASH: {
5779           if (Record.size() != 5)
5780             return error("Invalid hash length " + Twine(Record.size()).str());
5781           auto &Hash = getThisModule()->second.second;
5782           int Pos = 0;
5783           for (auto &Val : Record) {
5784             assert(!(Val >> 32) && "Unexpected high bits set");
5785             Hash[Pos++] = Val;
5786           }
5787           break;
5788         }
5789         /// MODULE_CODE_VSTOFFSET: [offset]
5790         case bitc::MODULE_CODE_VSTOFFSET:
5791           if (Record.empty())
5792             return error("Invalid record");
5793           // Note that we subtract 1 here because the offset is relative to one
5794           // word before the start of the identification or module block, which
5795           // was historically always the start of the regular bitcode header.
5796           VSTOffset = Record[0] - 1;
5797           break;
5798         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5799         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5800         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5801         // v2: [strtab offset, strtab size, v1]
5802         case bitc::MODULE_CODE_GLOBALVAR:
5803         case bitc::MODULE_CODE_FUNCTION:
5804         case bitc::MODULE_CODE_ALIAS: {
5805           StringRef Name;
5806           ArrayRef<uint64_t> GVRecord;
5807           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5808           if (GVRecord.size() <= 3)
5809             return error("Invalid record");
5810           uint64_t RawLinkage = GVRecord[3];
5811           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5812           if (!UseStrtab) {
5813             ValueIdToLinkageMap[ValueId++] = Linkage;
5814             break;
5815           }
5816 
5817           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5818           break;
5819         }
5820         }
5821       }
5822       continue;
5823     }
5824   }
5825 }
5826 
5827 std::vector<ValueInfo>
5828 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5829   std::vector<ValueInfo> Ret;
5830   Ret.reserve(Record.size());
5831   for (uint64_t RefValueId : Record)
5832     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5833   return Ret;
5834 }
5835 
5836 std::vector<FunctionSummary::EdgeTy>
5837 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5838                                               bool IsOldProfileFormat,
5839                                               bool HasProfile, bool HasRelBF) {
5840   std::vector<FunctionSummary::EdgeTy> Ret;
5841   Ret.reserve(Record.size());
5842   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5843     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5844     uint64_t RelBF = 0;
5845     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5846     if (IsOldProfileFormat) {
5847       I += 1; // Skip old callsitecount field
5848       if (HasProfile)
5849         I += 1; // Skip old profilecount field
5850     } else if (HasProfile)
5851       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5852     else if (HasRelBF)
5853       RelBF = Record[++I];
5854     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5855   }
5856   return Ret;
5857 }
5858 
5859 static void
5860 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5861                                        WholeProgramDevirtResolution &Wpd) {
5862   uint64_t ArgNum = Record[Slot++];
5863   WholeProgramDevirtResolution::ByArg &B =
5864       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5865   Slot += ArgNum;
5866 
5867   B.TheKind =
5868       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5869   B.Info = Record[Slot++];
5870   B.Byte = Record[Slot++];
5871   B.Bit = Record[Slot++];
5872 }
5873 
5874 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5875                                               StringRef Strtab, size_t &Slot,
5876                                               TypeIdSummary &TypeId) {
5877   uint64_t Id = Record[Slot++];
5878   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5879 
5880   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5881   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5882                         static_cast<size_t>(Record[Slot + 1])};
5883   Slot += 2;
5884 
5885   uint64_t ResByArgNum = Record[Slot++];
5886   for (uint64_t I = 0; I != ResByArgNum; ++I)
5887     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5888 }
5889 
5890 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5891                                      StringRef Strtab,
5892                                      ModuleSummaryIndex &TheIndex) {
5893   size_t Slot = 0;
5894   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5895       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5896   Slot += 2;
5897 
5898   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5899   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5900   TypeId.TTRes.AlignLog2 = Record[Slot++];
5901   TypeId.TTRes.SizeM1 = Record[Slot++];
5902   TypeId.TTRes.BitMask = Record[Slot++];
5903   TypeId.TTRes.InlineBits = Record[Slot++];
5904 
5905   while (Slot < Record.size())
5906     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5907 }
5908 
5909 std::vector<FunctionSummary::ParamAccess>
5910 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5911   auto ReadRange = [&]() {
5912     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5913                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5914     Record = Record.drop_front();
5915     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5916                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5917     Record = Record.drop_front();
5918     ConstantRange Range{Lower, Upper};
5919     assert(!Range.isFullSet());
5920     assert(!Range.isUpperSignWrapped());
5921     return Range;
5922   };
5923 
5924   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5925   while (!Record.empty()) {
5926     PendingParamAccesses.emplace_back();
5927     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5928     ParamAccess.ParamNo = Record.front();
5929     Record = Record.drop_front();
5930     ParamAccess.Use = ReadRange();
5931     ParamAccess.Calls.resize(Record.front());
5932     Record = Record.drop_front();
5933     for (auto &Call : ParamAccess.Calls) {
5934       Call.ParamNo = Record.front();
5935       Record = Record.drop_front();
5936       Call.Callee = getValueInfoFromValueId(Record.front()).first;
5937       Record = Record.drop_front();
5938       Call.Offsets = ReadRange();
5939     }
5940   }
5941   return PendingParamAccesses;
5942 }
5943 
5944 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5945     ArrayRef<uint64_t> Record, size_t &Slot,
5946     TypeIdCompatibleVtableInfo &TypeId) {
5947   uint64_t Offset = Record[Slot++];
5948   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5949   TypeId.push_back({Offset, Callee});
5950 }
5951 
5952 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5953     ArrayRef<uint64_t> Record) {
5954   size_t Slot = 0;
5955   TypeIdCompatibleVtableInfo &TypeId =
5956       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5957           {Strtab.data() + Record[Slot],
5958            static_cast<size_t>(Record[Slot + 1])});
5959   Slot += 2;
5960 
5961   while (Slot < Record.size())
5962     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5963 }
5964 
5965 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5966                            unsigned WOCnt) {
5967   // Readonly and writeonly refs are in the end of the refs list.
