1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/LLVMContext.h" 21 #include "llvm/Metadata.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/AutoUpgrade.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/OperandTraits.h" 30 using namespace llvm; 31 32 void BitcodeReader::FreeState() { 33 delete Buffer; 34 Buffer = 0; 35 std::vector<PATypeHolder>().swap(TypeList); 36 ValueList.clear(); 37 MDValueList.clear(); 38 39 std::vector<AttrListPtr>().swap(MAttributes); 40 std::vector<BasicBlock*>().swap(FunctionBBs); 41 std::vector<Function*>().swap(FunctionsWithBodies); 42 DeferredFunctionInfo.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 } 80 } 81 82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 83 switch (Val) { 84 default: // Map unknown visibilities to default. 85 case 0: return GlobalValue::DefaultVisibility; 86 case 1: return GlobalValue::HiddenVisibility; 87 case 2: return GlobalValue::ProtectedVisibility; 88 } 89 } 90 91 static int GetDecodedCastOpcode(unsigned Val) { 92 switch (Val) { 93 default: return -1; 94 case bitc::CAST_TRUNC : return Instruction::Trunc; 95 case bitc::CAST_ZEXT : return Instruction::ZExt; 96 case bitc::CAST_SEXT : return Instruction::SExt; 97 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 98 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 99 case bitc::CAST_UITOFP : return Instruction::UIToFP; 100 case bitc::CAST_SITOFP : return Instruction::SIToFP; 101 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 102 case bitc::CAST_FPEXT : return Instruction::FPExt; 103 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 104 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 105 case bitc::CAST_BITCAST : return Instruction::BitCast; 106 } 107 } 108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 109 switch (Val) { 110 default: return -1; 111 case bitc::BINOP_ADD: 112 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 113 case bitc::BINOP_SUB: 114 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 115 case bitc::BINOP_MUL: 116 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 117 case bitc::BINOP_UDIV: return Instruction::UDiv; 118 case bitc::BINOP_SDIV: 119 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 120 case bitc::BINOP_UREM: return Instruction::URem; 121 case bitc::BINOP_SREM: 122 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 123 case bitc::BINOP_SHL: return Instruction::Shl; 124 case bitc::BINOP_LSHR: return Instruction::LShr; 125 case bitc::BINOP_ASHR: return Instruction::AShr; 126 case bitc::BINOP_AND: return Instruction::And; 127 case bitc::BINOP_OR: return Instruction::Or; 128 case bitc::BINOP_XOR: return Instruction::Xor; 129 } 130 } 131 132 namespace llvm { 133 namespace { 134 /// @brief A class for maintaining the slot number definition 135 /// as a placeholder for the actual definition for forward constants defs. 136 class ConstantPlaceHolder : public ConstantExpr { 137 ConstantPlaceHolder(); // DO NOT IMPLEMENT 138 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 139 public: 140 // allocate space for exactly one operand 141 void *operator new(size_t s) { 142 return User::operator new(s, 1); 143 } 144 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 145 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 146 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 147 } 148 149 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 150 static inline bool classof(const ConstantPlaceHolder *) { return true; } 151 static bool classof(const Value *V) { 152 return isa<ConstantExpr>(V) && 153 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 154 } 155 156 157 /// Provide fast operand accessors 158 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 159 }; 160 } 161 162 // FIXME: can we inherit this from ConstantExpr? 163 template <> 164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 165 }; 166 } 167 168 169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 170 if (Idx == size()) { 171 push_back(V); 172 return; 173 } 174 175 if (Idx >= size()) 176 resize(Idx+1); 177 178 WeakVH &OldV = ValuePtrs[Idx]; 179 if (OldV == 0) { 180 OldV = V; 181 return; 182 } 183 184 // Handle constants and non-constants (e.g. instrs) differently for 185 // efficiency. 186 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 187 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 188 OldV = V; 189 } else { 190 // If there was a forward reference to this value, replace it. 191 Value *PrevVal = OldV; 192 OldV->replaceAllUsesWith(V); 193 delete PrevVal; 194 } 195 } 196 197 198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 199 const Type *Ty) { 200 if (Idx >= size()) 201 resize(Idx + 1); 202 203 if (Value *V = ValuePtrs[Idx]) { 204 assert(Ty == V->getType() && "Type mismatch in constant table!"); 205 return cast<Constant>(V); 206 } 207 208 // Create and return a placeholder, which will later be RAUW'd. 209 Constant *C = new ConstantPlaceHolder(Ty, Context); 210 ValuePtrs[Idx] = C; 211 return C; 212 } 213 214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 215 if (Idx >= size()) 216 resize(Idx + 1); 217 218 if (Value *V = ValuePtrs[Idx]) { 219 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 220 return V; 221 } 222 223 // No type specified, must be invalid reference. 224 if (Ty == 0) return 0; 225 226 // Create and return a placeholder, which will later be RAUW'd. 227 Value *V = new Argument(Ty); 228 ValuePtrs[Idx] = V; 229 return V; 230 } 231 232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 233 /// resolves any forward references. The idea behind this is that we sometimes 234 /// get constants (such as large arrays) which reference *many* forward ref 235 /// constants. Replacing each of these causes a lot of thrashing when 236 /// building/reuniquing the constant. Instead of doing this, we look at all the 237 /// uses and rewrite all the place holders at once for any constant that uses 238 /// a placeholder. 239 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 240 // Sort the values by-pointer so that they are efficient to look up with a 241 // binary search. 242 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 243 244 SmallVector<Constant*, 64> NewOps; 245 246 while (!ResolveConstants.empty()) { 247 Value *RealVal = operator[](ResolveConstants.back().second); 248 Constant *Placeholder = ResolveConstants.back().first; 249 ResolveConstants.pop_back(); 250 251 // Loop over all users of the placeholder, updating them to reference the 252 // new value. If they reference more than one placeholder, update them all 253 // at once. 254 while (!Placeholder->use_empty()) { 255 Value::use_iterator UI = Placeholder->use_begin(); 256 257 // If the using object isn't uniqued, just update the operands. This 258 // handles instructions and initializers for global variables. 259 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 260 UI.getUse().set(RealVal); 261 continue; 262 } 263 264 // Otherwise, we have a constant that uses the placeholder. Replace that 265 // constant with a new constant that has *all* placeholder uses updated. 266 Constant *UserC = cast<Constant>(*UI); 267 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 268 I != E; ++I) { 269 Value *NewOp; 270 if (!isa<ConstantPlaceHolder>(*I)) { 271 // Not a placeholder reference. 272 NewOp = *I; 273 } else if (*I == Placeholder) { 274 // Common case is that it just references this one placeholder. 275 NewOp = RealVal; 276 } else { 277 // Otherwise, look up the placeholder in ResolveConstants. 278 ResolveConstantsTy::iterator It = 279 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 280 std::pair<Constant*, unsigned>(cast<Constant>(*I), 281 0)); 282 assert(It != ResolveConstants.end() && It->first == *I); 283 NewOp = operator[](It->second); 284 } 285 286 NewOps.push_back(cast<Constant>(NewOp)); 287 } 288 289 // Make the new constant. 290 Constant *NewC; 291 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 292 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 293 NewOps.size()); 294 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 295 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 296 UserCS->getType()->isPacked()); 297 } else if (isa<ConstantVector>(UserC)) { 298 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 299 } else { 300 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 301 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 302 NewOps.size()); 303 } 304 305 UserC->replaceAllUsesWith(NewC); 306 UserC->destroyConstant(); 307 NewOps.clear(); 308 } 309 310 // Update all ValueHandles, they should be the only users at this point. 311 Placeholder->replaceAllUsesWith(RealVal); 312 delete Placeholder; 313 } 314 } 315 316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 317 if (Idx == size()) { 318 push_back(V); 319 return; 320 } 321 322 if (Idx >= size()) 323 resize(Idx+1); 324 325 WeakVH &OldV = MDValuePtrs[Idx]; 326 if (OldV == 0) { 327 OldV = V; 328 return; 329 } 330 331 // If there was a forward reference to this value, replace it. 332 Value *PrevVal = OldV; 333 OldV->replaceAllUsesWith(V); 334 delete PrevVal; 335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 336 // value for Idx. 337 MDValuePtrs[Idx] = V; 338 } 339 340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 341 if (Idx >= size()) 342 resize(Idx + 1); 343 344 if (Value *V = MDValuePtrs[Idx]) { 345 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 346 return V; 347 } 348 349 // Create and return a placeholder, which will later be RAUW'd. 350 Value *V = new Argument(Type::getMetadataTy(Context)); 351 MDValuePtrs[Idx] = V; 352 return V; 353 } 354 355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 356 // If the TypeID is in range, return it. 357 if (ID < TypeList.size()) 358 return TypeList[ID].get(); 359 if (!isTypeTable) return 0; 360 361 // The type table allows forward references. Push as many Opaque types as 362 // needed to get up to ID. 363 while (TypeList.size() <= ID) 364 TypeList.push_back(OpaqueType::get(Context)); 365 return TypeList.back().get(); 366 } 367 368 //===----------------------------------------------------------------------===// 369 // Functions for parsing blocks from the bitcode file 370 //===----------------------------------------------------------------------===// 371 372 bool BitcodeReader::ParseAttributeBlock() { 373 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 374 return Error("Malformed block record"); 375 376 if (!MAttributes.empty()) 377 return Error("Multiple PARAMATTR blocks found!"); 378 379 SmallVector<uint64_t, 64> Record; 380 381 SmallVector<AttributeWithIndex, 8> Attrs; 382 383 // Read all the records. 