xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision dd6087cac087046b5cd29a21e7fff2732fb35997)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 /// Decode the flags for GlobalValue in the summary.
972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
973                                                             uint64_t Version) {
974   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
975   // like getDecodedLinkage() above. Any future change to the linkage enum and
976   // to getDecodedLinkage() will need to be taken into account here as above.
977   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
978   RawFlags = RawFlags >> 4;
979   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
980   // The Live flag wasn't introduced until version 3. For dead stripping
981   // to work correctly on earlier versions, we must conservatively treat all
982   // values as live.
983   bool Live = (RawFlags & 0x2) || Version < 3;
984   bool Local = (RawFlags & 0x4);
985   bool AutoHide = (RawFlags & 0x8);
986 
987   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
988 }
989 
990 // Decode the flags for GlobalVariable in the summary
991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
992   return GlobalVarSummary::GVarFlags(
993       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
994       (RawFlags & 0x4) ? true : false,
995       (GlobalObject::VCallVisibility)(RawFlags >> 3));
996 }
997 
998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
999   switch (Val) {
1000   default: // Map unknown visibilities to default.
1001   case 0: return GlobalValue::DefaultVisibility;
1002   case 1: return GlobalValue::HiddenVisibility;
1003   case 2: return GlobalValue::ProtectedVisibility;
1004   }
1005 }
1006 
1007 static GlobalValue::DLLStorageClassTypes
1008 getDecodedDLLStorageClass(unsigned Val) {
1009   switch (Val) {
1010   default: // Map unknown values to default.
1011   case 0: return GlobalValue::DefaultStorageClass;
1012   case 1: return GlobalValue::DLLImportStorageClass;
1013   case 2: return GlobalValue::DLLExportStorageClass;
1014   }
1015 }
1016 
1017 static bool getDecodedDSOLocal(unsigned Val) {
1018   switch(Val) {
1019   default: // Map unknown values to preemptable.
1020   case 0:  return false;
1021   case 1:  return true;
1022   }
1023 }
1024 
1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1026   switch (Val) {
1027     case 0: return GlobalVariable::NotThreadLocal;
1028     default: // Map unknown non-zero value to general dynamic.
1029     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1030     case 2: return GlobalVariable::LocalDynamicTLSModel;
1031     case 3: return GlobalVariable::InitialExecTLSModel;
1032     case 4: return GlobalVariable::LocalExecTLSModel;
1033   }
1034 }
1035 
1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1037   switch (Val) {
1038     default: // Map unknown to UnnamedAddr::None.
1039     case 0: return GlobalVariable::UnnamedAddr::None;
1040     case 1: return GlobalVariable::UnnamedAddr::Global;
1041     case 2: return GlobalVariable::UnnamedAddr::Local;
1042   }
1043 }
1044 
1045 static int getDecodedCastOpcode(unsigned Val) {
1046   switch (Val) {
1047   default: return -1;
1048   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1049   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1050   case bitc::CAST_SEXT    : return Instruction::SExt;
1051   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1052   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1053   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1054   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1055   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1056   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1057   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1058   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1059   case bitc::CAST_BITCAST : return Instruction::BitCast;
1060   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1061   }
1062 }
1063 
1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1065   bool IsFP = Ty->isFPOrFPVectorTy();
1066   // UnOps are only valid for int/fp or vector of int/fp types
1067   if (!IsFP && !Ty->isIntOrIntVectorTy())
1068     return -1;
1069 
1070   switch (Val) {
1071   default:
1072     return -1;
1073   case bitc::UNOP_FNEG:
1074     return IsFP ? Instruction::FNeg : -1;
1075   }
1076 }
1077 
1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1079   bool IsFP = Ty->isFPOrFPVectorTy();
1080   // BinOps are only valid for int/fp or vector of int/fp types
1081   if (!IsFP && !Ty->isIntOrIntVectorTy())
1082     return -1;
1083 
1084   switch (Val) {
1085   default:
1086     return -1;
1087   case bitc::BINOP_ADD:
1088     return IsFP ? Instruction::FAdd : Instruction::Add;
1089   case bitc::BINOP_SUB:
1090     return IsFP ? Instruction::FSub : Instruction::Sub;
1091   case bitc::BINOP_MUL:
1092     return IsFP ? Instruction::FMul : Instruction::Mul;
1093   case bitc::BINOP_UDIV:
1094     return IsFP ? -1 : Instruction::UDiv;
1095   case bitc::BINOP_SDIV:
1096     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1097   case bitc::BINOP_UREM:
1098     return IsFP ? -1 : Instruction::URem;
1099   case bitc::BINOP_SREM:
1100     return IsFP ? Instruction::FRem : Instruction::SRem;
1101   case bitc::BINOP_SHL:
1102     return IsFP ? -1 : Instruction::Shl;
1103   case bitc::BINOP_LSHR:
1104     return IsFP ? -1 : Instruction::LShr;
1105   case bitc::BINOP_ASHR:
1106     return IsFP ? -1 : Instruction::AShr;
1107   case bitc::BINOP_AND:
1108     return IsFP ? -1 : Instruction::And;
1109   case bitc::BINOP_OR:
1110     return IsFP ? -1 : Instruction::Or;
1111   case bitc::BINOP_XOR:
1112     return IsFP ? -1 : Instruction::Xor;
1113   }
1114 }
1115 
1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1117   switch (Val) {
1118   default: return AtomicRMWInst::BAD_BINOP;
1119   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1120   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1121   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1122   case bitc::RMW_AND: return AtomicRMWInst::And;
1123   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1124   case bitc::RMW_OR: return AtomicRMWInst::Or;
1125   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1126   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1127   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1128   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1129   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1130   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1131   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1132   }
1133 }
1134 
1135 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1136   switch (Val) {
1137   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1138   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1139   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1140   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1141   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1142   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1143   default: // Map unknown orderings to sequentially-consistent.
1144   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1145   }
1146 }
1147 
1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1149   switch (Val) {
1150   default: // Map unknown selection kinds to any.
1151   case bitc::COMDAT_SELECTION_KIND_ANY:
1152     return Comdat::Any;
1153   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1154     return Comdat::ExactMatch;
1155   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1156     return Comdat::Largest;
1157   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1158     return Comdat::NoDuplicates;
1159   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1160     return Comdat::SameSize;
1161   }
1162 }
1163 
1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1165   FastMathFlags FMF;
1166   if (0 != (Val & bitc::UnsafeAlgebra))
1167     FMF.setFast();
1168   if (0 != (Val & bitc::AllowReassoc))
1169     FMF.setAllowReassoc();
1170   if (0 != (Val & bitc::NoNaNs))
1171     FMF.setNoNaNs();
1172   if (0 != (Val & bitc::NoInfs))
1173     FMF.setNoInfs();
1174   if (0 != (Val & bitc::NoSignedZeros))
1175     FMF.setNoSignedZeros();
1176   if (0 != (Val & bitc::AllowReciprocal))
1177     FMF.setAllowReciprocal();
1178   if (0 != (Val & bitc::AllowContract))
1179     FMF.setAllowContract(true);
1180   if (0 != (Val & bitc::ApproxFunc))
1181     FMF.setApproxFunc();
1182   return FMF;
1183 }
1184 
1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1186   switch (Val) {
1187   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1188   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1189   }
1190 }
1191 
1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1193   // The type table size is always specified correctly.
1194   if (ID >= TypeList.size())
1195     return nullptr;
1196 
1197   if (Type *Ty = TypeList[ID])
1198     return Ty;
1199 
1200   // If we have a forward reference, the only possible case is when it is to a
1201   // named struct.  Just create a placeholder for now.
1202   return TypeList[ID] = createIdentifiedStructType(Context);
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1206                                                       StringRef Name) {
1207   auto *Ret = StructType::create(Context, Name);
1208   IdentifiedStructTypes.push_back(Ret);
1209   return Ret;
1210 }
1211 
1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1213   auto *Ret = StructType::create(Context);
1214   IdentifiedStructTypes.push_back(Ret);
1215   return Ret;
1216 }
1217 
1218 //===----------------------------------------------------------------------===//
1219 //  Functions for parsing blocks from the bitcode file
1220 //===----------------------------------------------------------------------===//
1221 
1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1223   switch (Val) {
1224   case Attribute::EndAttrKinds:
1225   case Attribute::EmptyKey:
1226   case Attribute::TombstoneKey:
1227     llvm_unreachable("Synthetic enumerators which should never get here");
1228 
1229   case Attribute::None:            return 0;
1230   case Attribute::ZExt:            return 1 << 0;
1231   case Attribute::SExt:            return 1 << 1;
1232   case Attribute::NoReturn:        return 1 << 2;
1233   case Attribute::InReg:           return 1 << 3;
1234   case Attribute::StructRet:       return 1 << 4;
1235   case Attribute::NoUnwind:        return 1 << 5;
1236   case Attribute::NoAlias:         return 1 << 6;
1237   case Attribute::ByVal:           return 1 << 7;
1238   case Attribute::Nest:            return 1 << 8;
1239   case Attribute::ReadNone:        return 1 << 9;
1240   case Attribute::ReadOnly:        return 1 << 10;
1241   case Attribute::NoInline:        return 1 << 11;
1242   case Attribute::AlwaysInline:    return 1 << 12;
1243   case Attribute::OptimizeForSize: return 1 << 13;
1244   case Attribute::StackProtect:    return 1 << 14;
1245   case Attribute::StackProtectReq: return 1 << 15;
1246   case Attribute::Alignment:       return 31 << 16;
1247   case Attribute::NoCapture:       return 1 << 21;
1248   case Attribute::NoRedZone:       return 1 << 22;
1249   case Attribute::NoImplicitFloat: return 1 << 23;
1250   case Attribute::Naked:           return 1 << 24;
1251   case Attribute::InlineHint:      return 1 << 25;
1252   case Attribute::StackAlignment:  return 7 << 26;
1253   case Attribute::ReturnsTwice:    return 1 << 29;
1254   case Attribute::UWTable:         return 1 << 30;
1255   case Attribute::NonLazyBind:     return 1U << 31;
1256   case Attribute::SanitizeAddress: return 1ULL << 32;
1257   case Attribute::MinSize:         return 1ULL << 33;
1258   case Attribute::NoDuplicate:     return 1ULL << 34;
1259   case Attribute::StackProtectStrong: return 1ULL << 35;
1260   case Attribute::SanitizeThread:  return 1ULL << 36;
1261   case Attribute::SanitizeMemory:  return 1ULL << 37;
1262   case Attribute::NoBuiltin:       return 1ULL << 38;
1263   case Attribute::Returned:        return 1ULL << 39;
1264   case Attribute::Cold:            return 1ULL << 40;
1265   case Attribute::Builtin:         return 1ULL << 41;
1266   case Attribute::OptimizeNone:    return 1ULL << 42;
1267   case Attribute::InAlloca:        return 1ULL << 43;
1268   case Attribute::NonNull:         return 1ULL << 44;
1269   case Attribute::JumpTable:       return 1ULL << 45;
1270   case Attribute::Convergent:      return 1ULL << 46;
1271   case Attribute::SafeStack:       return 1ULL << 47;
1272   case Attribute::NoRecurse:       return 1ULL << 48;
1273   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1274   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1275   case Attribute::SwiftSelf:       return 1ULL << 51;
1276   case Attribute::SwiftError:      return 1ULL << 52;
1277   case Attribute::WriteOnly:       return 1ULL << 53;
1278   case Attribute::Speculatable:    return 1ULL << 54;
1279   case Attribute::StrictFP:        return 1ULL << 55;
1280   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1281   case Attribute::NoCfCheck:       return 1ULL << 57;
1282   case Attribute::OptForFuzzing:   return 1ULL << 58;
1283   case Attribute::ShadowCallStack: return 1ULL << 59;
1284   case Attribute::SpeculativeLoadHardening:
1285     return 1ULL << 60;
1286   case Attribute::ImmArg:
1287     return 1ULL << 61;
1288   case Attribute::WillReturn:
1289     return 1ULL << 62;
1290   case Attribute::NoFree:
1291     return 1ULL << 63;
1292   default:
1293     // Other attributes are not supported in the raw format,
1294     // as we ran out of space.
1295     return 0;
1296   }
1297   llvm_unreachable("Unsupported attribute type");
1298 }
1299 
1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1301   if (!Val) return;
1302 
1303   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1304        I = Attribute::AttrKind(I + 1)) {
1305     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1306       if (I == Attribute::Alignment)
1307         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1308       else if (I == Attribute::StackAlignment)
1309         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1310       else
1311         B.addAttribute(I);
1312     }
1313   }
1314 }
1315 
1316 /// This fills an AttrBuilder object with the LLVM attributes that have
1317 /// been decoded from the given integer. This function must stay in sync with
1318 /// 'encodeLLVMAttributesForBitcode'.
1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1320                                            uint64_t EncodedAttrs) {
1321   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1322   // the bits above 31 down by 11 bits.
1323   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1324   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1325          "Alignment must be a power of two.");
1326 
1327   if (Alignment)
1328     B.addAlignmentAttr(Alignment);
1329   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1330                           (EncodedAttrs & 0xffff));
1331 }
1332 
1333 Error BitcodeReader::parseAttributeBlock() {
1334   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1335     return Err;
1336 
1337   if (!MAttributes.empty())
1338     return error("Invalid multiple blocks");
1339 
1340   SmallVector<uint64_t, 64> Record;
1341 
1342   SmallVector<AttributeList, 8> Attrs;
1343 
1344   // Read all the records.
1345   while (true) {
1346     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1347     if (!MaybeEntry)
1348       return MaybeEntry.takeError();
1349     BitstreamEntry Entry = MaybeEntry.get();
1350 
1351     switch (Entry.Kind) {
1352     case BitstreamEntry::SubBlock: // Handled for us already.
1353     case BitstreamEntry::Error:
1354       return error("Malformed block");
1355     case BitstreamEntry::EndBlock:
1356       return Error::success();
1357     case BitstreamEntry::Record:
1358       // The interesting case.
1359       break;
1360     }
1361 
1362     // Read a record.
1363     Record.clear();
1364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1365     if (!MaybeRecord)
1366       return MaybeRecord.takeError();
1367     switch (MaybeRecord.get()) {
1368     default:  // Default behavior: ignore.
1369       break;
1370     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1371       // Deprecated, but still needed to read old bitcode files.
1372       if (Record.size() & 1)
1373         return error("Invalid record");
1374 
1375       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1376         AttrBuilder B;
1377         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1378         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1379       }
1380 
1381       MAttributes.push_back(AttributeList::get(Context, Attrs));
1382       Attrs.clear();
1383       break;
1384     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1385       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1386         Attrs.push_back(MAttributeGroups[Record[i]]);
1387 
1388       MAttributes.push_back(AttributeList::get(Context, Attrs));
1389       Attrs.clear();
1390       break;
1391     }
1392   }
1393 }
1394 
1395 // Returns Attribute::None on unrecognized codes.
1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1397   switch (Code) {
1398   default:
1399     return Attribute::None;
1400   case bitc::ATTR_KIND_ALIGNMENT:
1401     return Attribute::Alignment;
1402   case bitc::ATTR_KIND_ALWAYS_INLINE:
1403     return Attribute::AlwaysInline;
1404   case bitc::ATTR_KIND_ARGMEMONLY:
1405     return Attribute::ArgMemOnly;
1406   case bitc::ATTR_KIND_BUILTIN:
1407     return Attribute::Builtin;
1408   case bitc::ATTR_KIND_BY_VAL:
1409     return Attribute::ByVal;
1410   case bitc::ATTR_KIND_IN_ALLOCA:
1411     return Attribute::InAlloca;
1412   case bitc::ATTR_KIND_COLD:
1413     return Attribute::Cold;
1414   case bitc::ATTR_KIND_CONVERGENT:
1415     return Attribute::Convergent;
1416   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1417     return Attribute::InaccessibleMemOnly;
1418   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1419     return Attribute::InaccessibleMemOrArgMemOnly;
1420   case bitc::ATTR_KIND_INLINE_HINT:
1421     return Attribute::InlineHint;
1422   case bitc::ATTR_KIND_IN_REG:
1423     return Attribute::InReg;
1424   case bitc::ATTR_KIND_JUMP_TABLE:
1425     return Attribute::JumpTable;
1426   case bitc::ATTR_KIND_MIN_SIZE:
1427     return Attribute::MinSize;
1428   case bitc::ATTR_KIND_NAKED:
1429     return Attribute::Naked;
1430   case bitc::ATTR_KIND_NEST:
1431     return Attribute::Nest;
1432   case bitc::ATTR_KIND_NO_ALIAS:
1433     return Attribute::NoAlias;
1434   case bitc::ATTR_KIND_NO_BUILTIN:
1435     return Attribute::NoBuiltin;
1436   case bitc::ATTR_KIND_NO_CAPTURE:
1437     return Attribute::NoCapture;
1438   case bitc::ATTR_KIND_NO_DUPLICATE:
1439     return Attribute::NoDuplicate;
1440   case bitc::ATTR_KIND_NOFREE:
1441     return Attribute::NoFree;
1442   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1443     return Attribute::NoImplicitFloat;
1444   case bitc::ATTR_KIND_NO_INLINE:
1445     return Attribute::NoInline;
1446   case bitc::ATTR_KIND_NO_RECURSE:
1447     return Attribute::NoRecurse;
1448   case bitc::ATTR_KIND_NO_MERGE:
1449     return Attribute::NoMerge;
1450   case bitc::ATTR_KIND_NON_LAZY_BIND:
1451     return Attribute::NonLazyBind;
1452   case bitc::ATTR_KIND_NON_NULL:
1453     return Attribute::NonNull;
1454   case bitc::ATTR_KIND_DEREFERENCEABLE:
1455     return Attribute::Dereferenceable;
1456   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1457     return Attribute::DereferenceableOrNull;
1458   case bitc::ATTR_KIND_ALLOC_SIZE:
1459     return Attribute::AllocSize;
1460   case bitc::ATTR_KIND_NO_RED_ZONE:
1461     return Attribute::NoRedZone;
1462   case bitc::ATTR_KIND_NO_RETURN:
1463     return Attribute::NoReturn;
1464   case bitc::ATTR_KIND_NOSYNC:
1465     return Attribute::NoSync;
1466   case bitc::ATTR_KIND_NOCF_CHECK:
1467     return Attribute::NoCfCheck;
1468   case bitc::ATTR_KIND_NO_UNWIND:
1469     return Attribute::NoUnwind;
1470   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1471     return Attribute::NullPointerIsValid;
1472   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1473     return Attribute::OptForFuzzing;
1474   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1475     return Attribute::OptimizeForSize;
1476   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1477     return Attribute::OptimizeNone;
1478   case bitc::ATTR_KIND_READ_NONE:
1479     return Attribute::ReadNone;
1480   case bitc::ATTR_KIND_READ_ONLY:
1481     return Attribute::ReadOnly;
1482   case bitc::ATTR_KIND_RETURNED:
1483     return Attribute::Returned;
1484   case bitc::ATTR_KIND_RETURNS_TWICE:
1485     return Attribute::ReturnsTwice;
1486   case bitc::ATTR_KIND_S_EXT:
1487     return Attribute::SExt;
1488   case bitc::ATTR_KIND_SPECULATABLE:
1489     return Attribute::Speculatable;
1490   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1491     return Attribute::StackAlignment;
1492   case bitc::ATTR_KIND_STACK_PROTECT:
1493     return Attribute::StackProtect;
1494   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1495     return Attribute::StackProtectReq;
1496   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1497     return Attribute::StackProtectStrong;
1498   case bitc::ATTR_KIND_SAFESTACK:
1499     return Attribute::SafeStack;
1500   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1501     return Attribute::ShadowCallStack;
1502   case bitc::ATTR_KIND_STRICT_FP:
1503     return Attribute::StrictFP;
1504   case bitc::ATTR_KIND_STRUCT_RET:
1505     return Attribute::StructRet;
1506   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1507     return Attribute::SanitizeAddress;
1508   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1509     return Attribute::SanitizeHWAddress;
1510   case bitc::ATTR_KIND_SANITIZE_THREAD:
1511     return Attribute::SanitizeThread;
1512   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1513     return Attribute::SanitizeMemory;
1514   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1515     return Attribute::SpeculativeLoadHardening;
1516   case bitc::ATTR_KIND_SWIFT_ERROR:
1517     return Attribute::SwiftError;
1518   case bitc::ATTR_KIND_SWIFT_SELF:
1519     return Attribute::SwiftSelf;
1520   case bitc::ATTR_KIND_UW_TABLE:
1521     return Attribute::UWTable;
1522   case bitc::ATTR_KIND_WILLRETURN:
1523     return Attribute::WillReturn;
1524   case bitc::ATTR_KIND_WRITEONLY:
1525     return Attribute::WriteOnly;
1526   case bitc::ATTR_KIND_Z_EXT:
1527     return Attribute::ZExt;
1528   case bitc::ATTR_KIND_IMMARG:
1529     return Attribute::ImmArg;
1530   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1531     return Attribute::SanitizeMemTag;
1532   case bitc::ATTR_KIND_PREALLOCATED:
1533     return Attribute::Preallocated;
1534   case bitc::ATTR_KIND_NOUNDEF:
1535     return Attribute::NoUndef;
1536   case bitc::ATTR_KIND_BYREF:
1537     return Attribute::ByRef;
1538   case bitc::ATTR_KIND_MUSTPROGRESS:
1539     return Attribute::MustProgress;
1540   }
1541 }
1542 
1543 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1544                                          MaybeAlign &Alignment) {
1545   // Note: Alignment in bitcode files is incremented by 1, so that zero
1546   // can be used for default alignment.
1547   if (Exponent > Value::MaxAlignmentExponent + 1)
1548     return error("Invalid alignment value");
1549   Alignment = decodeMaybeAlign(Exponent);
1550   return Error::success();
1551 }
1552 
1553 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1554   *Kind = getAttrFromCode(Code);
1555   if (*Kind == Attribute::None)
1556     return error("Unknown attribute kind (" + Twine(Code) + ")");
1557   return Error::success();
1558 }
1559 
1560 Error BitcodeReader::parseAttributeGroupBlock() {
1561   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1562     return Err;
1563 
1564   if (!MAttributeGroups.empty())
1565     return error("Invalid multiple blocks");
1566 
1567   SmallVector<uint64_t, 64> Record;
1568 
1569   // Read all the records.
1570   while (true) {
1571     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1572     if (!MaybeEntry)
1573       return MaybeEntry.takeError();
1574     BitstreamEntry Entry = MaybeEntry.get();
1575 
1576     switch (Entry.Kind) {
1577     case BitstreamEntry::SubBlock: // Handled for us already.
1578     case BitstreamEntry::Error:
1579       return error("Malformed block");
1580     case BitstreamEntry::EndBlock:
1581       return Error::success();
1582     case BitstreamEntry::Record:
1583       // The interesting case.
1584       break;
1585     }
1586 
1587     // Read a record.
1588     Record.clear();
1589     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1590     if (!MaybeRecord)
1591       return MaybeRecord.takeError();
1592     switch (MaybeRecord.get()) {
1593     default:  // Default behavior: ignore.
1594       break;
1595     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1596       if (Record.size() < 3)
1597         return error("Invalid record");
1598 
1599       uint64_t GrpID = Record[0];
1600       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1601 
1602       AttrBuilder B;
1603       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1604         if (Record[i] == 0) {        // Enum attribute
1605           Attribute::AttrKind Kind;
1606           if (Error Err = parseAttrKind(Record[++i], &Kind))
1607             return Err;
1608 
1609           // Upgrade old-style byval attribute to one with a type, even if it's
1610           // nullptr. We will have to insert the real type when we associate
1611           // this AttributeList with a function.
