1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GVMaterializer.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalIndirectSymbol.h" 47 #include "llvm/IR/GlobalObject.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 376 : Stream(std::move(Stream)), Strtab(Strtab) { 377 this->Stream.setBlockInfo(&BlockInfo); 378 } 379 380 BitstreamBlockInfo BlockInfo; 381 BitstreamCursor Stream; 382 StringRef Strtab; 383 384 /// In version 2 of the bitcode we store names of global values and comdats in 385 /// a string table rather than in the VST. 386 bool UseStrtab = false; 387 388 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 389 390 /// If this module uses a string table, pop the reference to the string table 391 /// and return the referenced string and the rest of the record. Otherwise 392 /// just return the record itself. 393 std::pair<StringRef, ArrayRef<uint64_t>> 394 readNameFromStrtab(ArrayRef<uint64_t> Record); 395 396 bool readBlockInfo(); 397 398 // Contains an arbitrary and optional string identifying the bitcode producer 399 std::string ProducerIdentification; 400 401 Error error(const Twine &Message); 402 }; 403 404 Error BitcodeReaderBase::error(const Twine &Message) { 405 std::string FullMsg = Message.str(); 406 if (!ProducerIdentification.empty()) 407 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 408 LLVM_VERSION_STRING "')"; 409 return ::error(FullMsg); 410 } 411 412 Expected<unsigned> 413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 414 if (Record.size() < 1) 415 return error("Invalid record"); 416 unsigned ModuleVersion = Record[0]; 417 if (ModuleVersion > 2) 418 return error("Invalid value"); 419 UseStrtab = ModuleVersion >= 2; 420 return ModuleVersion; 421 } 422 423 std::pair<StringRef, ArrayRef<uint64_t>> 424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 425 if (!UseStrtab) 426 return {"", Record}; 427 // Invalid reference. Let the caller complain about the record being empty. 428 if (Record[0] + Record[1] > Strtab.size()) 429 return {"", {}}; 430 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 431 } 432 433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 434 LLVMContext &Context; 435 Module *TheModule = nullptr; 436 // Next offset to start scanning for lazy parsing of function bodies. 437 uint64_t NextUnreadBit = 0; 438 // Last function offset found in the VST. 439 uint64_t LastFunctionBlockBit = 0; 440 bool SeenValueSymbolTable = false; 441 uint64_t VSTOffset = 0; 442 443 std::vector<std::string> SectionTable; 444 std::vector<std::string> GCTable; 445 446 std::vector<Type*> TypeList; 447 BitcodeReaderValueList ValueList; 448 Optional<MetadataLoader> MDLoader; 449 std::vector<Comdat *> ComdatList; 450 SmallVector<Instruction *, 64> InstructionList; 451 452 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 453 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 454 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 455 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 456 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 457 458 /// The set of attributes by index. Index zero in the file is for null, and 459 /// is thus not represented here. As such all indices are off by one. 460 std::vector<AttributeList> MAttributes; 461 462 /// The set of attribute groups. 463 std::map<unsigned, AttributeList> MAttributeGroups; 464 465 /// While parsing a function body, this is a list of the basic blocks for the 466 /// function. 467 std::vector<BasicBlock*> FunctionBBs; 468 469 // When reading the module header, this list is populated with functions that 470 // have bodies later in the file. 471 std::vector<Function*> FunctionsWithBodies; 472 473 // When intrinsic functions are encountered which require upgrading they are 474 // stored here with their replacement function. 475 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 476 UpdatedIntrinsicMap UpgradedIntrinsics; 477 // Intrinsics which were remangled because of types rename 478 UpdatedIntrinsicMap RemangledIntrinsics; 479 480 // Several operations happen after the module header has been read, but 481 // before function bodies are processed. This keeps track of whether 482 // we've done this yet. 483 bool SeenFirstFunctionBody = false; 484 485 /// When function bodies are initially scanned, this map contains info about 486 /// where to find deferred function body in the stream. 487 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 488 489 /// When Metadata block is initially scanned when parsing the module, we may 490 /// choose to defer parsing of the metadata. This vector contains info about 491 /// which Metadata blocks are deferred. 492 std::vector<uint64_t> DeferredMetadataInfo; 493 494 /// These are basic blocks forward-referenced by block addresses. They are 495 /// inserted lazily into functions when they're loaded. The basic block ID is 496 /// its index into the vector. 497 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 498 std::deque<Function *> BasicBlockFwdRefQueue; 499 500 /// Indicates that we are using a new encoding for instruction operands where 501 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 502 /// instruction number, for a more compact encoding. Some instruction 503 /// operands are not relative to the instruction ID: basic block numbers, and 504 /// types. Once the old style function blocks have been phased out, we would 505 /// not need this flag. 506 bool UseRelativeIDs = false; 507 508 /// True if all functions will be materialized, negating the need to process 509 /// (e.g.) blockaddress forward references. 510 bool WillMaterializeAllForwardRefs = false; 511 512 bool StripDebugInfo = false; 513 TBAAVerifier TBAAVerifyHelper; 514 515 std::vector<std::string> BundleTags; 516 517 public: 518 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 519 StringRef ProducerIdentification, LLVMContext &Context); 520 521 Error materializeForwardReferencedFunctions(); 522 523 Error materialize(GlobalValue *GV) override; 524 Error materializeModule() override; 525 std::vector<StructType *> getIdentifiedStructTypes() const override; 526 527 /// \brief Main interface to parsing a bitcode buffer. 528 /// \returns true if an error occurred. 529 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 530 bool IsImporting = false); 531 532 static uint64_t decodeSignRotatedValue(uint64_t V); 533 534 /// Materialize any deferred Metadata block. 535 Error materializeMetadata() override; 536 537 void setStripDebugInfo() override; 538 539 private: 540 std::vector<StructType *> IdentifiedStructTypes; 541 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 542 StructType *createIdentifiedStructType(LLVMContext &Context); 543 544 Type *getTypeByID(unsigned ID); 545 546 Value *getFnValueByID(unsigned ID, Type *Ty) { 547 if (Ty && Ty->isMetadataTy()) 548 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 549 return ValueList.getValueFwdRef(ID, Ty); 550 } 551 552 Metadata *getFnMetadataByID(unsigned ID) { 553 return MDLoader->getMetadataFwdRefOrLoad(ID); 554 } 555 556 BasicBlock *getBasicBlock(unsigned ID) const { 557 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 558 return FunctionBBs[ID]; 559 } 560 561 AttributeList getAttributes(unsigned i) const { 562 if (i-1 < MAttributes.size()) 563 return MAttributes[i-1]; 564 return AttributeList(); 565 } 566 567 /// Read a value/type pair out of the specified record from slot 'Slot'. 568 /// Increment Slot past the number of slots used in the record. Return true on 569 /// failure. 570 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 571 unsigned InstNum, Value *&ResVal) { 572 if (Slot == Record.size()) return true; 573 unsigned ValNo = (unsigned)Record[Slot++]; 574 // Adjust the ValNo, if it was encoded relative to the InstNum. 575 if (UseRelativeIDs) 576 ValNo = InstNum - ValNo; 577 if (ValNo < InstNum) { 578 // If this is not a forward reference, just return the value we already 579 // have. 580 ResVal = getFnValueByID(ValNo, nullptr); 581 return ResVal == nullptr; 582 } 583 if (Slot == Record.size()) 584 return true; 585 586 unsigned TypeNo = (unsigned)Record[Slot++]; 587 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 588 return ResVal == nullptr; 589 } 590 591 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 592 /// past the number of slots used by the value in the record. Return true if 593 /// there is an error. 594 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 595 unsigned InstNum, Type *Ty, Value *&ResVal) { 596 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 597 return true; 598 // All values currently take a single record slot. 599 ++Slot; 600 return false; 601 } 602 603 /// Like popValue, but does not increment the Slot number. 604 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 605 unsigned InstNum, Type *Ty, Value *&ResVal) { 606 ResVal = getValue(Record, Slot, InstNum, Ty); 607 return ResVal == nullptr; 608 } 609 610 /// Version of getValue that returns ResVal directly, or 0 if there is an 611 /// error. 612 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty) { 614 if (Slot == Record.size()) return nullptr; 615 unsigned ValNo = (unsigned)Record[Slot]; 616 // Adjust the ValNo, if it was encoded relative to the InstNum. 617 if (UseRelativeIDs) 618 ValNo = InstNum - ValNo; 619 return getFnValueByID(ValNo, Ty); 620 } 621 622 /// Like getValue, but decodes signed VBRs. 623 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 624 unsigned InstNum, Type *Ty) { 625 if (Slot == Record.size()) return nullptr; 626 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 627 // Adjust the ValNo, if it was encoded relative to the InstNum. 628 if (UseRelativeIDs) 629 ValNo = InstNum - ValNo; 630 return getFnValueByID(ValNo, Ty); 631 } 632 633 /// Converts alignment exponent (i.e. power of two (or zero)) to the 634 /// corresponding alignment to use. If alignment is too large, returns 635 /// a corresponding error code. 636 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 637 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 638 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 639 640 Error parseComdatRecord(ArrayRef<uint64_t> Record); 641 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 642 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 643 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 644 ArrayRef<uint64_t> Record); 645 646 Error parseAttributeBlock(); 647 Error parseAttributeGroupBlock(); 648 Error parseTypeTable(); 649 Error parseTypeTableBody(); 650 Error parseOperandBundleTags(); 651 652 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 653 unsigned NameIndex, Triple &TT); 654 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 655 ArrayRef<uint64_t> Record); 656 Error parseValueSymbolTable(uint64_t Offset = 0); 657 Error parseGlobalValueSymbolTable(); 658 Error parseConstants(); 659 Error rememberAndSkipFunctionBodies(); 660 Error rememberAndSkipFunctionBody(); 661 /// Save the positions of the Metadata blocks and skip parsing the blocks. 662 Error rememberAndSkipMetadata(); 663 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 664 Error parseFunctionBody(Function *F); 665 Error globalCleanup(); 666 Error resolveGlobalAndIndirectSymbolInits(); 667 Error parseUseLists(); 668 Error findFunctionInStream( 669 Function *F, 670 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 671 }; 672 673 /// Class to manage reading and parsing function summary index bitcode 674 /// files/sections. 675 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 676 /// The module index built during parsing. 677 ModuleSummaryIndex &TheIndex; 678 679 /// Indicates whether we have encountered a global value summary section 680 /// yet during parsing. 681 bool SeenGlobalValSummary = false; 682 683 /// Indicates whether we have already parsed the VST, used for error checking. 684 bool SeenValueSymbolTable = false; 685 686 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 687 /// Used to enable on-demand parsing of the VST. 688 uint64_t VSTOffset = 0; 689 690 // Map to save ValueId to ValueInfo association that was recorded in the 691 // ValueSymbolTable. It is used after the VST is parsed to convert 692 // call graph edges read from the function summary from referencing 693 // callees by their ValueId to using the ValueInfo instead, which is how 694 // they are recorded in the summary index being built. 695 // We save a GUID which refers to the same global as the ValueInfo, but 696 // ignoring the linkage, i.e. for values other than local linkage they are 697 // identical. 698 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 699 ValueIdToValueInfoMap; 700 701 /// Map populated during module path string table parsing, from the 702 /// module ID to a string reference owned by the index's module 703 /// path string table, used to correlate with combined index 704 /// summary records. 705 DenseMap<uint64_t, StringRef> ModuleIdMap; 706 707 /// Original source file name recorded in a bitcode record. 708 std::string SourceFileName; 709 710 /// The string identifier given to this module by the client, normally the 711 /// path to the bitcode file. 712 StringRef ModulePath; 713 714 /// For per-module summary indexes, the unique numerical identifier given to 715 /// this module by the client. 716 unsigned ModuleId; 717 718 public: 719 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 720 ModuleSummaryIndex &TheIndex, 721 StringRef ModulePath, unsigned ModuleId); 722 723 Error parseModule(); 724 725 private: 726 void setValueGUID(uint64_t ValueID, StringRef ValueName, 727 GlobalValue::LinkageTypes Linkage, 728 StringRef SourceFileName); 729 Error parseValueSymbolTable( 730 uint64_t Offset, 731 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 732 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 733 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 734 bool IsOldProfileFormat, 735 bool HasProfile); 736 Error parseEntireSummary(unsigned ID); 737 Error parseModuleStringTable(); 738 739 std::pair<ValueInfo, GlobalValue::GUID> 740 getValueInfoFromValueId(unsigned ValueId); 741 742 ModuleSummaryIndex::ModuleInfo *addThisModule(); 743 }; 744 745 } // end anonymous namespace 746 747 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 748 Error Err) { 749 if (Err) { 750 std::error_code EC; 751 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 752 EC = EIB.convertToErrorCode(); 753 Ctx.emitError(EIB.message()); 754 }); 755 return EC; 756 } 757 return std::error_code(); 758 } 759 760 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 761 StringRef ProducerIdentification, 762 LLVMContext &Context) 763 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 764 ValueList(Context) { 765 this->ProducerIdentification = ProducerIdentification; 766 } 767 768 Error BitcodeReader::materializeForwardReferencedFunctions() { 769 if (WillMaterializeAllForwardRefs) 770 return Error::success(); 771 772 // Prevent recursion. 773 WillMaterializeAllForwardRefs = true; 774 775 while (!BasicBlockFwdRefQueue.empty()) { 776 Function *F = BasicBlockFwdRefQueue.front(); 777 BasicBlockFwdRefQueue.pop_front(); 778 assert(F && "Expected valid function"); 779 if (!BasicBlockFwdRefs.count(F)) 780 // Already materialized. 781 continue; 782 783 // Check for a function that isn't materializable to prevent an infinite 784 // loop. When parsing a blockaddress stored in a global variable, there 785 // isn't a trivial way to check if a function will have a body without a 786 // linear search through FunctionsWithBodies, so just check it here. 787 if (!F->isMaterializable()) 788 return error("Never resolved function from blockaddress"); 789 790 // Try to materialize F. 791 if (Error Err = materialize(F)) 792 return Err; 793 } 794 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 795 796 // Reset state. 