384 while (1) { 385 unsigned Code = Stream.ReadCode(); 386 if (Code == bitc::END_BLOCK) { 387 if (Stream.ReadBlockEnd()) 388 return Error("Error at end of PARAMATTR block"); 389 return false; 390 } 391 392 if (Code == bitc::ENTER_SUBBLOCK) { 393 // No known subblocks, always skip them. 394 Stream.ReadSubBlockID(); 395 if (Stream.SkipBlock()) 396 return Error("Malformed block record"); 397 continue; 398 } 399 400 if (Code == bitc::DEFINE_ABBREV) { 401 Stream.ReadAbbrevRecord(); 402 continue; 403 } 404 405 // Read a record. 406 Record.clear(); 407 switch (Stream.ReadRecord(Code, Record)) { 408 default: // Default behavior: ignore. 409 break; 410 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 411 if (Record.size() & 1) 412 return Error("Invalid ENTRY record"); 413 414 // FIXME : Remove this autoupgrade code in LLVM 3.0. 415 // If Function attributes are using index 0 then transfer them 416 // to index ~0. Index 0 is used for return value attributes but used to be 417 // used for function attributes. 418 Attributes RetAttribute = Attribute::None; 419 Attributes FnAttribute = Attribute::None; 420 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 421 // FIXME: remove in LLVM 3.0 422 // The alignment is stored as a 16-bit raw value from bits 31--16. 423 // We shift the bits above 31 down by 11 bits. 424 425 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 426 if (Alignment && !isPowerOf2_32(Alignment)) 427 return Error("Alignment is not a power of two."); 428 429 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 430 if (Alignment) 431 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 432 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 433 Record[i+1] = ReconstitutedAttr; 434 435 if (Record[i] == 0) 436 RetAttribute = Record[i+1]; 437 else if (Record[i] == ~0U) 438 FnAttribute = Record[i+1]; 439 } 440 441 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 442 Attribute::ReadOnly|Attribute::ReadNone); 443 444 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 445 (RetAttribute & OldRetAttrs) != 0) { 446 if (FnAttribute == Attribute::None) { // add a slot so they get added. 447 Record.push_back(~0U); 448 Record.push_back(0); 449 } 450 451 FnAttribute |= RetAttribute & OldRetAttrs; 452 RetAttribute &= ~OldRetAttrs; 453 } 454 455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 456 if (Record[i] == 0) { 457 if (RetAttribute != Attribute::None) 458 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 459 } else if (Record[i] == ~0U) { 460 if (FnAttribute != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 462 } else if (Record[i+1] != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 464 } 465 466 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 467 Attrs.clear(); 468 break; 469 } 470 } 471 } 472 } 473 474 475 bool BitcodeReader::ParseTypeTable() { 476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 477 return Error("Malformed block record"); 478 479 if (!TypeList.empty()) 480 return Error("Multiple TYPE_BLOCKs found!"); 481 482 SmallVector<uint64_t, 64> Record; 483 unsigned NumRecords = 0; 484 485 // Read all the records for this type table. 486 while (1) { 487 unsigned Code = Stream.ReadCode(); 488 if (Code == bitc::END_BLOCK) { 489 if (NumRecords != TypeList.size()) 490 return Error("Invalid type forward reference in TYPE_BLOCK"); 491 if (Stream.ReadBlockEnd()) 492 return Error("Error at end of type table block"); 493 return false; 494 } 495 496 if (Code == bitc::ENTER_SUBBLOCK) { 497 // No known subblocks, always skip them. 498 Stream.ReadSubBlockID(); 499 if (Stream.SkipBlock()) 500 return Error("Malformed block record"); 501 continue; 502 } 503 504 if (Code == bitc::DEFINE_ABBREV) { 505 Stream.ReadAbbrevRecord(); 506 continue; 507 } 508 509 // Read a record. 510 Record.clear(); 511 const Type *ResultTy = 0; 512 switch (Stream.ReadRecord(Code, Record)) { 513 default: // Default behavior: unknown type. 514 ResultTy = 0; 515 break; 516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 518 // type list. This allows us to reserve space. 519 if (Record.size() < 1) 520 return Error("Invalid TYPE_CODE_NUMENTRY record"); 521 TypeList.reserve(Record[0]); 522 continue; 523 case bitc::TYPE_CODE_VOID: // VOID 524 ResultTy = Type::getVoidTy(Context); 525 break; 526 case bitc::TYPE_CODE_FLOAT: // FLOAT 527 ResultTy = Type::getFloatTy(Context); 528 break; 529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 530 ResultTy = Type::getDoubleTy(Context); 531 break; 532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 533 ResultTy = Type::getX86_FP80Ty(Context); 534 break; 535 case bitc::TYPE_CODE_FP128: // FP128 536 ResultTy = Type::getFP128Ty(Context); 537 break; 538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 539 ResultTy = Type::getPPC_FP128Ty(Context); 540 break; 541 case bitc::TYPE_CODE_LABEL: // LABEL 542 ResultTy = Type::getLabelTy(Context); 543 break; 544 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 545 ResultTy = 0; 546 break; 547 case bitc::TYPE_CODE_METADATA: // METADATA 548 ResultTy = Type::getMetadataTy(Context); 549 break; 550 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 551 if (Record.size() < 1) 552 return Error("Invalid Integer type record"); 553 554 ResultTy = IntegerType::get(Context, Record[0]); 555 break; 556 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 557 // [pointee type, address space] 558 if (Record.size() < 1) 559 return Error("Invalid POINTER type record"); 560 unsigned AddressSpace = 0; 561 if (Record.size() == 2) 562 AddressSpace = Record[1]; 563 ResultTy = PointerType::get(getTypeByID(Record[0], true), 564 AddressSpace); 565 break; 566 } 567 case bitc::TYPE_CODE_FUNCTION: { 568 // FIXME: attrid is dead, remove it in LLVM 3.0 569 // FUNCTION: [vararg, attrid, retty, paramty x N] 570 if (Record.size() < 3) 571 return Error("Invalid FUNCTION type record"); 572 std::vector<const Type*> ArgTys; 573 for (unsigned i = 3, e = Record.size(); i != e; ++i) 574 ArgTys.push_back(getTypeByID(Record[i], true)); 575 576 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 577 Record[0]); 578 break; 579 } 580 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 581 if (Record.size() < 1) 582 return Error("Invalid STRUCT type record"); 583 std::vector<const Type*> EltTys; 584 for (unsigned i = 1, e = Record.size(); i != e; ++i) 585 EltTys.push_back(getTypeByID(Record[i], true)); 586 ResultTy = StructType::get(Context, EltTys, Record[0]); 587 break; 588 } 589 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 590 if (Record.size() < 2) 591 return Error("Invalid ARRAY type record"); 592 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 593 break; 594 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 595 if (Record.size() < 2) 596 return Error("Invalid VECTOR type record"); 597 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 598 break; 599 } 600 601 if (NumRecords == TypeList.size()) { 602 // If this is a new type slot, just append it. 603 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 604 ++NumRecords; 605 } else if (ResultTy == 0) { 606 // Otherwise, this was forward referenced, so an opaque type was created, 607 // but the result type is actually just an opaque. Leave the one we 608 // created previously. 609 ++NumRecords; 610 } else { 611 // Otherwise, this was forward referenced, so an opaque type was created. 612 // Resolve the opaque type to the real type now. 613 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 614 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 615 616 // Don't directly push the new type on the Tab. Instead we want to replace 617 // the opaque type we previously inserted with the new concrete value. The 618 // refinement from the abstract (opaque) type to the new type causes all 619 // uses of the abstract type to use the concrete type (NewTy). This will 620 // also cause the opaque type to be deleted. 621 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 622 623 // This should have replaced the old opaque type with the new type in the 624 // value table... or with a preexisting type that was already in the 625 // system. Let's just make sure it did. 626 assert(TypeList[NumRecords-1].get() != OldTy && 627 "refineAbstractType didn't work!"); 628 } 629 } 630 } 631 632 633 bool BitcodeReader::ParseTypeSymbolTable() { 634 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 635 return Error("Malformed block record"); 636 637 SmallVector<uint64_t, 64> Record; 638 639 // Read all the records for this type table. 640 std::string TypeName; 641 while (1) { 642 unsigned Code = Stream.ReadCode(); 643 if (Code == bitc::END_BLOCK) { 644 if (Stream.ReadBlockEnd()) 645 return Error("Error at end of type symbol table block"); 646 return false; 647 } 648 649 if (Code == bitc::ENTER_SUBBLOCK) { 650 // No known subblocks, always skip them. 651 Stream.ReadSubBlockID(); 652 if (Stream.SkipBlock()) 653 return Error("Malformed block record"); 654 continue; 655 } 656 657 if (Code == bitc::DEFINE_ABBREV) { 658 Stream.ReadAbbrevRecord(); 659 continue; 660 } 661 662 // Read a record. 