1612           if (Kind == Attribute::ByVal)
1613             B.addByValAttr(nullptr);
1614           else if (Kind == Attribute::StructRet)
1615             B.addStructRetAttr(nullptr);
1616 
1617           B.addAttribute(Kind);
1618         } else if (Record[i] == 1) { // Integer attribute
1619           Attribute::AttrKind Kind;
1620           if (Error Err = parseAttrKind(Record[++i], &Kind))
1621             return Err;
1622           if (Kind == Attribute::Alignment)
1623             B.addAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::StackAlignment)
1625             B.addStackAlignmentAttr(Record[++i]);
1626           else if (Kind == Attribute::Dereferenceable)
1627             B.addDereferenceableAttr(Record[++i]);
1628           else if (Kind == Attribute::DereferenceableOrNull)
1629             B.addDereferenceableOrNullAttr(Record[++i]);
1630           else if (Kind == Attribute::AllocSize)
1631             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else {
1651           assert((Record[i] == 5 || Record[i] == 6) &&
1652                  "Invalid attribute group entry");
1653           bool HasType = Record[i] == 6;
1654           Attribute::AttrKind Kind;
1655           if (Error Err = parseAttrKind(Record[++i], &Kind))
1656             return Err;
1657           if (Kind == Attribute::ByVal) {
1658             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1659           } else if (Kind == Attribute::StructRet) {
1660             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1661           } else if (Kind == Attribute::ByRef) {
1662             B.addByRefAttr(getTypeByID(Record[++i]));
1663           } else if (Kind == Attribute::Preallocated) {
1664             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1665           }
1666         }
1667       }
1668 
1669       UpgradeAttributes(B);
1670       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1671       break;
1672     }
1673     }
1674   }
1675 }
1676 
1677 Error BitcodeReader::parseTypeTable() {
1678   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1679     return Err;
1680 
1681   return parseTypeTableBody();
1682 }
1683 
1684 Error BitcodeReader::parseTypeTableBody() {
1685   if (!TypeList.empty())
1686     return error("Invalid multiple blocks");
1687 
1688   SmallVector<uint64_t, 64> Record;
1689   unsigned NumRecords = 0;
1690 
1691   SmallString<64> TypeName;
1692 
1693   // Read all the records for this type table.
1694   while (true) {
1695     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1696     if (!MaybeEntry)
1697       return MaybeEntry.takeError();
1698     BitstreamEntry Entry = MaybeEntry.get();
1699 
1700     switch (Entry.Kind) {
1701     case BitstreamEntry::SubBlock: // Handled for us already.
1702     case BitstreamEntry::Error:
1703       return error("Malformed block");
1704     case BitstreamEntry::EndBlock:
1705       if (NumRecords != TypeList.size())
1706         return error("Malformed block");
1707       return Error::success();
1708     case BitstreamEntry::Record:
1709       // The interesting case.
1710       break;
1711     }
1712 
1713     // Read a record.
1714     Record.clear();
1715     Type *ResultTy = nullptr;
1716     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1717     if (!MaybeRecord)
1718       return MaybeRecord.takeError();
1719     switch (MaybeRecord.get()) {
1720     default:
1721       return error("Invalid value");
1722     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1723       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1724       // type list.  This allows us to reserve space.
1725       if (Record.empty())
1726         return error("Invalid record");
1727       TypeList.resize(Record[0]);
1728       continue;
1729     case bitc::TYPE_CODE_VOID:      // VOID
1730       ResultTy = Type::getVoidTy(Context);
1731       break;
1732     case bitc::TYPE_CODE_HALF:     // HALF
1733       ResultTy = Type::getHalfTy(Context);
1734       break;
1735     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1736       ResultTy = Type::getBFloatTy(Context);
1737       break;
1738     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1739       ResultTy = Type::getFloatTy(Context);
1740       break;
1741     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1742       ResultTy = Type::getDoubleTy(Context);
1743       break;
1744     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1745       ResultTy = Type::getX86_FP80Ty(Context);
1746       break;
1747     case bitc::TYPE_CODE_FP128:     // FP128
1748       ResultTy = Type::getFP128Ty(Context);
1749       break;
1750     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1751       ResultTy = Type::getPPC_FP128Ty(Context);
1752       break;
1753     case bitc::TYPE_CODE_LABEL:     // LABEL
1754       ResultTy = Type::getLabelTy(Context);
1755       break;
1756     case bitc::TYPE_CODE_METADATA:  // METADATA
1757       ResultTy = Type::getMetadataTy(Context);
1758       break;
1759     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1760       ResultTy = Type::getX86_MMXTy(Context);
1761       break;
1762     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1763       ResultTy = Type::getTokenTy(Context);
1764       break;
1765     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1766       if (Record.empty())
1767         return error("Invalid record");
1768 
1769       uint64_t NumBits = Record[0];
1770       if (NumBits < IntegerType::MIN_INT_BITS ||
1771           NumBits > IntegerType::MAX_INT_BITS)
1772         return error("Bitwidth for integer type out of range");
1773       ResultTy = IntegerType::get(Context, NumBits);
1774       break;
1775     }
1776     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1777                                     //          [pointee type, address space]
1778       if (Record.empty())
1779         return error("Invalid record");
1780       unsigned AddressSpace = 0;
1781       if (Record.size() == 2)
1782         AddressSpace = Record[1];
1783       ResultTy = getTypeByID(Record[0]);
1784       if (!ResultTy ||
1785           !PointerType::isValidElementType(ResultTy))
1786         return error("Invalid type");
1787       ResultTy = PointerType::get(ResultTy, AddressSpace);
1788       break;
1789     }
1790     case bitc::TYPE_CODE_FUNCTION_OLD: {
1791       // Deprecated, but still needed to read old bitcode files.
1792       // FUNCTION: [vararg, attrid, retty, paramty x N]
1793       if (Record.size() < 3)
1794         return error("Invalid record");
1795       SmallVector<Type*, 8> ArgTys;
1796       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1797         if (Type *T = getTypeByID(Record[i]))
1798           ArgTys.push_back(T);
1799         else
1800           break;
1801       }
1802 
1803       ResultTy = getTypeByID(Record[2]);
1804       if (!ResultTy || ArgTys.size() < Record.size()-3)
1805         return error("Invalid type");
1806 
1807       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1808       break;
1809     }
1810     case bitc::TYPE_CODE_FUNCTION: {
1811       // FUNCTION: [vararg, retty, paramty x N]
1812       if (Record.size() < 2)
1813         return error("Invalid record");
1814       SmallVector<Type*, 8> ArgTys;
1815       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1816         if (Type *T = getTypeByID(Record[i])) {
1817           if (!FunctionType::isValidArgumentType(T))
1818             return error("Invalid function argument type");
1819           ArgTys.push_back(T);
1820         }
1821         else
1822           break;
1823       }
1824 
1825       ResultTy = getTypeByID(Record[1]);
1826       if (!ResultTy || ArgTys.size() < Record.size()-2)
1827         return error("Invalid type");
1828 
1829       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1830       break;
1831     }
1832     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1833       if (Record.empty())
1834         return error("Invalid record");
1835       SmallVector<Type*, 8> EltTys;
1836       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1837         if (Type *T = getTypeByID(Record[i]))
1838           EltTys.push_back(T);
1839         else
1840           break;
1841       }
1842       if (EltTys.size() != Record.size()-1)
1843         return error("Invalid type");
1844       ResultTy = StructType::get(Context, EltTys, Record[0]);
1845       break;
1846     }
1847     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1848       if (convertToString(Record, 0, TypeName))
1849         return error("Invalid record");
1850       continue;
1851 
1852     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1853       if (Record.empty())
1854         return error("Invalid record");
1855 
1856       if (NumRecords >= TypeList.size())
1857         return error("Invalid TYPE table");
1858 
1859       // Check to see if this was forward referenced, if so fill in the temp.
1860       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1861       if (Res) {
1862         Res->setName(TypeName);
1863         TypeList[NumRecords] = nullptr;
1864       } else  // Otherwise, create a new struct.
1865         Res = createIdentifiedStructType(Context, TypeName);
1866       TypeName.clear();
1867 
1868       SmallVector<Type*, 8> EltTys;
1869       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1870         if (Type *T = getTypeByID(Record[i]))
1871           EltTys.push_back(T);
1872         else
1873           break;
1874       }
1875       if (EltTys.size() != Record.size()-1)
1876         return error("Invalid record");
1877       Res->setBody(EltTys, Record[0]);
1878       ResultTy = Res;
1879       break;
1880     }
1881     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1882       if (Record.size() != 1)
1883         return error("Invalid record");
1884 
1885       if (NumRecords >= TypeList.size())
1886         return error("Invalid TYPE table");
1887 
1888       // Check to see if this was forward referenced, if so fill in the temp.
1889       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1890       if (Res) {
1891         Res->setName(TypeName);
1892         TypeList[NumRecords] = nullptr;
1893       } else  // Otherwise, create a new struct with no body.
1894         Res = createIdentifiedStructType(Context, TypeName);
1895       TypeName.clear();
1896       ResultTy = Res;
1897       break;
1898     }
1899     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1900       if (Record.size() < 2)
1901         return error("Invalid record");
1902       ResultTy = getTypeByID(Record[1]);
1903       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1904         return error("Invalid type");
1905       ResultTy = ArrayType::get(ResultTy, Record[0]);
1906       break;
1907     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1908                                     //         [numelts, eltty, scalable]
1909       if (Record.size() < 2)
1910         return error("Invalid record");
1911       if (Record[0] == 0)
1912         return error("Invalid vector length");
1913       ResultTy = getTypeByID(Record[1]);
1914       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1915         return error("Invalid type");
1916       bool Scalable = Record.size() > 2 ? Record[2] : false;
1917       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1918       break;
1919     }
1920 
1921     if (NumRecords >= TypeList.size())
1922       return error("Invalid TYPE table");
1923     if (TypeList[NumRecords])
1924       return error(
1925           "Invalid TYPE table: Only named structs can be forward referenced");
1926     assert(ResultTy && "Didn't read a type?");
1927     TypeList[NumRecords++] = ResultTy;
1928   }
1929 }
1930 
1931 Error BitcodeReader::parseOperandBundleTags() {
1932   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1933     return Err;
1934 
1935   if (!BundleTags.empty())
1936     return error("Invalid multiple blocks");
1937 
1938   SmallVector<uint64_t, 64> Record;
1939 
1940   while (true) {
1941     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1942     if (!MaybeEntry)
1943       return MaybeEntry.takeError();
1944     BitstreamEntry Entry = MaybeEntry.get();
1945 
1946     switch (Entry.Kind) {
1947     case BitstreamEntry::SubBlock: // Handled for us already.
1948     case BitstreamEntry::Error:
1949       return error("Malformed block");
1950     case BitstreamEntry::EndBlock:
1951       return Error::success();
1952     case BitstreamEntry::Record:
1953       // The interesting case.
1954       break;
1955     }
1956 
1957     // Tags are implicitly mapped to integers by their order.
1958 
1959     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1960     if (!MaybeRecord)
1961       return MaybeRecord.takeError();
1962     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1963       return error("Invalid record");
1964 
1965     // OPERAND_BUNDLE_TAG: [strchr x N]
1966     BundleTags.emplace_back();
1967     if (convertToString(Record, 0, BundleTags.back()))
1968       return error("Invalid record");
1969     Record.clear();
1970   }
1971 }
1972 
1973 Error BitcodeReader::parseSyncScopeNames() {
1974   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1975     return Err;
1976 
1977   if (!SSIDs.empty())
1978     return error("Invalid multiple synchronization scope names blocks");
1979 
1980   SmallVector<uint64_t, 64> Record;
1981   while (true) {
1982     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1983     if (!MaybeEntry)
1984       return MaybeEntry.takeError();
1985     BitstreamEntry Entry = MaybeEntry.get();
1986 
1987     switch (Entry.Kind) {
1988     case BitstreamEntry::SubBlock: // Handled for us already.
1989     case BitstreamEntry::Error:
1990       return error("Malformed block");
1991     case BitstreamEntry::EndBlock:
1992       if (SSIDs.empty())
1993         return error("Invalid empty synchronization scope names block");
1994       return Error::success();
1995     case BitstreamEntry::Record:
1996       // The interesting case.
1997       break;
1998     }
1999 
2000     // Synchronization scope names are implicitly mapped to synchronization
2001     // scope IDs by their order.
2002 
2003     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2004     if (!MaybeRecord)
2005       return MaybeRecord.takeError();
2006     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2007       return error("Invalid record");
2008 
2009     SmallString<16> SSN;
2010     if (convertToString(Record, 0, SSN))
2011       return error("Invalid record");
2012 
2013     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2014     Record.clear();
2015   }
2016 }
2017 
2018 /// Associate a value with its name from the given index in the provided record.
2019 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2020                                              unsigned NameIndex, Triple &TT) {
2021   SmallString<128> ValueName;
2022   if (convertToString(Record, NameIndex, ValueName))
2023     return error("Invalid record");
2024   unsigned ValueID = Record[0];
2025   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2026     return error("Invalid record");
2027   Value *V = ValueList[ValueID];
2028 
2029   StringRef NameStr(ValueName.data(), ValueName.size());
2030   if (NameStr.find_first_of(0) != StringRef::npos)
2031     return error("Invalid value name");
2032   V->setName(NameStr);
2033   auto *GO = dyn_cast<GlobalObject>(V);
2034   if (GO) {
2035     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2036       if (TT.supportsCOMDAT())
2037         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2038       else
2039         GO->setComdat(nullptr);
2040     }
2041   }
2042   return V;
2043 }
2044 
2045 /// Helper to note and return the current location, and jump to the given
2046 /// offset.
2047 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2048                                                  BitstreamCursor &Stream) {
2049   // Save the current parsing location so we can jump back at the end
2050   // of the VST read.
2051   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2052   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2053     return std::move(JumpFailed);
2054   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2055   if (!MaybeEntry)
2056     return MaybeEntry.takeError();
2057   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2058   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2059   return CurrentBit;
2060 }
2061 
2062 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2063                                             Function *F,
2064                                             ArrayRef<uint64_t> Record) {
2065   // Note that we subtract 1 here because the offset is relative to one word
2066   // before the start of the identification or module block, which was
2067   // historically always the start of the regular bitcode header.
2068   uint64_t FuncWordOffset = Record[1] - 1;
2069   uint64_t FuncBitOffset = FuncWordOffset * 32;
2070   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2071   // Set the LastFunctionBlockBit to point to the last function block.
2072   // Later when parsing is resumed after function materialization,
2073   // we can simply skip that last function block.
2074   if (FuncBitOffset > LastFunctionBlockBit)
2075     LastFunctionBlockBit = FuncBitOffset;
2076 }
2077 
2078 /// Read a new-style GlobalValue symbol table.
2079 Error BitcodeReader::parseGlobalValueSymbolTable() {
2080   unsigned FuncBitcodeOffsetDelta =
2081       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2082 
2083   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2084     return Err;
2085 
2086   SmallVector<uint64_t, 64> Record;
2087   while (true) {
2088     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2089     if (!MaybeEntry)
2090       return MaybeEntry.takeError();
2091     BitstreamEntry Entry = MaybeEntry.get();
2092 
2093     switch (Entry.Kind) {
2094     case BitstreamEntry::SubBlock:
2095     case BitstreamEntry::Error:
2096       return error("Malformed block");
2097     case BitstreamEntry::EndBlock:
2098       return Error::success();
2099     case BitstreamEntry::Record:
2100       break;
2101     }
2102 
2103     Record.clear();
2104     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2105     if (!MaybeRecord)
2106       return MaybeRecord.takeError();
2107     switch (MaybeRecord.get()) {
2108     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2109       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2110                               cast<Function>(ValueList[Record[0]]), Record);
2111       break;
2112     }
2113   }
2114 }
2115 
2116 /// Parse the value symbol table at either the current parsing location or
2117 /// at the given bit offset if provided.
2118 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2119   uint64_t CurrentBit;
2120   // Pass in the Offset to distinguish between calling for the module-level
2121   // VST (where we want to jump to the VST offset) and the function-level
2122   // VST (where we don't).
2123   if (Offset > 0) {
2124     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2125     if (!MaybeCurrentBit)
2126       return MaybeCurrentBit.takeError();
2127     CurrentBit = MaybeCurrentBit.get();
2128     // If this module uses a string table, read this as a module-level VST.
2129     if (UseStrtab) {
2130       if (Error Err = parseGlobalValueSymbolTable())
2131         return Err;
2132       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2133         return JumpFailed;
2134       return Error::success();
2135     }
2136     // Otherwise, the VST will be in a similar format to a function-level VST,
2137     // and will contain symbol names.
2138   }
2139 
2140   // Compute the delta between the bitcode indices in the VST (the word offset
2141   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2142   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2143   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2144   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2145   // just before entering the VST subblock because: 1) the EnterSubBlock
2146   // changes the AbbrevID width; 2) the VST block is nested within the same
2147   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2148   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2149   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2150   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2151   unsigned FuncBitcodeOffsetDelta =
2152       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2153 
2154   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2155     return Err;
2156 
2157   SmallVector<uint64_t, 64> Record;
2158 
2159   Triple TT(TheModule->getTargetTriple());
2160 
2161   // Read all the records for this value table.
2162   SmallString<128> ValueName;
2163 
2164   while (true) {
2165     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2166     if (!MaybeEntry)
2167       return MaybeEntry.takeError();
2168     BitstreamEntry Entry = MaybeEntry.get();
2169 
2170     switch (Entry.Kind) {
2171     case BitstreamEntry::SubBlock: // Handled for us already.
2172     case BitstreamEntry::Error:
2173       return error("Malformed block");
2174     case BitstreamEntry::EndBlock:
2175       if (Offset > 0)
2176         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2177           return JumpFailed;
2178       return Error::success();
2179     case BitstreamEntry::Record:
2180       // The interesting case.
2181       break;
2182     }
2183 
2184     // Read a record.
2185     Record.clear();
2186     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2187     if (!MaybeRecord)
2188       return MaybeRecord.takeError();
2189     switch (MaybeRecord.get()) {
2190     default:  // Default behavior: unknown type.
2191       break;
2192     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2193       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2194       if (Error Err = ValOrErr.takeError())
2195         return Err;
2196       ValOrErr.get();
2197       break;
2198     }
2199     case bitc::VST_CODE_FNENTRY: {
2200       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2201       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2202       if (Error Err = ValOrErr.takeError())
2203         return Err;
2204       Value *V = ValOrErr.get();
2205 
2206       // Ignore function offsets emitted for aliases of functions in older
2207       // versions of LLVM.
2208       if (auto *F = dyn_cast<Function>(V))
2209         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2210       break;
2211     }
2212     case bitc::VST_CODE_BBENTRY: {
2213       if (convertToString(Record, 1, ValueName))
2214         return error("Invalid record");
2215       BasicBlock *BB = getBasicBlock(Record[0]);
2216       if (!BB)
2217         return error("Invalid record");
2218 
2219       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2220       ValueName.clear();
2221       break;
2222     }
2223     }
2224   }
2225 }
2226 
2227 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2228 /// encoding.
2229 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2230   if ((V & 1) == 0)
2231     return V >> 1;
2232   if (V != 1)
2233     return -(V >> 1);
2234   // There is no such thing as -0 with integers.  "-0" really means MININT.
2235   return 1ULL << 63;
2236 }
2237 
2238 /// Resolve all of the initializers for global values and aliases that we can.
2239 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2240   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2241   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2242       IndirectSymbolInitWorklist;
2243   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2244   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2245   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2246 
2247   GlobalInitWorklist.swap(GlobalInits);
2248   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2249   FunctionPrefixWorklist.swap(FunctionPrefixes);
2250   FunctionPrologueWorklist.swap(FunctionPrologues);
2251   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2252 
2253   while (!GlobalInitWorklist.empty()) {
2254     unsigned ValID = GlobalInitWorklist.back().second;
2255     if (ValID >= ValueList.size()) {
2256       // Not ready to resolve this yet, it requires something later in the file.
2257       GlobalInits.push_back(GlobalInitWorklist.back());
2258     } else {
2259       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2260         GlobalInitWorklist.back().first->setInitializer(C);
2261       else
2262         return error("Expected a constant");
2263     }
2264     GlobalInitWorklist.pop_back();
2265   }
2266 
2267   while (!IndirectSymbolInitWorklist.empty()) {
2268     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2269     if (ValID >= ValueList.size()) {
2270       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2271     } else {
2272       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2273       if (!C)
2274         return error("Expected a constant");
2275       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2276       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2277         return error("Alias and aliasee types don't match");
2278       GIS->setIndirectSymbol(C);
2279     }
2280     IndirectSymbolInitWorklist.pop_back();
2281   }
2282 
2283   while (!FunctionPrefixWorklist.empty()) {
2284     unsigned ValID = FunctionPrefixWorklist.back().second;
2285     if (ValID >= ValueList.size()) {
2286       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2287     } else {
2288       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2289         FunctionPrefixWorklist.back().first->setPrefixData(C);
2290       else
2291         return error("Expected a constant");
2292     }
2293     FunctionPrefixWorklist.pop_back();
2294   }
2295 
2296   while (!FunctionPrologueWorklist.empty()) {
2297     unsigned ValID = FunctionPrologueWorklist.back().second;
2298     if (ValID >= ValueList.size()) {
2299       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2300     } else {
2301       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2302         FunctionPrologueWorklist.back().first->setPrologueData(C);
2303       else
2304         return error("Expected a constant");
2305     }
2306     FunctionPrologueWorklist.pop_back();
2307   }
2308 
2309   while (!FunctionPersonalityFnWorklist.empty()) {
2310     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2311     if (ValID >= ValueList.size()) {
2312       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2313     } else {
2314       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2315         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2316       else
2317         return error("Expected a constant");
2318     }
2319     FunctionPersonalityFnWorklist.pop_back();
2320   }
2321 
2322   return Error::success();
2323 }
2324 
2325 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2326   SmallVector<uint64_t, 8> Words(Vals.size());
2327   transform(Vals, Words.begin(),
2328                  BitcodeReader::decodeSignRotatedValue);
2329 
2330   return APInt(TypeBits, Words);
2331 }
2332 
2333 Error BitcodeReader::parseConstants() {
2334   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2335     return Err;
2336 
2337   SmallVector<uint64_t, 64> Record;
2338 
2339   // Read all the records for this value table.
2340   Type *CurTy = Type::getInt32Ty(Context);
2341   Type *CurFullTy = Type::getInt32Ty(Context);
2342   unsigned NextCstNo = ValueList.size();
2343 
2344   struct DelayedShufTy {
2345     VectorType *OpTy;
2346     VectorType *RTy;
2347     Type *CurFullTy;
2348     uint64_t Op0Idx;
2349     uint64_t Op1Idx;
2350     uint64_t Op2Idx;
2351     unsigned CstNo;
2352   };
2353   std::vector<DelayedShufTy> DelayedShuffles;
2354   while (true) {
2355     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2356     if (!MaybeEntry)
2357       return MaybeEntry.takeError();
2358     BitstreamEntry Entry = MaybeEntry.get();
2359 
2360     switch (Entry.Kind) {
2361     case BitstreamEntry::SubBlock: // Handled for us already.
2362     case BitstreamEntry::Error:
2363       return error("Malformed block");
2364     case BitstreamEntry::EndBlock:
2365       // Once all the constants have been read, go through and resolve forward
2366       // references.
2367       //
2368       // We have to treat shuffles specially because they don't have three
2369       // operands anymore.  We need to convert the shuffle mask into an array,
2370       // and we can't convert a forward reference.
2371       for (auto &DelayedShuffle : DelayedShuffles) {
2372         VectorType *OpTy = DelayedShuffle.OpTy;
2373         VectorType *RTy = DelayedShuffle.RTy;
2374         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2375         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2376         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2377         uint64_t CstNo = DelayedShuffle.CstNo;
2378         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2379         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2380         Type *ShufTy =
2381             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2382         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2383         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2384           return error("Invalid shufflevector operands");
2385         SmallVector<int, 16> Mask;
2386         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2387         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2388         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2389       }
2390 
2391       if (NextCstNo != ValueList.size())
2392         return error("Invalid constant reference");
2393 
2394       ValueList.resolveConstantForwardRefs();
2395       return Error::success();
2396     case BitstreamEntry::Record:
2397       // The interesting case.
2398       break;
2399     }
2400 
2401     // Read a record.