5968   assert(ROCnt + WOCnt <= Refs.size());
5969   unsigned FirstWORef = Refs.size() - WOCnt;
5970   unsigned RefNo = FirstWORef - ROCnt;
5971   for (; RefNo < FirstWORef; ++RefNo)
5972     Refs[RefNo].setReadOnly();
5973   for (; RefNo < Refs.size(); ++RefNo)
5974     Refs[RefNo].setWriteOnly();
5975 }
5976 
5977 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5978 // objects in the index.
5979 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5980   if (Error Err = Stream.EnterSubBlock(ID))
5981     return Err;
5982   SmallVector<uint64_t, 64> Record;
5983 
5984   // Parse version
5985   {
5986     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5987     if (!MaybeEntry)
5988       return MaybeEntry.takeError();
5989     BitstreamEntry Entry = MaybeEntry.get();
5990 
5991     if (Entry.Kind != BitstreamEntry::Record)
5992       return error("Invalid Summary Block: record for version expected");
5993     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5994     if (!MaybeRecord)
5995       return MaybeRecord.takeError();
5996     if (MaybeRecord.get() != bitc::FS_VERSION)
5997       return error("Invalid Summary Block: version expected");
5998   }
5999   const uint64_t Version = Record[0];
6000   const bool IsOldProfileFormat = Version == 1;
6001   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6002     return error("Invalid summary version " + Twine(Version) +
6003                  ". Version should be in the range [1-" +
6004                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6005                  "].");
6006   Record.clear();
6007 
6008   // Keep around the last seen summary to be used when we see an optional
6009   // "OriginalName" attachement.
6010   GlobalValueSummary *LastSeenSummary = nullptr;
6011   GlobalValue::GUID LastSeenGUID = 0;
6012 
6013   // We can expect to see any number of type ID information records before
6014   // each function summary records; these variables store the information
6015   // collected so far so that it can be used to create the summary object.
6016   std::vector<GlobalValue::GUID> PendingTypeTests;
6017   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6018       PendingTypeCheckedLoadVCalls;
6019   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6020       PendingTypeCheckedLoadConstVCalls;
6021   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6022 
6023   while (true) {
6024     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6025     if (!MaybeEntry)
6026       return MaybeEntry.takeError();
6027     BitstreamEntry Entry = MaybeEntry.get();
6028 
6029     switch (Entry.Kind) {
6030     case BitstreamEntry::SubBlock: // Handled for us already.
6031     case BitstreamEntry::Error:
6032       return error("Malformed block");
6033     case BitstreamEntry::EndBlock:
6034       return Error::success();
6035     case BitstreamEntry::Record:
6036       // The interesting case.
6037       break;
6038     }
6039 
6040     // Read a record. The record format depends on whether this
6041     // is a per-module index or a combined index file. In the per-module
6042     // case the records contain the associated value's ID for correlation
6043     // with VST entries. In the combined index the correlation is done
6044     // via the bitcode offset of the summary records (which were saved
6045     // in the combined index VST entries). The records also contain
6046     // information used for ThinLTO renaming and importing.
6047     Record.clear();
6048     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6049     if (!MaybeBitCode)
6050       return MaybeBitCode.takeError();
6051     switch (unsigned BitCode = MaybeBitCode.get()) {
6052     default: // Default behavior: ignore.