797 WillMaterializeAllForwardRefs = false; 798 return Error::success(); 799 } 800 801 //===----------------------------------------------------------------------===// 802 // Helper functions to implement forward reference resolution, etc. 803 //===----------------------------------------------------------------------===// 804 805 static bool hasImplicitComdat(size_t Val) { 806 switch (Val) { 807 default: 808 return false; 809 case 1: // Old WeakAnyLinkage 810 case 4: // Old LinkOnceAnyLinkage 811 case 10: // Old WeakODRLinkage 812 case 11: // Old LinkOnceODRLinkage 813 return true; 814 } 815 } 816 817 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 818 switch (Val) { 819 default: // Map unknown/new linkages to external 820 case 0: 821 return GlobalValue::ExternalLinkage; 822 case 2: 823 return GlobalValue::AppendingLinkage; 824 case 3: 825 return GlobalValue::InternalLinkage; 826 case 5: 827 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 828 case 6: 829 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 830 case 7: 831 return GlobalValue::ExternalWeakLinkage; 832 case 8: 833 return GlobalValue::CommonLinkage; 834 case 9: 835 return GlobalValue::PrivateLinkage; 836 case 12: 837 return GlobalValue::AvailableExternallyLinkage; 838 case 13: 839 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 840 case 14: 841 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 842 case 15: 843 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 844 case 1: // Old value with implicit comdat. 845 case 16: 846 return GlobalValue::WeakAnyLinkage; 847 case 10: // Old value with implicit comdat. 848 case 17: 849 return GlobalValue::WeakODRLinkage; 850 case 4: // Old value with implicit comdat. 851 case 18: 852 return GlobalValue::LinkOnceAnyLinkage; 853 case 11: // Old value with implicit comdat. 854 case 19: 855 return GlobalValue::LinkOnceODRLinkage; 856 } 857 } 858 859 /// Decode the flags for GlobalValue in the summary. 860 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 861 uint64_t Version) { 862 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 863 // like getDecodedLinkage() above. Any future change to the linkage enum and 864 // to getDecodedLinkage() will need to be taken into account here as above. 865 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 866 RawFlags = RawFlags >> 4; 867 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 868 // The Live flag wasn't introduced until version 3. For dead stripping 869 // to work correctly on earlier versions, we must conservatively treat all 870 // values as live. 871 bool Live = (RawFlags & 0x2) || Version < 3; 872 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live); 873 } 874 875 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 876 switch (Val) { 877 default: // Map unknown visibilities to default. 878 case 0: return GlobalValue::DefaultVisibility; 879 case 1: return GlobalValue::HiddenVisibility; 880 case 2: return GlobalValue::ProtectedVisibility; 881 } 882 } 883 884 static GlobalValue::DLLStorageClassTypes 885 getDecodedDLLStorageClass(unsigned Val) { 886 switch (Val) { 887 default: // Map unknown values to default. 888 case 0: return GlobalValue::DefaultStorageClass; 889 case 1: return GlobalValue::DLLImportStorageClass; 890 case 2: return GlobalValue::DLLExportStorageClass; 891 } 892 } 893 894 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 895 switch (Val) { 896 case 0: return GlobalVariable::NotThreadLocal; 897 default: // Map unknown non-zero value to general dynamic. 898 case 1: return GlobalVariable::GeneralDynamicTLSModel; 899 case 2: return GlobalVariable::LocalDynamicTLSModel; 900 case 3: return GlobalVariable::InitialExecTLSModel; 901 case 4: return GlobalVariable::LocalExecTLSModel; 902 } 903 } 904 905 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 906 switch (Val) { 907 default: // Map unknown to UnnamedAddr::None. 908 case 0: return GlobalVariable::UnnamedAddr::None; 909 case 1: return GlobalVariable::UnnamedAddr::Global; 910 case 2: return GlobalVariable::UnnamedAddr::Local; 911 } 912 } 913 914 static int getDecodedCastOpcode(unsigned Val) { 915 switch (Val) { 916 default: return -1; 917 case bitc::CAST_TRUNC : return Instruction::Trunc; 918 case bitc::CAST_ZEXT : return Instruction::ZExt; 919 case bitc::CAST_SEXT : return Instruction::SExt; 920 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 921 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 922 case bitc::CAST_UITOFP : return Instruction::UIToFP; 923 case bitc::CAST_SITOFP : return Instruction::SIToFP; 924 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 925 case bitc::CAST_FPEXT : return Instruction::FPExt; 926 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 927 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 928 case bitc::CAST_BITCAST : return Instruction::BitCast; 929 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 930 } 931 } 932 933 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 934 bool IsFP = Ty->isFPOrFPVectorTy(); 935 // BinOps are only valid for int/fp or vector of int/fp types 936 if (!IsFP && !Ty->isIntOrIntVectorTy()) 937 return -1; 938 939 switch (Val) { 940 default: 941 return -1; 942 case bitc::BINOP_ADD: 943 return IsFP ? Instruction::FAdd : Instruction::Add; 944 case bitc::BINOP_SUB: 945 return IsFP ? Instruction::FSub : Instruction::Sub; 946 case bitc::BINOP_MUL: 947 return IsFP ? Instruction::FMul : Instruction::Mul; 948 case bitc::BINOP_UDIV: 949 return IsFP ? -1 : Instruction::UDiv; 950 case bitc::BINOP_SDIV: 951 return IsFP ? Instruction::FDiv : Instruction::SDiv; 952 case bitc::BINOP_UREM: 953 return IsFP ? -1 : Instruction::URem; 954 case bitc::BINOP_SREM: 955 return IsFP ? Instruction::FRem : Instruction::SRem; 956 case bitc::BINOP_SHL: 957 return IsFP ? -1 : Instruction::Shl; 958 case bitc::BINOP_LSHR: 959 return IsFP ? -1 : Instruction::LShr; 960 case bitc::BINOP_ASHR: 961 return IsFP ? -1 : Instruction::AShr; 962 case bitc::BINOP_AND: 963 return IsFP ? -1 : Instruction::And; 964 case bitc::BINOP_OR: 965 return IsFP ? -1 : Instruction::Or; 966 case bitc::BINOP_XOR: 967 return IsFP ? -1 : Instruction::Xor; 968 } 969 } 970 971 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 972 switch (Val) { 973 default: return AtomicRMWInst::BAD_BINOP; 974 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 975 case bitc::RMW_ADD: return AtomicRMWInst::Add; 976 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 977 case bitc::RMW_AND: return AtomicRMWInst::And; 978 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 979 case bitc::RMW_OR: return AtomicRMWInst::Or; 980 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 981 case bitc::RMW_MAX: return AtomicRMWInst::Max; 982 case bitc::RMW_MIN: return AtomicRMWInst::Min; 983 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 984 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 985 } 986 } 987 988 static AtomicOrdering getDecodedOrdering(unsigned Val) { 989 switch (Val) { 990 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 991 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 992 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 993 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 994 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 995 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 996 default: // Map unknown orderings to sequentially-consistent. 997 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 998 } 999 } 1000 1001 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 1002 switch (Val) { 1003 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 1004 default: // Map unknown scopes to cross-thread. 1005 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1006 } 1007 } 1008 1009 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1010 switch (Val) { 1011 default: // Map unknown selection kinds to any. 1012 case bitc::COMDAT_SELECTION_KIND_ANY: 1013 return Comdat::Any; 1014 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1015 return Comdat::ExactMatch; 1016 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1017 return Comdat::Largest; 1018 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1019 return Comdat::NoDuplicates; 1020 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1021 return Comdat::SameSize; 1022 } 1023 } 1024 1025 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1026 FastMathFlags FMF; 1027 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1028 FMF.setUnsafeAlgebra(); 1029 if (0 != (Val & FastMathFlags::NoNaNs)) 1030 FMF.setNoNaNs(); 1031 if (0 != (Val & FastMathFlags::NoInfs)) 1032 FMF.setNoInfs(); 1033 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1034 FMF.setNoSignedZeros(); 1035 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1036 FMF.setAllowReciprocal(); 1037 if (0 != (Val & FastMathFlags::AllowContract)) 1038 FMF.setAllowContract(true); 1039 return FMF; 1040 } 1041 1042 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1043 switch (Val) { 1044 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1045 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1046 } 1047 } 1048 1049 1050 Type *BitcodeReader::getTypeByID(unsigned ID) { 1051 // The type table size is always specified correctly. 1052 if (ID >= TypeList.size()) 1053 return nullptr; 1054 1055 if (Type *Ty = TypeList[ID]) 1056 return Ty; 1057 1058 // If we have a forward reference, the only possible case is when it is to a 1059 // named struct. Just create a placeholder for now. 1060 return TypeList[ID] = createIdentifiedStructType(Context); 1061 } 1062 1063 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1064 StringRef Name) { 1065 auto *Ret = StructType::create(Context, Name); 1066 IdentifiedStructTypes.push_back(Ret); 1067 return Ret; 1068 } 1069 1070 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1071 auto *Ret = StructType::create(Context); 1072 IdentifiedStructTypes.push_back(Ret); 1073 return Ret; 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // Functions for parsing blocks from the bitcode file 1078 //===----------------------------------------------------------------------===// 1079 1080 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1081 switch (Val) { 1082 case Attribute::EndAttrKinds: 1083 llvm_unreachable("Synthetic enumerators which should never get here"); 1084 1085 case Attribute::None: return 0; 1086 case Attribute::ZExt: return 1 << 0; 1087 case Attribute::SExt: return 1 << 1; 1088 case Attribute::NoReturn: return 1 << 2; 1089 case Attribute::InReg: return 1 << 3; 1090 case Attribute::StructRet: return 1 << 4; 1091 case Attribute::NoUnwind: return 1 << 5; 1092 case Attribute::NoAlias: return 1 << 6; 1093 case Attribute::ByVal: return 1 << 7; 1094 case Attribute::Nest: return 1 << 8; 1095 case Attribute::ReadNone: return 1 << 9; 1096 case Attribute::ReadOnly: return 1 << 10; 1097 case Attribute::NoInline: return 1 << 11; 1098 case Attribute::AlwaysInline: return 1 << 12; 1099 case Attribute::OptimizeForSize: return 1 << 13; 1100 case Attribute::StackProtect: return 1 << 14; 1101 case Attribute::StackProtectReq: return 1 << 15; 1102 case Attribute::Alignment: return 31 << 16; 1103 case Attribute::NoCapture: return 1 << 21; 1104 case Attribute::NoRedZone: return 1 << 22; 1105 case Attribute::NoImplicitFloat: return 1 << 23; 1106 case Attribute::Naked: return 1 << 24; 1107 case Attribute::InlineHint: return 1 << 25; 1108 case Attribute::StackAlignment: return 7 << 26; 1109 case Attribute::ReturnsTwice: return 1 << 29; 1110 case Attribute::UWTable: return 1 << 30; 1111 case Attribute::NonLazyBind: return 1U << 31; 1112 case Attribute::SanitizeAddress: return 1ULL << 32; 1113 case Attribute::MinSize: return 1ULL << 33; 1114 case Attribute::NoDuplicate: return 1ULL << 34; 1115 case Attribute::StackProtectStrong: return 1ULL << 35; 1116 case Attribute::SanitizeThread: return 1ULL << 36; 1117 case Attribute::SanitizeMemory: return 1ULL << 37; 1118 case Attribute::NoBuiltin: return 1ULL << 38; 1119 case Attribute::Returned: return 1ULL << 39; 1120 case Attribute::Cold: return 1ULL << 40; 1121 case Attribute::Builtin: return 1ULL << 41; 1122 case Attribute::OptimizeNone: return 1ULL << 42; 1123 case Attribute::InAlloca: return 1ULL << 43; 1124 case Attribute::NonNull: return 1ULL << 44; 1125 case Attribute::JumpTable: return 1ULL << 45; 1126 case Attribute::Convergent: return 1ULL << 46; 1127 case Attribute::SafeStack: return 1ULL << 47; 1128 case Attribute::NoRecurse: return 1ULL << 48; 1129 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1130 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1131 case Attribute::SwiftSelf: return 1ULL << 51; 1132 case Attribute::SwiftError: return 1ULL << 52; 1133 case Attribute::WriteOnly: return 1ULL << 53; 1134 case Attribute::Speculatable: return 1ULL << 54; 1135 case Attribute::Dereferenceable: 1136 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1137 break; 1138 case Attribute::DereferenceableOrNull: 1139 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1140 "format"); 1141 break; 1142 case Attribute::ArgMemOnly: 1143 llvm_unreachable("argmemonly attribute not supported in raw format"); 1144 break; 1145 case Attribute::AllocSize: 1146 llvm_unreachable("allocsize not supported in raw format"); 1147 break; 1148 } 1149 llvm_unreachable("Unsupported attribute type"); 1150 } 1151 1152 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1153 if (!Val) return; 1154 1155 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1156 I = Attribute::AttrKind(I + 1)) { 1157 if (I == Attribute::Dereferenceable || 1158 I == Attribute::DereferenceableOrNull || 1159 I == Attribute::ArgMemOnly || 1160 I == Attribute::AllocSize) 1161 continue; 1162 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1163 if (I == Attribute::Alignment) 1164 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1165 else if (I == Attribute::StackAlignment) 1166 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1167 else 1168 B.addAttribute(I); 1169 } 1170 } 1171 } 1172 1173 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1174 /// been decoded from the given integer. This function must stay in sync with 1175 /// 'encodeLLVMAttributesForBitcode'. 1176 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1177 uint64_t EncodedAttrs) { 1178 // FIXME: Remove in 4.0. 1179 1180 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1181 // the bits above 31 down by 11 bits. 1182 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1183 assert((!Alignment || isPowerOf2_32(Alignment)) && 1184 "Alignment must be a power of two."); 1185 1186 if (Alignment) 1187 B.addAlignmentAttr(Alignment); 1188 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1189 (EncodedAttrs & 0xffff)); 1190 } 1191 1192 Error BitcodeReader::parseAttributeBlock() { 1193 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1194 return error("Invalid record"); 1195 1196 if (!MAttributes.empty()) 1197 return error("Invalid multiple blocks"); 1198 1199 SmallVector<uint64_t, 64> Record; 1200 1201 SmallVector<AttributeList, 8> Attrs; 1202 1203 // Read all the records. 1204 while (true) { 1205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1206 1207 switch (Entry.Kind) { 1208 case BitstreamEntry::SubBlock: // Handled for us already. 1209 case BitstreamEntry::Error: 1210 return error("Malformed block"); 1211 case BitstreamEntry::EndBlock: 1212 return Error::success(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 switch (Stream.readRecord(Entry.ID, Record)) { 1221 default: // Default behavior: ignore. 1222 break; 1223 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1224 // FIXME: Remove in 4.0. 1225 if (Record.size() & 1) 1226 return error("Invalid record"); 1227 1228 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1229 AttrBuilder B; 1230 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1231 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1232 } 1233 1234 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1235 Attrs.clear(); 1236 break; 1237 } 1238 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1239 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1240 Attrs.push_back(MAttributeGroups[Record[i]]); 1241 1242 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1243 Attrs.clear(); 1244 break; 1245 } 1246 } 1247 } 1248 } 1249 1250 // Returns Attribute::None on unrecognized codes. 