2402     Record.clear();
2403     Type *VoidType = Type::getVoidTy(Context);
2404     Value *V = nullptr;
2405     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2406     if (!MaybeBitCode)
2407       return MaybeBitCode.takeError();
2408     switch (unsigned BitCode = MaybeBitCode.get()) {
2409     default:  // Default behavior: unknown constant
2410     case bitc::CST_CODE_UNDEF:     // UNDEF
2411       V = UndefValue::get(CurTy);
2412       break;
2413     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2414       if (Record.empty())
2415         return error("Invalid record");
2416       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2417         return error("Invalid record");
2418       if (TypeList[Record[0]] == VoidType)
2419         return error("Invalid constant type");
2420       CurFullTy = TypeList[Record[0]];
2421       CurTy = flattenPointerTypes(CurFullTy);
2422       continue;  // Skip the ValueList manipulation.
2423     case bitc::CST_CODE_NULL:      // NULL
2424       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2425         return error("Invalid type for a constant null value");
2426       V = Constant::getNullValue(CurTy);
2427       break;
2428     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2429       if (!CurTy->isIntegerTy() || Record.empty())
2430         return error("Invalid record");
2431       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2432       break;
2433     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2434       if (!CurTy->isIntegerTy() || Record.empty())
2435         return error("Invalid record");
2436 
2437       APInt VInt =
2438           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2439       V = ConstantInt::get(Context, VInt);
2440 
2441       break;
2442     }
2443     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2444       if (Record.empty())
2445         return error("Invalid record");
2446       if (CurTy->isHalfTy())
2447         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2448                                              APInt(16, (uint16_t)Record[0])));
2449       else if (CurTy->isBFloatTy())
2450         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2451                                              APInt(16, (uint32_t)Record[0])));
2452       else if (CurTy->isFloatTy())
2453         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2454                                              APInt(32, (uint32_t)Record[0])));
2455       else if (CurTy->isDoubleTy())
2456         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2457                                              APInt(64, Record[0])));
2458       else if (CurTy->isX86_FP80Ty()) {
2459         // Bits are not stored the same way as a normal i80 APInt, compensate.
2460         uint64_t Rearrange[2];
2461         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2462         Rearrange[1] = Record[0] >> 48;
2463         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2464                                              APInt(80, Rearrange)));
2465       } else if (CurTy->isFP128Ty())
2466         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2467                                              APInt(128, Record)));
2468       else if (CurTy->isPPC_FP128Ty())
2469         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2470                                              APInt(128, Record)));
2471       else
2472         V = UndefValue::get(CurTy);
2473       break;
2474     }
2475 
2476     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2477       if (Record.empty())
2478         return error("Invalid record");
2479 
2480       unsigned Size = Record.size();
2481       SmallVector<Constant*, 16> Elts;
2482 
2483       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2484         for (unsigned i = 0; i != Size; ++i)
2485           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2486                                                      STy->getElementType(i)));
2487         V = ConstantStruct::get(STy, Elts);
2488       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2489         Type *EltTy = ATy->getElementType();
2490         for (unsigned i = 0; i != Size; ++i)
2491           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2492         V = ConstantArray::get(ATy, Elts);
2493       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2494         Type *EltTy = VTy->getElementType();
2495         for (unsigned i = 0; i != Size; ++i)
2496           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2497         V = ConstantVector::get(Elts);
2498       } else {
2499         V = UndefValue::get(CurTy);
2500       }
2501       break;
2502     }
2503     case bitc::CST_CODE_STRING:    // STRING: [values]
2504     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2505       if (Record.empty())
2506         return error("Invalid record");
2507 
2508       SmallString<16> Elts(Record.begin(), Record.end());
2509       V = ConstantDataArray::getString(Context, Elts,
2510                                        BitCode == bitc::CST_CODE_CSTRING);
2511       break;
2512     }
2513     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2514       if (Record.empty())
2515         return error("Invalid record");
2516 
2517       Type *EltTy;
2518       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2519         EltTy = Array->getElementType();
2520       else
2521         EltTy = cast<VectorType>(CurTy)->getElementType();
2522       if (EltTy->isIntegerTy(8)) {
2523         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2524         if (isa<VectorType>(CurTy))
2525           V = ConstantDataVector::get(Context, Elts);
2526         else
2527           V = ConstantDataArray::get(Context, Elts);
2528       } else if (EltTy->isIntegerTy(16)) {
2529         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2530         if (isa<VectorType>(CurTy))
2531           V = ConstantDataVector::get(Context, Elts);
2532         else
2533           V = ConstantDataArray::get(Context, Elts);
2534       } else if (EltTy->isIntegerTy(32)) {
2535         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2536         if (isa<VectorType>(CurTy))
2537           V = ConstantDataVector::get(Context, Elts);
2538         else
2539           V = ConstantDataArray::get(Context, Elts);
2540       } else if (EltTy->isIntegerTy(64)) {
2541         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2542         if (isa<VectorType>(CurTy))
2543           V = ConstantDataVector::get(Context, Elts);
2544         else
2545           V = ConstantDataArray::get(Context, Elts);
2546       } else if (EltTy->isHalfTy()) {
2547         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2548         if (isa<VectorType>(CurTy))
2549           V = ConstantDataVector::getFP(EltTy, Elts);
2550         else
2551           V = ConstantDataArray::getFP(EltTy, Elts);
2552       } else if (EltTy->isBFloatTy()) {
2553         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2554         if (isa<VectorType>(CurTy))
2555           V = ConstantDataVector::getFP(EltTy, Elts);
2556         else
2557           V = ConstantDataArray::getFP(EltTy, Elts);
2558       } else if (EltTy->isFloatTy()) {
2559         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2560         if (isa<VectorType>(CurTy))
2561           V = ConstantDataVector::getFP(EltTy, Elts);
2562         else
2563           V = ConstantDataArray::getFP(EltTy, Elts);
2564       } else if (EltTy->isDoubleTy()) {
2565         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2566         if (isa<VectorType>(CurTy))
2567           V = ConstantDataVector::getFP(EltTy, Elts);
2568         else
2569           V = ConstantDataArray::getFP(EltTy, Elts);
2570       } else {
2571         return error("Invalid type for value");
2572       }
2573       break;
2574     }
2575     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2576       if (Record.size() < 2)
2577         return error("Invalid record");
2578       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2579       if (Opc < 0) {
2580         V = UndefValue::get(CurTy);  // Unknown unop.
2581       } else {
2582         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2583         unsigned Flags = 0;
2584         V = ConstantExpr::get(Opc, LHS, Flags);
2585       }
2586       break;
2587     }
2588     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2589       if (Record.size() < 3)
2590         return error("Invalid record");
2591       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2592       if (Opc < 0) {
2593         V = UndefValue::get(CurTy);  // Unknown binop.
2594       } else {
2595         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2596         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2597         unsigned Flags = 0;
2598         if (Record.size() >= 4) {
2599           if (Opc == Instruction::Add ||
2600               Opc == Instruction::Sub ||
2601               Opc == Instruction::Mul ||
2602               Opc == Instruction::Shl) {
2603             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2604               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2605             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2606               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2607           } else if (Opc == Instruction::SDiv ||
2608                      Opc == Instruction::UDiv ||
2609                      Opc == Instruction::LShr ||
2610                      Opc == Instruction::AShr) {
2611             if (Record[3] & (1 << bitc::PEO_EXACT))
2612               Flags |= SDivOperator::IsExact;
2613           }
2614         }
2615         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2616       }
2617       break;
2618     }
2619     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2620       if (Record.size() < 3)
2621         return error("Invalid record");
2622       int Opc = getDecodedCastOpcode(Record[0]);
2623       if (Opc < 0) {
2624         V = UndefValue::get(CurTy);  // Unknown cast.
2625       } else {
2626         Type *OpTy = getTypeByID(Record[1]);
2627         if (!OpTy)
2628           return error("Invalid record");
2629         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2630         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2631         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2632       }
2633       break;
2634     }
2635     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2636     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2637     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2638                                                      // operands]
2639       unsigned OpNum = 0;
2640       Type *PointeeType = nullptr;
2641       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2642           Record.size() % 2)
2643         PointeeType = getTypeByID(Record[OpNum++]);
2644 
2645       bool InBounds = false;
2646       Optional<unsigned> InRangeIndex;
2647       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2648         uint64_t Op = Record[OpNum++];
2649         InBounds = Op & 1;
2650         InRangeIndex = Op >> 1;
2651       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2652         InBounds = true;
2653 
2654       SmallVector<Constant*, 16> Elts;
2655       Type *Elt0FullTy = nullptr;
2656       while (OpNum != Record.size()) {
2657         if (!Elt0FullTy)
2658           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2659         Type *ElTy = getTypeByID(Record[OpNum++]);
2660         if (!ElTy)
2661           return error("Invalid record");
2662         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2663       }
2664 
2665       if (Elts.size() < 1)
2666         return error("Invalid gep with no operands");
2667 
2668       Type *ImplicitPointeeType =
2669           getPointerElementFlatType(Elt0FullTy->getScalarType());
2670       if (!PointeeType)
2671         PointeeType = ImplicitPointeeType;
2672       else if (PointeeType != ImplicitPointeeType)
2673         return error("Explicit gep operator type does not match pointee type "
2674                      "of pointer operand");
2675 
2676       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2677       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2678                                          InBounds, InRangeIndex);
2679       break;
2680     }
2681     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2682       if (Record.size() < 3)
2683         return error("Invalid record");
2684 
2685       Type *SelectorTy = Type::getInt1Ty(Context);
2686 
2687       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2688       // Get the type from the ValueList before getting a forward ref.
2689       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2690         if (Value *V = ValueList[Record[0]])
2691           if (SelectorTy != V->getType())
2692             SelectorTy = VectorType::get(SelectorTy,
2693                                          VTy->getElementCount());
2694 
2695       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2696                                                               SelectorTy),
2697                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2698                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2699       break;
2700     }
2701     case bitc::CST_CODE_CE_EXTRACTELT
2702         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2703       if (Record.size() < 3)
2704         return error("Invalid record");
2705       VectorType *OpTy =
2706         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2707       if (!OpTy)
2708         return error("Invalid record");
2709       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2710       Constant *Op1 = nullptr;
2711       if (Record.size() == 4) {
2712         Type *IdxTy = getTypeByID(Record[2]);
2713         if (!IdxTy)
2714           return error("Invalid record");
2715         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2716       } else {
2717         // Deprecated, but still needed to read old bitcode files.
2718         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2719       }
2720       if (!Op1)
2721         return error("Invalid record");
2722       V = ConstantExpr::getExtractElement(Op0, Op1);
2723       break;
2724     }
2725     case bitc::CST_CODE_CE_INSERTELT
2726         : { // CE_INSERTELT: [opval, opval, opty, opval]
2727       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2728       if (Record.size() < 3 || !OpTy)
2729         return error("Invalid record");
2730       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2731       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2732                                                   OpTy->getElementType());
2733       Constant *Op2 = nullptr;
2734       if (Record.size() == 4) {
2735         Type *IdxTy = getTypeByID(Record[2]);
2736         if (!IdxTy)
2737           return error("Invalid record");
2738         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2739       } else {
2740         // Deprecated, but still needed to read old bitcode files.
2741         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2742       }
2743       if (!Op2)
2744         return error("Invalid record");
2745       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2746       break;
2747     }
2748     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2749       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2750       if (Record.size() < 3 || !OpTy)
2751         return error("Invalid record");
2752       DelayedShuffles.push_back(
2753           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2754       ++NextCstNo;
2755       continue;
2756     }
2757     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2758       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2759       VectorType *OpTy =
2760         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2761       if (Record.size() < 4 || !RTy || !OpTy)
2762         return error("Invalid record");
2763       DelayedShuffles.push_back(
2764           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2765       ++NextCstNo;
2766       continue;
2767     }
2768     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2769       if (Record.size() < 4)
2770         return error("Invalid record");
2771       Type *OpTy = getTypeByID(Record[0]);
2772       if (!OpTy)
2773         return error("Invalid record");
2774       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2775       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2776 
2777       if (OpTy->isFPOrFPVectorTy())
2778         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2779       else
2780         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2781       break;
2782     }
2783     // This maintains backward compatibility, pre-asm dialect keywords.
2784     // Deprecated, but still needed to read old bitcode files.
2785     case bitc::CST_CODE_INLINEASM_OLD: {
2786       if (Record.size() < 2)
2787         return error("Invalid record");
2788       std::string AsmStr, ConstrStr;
2789       bool HasSideEffects = Record[0] & 1;
2790       bool IsAlignStack = Record[0] >> 1;
2791       unsigned AsmStrSize = Record[1];
2792       if (2+AsmStrSize >= Record.size())
2793         return error("Invalid record");
2794       unsigned ConstStrSize = Record[2+AsmStrSize];
2795       if (3+AsmStrSize+ConstStrSize > Record.size())
2796         return error("Invalid record");
2797 
2798       for (unsigned i = 0; i != AsmStrSize; ++i)
2799         AsmStr += (char)Record[2+i];
2800       for (unsigned i = 0; i != ConstStrSize; ++i)
2801         ConstrStr += (char)Record[3+AsmStrSize+i];
2802       UpgradeInlineAsmString(&AsmStr);
2803       V = InlineAsm::get(
2804           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2805           ConstrStr, HasSideEffects, IsAlignStack);
2806       break;
2807     }
2808     // This version adds support for the asm dialect keywords (e.g.,
2809     // inteldialect).
2810     case bitc::CST_CODE_INLINEASM: {
2811       if (Record.size() < 2)
2812         return error("Invalid record");
2813       std::string AsmStr, ConstrStr;
2814       bool HasSideEffects = Record[0] & 1;
2815       bool IsAlignStack = (Record[0] >> 1) & 1;
2816       unsigned AsmDialect = Record[0] >> 2;
2817       unsigned AsmStrSize = Record[1];
2818       if (2+AsmStrSize >= Record.size())
2819         return error("Invalid record");
2820       unsigned ConstStrSize = Record[2+AsmStrSize];
2821       if (3+AsmStrSize+ConstStrSize > Record.size())
2822         return error("Invalid record");
2823 
2824       for (unsigned i = 0; i != AsmStrSize; ++i)
2825         AsmStr += (char)Record[2+i];
2826       for (unsigned i = 0; i != ConstStrSize; ++i)
2827         ConstrStr += (char)Record[3+AsmStrSize+i];
2828       UpgradeInlineAsmString(&AsmStr);
2829       V = InlineAsm::get(
2830           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2831           ConstrStr, HasSideEffects, IsAlignStack,
2832           InlineAsm::AsmDialect(AsmDialect));
2833       break;
2834     }
2835     case bitc::CST_CODE_BLOCKADDRESS:{
2836       if (Record.size() < 3)
2837         return error("Invalid record");
2838       Type *FnTy = getTypeByID(Record[0]);
2839       if (!FnTy)
2840         return error("Invalid record");
2841       Function *Fn =
2842         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2843       if (!Fn)
2844         return error("Invalid record");
2845 
2846       // If the function is already parsed we can insert the block address right
2847       // away.
2848       BasicBlock *BB;
2849       unsigned BBID = Record[2];
2850       if (!BBID)
2851         // Invalid reference to entry block.
2852         return error("Invalid ID");
2853       if (!Fn->empty()) {
2854         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2855         for (size_t I = 0, E = BBID; I != E; ++I) {
2856           if (BBI == BBE)
2857             return error("Invalid ID");
2858           ++BBI;
2859         }
2860         BB = &*BBI;
2861       } else {
2862         // Otherwise insert a placeholder and remember it so it can be inserted
2863         // when the function is parsed.
2864         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2865         if (FwdBBs.empty())
2866           BasicBlockFwdRefQueue.push_back(Fn);
2867         if (FwdBBs.size() < BBID + 1)
2868           FwdBBs.resize(BBID + 1);
2869         if (!FwdBBs[BBID])
2870           FwdBBs[BBID] = BasicBlock::Create(Context);
2871         BB = FwdBBs[BBID];
2872       }
2873       V = BlockAddress::get(Fn, BB);
2874       break;
2875     }
2876     }
2877 
2878     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2879            "Incorrect fully structured type provided for Constant");
2880     ValueList.assignValue(V, NextCstNo, CurFullTy);
2881     ++NextCstNo;
2882   }
2883 }
2884 
2885 Error BitcodeReader::parseUseLists() {
2886   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2887     return Err;
2888 
2889   // Read all the records.
2890   SmallVector<uint64_t, 64> Record;
2891 
2892   while (true) {
2893     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2894     if (!MaybeEntry)
2895       return MaybeEntry.takeError();
2896     BitstreamEntry Entry = MaybeEntry.get();
2897 
2898     switch (Entry.Kind) {
2899     case BitstreamEntry::SubBlock: // Handled for us already.
2900     case BitstreamEntry::Error:
2901       return error("Malformed block");
2902     case BitstreamEntry::EndBlock:
2903       return Error::success();
2904     case BitstreamEntry::Record:
2905       // The interesting case.
2906       break;
2907     }
2908 
2909     // Read a use list record.
2910     Record.clear();
2911     bool IsBB = false;
2912     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2913     if (!MaybeRecord)
2914       return MaybeRecord.takeError();
2915     switch (MaybeRecord.get()) {
2916     default:  // Default behavior: unknown type.
2917       break;
2918     case bitc::USELIST_CODE_BB:
2919       IsBB = true;
2920       LLVM_FALLTHROUGH;
2921     case bitc::USELIST_CODE_DEFAULT: {
2922       unsigned RecordLength = Record.size();
2923       if (RecordLength < 3)
2924         // Records should have at least an ID and two indexes.
2925         return error("Invalid record");
2926       unsigned ID = Record.back();
2927       Record.pop_back();
2928 
2929       Value *V;
2930       if (IsBB) {
2931         assert(ID < FunctionBBs.size() && "Basic block not found");
2932         V = FunctionBBs[ID];
2933       } else
2934         V = ValueList[ID];
2935       unsigned NumUses = 0;
2936       SmallDenseMap<const Use *, unsigned, 16> Order;
2937       for (const Use &U : V->materialized_uses()) {
2938         if (++NumUses > Record.size())
2939           break;
2940         Order[&U] = Record[NumUses - 1];
2941       }
2942       if (Order.size() != Record.size() || NumUses > Record.size())
2943         // Mismatches can happen if the functions are being materialized lazily
2944         // (out-of-order), or a value has been upgraded.
2945         break;
2946 
2947       V->sortUseList([&](const Use &L, const Use &R) {
2948         return Order.lookup(&L) < Order.lookup(&R);
2949       });
2950       break;
2951     }
2952     }
2953   }
2954 }
2955 
2956 /// When we see the block for metadata, remember where it is and then skip it.
2957 /// This lets us lazily deserialize the metadata.
2958 Error BitcodeReader::rememberAndSkipMetadata() {
2959   // Save the current stream state.
2960   uint64_t CurBit = Stream.GetCurrentBitNo();
2961   DeferredMetadataInfo.push_back(CurBit);
2962 
2963   // Skip over the block for now.
2964   if (Error Err = Stream.SkipBlock())
2965     return Err;
2966   return Error::success();
2967 }
2968 
2969 Error BitcodeReader::materializeMetadata() {
2970   for (uint64_t BitPos : DeferredMetadataInfo) {
2971     // Move the bit stream to the saved position.
2972     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2973       return JumpFailed;
2974     if (Error Err = MDLoader->parseModuleMetadata())
2975       return Err;
2976   }
2977 
2978   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2979   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
2980   // multiple times.
2981   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
2982     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2983       NamedMDNode *LinkerOpts =
2984           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2985       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2986         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2987     }
2988   }
2989 
2990   DeferredMetadataInfo.clear();
2991   return Error::success();
2992 }
2993 
2994 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2995 
2996 /// When we see the block for a function body, remember where it is and then
2997 /// skip it.  This lets us lazily deserialize the functions.
2998 Error BitcodeReader::rememberAndSkipFunctionBody() {
2999   // Get the function we are talking about.
3000   if (FunctionsWithBodies.empty())
3001     return error("Insufficient function protos");
3002 
3003   Function *Fn = FunctionsWithBodies.back();
3004   FunctionsWithBodies.pop_back();
3005 
3006   // Save the current stream state.
3007   uint64_t CurBit = Stream.GetCurrentBitNo();
3008   assert(
3009       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3010       "Mismatch between VST and scanned function offsets");
3011   DeferredFunctionInfo[Fn] = CurBit;
3012 
3013   // Skip over the function block for now.
3014   if (Error Err = Stream.SkipBlock())
3015     return Err;
3016   return Error::success();
3017 }
3018 
3019 Error BitcodeReader::globalCleanup() {
3020   // Patch the initializers for globals and aliases up.
3021   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3022     return Err;
3023   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3024     return error("Malformed global initializer set");
3025 
3026   // Look for intrinsic functions which need to be upgraded at some point
3027   // and functions that need to have their function attributes upgraded.
3028   for (Function &F : *TheModule) {
3029     MDLoader->upgradeDebugIntrinsics(F);
3030     Function *NewFn;
3031     if (UpgradeIntrinsicFunction(&F, NewFn))
3032       UpgradedIntrinsics[&F] = NewFn;
3033     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3034       // Some types could be renamed during loading if several modules are
3035       // loaded in the same LLVMContext (LTO scenario). In this case we should
3036       // remangle intrinsics names as well.
3037       RemangledIntrinsics[&F] = Remangled.getValue();
3038     // Look for functions that rely on old function attribute behavior.
3039     UpgradeFunctionAttributes(F);
3040   }
3041 
3042   // Look for global variables which need to be renamed.
3043   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3044   for (GlobalVariable &GV : TheModule->globals())
3045     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3046       UpgradedVariables.emplace_back(&GV, Upgraded);
3047   for (auto &Pair : UpgradedVariables) {
3048     Pair.first->eraseFromParent();
3049     TheModule->getGlobalList().push_back(Pair.second);
3050   }
3051 
3052   // Force deallocation of memory for these vectors to favor the client that
3053   // want lazy deserialization.
3054   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3055   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3056       IndirectSymbolInits);
3057   return Error::success();
3058 }
3059 
3060 /// Support for lazy parsing of function bodies. This is required if we
3061 /// either have an old bitcode file without a VST forward declaration record,
3062 /// or if we have an anonymous function being materialized, since anonymous
3063 /// functions do not have a name and are therefore not in the VST.
3064 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3065   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3066     return JumpFailed;
3067 
3068   if (Stream.AtEndOfStream())
3069     return error("Could not find function in stream");
3070 
3071   if (!SeenFirstFunctionBody)
3072     return error("Trying to materialize functions before seeing function blocks");
3073 
3074   // An old bitcode file with the symbol table at the end would have
3075   // finished the parse greedily.
3076   assert(SeenValueSymbolTable);
3077 
3078   SmallVector<uint64_t, 64> Record;
3079 
3080   while (true) {
3081     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3082     if (!MaybeEntry)
3083       return MaybeEntry.takeError();
3084     llvm::BitstreamEntry Entry = MaybeEntry.get();
3085 
3086     switch (Entry.Kind) {
3087     default:
3088       return error("Expect SubBlock");
3089     case BitstreamEntry::SubBlock:
3090       switch (Entry.ID) {
3091       default:
3092         return error("Expect function block");
3093       case bitc::FUNCTION_BLOCK_ID:
3094         if (Error Err = rememberAndSkipFunctionBody())
3095           return Err;
3096         NextUnreadBit = Stream.GetCurrentBitNo();
3097         return Error::success();
3098       }
3099     }
3100   }
3101 }
3102 
3103 bool BitcodeReaderBase::readBlockInfo() {
3104   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3105       Stream.ReadBlockInfoBlock();
3106   if (!MaybeNewBlockInfo)
3107     return true; // FIXME Handle the error.
3108   Optional<BitstreamBlockInfo> NewBlockInfo =
3109       std::move(MaybeNewBlockInfo.get());
3110   if (!NewBlockInfo)
3111     return true;
3112   BlockInfo = std::move(*NewBlockInfo);
3113   return false;
3114 }
3115 
3116 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3117   // v1: [selection_kind, name]
3118   // v2: [strtab_offset, strtab_size, selection_kind]
3119   StringRef Name;
3120   std::tie(Name, Record) = readNameFromStrtab(Record);
3121 
3122   if (Record.empty())
3123     return error("Invalid record");
3124   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3125   std::string OldFormatName;
3126   if (!UseStrtab) {
3127     if (Record.size() < 2)
3128       return error("Invalid record");
3129     unsigned ComdatNameSize = Record[1];
3130     OldFormatName.reserve(ComdatNameSize);
3131     for (unsigned i = 0; i != ComdatNameSize; ++i)
3132       OldFormatName += (char)Record[2 + i];
3133     Name = OldFormatName;
3134   }
3135   Comdat *C = TheModule->getOrInsertComdat(Name);
3136   C->setSelectionKind(SK);
3137   ComdatList.push_back(C);
3138   return Error::success();
3139 }
3140 
3141 static void inferDSOLocal(GlobalValue *GV) {
3142   // infer dso_local from linkage and visibility if it is not encoded.