663 Record.clear(); 664 switch (Stream.ReadRecord(Code, Record)) { 665 default: // Default behavior: unknown type. 666 break; 667 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 668 if (ConvertToString(Record, 1, TypeName)) 669 return Error("Invalid TST_ENTRY record"); 670 unsigned TypeID = Record[0]; 671 if (TypeID >= TypeList.size()) 672 return Error("Invalid Type ID in TST_ENTRY record"); 673 674 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 675 TypeName.clear(); 676 break; 677 } 678 } 679 } 680 681 bool BitcodeReader::ParseValueSymbolTable() { 682 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 683 return Error("Malformed block record"); 684 685 SmallVector<uint64_t, 64> Record; 686 687 // Read all the records for this value table. 688 SmallString<128> ValueName; 689 while (1) { 690 unsigned Code = Stream.ReadCode(); 691 if (Code == bitc::END_BLOCK) { 692 if (Stream.ReadBlockEnd()) 693 return Error("Error at end of value symbol table block"); 694 return false; 695 } 696 if (Code == bitc::ENTER_SUBBLOCK) { 697 // No known subblocks, always skip them. 698 Stream.ReadSubBlockID(); 699 if (Stream.SkipBlock()) 700 return Error("Malformed block record"); 701 continue; 702 } 703 704 if (Code == bitc::DEFINE_ABBREV) { 705 Stream.ReadAbbrevRecord(); 706 continue; 707 } 708 709 // Read a record. 710 Record.clear(); 711 switch (Stream.ReadRecord(Code, Record)) { 712 default: // Default behavior: unknown type. 713 break; 714 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 715 if (ConvertToString(Record, 1, ValueName)) 716 return Error("Invalid VST_ENTRY record"); 717 unsigned ValueID = Record[0]; 718 if (ValueID >= ValueList.size()) 719 return Error("Invalid Value ID in VST_ENTRY record"); 720 Value *V = ValueList[ValueID]; 721 722 V->setName(StringRef(ValueName.data(), ValueName.size())); 723 ValueName.clear(); 724 break; 725 } 726 case bitc::VST_CODE_BBENTRY: { 727 if (ConvertToString(Record, 1, ValueName)) 728 return Error("Invalid VST_BBENTRY record"); 729 BasicBlock *BB = getBasicBlock(Record[0]); 730 if (BB == 0) 731 return Error("Invalid BB ID in VST_BBENTRY record"); 732 733 BB->setName(StringRef(ValueName.data(), ValueName.size())); 734 ValueName.clear(); 735 break; 736 } 737 } 738 } 739 } 740 741 bool BitcodeReader::ParseMetadata() { 742 unsigned NextValueNo = MDValueList.size(); 743 744 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 745 return Error("Malformed block record"); 746 747 SmallVector<uint64_t, 64> Record; 748 749 // Read all the records. 750 while (1) { 751 unsigned Code = Stream.ReadCode(); 752 if (Code == bitc::END_BLOCK) { 753 if (Stream.ReadBlockEnd()) 754 return Error("Error at end of PARAMATTR block"); 755 return false; 756 } 757 758 if (Code == bitc::ENTER_SUBBLOCK) { 759 // No known subblocks, always skip them. 760 Stream.ReadSubBlockID(); 761 if (Stream.SkipBlock()) 762 return Error("Malformed block record"); 763 continue; 764 } 765 766 if (Code == bitc::DEFINE_ABBREV) { 767 Stream.ReadAbbrevRecord(); 768 continue; 769 } 770 771 // Read a record. 772 Record.clear(); 773 switch (Stream.ReadRecord(Code, Record)) { 774 default: // Default behavior: ignore. 775 break; 776 case bitc::METADATA_NAME: { 777 // Read named of the named metadata. 778 unsigned NameLength = Record.size(); 779 SmallString<8> Name; 780 Name.resize(NameLength); 781 for (unsigned i = 0; i != NameLength; ++i) 782 Name[i] = Record[i]; 783 Record.clear(); 784 Code = Stream.ReadCode(); 785 786 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 787 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 788 assert ( 0 && "Inavlid Named Metadata record"); 789 790 // Read named metadata elements. 791 unsigned Size = Record.size(); 792 SmallVector<MetadataBase*, 8> Elts; 793 for (unsigned i = 0; i != Size; ++i) { 794 Value *MD = MDValueList.getValueFwdRef(Record[i]); 795 if (MetadataBase *B = dyn_cast<MetadataBase>(MD)) 796 Elts.push_back(B); 797 } 798 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 799 Elts.size(), TheModule); 800 MDValueList.AssignValue(V, NextValueNo++); 801 break; 802 } 803 case bitc::METADATA_NODE: { 804 if (Record.empty() || Record.size() % 2 == 1) 805 return Error("Invalid METADATA_NODE record"); 806 807 unsigned Size = Record.size(); 808 SmallVector<Value*, 8> Elts; 809 for (unsigned i = 0; i != Size; i += 2) { 810 const Type *Ty = getTypeByID(Record[i], false); 811 if (Ty->isMetadataTy()) 812 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 813 else if (Ty != Type::getVoidTy(Context)) 814 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 815 else 816 Elts.push_back(NULL); 817 } 818 Value *V = MDNode::get(Context, &Elts[0], Elts.size()); 819 MDValueList.AssignValue(V, NextValueNo++); 820 break; 821 } 822 case bitc::METADATA_STRING: { 823 unsigned MDStringLength = Record.size(); 824 SmallString<8> String; 825 String.resize(MDStringLength); 826 for (unsigned i = 0; i != MDStringLength; ++i) 827 String[i] = Record[i]; 828 Value *V = MDString::get(Context, 829 StringRef(String.data(), String.size())); 830 MDValueList.AssignValue(V, NextValueNo++); 831 break; 832 } 833 case bitc::METADATA_KIND: { 834 unsigned RecordLength = Record.size(); 835 if (Record.empty() || RecordLength < 2) 836 return Error("Invalid METADATA_KIND record"); 837 SmallString<8> Name; 838 Name.resize(RecordLength-1); 839 unsigned Kind = Record[0]; 840 for (unsigned i = 1; i != RecordLength; ++i) 841 Name[i-1] = Record[i]; 842 MetadataContext &TheMetadata = Context.getMetadata(); 843 unsigned ExistingKind = TheMetadata.getMDKind(Name.str()); 844 if (ExistingKind == 0) { 845 unsigned NewKind = TheMetadata.registerMDKind(Name.str()); 846 assert (Kind == NewKind 847 && "Unable to handle custom metadata mismatch!"); 848 } else { 849 assert (ExistingKind == Kind 850 && "Unable to handle custom metadata mismatch!"); 851 } 852 break; 853 } 854 } 855 } 856 } 857 858 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 859 /// the LSB for dense VBR encoding. 860 static uint64_t DecodeSignRotatedValue(uint64_t V) { 861 if ((V & 1) == 0) 862 return V >> 1; 863 if (V != 1) 864 return -(V >> 1); 865 // There is no such thing as -0 with integers. "-0" really means MININT. 866 return 1ULL << 63; 867 } 868 869 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 870 /// values and aliases that we can. 871 bool BitcodeReader::ResolveGlobalAndAliasInits() { 872 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 873 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 874 875 GlobalInitWorklist.swap(GlobalInits); 876 AliasInitWorklist.swap(AliasInits); 877 878 while (!GlobalInitWorklist.empty()) { 879 unsigned ValID = GlobalInitWorklist.back().second; 880 if (ValID >= ValueList.size()) { 881 // Not ready to resolve this yet, it requires something later in the file. 882 GlobalInits.push_back(GlobalInitWorklist.back()); 883 } else { 884 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 885 GlobalInitWorklist.back().first->setInitializer(C); 886 else 887 return Error("Global variable initializer is not a constant!"); 888 } 889 GlobalInitWorklist.pop_back(); 890 } 891 892 while (!AliasInitWorklist.empty()) { 893 unsigned ValID = AliasInitWorklist.back().second; 894 if (ValID >= ValueList.size()) { 895 AliasInits.push_back(AliasInitWorklist.back()); 896 } else { 897 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 898 AliasInitWorklist.back().first->setAliasee(C); 899 else 900 return Error("Alias initializer is not a constant!"); 901 } 902 AliasInitWorklist.pop_back(); 903 } 904 return false; 905 } 906 907 bool BitcodeReader::ParseConstants() { 908 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 909 return Error("Malformed block record"); 910 911 SmallVector<uint64_t, 64> Record; 912 913 // Read all the records for this value table. 914 const Type *CurTy = Type::getInt32Ty(Context); 915 unsigned NextCstNo = ValueList.size(); 916 while (1) { 917 unsigned Code = Stream.ReadCode(); 918 if (Code == bitc::END_BLOCK) 919 break; 920 921 if (Code == bitc::ENTER_SUBBLOCK) { 922 // No known subblocks, always skip them. 923 Stream.ReadSubBlockID(); 924 if (Stream.SkipBlock()) 925 return Error("Malformed block record"); 926 continue; 927 } 928 929 if (Code == bitc::DEFINE_ABBREV) { 930 Stream.ReadAbbrevRecord(); 931 continue; 932 } 933 934 // Read a record. 935 Record.clear(); 936 Value *V = 0; 937 unsigned BitCode = Stream.ReadRecord(Code, Record); 938 switch (BitCode) { 939 default: // Default behavior: unknown constant 940 case bitc::CST_CODE_UNDEF: // UNDEF 941 V = UndefValue::get(CurTy); 942 break; 943 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 944 if (Record.empty()) 945 return Error("Malformed CST_SETTYPE record"); 946 if (Record[0] >= TypeList.size()) 947 return Error("Invalid Type ID in CST_SETTYPE record"); 948 CurTy = TypeList[Record[0]]; 949 continue; // Skip the ValueList manipulation. 950 case bitc::CST_CODE_NULL: // NULL 951 V = Constant::getNullValue(CurTy); 952 break; 953 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 954 if (!isa<IntegerType>(CurTy) || Record.empty()) 955 return Error("Invalid CST_INTEGER record"); 956 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 957 break; 958 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 959 if (!isa<IntegerType>(CurTy) || Record.empty()) 960 return Error("Invalid WIDE_INTEGER record"); 961 962 unsigned NumWords = Record.size(); 963 SmallVector<uint64_t, 8> Words; 964 Words.resize(NumWords); 965 for (unsigned i = 0; i != NumWords; ++i) 966 Words[i] = DecodeSignRotatedValue(Record[i]); 967 V = ConstantInt::get(Context, 968 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 969 NumWords, &Words[0])); 970 break; 971 } 972 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 973 if (Record.empty()) 974 return Error("Invalid FLOAT record"); 975 if (CurTy->isFloatTy()) 976 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 977 else if (CurTy->isDoubleTy()) 978 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 979 else if (CurTy->isX86_FP80Ty()) { 980 // Bits are not stored the same way as a normal i80 APInt, compensate. 