6053       break;
6054     case bitc::FS_FLAGS: {  // [flags]
6055       TheIndex.setFlags(Record[0]);
6056       break;
6057     }
6058     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6059       uint64_t ValueID = Record[0];
6060       GlobalValue::GUID RefGUID = Record[1];
6061       ValueIdToValueInfoMap[ValueID] =
6062           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6063       break;
6064     }
6065     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6066     //                numrefs x valueid, n x (valueid)]
6067     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6068     //                        numrefs x valueid,
6069     //                        n x (valueid, hotness)]
6070     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6071     //                      numrefs x valueid,
6072     //                      n x (valueid, relblockfreq)]
6073     case bitc::FS_PERMODULE:
6074     case bitc::FS_PERMODULE_RELBF:
6075     case bitc::FS_PERMODULE_PROFILE: {
6076       unsigned ValueID = Record[0];
6077       uint64_t RawFlags = Record[1];
6078       unsigned InstCount = Record[2];
6079       uint64_t RawFunFlags = 0;
6080       unsigned NumRefs = Record[3];
6081       unsigned NumRORefs = 0, NumWORefs = 0;
6082       int RefListStartIndex = 4;
6083       if (Version >= 4) {
6084         RawFunFlags = Record[3];
6085         NumRefs = Record[4];
6086         RefListStartIndex = 5;
6087         if (Version >= 5) {
6088           NumRORefs = Record[5];
6089           RefListStartIndex = 6;
6090           if (Version >= 7) {
6091             NumWORefs = Record[6];
6092             RefListStartIndex = 7;
6093           }
6094         }
6095       }
6096 
6097       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6098       // The module path string ref set in the summary must be owned by the
6099       // index's module string table. Since we don't have a module path
6100       // string table section in the per-module index, we create a single
6101       // module path string table entry with an empty (0) ID to take
6102       // ownership.
6103       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6104       assert(Record.size() >= RefListStartIndex + NumRefs &&
6105              "Record size inconsistent with number of references");
6106       std::vector<ValueInfo> Refs = makeRefList(
6107           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6108       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6109       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6110       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6111           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6112           IsOldProfileFormat, HasProfile, HasRelBF);
6113       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6114       auto FS = std::make_unique<FunctionSummary>(
6115           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6116           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6117           std::move(PendingTypeTestAssumeVCalls),
6118           std::move(PendingTypeCheckedLoadVCalls),
6119           std::move(PendingTypeTestAssumeConstVCalls),
6120           std::move(PendingTypeCheckedLoadConstVCalls),
6121           std::move(PendingParamAccesses));
6122       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6123       FS->setModulePath(getThisModule()->first());
6124       FS->setOriginalName(VIAndOriginalGUID.second);
6125       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6126       break;
6127     }
6128     // FS_ALIAS: [valueid, flags, valueid]
6129     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6130     // they expect all aliasee summaries to be available.
6131     case bitc::FS_ALIAS: {
6132       unsigned ValueID = Record[0];
6133       uint64_t RawFlags = Record[1];
6134       unsigned AliaseeID = Record[2];
6135       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6136       auto AS = std::make_unique<AliasSummary>(Flags);
6137       // The module path string ref set in the summary must be owned by the
6138       // index's module string table. Since we don't have a module path
6139       // string table section in the per-module index, we create a single
6140       // module path string table entry with an empty (0) ID to take
6141       // ownership.
6142       AS->setModulePath(getThisModule()->first());
6143 
6144       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6145       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6146       if (!AliaseeInModule)
6147         return error("Alias expects aliasee summary to be parsed");
6148       AS->setAliasee(AliaseeVI, AliaseeInModule);
6149 
6150       auto GUID = getValueInfoFromValueId(ValueID);
6151       AS->setOriginalName(GUID.second);
6152       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6153       break;
6154     }
6155     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6156     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6157       unsigned ValueID = Record[0];
6158       uint64_t RawFlags = Record[1];
6159       unsigned RefArrayStart = 2;
6160       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6161                                       /* WriteOnly */ false,
6162                                       /* Constant */ false,
6163                                       GlobalObject::VCallVisibilityPublic);
6164       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6165       if (Version >= 5) {
6166         GVF = getDecodedGVarFlags(Record[2]);
6167         RefArrayStart = 3;
6168       }
6169       std::vector<ValueInfo> Refs =
6170           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6171       auto FS =
6172           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6173       FS->setModulePath(getThisModule()->first());
6174       auto GUID = getValueInfoFromValueId(ValueID);
6175       FS->setOriginalName(GUID.second);
6176       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6177       break;