3143   if (GV->hasLocalLinkage() ||
3144       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3145     GV->setDSOLocal(true);
3146 }
3147 
3148 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3149   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3150   // visibility, threadlocal, unnamed_addr, externally_initialized,
3151   // dllstorageclass, comdat, attributes, preemption specifier,
3152   // partition strtab offset, partition strtab size] (name in VST)
3153   // v2: [strtab_offset, strtab_size, v1]
3154   StringRef Name;
3155   std::tie(Name, Record) = readNameFromStrtab(Record);
3156 
3157   if (Record.size() < 6)
3158     return error("Invalid record");
3159   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3160   Type *Ty = flattenPointerTypes(FullTy);
3161   if (!Ty)
3162     return error("Invalid record");
3163   bool isConstant = Record[1] & 1;
3164   bool explicitType = Record[1] & 2;
3165   unsigned AddressSpace;
3166   if (explicitType) {
3167     AddressSpace = Record[1] >> 2;
3168   } else {
3169     if (!Ty->isPointerTy())
3170       return error("Invalid type for value");
3171     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3172     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3173   }
3174 
3175   uint64_t RawLinkage = Record[3];
3176   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3177   MaybeAlign Alignment;
3178   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3179     return Err;
3180   std::string Section;
3181   if (Record[5]) {
3182     if (Record[5] - 1 >= SectionTable.size())
3183       return error("Invalid ID");
3184     Section = SectionTable[Record[5] - 1];
3185   }
3186   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3187   // Local linkage must have default visibility.
3188   // auto-upgrade `hidden` and `protected` for old bitcode.
3189   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3190     Visibility = getDecodedVisibility(Record[6]);
3191 
3192   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3193   if (Record.size() > 7)
3194     TLM = getDecodedThreadLocalMode(Record[7]);
3195 
3196   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3197   if (Record.size() > 8)
3198     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3199 
3200   bool ExternallyInitialized = false;
3201   if (Record.size() > 9)
3202     ExternallyInitialized = Record[9];
3203 
3204   GlobalVariable *NewGV =
3205       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3206                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3207   NewGV->setAlignment(Alignment);
3208   if (!Section.empty())
3209     NewGV->setSection(Section);
3210   NewGV->setVisibility(Visibility);
3211   NewGV->setUnnamedAddr(UnnamedAddr);
3212 
3213   if (Record.size() > 10)
3214     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3215   else
3216     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3217 
3218   FullTy = PointerType::get(FullTy, AddressSpace);
3219   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3220          "Incorrect fully specified type for GlobalVariable");
3221   ValueList.push_back(NewGV, FullTy);
3222 
3223   // Remember which value to use for the global initializer.
3224   if (unsigned InitID = Record[2])
3225     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3226 
3227   if (Record.size() > 11) {
3228     if (unsigned ComdatID = Record[11]) {
3229       if (ComdatID > ComdatList.size())
3230         return error("Invalid global variable comdat ID");
3231       NewGV->setComdat(ComdatList[ComdatID - 1]);
3232     }
3233   } else if (hasImplicitComdat(RawLinkage)) {
3234     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3235   }
3236 
3237   if (Record.size() > 12) {
3238     auto AS = getAttributes(Record[12]).getFnAttributes();
3239     NewGV->setAttributes(AS);
3240   }
3241 
3242   if (Record.size() > 13) {
3243     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3244   }
3245   inferDSOLocal(NewGV);
3246 
3247   // Check whether we have enough values to read a partition name.
3248   if (Record.size() > 15)
3249     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3250 
3251   return Error::success();
3252 }
3253 
3254 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3255   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3256   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3257   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3258   // v2: [strtab_offset, strtab_size, v1]
3259   StringRef Name;
3260   std::tie(Name, Record) = readNameFromStrtab(Record);
3261 
3262   if (Record.size() < 8)
3263     return error("Invalid record");
3264   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3265   Type *FTy = flattenPointerTypes(FullFTy);
3266   if (!FTy)
3267     return error("Invalid record");
3268   if (isa<PointerType>(FTy))
3269     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3270 
3271   if (!isa<FunctionType>(FTy))
3272     return error("Invalid type for value");
3273   auto CC = static_cast<CallingConv::ID>(Record[1]);
3274   if (CC & ~CallingConv::MaxID)
3275     return error("Invalid calling convention ID");
3276 
3277   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3278   if (Record.size() > 16)
3279     AddrSpace = Record[16];
3280 
3281   Function *Func =
3282       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3283                        AddrSpace, Name, TheModule);
3284 
3285   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3286          "Incorrect fully specified type provided for function");
3287   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3288 
3289   Func->setCallingConv(CC);
3290   bool isProto = Record[2];
3291   uint64_t RawLinkage = Record[3];
3292   Func->setLinkage(getDecodedLinkage(RawLinkage));
3293   Func->setAttributes(getAttributes(Record[4]));
3294 
3295   // Upgrade any old-style byval or sret without a type by propagating the
3296   // argument's pointee type. There should be no opaque pointers where the byval
3297   // type is implicit.
3298   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3299     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3300       if (!Func->hasParamAttribute(i, Kind))
3301         continue;
3302 
3303       Func->removeParamAttr(i, Kind);
3304 
3305       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3306       Type *PtrEltTy = getPointerElementFlatType(PTy);
3307       Attribute NewAttr =
3308           Kind == Attribute::ByVal
3309               ? Attribute::getWithByValType(Context, PtrEltTy)
3310               : Attribute::getWithStructRetType(Context, PtrEltTy);
3311       Func->addParamAttr(i, NewAttr);
3312     }
3313   }
3314 
3315   MaybeAlign Alignment;
3316   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3317     return Err;
3318   Func->setAlignment(Alignment);
3319   if (Record[6]) {
3320     if (Record[6] - 1 >= SectionTable.size())
3321       return error("Invalid ID");
3322     Func->setSection(SectionTable[Record[6] - 1]);
3323   }
3324   // Local linkage must have default visibility.
3325   // auto-upgrade `hidden` and `protected` for old bitcode.
3326   if (!Func->hasLocalLinkage())
3327     Func->setVisibility(getDecodedVisibility(Record[7]));
3328   if (Record.size() > 8 && Record[8]) {
3329     if (Record[8] - 1 >= GCTable.size())
3330       return error("Invalid ID");
3331     Func->setGC(GCTable[Record[8] - 1]);
3332   }
3333   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3334   if (Record.size() > 9)
3335     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3336   Func->setUnnamedAddr(UnnamedAddr);
3337   if (Record.size() > 10 && Record[10] != 0)
3338     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3339 
3340   if (Record.size() > 11)
3341     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3342   else
3343     upgradeDLLImportExportLinkage(Func, RawLinkage);
3344 
3345   if (Record.size() > 12) {
3346     if (unsigned ComdatID = Record[12]) {
3347       if (ComdatID > ComdatList.size())
3348         return error("Invalid function comdat ID");
3349       Func->setComdat(ComdatList[ComdatID - 1]);
3350     }
3351   } else if (hasImplicitComdat(RawLinkage)) {
3352     Func->setComdat(reinterpret_cast<Comdat *>(1));
3353   }
3354 
3355   if (Record.size() > 13 && Record[13] != 0)
3356     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3357 
3358   if (Record.size() > 14 && Record[14] != 0)
3359     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3360 
3361   if (Record.size() > 15) {
3362     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3363   }
3364   inferDSOLocal(Func);
3365 
3366   // Record[16] is the address space number.
3367 
3368   // Check whether we have enough values to read a partition name.
3369   if (Record.size() > 18)
3370     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3371 
3372   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3373   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3374          "Incorrect fully specified type provided for Function");
3375   ValueList.push_back(Func, FullTy);
3376 
3377   // If this is a function with a body, remember the prototype we are
3378   // creating now, so that we can match up the body with them later.
3379   if (!isProto) {
3380     Func->setIsMaterializable(true);
3381     FunctionsWithBodies.push_back(Func);
3382     DeferredFunctionInfo[Func] = 0;
3383   }
3384   return Error::success();
3385 }
3386 
3387 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3388     unsigned BitCode, ArrayRef<uint64_t> Record) {
3389   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3390   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3391   // dllstorageclass, threadlocal, unnamed_addr,
3392   // preemption specifier] (name in VST)
3393   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3394   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3395   // preemption specifier] (name in VST)
3396   // v2: [strtab_offset, strtab_size, v1]
3397   StringRef Name;
3398   std::tie(Name, Record) = readNameFromStrtab(Record);
3399 
3400   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3401   if (Record.size() < (3 + (unsigned)NewRecord))
3402     return error("Invalid record");
3403   unsigned OpNum = 0;
3404   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3405   Type *Ty = flattenPointerTypes(FullTy);
3406   if (!Ty)
3407     return error("Invalid record");
3408 
3409   unsigned AddrSpace;
3410   if (!NewRecord) {
3411     auto *PTy = dyn_cast<PointerType>(Ty);
3412     if (!PTy)
3413       return error("Invalid type for value");
3414     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3415     AddrSpace = PTy->getAddressSpace();
3416   } else {
3417     AddrSpace = Record[OpNum++];
3418   }
3419 
3420   auto Val = Record[OpNum++];
3421   auto Linkage = Record[OpNum++];
3422   GlobalIndirectSymbol *NewGA;
3423   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3424       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3425     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3426                                 TheModule);
3427   else
3428     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3429                                 nullptr, TheModule);
3430 
3431   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3432          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3433   // Local linkage must have default visibility.
3434   // auto-upgrade `hidden` and `protected` for old bitcode.
3435   if (OpNum != Record.size()) {
3436     auto VisInd = OpNum++;
3437     if (!NewGA->hasLocalLinkage())
3438       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3439   }
3440   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3441       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3442     if (OpNum != Record.size())
3443       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3444     else
3445       upgradeDLLImportExportLinkage(NewGA, Linkage);
3446     if (OpNum != Record.size())
3447       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3448     if (OpNum != Record.size())
3449       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3450   }
3451   if (OpNum != Record.size())
3452     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3453   inferDSOLocal(NewGA);
3454 
3455   // Check whether we have enough values to read a partition name.
3456   if (OpNum + 1 < Record.size()) {
3457     NewGA->setPartition(
3458         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3459     OpNum += 2;
3460   }
3461 
3462   FullTy = PointerType::get(FullTy, AddrSpace);
3463   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3464          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3465   ValueList.push_back(NewGA, FullTy);
3466   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3467   return Error::success();
3468 }
3469 
3470 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3471                                  bool ShouldLazyLoadMetadata,
3472                                  DataLayoutCallbackTy DataLayoutCallback) {
3473   if (ResumeBit) {
3474     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3475       return JumpFailed;
3476   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3477     return Err;
3478 
3479   SmallVector<uint64_t, 64> Record;
3480 
3481   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3482   // finalize the datalayout before we run any of that code.
3483   bool ResolvedDataLayout = false;
3484   auto ResolveDataLayout = [&] {
3485     if (ResolvedDataLayout)
3486       return;
3487 
3488     // datalayout and triple can't be parsed after this point.
3489     ResolvedDataLayout = true;
3490 
3491     // Upgrade data layout string.
3492     std::string DL = llvm::UpgradeDataLayoutString(
3493         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3494     TheModule->setDataLayout(DL);
3495 
3496     if (auto LayoutOverride =
3497             DataLayoutCallback(TheModule->getTargetTriple()))
3498       TheModule->setDataLayout(*LayoutOverride);
3499   };
3500 
3501   // Read all the records for this module.
3502   while (true) {
3503     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3504     if (!MaybeEntry)
3505       return MaybeEntry.takeError();
3506     llvm::BitstreamEntry Entry = MaybeEntry.get();
3507 
3508     switch (Entry.Kind) {
3509     case BitstreamEntry::Error:
3510       return error("Malformed block");
3511     case BitstreamEntry::EndBlock:
3512       ResolveDataLayout();
3513       return globalCleanup();
3514 
3515     case BitstreamEntry::SubBlock:
3516       switch (Entry.ID) {
3517       default:  // Skip unknown content.
3518         if (Error Err = Stream.SkipBlock())
3519           return Err;
3520         break;
3521       case bitc::BLOCKINFO_BLOCK_ID:
3522         if (readBlockInfo())
3523           return error("Malformed block");
3524         break;
3525       case bitc::PARAMATTR_BLOCK_ID:
3526         if (Error Err = parseAttributeBlock())
3527           return Err;
3528         break;
3529       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3530         if (Error Err = parseAttributeGroupBlock())
3531           return Err;
3532         break;
3533       case bitc::TYPE_BLOCK_ID_NEW:
3534         if (Error Err = parseTypeTable())
3535           return Err;
3536         break;
3537       case bitc::VALUE_SYMTAB_BLOCK_ID:
3538         if (!SeenValueSymbolTable) {
3539           // Either this is an old form VST without function index and an
3540           // associated VST forward declaration record (which would have caused
3541           // the VST to be jumped to and parsed before it was encountered
3542           // normally in the stream), or there were no function blocks to
3543           // trigger an earlier parsing of the VST.
3544           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3545           if (Error Err = parseValueSymbolTable())
3546             return Err;
3547           SeenValueSymbolTable = true;
3548         } else {
3549           // We must have had a VST forward declaration record, which caused
3550           // the parser to jump to and parse the VST earlier.
3551           assert(VSTOffset > 0);
3552           if (Error Err = Stream.SkipBlock())
3553             return Err;
3554         }
3555         break;
3556       case bitc::CONSTANTS_BLOCK_ID:
3557         if (Error Err = parseConstants())
3558           return Err;
3559         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3560           return Err;
3561         break;
3562       case bitc::METADATA_BLOCK_ID:
3563         if (ShouldLazyLoadMetadata) {
3564           if (Error Err = rememberAndSkipMetadata())
3565             return Err;
3566           break;
3567         }
3568         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3569         if (Error Err = MDLoader->parseModuleMetadata())
3570           return Err;
3571         break;
3572       case bitc::METADATA_KIND_BLOCK_ID:
3573         if (Error Err = MDLoader->parseMetadataKinds())
3574           return Err;
3575         break;
3576       case bitc::FUNCTION_BLOCK_ID:
3577         ResolveDataLayout();
3578 
3579         // If this is the first function body we've seen, reverse the
3580         // FunctionsWithBodies list.
3581         if (!SeenFirstFunctionBody) {
3582           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3583           if (Error Err = globalCleanup())
3584             return Err;
3585           SeenFirstFunctionBody = true;
3586         }
3587 
3588         if (VSTOffset > 0) {
3589           // If we have a VST forward declaration record, make sure we
3590           // parse the VST now if we haven't already. It is needed to
3591           // set up the DeferredFunctionInfo vector for lazy reading.
3592           if (!SeenValueSymbolTable) {
3593             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3594               return Err;
3595             SeenValueSymbolTable = true;
3596             // Fall through so that we record the NextUnreadBit below.
3597             // This is necessary in case we have an anonymous function that
3598             // is later materialized. Since it will not have a VST entry we
3599             // need to fall back to the lazy parse to find its offset.
3600           } else {
3601             // If we have a VST forward declaration record, but have already
3602             // parsed the VST (just above, when the first function body was
3603             // encountered here), then we are resuming the parse after
3604             // materializing functions. The ResumeBit points to the
3605             // start of the last function block recorded in the
3606             // DeferredFunctionInfo map. Skip it.
3607             if (Error Err = Stream.SkipBlock())
3608               return Err;
3609             continue;
3610           }
3611         }
3612 
3613         // Support older bitcode files that did not have the function
3614         // index in the VST, nor a VST forward declaration record, as
3615         // well as anonymous functions that do not have VST entries.
3616         // Build the DeferredFunctionInfo vector on the fly.
3617         if (Error Err = rememberAndSkipFunctionBody())
3618           return Err;
3619 
3620         // Suspend parsing when we reach the function bodies. Subsequent
3621         // materialization calls will resume it when necessary. If the bitcode
3622         // file is old, the symbol table will be at the end instead and will not
3623         // have been seen yet. In this case, just finish the parse now.
3624         if (SeenValueSymbolTable) {
3625           NextUnreadBit = Stream.GetCurrentBitNo();
3626           // After the VST has been parsed, we need to make sure intrinsic name
3627           // are auto-upgraded.
3628           return globalCleanup();
3629         }
3630         break;
3631       case bitc::USELIST_BLOCK_ID:
3632         if (Error Err = parseUseLists())
3633           return Err;
3634         break;
3635       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3636         if (Error Err = parseOperandBundleTags())
3637           return Err;
3638         break;
3639       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3640         if (Error Err = parseSyncScopeNames())
3641           return Err;
3642         break;
3643       }
3644       continue;
3645 
3646     case BitstreamEntry::Record:
3647       // The interesting case.
3648       break;
3649     }
3650 
3651     // Read a record.
3652     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3653     if (!MaybeBitCode)
3654       return MaybeBitCode.takeError();
3655     switch (unsigned BitCode = MaybeBitCode.get()) {
3656     default: break;  // Default behavior, ignore unknown content.
3657     case bitc::MODULE_CODE_VERSION: {
3658       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3659       if (!VersionOrErr)
3660         return VersionOrErr.takeError();
3661       UseRelativeIDs = *VersionOrErr >= 1;
3662       break;
3663     }
3664     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3665       if (ResolvedDataLayout)
3666         return error("target triple too late in module");
3667       std::string S;
3668       if (convertToString(Record, 0, S))
3669         return error("Invalid record");
3670       TheModule->setTargetTriple(S);
3671       break;
3672     }
3673     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3674       if (ResolvedDataLayout)
3675         return error("datalayout too late in module");
3676       std::string S;
3677       if (convertToString(Record, 0, S))
3678         return error("Invalid record");
3679       TheModule->setDataLayout(S);
3680       break;
3681     }
3682     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3683       std::string S;
3684       if (convertToString(Record, 0, S))
3685         return error("Invalid record");
3686       TheModule->setModuleInlineAsm(S);
3687       break;
3688     }
3689     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3690       // Deprecated, but still needed to read old bitcode files.
3691       std::string S;
3692       if (convertToString(Record, 0, S))
3693         return error("Invalid record");
3694       // Ignore value.
3695       break;
3696     }
3697     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3698       std::string S;
3699       if (convertToString(Record, 0, S))
3700         return error("Invalid record");
3701       SectionTable.push_back(S);
3702       break;
3703     }
3704     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3705       std::string S;
3706       if (convertToString(Record, 0, S))
3707         return error("Invalid record");
3708       GCTable.push_back(S);
3709       break;
3710     }
3711     case bitc::MODULE_CODE_COMDAT:
3712       if (Error Err = parseComdatRecord(Record))
3713         return Err;
3714       break;
3715     case bitc::MODULE_CODE_GLOBALVAR:
3716       if (Error Err = parseGlobalVarRecord(Record))
3717         return Err;
3718       break;
3719     case bitc::MODULE_CODE_FUNCTION:
3720       ResolveDataLayout();
3721       if (Error Err = parseFunctionRecord(Record))
3722         return Err;
3723       break;
3724     case bitc::MODULE_CODE_IFUNC:
3725     case bitc::MODULE_CODE_ALIAS:
3726     case bitc::MODULE_CODE_ALIAS_OLD:
3727       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3728         return Err;
3729       break;
3730     /// MODULE_CODE_VSTOFFSET: [offset]
3731     case bitc::MODULE_CODE_VSTOFFSET:
3732       if (Record.empty())
3733         return error("Invalid record");
3734       // Note that we subtract 1 here because the offset is relative to one word
3735       // before the start of the identification or module block, which was
3736       // historically always the start of the regular bitcode header.
3737       VSTOffset = Record[0] - 1;
3738       break;
3739     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3740     case bitc::MODULE_CODE_SOURCE_FILENAME:
3741       SmallString<128> ValueName;
3742       if (convertToString(Record, 0, ValueName))
3743         return error("Invalid record");
3744       TheModule->setSourceFileName(ValueName);
3745       break;
3746     }
3747     Record.clear();
3748   }
3749 }
3750 
3751 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3752                                       bool IsImporting,
3753                                       DataLayoutCallbackTy DataLayoutCallback) {
3754   TheModule = M;
3755   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3756                             [&](unsigned ID) { return getTypeByID(ID); });
3757   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3758 }
3759 
3760 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3761   if (!isa<PointerType>(PtrType))
3762     return error("Load/Store operand is not a pointer type");
3763   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3764 
3765   if (ValType && ValType != ElemType)
3766     return error("Explicit load/store type does not match pointee "
3767                  "type of pointer operand");
3768   if (!PointerType::isLoadableOrStorableType(ElemType))
3769     return error("Cannot load/store from pointer");
3770   return Error::success();
3771 }
3772 
3773 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3774                                             ArrayRef<Type *> ArgsFullTys) {
3775   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3776     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3777       if (!CB->paramHasAttr(i, Kind))
3778         continue;
3779 
3780       CB->removeParamAttr(i, Kind);
3781 
3782       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3783       Attribute NewAttr =
3784           Kind == Attribute::ByVal
3785               ? Attribute::getWithByValType(Context, PtrEltTy)
3786               : Attribute::getWithStructRetType(Context, PtrEltTy);
3787       CB->addParamAttr(i, NewAttr);
3788     }
3789   }
3790 }
3791 
3792 /// Lazily parse the specified function body block.
3793 Error BitcodeReader::parseFunctionBody(Function *F) {
3794   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3795     return Err;
3796 
3797   // Unexpected unresolved metadata when parsing function.
3798   if (MDLoader->hasFwdRefs())
3799     return error("Invalid function metadata: incoming forward references");
3800 
3801   InstructionList.clear();
3802   unsigned ModuleValueListSize = ValueList.size();
3803   unsigned ModuleMDLoaderSize = MDLoader->size();
3804 
3805   // Add all the function arguments to the value table.
3806   unsigned ArgNo = 0;
3807   FunctionType *FullFTy = FunctionTypes[F];
3808   for (Argument &I : F->args()) {
3809     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3810            "Incorrect fully specified type for Function Argument");
3811     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3812   }
3813   unsigned NextValueNo = ValueList.size();
3814   BasicBlock *CurBB = nullptr;
3815   unsigned CurBBNo = 0;
3816 
3817   DebugLoc LastLoc;
3818   auto getLastInstruction = [&]() -> Instruction * {
3819     if (CurBB && !CurBB->empty())
3820       return &CurBB->back();
3821     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3822              !FunctionBBs[CurBBNo - 1]->empty())
3823       return &FunctionBBs[CurBBNo - 1]->back();
3824     return nullptr;
3825   };
3826 
3827   std::vector<OperandBundleDef> OperandBundles;
3828 
3829   // Read all the records.
3830   SmallVector<uint64_t, 64> Record;
3831 
3832   while (true) {
3833     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3834     if (!MaybeEntry)
3835       return MaybeEntry.takeError();
3836     llvm::BitstreamEntry Entry = MaybeEntry.get();
3837 
3838     switch (Entry.Kind) {
3839     case BitstreamEntry::Error:
3840       return error("Malformed block");
3841     case BitstreamEntry::EndBlock:
3842       goto OutOfRecordLoop;
3843 
3844     case BitstreamEntry::SubBlock:
3845       switch (Entry.ID) {
3846       default:  // Skip unknown content.