981 uint64_t Rearrange[2]; 982 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 983 Rearrange[1] = Record[0] >> 48; 984 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 985 } else if (CurTy->isFP128Ty()) 986 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 987 else if (CurTy->isPPC_FP128Ty()) 988 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 989 else 990 V = UndefValue::get(CurTy); 991 break; 992 } 993 994 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 995 if (Record.empty()) 996 return Error("Invalid CST_AGGREGATE record"); 997 998 unsigned Size = Record.size(); 999 std::vector<Constant*> Elts; 1000 1001 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1002 for (unsigned i = 0; i != Size; ++i) 1003 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1004 STy->getElementType(i))); 1005 V = ConstantStruct::get(STy, Elts); 1006 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1007 const Type *EltTy = ATy->getElementType(); 1008 for (unsigned i = 0; i != Size; ++i) 1009 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1010 V = ConstantArray::get(ATy, Elts); 1011 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1012 const Type *EltTy = VTy->getElementType(); 1013 for (unsigned i = 0; i != Size; ++i) 1014 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1015 V = ConstantVector::get(Elts); 1016 } else { 1017 V = UndefValue::get(CurTy); 1018 } 1019 break; 1020 } 1021 case bitc::CST_CODE_STRING: { // STRING: [values] 1022 if (Record.empty()) 1023 return Error("Invalid CST_AGGREGATE record"); 1024 1025 const ArrayType *ATy = cast<ArrayType>(CurTy); 1026 const Type *EltTy = ATy->getElementType(); 1027 1028 unsigned Size = Record.size(); 1029 std::vector<Constant*> Elts; 1030 for (unsigned i = 0; i != Size; ++i) 1031 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1032 V = ConstantArray::get(ATy, Elts); 1033 break; 1034 } 1035 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1036 if (Record.empty()) 1037 return Error("Invalid CST_AGGREGATE record"); 1038 1039 const ArrayType *ATy = cast<ArrayType>(CurTy); 1040 const Type *EltTy = ATy->getElementType(); 1041 1042 unsigned Size = Record.size(); 1043 std::vector<Constant*> Elts; 1044 for (unsigned i = 0; i != Size; ++i) 1045 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1046 Elts.push_back(Constant::getNullValue(EltTy)); 1047 V = ConstantArray::get(ATy, Elts); 1048 break; 1049 } 1050 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1051 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1052 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1053 if (Opc < 0) { 1054 V = UndefValue::get(CurTy); // Unknown binop. 1055 } else { 1056 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1057 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1058 unsigned Flags = 0; 1059 if (Record.size() >= 4) { 1060 if (Opc == Instruction::Add || 1061 Opc == Instruction::Sub || 1062 Opc == Instruction::Mul) { 1063 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1064 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1065 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1066 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1067 } else if (Opc == Instruction::SDiv) { 1068 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1069 Flags |= SDivOperator::IsExact; 1070 } 1071 } 1072 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1073 } 1074 break; 1075 } 1076 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1077 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1078 int Opc = GetDecodedCastOpcode(Record[0]); 1079 if (Opc < 0) { 1080 V = UndefValue::get(CurTy); // Unknown cast. 1081 } else { 1082 const Type *OpTy = getTypeByID(Record[1]); 1083 if (!OpTy) return Error("Invalid CE_CAST record"); 1084 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1085 V = ConstantExpr::getCast(Opc, Op, CurTy); 1086 } 1087 break; 1088 } 1089 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1090 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1091 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1092 SmallVector<Constant*, 16> Elts; 1093 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1094 const Type *ElTy = getTypeByID(Record[i]); 1095 if (!ElTy) return Error("Invalid CE_GEP record"); 1096 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1097 } 1098 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1099 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1100 Elts.size()-1); 1101 else 1102 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1103 Elts.size()-1); 1104 break; 1105 } 1106 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1107 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1108 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1109 Type::getInt1Ty(Context)), 1110 ValueList.getConstantFwdRef(Record[1],CurTy), 1111 ValueList.getConstantFwdRef(Record[2],CurTy)); 1112 break; 1113 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1114 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1115 const VectorType *OpTy = 1116 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1117 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1118 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1119 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1120 V = ConstantExpr::getExtractElement(Op0, Op1); 1121 break; 1122 } 1123 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1124 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1125 if (Record.size() < 3 || OpTy == 0) 1126 return Error("Invalid CE_INSERTELT record"); 1127 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1128 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1129 OpTy->getElementType()); 1130 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1131 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1132 break; 1133 } 1134 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1135 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1136 if (Record.size() < 3 || OpTy == 0) 1137 return Error("Invalid CE_SHUFFLEVEC record"); 1138 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1139 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1140 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1141 OpTy->getNumElements()); 1142 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1143 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1144 break; 1145 } 1146 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1147 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1148 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1149 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1150 return Error("Invalid CE_SHUFVEC_EX record"); 1151 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1152 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1153 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1154 RTy->getNumElements()); 1155 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1156 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1157 break; 1158 } 1159 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1160 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1161 const Type *OpTy = getTypeByID(Record[0]); 1162 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1163 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1164 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1165 1166 if (OpTy->isFloatingPoint()) 1167 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1168 else 1169 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1170 break; 1171 } 1172 case bitc::CST_CODE_INLINEASM: { 1173 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1174 std::string AsmStr, ConstrStr; 1175 bool HasSideEffects = Record[0] & 1; 1176 bool IsAlignStack = Record[0] >> 1; 1177 unsigned AsmStrSize = Record[1]; 1178 if (2+AsmStrSize >= Record.size()) 1179 return Error("Invalid INLINEASM record"); 1180 unsigned ConstStrSize = Record[2+AsmStrSize]; 1181 if (3+AsmStrSize+ConstStrSize > Record.size()) 1182 return Error("Invalid INLINEASM record"); 1183 1184 for (unsigned i = 0; i != AsmStrSize; ++i) 1185 AsmStr += (char)Record[2+i]; 1186 for (unsigned i = 0; i != ConstStrSize; ++i) 1187 ConstrStr += (char)Record[3+AsmStrSize+i]; 1188 const PointerType *PTy = cast<PointerType>(CurTy); 1189 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1190 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1191 break; 1192 } 1193 } 1194 1195 ValueList.AssignValue(V, NextCstNo); 1196 ++NextCstNo; 1197 } 1198 1199 if (NextCstNo != ValueList.size()) 1200 return Error("Invalid constant reference!"); 1201 1202 if (Stream.ReadBlockEnd()) 1203 return Error("Error at end of constants block"); 1204 1205 // Once all the constants have been read, go through and resolve forward 1206 // references. 1207 ValueList.ResolveConstantForwardRefs(); 1208 return false; 1209 } 1210 1211 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1212 /// remember where it is and then skip it. This lets us lazily deserialize the 1213 /// functions. 1214 bool BitcodeReader::RememberAndSkipFunctionBody() { 1215 // Get the function we are talking about. 1216 if (FunctionsWithBodies.empty()) 1217 return Error("Insufficient function protos"); 1218 1219 Function *Fn = FunctionsWithBodies.back(); 1220 FunctionsWithBodies.pop_back(); 1221 1222 // Save the current stream state. 