1251 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1252 switch (Code) { 1253 default: 1254 return Attribute::None; 1255 case bitc::ATTR_KIND_ALIGNMENT: 1256 return Attribute::Alignment; 1257 case bitc::ATTR_KIND_ALWAYS_INLINE: 1258 return Attribute::AlwaysInline; 1259 case bitc::ATTR_KIND_ARGMEMONLY: 1260 return Attribute::ArgMemOnly; 1261 case bitc::ATTR_KIND_BUILTIN: 1262 return Attribute::Builtin; 1263 case bitc::ATTR_KIND_BY_VAL: 1264 return Attribute::ByVal; 1265 case bitc::ATTR_KIND_IN_ALLOCA: 1266 return Attribute::InAlloca; 1267 case bitc::ATTR_KIND_COLD: 1268 return Attribute::Cold; 1269 case bitc::ATTR_KIND_CONVERGENT: 1270 return Attribute::Convergent; 1271 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1272 return Attribute::InaccessibleMemOnly; 1273 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1274 return Attribute::InaccessibleMemOrArgMemOnly; 1275 case bitc::ATTR_KIND_INLINE_HINT: 1276 return Attribute::InlineHint; 1277 case bitc::ATTR_KIND_IN_REG: 1278 return Attribute::InReg; 1279 case bitc::ATTR_KIND_JUMP_TABLE: 1280 return Attribute::JumpTable; 1281 case bitc::ATTR_KIND_MIN_SIZE: 1282 return Attribute::MinSize; 1283 case bitc::ATTR_KIND_NAKED: 1284 return Attribute::Naked; 1285 case bitc::ATTR_KIND_NEST: 1286 return Attribute::Nest; 1287 case bitc::ATTR_KIND_NO_ALIAS: 1288 return Attribute::NoAlias; 1289 case bitc::ATTR_KIND_NO_BUILTIN: 1290 return Attribute::NoBuiltin; 1291 case bitc::ATTR_KIND_NO_CAPTURE: 1292 return Attribute::NoCapture; 1293 case bitc::ATTR_KIND_NO_DUPLICATE: 1294 return Attribute::NoDuplicate; 1295 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1296 return Attribute::NoImplicitFloat; 1297 case bitc::ATTR_KIND_NO_INLINE: 1298 return Attribute::NoInline; 1299 case bitc::ATTR_KIND_NO_RECURSE: 1300 return Attribute::NoRecurse; 1301 case bitc::ATTR_KIND_NON_LAZY_BIND: 1302 return Attribute::NonLazyBind; 1303 case bitc::ATTR_KIND_NON_NULL: 1304 return Attribute::NonNull; 1305 case bitc::ATTR_KIND_DEREFERENCEABLE: 1306 return Attribute::Dereferenceable; 1307 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1308 return Attribute::DereferenceableOrNull; 1309 case bitc::ATTR_KIND_ALLOC_SIZE: 1310 return Attribute::AllocSize; 1311 case bitc::ATTR_KIND_NO_RED_ZONE: 1312 return Attribute::NoRedZone; 1313 case bitc::ATTR_KIND_NO_RETURN: 1314 return Attribute::NoReturn; 1315 case bitc::ATTR_KIND_NO_UNWIND: 1316 return Attribute::NoUnwind; 1317 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1318 return Attribute::OptimizeForSize; 1319 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1320 return Attribute::OptimizeNone; 1321 case bitc::ATTR_KIND_READ_NONE: 1322 return Attribute::ReadNone; 1323 case bitc::ATTR_KIND_READ_ONLY: 1324 return Attribute::ReadOnly; 1325 case bitc::ATTR_KIND_RETURNED: 1326 return Attribute::Returned; 1327 case bitc::ATTR_KIND_RETURNS_TWICE: 1328 return Attribute::ReturnsTwice; 1329 case bitc::ATTR_KIND_S_EXT: 1330 return Attribute::SExt; 1331 case bitc::ATTR_KIND_SPECULATABLE: 1332 return Attribute::Speculatable; 1333 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1334 return Attribute::StackAlignment; 1335 case bitc::ATTR_KIND_STACK_PROTECT: 1336 return Attribute::StackProtect; 1337 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1338 return Attribute::StackProtectReq; 1339 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1340 return Attribute::StackProtectStrong; 1341 case bitc::ATTR_KIND_SAFESTACK: 1342 return Attribute::SafeStack; 1343 case bitc::ATTR_KIND_STRUCT_RET: 1344 return Attribute::StructRet; 1345 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1346 return Attribute::SanitizeAddress; 1347 case bitc::ATTR_KIND_SANITIZE_THREAD: 1348 return Attribute::SanitizeThread; 1349 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1350 return Attribute::SanitizeMemory; 1351 case bitc::ATTR_KIND_SWIFT_ERROR: 1352 return Attribute::SwiftError; 1353 case bitc::ATTR_KIND_SWIFT_SELF: 1354 return Attribute::SwiftSelf; 1355 case bitc::ATTR_KIND_UW_TABLE: 1356 return Attribute::UWTable; 1357 case bitc::ATTR_KIND_WRITEONLY: 1358 return Attribute::WriteOnly; 1359 case bitc::ATTR_KIND_Z_EXT: 1360 return Attribute::ZExt; 1361 } 1362 } 1363 1364 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1365 unsigned &Alignment) { 1366 // Note: Alignment in bitcode files is incremented by 1, so that zero 1367 // can be used for default alignment. 1368 if (Exponent > Value::MaxAlignmentExponent + 1) 1369 return error("Invalid alignment value"); 1370 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1371 return Error::success(); 1372 } 1373 1374 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1375 *Kind = getAttrFromCode(Code); 1376 if (*Kind == Attribute::None) 1377 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1378 return Error::success(); 1379 } 1380 1381 Error BitcodeReader::parseAttributeGroupBlock() { 1382 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1383 return error("Invalid record"); 1384 1385 if (!MAttributeGroups.empty()) 1386 return error("Invalid multiple blocks"); 1387 1388 SmallVector<uint64_t, 64> Record; 1389 1390 // Read all the records. 1391 while (true) { 1392 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1393 1394 switch (Entry.Kind) { 1395 case BitstreamEntry::SubBlock: // Handled for us already. 1396 case BitstreamEntry::Error: 1397 return error("Malformed block"); 1398 case BitstreamEntry::EndBlock: 1399 return Error::success(); 1400 case BitstreamEntry::Record: 1401 // The interesting case. 1402 break; 1403 } 1404 1405 // Read a record. 1406 Record.clear(); 1407 switch (Stream.readRecord(Entry.ID, Record)) { 1408 default: // Default behavior: ignore. 1409 break; 1410 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1411 if (Record.size() < 3) 1412 return error("Invalid record"); 1413 1414 uint64_t GrpID = Record[0]; 1415 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1416 1417 AttrBuilder B; 1418 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1419 if (Record[i] == 0) { // Enum attribute 1420 Attribute::AttrKind Kind; 1421 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1422 return Err; 1423 1424 B.addAttribute(Kind); 1425 } else if (Record[i] == 1) { // Integer attribute 1426 Attribute::AttrKind Kind; 1427 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1428 return Err; 1429 if (Kind == Attribute::Alignment) 1430 B.addAlignmentAttr(Record[++i]); 1431 else if (Kind == Attribute::StackAlignment) 1432 B.addStackAlignmentAttr(Record[++i]); 1433 else if (Kind == Attribute::Dereferenceable) 1434 B.addDereferenceableAttr(Record[++i]); 1435 else if (Kind == Attribute::DereferenceableOrNull) 1436 B.addDereferenceableOrNullAttr(Record[++i]); 1437 else if (Kind == Attribute::AllocSize) 1438 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1439 } else { // String attribute 1440 assert((Record[i] == 3 || Record[i] == 4) && 1441 "Invalid attribute group entry"); 1442 bool HasValue = (Record[i++] == 4); 1443 SmallString<64> KindStr; 1444 SmallString<64> ValStr; 1445 1446 while (Record[i] != 0 && i != e) 1447 KindStr += Record[i++]; 1448 assert(Record[i] == 0 && "Kind string not null terminated"); 1449 1450 if (HasValue) { 1451 // Has a value associated with it. 1452 ++i; // Skip the '0' that terminates the "kind" string. 1453 while (Record[i] != 0 && i != e) 1454 ValStr += Record[i++]; 1455 assert(Record[i] == 0 && "Value string not null terminated"); 1456 } 1457 1458 B.addAttribute(KindStr.str(), ValStr.str()); 1459 } 1460 } 1461 1462 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1463 break; 1464 } 1465 } 1466 } 1467 } 1468 1469 Error BitcodeReader::parseTypeTable() { 1470 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1471 return error("Invalid record"); 1472 1473 return parseTypeTableBody(); 1474 } 1475 1476 Error BitcodeReader::parseTypeTableBody() { 1477 if (!TypeList.empty()) 1478 return error("Invalid multiple blocks"); 1479 1480 SmallVector<uint64_t, 64> Record; 1481 unsigned NumRecords = 0; 1482 1483 SmallString<64> TypeName; 1484 1485 // Read all the records for this type table. 1486 while (true) { 1487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1488 1489 switch (Entry.Kind) { 1490 case BitstreamEntry::SubBlock: // Handled for us already. 1491 case BitstreamEntry::Error: 1492 return error("Malformed block"); 1493 case BitstreamEntry::EndBlock: 1494 if (NumRecords != TypeList.size()) 1495 return error("Malformed block"); 1496 return Error::success(); 1497 case BitstreamEntry::Record: 1498 // The interesting case. 1499 break; 1500 } 1501 1502 // Read a record. 1503 Record.clear(); 1504 Type *ResultTy = nullptr; 1505 switch (Stream.readRecord(Entry.ID, Record)) { 1506 default: 1507 return error("Invalid value"); 1508 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1509 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1510 // type list. This allows us to reserve space. 1511 if (Record.size() < 1) 1512 return error("Invalid record"); 1513 TypeList.resize(Record[0]); 1514 continue; 1515 case bitc::TYPE_CODE_VOID: // VOID 1516 ResultTy = Type::getVoidTy(Context); 1517 break; 1518 case bitc::TYPE_CODE_HALF: // HALF 1519 ResultTy = Type::getHalfTy(Context); 1520 break; 1521 case bitc::TYPE_CODE_FLOAT: // FLOAT 1522 ResultTy = Type::getFloatTy(Context); 1523 break; 1524 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1525 ResultTy = Type::getDoubleTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1528 ResultTy = Type::getX86_FP80Ty(Context); 1529 break; 1530 case bitc::TYPE_CODE_FP128: // FP128 1531 ResultTy = Type::getFP128Ty(Context); 1532 break; 1533 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1534 ResultTy = Type::getPPC_FP128Ty(Context); 1535 break; 1536 case bitc::TYPE_CODE_LABEL: // LABEL 1537 ResultTy = Type::getLabelTy(Context); 1538 break; 1539 case bitc::TYPE_CODE_METADATA: // METADATA 1540 ResultTy = Type::getMetadataTy(Context); 1541 break; 1542 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1543 ResultTy = Type::getX86_MMXTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_TOKEN: // TOKEN 1546 ResultTy = Type::getTokenTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1549 if (Record.size() < 1) 1550 return error("Invalid record"); 1551 1552 uint64_t NumBits = Record[0]; 1553 if (NumBits < IntegerType::MIN_INT_BITS || 1554 NumBits > IntegerType::MAX_INT_BITS) 1555 return error("Bitwidth for integer type out of range"); 1556 ResultTy = IntegerType::get(Context, NumBits); 1557 break; 1558 } 1559 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1560 // [pointee type, address space] 1561 if (Record.size() < 1) 1562 return error("Invalid record"); 1563 unsigned AddressSpace = 0; 1564 if (Record.size() == 2) 1565 AddressSpace = Record[1]; 1566 ResultTy = getTypeByID(Record[0]); 1567 if (!ResultTy || 1568 !PointerType::isValidElementType(ResultTy)) 1569 return error("Invalid type"); 1570 ResultTy = PointerType::get(ResultTy, AddressSpace); 1571 break; 1572 } 1573 case bitc::TYPE_CODE_FUNCTION_OLD: { 1574 // FIXME: attrid is dead, remove it in LLVM 4.0 1575 // FUNCTION: [vararg, attrid, retty, paramty x N] 1576 if (Record.size() < 3) 1577 return error("Invalid record"); 1578 SmallVector<Type*, 8> ArgTys; 1579 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1580 if (Type *T = getTypeByID(Record[i])) 1581 ArgTys.push_back(T); 1582 else 1583 break; 1584 } 1585 1586 ResultTy = getTypeByID(Record[2]); 1587 if (!ResultTy || ArgTys.size() < Record.size()-3) 1588 return error("Invalid type"); 1589 1590 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1591 break; 1592 } 1593 case bitc::TYPE_CODE_FUNCTION: { 1594 // FUNCTION: [vararg, retty, paramty x N] 1595 if (Record.size() < 2) 1596 return error("Invalid record"); 1597 SmallVector<Type*, 8> ArgTys; 1598 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1599 if (Type *T = getTypeByID(Record[i])) { 1600 if (!FunctionType::isValidArgumentType(T)) 1601 return error("Invalid function argument type"); 1602 ArgTys.push_back(T); 1603 } 1604 else 1605 break; 1606 } 1607 1608 ResultTy = getTypeByID(Record[1]); 1609 if (!ResultTy || ArgTys.size() < Record.size()-2) 1610 return error("Invalid type"); 1611 1612 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1613 break; 1614 } 1615 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1616 if (Record.size() < 1) 1617 return error("Invalid record"); 1618 SmallVector<Type*, 8> EltTys; 1619 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1620 if (Type *T = getTypeByID(Record[i])) 1621 EltTys.push_back(T); 1622 else 1623 break; 1624 } 1625 if (EltTys.size() != Record.size()-1) 1626 return error("Invalid type"); 1627 ResultTy = StructType::get(Context, EltTys, Record[0]); 1628 break; 1629 } 1630 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1631 if (convertToString(Record, 0, TypeName)) 1632 return error("Invalid record"); 1633 continue; 1634 1635 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1636 if (Record.size() < 1) 1637 return error("Invalid record"); 1638 1639 if (NumRecords >= TypeList.size()) 1640 return error("Invalid TYPE table"); 1641 1642 // Check to see if this was forward referenced, if so fill in the temp. 1643 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1644 if (Res) { 1645 Res->setName(TypeName); 1646 TypeList[NumRecords] = nullptr; 1647 } else // Otherwise, create a new struct. 1648 Res = createIdentifiedStructType(Context, TypeName); 1649 TypeName.clear(); 1650 1651 SmallVector<Type*, 8> EltTys; 1652 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1653 if (Type *T = getTypeByID(Record[i])) 1654 EltTys.push_back(T); 1655 else 1656 break; 1657 } 1658 if (EltTys.size() != Record.size()-1) 1659 return error("Invalid record"); 1660 Res->setBody(EltTys, Record[0]); 1661 ResultTy = Res; 1662 break; 1663 } 1664 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1665 if (Record.size() != 1) 1666 return error("Invalid record"); 1667 1668 if (NumRecords >= TypeList.size()) 1669 return error("Invalid TYPE table"); 1670 1671 // Check to see if this was forward referenced, if so fill in the temp. 1672 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1673 if (Res) { 1674 Res->setName(TypeName); 1675 TypeList[NumRecords] = nullptr; 1676 } else // Otherwise, create a new struct with no body. 1677 Res = createIdentifiedStructType(Context, TypeName); 1678 TypeName.clear(); 1679 ResultTy = Res; 1680 break; 1681 } 1682 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1683 if (Record.size() < 2) 1684 return error("Invalid record"); 1685 ResultTy = getTypeByID(Record[1]); 1686 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1687 return error("Invalid type"); 1688 ResultTy = ArrayType::get(ResultTy, Record[0]); 1689 break; 1690 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1691 if (Record.size() < 2) 1692 return error("Invalid record"); 1693 if (Record[0] == 0) 1694 return error("Invalid vector length"); 1695 ResultTy = getTypeByID(Record[1]); 1696 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1697 return error("Invalid type"); 1698 ResultTy = VectorType::get(ResultTy, Record[0]); 1699 break; 1700 } 1701 1702 if (NumRecords >= TypeList.size()) 1703 return error("Invalid TYPE table"); 1704 if (TypeList[NumRecords]) 1705 return error( 1706 "Invalid TYPE table: Only named structs can be forward referenced"); 1707 assert(ResultTy && "Didn't read a type?"); 1708 TypeList[NumRecords++] = ResultTy; 1709 } 1710 } 1711 1712 Error BitcodeReader::parseOperandBundleTags() { 1713 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1714 return error("Invalid record"); 1715 1716 if (!BundleTags.empty()) 1717 return error("Invalid multiple blocks"); 1718 1719 SmallVector<uint64_t, 64> Record; 1720 1721 while (true) { 1722 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1723 1724 switch (Entry.Kind) { 1725 case BitstreamEntry::SubBlock: // Handled for us already. 1726 case BitstreamEntry::Error: 1727 return error("Malformed block"); 1728 case BitstreamEntry::EndBlock: 1729 return Error::success(); 1730 case BitstreamEntry::Record: 1731 // The interesting case. 1732 break; 1733 } 1734 1735 // Tags are implicitly mapped to integers by their order. 1736 1737 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1738 return error("Invalid record"); 1739 1740 // OPERAND_BUNDLE_TAG: [strchr x N] 1741 BundleTags.emplace_back(); 1742 if (convertToString(Record, 0, BundleTags.back())) 1743 return error("Invalid record"); 1744 Record.clear(); 1745 } 1746 } 1747 1748 /// Associate a value with its name from the given index in the provided record. 