6178     }
6179     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6180     //                        numrefs, numrefs x valueid,
6181     //                        n x (valueid, offset)]
6182     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6183       unsigned ValueID = Record[0];
6184       uint64_t RawFlags = Record[1];
6185       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6186       unsigned NumRefs = Record[3];
6187       unsigned RefListStartIndex = 4;
6188       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6189       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6190       std::vector<ValueInfo> Refs = makeRefList(
6191           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6192       VTableFuncList VTableFuncs;
6193       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6194         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6195         uint64_t Offset = Record[++I];
6196         VTableFuncs.push_back({Callee, Offset});
6197       }
6198       auto VS =
6199           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6200       VS->setModulePath(getThisModule()->first());
6201       VS->setVTableFuncs(VTableFuncs);
6202       auto GUID = getValueInfoFromValueId(ValueID);
6203       VS->setOriginalName(GUID.second);
6204       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6205       break;
6206     }
6207     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6208     //               numrefs x valueid, n x (valueid)]
6209     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6210     //                       numrefs x valueid, n x (valueid, hotness)]
6211     case bitc::FS_COMBINED:
6212     case bitc::FS_COMBINED_PROFILE: {
6213       unsigned ValueID = Record[0];
6214       uint64_t ModuleId = Record[1];
6215       uint64_t RawFlags = Record[2];
6216       unsigned InstCount = Record[3];
6217       uint64_t RawFunFlags = 0;
6218       uint64_t EntryCount = 0;
6219       unsigned NumRefs = Record[4];
6220       unsigned NumRORefs = 0, NumWORefs = 0;
6221       int RefListStartIndex = 5;
6222 
6223       if (Version >= 4) {
6224         RawFunFlags = Record[4];
6225         RefListStartIndex = 6;
6226         size_t NumRefsIndex = 5;
6227         if (Version >= 5) {
6228           unsigned NumRORefsOffset = 1;
6229           RefListStartIndex = 7;
6230           if (Version >= 6) {
6231             NumRefsIndex = 6;
6232             EntryCount = Record[5];
6233             RefListStartIndex = 8;
6234             if (Version >= 7) {
6235               RefListStartIndex = 9;
6236               NumWORefs = Record[8];
6237               NumRORefsOffset = 2;
6238             }
6239           }
6240           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6241         }
6242         NumRefs = Record[NumRefsIndex];
6243       }
6244 
6245       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6246       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6247       assert(Record.size() >= RefListStartIndex + NumRefs &&
6248              "Record size inconsistent with number of references");
6249       std::vector<ValueInfo> Refs = makeRefList(
6250           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6251       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6252       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6253           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6254           IsOldProfileFormat, HasProfile, false);
6255       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6256       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6257       auto FS = std::make_unique<FunctionSummary>(
6258           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6259           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6260           std::move(PendingTypeTestAssumeVCalls),
6261           std::move(PendingTypeCheckedLoadVCalls),
6262           std::move(PendingTypeTestAssumeConstVCalls),
6263           std::move(PendingTypeCheckedLoadConstVCalls),
6264           std::move(PendingParamAccesses));
6265       LastSeenSummary = FS.get();
6266       LastSeenGUID = VI.getGUID();
6267       FS->setModulePath(ModuleIdMap[ModuleId]);
6268       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6269       break;
6270     }
6271     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6272     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6273     // they expect all aliasee summaries to be available.
6274     case bitc::FS_COMBINED_ALIAS: {
6275       unsigned ValueID = Record[0];
6276       uint64_t ModuleId = Record[1];
6277       uint64_t RawFlags = Record[2];
6278       unsigned AliaseeValueId = Record[3];
6279       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6280       auto AS = std::make_unique<AliasSummary>(Flags);
6281       LastSeenSummary = AS.get();
6282       AS->setModulePath(ModuleIdMap[ModuleId]);
6283 
6284       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6285       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6286       AS->setAliasee(AliaseeVI, AliaseeInModule);
6287 
6288       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6289       LastSeenGUID = VI.getGUID();
6290       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6291       break;
6292     }
6293     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6294     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6295       unsigned ValueID = Record[0];
6296       uint64_t ModuleId = Record[1];
6297       uint64_t RawFlags = Record[2];
6298       unsigned RefArrayStart = 3;
6299       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6300                                       /* WriteOnly */ false,
6301                                       /* Constant */ false,
6302                                       GlobalObject::VCallVisibilityPublic);
6303       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6304       if (Version >= 5) {
6305         GVF = getDecodedGVarFlags(Record[3]);
6306         RefArrayStart = 4;