1223 uint64_t CurBit = Stream.GetCurrentBitNo(); 1224 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1225 1226 // Set the functions linkage to GhostLinkage so we know it is lazily 1227 // deserialized. 1228 Fn->setLinkage(GlobalValue::GhostLinkage); 1229 1230 // Skip over the function block for now. 1231 if (Stream.SkipBlock()) 1232 return Error("Malformed block record"); 1233 return false; 1234 } 1235 1236 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1237 // Reject multiple MODULE_BLOCK's in a single bitstream. 1238 if (TheModule) 1239 return Error("Multiple MODULE_BLOCKs in same stream"); 1240 1241 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1242 return Error("Malformed block record"); 1243 1244 // Otherwise, create the module. 1245 TheModule = new Module(ModuleID, Context); 1246 1247 SmallVector<uint64_t, 64> Record; 1248 std::vector<std::string> SectionTable; 1249 std::vector<std::string> GCTable; 1250 1251 // Read all the records for this module. 1252 while (!Stream.AtEndOfStream()) { 1253 unsigned Code = Stream.ReadCode(); 1254 if (Code == bitc::END_BLOCK) { 1255 if (Stream.ReadBlockEnd()) 1256 return Error("Error at end of module block"); 1257 1258 // Patch the initializers for globals and aliases up. 1259 ResolveGlobalAndAliasInits(); 1260 if (!GlobalInits.empty() || !AliasInits.empty()) 1261 return Error("Malformed global initializer set"); 1262 if (!FunctionsWithBodies.empty()) 1263 return Error("Too few function bodies found"); 1264 1265 // Look for intrinsic functions which need to be upgraded at some point 1266 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1267 FI != FE; ++FI) { 1268 Function* NewFn; 1269 if (UpgradeIntrinsicFunction(FI, NewFn)) 1270 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1271 } 1272 1273 // Force deallocation of memory for these vectors to favor the client that 1274 // want lazy deserialization. 1275 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1276 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1277 std::vector<Function*>().swap(FunctionsWithBodies); 1278 return false; 1279 } 1280 1281 if (Code == bitc::ENTER_SUBBLOCK) { 1282 switch (Stream.ReadSubBlockID()) { 1283 default: // Skip unknown content. 1284 if (Stream.SkipBlock()) 1285 return Error("Malformed block record"); 1286 break; 1287 case bitc::BLOCKINFO_BLOCK_ID: 1288 if (Stream.ReadBlockInfoBlock()) 1289 return Error("Malformed BlockInfoBlock"); 1290 break; 1291 case bitc::PARAMATTR_BLOCK_ID: 1292 if (ParseAttributeBlock()) 1293 return true; 1294 break; 1295 case bitc::TYPE_BLOCK_ID: 1296 if (ParseTypeTable()) 1297 return true; 1298 break; 1299 case bitc::TYPE_SYMTAB_BLOCK_ID: 1300 if (ParseTypeSymbolTable()) 1301 return true; 1302 break; 1303 case bitc::VALUE_SYMTAB_BLOCK_ID: 1304 if (ParseValueSymbolTable()) 1305 return true; 1306 break; 1307 case bitc::CONSTANTS_BLOCK_ID: 1308 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1309 return true; 1310 break; 1311 case bitc::METADATA_BLOCK_ID: 1312 if (ParseMetadata()) 1313 return true; 1314 break; 1315 case bitc::FUNCTION_BLOCK_ID: 1316 // If this is the first function body we've seen, reverse the 1317 // FunctionsWithBodies list. 1318 if (!HasReversedFunctionsWithBodies) { 1319 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1320 HasReversedFunctionsWithBodies = true; 1321 } 1322 1323 if (RememberAndSkipFunctionBody()) 1324 return true; 1325 break; 1326 } 1327 continue; 1328 } 1329 1330 if (Code == bitc::DEFINE_ABBREV) { 1331 Stream.ReadAbbrevRecord(); 1332 continue; 1333 } 1334 1335 // Read a record. 1336 switch (Stream.ReadRecord(Code, Record)) { 1337 default: break; // Default behavior, ignore unknown content. 1338 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1339 if (Record.size() < 1) 1340 return Error("Malformed MODULE_CODE_VERSION"); 1341 // Only version #0 is supported so far. 1342 if (Record[0] != 0) 1343 return Error("Unknown bitstream version!"); 1344 break; 1345 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1346 std::string S; 1347 if (ConvertToString(Record, 0, S)) 1348 return Error("Invalid MODULE_CODE_TRIPLE record"); 1349 TheModule->setTargetTriple(S); 1350 break; 1351 } 1352 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1353 std::string S; 1354 if (ConvertToString(Record, 0, S)) 1355 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1356 TheModule->setDataLayout(S); 1357 break; 1358 } 1359 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1360 std::string S; 1361 if (ConvertToString(Record, 0, S)) 1362 return Error("Invalid MODULE_CODE_ASM record"); 1363 TheModule->setModuleInlineAsm(S); 1364 break; 1365 } 1366 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1367 std::string S; 1368 if (ConvertToString(Record, 0, S)) 1369 return Error("Invalid MODULE_CODE_DEPLIB record"); 1370 TheModule->addLibrary(S); 1371 break; 1372 } 1373 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1374 std::string S; 1375 if (ConvertToString(Record, 0, S)) 1376 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1377 SectionTable.push_back(S); 1378 break; 1379 } 1380 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1381 std::string S; 1382 if (ConvertToString(Record, 0, S)) 1383 return Error("Invalid MODULE_CODE_GCNAME record"); 1384 GCTable.push_back(S); 1385 break; 1386 } 1387 // GLOBALVAR: [pointer type, isconst, initid, 1388 // linkage, alignment, section, visibility, threadlocal] 1389 case bitc::MODULE_CODE_GLOBALVAR: { 1390 if (Record.size() < 6) 1391 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1392 const Type *Ty = getTypeByID(Record[0]); 1393 if (!isa<PointerType>(Ty)) 1394 return Error("Global not a pointer type!"); 1395 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1396 Ty = cast<PointerType>(Ty)->getElementType(); 1397 1398 bool isConstant = Record[1]; 1399 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1400 unsigned Alignment = (1 << Record[4]) >> 1; 1401 std::string Section; 1402 if (Record[5]) { 1403 if (Record[5]-1 >= SectionTable.size()) 1404 return Error("Invalid section ID"); 1405 Section = SectionTable[Record[5]-1]; 1406 } 1407 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1408 if (Record.size() > 6) 1409 Visibility = GetDecodedVisibility(Record[6]); 1410 bool isThreadLocal = false; 1411 if (Record.size() > 7) 1412 isThreadLocal = Record[7]; 1413 1414 GlobalVariable *NewGV = 1415 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1416 isThreadLocal, AddressSpace); 1417 NewGV->setAlignment(Alignment); 1418 if (!Section.empty()) 1419 NewGV->setSection(Section); 1420 NewGV->setVisibility(Visibility); 1421 NewGV->setThreadLocal(isThreadLocal); 1422 1423 ValueList.push_back(NewGV); 1424 1425 // Remember which value to use for the global initializer. 1426 if (unsigned InitID = Record[2]) 1427 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1428 break; 1429 } 1430 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1431 // alignment, section, visibility, gc] 1432 case bitc::MODULE_CODE_FUNCTION: { 1433 if (Record.size() < 8) 1434 return Error("Invalid MODULE_CODE_FUNCTION record"); 1435 const Type *Ty = getTypeByID(Record[0]); 1436 if (!isa<PointerType>(Ty)) 1437 return Error("Function not a pointer type!"); 1438 const FunctionType *FTy = 1439 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1440 if (!FTy) 1441 return Error("Function not a pointer to function type!"); 1442 1443 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1444 "", TheModule); 1445 1446 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1447 bool isProto = Record[2]; 1448 Func->setLinkage(GetDecodedLinkage(Record[3])); 1449 Func->setAttributes(getAttributes(Record[4])); 1450 1451 Func->setAlignment((1 << Record[5]) >> 1); 1452 if (Record[6]) { 1453 if (Record[6]-1 >= SectionTable.size()) 1454 return Error("Invalid section ID"); 1455 Func->setSection(SectionTable[Record[6]-1]); 1456 } 1457 Func->setVisibility(GetDecodedVisibility(Record[7])); 1458 if (Record.size() > 8 && Record[8]) { 1459 if (Record[8]-1 > GCTable.size()) 1460 return Error("Invalid GC ID"); 1461 Func->setGC(GCTable[Record[8]-1].c_str()); 1462 } 1463 ValueList.push_back(Func); 1464 1465 // If this is a function with a body, remember the prototype we are 1466 // creating now, so that we can match up the body with them later. 1467 if (!isProto) 1468 FunctionsWithBodies.push_back(Func); 1469 break; 1470 } 1471 // ALIAS: [alias type, aliasee val#, linkage] 1472 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1473 case bitc::MODULE_CODE_ALIAS: { 1474 if (Record.size() < 3) 1475 return Error("Invalid MODULE_ALIAS record"); 1476 const Type *Ty = getTypeByID(Record[0]); 1477 if (!isa<PointerType>(Ty)) 1478 return Error("Function not a pointer type!"); 1479 1480 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1481 "", 0, TheModule); 1482 // Old bitcode files didn't have visibility field. 1483 if (Record.size() > 3) 1484 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1485 ValueList.push_back(NewGA); 1486 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1487 break; 1488 } 1489 /// MODULE_CODE_PURGEVALS: [numvals] 1490 case bitc::MODULE_CODE_PURGEVALS: 1491 // Trim down the value list to the specified size. 1492 if (Record.size() < 1 || Record[0] > ValueList.size()) 1493 return Error("Invalid MODULE_PURGEVALS record"); 1494 ValueList.shrinkTo(Record[0]); 1495 break; 1496 } 1497 Record.clear(); 1498 } 1499 1500 return Error("Premature end of bitstream"); 1501 } 1502 1503 bool BitcodeReader::ParseBitcode() { 1504 TheModule = 0; 1505 1506 if (Buffer->getBufferSize() & 3) 1507 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1508 1509 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1510 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1511 1512 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1513 // The magic number is 0x0B17C0DE stored in little endian. 