1749 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1750 unsigned NameIndex, Triple &TT) { 1751 SmallString<128> ValueName; 1752 if (convertToString(Record, NameIndex, ValueName)) 1753 return error("Invalid record"); 1754 unsigned ValueID = Record[0]; 1755 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1756 return error("Invalid record"); 1757 Value *V = ValueList[ValueID]; 1758 1759 StringRef NameStr(ValueName.data(), ValueName.size()); 1760 if (NameStr.find_first_of(0) != StringRef::npos) 1761 return error("Invalid value name"); 1762 V->setName(NameStr); 1763 auto *GO = dyn_cast<GlobalObject>(V); 1764 if (GO) { 1765 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1766 if (TT.isOSBinFormatMachO()) 1767 GO->setComdat(nullptr); 1768 else 1769 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1770 } 1771 } 1772 return V; 1773 } 1774 1775 /// Helper to note and return the current location, and jump to the given 1776 /// offset. 1777 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1778 BitstreamCursor &Stream) { 1779 // Save the current parsing location so we can jump back at the end 1780 // of the VST read. 1781 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1782 Stream.JumpToBit(Offset * 32); 1783 #ifndef NDEBUG 1784 // Do some checking if we are in debug mode. 1785 BitstreamEntry Entry = Stream.advance(); 1786 assert(Entry.Kind == BitstreamEntry::SubBlock); 1787 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1788 #else 1789 // In NDEBUG mode ignore the output so we don't get an unused variable 1790 // warning. 1791 Stream.advance(); 1792 #endif 1793 return CurrentBit; 1794 } 1795 1796 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1797 Function *F, 1798 ArrayRef<uint64_t> Record) { 1799 // Note that we subtract 1 here because the offset is relative to one word 1800 // before the start of the identification or module block, which was 1801 // historically always the start of the regular bitcode header. 1802 uint64_t FuncWordOffset = Record[1] - 1; 1803 uint64_t FuncBitOffset = FuncWordOffset * 32; 1804 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1805 // Set the LastFunctionBlockBit to point to the last function block. 1806 // Later when parsing is resumed after function materialization, 1807 // we can simply skip that last function block. 1808 if (FuncBitOffset > LastFunctionBlockBit) 1809 LastFunctionBlockBit = FuncBitOffset; 1810 } 1811 1812 /// Read a new-style GlobalValue symbol table. 1813 Error BitcodeReader::parseGlobalValueSymbolTable() { 1814 unsigned FuncBitcodeOffsetDelta = 1815 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1816 1817 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1818 return error("Invalid record"); 1819 1820 SmallVector<uint64_t, 64> Record; 1821 while (true) { 1822 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1823 1824 switch (Entry.Kind) { 1825 case BitstreamEntry::SubBlock: 1826 case BitstreamEntry::Error: 1827 return error("Malformed block"); 1828 case BitstreamEntry::EndBlock: 1829 return Error::success(); 1830 case BitstreamEntry::Record: 1831 break; 1832 } 1833 1834 Record.clear(); 1835 switch (Stream.readRecord(Entry.ID, Record)) { 1836 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1837 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1838 cast<Function>(ValueList[Record[0]]), Record); 1839 break; 1840 } 1841 } 1842 } 1843 1844 /// Parse the value symbol table at either the current parsing location or 1845 /// at the given bit offset if provided. 1846 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1847 uint64_t CurrentBit; 1848 // Pass in the Offset to distinguish between calling for the module-level 1849 // VST (where we want to jump to the VST offset) and the function-level 1850 // VST (where we don't). 1851 if (Offset > 0) { 1852 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1853 // If this module uses a string table, read this as a module-level VST. 1854 if (UseStrtab) { 1855 if (Error Err = parseGlobalValueSymbolTable()) 1856 return Err; 1857 Stream.JumpToBit(CurrentBit); 1858 return Error::success(); 1859 } 1860 // Otherwise, the VST will be in a similar format to a function-level VST, 1861 // and will contain symbol names. 1862 } 1863 1864 // Compute the delta between the bitcode indices in the VST (the word offset 1865 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1866 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1867 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1868 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1869 // just before entering the VST subblock because: 1) the EnterSubBlock 1870 // changes the AbbrevID width; 2) the VST block is nested within the same 1871 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1872 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1873 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1874 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1875 unsigned FuncBitcodeOffsetDelta = 1876 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1877 1878 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1879 return error("Invalid record"); 1880 1881 SmallVector<uint64_t, 64> Record; 1882 1883 Triple TT(TheModule->getTargetTriple()); 1884 1885 // Read all the records for this value table. 1886 SmallString<128> ValueName; 1887 1888 while (true) { 1889 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1890 1891 switch (Entry.Kind) { 1892 case BitstreamEntry::SubBlock: // Handled for us already. 1893 case BitstreamEntry::Error: 1894 return error("Malformed block"); 1895 case BitstreamEntry::EndBlock: 1896 if (Offset > 0) 1897 Stream.JumpToBit(CurrentBit); 1898 return Error::success(); 1899 case BitstreamEntry::Record: 1900 // The interesting case. 1901 break; 1902 } 1903 1904 // Read a record. 1905 Record.clear(); 1906 switch (Stream.readRecord(Entry.ID, Record)) { 1907 default: // Default behavior: unknown type. 1908 break; 1909 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1910 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1911 if (Error Err = ValOrErr.takeError()) 1912 return Err; 1913 ValOrErr.get(); 1914 break; 1915 } 1916 case bitc::VST_CODE_FNENTRY: { 1917 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1918 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1919 if (Error Err = ValOrErr.takeError()) 1920 return Err; 1921 Value *V = ValOrErr.get(); 1922 1923 // Ignore function offsets emitted for aliases of functions in older 1924 // versions of LLVM. 1925 if (auto *F = dyn_cast<Function>(V)) 1926 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1927 break; 1928 } 1929 case bitc::VST_CODE_BBENTRY: { 1930 if (convertToString(Record, 1, ValueName)) 1931 return error("Invalid record"); 1932 BasicBlock *BB = getBasicBlock(Record[0]); 1933 if (!BB) 1934 return error("Invalid record"); 1935 1936 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1937 ValueName.clear(); 1938 break; 1939 } 1940 } 1941 } 1942 } 1943 1944 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1945 /// encoding. 1946 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1947 if ((V & 1) == 0) 1948 return V >> 1; 1949 if (V != 1) 1950 return -(V >> 1); 1951 // There is no such thing as -0 with integers. "-0" really means MININT. 1952 return 1ULL << 63; 1953 } 1954 1955 /// Resolve all of the initializers for global values and aliases that we can. 1956 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1957 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1958 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1959 IndirectSymbolInitWorklist; 1960 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1961 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1962 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1963 1964 GlobalInitWorklist.swap(GlobalInits); 1965 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1966 FunctionPrefixWorklist.swap(FunctionPrefixes); 1967 FunctionPrologueWorklist.swap(FunctionPrologues); 1968 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1969 1970 while (!GlobalInitWorklist.empty()) { 1971 unsigned ValID = GlobalInitWorklist.back().second; 1972 if (ValID >= ValueList.size()) { 1973 // Not ready to resolve this yet, it requires something later in the file. 1974 GlobalInits.push_back(GlobalInitWorklist.back()); 1975 } else { 1976 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1977 GlobalInitWorklist.back().first->setInitializer(C); 1978 else 1979 return error("Expected a constant"); 1980 } 1981 GlobalInitWorklist.pop_back(); 1982 } 1983 1984 while (!IndirectSymbolInitWorklist.empty()) { 1985 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1986 if (ValID >= ValueList.size()) { 1987 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1988 } else { 1989 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1990 if (!C) 1991 return error("Expected a constant"); 1992 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1993 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1994 return error("Alias and aliasee types don't match"); 1995 GIS->setIndirectSymbol(C); 1996 } 1997 IndirectSymbolInitWorklist.pop_back(); 1998 } 1999 2000 while (!FunctionPrefixWorklist.empty()) { 2001 unsigned ValID = FunctionPrefixWorklist.back().second; 2002 if (ValID >= ValueList.size()) { 2003 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2004 } else { 2005 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2006 FunctionPrefixWorklist.back().first->setPrefixData(C); 2007 else 2008 return error("Expected a constant"); 2009 } 2010 FunctionPrefixWorklist.pop_back(); 2011 } 2012 2013 while (!FunctionPrologueWorklist.empty()) { 2014 unsigned ValID = FunctionPrologueWorklist.back().second; 2015 if (ValID >= ValueList.size()) { 2016 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2017 } else { 2018 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2019 FunctionPrologueWorklist.back().first->setPrologueData(C); 2020 else 2021 return error("Expected a constant"); 2022 } 2023 FunctionPrologueWorklist.pop_back(); 2024 } 2025 2026 while (!FunctionPersonalityFnWorklist.empty()) { 2027 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2028 if (ValID >= ValueList.size()) { 2029 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2030 } else { 2031 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2032 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2033 else 2034 return error("Expected a constant"); 2035 } 2036 FunctionPersonalityFnWorklist.pop_back(); 2037 } 2038 2039 return Error::success(); 2040 } 2041 2042 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2043 SmallVector<uint64_t, 8> Words(Vals.size()); 2044 transform(Vals, Words.begin(), 2045 BitcodeReader::decodeSignRotatedValue); 2046 2047 return APInt(TypeBits, Words); 2048 } 2049 2050 Error BitcodeReader::parseConstants() { 2051 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2052 return error("Invalid record"); 2053 2054 SmallVector<uint64_t, 64> Record; 2055 2056 // Read all the records for this value table. 2057 Type *CurTy = Type::getInt32Ty(Context); 2058 unsigned NextCstNo = ValueList.size(); 2059 2060 while (true) { 2061 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2062 2063 switch (Entry.Kind) { 2064 case BitstreamEntry::SubBlock: // Handled for us already. 2065 case BitstreamEntry::Error: 2066 return error("Malformed block"); 2067 case BitstreamEntry::EndBlock: 2068 if (NextCstNo != ValueList.size()) 2069 return error("Invalid constant reference"); 2070 2071 // Once all the constants have been read, go through and resolve forward 2072 // references. 2073 ValueList.resolveConstantForwardRefs(); 2074 return Error::success(); 2075 case BitstreamEntry::Record: 2076 // The interesting case. 2077 break; 2078 } 2079 2080 // Read a record. 2081 Record.clear(); 2082 Type *VoidType = Type::getVoidTy(Context); 2083 Value *V = nullptr; 2084 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2085 switch (BitCode) { 2086 default: // Default behavior: unknown constant 2087 case bitc::CST_CODE_UNDEF: // UNDEF 2088 V = UndefValue::get(CurTy); 2089 break; 2090 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2091 if (Record.empty()) 2092 return error("Invalid record"); 2093 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2094 return error("Invalid record"); 2095 if (TypeList[Record[0]] == VoidType) 2096 return error("Invalid constant type"); 2097 CurTy = TypeList[Record[0]]; 2098 continue; // Skip the ValueList manipulation. 2099 case bitc::CST_CODE_NULL: // NULL 2100 V = Constant::getNullValue(CurTy); 2101 break; 2102 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2103 if (!CurTy->isIntegerTy() || Record.empty()) 2104 return error("Invalid record"); 2105 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2106 break; 2107 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2108 if (!CurTy->isIntegerTy() || Record.empty()) 2109 return error("Invalid record"); 2110 2111 APInt VInt = 2112 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2113 V = ConstantInt::get(Context, VInt); 2114 2115 break; 2116 } 2117 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2118 if (Record.empty()) 2119 return error("Invalid record"); 2120 if (CurTy->isHalfTy()) 2121 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2122 APInt(16, (uint16_t)Record[0]))); 2123 else if (CurTy->isFloatTy()) 2124 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2125 APInt(32, (uint32_t)Record[0]))); 2126 else if (CurTy->isDoubleTy()) 2127 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2128 APInt(64, Record[0]))); 2129 else if (CurTy->isX86_FP80Ty()) { 2130 // Bits are not stored the same way as a normal i80 APInt, compensate. 2131 uint64_t Rearrange[2]; 2132 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2133 Rearrange[1] = Record[0] >> 48; 2134 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2135 APInt(80, Rearrange))); 2136 } else if (CurTy->isFP128Ty()) 2137 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2138 APInt(128, Record))); 2139 else if (CurTy->isPPC_FP128Ty()) 2140 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2141 APInt(128, Record))); 2142 else 2143 V = UndefValue::get(CurTy); 2144 break; 2145 } 2146 2147 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2148 if (Record.empty()) 2149 return error("Invalid record"); 2150 2151 unsigned Size = Record.size(); 2152 SmallVector<Constant*, 16> Elts; 2153 2154 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2155 for (unsigned i = 0; i != Size; ++i) 2156 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2157 STy->getElementType(i))); 2158 V = ConstantStruct::get(STy, Elts); 2159 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2160 Type *EltTy = ATy->getElementType(); 2161 for (unsigned i = 0; i != Size; ++i) 2162 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2163 V = ConstantArray::get(ATy, Elts); 2164 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2165 Type *EltTy = VTy->getElementType(); 2166 for (unsigned i = 0; i != Size; ++i) 2167 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2168 V = ConstantVector::get(Elts); 2169 } else { 2170 V = UndefValue::get(CurTy); 2171 } 2172 break; 2173 } 2174 case bitc::CST_CODE_STRING: // STRING: [values] 2175 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2176 if (Record.empty()) 2177 return error("Invalid record"); 2178 2179 SmallString<16> Elts(Record.begin(), Record.end()); 2180 V = ConstantDataArray::getString(Context, Elts, 2181 BitCode == bitc::CST_CODE_CSTRING); 2182 break; 2183 } 2184 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2185 if (Record.empty()) 2186 return error("Invalid record"); 2187 2188 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2189 if (EltTy->isIntegerTy(8)) { 2190 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2191 if (isa<VectorType>(CurTy)) 2192 V = ConstantDataVector::get(Context, Elts); 2193 else 2194 V = ConstantDataArray::get(Context, Elts); 2195 } else if (EltTy->isIntegerTy(16)) { 2196 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2197 if (isa<VectorType>(CurTy)) 2198 V = ConstantDataVector::get(Context, Elts); 2199 else 2200 V = ConstantDataArray::get(Context, Elts); 2201 } else if (EltTy->isIntegerTy(32)) { 2202 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2203 if (isa<VectorType>(CurTy)) 2204 V = ConstantDataVector::get(Context, Elts); 2205 else 2206 V = ConstantDataArray::get(Context, Elts); 2207 } else if (EltTy->isIntegerTy(64)) { 2208 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2209 if (isa<VectorType>(CurTy)) 2210 V = ConstantDataVector::get(Context, Elts); 2211 else 2212 V = ConstantDataArray::get(Context, Elts); 2213 } else if (EltTy->isHalfTy()) { 2214 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2215 if (isa<VectorType>(CurTy)) 2216 V = ConstantDataVector::getFP(Context, Elts); 2217 else 2218 V = ConstantDataArray::getFP(Context, Elts); 2219 } else if (EltTy->isFloatTy()) { 2220 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2221 if (isa<VectorType>(CurTy)) 2222 V = ConstantDataVector::getFP(Context, Elts); 2223 else 2224 V = ConstantDataArray::getFP(Context, Elts); 2225 } else if (EltTy->isDoubleTy()) { 2226 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2227 if (isa<VectorType>(CurTy)) 2228 V = ConstantDataVector::getFP(Context, Elts); 2229 else 2230 V = ConstantDataArray::getFP(Context, Elts); 2231 } else { 2232 return error("Invalid type for value"); 2233 } 2234 break; 2235 } 2236 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2237 if (Record.size() < 3) 2238 return error("Invalid record"); 2239 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2240 if (Opc < 0) { 2241 V = UndefValue::get(CurTy); // Unknown binop. 