6307       }
6308       std::vector<ValueInfo> Refs =
6309           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6310       auto FS =
6311           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6312       LastSeenSummary = FS.get();
6313       FS->setModulePath(ModuleIdMap[ModuleId]);
6314       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6315       LastSeenGUID = VI.getGUID();
6316       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6317       break;
6318     }
6319     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6320     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6321       uint64_t OriginalName = Record[0];
6322       if (!LastSeenSummary)
6323         return error("Name attachment that does not follow a combined record");
6324       LastSeenSummary->setOriginalName(OriginalName);
6325       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6326       // Reset the LastSeenSummary
6327       LastSeenSummary = nullptr;
6328       LastSeenGUID = 0;
6329       break;
6330     }
6331     case bitc::FS_TYPE_TESTS:
6332       assert(PendingTypeTests.empty());
6333       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6334                               Record.end());
6335       break;
6336 
6337     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6338       assert(PendingTypeTestAssumeVCalls.empty());
6339       for (unsigned I = 0; I != Record.size(); I += 2)
6340         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6341       break;
6342 
6343     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6344       assert(PendingTypeCheckedLoadVCalls.empty());
6345       for (unsigned I = 0; I != Record.size(); I += 2)
6346         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6347       break;
6348 
6349     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6350       PendingTypeTestAssumeConstVCalls.push_back(
6351           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6352       break;
6353 
6354     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6355       PendingTypeCheckedLoadConstVCalls.push_back(
6356           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6357       break;
6358 
6359     case bitc::FS_CFI_FUNCTION_DEFS: {
6360       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6361       for (unsigned I = 0; I != Record.size(); I += 2)
6362         CfiFunctionDefs.insert(
6363             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6364       break;
6365     }
6366 
6367     case bitc::FS_CFI_FUNCTION_DECLS: {
6368       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6369       for (unsigned I = 0; I != Record.size(); I += 2)
6370         CfiFunctionDecls.insert(
6371             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6372       break;
6373     }
6374 
6375     case bitc::FS_TYPE_ID:
6376       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6377       break;
6378 
6379     case bitc::FS_TYPE_ID_METADATA:
6380       parseTypeIdCompatibleVtableSummaryRecord(Record);
6381       break;
6382 
6383     case bitc::FS_BLOCK_COUNT:
6384       TheIndex.addBlockCount(Record[0]);
6385       break;
6386 
6387     case bitc::FS_PARAM_ACCESS: {
6388       PendingParamAccesses = parseParamAccesses(Record);
6389       break;
6390     }
6391     }
6392   }
6393   llvm_unreachable("Exit infinite loop");
6394 }
6395 
6396 // Parse the  module string table block into the Index.
6397 // This populates the ModulePathStringTable map in the index.
6398 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6399   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6400     return Err;
6401 
6402   SmallVector<uint64_t, 64> Record;
6403 
6404   SmallString<128> ModulePath;
6405   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6406 
6407   while (true) {
6408     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6409     if (!MaybeEntry)
6410       return MaybeEntry.takeError();
6411     BitstreamEntry Entry = MaybeEntry.get();
6412 
6413     switch (Entry.Kind) {
6414     case BitstreamEntry::SubBlock: // Handled for us already.
6415     case BitstreamEntry::Error:
6416       return error("Malformed block");
6417     case BitstreamEntry::EndBlock:
6418       return Error::success();
6419     case BitstreamEntry::Record:
6420       // The interesting case.
6421       break;
6422     }
6423 
6424     Record.clear();
6425     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6426     if (!MaybeRecord)
6427       return MaybeRecord.takeError();
6428     switch (MaybeRecord.get()) {
6429     default: // Default behavior: ignore.
6430       break;
6431     case bitc::MST_CODE_ENTRY: {
6432       // MST_ENTRY: [modid, namechar x N]
6433       uint64_t ModuleId = Record[0];
6434 
6435       if (convertToString(Record, 1, ModulePath))
6436         return error("Invalid record");
6437 
6438       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6439       ModuleIdMap[ModuleId] = LastSeenModule->first();
6440 
6441       ModulePath.clear();
6442       break;
6443     }
6444     /// MST_CODE_HASH: [5*i32]
6445     case bitc::MST_CODE_HASH: {
6446       if (Record.size() != 5)
6447         return error("Invalid hash length " + Twine(Record.size()).str());
6448       if (!LastSeenModule)
6449         return error("Invalid hash that does not follow a module path");
6450       int Pos = 0;
6451       for (auto &Val : Record) {
6452         assert(!(Val >> 32) && "Unexpected high bits set");
6453         LastSeenModule->second.second[Pos++] = Val;
6454       }
6455       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6456       LastSeenModule = nullptr;
6457       break;
6458     }
6459     }
6460   }
6461   llvm_unreachable("Exit infinite loop");
6462 }
6463 
6464 namespace {
6465 
6466 // FIXME: This class is only here to support the transition to llvm::Error. It
6467 // will be removed once this transition is complete. Clients should prefer to
6468 // deal with the Error value directly, rather than converting to error_code.