1514 if (isBitcodeWrapper(BufPtr, BufEnd)) 1515 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1516 return Error("Invalid bitcode wrapper header"); 1517 1518 StreamFile.init(BufPtr, BufEnd); 1519 Stream.init(StreamFile); 1520 1521 // Sniff for the signature. 1522 if (Stream.Read(8) != 'B' || 1523 Stream.Read(8) != 'C' || 1524 Stream.Read(4) != 0x0 || 1525 Stream.Read(4) != 0xC || 1526 Stream.Read(4) != 0xE || 1527 Stream.Read(4) != 0xD) 1528 return Error("Invalid bitcode signature"); 1529 1530 // We expect a number of well-defined blocks, though we don't necessarily 1531 // need to understand them all. 1532 while (!Stream.AtEndOfStream()) { 1533 unsigned Code = Stream.ReadCode(); 1534 1535 if (Code != bitc::ENTER_SUBBLOCK) 1536 return Error("Invalid record at top-level"); 1537 1538 unsigned BlockID = Stream.ReadSubBlockID(); 1539 1540 // We only know the MODULE subblock ID. 1541 switch (BlockID) { 1542 case bitc::BLOCKINFO_BLOCK_ID: 1543 if (Stream.ReadBlockInfoBlock()) 1544 return Error("Malformed BlockInfoBlock"); 1545 break; 1546 case bitc::MODULE_BLOCK_ID: 1547 if (ParseModule(Buffer->getBufferIdentifier())) 1548 return true; 1549 break; 1550 default: 1551 if (Stream.SkipBlock()) 1552 return Error("Malformed block record"); 1553 break; 1554 } 1555 } 1556 1557 return false; 1558 } 1559 1560 /// ParseMetadataAttachment - Parse metadata attachments. 1561 bool BitcodeReader::ParseMetadataAttachment() { 1562 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1563 return Error("Malformed block record"); 1564 1565 MetadataContext &TheMetadata = Context.getMetadata(); 1566 SmallVector<uint64_t, 64> Record; 1567 while(1) { 1568 unsigned Code = Stream.ReadCode(); 1569 if (Code == bitc::END_BLOCK) { 1570 if (Stream.ReadBlockEnd()) 1571 return Error("Error at end of PARAMATTR block"); 1572 break; 1573 } 1574 if (Code == bitc::DEFINE_ABBREV) { 1575 Stream.ReadAbbrevRecord(); 1576 continue; 1577 } 1578 // Read a metadata attachment record. 1579 Record.clear(); 1580 switch (Stream.ReadRecord(Code, Record)) { 1581 default: // Default behavior: ignore. 1582 break; 1583 case bitc::METADATA_ATTACHMENT: { 1584 unsigned RecordLength = Record.size(); 1585 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1586 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1587 Instruction *Inst = InstructionList[Record[0]]; 1588 for (unsigned i = 1; i != RecordLength; i = i+2) { 1589 unsigned Kind = Record[i]; 1590 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1591 TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst); 1592 } 1593 break; 1594 } 1595 } 1596 } 1597 return false; 1598 } 1599 1600 /// ParseFunctionBody - Lazily parse the specified function body block. 1601 bool BitcodeReader::ParseFunctionBody(Function *F) { 1602 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1603 return Error("Malformed block record"); 1604 1605 unsigned ModuleValueListSize = ValueList.size(); 1606 1607 // Add all the function arguments to the value table. 1608 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1609 ValueList.push_back(I); 1610 1611 unsigned NextValueNo = ValueList.size(); 1612 BasicBlock *CurBB = 0; 1613 unsigned CurBBNo = 0; 1614 1615 // Read all the records. 1616 SmallVector<uint64_t, 64> Record; 1617 while (1) { 1618 unsigned Code = Stream.ReadCode(); 1619 if (Code == bitc::END_BLOCK) { 1620 if (Stream.ReadBlockEnd()) 1621 return Error("Error at end of function block"); 1622 break; 1623 } 1624 1625 if (Code == bitc::ENTER_SUBBLOCK) { 1626 switch (Stream.ReadSubBlockID()) { 1627 default: // Skip unknown content. 1628 if (Stream.SkipBlock()) 1629 return Error("Malformed block record"); 1630 break; 1631 case bitc::CONSTANTS_BLOCK_ID: 1632 if (ParseConstants()) return true; 1633 NextValueNo = ValueList.size(); 1634 break; 1635 case bitc::VALUE_SYMTAB_BLOCK_ID: 1636 if (ParseValueSymbolTable()) return true; 1637 break; 1638 case bitc::METADATA_ATTACHMENT_ID: 1639 if (ParseMetadataAttachment()) return true; 1640 break; 1641 } 1642 continue; 1643 } 1644 1645 if (Code == bitc::DEFINE_ABBREV) { 1646 Stream.ReadAbbrevRecord(); 1647 continue; 1648 } 1649 1650 // Read a record. 1651 Record.clear(); 1652 Instruction *I = 0; 1653 unsigned BitCode = Stream.ReadRecord(Code, Record); 1654 switch (BitCode) { 1655 default: // Default behavior: reject 1656 return Error("Unknown instruction"); 1657 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1658 if (Record.size() < 1 || Record[0] == 0) 1659 return Error("Invalid DECLAREBLOCKS record"); 1660 // Create all the basic blocks for the function. 1661 FunctionBBs.resize(Record[0]); 1662 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1663 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1664 CurBB = FunctionBBs[0]; 1665 continue; 1666 1667 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1668 unsigned OpNum = 0; 1669 Value *LHS, *RHS; 1670 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1671 getValue(Record, OpNum, LHS->getType(), RHS) || 1672 OpNum+1 > Record.size()) 1673 return Error("Invalid BINOP record"); 1674 1675 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1676 if (Opc == -1) return Error("Invalid BINOP record"); 1677 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1678 InstructionList.push_back(I); 1679 if (OpNum < Record.size()) { 1680 if (Opc == Instruction::Add || 1681 Opc == Instruction::Sub || 1682 Opc == Instruction::Mul) { 1683 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1684 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1685 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1686 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1687 } else if (Opc == Instruction::SDiv) { 1688 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1689 cast<BinaryOperator>(I)->setIsExact(true); 1690 } 1691 } 1692 break; 1693 } 1694 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1695 unsigned OpNum = 0; 1696 Value *Op; 1697 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1698 OpNum+2 != Record.size()) 1699 return Error("Invalid CAST record"); 1700 1701 const Type *ResTy = getTypeByID(Record[OpNum]); 1702 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1703 if (Opc == -1 || ResTy == 0) 1704 return Error("Invalid CAST record"); 1705 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1706 InstructionList.push_back(I); 1707 break; 1708 } 1709 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1710 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1711 unsigned OpNum = 0; 1712 Value *BasePtr; 1713 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1714 return Error("Invalid GEP record"); 1715 1716 SmallVector<Value*, 16> GEPIdx; 1717 while (OpNum != Record.size()) { 1718 Value *Op; 1719 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1720 return Error("Invalid GEP record"); 1721 GEPIdx.push_back(Op); 1722 } 1723 1724 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1725 InstructionList.push_back(I); 1726 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1727 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1728 break; 1729 } 1730 1731 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1732 // EXTRACTVAL: [opty, opval, n x indices] 1733 unsigned OpNum = 0; 1734 Value *Agg; 1735 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1736 return Error("Invalid EXTRACTVAL record"); 1737 1738 SmallVector<unsigned, 4> EXTRACTVALIdx; 1739 for (unsigned RecSize = Record.size(); 1740 OpNum != RecSize; ++OpNum) { 1741 uint64_t Index = Record[OpNum]; 1742 if ((unsigned)Index != Index) 1743 return Error("Invalid EXTRACTVAL index"); 1744 EXTRACTVALIdx.push_back((unsigned)Index); 1745 } 1746 1747 I = ExtractValueInst::Create(Agg, 1748 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1749 InstructionList.push_back(I); 1750 break; 1751 } 1752 1753 case bitc::FUNC_CODE_INST_INSERTVAL: { 1754 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1755 unsigned OpNum = 0; 1756 Value *Agg; 1757 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1758 return Error("Invalid INSERTVAL record"); 1759 Value *Val; 1760 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1761 return Error("Invalid INSERTVAL record"); 1762 1763 SmallVector<unsigned, 4> INSERTVALIdx; 1764 for (unsigned RecSize = Record.size(); 1765 OpNum != RecSize; ++OpNum) { 1766 uint64_t Index = Record[OpNum]; 1767 if ((unsigned)Index != Index) 1768 return Error("Invalid INSERTVAL index"); 1769 INSERTVALIdx.push_back((unsigned)Index); 1770 } 1771 1772 I = InsertValueInst::Create(Agg, Val, 1773 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1774 InstructionList.push_back(I); 1775 break; 1776 } 1777 1778 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1779 // obsolete form of select 1780 // handles select i1 ... in old bitcode 1781 unsigned OpNum = 0; 1782 Value *TrueVal, *FalseVal, *Cond; 1783 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1784 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1785 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1786 return Error("Invalid SELECT record"); 1787 1788 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1789 InstructionList.push_back(I); 1790 break; 1791 } 1792 1793 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1794 // new form of select 1795 // handles select i1 or select [N x i1] 1796 unsigned OpNum = 0; 1797 Value *TrueVal, *FalseVal, *Cond; 1798 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1799 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1800 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1801 return Error("Invalid SELECT record"); 1802 1803 // select condition can be either i1 or [N x i1] 1804 if (const VectorType* vector_type = 1805 dyn_cast<const VectorType>(Cond->getType())) { 1806 // expect <n x i1> 1807 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1808 