2242 } else { 2243 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2244 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2245 unsigned Flags = 0; 2246 if (Record.size() >= 4) { 2247 if (Opc == Instruction::Add || 2248 Opc == Instruction::Sub || 2249 Opc == Instruction::Mul || 2250 Opc == Instruction::Shl) { 2251 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2252 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2253 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2254 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2255 } else if (Opc == Instruction::SDiv || 2256 Opc == Instruction::UDiv || 2257 Opc == Instruction::LShr || 2258 Opc == Instruction::AShr) { 2259 if (Record[3] & (1 << bitc::PEO_EXACT)) 2260 Flags |= SDivOperator::IsExact; 2261 } 2262 } 2263 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2264 } 2265 break; 2266 } 2267 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2268 if (Record.size() < 3) 2269 return error("Invalid record"); 2270 int Opc = getDecodedCastOpcode(Record[0]); 2271 if (Opc < 0) { 2272 V = UndefValue::get(CurTy); // Unknown cast. 2273 } else { 2274 Type *OpTy = getTypeByID(Record[1]); 2275 if (!OpTy) 2276 return error("Invalid record"); 2277 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2278 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2279 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2280 } 2281 break; 2282 } 2283 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2284 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2285 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2286 // operands] 2287 unsigned OpNum = 0; 2288 Type *PointeeType = nullptr; 2289 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2290 Record.size() % 2) 2291 PointeeType = getTypeByID(Record[OpNum++]); 2292 2293 bool InBounds = false; 2294 Optional<unsigned> InRangeIndex; 2295 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2296 uint64_t Op = Record[OpNum++]; 2297 InBounds = Op & 1; 2298 InRangeIndex = Op >> 1; 2299 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2300 InBounds = true; 2301 2302 SmallVector<Constant*, 16> Elts; 2303 while (OpNum != Record.size()) { 2304 Type *ElTy = getTypeByID(Record[OpNum++]); 2305 if (!ElTy) 2306 return error("Invalid record"); 2307 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2308 } 2309 2310 if (PointeeType && 2311 PointeeType != 2312 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2313 ->getElementType()) 2314 return error("Explicit gep operator type does not match pointee type " 2315 "of pointer operand"); 2316 2317 if (Elts.size() < 1) 2318 return error("Invalid gep with no operands"); 2319 2320 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2321 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2322 InBounds, InRangeIndex); 2323 break; 2324 } 2325 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2326 if (Record.size() < 3) 2327 return error("Invalid record"); 2328 2329 Type *SelectorTy = Type::getInt1Ty(Context); 2330 2331 // The selector might be an i1 or an <n x i1> 2332 // Get the type from the ValueList before getting a forward ref. 2333 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2334 if (Value *V = ValueList[Record[0]]) 2335 if (SelectorTy != V->getType()) 2336 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2337 2338 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2339 SelectorTy), 2340 ValueList.getConstantFwdRef(Record[1],CurTy), 2341 ValueList.getConstantFwdRef(Record[2],CurTy)); 2342 break; 2343 } 2344 case bitc::CST_CODE_CE_EXTRACTELT 2345 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2346 if (Record.size() < 3) 2347 return error("Invalid record"); 2348 VectorType *OpTy = 2349 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2350 if (!OpTy) 2351 return error("Invalid record"); 2352 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2353 Constant *Op1 = nullptr; 2354 if (Record.size() == 4) { 2355 Type *IdxTy = getTypeByID(Record[2]); 2356 if (!IdxTy) 2357 return error("Invalid record"); 2358 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2359 } else // TODO: Remove with llvm 4.0 2360 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2361 if (!Op1) 2362 return error("Invalid record"); 2363 V = ConstantExpr::getExtractElement(Op0, Op1); 2364 break; 2365 } 2366 case bitc::CST_CODE_CE_INSERTELT 2367 : { // CE_INSERTELT: [opval, opval, opty, opval] 2368 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2369 if (Record.size() < 3 || !OpTy) 2370 return error("Invalid record"); 2371 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2372 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2373 OpTy->getElementType()); 2374 Constant *Op2 = nullptr; 2375 if (Record.size() == 4) { 2376 Type *IdxTy = getTypeByID(Record[2]); 2377 if (!IdxTy) 2378 return error("Invalid record"); 2379 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2380 } else // TODO: Remove with llvm 4.0 2381 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2382 if (!Op2) 2383 return error("Invalid record"); 2384 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2385 break; 2386 } 2387 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2388 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2389 if (Record.size() < 3 || !OpTy) 2390 return error("Invalid record"); 2391 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2392 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2393 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2394 OpTy->getNumElements()); 2395 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2396 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2397 break; 2398 } 2399 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2400 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2401 VectorType *OpTy = 2402 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2403 if (Record.size() < 4 || !RTy || !OpTy) 2404 return error("Invalid record"); 2405 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2406 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2407 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2408 RTy->getNumElements()); 2409 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2410 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2411 break; 2412 } 2413 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2414 if (Record.size() < 4) 2415 return error("Invalid record"); 2416 Type *OpTy = getTypeByID(Record[0]); 2417 if (!OpTy) 2418 return error("Invalid record"); 2419 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2420 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2421 2422 if (OpTy->isFPOrFPVectorTy()) 2423 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2424 else 2425 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2426 break; 2427 } 2428 // This maintains backward compatibility, pre-asm dialect keywords. 2429 // FIXME: Remove with the 4.0 release. 2430 case bitc::CST_CODE_INLINEASM_OLD: { 2431 if (Record.size() < 2) 2432 return error("Invalid record"); 2433 std::string AsmStr, ConstrStr; 2434 bool HasSideEffects = Record[0] & 1; 2435 bool IsAlignStack = Record[0] >> 1; 2436 unsigned AsmStrSize = Record[1]; 2437 if (2+AsmStrSize >= Record.size()) 2438 return error("Invalid record"); 2439 unsigned ConstStrSize = Record[2+AsmStrSize]; 2440 if (3+AsmStrSize+ConstStrSize > Record.size()) 2441 return error("Invalid record"); 2442 2443 for (unsigned i = 0; i != AsmStrSize; ++i) 2444 AsmStr += (char)Record[2+i]; 2445 for (unsigned i = 0; i != ConstStrSize; ++i) 2446 ConstrStr += (char)Record[3+AsmStrSize+i]; 2447 PointerType *PTy = cast<PointerType>(CurTy); 2448 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2449 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2450 break; 2451 } 2452 // This version adds support for the asm dialect keywords (e.g., 2453 // inteldialect). 2454 case bitc::CST_CODE_INLINEASM: { 2455 if (Record.size() < 2) 2456 return error("Invalid record"); 2457 std::string AsmStr, ConstrStr; 2458 bool HasSideEffects = Record[0] & 1; 2459 bool IsAlignStack = (Record[0] >> 1) & 1; 2460 unsigned AsmDialect = Record[0] >> 2; 2461 unsigned AsmStrSize = Record[1]; 2462 if (2+AsmStrSize >= Record.size()) 2463 return error("Invalid record"); 2464 unsigned ConstStrSize = Record[2+AsmStrSize]; 2465 if (3+AsmStrSize+ConstStrSize > Record.size()) 2466 return error("Invalid record"); 2467 2468 for (unsigned i = 0; i != AsmStrSize; ++i) 2469 AsmStr += (char)Record[2+i]; 2470 for (unsigned i = 0; i != ConstStrSize; ++i) 2471 ConstrStr += (char)Record[3+AsmStrSize+i]; 2472 PointerType *PTy = cast<PointerType>(CurTy); 2473 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2474 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2475 InlineAsm::AsmDialect(AsmDialect)); 2476 break; 2477 } 2478 case bitc::CST_CODE_BLOCKADDRESS:{ 2479 if (Record.size() < 3) 2480 return error("Invalid record"); 2481 Type *FnTy = getTypeByID(Record[0]); 2482 if (!FnTy) 2483 return error("Invalid record"); 2484 Function *Fn = 2485 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2486 if (!Fn) 2487 return error("Invalid record"); 2488 2489 // If the function is already parsed we can insert the block address right 2490 // away. 2491 BasicBlock *BB; 2492 unsigned BBID = Record[2]; 2493 if (!BBID) 2494 // Invalid reference to entry block. 2495 return error("Invalid ID"); 2496 if (!Fn->empty()) { 2497 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2498 for (size_t I = 0, E = BBID; I != E; ++I) { 2499 if (BBI == BBE) 2500 return error("Invalid ID"); 2501 ++BBI; 2502 } 2503 BB = &*BBI; 2504 } else { 2505 // Otherwise insert a placeholder and remember it so it can be inserted 2506 // when the function is parsed. 2507 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2508 if (FwdBBs.empty()) 2509 BasicBlockFwdRefQueue.push_back(Fn); 2510 if (FwdBBs.size() < BBID + 1) 2511 FwdBBs.resize(BBID + 1); 2512 if (!FwdBBs[BBID]) 2513 FwdBBs[BBID] = BasicBlock::Create(Context); 2514 BB = FwdBBs[BBID]; 2515 } 2516 V = BlockAddress::get(Fn, BB); 2517 break; 2518 } 2519 } 2520 2521 ValueList.assignValue(V, NextCstNo); 2522 ++NextCstNo; 2523 } 2524 } 2525 2526 Error BitcodeReader::parseUseLists() { 2527 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2528 return error("Invalid record"); 2529 2530 // Read all the records. 2531 SmallVector<uint64_t, 64> Record; 2532 2533 while (true) { 2534 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2535 2536 switch (Entry.Kind) { 2537 case BitstreamEntry::SubBlock: // Handled for us already. 2538 case BitstreamEntry::Error: 2539 return error("Malformed block"); 2540 case BitstreamEntry::EndBlock: 2541 return Error::success(); 2542 case BitstreamEntry::Record: 2543 // The interesting case. 2544 break; 2545 } 2546 2547 // Read a use list record. 2548 Record.clear(); 2549 bool IsBB = false; 2550 switch (Stream.readRecord(Entry.ID, Record)) { 2551 default: // Default behavior: unknown type. 2552 break; 2553 case bitc::USELIST_CODE_BB: 2554 IsBB = true; 2555 LLVM_FALLTHROUGH; 2556 case bitc::USELIST_CODE_DEFAULT: { 2557 unsigned RecordLength = Record.size(); 2558 if (RecordLength < 3) 2559 // Records should have at least an ID and two indexes. 2560 return error("Invalid record"); 2561 unsigned ID = Record.back(); 2562 Record.pop_back(); 2563 2564 Value *V; 2565 if (IsBB) { 2566 assert(ID < FunctionBBs.size() && "Basic block not found"); 2567 V = FunctionBBs[ID]; 2568 } else 2569 V = ValueList[ID]; 2570 unsigned NumUses = 0; 2571 SmallDenseMap<const Use *, unsigned, 16> Order; 2572 for (const Use &U : V->materialized_uses()) { 2573 if (++NumUses > Record.size()) 2574 break; 2575 Order[&U] = Record[NumUses - 1]; 2576 } 2577 if (Order.size() != Record.size() || NumUses > Record.size()) 2578 // Mismatches can happen if the functions are being materialized lazily 2579 // (out-of-order), or a value has been upgraded. 2580 break; 2581 2582 V->sortUseList([&](const Use &L, const Use &R) { 2583 return Order.lookup(&L) < Order.lookup(&R); 2584 }); 2585 break; 2586 } 2587 } 2588 } 2589 } 2590 2591 /// When we see the block for metadata, remember where it is and then skip it. 2592 /// This lets us lazily deserialize the metadata. 2593 Error BitcodeReader::rememberAndSkipMetadata() { 2594 // Save the current stream state. 2595 uint64_t CurBit = Stream.GetCurrentBitNo(); 2596 DeferredMetadataInfo.push_back(CurBit); 2597 2598 // Skip over the block for now. 2599 if (Stream.SkipBlock()) 2600 return error("Invalid record"); 2601 return Error::success(); 2602 } 2603 2604 Error BitcodeReader::materializeMetadata() { 2605 for (uint64_t BitPos : DeferredMetadataInfo) { 2606 // Move the bit stream to the saved position. 2607 Stream.JumpToBit(BitPos); 2608 if (Error Err = MDLoader->parseModuleMetadata()) 2609 return Err; 2610 } 2611 2612 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2613 // metadata. 2614 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2615 NamedMDNode *LinkerOpts = 2616 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2617 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2618 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2619 } 2620 2621 DeferredMetadataInfo.clear(); 2622 return Error::success(); 2623 } 2624 2625 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2626 2627 /// When we see the block for a function body, remember where it is and then 2628 /// skip it. This lets us lazily deserialize the functions. 2629 Error BitcodeReader::rememberAndSkipFunctionBody() { 2630 // Get the function we are talking about. 2631 if (FunctionsWithBodies.empty()) 2632 return error("Insufficient function protos"); 2633 2634 Function *Fn = FunctionsWithBodies.back(); 2635 FunctionsWithBodies.pop_back(); 2636 2637 // Save the current stream state. 2638 uint64_t CurBit = Stream.GetCurrentBitNo(); 2639 assert( 2640 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2641 "Mismatch between VST and scanned function offsets"); 2642 DeferredFunctionInfo[Fn] = CurBit; 2643 2644 // Skip over the function block for now. 2645 if (Stream.SkipBlock()) 2646 return error("Invalid record"); 2647 return Error::success(); 2648 } 2649 2650 Error BitcodeReader::globalCleanup() { 2651 // Patch the initializers for globals and aliases up. 2652 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2653 return Err; 2654 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2655 return error("Malformed global initializer set"); 2656 2657 // Look for intrinsic functions which need to be upgraded at some point 2658 for (Function &F : *TheModule) { 2659 MDLoader->upgradeDebugIntrinsics(F); 2660 Function *NewFn; 2661 if (UpgradeIntrinsicFunction(&F, NewFn)) 2662 UpgradedIntrinsics[&F] = NewFn; 2663 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2664 // Some types could be renamed during loading if several modules are 2665 // loaded in the same LLVMContext (LTO scenario). In this case we should 2666 // remangle intrinsics names as well. 2667 RemangledIntrinsics[&F] = Remangled.getValue(); 2668 } 2669 2670 // Look for global variables which need to be renamed. 2671 for (GlobalVariable &GV : TheModule->globals()) 2672 UpgradeGlobalVariable(&GV); 2673 2674 // Force deallocation of memory for these vectors to favor the client that 2675 // want lazy deserialization. 