6469 class BitcodeErrorCategoryType : public std::error_category {
6470   const char *name() const noexcept override {
6471     return "llvm.bitcode";
6472   }
6473 
6474   std::string message(int IE) const override {
6475     BitcodeError E = static_cast<BitcodeError>(IE);
6476     switch (E) {
6477     case BitcodeError::CorruptedBitcode:
6478       return "Corrupted bitcode";
6479     }
6480     llvm_unreachable("Unknown error type!");
6481   }
6482 };
6483 
6484 } // end anonymous namespace
6485 
6486 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6487 
6488 const std::error_category &llvm::BitcodeErrorCategory() {
6489   return *ErrorCategory;
6490 }
6491 
6492 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6493                                             unsigned Block, unsigned RecordID) {
6494   if (Error Err = Stream.EnterSubBlock(Block))
6495     return std::move(Err);
6496 
6497   StringRef Strtab;
6498   while (true) {
6499     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6500     if (!MaybeEntry)
6501       return MaybeEntry.takeError();
6502     llvm::BitstreamEntry Entry = MaybeEntry.get();
6503 
6504     switch (Entry.Kind) {
6505     case BitstreamEntry::EndBlock:
6506       return Strtab;
6507 
6508     case BitstreamEntry::Error:
6509       return error("Malformed block");
6510 
6511     case BitstreamEntry::SubBlock:
6512       if (Error Err = Stream.SkipBlock())
6513         return std::move(Err);
6514       break;
6515 
6516     case BitstreamEntry::Record:
6517       StringRef Blob;
6518       SmallVector<uint64_t, 1> Record;
6519       Expected<unsigned> MaybeRecord =
6520           Stream.readRecord(Entry.ID, Record, &Blob);
6521       if (!MaybeRecord)
6522         return MaybeRecord.takeError();
6523       if (MaybeRecord.get() == RecordID)
6524         Strtab = Blob;
6525       break;
6526     }
6527   }
6528 }
6529 
6530 //===----------------------------------------------------------------------===//
6531 // External interface
6532 //===----------------------------------------------------------------------===//
6533 
6534 Expected<std::vector<BitcodeModule>>
6535 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6536   auto FOrErr = getBitcodeFileContents(Buffer);
6537   if (!FOrErr)
6538     return FOrErr.takeError();
6539   return std::move(FOrErr->Mods);
6540 }
6541 
6542 Expected<BitcodeFileContents>
6543 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6544   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6545   if (!StreamOrErr)
6546     return StreamOrErr.takeError();
6547   BitstreamCursor &Stream = *StreamOrErr;
6548 
6549   BitcodeFileContents F;
6550   while (true) {
6551     uint64_t BCBegin = Stream.getCurrentByteNo();
6552 
6553     // We may be consuming bitcode from a client that leaves garbage at the end
6554     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6555     // the end that there cannot possibly be another module, stop looking.
6556     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6557       return F;
6558 
6559     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6560     if (!MaybeEntry)
6561       return MaybeEntry.takeError();
6562     llvm::BitstreamEntry Entry = MaybeEntry.get();
6563 
6564     switch (Entry.Kind) {
6565     case BitstreamEntry::EndBlock:
6566     case BitstreamEntry::Error:
6567       return error("Malformed block");
6568 
6569     case BitstreamEntry::SubBlock: {
6570       uint64_t IdentificationBit = -1ull;
6571       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6572         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6573         if (Error Err = Stream.SkipBlock())
6574           return std::move(Err);
6575 
6576         {
6577           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6578           if (!MaybeEntry)
6579             return MaybeEntry.takeError();
6580           Entry = MaybeEntry.get();
6581         }
6582 
6583         if (Entry.Kind != BitstreamEntry::SubBlock ||
6584             Entry.ID != bitc::MODULE_BLOCK_ID)
6585           return error("Malformed block");
6586       }
6587 
6588       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6589         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6590         if (Error Err = Stream.SkipBlock())
6591           return std::move(Err);
6592 
6593         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6594                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6595                           Buffer.getBufferIdentifier(), IdentificationBit,
6596                           ModuleBit});
6597         continue;
6598       }
6599 
6600       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6601         Expected<StringRef> Strtab =
6602             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6603         if (!Strtab)
6604           return Strtab.takeError();
6605         // This string table is used by every preceding bitcode module that does
6606         // not have its own string table. A bitcode file may have multiple
6607         // string tables if it was created by binary concatenation, for example
6608         // with "llvm-cat -b".
6609         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6610           if (!I->Strtab.empty())
6611             break;
6612           I->Strtab = *Strtab;
6613         }
6614         // Similarly, the string table is used by every preceding symbol table;
6615         // normally there will be just one unless the bitcode file was created
6616         // by binary concatenation.
6617         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6618           F.StrtabForSymtab = *Strtab;
6619         continue;
6620       }
6621 
6622       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6623         Expected<StringRef> SymtabOrErr =
6624             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6625         if (!SymtabOrErr)
6626           return SymtabOrErr.takeError();
6627 
6628         // We can expect the bitcode file to have multiple symbol tables if it
6629         // was created by binary concatenation. In that case we silently
6630         // ignore any subsequent symbol tables, which is fine because this is a
6631         // low level function. The client is expected to notice that the number
6632         // of modules in the symbol table does not match the number of modules
6633         // in the input file and regenerate the symbol table.