3847         if (Error Err = Stream.SkipBlock())
3848           return Err;
3849         break;
3850       case bitc::CONSTANTS_BLOCK_ID:
3851         if (Error Err = parseConstants())
3852           return Err;
3853         NextValueNo = ValueList.size();
3854         break;
3855       case bitc::VALUE_SYMTAB_BLOCK_ID:
3856         if (Error Err = parseValueSymbolTable())
3857           return Err;
3858         break;
3859       case bitc::METADATA_ATTACHMENT_ID:
3860         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3861           return Err;
3862         break;
3863       case bitc::METADATA_BLOCK_ID:
3864         assert(DeferredMetadataInfo.empty() &&
3865                "Must read all module-level metadata before function-level");
3866         if (Error Err = MDLoader->parseFunctionMetadata())
3867           return Err;
3868         break;
3869       case bitc::USELIST_BLOCK_ID:
3870         if (Error Err = parseUseLists())
3871           return Err;
3872         break;
3873       }
3874       continue;
3875 
3876     case BitstreamEntry::Record:
3877       // The interesting case.
3878       break;
3879     }
3880 
3881     // Read a record.
3882     Record.clear();
3883     Instruction *I = nullptr;
3884     Type *FullTy = nullptr;
3885     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3886     if (!MaybeBitCode)
3887       return MaybeBitCode.takeError();
3888     switch (unsigned BitCode = MaybeBitCode.get()) {
3889     default: // Default behavior: reject
3890       return error("Invalid value");
3891     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3892       if (Record.empty() || Record[0] == 0)
3893         return error("Invalid record");
3894       // Create all the basic blocks for the function.
3895       FunctionBBs.resize(Record[0]);
3896 
3897       // See if anything took the address of blocks in this function.
3898       auto BBFRI = BasicBlockFwdRefs.find(F);
3899       if (BBFRI == BasicBlockFwdRefs.end()) {
3900         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3901           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3902       } else {
3903         auto &BBRefs = BBFRI->second;
3904         // Check for invalid basic block references.
3905         if (BBRefs.size() > FunctionBBs.size())
3906           return error("Invalid ID");
3907         assert(!BBRefs.empty() && "Unexpected empty array");
3908         assert(!BBRefs.front() && "Invalid reference to entry block");
3909         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3910              ++I)
3911           if (I < RE && BBRefs[I]) {
3912             BBRefs[I]->insertInto(F);
3913             FunctionBBs[I] = BBRefs[I];
3914           } else {
3915             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3916           }
3917 
3918         // Erase from the table.
3919         BasicBlockFwdRefs.erase(BBFRI);
3920       }
3921 
3922       CurBB = FunctionBBs[0];
3923       continue;
3924     }
3925 
3926     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3927       // This record indicates that the last instruction is at the same
3928       // location as the previous instruction with a location.
3929       I = getLastInstruction();
3930 
3931       if (!I)
3932         return error("Invalid record");
3933       I->setDebugLoc(LastLoc);
3934       I = nullptr;
3935       continue;
3936 
3937     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3938       I = getLastInstruction();
3939       if (!I || Record.size() < 4)
3940         return error("Invalid record");
3941 
3942       unsigned Line = Record[0], Col = Record[1];
3943       unsigned ScopeID = Record[2], IAID = Record[3];
3944       bool isImplicitCode = Record.size() == 5 && Record[4];
3945 
3946       MDNode *Scope = nullptr, *IA = nullptr;
3947       if (ScopeID) {
3948         Scope = dyn_cast_or_null<MDNode>(
3949             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3950         if (!Scope)
3951           return error("Invalid record");
3952       }
3953       if (IAID) {
3954         IA = dyn_cast_or_null<MDNode>(
3955             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3956         if (!IA)
3957           return error("Invalid record");
3958       }
3959       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3960       I->setDebugLoc(LastLoc);
3961       I = nullptr;
3962       continue;
3963     }
3964     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3965       unsigned OpNum = 0;
3966       Value *LHS;
3967       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3968           OpNum+1 > Record.size())
3969         return error("Invalid record");
3970 
3971       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3972       if (Opc == -1)
3973         return error("Invalid record");
3974       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3975       InstructionList.push_back(I);
3976       if (OpNum < Record.size()) {
3977         if (isa<FPMathOperator>(I)) {
3978           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3979           if (FMF.any())
3980             I->setFastMathFlags(FMF);
3981         }
3982       }
3983       break;
3984     }
3985     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3986       unsigned OpNum = 0;
3987       Value *LHS, *RHS;
3988       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3989           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3990           OpNum+1 > Record.size())
3991         return error("Invalid record");
3992 
3993       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3994       if (Opc == -1)
3995         return error("Invalid record");
3996       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3997       InstructionList.push_back(I);
3998       if (OpNum < Record.size()) {
3999         if (Opc == Instruction::Add ||
4000             Opc == Instruction::Sub ||
4001             Opc == Instruction::Mul ||
4002             Opc == Instruction::Shl) {
4003           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4004             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4005           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4006             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4007         } else if (Opc == Instruction::SDiv ||
4008                    Opc == Instruction::UDiv ||
4009                    Opc == Instruction::LShr ||
4010                    Opc == Instruction::AShr) {
4011           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4012             cast<BinaryOperator>(I)->setIsExact(true);
4013         } else if (isa<FPMathOperator>(I)) {
4014           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4015           if (FMF.any())
4016             I->setFastMathFlags(FMF);
4017         }
4018 
4019       }
4020       break;
4021     }
4022     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4023       unsigned OpNum = 0;
4024       Value *Op;
4025       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4026           OpNum+2 != Record.size())
4027         return error("Invalid record");
4028 
4029       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4030       Type *ResTy = flattenPointerTypes(FullTy);
4031       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4032       if (Opc == -1 || !ResTy)
4033         return error("Invalid record");
4034       Instruction *Temp = nullptr;
4035       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4036         if (Temp) {
4037           InstructionList.push_back(Temp);
4038           assert(CurBB && "No current BB?");
4039           CurBB->getInstList().push_back(Temp);
4040         }
4041       } else {
4042         auto CastOp = (Instruction::CastOps)Opc;
4043         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4044           return error("Invalid cast");
4045         I = CastInst::Create(CastOp, Op, ResTy);
4046       }
4047       InstructionList.push_back(I);
4048       break;
4049     }
4050     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4051     case bitc::FUNC_CODE_INST_GEP_OLD:
4052     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4053       unsigned OpNum = 0;
4054 
4055       Type *Ty;
4056       bool InBounds;
4057 
4058       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4059         InBounds = Record[OpNum++];
4060         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4061         Ty = flattenPointerTypes(FullTy);
4062       } else {
4063         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4064         Ty = nullptr;
4065       }
4066 
4067       Value *BasePtr;
4068       Type *FullBaseTy = nullptr;
4069       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4070         return error("Invalid record");
4071 
4072       if (!Ty) {
4073         std::tie(FullTy, Ty) =
4074             getPointerElementTypes(FullBaseTy->getScalarType());
4075       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4076         return error(
4077             "Explicit gep type does not match pointee type of pointer operand");
4078 
4079       SmallVector<Value*, 16> GEPIdx;
4080       while (OpNum != Record.size()) {
4081         Value *Op;
4082         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4083           return error("Invalid record");
4084         GEPIdx.push_back(Op);
4085       }
4086 
4087       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4088       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4089 
4090       InstructionList.push_back(I);
4091       if (InBounds)
4092         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4093       break;
4094     }
4095 
4096     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4097                                        // EXTRACTVAL: [opty, opval, n x indices]
4098       unsigned OpNum = 0;
4099       Value *Agg;
4100       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4101         return error("Invalid record");
4102 
4103       unsigned RecSize = Record.size();
4104       if (OpNum == RecSize)
4105         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4106 
4107       SmallVector<unsigned, 4> EXTRACTVALIdx;
4108       for (; OpNum != RecSize; ++OpNum) {
4109         bool IsArray = FullTy->isArrayTy();
4110         bool IsStruct = FullTy->isStructTy();
4111         uint64_t Index = Record[OpNum];
4112 
4113         if (!IsStruct && !IsArray)
4114           return error("EXTRACTVAL: Invalid type");
4115         if ((unsigned)Index != Index)
4116           return error("Invalid value");
4117         if (IsStruct && Index >= FullTy->getStructNumElements())
4118           return error("EXTRACTVAL: Invalid struct index");
4119         if (IsArray && Index >= FullTy->getArrayNumElements())
4120           return error("EXTRACTVAL: Invalid array index");
4121         EXTRACTVALIdx.push_back((unsigned)Index);
4122 
4123         if (IsStruct)
4124           FullTy = FullTy->getStructElementType(Index);
4125         else
4126           FullTy = FullTy->getArrayElementType();
4127       }
4128 
4129       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4130       InstructionList.push_back(I);
4131       break;
4132     }
4133 
4134     case bitc::FUNC_CODE_INST_INSERTVAL: {
4135                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4136       unsigned OpNum = 0;
4137       Value *Agg;
4138       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4139         return error("Invalid record");
4140       Value *Val;
4141       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4142         return error("Invalid record");
4143 
4144       unsigned RecSize = Record.size();
4145       if (OpNum == RecSize)
4146         return error("INSERTVAL: Invalid instruction with 0 indices");
4147 
4148       SmallVector<unsigned, 4> INSERTVALIdx;
4149       Type *CurTy = Agg->getType();
4150       for (; OpNum != RecSize; ++OpNum) {
4151         bool IsArray = CurTy->isArrayTy();
4152         bool IsStruct = CurTy->isStructTy();
4153         uint64_t Index = Record[OpNum];
4154 
4155         if (!IsStruct && !IsArray)
4156           return error("INSERTVAL: Invalid type");
4157         if ((unsigned)Index != Index)
4158           return error("Invalid value");
4159         if (IsStruct && Index >= CurTy->getStructNumElements())
4160           return error("INSERTVAL: Invalid struct index");
4161         if (IsArray && Index >= CurTy->getArrayNumElements())
4162           return error("INSERTVAL: Invalid array index");
4163 
4164         INSERTVALIdx.push_back((unsigned)Index);
4165         if (IsStruct)
4166           CurTy = CurTy->getStructElementType(Index);
4167         else
4168           CurTy = CurTy->getArrayElementType();
4169       }
4170 
4171       if (CurTy != Val->getType())
4172         return error("Inserted value type doesn't match aggregate type");
4173 
4174       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4175       InstructionList.push_back(I);
4176       break;
4177     }
4178 
4179     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4180       // obsolete form of select
4181       // handles select i1 ... in old bitcode
4182       unsigned OpNum = 0;
4183       Value *TrueVal, *FalseVal, *Cond;
4184       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4185           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4186           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4187         return error("Invalid record");
4188 
4189       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4190       InstructionList.push_back(I);
4191       break;
4192     }
4193 
4194     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4195       // new form of select
4196       // handles select i1 or select [N x i1]
4197       unsigned OpNum = 0;
4198       Value *TrueVal, *FalseVal, *Cond;
4199       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4200           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4201           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4202         return error("Invalid record");
4203 
4204       // select condition can be either i1 or [N x i1]
4205       if (VectorType* vector_type =
4206           dyn_cast<VectorType>(Cond->getType())) {
4207         // expect <n x i1>
4208         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4209           return error("Invalid type for value");
4210       } else {
4211         // expect i1
4212         if (Cond->getType() != Type::getInt1Ty(Context))
4213           return error("Invalid type for value");
4214       }
4215 
4216       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4217       InstructionList.push_back(I);
4218       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4219         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4220         if (FMF.any())
4221           I->setFastMathFlags(FMF);
4222       }
4223       break;
4224     }
4225 
4226     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4227       unsigned OpNum = 0;
4228       Value *Vec, *Idx;
4229       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4230           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4231         return error("Invalid record");
4232       if (!Vec->getType()->isVectorTy())
4233         return error("Invalid type for value");
4234       I = ExtractElementInst::Create(Vec, Idx);
4235       FullTy = cast<VectorType>(FullTy)->getElementType();
4236       InstructionList.push_back(I);
4237       break;
4238     }
4239 
4240     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4241       unsigned OpNum = 0;
4242       Value *Vec, *Elt, *Idx;
4243       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4244         return error("Invalid record");
4245       if (!Vec->getType()->isVectorTy())
4246         return error("Invalid type for value");
4247       if (popValue(Record, OpNum, NextValueNo,
4248                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4249           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4250         return error("Invalid record");
4251       I = InsertElementInst::Create(Vec, Elt, Idx);
4252       InstructionList.push_back(I);
4253       break;
4254     }
4255 
4256     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4257       unsigned OpNum = 0;
4258       Value *Vec1, *Vec2, *Mask;
4259       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4260           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4261         return error("Invalid record");
4262 
4263       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4264         return error("Invalid record");
4265       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4266         return error("Invalid type for value");
4267 
4268       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4269       FullTy =
4270           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4271                           cast<VectorType>(Mask->getType())->getElementCount());
4272       InstructionList.push_back(I);
4273       break;
4274     }
4275 
4276     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4277       // Old form of ICmp/FCmp returning bool
4278       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4279       // both legal on vectors but had different behaviour.
4280     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4281       // FCmp/ICmp returning bool or vector of bool
4282 
4283       unsigned OpNum = 0;
4284       Value *LHS, *RHS;
4285       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4286           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4287         return error("Invalid record");
4288 
4289       if (OpNum >= Record.size())
4290         return error(
4291             "Invalid record: operand number exceeded available operands");
4292 
4293       unsigned PredVal = Record[OpNum];
4294       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4295       FastMathFlags FMF;
4296       if (IsFP && Record.size() > OpNum+1)
4297         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4298 
4299       if (OpNum+1 != Record.size())
4300         return error("Invalid record");
4301 
4302       if (LHS->getType()->isFPOrFPVectorTy())
4303         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4304       else
4305         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4306 
4307       if (FMF.any())
4308         I->setFastMathFlags(FMF);
4309       InstructionList.push_back(I);
4310       break;
4311     }
4312 
4313     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4314       {
4315         unsigned Size = Record.size();
4316         if (Size == 0) {
4317           I = ReturnInst::Create(Context);
4318           InstructionList.push_back(I);
4319           break;
4320         }
4321 
4322         unsigned OpNum = 0;
4323         Value *Op = nullptr;
4324         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4325           return error("Invalid record");
4326         if (OpNum != Record.size())
4327           return error("Invalid record");
4328 
4329         I = ReturnInst::Create(Context, Op);
4330         InstructionList.push_back(I);
4331         break;
4332       }
4333     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4334       if (Record.size() != 1 && Record.size() != 3)
4335         return error("Invalid record");
4336       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4337       if (!TrueDest)
4338         return error("Invalid record");
4339 
4340       if (Record.size() == 1) {
4341         I = BranchInst::Create(TrueDest);
4342         InstructionList.push_back(I);
4343       }
4344       else {
4345         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4346         Value *Cond = getValue(Record, 2, NextValueNo,
4347                                Type::getInt1Ty(Context));
4348         if (!FalseDest || !Cond)
4349           return error("Invalid record");
4350         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4351         InstructionList.push_back(I);
4352       }
4353       break;
4354     }
4355     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4356       if (Record.size() != 1 && Record.size() != 2)
4357         return error("Invalid record");
4358       unsigned Idx = 0;
4359       Value *CleanupPad =
4360           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4361       if (!CleanupPad)
4362         return error("Invalid record");
4363       BasicBlock *UnwindDest = nullptr;
4364       if (Record.size() == 2) {
4365         UnwindDest = getBasicBlock(Record[Idx++]);
4366         if (!UnwindDest)
4367           return error("Invalid record");
4368       }
4369 
4370       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4371       InstructionList.push_back(I);
4372       break;
4373     }
4374     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4375       if (Record.size() != 2)
4376         return error("Invalid record");
4377       unsigned Idx = 0;
4378       Value *CatchPad =
4379           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4380       if (!CatchPad)
4381         return error("Invalid record");
4382       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4383       if (!BB)
4384         return error("Invalid record");
4385 
4386       I = CatchReturnInst::Create(CatchPad, BB);
4387       InstructionList.push_back(I);
4388       break;
4389     }
4390     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4391       // We must have, at minimum, the outer scope and the number of arguments.
4392       if (Record.size() < 2)
4393         return error("Invalid record");
4394 
4395       unsigned Idx = 0;
4396 
4397       Value *ParentPad =
4398           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4399 
4400       unsigned NumHandlers = Record[Idx++];
4401 
4402       SmallVector<BasicBlock *, 2> Handlers;
4403       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4404         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4405         if (!BB)
4406           return error("Invalid record");
4407         Handlers.push_back(BB);
4408       }
4409 
4410       BasicBlock *UnwindDest = nullptr;
4411       if (Idx + 1 == Record.size()) {
4412         UnwindDest = getBasicBlock(Record[Idx++]);
4413         if (!UnwindDest)
4414           return error("Invalid record");
4415       }
4416 
4417       if (Record.size() != Idx)
4418         return error("Invalid record");
4419 
4420       auto *CatchSwitch =
4421           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4422       for (BasicBlock *Handler : Handlers)
4423         CatchSwitch->addHandler(Handler);
4424       I = CatchSwitch;
4425       InstructionList.push_back(I);
4426       break;
4427     }
4428     case bitc::FUNC_CODE_INST_CATCHPAD:
4429     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4430       // We must have, at minimum, the outer scope and the number of arguments.
4431       if (Record.size() < 2)
4432         return error("Invalid record");
4433 
4434       unsigned Idx = 0;
4435 
4436       Value *ParentPad =
4437           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4438 
4439       unsigned NumArgOperands = Record[Idx++];
4440 
4441       SmallVector<Value *, 2> Args;
4442       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4443         Value *Val;
4444         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4445           return error("Invalid record");
4446         Args.push_back(Val);
4447       }
4448 
4449       if (Record.size() != Idx)
4450         return error("Invalid record");
4451 
4452       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4453         I = CleanupPadInst::Create(ParentPad, Args);
4454       else
4455         I = CatchPadInst::Create(ParentPad, Args);
4456       InstructionList.push_back(I);
4457       break;
4458     }
4459     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4460       // Check magic
4461       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4462         // "New" SwitchInst format with case ranges. The changes to write this
4463         // format were reverted but we still recognize bitcode that uses it.
4464         // Hopefully someday we will have support for case ranges and can use
4465         // this format again.
4466 
4467         Type *OpTy = getTypeByID(Record[1]);
4468         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4469 
4470         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4471         BasicBlock *Default = getBasicBlock(Record[3]);
4472         if (!OpTy || !Cond || !Default)
4473           return error("Invalid record");
4474 
4475         unsigned NumCases = Record[4];
4476 
4477         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4478         InstructionList.push_back(SI);
4479 
4480         unsigned CurIdx = 5;
4481         for (unsigned i = 0; i != NumCases; ++i) {
4482           SmallVector<ConstantInt*, 1> CaseVals;
4483           unsigned NumItems = Record[CurIdx++];
4484           for (unsigned ci = 0; ci != NumItems; ++ci) {
4485             bool isSingleNumber = Record[CurIdx++];
4486 
4487             APInt Low;
4488             unsigned ActiveWords = 1;
4489             if (ValueBitWidth > 64)
4490               ActiveWords = Record[CurIdx++];
4491             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4492                                 ValueBitWidth);
4493             CurIdx += ActiveWords;
4494 
4495             if (!isSingleNumber) {
4496               ActiveWords = 1;
4497               if (ValueBitWidth > 64)
4498                 ActiveWords = Record[CurIdx++];
4499               APInt High = readWideAPInt(
4500                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4501               CurIdx += ActiveWords;
4502 
4503               // FIXME: It is not clear whether values in the range should be
4504               // compared as signed or unsigned values. The partially
4505               // implemented changes that used this format in the past used
4506               // unsigned comparisons.
4507               for ( ; Low.ule(High); ++Low)
4508                 CaseVals.push_back(ConstantInt::get(Context, Low));
4509             } else
4510               CaseVals.push_back(ConstantInt::get(Context, Low));
4511           }
4512           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4513           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4514                  cve = CaseVals.end(); cvi != cve; ++cvi)
4515             SI->addCase(*cvi, DestBB);
4516         }
4517         I = SI;
4518         break;
4519       }
4520 
4521       // Old SwitchInst format without case ranges.
4522 
4523       if (Record.size() < 3 || (Record.size() & 1) == 0)
4524         return error("Invalid record");
4525       Type *OpTy = getTypeByID(Record[0]);
4526       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4527       BasicBlock *Default = getBasicBlock(Record[2]);
4528       if (!OpTy || !Cond || !Default)
4529         return error("Invalid record");
4530       unsigned NumCases = (Record.size()-3)/2;
4531       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4532       InstructionList.push_back(SI);
4533       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4534         ConstantInt *CaseVal =
4535           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4536         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4537         if (!CaseVal || !DestBB) {
4538           delete SI;
4539           return error("Invalid record");
4540         }
4541         SI->addCase(CaseVal, DestBB);
4542       }
4543       I = SI;
4544       break;
4545     }
4546     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4547       if (Record.size() < 2)
4548         return error("Invalid record");
4549       Type *OpTy = getTypeByID(Record[0]);
4550       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4551       if (!OpTy || !Address)
4552         return error("Invalid record");
4553       unsigned NumDests = Record.size()-2;
4554       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4555       InstructionList.push_back(IBI);
4556       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4557         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4558           IBI->addDestination(DestBB);
4559         } else {
4560           delete IBI;
4561           return error("Invalid record");
4562         }
4563       }
4564       I = IBI;
4565       break;
4566     }
4567 
4568     case bitc::FUNC_CODE_INST_INVOKE: {
4569       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4570       if (Record.size() < 4)
4571         return error("Invalid record");
4572       unsigned OpNum = 0;
4573       AttributeList PAL = getAttributes(Record[OpNum++]);
4574       unsigned CCInfo = Record[OpNum++];
4575       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4576       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4577 
4578       FunctionType *FTy = nullptr;
4579       FunctionType *FullFTy = nullptr;
4580       if ((CCInfo >> 13) & 1) {
4581         FullFTy =
4582             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4583         if (!FullFTy)
4584           return error("Explicit invoke type is not a function type");
4585         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4586       }
4587 
4588       Value *Callee;
4589       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4590         return error("Invalid record");
4591 
4592       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4593       if (!CalleeTy)
4594         return error("Callee is not a pointer");
4595       if (!FTy) {
4596         FullFTy =
4597             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4598         if (!FullFTy)
4599           return error("Callee is not of pointer to function type");
4600         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4601       } else if (getPointerElementFlatType(FullTy) != FTy)
4602         return error("Explicit invoke type does not match pointee type of "
4603                      "callee operand");
4604       if (Record.size() < FTy->getNumParams() + OpNum)
4605         return error("Insufficient operands to call");
4606 
4607       SmallVector<Value*, 16> Ops;
4608       SmallVector<Type *, 16> ArgsFullTys;
4609       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4610         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4611                                FTy->getParamType(i)));
4612         ArgsFullTys.push_back(FullFTy->getParamType(i));
4613         if (!Ops.back())
4614           return error("Invalid record");
4615       }
4616 
4617       if (!FTy->isVarArg()) {
4618         if (Record.size() != OpNum)
4619           return error("Invalid record");
4620       } else {
4621         // Read type/value pairs for varargs params.
4622         while (OpNum != Record.size()) {
4623           Value *Op;
4624           Type *FullTy;
4625           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4626             return error("Invalid record");
4627           Ops.push_back(Op);
4628           ArgsFullTys.push_back(FullTy);
4629         }
4630       }
4631 
4632       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4633                              OperandBundles);
4634       FullTy = FullFTy->getReturnType();
4635       OperandBundles.clear();
4636       InstructionList.push_back(I);
4637       cast<InvokeInst>(I)->setCallingConv(
4638           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4639       cast<InvokeInst>(I)->setAttributes(PAL);
4640       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4641 
4642       break;
4643     }
4644     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4645       unsigned Idx = 0;
4646       Value *Val = nullptr;
4647       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4648         return error("Invalid record");
4649       I = ResumeInst::Create(Val);
4650       InstructionList.push_back(I);
4651       break;
4652     }
4653     case bitc::FUNC_CODE_INST_CALLBR: {
4654       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4655       unsigned OpNum = 0;
4656       AttributeList PAL = getAttributes(Record[OpNum++]);
4657       unsigned CCInfo = Record[OpNum++];
4658 
4659       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4660       unsigned NumIndirectDests = Record[OpNum++];
4661       SmallVector<BasicBlock *, 16> IndirectDests;
4662       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4663         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4664 
4665       FunctionType *FTy = nullptr;
4666       FunctionType *FullFTy = nullptr;
4667       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4668         FullFTy =
4669             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4670         if (!FullFTy)
4671           return error("Explicit call type is not a function type");
4672         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4673       }
4674 
4675       Value *Callee;
4676       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4677         return error("Invalid record");
4678 
4679       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4680       if (!OpTy)
4681         return error("Callee is not a pointer type");
4682       if (!FTy) {
4683         FullFTy =
4684             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4685         if (!FullFTy)
4686           return error("Callee is not of pointer to function type");
4687         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4688       } else if (getPointerElementFlatType(FullTy) != FTy)
4689         return error("Explicit call type does not match pointee type of "
4690                      "callee operand");
4691       if (Record.size() < FTy->getNumParams() + OpNum)
4692         return error("Insufficient operands to call");
4693 
4694       SmallVector<Value*, 16> Args;
4695       // Read the fixed params.