2676 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2677 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2678 IndirectSymbolInits); 2679 return Error::success(); 2680 } 2681 2682 /// Support for lazy parsing of function bodies. This is required if we 2683 /// either have an old bitcode file without a VST forward declaration record, 2684 /// or if we have an anonymous function being materialized, since anonymous 2685 /// functions do not have a name and are therefore not in the VST. 2686 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2687 Stream.JumpToBit(NextUnreadBit); 2688 2689 if (Stream.AtEndOfStream()) 2690 return error("Could not find function in stream"); 2691 2692 if (!SeenFirstFunctionBody) 2693 return error("Trying to materialize functions before seeing function blocks"); 2694 2695 // An old bitcode file with the symbol table at the end would have 2696 // finished the parse greedily. 2697 assert(SeenValueSymbolTable); 2698 2699 SmallVector<uint64_t, 64> Record; 2700 2701 while (true) { 2702 BitstreamEntry Entry = Stream.advance(); 2703 switch (Entry.Kind) { 2704 default: 2705 return error("Expect SubBlock"); 2706 case BitstreamEntry::SubBlock: 2707 switch (Entry.ID) { 2708 default: 2709 return error("Expect function block"); 2710 case bitc::FUNCTION_BLOCK_ID: 2711 if (Error Err = rememberAndSkipFunctionBody()) 2712 return Err; 2713 NextUnreadBit = Stream.GetCurrentBitNo(); 2714 return Error::success(); 2715 } 2716 } 2717 } 2718 } 2719 2720 bool BitcodeReaderBase::readBlockInfo() { 2721 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2722 if (!NewBlockInfo) 2723 return true; 2724 BlockInfo = std::move(*NewBlockInfo); 2725 return false; 2726 } 2727 2728 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2729 // v1: [selection_kind, name] 2730 // v2: [strtab_offset, strtab_size, selection_kind] 2731 StringRef Name; 2732 std::tie(Name, Record) = readNameFromStrtab(Record); 2733 2734 if (Record.size() < 1) 2735 return error("Invalid record"); 2736 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2737 std::string OldFormatName; 2738 if (!UseStrtab) { 2739 if (Record.size() < 2) 2740 return error("Invalid record"); 2741 unsigned ComdatNameSize = Record[1]; 2742 OldFormatName.reserve(ComdatNameSize); 2743 for (unsigned i = 0; i != ComdatNameSize; ++i) 2744 OldFormatName += (char)Record[2 + i]; 2745 Name = OldFormatName; 2746 } 2747 Comdat *C = TheModule->getOrInsertComdat(Name); 2748 C->setSelectionKind(SK); 2749 ComdatList.push_back(C); 2750 return Error::success(); 2751 } 2752 2753 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2754 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2755 // visibility, threadlocal, unnamed_addr, externally_initialized, 2756 // dllstorageclass, comdat, attributes] (name in VST) 2757 // v2: [strtab_offset, strtab_size, v1] 2758 StringRef Name; 2759 std::tie(Name, Record) = readNameFromStrtab(Record); 2760 2761 if (Record.size() < 6) 2762 return error("Invalid record"); 2763 Type *Ty = getTypeByID(Record[0]); 2764 if (!Ty) 2765 return error("Invalid record"); 2766 bool isConstant = Record[1] & 1; 2767 bool explicitType = Record[1] & 2; 2768 unsigned AddressSpace; 2769 if (explicitType) { 2770 AddressSpace = Record[1] >> 2; 2771 } else { 2772 if (!Ty->isPointerTy()) 2773 return error("Invalid type for value"); 2774 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2775 Ty = cast<PointerType>(Ty)->getElementType(); 2776 } 2777 2778 uint64_t RawLinkage = Record[3]; 2779 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2780 unsigned Alignment; 2781 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2782 return Err; 2783 std::string Section; 2784 if (Record[5]) { 2785 if (Record[5] - 1 >= SectionTable.size()) 2786 return error("Invalid ID"); 2787 Section = SectionTable[Record[5] - 1]; 2788 } 2789 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2790 // Local linkage must have default visibility. 2791 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2792 // FIXME: Change to an error if non-default in 4.0. 2793 Visibility = getDecodedVisibility(Record[6]); 2794 2795 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2796 if (Record.size() > 7) 2797 TLM = getDecodedThreadLocalMode(Record[7]); 2798 2799 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2800 if (Record.size() > 8) 2801 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2802 2803 bool ExternallyInitialized = false; 2804 if (Record.size() > 9) 2805 ExternallyInitialized = Record[9]; 2806 2807 GlobalVariable *NewGV = 2808 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2809 nullptr, TLM, AddressSpace, ExternallyInitialized); 2810 NewGV->setAlignment(Alignment); 2811 if (!Section.empty()) 2812 NewGV->setSection(Section); 2813 NewGV->setVisibility(Visibility); 2814 NewGV->setUnnamedAddr(UnnamedAddr); 2815 2816 if (Record.size() > 10) 2817 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2818 else 2819 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2820 2821 ValueList.push_back(NewGV); 2822 2823 // Remember which value to use for the global initializer. 2824 if (unsigned InitID = Record[2]) 2825 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2826 2827 if (Record.size() > 11) { 2828 if (unsigned ComdatID = Record[11]) { 2829 if (ComdatID > ComdatList.size()) 2830 return error("Invalid global variable comdat ID"); 2831 NewGV->setComdat(ComdatList[ComdatID - 1]); 2832 } 2833 } else if (hasImplicitComdat(RawLinkage)) { 2834 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2835 } 2836 2837 if (Record.size() > 12) { 2838 auto AS = getAttributes(Record[12]).getFnAttributes(); 2839 NewGV->setAttributes(AS); 2840 } 2841 return Error::success(); 2842 } 2843 2844 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2845 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2846 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2847 // prefixdata] (name in VST) 2848 // v2: [strtab_offset, strtab_size, v1] 2849 StringRef Name; 2850 std::tie(Name, Record) = readNameFromStrtab(Record); 2851 2852 if (Record.size() < 8) 2853 return error("Invalid record"); 2854 Type *Ty = getTypeByID(Record[0]); 2855 if (!Ty) 2856 return error("Invalid record"); 2857 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2858 Ty = PTy->getElementType(); 2859 auto *FTy = dyn_cast<FunctionType>(Ty); 2860 if (!FTy) 2861 return error("Invalid type for value"); 2862 auto CC = static_cast<CallingConv::ID>(Record[1]); 2863 if (CC & ~CallingConv::MaxID) 2864 return error("Invalid calling convention ID"); 2865 2866 Function *Func = 2867 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2868 2869 Func->setCallingConv(CC); 2870 bool isProto = Record[2]; 2871 uint64_t RawLinkage = Record[3]; 2872 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2873 Func->setAttributes(getAttributes(Record[4])); 2874 2875 unsigned Alignment; 2876 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2877 return Err; 2878 Func->setAlignment(Alignment); 2879 if (Record[6]) { 2880 if (Record[6] - 1 >= SectionTable.size()) 2881 return error("Invalid ID"); 2882 Func->setSection(SectionTable[Record[6] - 1]); 2883 } 2884 // Local linkage must have default visibility. 2885 if (!Func->hasLocalLinkage()) 2886 // FIXME: Change to an error if non-default in 4.0. 2887 Func->setVisibility(getDecodedVisibility(Record[7])); 2888 if (Record.size() > 8 && Record[8]) { 2889 if (Record[8] - 1 >= GCTable.size()) 2890 return error("Invalid ID"); 2891 Func->setGC(GCTable[Record[8] - 1]); 2892 } 2893 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2894 if (Record.size() > 9) 2895 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2896 Func->setUnnamedAddr(UnnamedAddr); 2897 if (Record.size() > 10 && Record[10] != 0) 2898 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2899 2900 if (Record.size() > 11) 2901 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2902 else 2903 upgradeDLLImportExportLinkage(Func, RawLinkage); 2904 2905 if (Record.size() > 12) { 2906 if (unsigned ComdatID = Record[12]) { 2907 if (ComdatID > ComdatList.size()) 2908 return error("Invalid function comdat ID"); 2909 Func->setComdat(ComdatList[ComdatID - 1]); 2910 } 2911 } else if (hasImplicitComdat(RawLinkage)) { 2912 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2913 } 2914 2915 if (Record.size() > 13 && Record[13] != 0) 2916 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2917 2918 if (Record.size() > 14 && Record[14] != 0) 2919 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2920 2921 ValueList.push_back(Func); 2922 2923 // If this is a function with a body, remember the prototype we are 2924 // creating now, so that we can match up the body with them later. 2925 if (!isProto) { 2926 Func->setIsMaterializable(true); 2927 FunctionsWithBodies.push_back(Func); 2928 DeferredFunctionInfo[Func] = 0; 2929 } 2930 return Error::success(); 2931 } 2932 2933 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2934 unsigned BitCode, ArrayRef<uint64_t> Record) { 2935 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2936 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2937 // dllstorageclass] (name in VST) 2938 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2939 // visibility, dllstorageclass] (name in VST) 2940 // v2: [strtab_offset, strtab_size, v1] 2941 StringRef Name; 2942 std::tie(Name, Record) = readNameFromStrtab(Record); 2943 2944 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2945 if (Record.size() < (3 + (unsigned)NewRecord)) 2946 return error("Invalid record"); 2947 unsigned OpNum = 0; 2948 Type *Ty = getTypeByID(Record[OpNum++]); 2949 if (!Ty) 2950 return error("Invalid record"); 2951 2952 unsigned AddrSpace; 2953 if (!NewRecord) { 2954 auto *PTy = dyn_cast<PointerType>(Ty); 2955 if (!PTy) 2956 return error("Invalid type for value"); 2957 Ty = PTy->getElementType(); 2958 AddrSpace = PTy->getAddressSpace(); 2959 } else { 2960 AddrSpace = Record[OpNum++]; 2961 } 2962 2963 auto Val = Record[OpNum++]; 2964 auto Linkage = Record[OpNum++]; 2965 GlobalIndirectSymbol *NewGA; 2966 if (BitCode == bitc::MODULE_CODE_ALIAS || 2967 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 2968 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2969 TheModule); 2970 else 2971 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2972 nullptr, TheModule); 2973 // Old bitcode files didn't have visibility field. 2974 // Local linkage must have default visibility. 2975 if (OpNum != Record.size()) { 2976 auto VisInd = OpNum++; 2977 if (!NewGA->hasLocalLinkage()) 2978 // FIXME: Change to an error if non-default in 4.0. 2979 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 2980 } 2981 if (OpNum != Record.size()) 2982 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 2983 else 2984 upgradeDLLImportExportLinkage(NewGA, Linkage); 2985 if (OpNum != Record.size()) 2986 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 2987 if (OpNum != Record.size()) 2988 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 2989 ValueList.push_back(NewGA); 2990 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 2991 return Error::success(); 2992 } 2993 2994 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2995 bool ShouldLazyLoadMetadata) { 2996 if (ResumeBit) 2997 Stream.JumpToBit(ResumeBit); 2998 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2999 return error("Invalid record"); 3000 3001 SmallVector<uint64_t, 64> Record; 3002 3003 // Read all the records for this module. 3004 while (true) { 3005 BitstreamEntry Entry = Stream.advance(); 3006 3007 switch (Entry.Kind) { 3008 case BitstreamEntry::Error: 3009 return error("Malformed block"); 3010 case BitstreamEntry::EndBlock: 3011 return globalCleanup(); 3012 3013 case BitstreamEntry::SubBlock: 3014 switch (Entry.ID) { 3015 default: // Skip unknown content. 3016 if (Stream.SkipBlock()) 3017 return error("Invalid record"); 3018 break; 3019 case bitc::BLOCKINFO_BLOCK_ID: 3020 if (readBlockInfo()) 3021 return error("Malformed block"); 3022 break; 3023 case bitc::PARAMATTR_BLOCK_ID: 3024 if (Error Err = parseAttributeBlock()) 3025 return Err; 3026 break; 3027 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3028 if (Error Err = parseAttributeGroupBlock()) 3029 return Err; 3030 break; 3031 case bitc::TYPE_BLOCK_ID_NEW: 3032 if (Error Err = parseTypeTable()) 3033 return Err; 3034 break; 3035 case bitc::VALUE_SYMTAB_BLOCK_ID: 3036 if (!SeenValueSymbolTable) { 3037 // Either this is an old form VST without function index and an 3038 // associated VST forward declaration record (which would have caused 3039 // the VST to be jumped to and parsed before it was encountered 3040 // normally in the stream), or there were no function blocks to 3041 // trigger an earlier parsing of the VST. 3042 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3043 if (Error Err = parseValueSymbolTable()) 3044 return Err; 3045 SeenValueSymbolTable = true; 3046 } else { 3047 // We must have had a VST forward declaration record, which caused 3048 // the parser to jump to and parse the VST earlier. 3049 assert(VSTOffset > 0); 3050 if (Stream.SkipBlock()) 3051 return error("Invalid record"); 3052 } 3053 break; 3054 case bitc::CONSTANTS_BLOCK_ID: 3055 if (Error Err = parseConstants()) 3056 return Err; 3057 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3058 return Err; 3059 break; 3060 case bitc::METADATA_BLOCK_ID: 3061 if (ShouldLazyLoadMetadata) { 3062 if (Error Err = rememberAndSkipMetadata()) 3063 return Err; 3064 break; 3065 } 3066 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3067 if (Error Err = MDLoader->parseModuleMetadata()) 3068 return Err; 3069 break; 3070 case bitc::METADATA_KIND_BLOCK_ID: 3071 if (Error Err = MDLoader->parseMetadataKinds()) 3072 return Err; 3073 break; 3074 case bitc::FUNCTION_BLOCK_ID: 3075 // If this is the first function body we've seen, reverse the 3076 // FunctionsWithBodies list. 3077 if (!SeenFirstFunctionBody) { 3078 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3079 if (Error Err = globalCleanup()) 3080 return Err; 3081 SeenFirstFunctionBody = true; 3082 } 3083 3084 if (VSTOffset > 0) { 3085 // If we have a VST forward declaration record, make sure we 3086 // parse the VST now if we haven't already. It is needed to 3087 // set up the DeferredFunctionInfo vector for lazy reading. 3088 if (!SeenValueSymbolTable) { 3089 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3090 return Err; 3091 SeenValueSymbolTable = true; 3092 // Fall through so that we record the NextUnreadBit below. 3093 // This is necessary in case we have an anonymous function that 3094 // is later materialized. Since it will not have a VST entry we 3095 // need to fall back to the lazy parse to find its offset. 3096 } else { 3097 // If we have a VST forward declaration record, but have already 3098 // parsed the VST (just above, when the first function body was 3099 // encountered here), then we are resuming the parse after 3100 // materializing functions. The ResumeBit points to the 3101 // start of the last function block recorded in the 3102 // DeferredFunctionInfo map. Skip it. 3103 if (Stream.SkipBlock()) 3104 return error("Invalid record"); 3105 continue; 3106 } 3107 } 3108 3109 // Support older bitcode files that did not have the function 3110 // index in the VST, nor a VST forward declaration record, as 3111 // well as anonymous functions that do not have VST entries. 3112 // Build the DeferredFunctionInfo vector on the fly. 3113 if (Error Err = rememberAndSkipFunctionBody()) 3114 return Err; 3115 3116 // Suspend parsing when we reach the function bodies. Subsequent 3117 // materialization calls will resume it when necessary. If the bitcode 3118 // file is old, the symbol table will be at the end instead and will not 3119 // have been seen yet. In this case, just finish the parse now. 3120 if (SeenValueSymbolTable) { 3121 NextUnreadBit = Stream.GetCurrentBitNo(); 3122 // After the VST has been parsed, we need to make sure intrinsic name 3123 // are auto-upgraded. 3124 return globalCleanup(); 3125 } 3126 break; 3127 case bitc::USELIST_BLOCK_ID: 3128 if (Error Err = parseUseLists()) 3129 return Err; 3130 break; 3131 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3132 if (Error Err = parseOperandBundleTags()) 3133 return Err; 3134 break; 3135 } 3136 continue; 3137 3138 case BitstreamEntry::Record: 3139 // The interesting case. 3140 break; 3141 } 3142 3143 // Read a record. 3144 auto BitCode = Stream.readRecord(Entry.ID, Record); 3145 switch (BitCode) { 3146 default: break; // Default behavior, ignore unknown content. 