return Error("Invalid SELECT condition type"); 1809 } else { 1810 // expect i1 1811 if (Cond->getType() != Type::getInt1Ty(Context)) 1812 return Error("Invalid SELECT condition type"); 1813 } 1814 1815 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1816 InstructionList.push_back(I); 1817 break; 1818 } 1819 1820 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1821 unsigned OpNum = 0; 1822 Value *Vec, *Idx; 1823 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1824 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1825 return Error("Invalid EXTRACTELT record"); 1826 I = ExtractElementInst::Create(Vec, Idx); 1827 InstructionList.push_back(I); 1828 break; 1829 } 1830 1831 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1832 unsigned OpNum = 0; 1833 Value *Vec, *Elt, *Idx; 1834 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1835 getValue(Record, OpNum, 1836 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1837 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1838 return Error("Invalid INSERTELT record"); 1839 I = InsertElementInst::Create(Vec, Elt, Idx); 1840 InstructionList.push_back(I); 1841 break; 1842 } 1843 1844 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1845 unsigned OpNum = 0; 1846 Value *Vec1, *Vec2, *Mask; 1847 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1848 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1849 return Error("Invalid SHUFFLEVEC record"); 1850 1851 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1852 return Error("Invalid SHUFFLEVEC record"); 1853 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1854 InstructionList.push_back(I); 1855 break; 1856 } 1857 1858 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1859 // Old form of ICmp/FCmp returning bool 1860 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1861 // both legal on vectors but had different behaviour. 1862 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1863 // FCmp/ICmp returning bool or vector of bool 1864 1865 unsigned OpNum = 0; 1866 Value *LHS, *RHS; 1867 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1868 getValue(Record, OpNum, LHS->getType(), RHS) || 1869 OpNum+1 != Record.size()) 1870 return Error("Invalid CMP record"); 1871 1872 if (LHS->getType()->isFPOrFPVector()) 1873 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1874 else 1875 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1876 InstructionList.push_back(I); 1877 break; 1878 } 1879 1880 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1881 if (Record.size() != 2) 1882 return Error("Invalid GETRESULT record"); 1883 unsigned OpNum = 0; 1884 Value *Op; 1885 getValueTypePair(Record, OpNum, NextValueNo, Op); 1886 unsigned Index = Record[1]; 1887 I = ExtractValueInst::Create(Op, Index); 1888 InstructionList.push_back(I); 1889 break; 1890 } 1891 1892 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1893 { 1894 unsigned Size = Record.size(); 1895 if (Size == 0) { 1896 I = ReturnInst::Create(Context); 1897 InstructionList.push_back(I); 1898 break; 1899 } 1900 1901 unsigned OpNum = 0; 1902 SmallVector<Value *,4> Vs; 1903 do { 1904 Value *Op = NULL; 1905 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1906 return Error("Invalid RET record"); 1907 Vs.push_back(Op); 1908 } while(OpNum != Record.size()); 1909 1910 const Type *ReturnType = F->getReturnType(); 1911 if (Vs.size() > 1 || 1912 (isa<StructType>(ReturnType) && 1913 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1914 Value *RV = UndefValue::get(ReturnType); 1915 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1916 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1917 InstructionList.push_back(I); 1918 CurBB->getInstList().push_back(I); 1919 ValueList.AssignValue(I, NextValueNo++); 1920 RV = I; 1921 } 1922 I = ReturnInst::Create(Context, RV); 1923 InstructionList.push_back(I); 1924 break; 1925 } 1926 1927 I = ReturnInst::Create(Context, Vs[0]); 1928 InstructionList.push_back(I); 1929 break; 1930 } 1931 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1932 if (Record.size() != 1 && Record.size() != 3) 1933 return Error("Invalid BR record"); 1934 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1935 if (TrueDest == 0) 1936 return Error("Invalid BR record"); 1937 1938 if (Record.size() == 1) { 1939 I = BranchInst::Create(TrueDest); 1940 InstructionList.push_back(I); 1941 } 1942 else { 1943 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1944 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 1945 if (FalseDest == 0 || Cond == 0) 1946 return Error("Invalid BR record"); 1947 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1948 InstructionList.push_back(I); 1949 } 1950 break; 1951 } 1952 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1953 if (Record.size() < 3 || (Record.size() & 1) == 0) 1954 return Error("Invalid SWITCH record"); 1955 const Type *OpTy = getTypeByID(Record[0]); 1956 Value *Cond = getFnValueByID(Record[1], OpTy); 1957 BasicBlock *Default = getBasicBlock(Record[2]); 1958 if (OpTy == 0 || Cond == 0 || Default == 0) 1959 return Error("Invalid SWITCH record"); 1960 unsigned NumCases = (Record.size()-3)/2; 1961 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1962 InstructionList.push_back(SI); 1963 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1964 ConstantInt *CaseVal = 1965 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1966 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1967 if (CaseVal == 0 || DestBB == 0) { 1968 delete SI; 1969 return Error("Invalid SWITCH record!"); 1970 } 1971 SI->addCase(CaseVal, DestBB); 1972 } 1973 I = SI; 1974 break; 1975 } 1976 1977 case bitc::FUNC_CODE_INST_INVOKE: { 1978 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1979 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1980 AttrListPtr PAL = getAttributes(Record[0]); 1981 unsigned CCInfo = Record[1]; 1982 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1983 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1984 1985 unsigned OpNum = 4; 1986 Value *Callee; 1987 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1988 return Error("Invalid INVOKE record"); 1989 1990 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1991 const FunctionType *FTy = !CalleeTy ? 0 : 1992 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1993 1994 // Check that the right number of fixed parameters are here. 1995 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1996 Record.size() < OpNum+FTy->getNumParams()) 1997 return Error("Invalid INVOKE record"); 1998 1999 SmallVector<Value*, 16> Ops; 2000 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2001 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2002 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2003 } 2004 2005 if (!FTy->isVarArg()) { 2006 if (Record.size() != OpNum) 2007 return Error("Invalid INVOKE record"); 2008 } else { 2009 // Read type/value pairs for varargs params. 2010 while (OpNum != Record.size()) { 2011 Value *Op; 2012 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2013 return Error("Invalid INVOKE record"); 2014 Ops.push_back(Op); 2015 } 2016 } 2017 2018 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2019 Ops.begin(), Ops.end()); 2020 InstructionList.push_back(I); 2021 cast<InvokeInst>(I)->setCallingConv( 2022 static_cast<CallingConv::ID>(CCInfo)); 2023 cast<InvokeInst>(I)->setAttributes(PAL); 2024 break; 2025 } 2026 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2027 I = new UnwindInst(Context); 2028 InstructionList.push_back(I); 2029 break; 2030 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2031 I = new UnreachableInst(Context); 2032 InstructionList.push_back(I); 2033 break; 2034 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2035 if (Record.size() < 1 || ((Record.size()-1)&1)) 2036 return Error("Invalid PHI record"); 2037 const Type *Ty = getTypeByID(Record[0]); 2038 if (!Ty) return Error("Invalid PHI record"); 2039 2040 PHINode *PN = PHINode::Create(Ty); 2041 InstructionList.push_back(PN); 2042 PN->reserveOperandSpace((Record.size()-1)/2); 2043 2044 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2045 Value *V = getFnValueByID(Record[1+i], Ty); 2046 BasicBlock *BB = getBasicBlock(Record[2+i]); 2047 if (!V || !BB) return Error("Invalid PHI record"); 2048 PN->addIncoming(V, BB); 2049 } 2050 I = PN; 2051 break; 2052 } 2053 2054 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2055 // Autoupgrade malloc instruction to malloc call. 2056 // FIXME: Remove in LLVM 3.0. 