4696       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4697         if (FTy->getParamType(i)->isLabelTy())
4698           Args.push_back(getBasicBlock(Record[OpNum]));
4699         else
4700           Args.push_back(getValue(Record, OpNum, NextValueNo,
4701                                   FTy->getParamType(i)));
4702         if (!Args.back())
4703           return error("Invalid record");
4704       }
4705 
4706       // Read type/value pairs for varargs params.
4707       if (!FTy->isVarArg()) {
4708         if (OpNum != Record.size())
4709           return error("Invalid record");
4710       } else {
4711         while (OpNum != Record.size()) {
4712           Value *Op;
4713           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4714             return error("Invalid record");
4715           Args.push_back(Op);
4716         }
4717       }
4718 
4719       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4720                              OperandBundles);
4721       FullTy = FullFTy->getReturnType();
4722       OperandBundles.clear();
4723       InstructionList.push_back(I);
4724       cast<CallBrInst>(I)->setCallingConv(
4725           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4726       cast<CallBrInst>(I)->setAttributes(PAL);
4727       break;
4728     }
4729     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4730       I = new UnreachableInst(Context);
4731       InstructionList.push_back(I);
4732       break;
4733     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4734       if (Record.empty())
4735         return error("Invalid record");
4736       // The first record specifies the type.
4737       FullTy = getFullyStructuredTypeByID(Record[0]);
4738       Type *Ty = flattenPointerTypes(FullTy);
4739       if (!Ty)
4740         return error("Invalid record");
4741 
4742       // Phi arguments are pairs of records of [value, basic block].
4743       // There is an optional final record for fast-math-flags if this phi has a
4744       // floating-point type.
4745       size_t NumArgs = (Record.size() - 1) / 2;
4746       PHINode *PN = PHINode::Create(Ty, NumArgs);
4747       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4748         return error("Invalid record");
4749       InstructionList.push_back(PN);
4750 
4751       for (unsigned i = 0; i != NumArgs; i++) {
4752         Value *V;
4753         // With the new function encoding, it is possible that operands have
4754         // negative IDs (for forward references).  Use a signed VBR
4755         // representation to keep the encoding small.
4756         if (UseRelativeIDs)
4757           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4758         else
4759           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4760         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4761         if (!V || !BB)
4762           return error("Invalid record");
4763         PN->addIncoming(V, BB);
4764       }
4765       I = PN;
4766 
4767       // If there are an even number of records, the final record must be FMF.
4768       if (Record.size() % 2 == 0) {
4769         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4770         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4771         if (FMF.any())
4772           I->setFastMathFlags(FMF);
4773       }
4774 
4775       break;
4776     }
4777 
4778     case bitc::FUNC_CODE_INST_LANDINGPAD:
4779     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4780       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4781       unsigned Idx = 0;
4782       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4783         if (Record.size() < 3)
4784           return error("Invalid record");
4785       } else {
4786         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4787         if (Record.size() < 4)
4788           return error("Invalid record");
4789       }
4790       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4791       Type *Ty = flattenPointerTypes(FullTy);
4792       if (!Ty)
4793         return error("Invalid record");
4794       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4795         Value *PersFn = nullptr;
4796         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4797           return error("Invalid record");
4798 
4799         if (!F->hasPersonalityFn())
4800           F->setPersonalityFn(cast<Constant>(PersFn));
4801         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4802           return error("Personality function mismatch");
4803       }
4804 
4805       bool IsCleanup = !!Record[Idx++];
4806       unsigned NumClauses = Record[Idx++];
4807       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4808       LP->setCleanup(IsCleanup);
4809       for (unsigned J = 0; J != NumClauses; ++J) {
4810         LandingPadInst::ClauseType CT =
4811           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4812         Value *Val;
4813 
4814         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4815           delete LP;
4816           return error("Invalid record");
4817         }
4818 
4819         assert((CT != LandingPadInst::Catch ||
4820                 !isa<ArrayType>(Val->getType())) &&
4821                "Catch clause has a invalid type!");
4822         assert((CT != LandingPadInst::Filter ||
4823                 isa<ArrayType>(Val->getType())) &&
4824                "Filter clause has invalid type!");
4825         LP->addClause(cast<Constant>(Val));
4826       }
4827 
4828       I = LP;
4829       InstructionList.push_back(I);
4830       break;
4831     }
4832 
4833     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4834       if (Record.size() != 4)
4835         return error("Invalid record");
4836       using APV = AllocaPackedValues;
4837       const uint64_t Rec = Record[3];
4838       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4839       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4840       FullTy = getFullyStructuredTypeByID(Record[0]);
4841       Type *Ty = flattenPointerTypes(FullTy);
4842       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4843         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4844         if (!PTy)
4845           return error("Old-style alloca with a non-pointer type");
4846         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4847       }
4848       Type *OpTy = getTypeByID(Record[1]);
4849       Value *Size = getFnValueByID(Record[2], OpTy);
4850       MaybeAlign Align;
4851       if (Error Err =
4852               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4853         return Err;
4854       }
4855       if (!Ty || !Size)
4856         return error("Invalid record");
4857 
4858       // FIXME: Make this an optional field.
4859       const DataLayout &DL = TheModule->getDataLayout();
4860       unsigned AS = DL.getAllocaAddrSpace();
4861 
4862       SmallPtrSet<Type *, 4> Visited;
4863       if (!Align && !Ty->isSized(&Visited))
4864         return error("alloca of unsized type");
4865       if (!Align)
4866         Align = DL.getPrefTypeAlign(Ty);
4867 
4868       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4869       AI->setUsedWithInAlloca(InAlloca);
4870       AI->setSwiftError(SwiftError);
4871       I = AI;
4872       FullTy = PointerType::get(FullTy, AS);
4873       InstructionList.push_back(I);
4874       break;
4875     }
4876     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4877       unsigned OpNum = 0;
4878       Value *Op;
4879       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4880           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4881         return error("Invalid record");
4882 
4883       if (!isa<PointerType>(Op->getType()))
4884         return error("Load operand is not a pointer type");
4885 
4886       Type *Ty = nullptr;
4887       if (OpNum + 3 == Record.size()) {
4888         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4889         Ty = flattenPointerTypes(FullTy);
4890       } else
4891         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4892 
4893       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4894         return Err;
4895 
4896       MaybeAlign Align;
4897       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4898         return Err;
4899       SmallPtrSet<Type *, 4> Visited;
4900       if (!Align && !Ty->isSized(&Visited))
4901         return error("load of unsized type");
4902       if (!Align)
4903         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4904       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4905       InstructionList.push_back(I);
4906       break;
4907     }
4908     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4909        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4910       unsigned OpNum = 0;
4911       Value *Op;
4912       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4913           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4914         return error("Invalid record");
4915 
4916       if (!isa<PointerType>(Op->getType()))
4917         return error("Load operand is not a pointer type");
4918 
4919       Type *Ty = nullptr;
4920       if (OpNum + 5 == Record.size()) {
4921         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4922         Ty = flattenPointerTypes(FullTy);
4923       } else
4924         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4925 
4926       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4927         return Err;
4928 
4929       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4930       if (Ordering == AtomicOrdering::NotAtomic ||
4931           Ordering == AtomicOrdering::Release ||
4932           Ordering == AtomicOrdering::AcquireRelease)
4933         return error("Invalid record");
4934       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4935         return error("Invalid record");
4936       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4937 
4938       MaybeAlign Align;
4939       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4940         return Err;
4941       if (!Align)
4942         return error("Alignment missing from atomic load");
4943       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4944       InstructionList.push_back(I);
4945       break;
4946     }
4947     case bitc::FUNC_CODE_INST_STORE:
4948     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4949       unsigned OpNum = 0;
4950       Value *Val, *Ptr;
4951       Type *FullTy;
4952       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4953           (BitCode == bitc::FUNC_CODE_INST_STORE
4954                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4955                : popValue(Record, OpNum, NextValueNo,
4956                           getPointerElementFlatType(FullTy), Val)) ||
4957           OpNum + 2 != Record.size())
4958         return error("Invalid record");
4959 
4960       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4961         return Err;
4962       MaybeAlign Align;
4963       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4964         return Err;
4965       SmallPtrSet<Type *, 4> Visited;
4966       if (!Align && !Val->getType()->isSized(&Visited))
4967         return error("store of unsized type");
4968       if (!Align)
4969         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4970       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4971       InstructionList.push_back(I);
4972       break;
4973     }
4974     case bitc::FUNC_CODE_INST_STOREATOMIC:
4975     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4976       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4977       unsigned OpNum = 0;
4978       Value *Val, *Ptr;
4979       Type *FullTy;
4980       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4981           !isa<PointerType>(Ptr->getType()) ||
4982           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4983                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4984                : popValue(Record, OpNum, NextValueNo,
4985                           getPointerElementFlatType(FullTy), Val)) ||
4986           OpNum + 4 != Record.size())
4987         return error("Invalid record");
4988 
4989       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4990         return Err;
4991       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4992       if (Ordering == AtomicOrdering::NotAtomic ||
4993           Ordering == AtomicOrdering::Acquire ||
4994           Ordering == AtomicOrdering::AcquireRelease)
4995         return error("Invalid record");
4996       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4997       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4998         return error("Invalid record");
4999 
5000       MaybeAlign Align;
5001       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5002         return Err;
5003       if (!Align)
5004         return error("Alignment missing from atomic store");
5005       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5006       InstructionList.push_back(I);
5007       break;
5008     }
5009     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5010       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5011       // failure_ordering?, weak?]
5012       const size_t NumRecords = Record.size();
5013       unsigned OpNum = 0;
5014       Value *Ptr = nullptr;
5015       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5016         return error("Invalid record");
5017 
5018       if (!isa<PointerType>(Ptr->getType()))
5019         return error("Cmpxchg operand is not a pointer type");
5020 
5021       Value *Cmp = nullptr;
5022       if (popValue(Record, OpNum, NextValueNo,
5023                    getPointerElementFlatType(FullTy), Cmp))
5024         return error("Invalid record");
5025 
5026       FullTy = cast<PointerType>(FullTy)->getElementType();
5027 
5028       Value *New = nullptr;
5029       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5030           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5031         return error("Invalid record");
5032 
5033       const AtomicOrdering SuccessOrdering =
5034           getDecodedOrdering(Record[OpNum + 1]);
5035       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5036           SuccessOrdering == AtomicOrdering::Unordered)
5037         return error("Invalid record");
5038 
5039       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5040 
5041       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5042         return Err;
5043 
5044       const AtomicOrdering FailureOrdering =
5045           NumRecords < 7
5046               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5047               : getDecodedOrdering(Record[OpNum + 3]);
5048 
5049       const Align Alignment(
5050           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5051 
5052       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5053                                 FailureOrdering, SSID);
5054       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5055       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5056 
5057       if (NumRecords < 8) {
5058         // Before weak cmpxchgs existed, the instruction simply returned the
5059         // value loaded from memory, so bitcode files from that era will be
5060         // expecting the first component of a modern cmpxchg.
5061         CurBB->getInstList().push_back(I);
5062         I = ExtractValueInst::Create(I, 0);
5063         FullTy = cast<StructType>(FullTy)->getElementType(0);
5064       } else {
5065         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5066       }
5067 
5068       InstructionList.push_back(I);
5069       break;
5070     }
5071     case bitc::FUNC_CODE_INST_CMPXCHG: {
5072       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5073       // failure_ordering, weak]
5074       const size_t NumRecords = Record.size();
5075       unsigned OpNum = 0;
5076       Value *Ptr = nullptr;
5077       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5078         return error("Invalid record");
5079 
5080       if (!isa<PointerType>(Ptr->getType()))
5081         return error("Cmpxchg operand is not a pointer type");
5082 
5083       Value *Cmp = nullptr;
5084       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5085         return error("Invalid record");
5086 
5087       Value *Val = nullptr;
5088       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) ||
5089           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5090         return error("Invalid record");
5091 
5092       const AtomicOrdering SuccessOrdering =
5093           getDecodedOrdering(Record[OpNum + 1]);
5094       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5095           SuccessOrdering == AtomicOrdering::Unordered)
5096         return error("Invalid record");
5097 
5098       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5099 
5100       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5101         return Err;
5102 
5103       const AtomicOrdering FailureOrdering =
5104           getDecodedOrdering(Record[OpNum + 3]);
5105 
5106       const Align Alignment(
5107           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5108 
5109       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering,
5110                                 FailureOrdering, SSID);
5111       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5112       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5113       cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5114 
5115       InstructionList.push_back(I);
5116       break;
5117     }
5118     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5119       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5120       unsigned OpNum = 0;
5121       Value *Ptr, *Val;
5122       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5123           !isa<PointerType>(Ptr->getType()) ||
5124           popValue(Record, OpNum, NextValueNo,
5125                    getPointerElementFlatType(FullTy), Val) ||
5126           OpNum + 4 != Record.size())
5127         return error("Invalid record");
5128       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5129       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5130           Operation > AtomicRMWInst::LAST_BINOP)
5131         return error("Invalid record");
5132       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5133       if (Ordering == AtomicOrdering::NotAtomic ||
5134           Ordering == AtomicOrdering::Unordered)
5135         return error("Invalid record");
5136       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5137       Align Alignment(
5138           TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5139       I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5140       FullTy = getPointerElementFlatType(FullTy);
5141       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5142       InstructionList.push_back(I);
5143       break;
5144     }
5145     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5146       if (2 != Record.size())
5147         return error("Invalid record");
5148       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5149       if (Ordering == AtomicOrdering::NotAtomic ||
5150           Ordering == AtomicOrdering::Unordered ||
5151           Ordering == AtomicOrdering::Monotonic)
5152         return error("Invalid record");
5153       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5154       I = new FenceInst(Context, Ordering, SSID);
5155       InstructionList.push_back(I);
5156       break;
5157     }
5158     case bitc::FUNC_CODE_INST_CALL: {
5159       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5160       if (Record.size() < 3)
5161         return error("Invalid record");
5162 
5163       unsigned OpNum = 0;
5164       AttributeList PAL = getAttributes(Record[OpNum++]);
5165       unsigned CCInfo = Record[OpNum++];
5166 
5167       FastMathFlags FMF;
5168       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5169         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5170         if (!FMF.any())
5171           return error("Fast math flags indicator set for call with no FMF");
5172       }
5173 
5174       FunctionType *FTy = nullptr;
5175       FunctionType *FullFTy = nullptr;
5176       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5177         FullFTy =
5178             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5179         if (!FullFTy)
5180           return error("Explicit call type is not a function type");
5181         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5182       }
5183 
5184       Value *Callee;
5185       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5186         return error("Invalid record");
5187 
5188       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5189       if (!OpTy)
5190         return error("Callee is not a pointer type");
5191       if (!FTy) {
5192         FullFTy =
5193             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5194         if (!FullFTy)
5195           return error("Callee is not of pointer to function type");
5196         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5197       } else if (getPointerElementFlatType(FullTy) != FTy)
5198         return error("Explicit call type does not match pointee type of "
5199                      "callee operand");
5200       if (Record.size() < FTy->getNumParams() + OpNum)
5201         return error("Insufficient operands to call");
5202 
5203       SmallVector<Value*, 16> Args;
5204       SmallVector<Type*, 16> ArgsFullTys;
5205       // Read the fixed params.
5206       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5207         if (FTy->getParamType(i)->isLabelTy())
5208           Args.push_back(getBasicBlock(Record[OpNum]));
5209         else
5210           Args.push_back(getValue(Record, OpNum, NextValueNo,
5211                                   FTy->getParamType(i)));
5212         ArgsFullTys.push_back(FullFTy->getParamType(i));
5213         if (!Args.back())
5214           return error("Invalid record");
5215       }
5216 
5217       // Read type/value pairs for varargs params.
5218       if (!FTy->isVarArg()) {
5219         if (OpNum != Record.size())
5220           return error("Invalid record");
5221       } else {
5222         while (OpNum != Record.size()) {
5223           Value *Op;
5224           Type *FullTy;
5225           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5226             return error("Invalid record");
5227           Args.push_back(Op);
5228           ArgsFullTys.push_back(FullTy);
5229         }
5230       }
5231 
5232       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5233       FullTy = FullFTy->getReturnType();
5234       OperandBundles.clear();
5235       InstructionList.push_back(I);
5236       cast<CallInst>(I)->setCallingConv(
5237           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5238       CallInst::TailCallKind TCK = CallInst::TCK_None;
5239       if (CCInfo & 1 << bitc::CALL_TAIL)
5240         TCK = CallInst::TCK_Tail;
5241       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5242         TCK = CallInst::TCK_MustTail;
5243       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5244         TCK = CallInst::TCK_NoTail;
5245       cast<CallInst>(I)->setTailCallKind(TCK);
5246       cast<CallInst>(I)->setAttributes(PAL);
5247       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5248       if (FMF.any()) {
5249         if (!isa<FPMathOperator>(I))
5250           return error("Fast-math-flags specified for call without "
5251                        "floating-point scalar or vector return type");
5252         I->setFastMathFlags(FMF);
5253       }
5254       break;
5255     }
5256     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5257       if (Record.size() < 3)
5258         return error("Invalid record");
5259       Type *OpTy = getTypeByID(Record[0]);
5260       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5261       FullTy = getFullyStructuredTypeByID(Record[2]);
5262       Type *ResTy = flattenPointerTypes(FullTy);
5263       if (!OpTy || !Op || !ResTy)
5264         return error("Invalid record");
5265       I = new VAArgInst(Op, ResTy);
5266       InstructionList.push_back(I);
5267       break;
5268     }
5269 
5270     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5271       // A call or an invoke can be optionally prefixed with some variable
5272       // number of operand bundle blocks.  These blocks are read into
5273       // OperandBundles and consumed at the next call or invoke instruction.
5274 
5275       if (Record.empty() || Record[0] >= BundleTags.size())
5276         return error("Invalid record");
5277 
5278       std::vector<Value *> Inputs;
5279 
5280       unsigned OpNum = 1;
5281       while (OpNum != Record.size()) {
5282         Value *Op;
5283         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5284           return error("Invalid record");
5285         Inputs.push_back(Op);
5286       }
5287 
5288       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5289       continue;
5290     }
5291 
5292     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5293       unsigned OpNum = 0;
5294       Value *Op = nullptr;
5295       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5296         return error("Invalid record");
5297       if (OpNum != Record.size())
5298         return error("Invalid record");
5299 
5300       I = new FreezeInst(Op);
5301       InstructionList.push_back(I);
5302       break;
5303     }
5304     }
5305 
5306     // Add instruction to end of current BB.  If there is no current BB, reject
5307     // this file.
5308     if (!CurBB) {
5309       I->deleteValue();
5310       return error("Invalid instruction with no BB");
5311     }
5312     if (!OperandBundles.empty()) {
5313       I->deleteValue();
5314       return error("Operand bundles found with no consumer");
5315     }
5316     CurBB->getInstList().push_back(I);
5317 
5318     // If this was a terminator instruction, move to the next block.
5319     if (I->isTerminator()) {
5320       ++CurBBNo;
5321       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5322     }
5323 
5324     // Non-void values get registered in the value table for future use.
5325     if (!I->getType()->isVoidTy()) {
5326       if (!FullTy) {
5327         FullTy = I->getType();
5328         assert(
5329             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5330             !isa<ArrayType>(FullTy) &&
5331             (!isa<VectorType>(FullTy) ||
5332              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5333              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5334             "Structured types must be assigned with corresponding non-opaque "
5335             "pointer type");
5336       }
5337 
5338       assert(I->getType() == flattenPointerTypes(FullTy) &&
5339              "Incorrect fully structured type provided for Instruction");
5340       ValueList.assignValue(I, NextValueNo++, FullTy);
5341     }
5342   }
5343 
5344 OutOfRecordLoop:
5345 
5346   if (!OperandBundles.empty())
5347     return error("Operand bundles found with no consumer");
5348 
5349   // Check the function list for unresolved values.
5350   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5351     if (!A->getParent()) {
5352       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5353       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5354         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5355           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5356           delete A;
5357         }
5358       }
5359       return error("Never resolved value found in function");
5360     }
5361   }
5362 
5363   // Unexpected unresolved metadata about to be dropped.
5364   if (MDLoader->hasFwdRefs())
5365     return error("Invalid function metadata: outgoing forward refs");
5366 
5367   // Trim the value list down to the size it was before we parsed this function.
5368   ValueList.shrinkTo(ModuleValueListSize);
5369   MDLoader->shrinkTo(ModuleMDLoaderSize);
5370   std::vector<BasicBlock*>().swap(FunctionBBs);
5371   return Error::success();
5372 }
5373 
5374 /// Find the function body in the bitcode stream
5375 Error BitcodeReader::findFunctionInStream(
5376     Function *F,
5377     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5378   while (DeferredFunctionInfoIterator->second == 0) {
5379     // This is the fallback handling for the old format bitcode that
5380     // didn't contain the function index in the VST, or when we have
5381     // an anonymous function which would not have a VST entry.
5382     // Assert that we have one of those two cases.
5383     assert(VSTOffset == 0 || !F->hasName());
5384     // Parse the next body in the stream and set its position in the
5385     // DeferredFunctionInfo map.
5386     if (Error Err = rememberAndSkipFunctionBodies())
5387       return Err;
5388   }
5389   return Error::success();
5390 }
5391 
5392 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5393   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5394     return SyncScope::ID(Val);
5395   if (Val >= SSIDs.size())
5396     return SyncScope::System; // Map unknown synchronization scopes to system.
5397   return SSIDs[Val];
5398 }
5399 
5400 //===----------------------------------------------------------------------===//
5401 // GVMaterializer implementation
5402 //===----------------------------------------------------------------------===//
5403 
5404 Error BitcodeReader::materialize(GlobalValue *GV) {
5405   Function *F = dyn_cast<Function>(GV);
5406   // If it's not a function or is already material, ignore the request.
5407   if (!F || !F->isMaterializable())
5408     return Error::success();
5409 
5410   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5411   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5412   // If its position is recorded as 0, its body is somewhere in the stream
5413   // but we haven't seen it yet.
5414   if (DFII->second == 0)
5415     if (Error Err = findFunctionInStream(F, DFII))
5416       return Err;
5417 
5418   // Materialize metadata before parsing any function bodies.
5419   if (Error Err = materializeMetadata())
5420     return Err;
5421 
5422   // Move the bit stream to the saved position of the deferred function body.
5423   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5424     return JumpFailed;
5425   if (Error Err = parseFunctionBody(F))
5426     return Err;
5427   F->setIsMaterializable(false);
5428 
5429   if (StripDebugInfo)
5430     stripDebugInfo(*F);
5431 
5432   // Upgrade any old intrinsic calls in the function.
5433   for (auto &I : UpgradedIntrinsics) {
5434     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5435          UI != UE;) {
5436       User *U = *UI;
5437       ++UI;
5438       if (CallInst *CI = dyn_cast<CallInst>(U))
5439         UpgradeIntrinsicCall(CI, I.second);
5440     }
5441   }
5442 
5443   // Update calls to the remangled intrinsics
5444   for (auto &I : RemangledIntrinsics)
5445     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5446          UI != UE;)
5447       // Don't expect any other users than call sites
5448       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5449 
5450   // Finish fn->subprogram upgrade for materialized functions.