3147 case bitc::MODULE_CODE_VERSION: { 3148 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3149 if (!VersionOrErr) 3150 return VersionOrErr.takeError(); 3151 UseRelativeIDs = *VersionOrErr >= 1; 3152 break; 3153 } 3154 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3155 std::string S; 3156 if (convertToString(Record, 0, S)) 3157 return error("Invalid record"); 3158 TheModule->setTargetTriple(S); 3159 break; 3160 } 3161 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3162 std::string S; 3163 if (convertToString(Record, 0, S)) 3164 return error("Invalid record"); 3165 TheModule->setDataLayout(S); 3166 break; 3167 } 3168 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3169 std::string S; 3170 if (convertToString(Record, 0, S)) 3171 return error("Invalid record"); 3172 TheModule->setModuleInlineAsm(S); 3173 break; 3174 } 3175 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3176 // FIXME: Remove in 4.0. 3177 std::string S; 3178 if (convertToString(Record, 0, S)) 3179 return error("Invalid record"); 3180 // Ignore value. 3181 break; 3182 } 3183 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3184 std::string S; 3185 if (convertToString(Record, 0, S)) 3186 return error("Invalid record"); 3187 SectionTable.push_back(S); 3188 break; 3189 } 3190 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3191 std::string S; 3192 if (convertToString(Record, 0, S)) 3193 return error("Invalid record"); 3194 GCTable.push_back(S); 3195 break; 3196 } 3197 case bitc::MODULE_CODE_COMDAT: { 3198 if (Error Err = parseComdatRecord(Record)) 3199 return Err; 3200 break; 3201 } 3202 case bitc::MODULE_CODE_GLOBALVAR: { 3203 if (Error Err = parseGlobalVarRecord(Record)) 3204 return Err; 3205 break; 3206 } 3207 case bitc::MODULE_CODE_FUNCTION: { 3208 if (Error Err = parseFunctionRecord(Record)) 3209 return Err; 3210 break; 3211 } 3212 case bitc::MODULE_CODE_IFUNC: 3213 case bitc::MODULE_CODE_ALIAS: 3214 case bitc::MODULE_CODE_ALIAS_OLD: { 3215 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3216 return Err; 3217 break; 3218 } 3219 /// MODULE_CODE_VSTOFFSET: [offset] 3220 case bitc::MODULE_CODE_VSTOFFSET: 3221 if (Record.size() < 1) 3222 return error("Invalid record"); 3223 // Note that we subtract 1 here because the offset is relative to one word 3224 // before the start of the identification or module block, which was 3225 // historically always the start of the regular bitcode header. 3226 VSTOffset = Record[0] - 1; 3227 break; 3228 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3229 case bitc::MODULE_CODE_SOURCE_FILENAME: 3230 SmallString<128> ValueName; 3231 if (convertToString(Record, 0, ValueName)) 3232 return error("Invalid record"); 3233 TheModule->setSourceFileName(ValueName); 3234 break; 3235 } 3236 Record.clear(); 3237 } 3238 } 3239 3240 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3241 bool IsImporting) { 3242 TheModule = M; 3243 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3244 [&](unsigned ID) { return getTypeByID(ID); }); 3245 return parseModule(0, ShouldLazyLoadMetadata); 3246 } 3247 3248 3249 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3250 if (!isa<PointerType>(PtrType)) 3251 return error("Load/Store operand is not a pointer type"); 3252 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3253 3254 if (ValType && ValType != ElemType) 3255 return error("Explicit load/store type does not match pointee " 3256 "type of pointer operand"); 3257 if (!PointerType::isLoadableOrStorableType(ElemType)) 3258 return error("Cannot load/store from pointer"); 3259 return Error::success(); 3260 } 3261 3262 /// Lazily parse the specified function body block. 3263 Error BitcodeReader::parseFunctionBody(Function *F) { 3264 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3265 return error("Invalid record"); 3266 3267 // Unexpected unresolved metadata when parsing function. 3268 if (MDLoader->hasFwdRefs()) 3269 return error("Invalid function metadata: incoming forward references"); 3270 3271 InstructionList.clear(); 3272 unsigned ModuleValueListSize = ValueList.size(); 3273 unsigned ModuleMDLoaderSize = MDLoader->size(); 3274 3275 // Add all the function arguments to the value table. 3276 for (Argument &I : F->args()) 3277 ValueList.push_back(&I); 3278 3279 unsigned NextValueNo = ValueList.size(); 3280 BasicBlock *CurBB = nullptr; 3281 unsigned CurBBNo = 0; 3282 3283 DebugLoc LastLoc; 3284 auto getLastInstruction = [&]() -> Instruction * { 3285 if (CurBB && !CurBB->empty()) 3286 return &CurBB->back(); 3287 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3288 !FunctionBBs[CurBBNo - 1]->empty()) 3289 return &FunctionBBs[CurBBNo - 1]->back(); 3290 return nullptr; 3291 }; 3292 3293 std::vector<OperandBundleDef> OperandBundles; 3294 3295 // Read all the records. 3296 SmallVector<uint64_t, 64> Record; 3297 3298 while (true) { 3299 BitstreamEntry Entry = Stream.advance(); 3300 3301 switch (Entry.Kind) { 3302 case BitstreamEntry::Error: 3303 return error("Malformed block"); 3304 case BitstreamEntry::EndBlock: 3305 goto OutOfRecordLoop; 3306 3307 case BitstreamEntry::SubBlock: 3308 switch (Entry.ID) { 3309 default: // Skip unknown content. 3310 if (Stream.SkipBlock()) 3311 return error("Invalid record"); 3312 break; 3313 case bitc::CONSTANTS_BLOCK_ID: 3314 if (Error Err = parseConstants()) 3315 return Err; 3316 NextValueNo = ValueList.size(); 3317 break; 3318 case bitc::VALUE_SYMTAB_BLOCK_ID: 3319 if (Error Err = parseValueSymbolTable()) 3320 return Err; 3321 break; 3322 case bitc::METADATA_ATTACHMENT_ID: 3323 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3324 return Err; 3325 break; 3326 case bitc::METADATA_BLOCK_ID: 3327 assert(DeferredMetadataInfo.empty() && 3328 "Must read all module-level metadata before function-level"); 3329 if (Error Err = MDLoader->parseFunctionMetadata()) 3330 return Err; 3331 break; 3332 case bitc::USELIST_BLOCK_ID: 3333 if (Error Err = parseUseLists()) 3334 return Err; 3335 break; 3336 } 3337 continue; 3338 3339 case BitstreamEntry::Record: 3340 // The interesting case. 3341 break; 3342 } 3343 3344 // Read a record. 3345 Record.clear(); 3346 Instruction *I = nullptr; 3347 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3348 switch (BitCode) { 3349 default: // Default behavior: reject 3350 return error("Invalid value"); 3351 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3352 if (Record.size() < 1 || Record[0] == 0) 3353 return error("Invalid record"); 3354 // Create all the basic blocks for the function. 3355 FunctionBBs.resize(Record[0]); 3356 3357 // See if anything took the address of blocks in this function. 3358 auto BBFRI = BasicBlockFwdRefs.find(F); 3359 if (BBFRI == BasicBlockFwdRefs.end()) { 3360 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3361 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3362 } else { 3363 auto &BBRefs = BBFRI->second; 3364 // Check for invalid basic block references. 3365 if (BBRefs.size() > FunctionBBs.size()) 3366 return error("Invalid ID"); 3367 assert(!BBRefs.empty() && "Unexpected empty array"); 3368 assert(!BBRefs.front() && "Invalid reference to entry block"); 3369 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3370 ++I) 3371 if (I < RE && BBRefs[I]) { 3372 BBRefs[I]->insertInto(F); 3373 FunctionBBs[I] = BBRefs[I]; 3374 } else { 3375 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3376 } 3377 3378 // Erase from the table. 3379 BasicBlockFwdRefs.erase(BBFRI); 3380 } 3381 3382 CurBB = FunctionBBs[0]; 3383 continue; 3384 } 3385 3386 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3387 // This record indicates that the last instruction is at the same 3388 // location as the previous instruction with a location. 3389 I = getLastInstruction(); 3390 3391 if (!I) 3392 return error("Invalid record"); 3393 I->setDebugLoc(LastLoc); 3394 I = nullptr; 3395 continue; 3396 3397 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3398 I = getLastInstruction(); 3399 if (!I || Record.size() < 4) 3400 return error("Invalid record"); 3401 3402 unsigned Line = Record[0], Col = Record[1]; 3403 unsigned ScopeID = Record[2], IAID = Record[3]; 3404 3405 MDNode *Scope = nullptr, *IA = nullptr; 3406 if (ScopeID) { 3407 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3408 if (!Scope) 3409 return error("Invalid record"); 3410 } 3411 if (IAID) { 3412 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3413 if (!IA) 3414 return error("Invalid record"); 3415 } 3416 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3417 I->setDebugLoc(LastLoc); 3418 I = nullptr; 3419 continue; 3420 } 3421 3422 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3423 unsigned OpNum = 0; 3424 Value *LHS, *RHS; 3425 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3426 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3427 OpNum+1 > Record.size()) 3428 return error("Invalid record"); 3429 3430 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3431 if (Opc == -1) 3432 return error("Invalid record"); 3433 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3434 InstructionList.push_back(I); 3435 if (OpNum < Record.size()) { 3436 if (Opc == Instruction::Add || 3437 Opc == Instruction::Sub || 3438 Opc == Instruction::Mul || 3439 Opc == Instruction::Shl) { 3440 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3441 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3442 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3443 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3444 } else if (Opc == Instruction::SDiv || 3445 Opc == Instruction::UDiv || 3446 Opc == Instruction::LShr || 3447 Opc == Instruction::AShr) { 3448 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3449 cast<BinaryOperator>(I)->setIsExact(true); 3450 } else if (isa<FPMathOperator>(I)) { 3451 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3452 if (FMF.any()) 3453 I->setFastMathFlags(FMF); 3454 } 3455 3456 } 3457 break; 3458 } 3459 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3460 unsigned OpNum = 0; 3461 Value *Op; 3462 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3463 OpNum+2 != Record.size()) 3464 return error("Invalid record"); 3465 3466 Type *ResTy = getTypeByID(Record[OpNum]); 3467 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3468 if (Opc == -1 || !ResTy) 3469 return error("Invalid record"); 3470 Instruction *Temp = nullptr; 3471 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3472 if (Temp) { 3473 InstructionList.push_back(Temp); 3474 CurBB->getInstList().push_back(Temp); 3475 } 3476 } else { 3477 auto CastOp = (Instruction::CastOps)Opc; 3478 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3479 return error("Invalid cast"); 3480 I = CastInst::Create(CastOp, Op, ResTy); 3481 } 3482 InstructionList.push_back(I); 3483 break; 3484 } 3485 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3486 case bitc::FUNC_CODE_INST_GEP_OLD: 3487 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3488 unsigned OpNum = 0; 3489 3490 Type *Ty; 3491 bool InBounds; 3492 3493 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3494 InBounds = Record[OpNum++]; 3495 Ty = getTypeByID(Record[OpNum++]); 3496 } else { 3497 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3498 Ty = nullptr; 3499 } 3500 3501 Value *BasePtr; 3502 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3503 return error("Invalid record"); 3504 3505 if (!Ty) 3506 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3507 ->getElementType(); 3508 else if (Ty != 3509 cast<PointerType>(BasePtr->getType()->getScalarType()) 3510 ->getElementType()) 3511 return error( 3512 "Explicit gep type does not match pointee type of pointer operand"); 3513 3514 SmallVector<Value*, 16> GEPIdx; 3515 while (OpNum != Record.size()) { 3516 Value *Op; 3517 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3518 return error("Invalid record"); 3519 GEPIdx.push_back(Op); 3520 } 3521 3522 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3523 3524 InstructionList.push_back(I); 3525 if (InBounds) 3526 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3527 break; 3528 } 3529 3530 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3531 // EXTRACTVAL: [opty, opval, n x indices] 3532 unsigned OpNum = 0; 3533 Value *Agg; 3534 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3535 return error("Invalid record"); 3536 3537 unsigned RecSize = Record.size(); 3538 if (OpNum == RecSize) 3539 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3540 3541 SmallVector<unsigned, 4> EXTRACTVALIdx; 3542 Type *CurTy = Agg->getType(); 3543 for (; OpNum != RecSize; ++OpNum) { 3544 bool IsArray = CurTy->isArrayTy(); 3545 bool IsStruct = CurTy->isStructTy(); 3546 uint64_t Index = Record[OpNum]; 3547 3548 if (!IsStruct && !IsArray) 3549 return error("EXTRACTVAL: Invalid type"); 3550 if ((unsigned)Index != Index) 3551 return error("Invalid value"); 3552 if (IsStruct && Index >= CurTy->subtypes().size()) 3553 return error("EXTRACTVAL: Invalid struct index"); 3554 if (IsArray && Index >= CurTy->getArrayNumElements()) 3555 return error("EXTRACTVAL: Invalid array index"); 3556 EXTRACTVALIdx.push_back((unsigned)Index); 3557 3558 if (IsStruct) 3559 CurTy = CurTy->subtypes()[Index]; 3560 else 3561 CurTy = CurTy->subtypes()[0]; 3562 } 3563 3564 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3565 InstructionList.push_back(I); 3566 break; 3567 } 3568 3569 case bitc::FUNC_CODE_INST_INSERTVAL: { 3570 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3571 unsigned OpNum = 0; 3572 Value *Agg; 3573 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3574 return error("Invalid record"); 3575 Value *Val; 3576 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3577 return error("Invalid record"); 3578 3579 unsigned RecSize = Record.size(); 3580 if (OpNum == RecSize) 3581 return error("INSERTVAL: Invalid instruction with 0 indices"); 3582 3583 SmallVector<unsigned, 4> INSERTVALIdx; 3584 Type *CurTy = Agg->getType(); 3585 for (; OpNum != RecSize; ++OpNum) { 3586 bool IsArray = CurTy->isArrayTy(); 3587 bool IsStruct = CurTy->isStructTy(); 3588 uint64_t Index = Record[OpNum]; 3589 3590 if (!IsStruct && !IsArray) 3591 return error("INSERTVAL: Invalid type"); 3592 if ((unsigned)Index != Index) 3593 return error("Invalid value"); 3594 if (IsStruct && Index >= CurTy->subtypes().size()) 3595 return error("INSERTVAL: Invalid struct index"); 3596 if (IsArray && Index >= CurTy->getArrayNumElements()) 3597 return error("INSERTVAL: Invalid array index"); 3598 3599 INSERTVALIdx.push_back((unsigned)Index); 3600 if (IsStruct) 3601 CurTy = CurTy->subtypes()[Index]; 3602 else 3603 CurTy = CurTy->subtypes()[0]; 3604 } 3605 3606 if (CurTy != Val->getType()) 3607 return error("Inserted value type doesn't match aggregate type"); 3608 3609 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3610 InstructionList.push_back(I); 3611 break; 3612 } 3613 3614 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3615 // obsolete form of select 3616 // handles select i1 ... in old bitcode 3617 unsigned OpNum = 0; 3618 Value *TrueVal, *FalseVal, *Cond; 3619 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3620 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3621 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3622 return error("Invalid record"); 3623 3624 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3625 InstructionList.push_back(I); 3626 break; 3627 } 3628 3629 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3630 // new form of select 3631 // handles select i1 or select [N x i1] 3632 unsigned OpNum = 0; 3633 Value *TrueVal, *FalseVal, *Cond; 3634 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3635 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3636 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3637 return error("Invalid record"); 3638 3639 // select condition can be either i1 or [N x i1] 3640 if (VectorType* vector_type = 3641 dyn_cast<VectorType>(Cond->getType())) { 3642 // expect <n x i1> 3643 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3644 return error("Invalid type for value"); 3645 } else { 3646 // expect i1 3647 if (Cond->getType() != Type::getInt1Ty(Context)) 3648 return error("Invalid type for value"); 3649 } 3650 3651 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3652 InstructionList.push_back(I); 3653 break; 3654 } 3655 3656 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3657 unsigned OpNum = 0; 3658 Value *Vec, *Idx; 3659 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3660 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3661 return error("Invalid record"); 3662 if (!Vec->getType()->isVectorTy()) 3663 return error("Invalid type for value"); 3664 I = ExtractElementInst::Create(Vec, Idx); 3665 InstructionList.push_back(I); 3666 break; 3667 } 3668 3669 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3670 unsigned OpNum = 0; 3671 Value *Vec, *Elt, *Idx; 3672 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3673 return error("Invalid record"); 3674 if (!Vec->getType()->isVectorTy()) 3675 return error("Invalid type for value"); 3676 if (popValue(Record, OpNum, NextValueNo, 3677 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3678 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3679 return error("Invalid record"); 3680 I = InsertElementInst::Create(Vec, Elt, Idx); 3681 InstructionList.push_back(I); 3682 break; 3683 } 3684 3685 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3686 unsigned OpNum = 0; 3687 Value *Vec1, *Vec2, *Mask; 3688 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3689 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3690 return error("Invalid record"); 3691 3692 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3693 return error("Invalid record"); 3694 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3695 return error("Invalid type for value"); 3696 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3697 InstructionList.push_back(I); 3698 break; 3699 } 3700 3701 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3702 // Old form of ICmp/FCmp returning bool 3703 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3704 // both legal on vectors but had different behaviour. 