6634         if (F.Symtab.empty())
6635           F.Symtab = *SymtabOrErr;
6636         continue;
6637       }
6638 
6639       if (Error Err = Stream.SkipBlock())
6640         return std::move(Err);
6641       continue;
6642     }
6643     case BitstreamEntry::Record:
6644       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6645         continue;
6646       else
6647         return StreamFailed.takeError();
6648     }
6649   }
6650 }
6651 
6652 /// Get a lazy one-at-time loading module from bitcode.
6653 ///
6654 /// This isn't always used in a lazy context.  In particular, it's also used by
6655 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6656 /// in forward-referenced functions from block address references.
6657 ///
6658 /// \param[in] MaterializeAll Set to \c true if we should materialize
6659 /// everything.
6660 Expected<std::unique_ptr<Module>>
6661 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6662                              bool ShouldLazyLoadMetadata, bool IsImporting,
6663                              DataLayoutCallbackTy DataLayoutCallback) {
6664   BitstreamCursor Stream(Buffer);
6665 
6666   std::string ProducerIdentification;
6667   if (IdentificationBit != -1ull) {
6668     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6669       return std::move(JumpFailed);
6670     Expected<std::string> ProducerIdentificationOrErr =
6671         readIdentificationBlock(Stream);
6672     if (!ProducerIdentificationOrErr)
6673       return ProducerIdentificationOrErr.takeError();
6674 
6675     ProducerIdentification = *ProducerIdentificationOrErr;
6676   }
6677 
6678   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6679     return std::move(JumpFailed);
6680   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6681                               Context);
6682 
6683   std::unique_ptr<Module> M =
6684       std::make_unique<Module>(ModuleIdentifier, Context);
6685   M->setMaterializer(R);
6686 
6687   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6688   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6689                                       IsImporting, DataLayoutCallback))
6690     return std::move(Err);
6691 
6692   if (MaterializeAll) {
6693     // Read in the entire module, and destroy the BitcodeReader.
6694     if (Error Err = M->materializeAll())
6695       return std::move(Err);
6696   } else {
6697     // Resolve forward references from blockaddresses.
6698     if (Error Err = R->materializeForwardReferencedFunctions())
6699       return std::move(Err);
6700   }
6701   return std::move(M);
6702 }
6703 
6704 Expected<std::unique_ptr<Module>>
6705 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6706                              bool IsImporting) {
6707   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6708                        [](StringRef) { return None; });
6709 }
6710 
6711 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6712 // We don't use ModuleIdentifier here because the client may need to control the
6713 // module path used in the combined summary (e.g. when reading summaries for
6714 // regular LTO modules).
6715 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6716                                  StringRef ModulePath, uint64_t ModuleId) {
6717   BitstreamCursor Stream(Buffer);
6718   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6719     return JumpFailed;
6720 
6721   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6722                                     ModulePath, ModuleId);
6723   return R.parseModule();
6724 }
6725 
6726 // Parse the specified bitcode buffer, returning the function info index.
6727 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6728   BitstreamCursor Stream(Buffer);
6729   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6730     return std::move(JumpFailed);
6731 
6732   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6733   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6734                                     ModuleIdentifier, 0);
6735 
6736   if (Error Err = R.parseModule())
6737     return std::move(Err);
6738 
6739   return std::move(Index);
6740 }
6741 
6742 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6743                                                 unsigned ID) {
6744   if (Error Err = Stream.EnterSubBlock(ID))
6745     return std::move(Err);
6746   SmallVector<uint64_t, 64> Record;
6747 
6748   while (true) {
6749     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6750     if (!MaybeEntry)
6751       return MaybeEntry.takeError();
6752     BitstreamEntry Entry = MaybeEntry.get();
6753 
6754     switch (Entry.Kind) {
6755     case BitstreamEntry::SubBlock: // Handled for us already.
6756     case BitstreamEntry::Error:
6757       return error("Malformed block");
6758     case BitstreamEntry::EndBlock:
6759       // If no flags record found, conservatively return true to mimic
6760       // behavior before this flag was added.
6761       return true;
6762     case BitstreamEntry::Record:
6763       // The interesting case.
6764       break;
6765     }
6766 
6767     // Look for the FS_FLAGS record.
6768     Record.clear();
6769     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6770     if (!MaybeBitCode)
6771       return MaybeBitCode.takeError();
6772     switch (MaybeBitCode.get()) {
6773     default: // Default behavior: ignore.
6774       break;
6775     case bitc::FS_FLAGS: { // [flags]
6776       uint64_t Flags = Record[0];
6777       // Scan flags.