5451   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5452     F->setSubprogram(SP);
5453 
5454   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5455   if (!MDLoader->isStrippingTBAA()) {
5456     for (auto &I : instructions(F)) {
5457       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5458       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5459         continue;
5460       MDLoader->setStripTBAA(true);
5461       stripTBAA(F->getParent());
5462     }
5463   }
5464 
5465   // "Upgrade" older incorrect branch weights by dropping them.
5466   for (auto &I : instructions(F)) {
5467     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5468       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5469         MDString *MDS = cast<MDString>(MD->getOperand(0));
5470         StringRef ProfName = MDS->getString();
5471         // Check consistency of !prof branch_weights metadata.
5472         if (!ProfName.equals("branch_weights"))
5473           continue;
5474         unsigned ExpectedNumOperands = 0;
5475         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5476           ExpectedNumOperands = BI->getNumSuccessors();
5477         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5478           ExpectedNumOperands = SI->getNumSuccessors();
5479         else if (isa<CallInst>(&I))
5480           ExpectedNumOperands = 1;
5481         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5482           ExpectedNumOperands = IBI->getNumDestinations();
5483         else if (isa<SelectInst>(&I))
5484           ExpectedNumOperands = 2;
5485         else
5486           continue; // ignore and continue.
5487 
5488         // If branch weight doesn't match, just strip branch weight.
5489         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5490           I.setMetadata(LLVMContext::MD_prof, nullptr);
5491       }
5492     }
5493   }
5494 
5495   // Look for functions that rely on old function attribute behavior.
5496   UpgradeFunctionAttributes(*F);
5497 
5498   // Bring in any functions that this function forward-referenced via
5499   // blockaddresses.
5500   return materializeForwardReferencedFunctions();
5501 }
5502 
5503 Error BitcodeReader::materializeModule() {
5504   if (Error Err = materializeMetadata())
5505     return Err;
5506 
5507   // Promise to materialize all forward references.
5508   WillMaterializeAllForwardRefs = true;
5509 
5510   // Iterate over the module, deserializing any functions that are still on
5511   // disk.
5512   for (Function &F : *TheModule) {
5513     if (Error Err = materialize(&F))
5514       return Err;
5515   }
5516   // At this point, if there are any function bodies, parse the rest of
5517   // the bits in the module past the last function block we have recorded
5518   // through either lazy scanning or the VST.
5519   if (LastFunctionBlockBit || NextUnreadBit)
5520     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5521                                     ? LastFunctionBlockBit
5522                                     : NextUnreadBit))
5523       return Err;
5524 
5525   // Check that all block address forward references got resolved (as we
5526   // promised above).
5527   if (!BasicBlockFwdRefs.empty())
5528     return error("Never resolved function from blockaddress");
5529 
5530   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5531   // delete the old functions to clean up. We can't do this unless the entire
5532   // module is materialized because there could always be another function body
5533   // with calls to the old function.
5534   for (auto &I : UpgradedIntrinsics) {
5535     for (auto *U : I.first->users()) {
5536       if (CallInst *CI = dyn_cast<CallInst>(U))
5537         UpgradeIntrinsicCall(CI, I.second);
5538     }
5539     if (!I.first->use_empty())
5540       I.first->replaceAllUsesWith(I.second);
5541     I.first->eraseFromParent();
5542   }
5543   UpgradedIntrinsics.clear();
5544   // Do the same for remangled intrinsics
5545   for (auto &I : RemangledIntrinsics) {
5546     I.first->replaceAllUsesWith(I.second);
5547     I.first->eraseFromParent();
5548   }
5549   RemangledIntrinsics.clear();
5550 
5551   UpgradeDebugInfo(*TheModule);
5552 
5553   UpgradeModuleFlags(*TheModule);
5554 
5555   UpgradeARCRuntime(*TheModule);
5556 
5557   return Error::success();
5558 }
5559 
5560 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5561   return IdentifiedStructTypes;
5562 }
5563 
5564 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5565     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5566     StringRef ModulePath, unsigned ModuleId)
5567     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5568       ModulePath(ModulePath), ModuleId(ModuleId) {}
5569 
5570 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5571   TheIndex.addModule(ModulePath, ModuleId);
5572 }
5573 
5574 ModuleSummaryIndex::ModuleInfo *
5575 ModuleSummaryIndexBitcodeReader::getThisModule() {
5576   return TheIndex.getModule(ModulePath);
5577 }
5578 
5579 std::pair<ValueInfo, GlobalValue::GUID>
5580 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5581   auto VGI = ValueIdToValueInfoMap[ValueId];
5582   assert(VGI.first);
5583   return VGI;
5584 }
5585 
5586 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5587     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5588     StringRef SourceFileName) {
5589   std::string GlobalId =
5590       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5591   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5592   auto OriginalNameID = ValueGUID;
5593   if (GlobalValue::isLocalLinkage(Linkage))
5594     OriginalNameID = GlobalValue::getGUID(ValueName);
5595   if (PrintSummaryGUIDs)
5596     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5597            << ValueName << "\n";
5598 
5599   // UseStrtab is false for legacy summary formats and value names are
5600   // created on stack. In that case we save the name in a string saver in
5601   // the index so that the value name can be recorded.
5602   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5603       TheIndex.getOrInsertValueInfo(
5604           ValueGUID,
5605           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5606       OriginalNameID);
5607 }
5608 
5609 // Specialized value symbol table parser used when reading module index
5610 // blocks where we don't actually create global values. The parsed information
5611 // is saved in the bitcode reader for use when later parsing summaries.
5612 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5613     uint64_t Offset,
5614     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5615   // With a strtab the VST is not required to parse the summary.
5616   if (UseStrtab)
5617     return Error::success();
5618 
5619   assert(Offset > 0 && "Expected non-zero VST offset");
5620   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5621   if (!MaybeCurrentBit)
5622     return MaybeCurrentBit.takeError();
5623   uint64_t CurrentBit = MaybeCurrentBit.get();
5624 
5625   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5626     return Err;
5627 
5628   SmallVector<uint64_t, 64> Record;
5629 
5630   // Read all the records for this value table.
5631   SmallString<128> ValueName;
5632 
5633   while (true) {
5634     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5635     if (!MaybeEntry)
5636       return MaybeEntry.takeError();
5637     BitstreamEntry Entry = MaybeEntry.get();
5638 
5639     switch (Entry.Kind) {
5640     case BitstreamEntry::SubBlock: // Handled for us already.
5641     case BitstreamEntry::Error:
5642       return error("Malformed block");
5643     case BitstreamEntry::EndBlock:
5644       // Done parsing VST, jump back to wherever we came from.
5645       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5646         return JumpFailed;
5647       return Error::success();
5648     case BitstreamEntry::Record:
5649       // The interesting case.
5650       break;
5651     }
5652 
5653     // Read a record.
5654     Record.clear();
5655     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5656     if (!MaybeRecord)
5657       return MaybeRecord.takeError();
5658     switch (MaybeRecord.get()) {
5659     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5660       break;
5661     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5662       if (convertToString(Record, 1, ValueName))
5663         return error("Invalid record");
5664       unsigned ValueID = Record[0];
5665       assert(!SourceFileName.empty());
5666       auto VLI = ValueIdToLinkageMap.find(ValueID);
5667       assert(VLI != ValueIdToLinkageMap.end() &&
5668              "No linkage found for VST entry?");
5669       auto Linkage = VLI->second;
5670       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5671       ValueName.clear();
5672       break;
5673     }
5674     case bitc::VST_CODE_FNENTRY: {
5675       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5676       if (convertToString(Record, 2, ValueName))
5677         return error("Invalid record");
5678       unsigned ValueID = Record[0];
5679       assert(!SourceFileName.empty());
5680       auto VLI = ValueIdToLinkageMap.find(ValueID);
5681       assert(VLI != ValueIdToLinkageMap.end() &&
5682              "No linkage found for VST entry?");
5683       auto Linkage = VLI->second;
5684       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5685       ValueName.clear();
5686       break;
5687     }
5688     case bitc::VST_CODE_COMBINED_ENTRY: {
5689       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5690       unsigned ValueID = Record[0];
5691       GlobalValue::GUID RefGUID = Record[1];
5692       // The "original name", which is the second value of the pair will be
5693       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5694       ValueIdToValueInfoMap[ValueID] =
5695           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5696       break;
5697     }
5698     }
5699   }
5700 }
5701 
5702 // Parse just the blocks needed for building the index out of the module.
5703 // At the end of this routine the module Index is populated with a map
5704 // from global value id to GlobalValueSummary objects.
5705 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5706   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5707     return Err;
5708 
5709   SmallVector<uint64_t, 64> Record;
5710   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5711   unsigned ValueId = 0;
5712 
5713   // Read the index for this module.
5714   while (true) {
5715     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5716     if (!MaybeEntry)
5717       return MaybeEntry.takeError();
5718     llvm::BitstreamEntry Entry = MaybeEntry.get();
5719 
5720     switch (Entry.Kind) {
5721     case BitstreamEntry::Error:
5722       return error("Malformed block");
5723     case BitstreamEntry::EndBlock:
5724       return Error::success();
5725 
5726     case BitstreamEntry::SubBlock:
5727       switch (Entry.ID) {
5728       default: // Skip unknown content.
5729         if (Error Err = Stream.SkipBlock())
5730           return Err;
5731         break;
5732       case bitc::BLOCKINFO_BLOCK_ID:
5733         // Need to parse these to get abbrev ids (e.g. for VST)
5734         if (readBlockInfo())
5735           return error("Malformed block");
5736         break;
5737       case bitc::VALUE_SYMTAB_BLOCK_ID:
5738         // Should have been parsed earlier via VSTOffset, unless there
5739         // is no summary section.
5740         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5741                 !SeenGlobalValSummary) &&
5742                "Expected early VST parse via VSTOffset record");
5743         if (Error Err = Stream.SkipBlock())
5744           return Err;
5745         break;
5746       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5747       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5748         // Add the module if it is a per-module index (has a source file name).
5749         if (!SourceFileName.empty())
5750           addThisModule();
5751         assert(!SeenValueSymbolTable &&
5752                "Already read VST when parsing summary block?");
5753         // We might not have a VST if there were no values in the
5754         // summary. An empty summary block generated when we are
5755         // performing ThinLTO compiles so we don't later invoke
5756         // the regular LTO process on them.
5757         if (VSTOffset > 0) {
5758           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5759             return Err;
5760           SeenValueSymbolTable = true;
5761         }
5762         SeenGlobalValSummary = true;
5763         if (Error Err = parseEntireSummary(Entry.ID))
5764           return Err;
5765         break;
5766       case bitc::MODULE_STRTAB_BLOCK_ID:
5767         if (Error Err = parseModuleStringTable())
5768           return Err;
5769         break;
5770       }
5771       continue;
5772 
5773     case BitstreamEntry::Record: {
5774         Record.clear();
5775         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5776         if (!MaybeBitCode)
5777           return MaybeBitCode.takeError();
5778         switch (MaybeBitCode.get()) {
5779         default:
5780           break; // Default behavior, ignore unknown content.
5781         case bitc::MODULE_CODE_VERSION: {
5782           if (Error Err = parseVersionRecord(Record).takeError())
5783             return Err;
5784           break;
5785         }
5786         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5787         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5788           SmallString<128> ValueName;
5789           if (convertToString(Record, 0, ValueName))
5790             return error("Invalid record");
5791           SourceFileName = ValueName.c_str();
5792           break;
5793         }
5794         /// MODULE_CODE_HASH: [5*i32]
5795         case bitc::MODULE_CODE_HASH: {
5796           if (Record.size() != 5)
5797             return error("Invalid hash length " + Twine(Record.size()).str());
5798           auto &Hash = getThisModule()->second.second;
5799           int Pos = 0;
5800           for (auto &Val : Record) {
5801             assert(!(Val >> 32) && "Unexpected high bits set");
5802             Hash[Pos++] = Val;
5803           }
5804           break;
5805         }
5806         /// MODULE_CODE_VSTOFFSET: [offset]
5807         case bitc::MODULE_CODE_VSTOFFSET:
5808           if (Record.empty())
5809             return error("Invalid record");
5810           // Note that we subtract 1 here because the offset is relative to one
5811           // word before the start of the identification or module block, which
5812           // was historically always the start of the regular bitcode header.
5813           VSTOffset = Record[0] - 1;
5814           break;
5815         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5816         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5817         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5818         // v2: [strtab offset, strtab size, v1]
5819         case bitc::MODULE_CODE_GLOBALVAR:
5820         case bitc::MODULE_CODE_FUNCTION:
5821         case bitc::MODULE_CODE_ALIAS: {
5822           StringRef Name;
5823           ArrayRef<uint64_t> GVRecord;
5824           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5825           if (GVRecord.size() <= 3)
5826             return error("Invalid record");
5827           uint64_t RawLinkage = GVRecord[3];
5828           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5829           if (!UseStrtab) {
5830             ValueIdToLinkageMap[ValueId++] = Linkage;
5831             break;
5832           }
5833 
5834           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5835           break;
5836         }
5837         }
5838       }
5839       continue;
5840     }
5841   }
5842 }
5843 
5844 std::vector<ValueInfo>
5845 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5846   std::vector<ValueInfo> Ret;
5847   Ret.reserve(Record.size());
5848   for (uint64_t RefValueId : Record)
5849     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5850   return Ret;
5851 }
5852 
5853 std::vector<FunctionSummary::EdgeTy>
5854 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5855                                               bool IsOldProfileFormat,
5856                                               bool HasProfile, bool HasRelBF) {
5857   std::vector<FunctionSummary::EdgeTy> Ret;
5858   Ret.reserve(Record.size());
5859   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5860     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5861     uint64_t RelBF = 0;
5862     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5863     if (IsOldProfileFormat) {
5864       I += 1; // Skip old callsitecount field
5865       if (HasProfile)
5866         I += 1; // Skip old profilecount field
5867     } else if (HasProfile)
5868       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5869     else if (HasRelBF)
5870       RelBF = Record[++I];
5871     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5872   }
5873   return Ret;
5874 }
5875 
5876 static void
5877 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5878                                        WholeProgramDevirtResolution &Wpd) {
5879   uint64_t ArgNum = Record[Slot++];
5880   WholeProgramDevirtResolution::ByArg &B =
5881       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5882   Slot += ArgNum;
5883 
5884   B.TheKind =
5885       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5886   B.Info = Record[Slot++];
5887   B.Byte = Record[Slot++];
5888   B.Bit = Record[Slot++];
5889 }
5890 
5891 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5892                                               StringRef Strtab, size_t &Slot,
5893                                               TypeIdSummary &TypeId) {
5894   uint64_t Id = Record[Slot++];
5895   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5896 
5897   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5898   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5899                         static_cast<size_t>(Record[Slot + 1])};
5900   Slot += 2;
5901 
5902   uint64_t ResByArgNum = Record[Slot++];
5903   for (uint64_t I = 0; I != ResByArgNum; ++I)
5904     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5905 }
5906 
5907 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5908                                      StringRef Strtab,
5909                                      ModuleSummaryIndex &TheIndex) {
5910   size_t Slot = 0;
5911   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5912       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5913   Slot += 2;
5914 
5915   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5916   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5917   TypeId.TTRes.AlignLog2 = Record[Slot++];
5918   TypeId.TTRes.SizeM1 = Record[Slot++];
5919   TypeId.TTRes.BitMask = Record[Slot++];
5920   TypeId.TTRes.InlineBits = Record[Slot++];
5921 
5922   while (Slot < Record.size())
5923     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5924 }
5925 
5926 std::vector<FunctionSummary::ParamAccess>
5927 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5928   auto ReadRange = [&]() {
5929     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5930                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5931     Record = Record.drop_front();
5932     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5933                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5934     Record = Record.drop_front();
5935     ConstantRange Range{Lower, Upper};
5936     assert(!Range.isFullSet());
5937     assert(!Range.isUpperSignWrapped());
5938     return Range;
5939   };
5940 
5941   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5942   while (!Record.empty()) {
5943     PendingParamAccesses.emplace_back();
5944     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5945     ParamAccess.ParamNo = Record.front();
5946     Record = Record.drop_front();
5947     ParamAccess.Use = ReadRange();
5948     ParamAccess.Calls.resize(Record.front());
5949     Record = Record.drop_front();
5950     for (auto &Call : ParamAccess.Calls) {
5951       Call.ParamNo = Record.front();
5952       Record = Record.drop_front();
5953       Call.Callee = getValueInfoFromValueId(Record.front()).first;
5954       Record = Record.drop_front();
5955       Call.Offsets = ReadRange();
5956     }
5957   }
5958   return PendingParamAccesses;
5959 }
5960 
5961 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5962     ArrayRef<uint64_t> Record, size_t &Slot,
5963     TypeIdCompatibleVtableInfo &TypeId) {
5964   uint64_t Offset = Record[Slot++];
5965   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5966   TypeId.push_back({Offset, Callee});
5967 }
5968 
5969 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5970     ArrayRef<uint64_t> Record) {
5971   size_t Slot = 0;
5972   TypeIdCompatibleVtableInfo &TypeId =
5973       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5974           {Strtab.data() + Record[Slot],
5975            static_cast<size_t>(Record[Slot + 1])});
5976   Slot += 2;
5977 
5978   while (Slot < Record.size())
5979     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5980 }
5981 
5982 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5983                            unsigned WOCnt) {
5984   // Readonly and writeonly refs are in the end of the refs list.
5985   assert(ROCnt + WOCnt <= Refs.size());
5986   unsigned FirstWORef = Refs.size() - WOCnt;
5987   unsigned RefNo = FirstWORef - ROCnt;
5988   for (; RefNo < FirstWORef; ++RefNo)
5989     Refs[RefNo].setReadOnly();
5990   for (; RefNo < Refs.size(); ++RefNo)
5991     Refs[RefNo].setWriteOnly();
5992 }
5993 
5994 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5995 // objects in the index.
5996 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5997   if (Error Err = Stream.EnterSubBlock(ID))
5998     return Err;
5999   SmallVector<uint64_t, 64> Record;
6000 
6001   // Parse version
6002   {
6003     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6004     if (!MaybeEntry)
6005       return MaybeEntry.takeError();
6006     BitstreamEntry Entry = MaybeEntry.get();
6007 
6008     if (Entry.Kind != BitstreamEntry::Record)
6009       return error("Invalid Summary Block: record for version expected");
6010     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6011     if (!MaybeRecord)
6012       return MaybeRecord.takeError();
6013     if (MaybeRecord.get() != bitc::FS_VERSION)
6014       return error("Invalid Summary Block: version expected");
6015   }
6016   const uint64_t Version = Record[0];
6017   const bool IsOldProfileFormat = Version == 1;
6018   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6019     return error("Invalid summary version " + Twine(Version) +
6020                  ". Version should be in the range [1-" +
6021                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6022                  "].");
6023   Record.clear();
6024 
6025   // Keep around the last seen summary to be used when we see an optional
6026   // "OriginalName" attachement.
6027   GlobalValueSummary *LastSeenSummary = nullptr;
6028   GlobalValue::GUID LastSeenGUID = 0;
6029 
6030   // We can expect to see any number of type ID information records before
6031   // each function summary records; these variables store the information
6032   // collected so far so that it can be used to create the summary object.
6033   std::vector<GlobalValue::GUID> PendingTypeTests;
6034   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6035       PendingTypeCheckedLoadVCalls;
6036   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6037       PendingTypeCheckedLoadConstVCalls;
6038   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6039 
6040   while (true) {
6041     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6042     if (!MaybeEntry)
6043       return MaybeEntry.takeError();
6044     BitstreamEntry Entry = MaybeEntry.get();
6045 
6046     switch (Entry.Kind) {
6047     case BitstreamEntry::SubBlock: // Handled for us already.
6048     case BitstreamEntry::Error:
6049       return error("Malformed block");
6050     case BitstreamEntry::EndBlock:
6051       return Error::success();
6052     case BitstreamEntry::Record:
6053       // The interesting case.
6054       break;
6055     }
6056 
6057     // Read a record. The record format depends on whether this
6058     // is a per-module index or a combined index file. In the per-module
6059     // case the records contain the associated value's ID for correlation
6060     // with VST entries. In the combined index the correlation is done
6061     // via the bitcode offset of the summary records (which were saved
6062     // in the combined index VST entries). The records also contain
6063     // information used for ThinLTO renaming and importing.
6064     Record.clear();
6065     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6066     if (!MaybeBitCode)
6067       return MaybeBitCode.takeError();
6068     switch (unsigned BitCode = MaybeBitCode.get()) {
6069     default: // Default behavior: ignore.
6070       break;
6071     case bitc::FS_FLAGS: {  // [flags]
6072       TheIndex.setFlags(Record[0]);
6073       break;
6074     }
6075     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6076       uint64_t ValueID = Record[0];
6077       GlobalValue::GUID RefGUID = Record[1];
6078       ValueIdToValueInfoMap[ValueID] =
6079           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6080       break;
6081     }
6082     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6083     //                numrefs x valueid, n x (valueid)]
6084     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6085     //                        numrefs x valueid,
6086     //                        n x (valueid, hotness)]
6087     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6088     //                      numrefs x valueid,
6089     //                      n x (valueid, relblockfreq)]
6090     case bitc::FS_PERMODULE:
6091     case bitc::FS_PERMODULE_RELBF:
6092     case bitc::FS_PERMODULE_PROFILE: {
6093       unsigned ValueID = Record[0];
6094       uint64_t RawFlags = Record[1];
6095       unsigned InstCount = Record[2];
6096       uint64_t RawFunFlags = 0;
6097       unsigned NumRefs = Record[3];
6098       unsigned NumRORefs = 0, NumWORefs = 0;
6099       int RefListStartIndex = 4;
6100       if (Version >= 4) {
6101         RawFunFlags = Record[3];
6102         NumRefs = Record[4];
6103         RefListStartIndex = 5;
6104         if (Version >= 5) {
6105           NumRORefs = Record[5];
6106           RefListStartIndex = 6;
6107           if (Version >= 7) {
6108             NumWORefs = Record[6];
6109             RefListStartIndex = 7;
6110           }
6111         }
6112       }
6113 
6114       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6115       // The module path string ref set in the summary must be owned by the
6116       // index's module string table. Since we don't have a module path
6117       // string table section in the per-module index, we create a single
6118       // module path string table entry with an empty (0) ID to take
6119       // ownership.
6120       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6121       assert(Record.size() >= RefListStartIndex + NumRefs &&
6122              "Record size inconsistent with number of references");
6123       std::vector<ValueInfo> Refs = makeRefList(
6124           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6125       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6126       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6127       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6128           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6129           IsOldProfileFormat, HasProfile, HasRelBF);
6130       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6131       auto FS = std::make_unique<FunctionSummary>(
6132           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6133           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6134           std::move(PendingTypeTestAssumeVCalls),
6135           std::move(PendingTypeCheckedLoadVCalls),
6136           std::move(PendingTypeTestAssumeConstVCalls),
6137           std::move(PendingTypeCheckedLoadConstVCalls),
6138           std::move(PendingParamAccesses));
6139       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6140       FS->setModulePath(getThisModule()->first());
6141       FS->setOriginalName(VIAndOriginalGUID.second);
6142       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6143       break;
6144     }
6145     // FS_ALIAS: [valueid, flags, valueid]
6146     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6147     // they expect all aliasee summaries to be available.
6148     case bitc::FS_ALIAS: {
6149       unsigned ValueID = Record[0];
6150       uint64_t RawFlags = Record[1];
6151       unsigned AliaseeID = Record[2];
6152       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6153       auto AS = std::make_unique<AliasSummary>(Flags);
6154       // The module path string ref set in the summary must be owned by the
6155       // index's module string table. Since we don't have a module path
6156       // string table section in the per-module index, we create a single
6157       // module path string table entry with an empty (0) ID to take
6158       // ownership.