2057 if (Record.size() < 3) 2058 return Error("Invalid MALLOC record"); 2059 const PointerType *Ty = 2060 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2061 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2062 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2063 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2064 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2065 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2066 Size, NULL); 2067 InstructionList.push_back(I); 2068 break; 2069 } 2070 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2071 unsigned OpNum = 0; 2072 Value *Op; 2073 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2074 OpNum != Record.size()) 2075 return Error("Invalid FREE record"); 2076 if (!CurBB) return Error("Invalid free instruction with no BB"); 2077 I = CallInst::CreateFree(Op, CurBB); 2078 InstructionList.push_back(I); 2079 break; 2080 } 2081 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 2082 if (Record.size() < 3) 2083 return Error("Invalid ALLOCA record"); 2084 const PointerType *Ty = 2085 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2086 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2087 unsigned Align = Record[2]; 2088 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2089 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2090 InstructionList.push_back(I); 2091 break; 2092 } 2093 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2094 unsigned OpNum = 0; 2095 Value *Op; 2096 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2097 OpNum+2 != Record.size()) 2098 return Error("Invalid LOAD record"); 2099 2100 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2101 InstructionList.push_back(I); 2102 break; 2103 } 2104 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2105 unsigned OpNum = 0; 2106 Value *Val, *Ptr; 2107 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2108 getValue(Record, OpNum, 2109 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2110 OpNum+2 != Record.size()) 2111 return Error("Invalid STORE record"); 2112 2113 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2114 InstructionList.push_back(I); 2115 break; 2116 } 2117 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2118 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2119 unsigned OpNum = 0; 2120 Value *Val, *Ptr; 2121 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2122 getValue(Record, OpNum, 2123 PointerType::getUnqual(Val->getType()), Ptr)|| 2124 OpNum+2 != Record.size()) 2125 return Error("Invalid STORE record"); 2126 2127 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2128 InstructionList.push_back(I); 2129 break; 2130 } 2131 case bitc::FUNC_CODE_INST_CALL: { 2132 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2133 if (Record.size() < 3) 2134 return Error("Invalid CALL record"); 2135 2136 AttrListPtr PAL = getAttributes(Record[0]); 2137 unsigned CCInfo = Record[1]; 2138 2139 unsigned OpNum = 2; 2140 Value *Callee; 2141 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2142 return Error("Invalid CALL record"); 2143 2144 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2145 const FunctionType *FTy = 0; 2146 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2147 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2148 return Error("Invalid CALL record"); 2149 2150 SmallVector<Value*, 16> Args; 2151 // Read the fixed params. 2152 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2153 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2154 Args.push_back(getBasicBlock(Record[OpNum])); 2155 else 2156 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2157 if (Args.back() == 0) return Error("Invalid CALL record"); 2158 } 2159 2160 // Read type/value pairs for varargs params. 2161 if (!FTy->isVarArg()) { 2162 if (OpNum != Record.size()) 2163 return Error("Invalid CALL record"); 2164 } else { 2165 while (OpNum != Record.size()) { 2166 Value *Op; 2167 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2168 return Error("Invalid CALL record"); 2169 Args.push_back(Op); 2170 } 2171 } 2172 2173 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2174 InstructionList.push_back(I); 2175 cast<CallInst>(I)->setCallingConv( 2176 static_cast<CallingConv::ID>(CCInfo>>1)); 2177 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2178 cast<CallInst>(I)->setAttributes(PAL); 2179 break; 2180 } 2181 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2182 if (Record.size() < 3) 2183 return Error("Invalid VAARG record"); 2184 const Type *OpTy = getTypeByID(Record[0]); 2185 Value *Op = getFnValueByID(Record[1], OpTy); 2186 const Type *ResTy = getTypeByID(Record[2]); 2187 if (!OpTy || !Op || !ResTy) 2188 return Error("Invalid VAARG record"); 2189 I = new VAArgInst(Op, ResTy); 2190 InstructionList.push_back(I); 2191 break; 2192 } 2193 } 2194 2195 // Add instruction to end of current BB. If there is no current BB, reject 2196 // this file. 2197 if (CurBB == 0) { 2198 delete I; 2199 return Error("Invalid instruction with no BB"); 2200 } 2201 CurBB->getInstList().push_back(I); 2202 2203 // If this was a terminator instruction, move to the next block. 2204 if (isa<TerminatorInst>(I)) { 2205 ++CurBBNo; 2206 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2207 } 2208 2209 // Non-void values get registered in the value table for future use. 2210 if (I && I->getType() != Type::getVoidTy(Context)) 2211 ValueList.AssignValue(I, NextValueNo++); 2212 } 2213 2214 // Check the function list for unresolved values. 2215 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2216 if (A->getParent() == 0) { 2217 // We found at least one unresolved value. Nuke them all to avoid leaks. 2218 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2219 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2220 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2221 delete A; 2222 } 2223 } 2224 return Error("Never resolved value found in function!"); 2225 } 2226 } 2227 2228 // Trim the value list down to the size it was before we parsed this function. 2229 ValueList.shrinkTo(ModuleValueListSize); 2230 std::vector<BasicBlock*>().swap(FunctionBBs); 2231 2232 return false; 2233 } 2234 2235 //===----------------------------------------------------------------------===// 2236 // ModuleProvider implementation 2237 //===----------------------------------------------------------------------===// 2238 2239 2240 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 2241 // If it already is material, ignore the request. 2242 if (!F->hasNotBeenReadFromBitcode()) return false; 2243 2244 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2245 DeferredFunctionInfo.find(F); 2246 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2247 2248 // Move the bit stream to the saved position of the deferred function body and 2249 // restore the real linkage type for the function. 2250 Stream.JumpToBit(DFII->second.first); 2251 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2252 2253 if (ParseFunctionBody(F)) { 2254 if (ErrInfo) *ErrInfo = ErrorString; 2255 return true; 2256 } 2257 2258 // Upgrade any old intrinsic calls in the function. 2259 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2260 E = UpgradedIntrinsics.end(); I != E; ++I) { 2261 if (I->first != I->second) { 2262 for (Value::use_iterator UI = I->first->use_begin(), 2263 UE = I->first->use_end(); UI != UE; ) { 2264 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2265 UpgradeIntrinsicCall(CI, I->second); 2266 } 2267 } 2268 } 2269 2270 return false; 2271 } 2272 2273 void BitcodeReader::dematerializeFunction(Function *F) { 2274 // If this function isn't materialized, or if it is a proto, this is a noop. 2275 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2276 return; 2277 2278 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2279 2280 // Just forget the function body, we can remat it later. 2281 F->deleteBody(); 2282 F->setLinkage(GlobalValue::GhostLinkage); 2283 } 2284 2285 2286 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2287 // Iterate over the module, deserializing any functions that are still on 2288 // disk. 2289 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2290 F != E; ++F) 2291 if (F->hasNotBeenReadFromBitcode() && 2292 materializeFunction(F, ErrInfo)) 2293 return 0; 2294 2295 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2296 // delete the old functions to clean up. We can't do this unless the entire 2297 // module is materialized because there could always be another function body 2298 // with calls to the old function. 2299 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2300 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2301 if (I->first != I->second) { 2302 for (Value::use_iterator UI = I->first->use_begin(), 2303 UE = I->first->use_end(); UI != UE; ) { 2304 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2305 UpgradeIntrinsicCall(CI, I->second); 2306 } 2307 if (!I->first->use_empty()) 2308 I->first->replaceAllUsesWith(I->second); 2309 I->first->eraseFromParent(); 2310 } 2311 } 2312 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2313 2314 // Check debug info intrinsics. 2315 CheckDebugInfoIntrinsics(TheModule); 2316 2317 return TheModule; 2318 } 2319 2320 2321 /// This method is provided by the parent ModuleProvde class and overriden 2322 /// here. It simply releases the module from its provided and frees up our 2323 /// state. 2324 /// @brief Release our hold on the generated module 2325 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2326 // Since we're losing control of this Module, we must hand it back complete 2327 Module *M = ModuleProvider::releaseModule(ErrInfo); 2328 FreeState(); 2329 return M; 2330 } 2331 2332 2333 //===----------------------------------------------------------------------===// 2334 // External interface 2335 //===----------------------------------------------------------------------===// 2336 2337 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2338 /// 2339 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2340 LLVMContext& Context, 2341 std::string *ErrMsg) { 2342 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2343 if (R->ParseBitcode()) { 2344 if (ErrMsg) 2345 *ErrMsg = R->getErrorString(); 2346 2347 // Don't let the BitcodeReader dtor delete 'Buffer'. 2348 R->releaseMemoryBuffer(); 2349 delete R; 2350 return 0; 2351 } 2352 return R; 2353 } 2354 2355 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2356 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2357 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2358 std::string *ErrMsg){ 2359 BitcodeReader *R; 2360 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2361 ErrMsg)); 2362 if (!R) return 0; 2363 2364 // Read in the entire module. 2365 Module *M = R->materializeModule(ErrMsg); 2366 2367 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2368 // there was an error. 2369 R->releaseMemoryBuffer(); 2370 2371 // If there was no error, tell ModuleProvider not to delete it when its dtor 2372 // is run. 2373 if (M) 2374 M = R->releaseModule(ErrMsg); 2375 2376 delete R; 2377 return M; 2378 } 2379