6778       assert(Flags <= 0x3f && "Unexpected bits in flag");
6779 
6780       return Flags & 0x8;
6781     }
6782     }
6783   }
6784   llvm_unreachable("Exit infinite loop");
6785 }
6786 
6787 // Check if the given bitcode buffer contains a global value summary block.
6788 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6789   BitstreamCursor Stream(Buffer);
6790   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6791     return std::move(JumpFailed);
6792 
6793   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6794     return std::move(Err);
6795 
6796   while (true) {
6797     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6798     if (!MaybeEntry)
6799       return MaybeEntry.takeError();
6800     llvm::BitstreamEntry Entry = MaybeEntry.get();
6801 
6802     switch (Entry.Kind) {
6803     case BitstreamEntry::Error:
6804       return error("Malformed block");
6805     case BitstreamEntry::EndBlock:
6806       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6807                             /*EnableSplitLTOUnit=*/false};
6808 
6809     case BitstreamEntry::SubBlock:
6810       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6811         Expected<bool> EnableSplitLTOUnit =
6812             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6813         if (!EnableSplitLTOUnit)
6814           return EnableSplitLTOUnit.takeError();
6815         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6816                               *EnableSplitLTOUnit};
6817       }
6818 
6819       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6820         Expected<bool> EnableSplitLTOUnit =
6821             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6822         if (!EnableSplitLTOUnit)
6823           return EnableSplitLTOUnit.takeError();
6824         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6825                               *EnableSplitLTOUnit};
6826       }
6827 
6828       // Ignore other sub-blocks.
6829       if (Error Err = Stream.SkipBlock())
6830         return std::move(Err);
6831       continue;
6832 
6833     case BitstreamEntry::Record:
6834       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6835         continue;
6836       else
6837         return StreamFailed.takeError();
6838     }
6839   }
6840 }
6841 
6842 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6843   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6844   if (!MsOrErr)
6845     return MsOrErr.takeError();
6846 
6847   if (MsOrErr->size() != 1)
6848     return error("Expected a single module");
6849 
6850   return (*MsOrErr)[0];
6851 }
6852 
6853 Expected<std::unique_ptr<Module>>
6854 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6855                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6856   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6857   if (!BM)
6858     return BM.takeError();
6859 
6860   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6861 }
6862 
6863 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6864     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6865     bool ShouldLazyLoadMetadata, bool IsImporting) {
6866   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6867                                      IsImporting);
6868   if (MOrErr)
6869     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6870   return MOrErr;
6871 }
6872 
6873 Expected<std::unique_ptr<Module>>
6874 BitcodeModule::parseModule(LLVMContext &Context,
6875                            DataLayoutCallbackTy DataLayoutCallback) {
6876   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6877   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6878   // written.  We must defer until the Module has been fully materialized.
6879 }
6880 
6881 Expected<std::unique_ptr<Module>>
6882 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6883                        DataLayoutCallbackTy DataLayoutCallback) {
6884   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6885   if (!BM)
6886     return BM.takeError();
6887 
6888   return BM->parseModule(Context, DataLayoutCallback);
6889 }
6890 
6891 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6892   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6893   if (!StreamOrErr)
6894     return StreamOrErr.takeError();
6895 
6896   return readTriple(*StreamOrErr);
6897 }
6898 
6899 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6900   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6901   if (!StreamOrErr)
6902     return StreamOrErr.takeError();
6903 
6904   return hasObjCCategory(*StreamOrErr);
6905 }
6906 
6907 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6908   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6909   if (!StreamOrErr)
6910     return StreamOrErr.takeError();
6911 
6912   return readIdentificationCode(*StreamOrErr);
6913 }
6914 
6915 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6916                                    ModuleSummaryIndex &CombinedIndex,
6917                                    uint64_t ModuleId) {
6918   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6919   if (!BM)
6920     return BM.takeError();
6921 
6922   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6923 }
6924 
6925 Expected<std::unique_ptr<ModuleSummaryIndex>>
6926 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6927   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6928   if (!BM)
6929     return BM.takeError();
6930 
6931   return BM->getSummary();
6932 }
6933 
6934 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6935   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6936   if (!BM)
6937     return BM.takeError();
6938 
6939   return BM->getLTOInfo();
6940 }
6941 
6942 Expected<std::unique_ptr<ModuleSummaryIndex>>
6943 llvm::getModuleSummaryIndexForFile(StringRef Path,
6944                                    bool IgnoreEmptyThinLTOIndexFile) {
6945   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6946       MemoryBuffer::getFileOrSTDIN(Path);
6947   if (!FileOrErr)
6948     return errorCodeToError(FileOrErr.getError());
6949   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6950     return nullptr;
6951   return getModuleSummaryIndex(**FileOrErr);
6952 }
6953