6159       AS->setModulePath(getThisModule()->first());
6160 
6161       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6162       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6163       if (!AliaseeInModule)
6164         return error("Alias expects aliasee summary to be parsed");
6165       AS->setAliasee(AliaseeVI, AliaseeInModule);
6166 
6167       auto GUID = getValueInfoFromValueId(ValueID);
6168       AS->setOriginalName(GUID.second);
6169       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6170       break;
6171     }
6172     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6173     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6174       unsigned ValueID = Record[0];
6175       uint64_t RawFlags = Record[1];
6176       unsigned RefArrayStart = 2;
6177       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6178                                       /* WriteOnly */ false,
6179                                       /* Constant */ false,
6180                                       GlobalObject::VCallVisibilityPublic);
6181       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6182       if (Version >= 5) {
6183         GVF = getDecodedGVarFlags(Record[2]);
6184         RefArrayStart = 3;
6185       }
6186       std::vector<ValueInfo> Refs =
6187           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6188       auto FS =
6189           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6190       FS->setModulePath(getThisModule()->first());
6191       auto GUID = getValueInfoFromValueId(ValueID);
6192       FS->setOriginalName(GUID.second);
6193       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6194       break;
6195     }
6196     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6197     //                        numrefs, numrefs x valueid,
6198     //                        n x (valueid, offset)]
6199     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6200       unsigned ValueID = Record[0];
6201       uint64_t RawFlags = Record[1];
6202       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6203       unsigned NumRefs = Record[3];
6204       unsigned RefListStartIndex = 4;
6205       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6206       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6207       std::vector<ValueInfo> Refs = makeRefList(
6208           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6209       VTableFuncList VTableFuncs;
6210       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6211         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6212         uint64_t Offset = Record[++I];
6213         VTableFuncs.push_back({Callee, Offset});
6214       }
6215       auto VS =
6216           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6217       VS->setModulePath(getThisModule()->first());
6218       VS->setVTableFuncs(VTableFuncs);
6219       auto GUID = getValueInfoFromValueId(ValueID);
6220       VS->setOriginalName(GUID.second);
6221       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6222       break;
6223     }
6224     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6225     //               numrefs x valueid, n x (valueid)]
6226     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6227     //                       numrefs x valueid, n x (valueid, hotness)]
6228     case bitc::FS_COMBINED:
6229     case bitc::FS_COMBINED_PROFILE: {
6230       unsigned ValueID = Record[0];
6231       uint64_t ModuleId = Record[1];
6232       uint64_t RawFlags = Record[2];
6233       unsigned InstCount = Record[3];
6234       uint64_t RawFunFlags = 0;
6235       uint64_t EntryCount = 0;
6236       unsigned NumRefs = Record[4];
6237       unsigned NumRORefs = 0, NumWORefs = 0;
6238       int RefListStartIndex = 5;
6239 
6240       if (Version >= 4) {
6241         RawFunFlags = Record[4];
6242         RefListStartIndex = 6;
6243         size_t NumRefsIndex = 5;
6244         if (Version >= 5) {
6245           unsigned NumRORefsOffset = 1;
6246           RefListStartIndex = 7;
6247           if (Version >= 6) {
6248             NumRefsIndex = 6;
6249             EntryCount = Record[5];
6250             RefListStartIndex = 8;
6251             if (Version >= 7) {
6252               RefListStartIndex = 9;
6253               NumWORefs = Record[8];
6254               NumRORefsOffset = 2;
6255             }
6256           }
6257           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6258         }
6259         NumRefs = Record[NumRefsIndex];
6260       }
6261 
6262       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6263       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6264       assert(Record.size() >= RefListStartIndex + NumRefs &&
6265              "Record size inconsistent with number of references");
6266       std::vector<ValueInfo> Refs = makeRefList(
6267           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6268       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6269       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6270           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6271           IsOldProfileFormat, HasProfile, false);
6272       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6273       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6274       auto FS = std::make_unique<FunctionSummary>(
6275           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6276           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6277           std::move(PendingTypeTestAssumeVCalls),
6278           std::move(PendingTypeCheckedLoadVCalls),
6279           std::move(PendingTypeTestAssumeConstVCalls),
6280           std::move(PendingTypeCheckedLoadConstVCalls),
6281           std::move(PendingParamAccesses));
6282       LastSeenSummary = FS.get();
6283       LastSeenGUID = VI.getGUID();
6284       FS->setModulePath(ModuleIdMap[ModuleId]);
6285       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6286       break;
6287     }
6288     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6289     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6290     // they expect all aliasee summaries to be available.
6291     case bitc::FS_COMBINED_ALIAS: {
6292       unsigned ValueID = Record[0];
6293       uint64_t ModuleId = Record[1];
6294       uint64_t RawFlags = Record[2];
6295       unsigned AliaseeValueId = Record[3];
6296       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6297       auto AS = std::make_unique<AliasSummary>(Flags);
6298       LastSeenSummary = AS.get();
6299       AS->setModulePath(ModuleIdMap[ModuleId]);
6300 
6301       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6302       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6303       AS->setAliasee(AliaseeVI, AliaseeInModule);
6304 
6305       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6306       LastSeenGUID = VI.getGUID();
6307       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6308       break;
6309     }
6310     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6311     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6312       unsigned ValueID = Record[0];
6313       uint64_t ModuleId = Record[1];
6314       uint64_t RawFlags = Record[2];
6315       unsigned RefArrayStart = 3;
6316       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6317                                       /* WriteOnly */ false,
6318                                       /* Constant */ false,
6319                                       GlobalObject::VCallVisibilityPublic);
6320       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6321       if (Version >= 5) {
6322         GVF = getDecodedGVarFlags(Record[3]);
6323         RefArrayStart = 4;
6324       }
6325       std::vector<ValueInfo> Refs =
6326           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6327       auto FS =
6328           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6329       LastSeenSummary = FS.get();
6330       FS->setModulePath(ModuleIdMap[ModuleId]);
6331       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6332       LastSeenGUID = VI.getGUID();
6333       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6334       break;
6335     }
6336     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6337     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6338       uint64_t OriginalName = Record[0];
6339       if (!LastSeenSummary)
6340         return error("Name attachment that does not follow a combined record");
6341       LastSeenSummary->setOriginalName(OriginalName);
6342       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6343       // Reset the LastSeenSummary
6344       LastSeenSummary = nullptr;
6345       LastSeenGUID = 0;
6346       break;
6347     }
6348     case bitc::FS_TYPE_TESTS:
6349       assert(PendingTypeTests.empty());
6350       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6351                               Record.end());
6352       break;
6353 
6354     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6355       assert(PendingTypeTestAssumeVCalls.empty());
6356       for (unsigned I = 0; I != Record.size(); I += 2)
6357         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6358       break;
6359 
6360     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6361       assert(PendingTypeCheckedLoadVCalls.empty());
6362       for (unsigned I = 0; I != Record.size(); I += 2)
6363         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6364       break;
6365 
6366     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6367       PendingTypeTestAssumeConstVCalls.push_back(
6368           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6369       break;
6370 
6371     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6372       PendingTypeCheckedLoadConstVCalls.push_back(
6373           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6374       break;
6375 
6376     case bitc::FS_CFI_FUNCTION_DEFS: {
6377       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6378       for (unsigned I = 0; I != Record.size(); I += 2)
6379         CfiFunctionDefs.insert(
6380             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6381       break;
6382     }
6383 
6384     case bitc::FS_CFI_FUNCTION_DECLS: {
6385       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6386       for (unsigned I = 0; I != Record.size(); I += 2)
6387         CfiFunctionDecls.insert(
6388             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6389       break;
6390     }
6391 
6392     case bitc::FS_TYPE_ID:
6393       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6394       break;
6395 
6396     case bitc::FS_TYPE_ID_METADATA:
6397       parseTypeIdCompatibleVtableSummaryRecord(Record);
6398       break;
6399 
6400     case bitc::FS_BLOCK_COUNT:
6401       TheIndex.addBlockCount(Record[0]);
6402       break;
6403 
6404     case bitc::FS_PARAM_ACCESS: {
6405       PendingParamAccesses = parseParamAccesses(Record);
6406       break;
6407     }
6408     }
6409   }
6410   llvm_unreachable("Exit infinite loop");
6411 }
6412 
6413 // Parse the  module string table block into the Index.
6414 // This populates the ModulePathStringTable map in the index.
6415 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6416   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6417     return Err;
6418 
6419   SmallVector<uint64_t, 64> Record;
6420 
6421   SmallString<128> ModulePath;
6422   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6423 
6424   while (true) {
6425     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6426     if (!MaybeEntry)
6427       return MaybeEntry.takeError();
6428     BitstreamEntry Entry = MaybeEntry.get();
6429 
6430     switch (Entry.Kind) {
6431     case BitstreamEntry::SubBlock: // Handled for us already.
6432     case BitstreamEntry::Error:
6433       return error("Malformed block");
6434     case BitstreamEntry::EndBlock:
6435       return Error::success();
6436     case BitstreamEntry::Record:
6437       // The interesting case.
6438       break;
6439     }
6440 
6441     Record.clear();
6442     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6443     if (!MaybeRecord)
6444       return MaybeRecord.takeError();
6445     switch (MaybeRecord.get()) {
6446     default: // Default behavior: ignore.
6447       break;
6448     case bitc::MST_CODE_ENTRY: {
6449       // MST_ENTRY: [modid, namechar x N]
6450       uint64_t ModuleId = Record[0];
6451 
6452       if (convertToString(Record, 1, ModulePath))
6453         return error("Invalid record");
6454 
6455       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6456       ModuleIdMap[ModuleId] = LastSeenModule->first();
6457 
6458       ModulePath.clear();
6459       break;
6460     }
6461     /// MST_CODE_HASH: [5*i32]
6462     case bitc::MST_CODE_HASH: {
6463       if (Record.size() != 5)
6464         return error("Invalid hash length " + Twine(Record.size()).str());
6465       if (!LastSeenModule)
6466         return error("Invalid hash that does not follow a module path");
6467       int Pos = 0;
6468       for (auto &Val : Record) {
6469         assert(!(Val >> 32) && "Unexpected high bits set");
6470         LastSeenModule->second.second[Pos++] = Val;
6471       }
6472       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6473       LastSeenModule = nullptr;
6474       break;
6475     }
6476     }
6477   }
6478   llvm_unreachable("Exit infinite loop");
6479 }
6480 
6481 namespace {
6482 
6483 // FIXME: This class is only here to support the transition to llvm::Error. It
6484 // will be removed once this transition is complete. Clients should prefer to
6485 // deal with the Error value directly, rather than converting to error_code.
6486 class BitcodeErrorCategoryType : public std::error_category {
6487   const char *name() const noexcept override {
6488     return "llvm.bitcode";
6489   }
6490 
6491   std::string message(int IE) const override {
6492     BitcodeError E = static_cast<BitcodeError>(IE);
6493     switch (E) {
6494     case BitcodeError::CorruptedBitcode:
6495       return "Corrupted bitcode";
6496     }
6497     llvm_unreachable("Unknown error type!");
6498   }
6499 };
6500 
6501 } // end anonymous namespace
6502 
6503 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6504 
6505 const std::error_category &llvm::BitcodeErrorCategory() {
6506   return *ErrorCategory;
6507 }
6508 
6509 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6510                                             unsigned Block, unsigned RecordID) {
6511   if (Error Err = Stream.EnterSubBlock(Block))
6512     return std::move(Err);
6513 
6514   StringRef Strtab;
6515   while (true) {
6516     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6517     if (!MaybeEntry)
6518       return MaybeEntry.takeError();
6519     llvm::BitstreamEntry Entry = MaybeEntry.get();
6520 
6521     switch (Entry.Kind) {
6522     case BitstreamEntry::EndBlock:
6523       return Strtab;
6524 
6525     case BitstreamEntry::Error:
6526       return error("Malformed block");
6527 
6528     case BitstreamEntry::SubBlock:
6529       if (Error Err = Stream.SkipBlock())
6530         return std::move(Err);
6531       break;
6532 
6533     case BitstreamEntry::Record:
6534       StringRef Blob;
6535       SmallVector<uint64_t, 1> Record;
6536       Expected<unsigned> MaybeRecord =
6537           Stream.readRecord(Entry.ID, Record, &Blob);
6538       if (!MaybeRecord)
6539         return MaybeRecord.takeError();
6540       if (MaybeRecord.get() == RecordID)
6541         Strtab = Blob;
6542       break;
6543     }
6544   }
6545 }
6546 
6547 //===----------------------------------------------------------------------===//
6548 // External interface
6549 //===----------------------------------------------------------------------===//
6550 
6551 Expected<std::vector<BitcodeModule>>
6552 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6553   auto FOrErr = getBitcodeFileContents(Buffer);
6554   if (!FOrErr)
6555     return FOrErr.takeError();
6556   return std::move(FOrErr->Mods);
6557 }
6558 
6559 Expected<BitcodeFileContents>
6560 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6561   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6562   if (!StreamOrErr)
6563     return StreamOrErr.takeError();
6564   BitstreamCursor &Stream = *StreamOrErr;
6565 
6566   BitcodeFileContents F;
6567   while (true) {
6568     uint64_t BCBegin = Stream.getCurrentByteNo();
6569 
6570     // We may be consuming bitcode from a client that leaves garbage at the end
6571     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6572     // the end that there cannot possibly be another module, stop looking.
6573     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6574       return F;
6575 
6576     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6577     if (!MaybeEntry)
6578       return MaybeEntry.takeError();
6579     llvm::BitstreamEntry Entry = MaybeEntry.get();
6580 
6581     switch (Entry.Kind) {
6582     case BitstreamEntry::EndBlock:
6583     case BitstreamEntry::Error:
6584       return error("Malformed block");
6585 
6586     case BitstreamEntry::SubBlock: {
6587       uint64_t IdentificationBit = -1ull;
6588       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6589         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6590         if (Error Err = Stream.SkipBlock())
6591           return std::move(Err);
6592 
6593         {
6594           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6595           if (!MaybeEntry)
6596             return MaybeEntry.takeError();
6597           Entry = MaybeEntry.get();
6598         }
6599 
6600         if (Entry.Kind != BitstreamEntry::SubBlock ||
6601             Entry.ID != bitc::MODULE_BLOCK_ID)
6602           return error("Malformed block");
6603       }
6604 
6605       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6606         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6607         if (Error Err = Stream.SkipBlock())
6608           return std::move(Err);
6609 
6610         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6611                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6612                           Buffer.getBufferIdentifier(), IdentificationBit,
6613                           ModuleBit});
6614         continue;
6615       }
6616 
6617       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6618         Expected<StringRef> Strtab =
6619             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6620         if (!Strtab)
6621           return Strtab.takeError();
6622         // This string table is used by every preceding bitcode module that does
6623         // not have its own string table. A bitcode file may have multiple
6624         // string tables if it was created by binary concatenation, for example
6625         // with "llvm-cat -b".
6626         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6627           if (!I->Strtab.empty())
6628             break;
6629           I->Strtab = *Strtab;
6630         }
6631         // Similarly, the string table is used by every preceding symbol table;
6632         // normally there will be just one unless the bitcode file was created
6633         // by binary concatenation.
6634         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6635           F.StrtabForSymtab = *Strtab;
6636         continue;
6637       }
6638 
6639       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6640         Expected<StringRef> SymtabOrErr =
6641             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6642         if (!SymtabOrErr)
6643           return SymtabOrErr.takeError();
6644 
6645         // We can expect the bitcode file to have multiple symbol tables if it
6646         // was created by binary concatenation. In that case we silently
6647         // ignore any subsequent symbol tables, which is fine because this is a
6648         // low level function. The client is expected to notice that the number
6649         // of modules in the symbol table does not match the number of modules
6650         // in the input file and regenerate the symbol table.
6651         if (F.Symtab.empty())
6652           F.Symtab = *SymtabOrErr;
6653         continue;
6654       }
6655 
6656       if (Error Err = Stream.SkipBlock())
6657         return std::move(Err);
6658       continue;
6659     }
6660     case BitstreamEntry::Record:
6661       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6662         continue;
6663       else
6664         return StreamFailed.takeError();
6665     }
6666   }
6667 }
6668 
6669 /// Get a lazy one-at-time loading module from bitcode.
6670 ///
6671 /// This isn't always used in a lazy context.  In particular, it's also used by
6672 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6673 /// in forward-referenced functions from block address references.
6674 ///
6675 /// \param[in] MaterializeAll Set to \c true if we should materialize
6676 /// everything.
6677 Expected<std::unique_ptr<Module>>
6678 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6679                              bool ShouldLazyLoadMetadata, bool IsImporting,
6680                              DataLayoutCallbackTy DataLayoutCallback) {
6681   BitstreamCursor Stream(Buffer);
6682 
6683   std::string ProducerIdentification;
6684   if (IdentificationBit != -1ull) {
6685     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6686       return std::move(JumpFailed);
6687     Expected<std::string> ProducerIdentificationOrErr =
6688         readIdentificationBlock(Stream);
6689     if (!ProducerIdentificationOrErr)
6690       return ProducerIdentificationOrErr.takeError();
6691 
6692     ProducerIdentification = *ProducerIdentificationOrErr;
6693   }
6694 
6695   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6696     return std::move(JumpFailed);
6697   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6698                               Context);
6699 
6700   std::unique_ptr<Module> M =
6701       std::make_unique<Module>(ModuleIdentifier, Context);
6702   M->setMaterializer(R);
6703 
6704   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6705   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6706                                       IsImporting, DataLayoutCallback))
6707     return std::move(Err);
6708 
6709   if (MaterializeAll) {
6710     // Read in the entire module, and destroy the BitcodeReader.
6711     if (Error Err = M->materializeAll())
6712       return std::move(Err);
6713   } else {
6714     // Resolve forward references from blockaddresses.
6715     if (Error Err = R->materializeForwardReferencedFunctions())
6716       return std::move(Err);
6717   }
6718   return std::move(M);
6719 }
6720 
6721 Expected<std::unique_ptr<Module>>
6722 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6723                              bool IsImporting) {
6724   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6725                        [](StringRef) { return None; });
6726 }
6727 
6728 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6729 // We don't use ModuleIdentifier here because the client may need to control the
6730 // module path used in the combined summary (e.g. when reading summaries for
6731 // regular LTO modules).
6732 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6733                                  StringRef ModulePath, uint64_t ModuleId) {
6734   BitstreamCursor Stream(Buffer);
6735   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6736     return JumpFailed;
6737 
6738   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6739                                     ModulePath, ModuleId);
6740   return R.parseModule();
6741 }
6742 
6743 // Parse the specified bitcode buffer, returning the function info index.
6744 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6745   BitstreamCursor Stream(Buffer);
6746   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6747     return std::move(JumpFailed);
6748 
6749   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6750   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6751                                     ModuleIdentifier, 0);
6752 
6753   if (Error Err = R.parseModule())
6754     return std::move(Err);
6755 
6756   return std::move(Index);
6757 }
6758 
6759 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6760                                                 unsigned ID) {
6761   if (Error Err = Stream.EnterSubBlock(ID))
6762     return std::move(Err);
6763   SmallVector<uint64_t, 64> Record;
6764 
6765   while (true) {
6766     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6767     if (!MaybeEntry)
6768       return MaybeEntry.takeError();
6769     BitstreamEntry Entry = MaybeEntry.get();
6770 
6771     switch (Entry.Kind) {
6772     case BitstreamEntry::SubBlock: // Handled for us already.
6773     case BitstreamEntry::Error:
6774       return error("Malformed block");
6775     case BitstreamEntry::EndBlock:
6776       // If no flags record found, conservatively return true to mimic
6777       // behavior before this flag was added.
6778       return true;
6779     case BitstreamEntry::Record:
6780       // The interesting case.
6781       break;
6782     }
6783 
6784     // Look for the FS_FLAGS record.
6785     Record.clear();
6786     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6787     if (!MaybeBitCode)
6788       return MaybeBitCode.takeError();
6789     switch (MaybeBitCode.get()) {
6790     default: // Default behavior: ignore.
6791       break;
6792     case bitc::FS_FLAGS: { // [flags]
6793       uint64_t Flags = Record[0];
6794       // Scan flags.
6795       assert(Flags <= 0x3f && "Unexpected bits in flag");
6796 
6797       return Flags & 0x8;
6798     }
6799     }
6800   }
6801   llvm_unreachable("Exit infinite loop");
6802 }
6803 
6804 // Check if the given bitcode buffer contains a global value summary block.
6805 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6806   BitstreamCursor Stream(Buffer);
6807   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6808     return std::move(JumpFailed);
6809 
6810   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6811     return std::move(Err);
6812 
6813   while (true) {
6814     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6815     if (!MaybeEntry)
6816       return MaybeEntry.takeError();
6817     llvm::BitstreamEntry Entry = MaybeEntry.get();
6818 
6819     switch (Entry.Kind) {
6820     case BitstreamEntry::Error:
6821       return error("Malformed block");
6822     case BitstreamEntry::EndBlock:
6823       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6824                             /*EnableSplitLTOUnit=*/false};
6825 
6826     case BitstreamEntry::SubBlock:
6827       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6828         Expected<bool> EnableSplitLTOUnit =
6829             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6830         if (!EnableSplitLTOUnit)
6831           return EnableSplitLTOUnit.takeError();
6832         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6833                               *EnableSplitLTOUnit};
6834       }
6835 
6836       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6837         Expected<bool> EnableSplitLTOUnit =
6838             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6839         if (!EnableSplitLTOUnit)
6840           return EnableSplitLTOUnit.takeError();
6841         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6842                               *EnableSplitLTOUnit};
6843       }
6844 
6845       // Ignore other sub-blocks.
6846       if (Error Err = Stream.SkipBlock())
6847         return std::move(Err);
6848       continue;
6849 
6850     case BitstreamEntry::Record:
6851       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6852         continue;
6853       else
6854         return StreamFailed.takeError();
6855     }
6856   }
6857 }
6858 
6859 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6860   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6861   if (!MsOrErr)
6862     return MsOrErr.takeError();
6863 
6864   if (MsOrErr->size() != 1)
6865     return error("Expected a single module");
6866 
6867   return (*MsOrErr)[0];
6868 }
6869 
6870 Expected<std::unique_ptr<Module>>
6871 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6872                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6873   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6874   if (!BM)
6875     return BM.takeError();
6876 
6877   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6878 }
6879 
6880 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6881     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6882     bool ShouldLazyLoadMetadata, bool IsImporting) {
6883   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6884                                      IsImporting);
6885   if (MOrErr)
6886     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6887   return MOrErr;
6888 }
6889 
6890 Expected<std::unique_ptr<Module>>
6891 BitcodeModule::parseModule(LLVMContext &Context,
6892                            DataLayoutCallbackTy DataLayoutCallback) {
6893   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6894   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6895   // written.  We must defer until the Module has been fully materialized.
6896 }
6897 
6898 Expected<std::unique_ptr<Module>>
6899 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6900                        DataLayoutCallbackTy DataLayoutCallback) {
6901   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6902   if (!BM)
6903     return BM.takeError();
6904 
6905   return BM->parseModule(Context, DataLayoutCallback);
6906 }
6907 
6908 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6909   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6910   if (!StreamOrErr)
6911     return StreamOrErr.takeError();
6912 
6913   return readTriple(*StreamOrErr);
6914 }
6915 
6916 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6917   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6918   if (!StreamOrErr)
6919     return StreamOrErr.takeError();
6920 
6921   return hasObjCCategory(*StreamOrErr);
6922 }
6923 
6924 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6925   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6926   if (!StreamOrErr)
6927     return StreamOrErr.takeError();
6928 
6929   return readIdentificationCode(*StreamOrErr);
6930 }
6931 
6932 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6933                                    ModuleSummaryIndex &CombinedIndex,
6934                                    uint64_t ModuleId) {
6935   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6936   if (!BM)
6937     return BM.takeError();
6938 
6939   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6940 }
6941 
6942 Expected<std::unique_ptr<ModuleSummaryIndex>>
6943 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6944   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6945   if (!BM)
6946     return BM.takeError();
6947 
6948   return BM->getSummary();
6949 }
6950 
6951 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6952   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6953   if (!BM)
6954     return BM.takeError();
6955 
6956   return BM->getLTOInfo();
6957 }
6958 
6959 Expected<std::unique_ptr<ModuleSummaryIndex>>
6960 llvm::getModuleSummaryIndexForFile(StringRef Path,
6961                                    bool IgnoreEmptyThinLTOIndexFile) {
6962   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6963       MemoryBuffer::getFileOrSTDIN(Path);
6964   if (!FileOrErr)
6965     return errorCodeToError(FileOrErr.getError());
6966   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6967     return nullptr;
6968   return getModuleSummaryIndex(**FileOrErr);
6969 }
6970