3705 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3706 // FCmp/ICmp returning bool or vector of bool 3707 3708 unsigned OpNum = 0; 3709 Value *LHS, *RHS; 3710 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3711 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3712 return error("Invalid record"); 3713 3714 unsigned PredVal = Record[OpNum]; 3715 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3716 FastMathFlags FMF; 3717 if (IsFP && Record.size() > OpNum+1) 3718 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3719 3720 if (OpNum+1 != Record.size()) 3721 return error("Invalid record"); 3722 3723 if (LHS->getType()->isFPOrFPVectorTy()) 3724 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3725 else 3726 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3727 3728 if (FMF.any()) 3729 I->setFastMathFlags(FMF); 3730 InstructionList.push_back(I); 3731 break; 3732 } 3733 3734 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3735 { 3736 unsigned Size = Record.size(); 3737 if (Size == 0) { 3738 I = ReturnInst::Create(Context); 3739 InstructionList.push_back(I); 3740 break; 3741 } 3742 3743 unsigned OpNum = 0; 3744 Value *Op = nullptr; 3745 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3746 return error("Invalid record"); 3747 if (OpNum != Record.size()) 3748 return error("Invalid record"); 3749 3750 I = ReturnInst::Create(Context, Op); 3751 InstructionList.push_back(I); 3752 break; 3753 } 3754 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3755 if (Record.size() != 1 && Record.size() != 3) 3756 return error("Invalid record"); 3757 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3758 if (!TrueDest) 3759 return error("Invalid record"); 3760 3761 if (Record.size() == 1) { 3762 I = BranchInst::Create(TrueDest); 3763 InstructionList.push_back(I); 3764 } 3765 else { 3766 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3767 Value *Cond = getValue(Record, 2, NextValueNo, 3768 Type::getInt1Ty(Context)); 3769 if (!FalseDest || !Cond) 3770 return error("Invalid record"); 3771 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3772 InstructionList.push_back(I); 3773 } 3774 break; 3775 } 3776 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3777 if (Record.size() != 1 && Record.size() != 2) 3778 return error("Invalid record"); 3779 unsigned Idx = 0; 3780 Value *CleanupPad = 3781 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3782 if (!CleanupPad) 3783 return error("Invalid record"); 3784 BasicBlock *UnwindDest = nullptr; 3785 if (Record.size() == 2) { 3786 UnwindDest = getBasicBlock(Record[Idx++]); 3787 if (!UnwindDest) 3788 return error("Invalid record"); 3789 } 3790 3791 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3792 InstructionList.push_back(I); 3793 break; 3794 } 3795 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3796 if (Record.size() != 2) 3797 return error("Invalid record"); 3798 unsigned Idx = 0; 3799 Value *CatchPad = 3800 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3801 if (!CatchPad) 3802 return error("Invalid record"); 3803 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3804 if (!BB) 3805 return error("Invalid record"); 3806 3807 I = CatchReturnInst::Create(CatchPad, BB); 3808 InstructionList.push_back(I); 3809 break; 3810 } 3811 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3812 // We must have, at minimum, the outer scope and the number of arguments. 3813 if (Record.size() < 2) 3814 return error("Invalid record"); 3815 3816 unsigned Idx = 0; 3817 3818 Value *ParentPad = 3819 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3820 3821 unsigned NumHandlers = Record[Idx++]; 3822 3823 SmallVector<BasicBlock *, 2> Handlers; 3824 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3825 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3826 if (!BB) 3827 return error("Invalid record"); 3828 Handlers.push_back(BB); 3829 } 3830 3831 BasicBlock *UnwindDest = nullptr; 3832 if (Idx + 1 == Record.size()) { 3833 UnwindDest = getBasicBlock(Record[Idx++]); 3834 if (!UnwindDest) 3835 return error("Invalid record"); 3836 } 3837 3838 if (Record.size() != Idx) 3839 return error("Invalid record"); 3840 3841 auto *CatchSwitch = 3842 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3843 for (BasicBlock *Handler : Handlers) 3844 CatchSwitch->addHandler(Handler); 3845 I = CatchSwitch; 3846 InstructionList.push_back(I); 3847 break; 3848 } 3849 case bitc::FUNC_CODE_INST_CATCHPAD: 3850 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3851 // We must have, at minimum, the outer scope and the number of arguments. 3852 if (Record.size() < 2) 3853 return error("Invalid record"); 3854 3855 unsigned Idx = 0; 3856 3857 Value *ParentPad = 3858 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3859 3860 unsigned NumArgOperands = Record[Idx++]; 3861 3862 SmallVector<Value *, 2> Args; 3863 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3864 Value *Val; 3865 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3866 return error("Invalid record"); 3867 Args.push_back(Val); 3868 } 3869 3870 if (Record.size() != Idx) 3871 return error("Invalid record"); 3872 3873 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3874 I = CleanupPadInst::Create(ParentPad, Args); 3875 else 3876 I = CatchPadInst::Create(ParentPad, Args); 3877 InstructionList.push_back(I); 3878 break; 3879 } 3880 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3881 // Check magic 3882 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3883 // "New" SwitchInst format with case ranges. The changes to write this 3884 // format were reverted but we still recognize bitcode that uses it. 3885 // Hopefully someday we will have support for case ranges and can use 3886 // this format again. 3887 3888 Type *OpTy = getTypeByID(Record[1]); 3889 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3890 3891 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3892 BasicBlock *Default = getBasicBlock(Record[3]); 3893 if (!OpTy || !Cond || !Default) 3894 return error("Invalid record"); 3895 3896 unsigned NumCases = Record[4]; 3897 3898 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3899 InstructionList.push_back(SI); 3900 3901 unsigned CurIdx = 5; 3902 for (unsigned i = 0; i != NumCases; ++i) { 3903 SmallVector<ConstantInt*, 1> CaseVals; 3904 unsigned NumItems = Record[CurIdx++]; 3905 for (unsigned ci = 0; ci != NumItems; ++ci) { 3906 bool isSingleNumber = Record[CurIdx++]; 3907 3908 APInt Low; 3909 unsigned ActiveWords = 1; 3910 if (ValueBitWidth > 64) 3911 ActiveWords = Record[CurIdx++]; 3912 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3913 ValueBitWidth); 3914 CurIdx += ActiveWords; 3915 3916 if (!isSingleNumber) { 3917 ActiveWords = 1; 3918 if (ValueBitWidth > 64) 3919 ActiveWords = Record[CurIdx++]; 3920 APInt High = readWideAPInt( 3921 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3922 CurIdx += ActiveWords; 3923 3924 // FIXME: It is not clear whether values in the range should be 3925 // compared as signed or unsigned values. The partially 3926 // implemented changes that used this format in the past used 3927 // unsigned comparisons. 3928 for ( ; Low.ule(High); ++Low) 3929 CaseVals.push_back(ConstantInt::get(Context, Low)); 3930 } else 3931 CaseVals.push_back(ConstantInt::get(Context, Low)); 3932 } 3933 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3934 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3935 cve = CaseVals.end(); cvi != cve; ++cvi) 3936 SI->addCase(*cvi, DestBB); 3937 } 3938 I = SI; 3939 break; 3940 } 3941 3942 // Old SwitchInst format without case ranges. 3943 3944 if (Record.size() < 3 || (Record.size() & 1) == 0) 3945 return error("Invalid record"); 3946 Type *OpTy = getTypeByID(Record[0]); 3947 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3948 BasicBlock *Default = getBasicBlock(Record[2]); 3949 if (!OpTy || !Cond || !Default) 3950 return error("Invalid record"); 3951 unsigned NumCases = (Record.size()-3)/2; 3952 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3953 InstructionList.push_back(SI); 3954 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3955 ConstantInt *CaseVal = 3956 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3957 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3958 if (!CaseVal || !DestBB) { 3959 delete SI; 3960 return error("Invalid record"); 3961 } 3962 SI->addCase(CaseVal, DestBB); 3963 } 3964 I = SI; 3965 break; 3966 } 3967 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3968 if (Record.size() < 2) 3969 return error("Invalid record"); 3970 Type *OpTy = getTypeByID(Record[0]); 3971 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3972 if (!OpTy || !Address) 3973 return error("Invalid record"); 3974 unsigned NumDests = Record.size()-2; 3975 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3976 InstructionList.push_back(IBI); 3977 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3978 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3979 IBI->addDestination(DestBB); 3980 } else { 3981 delete IBI; 3982 return error("Invalid record"); 3983 } 3984 } 3985 I = IBI; 3986 break; 3987 } 3988 3989 case bitc::FUNC_CODE_INST_INVOKE: { 3990 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3991 if (Record.size() < 4) 3992 return error("Invalid record"); 3993 unsigned OpNum = 0; 3994 AttributeList PAL = getAttributes(Record[OpNum++]); 3995 unsigned CCInfo = Record[OpNum++]; 3996 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3997 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3998 3999 FunctionType *FTy = nullptr; 4000 if (CCInfo >> 13 & 1 && 4001 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4002 return error("Explicit invoke type is not a function type"); 4003 4004 Value *Callee; 4005 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4006 return error("Invalid record"); 4007 4008 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4009 if (!CalleeTy) 4010 return error("Callee is not a pointer"); 4011 if (!FTy) { 4012 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4013 if (!FTy) 4014 return error("Callee is not of pointer to function type"); 4015 } else if (CalleeTy->getElementType() != FTy) 4016 return error("Explicit invoke type does not match pointee type of " 4017 "callee operand"); 4018 if (Record.size() < FTy->getNumParams() + OpNum) 4019 return error("Insufficient operands to call"); 4020 4021 SmallVector<Value*, 16> Ops; 4022 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4023 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4024 FTy->getParamType(i))); 4025 if (!Ops.back()) 4026 return error("Invalid record"); 4027 } 4028 4029 if (!FTy->isVarArg()) { 4030 if (Record.size() != OpNum) 4031 return error("Invalid record"); 4032 } else { 4033 // Read type/value pairs for varargs params. 4034 while (OpNum != Record.size()) { 4035 Value *Op; 4036 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4037 return error("Invalid record"); 4038 Ops.push_back(Op); 4039 } 4040 } 4041 4042 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4043 OperandBundles.clear(); 4044 InstructionList.push_back(I); 4045 cast<InvokeInst>(I)->setCallingConv( 4046 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4047 cast<InvokeInst>(I)->setAttributes(PAL); 4048 break; 4049 } 4050 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4051 unsigned Idx = 0; 4052 Value *Val = nullptr; 4053 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4054 return error("Invalid record"); 4055 I = ResumeInst::Create(Val); 4056 InstructionList.push_back(I); 4057 break; 4058 } 4059 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4060 I = new UnreachableInst(Context); 4061 InstructionList.push_back(I); 4062 break; 4063 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4064 if (Record.size() < 1 || ((Record.size()-1)&1)) 4065 return error("Invalid record"); 4066 Type *Ty = getTypeByID(Record[0]); 4067 if (!Ty) 4068 return error("Invalid record"); 4069 4070 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4071 InstructionList.push_back(PN); 4072 4073 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4074 Value *V; 4075 // With the new function encoding, it is possible that operands have 4076 // negative IDs (for forward references). Use a signed VBR 4077 // representation to keep the encoding small. 4078 if (UseRelativeIDs) 4079 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4080 else 4081 V = getValue(Record, 1+i, NextValueNo, Ty); 4082 BasicBlock *BB = getBasicBlock(Record[2+i]); 4083 if (!V || !BB) 4084 return error("Invalid record"); 4085 PN->addIncoming(V, BB); 4086 } 4087 I = PN; 4088 break; 4089 } 4090 4091 case bitc::FUNC_CODE_INST_LANDINGPAD: 4092 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4093 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4094 unsigned Idx = 0; 4095 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4096 if (Record.size() < 3) 4097 return error("Invalid record"); 4098 } else { 4099 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4100 if (Record.size() < 4) 4101 return error("Invalid record"); 4102 } 4103 Type *Ty = getTypeByID(Record[Idx++]); 4104 if (!Ty) 4105 return error("Invalid record"); 4106 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4107 Value *PersFn = nullptr; 4108 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4109 return error("Invalid record"); 4110 4111 if (!F->hasPersonalityFn()) 4112 F->setPersonalityFn(cast<Constant>(PersFn)); 4113 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4114 return error("Personality function mismatch"); 4115 } 4116 4117 bool IsCleanup = !!Record[Idx++]; 4118 unsigned NumClauses = Record[Idx++]; 4119 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4120 LP->setCleanup(IsCleanup); 4121 for (unsigned J = 0; J != NumClauses; ++J) { 4122 LandingPadInst::ClauseType CT = 4123 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4124 Value *Val; 4125 4126 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4127 delete LP; 4128 return error("Invalid record"); 4129 } 4130 4131 assert((CT != LandingPadInst::Catch || 4132 !isa<ArrayType>(Val->getType())) && 4133 "Catch clause has a invalid type!"); 4134 assert((CT != LandingPadInst::Filter || 4135 isa<ArrayType>(Val->getType())) && 4136 "Filter clause has invalid type!"); 4137 LP->addClause(cast<Constant>(Val)); 4138 } 4139 4140 I = LP; 4141 InstructionList.push_back(I); 4142 break; 4143 } 4144 4145 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4146 if (Record.size() != 4) 4147 return error("Invalid record"); 4148 uint64_t AlignRecord = Record[3]; 4149 const uint64_t InAllocaMask = uint64_t(1) << 5; 4150 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4151 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4152 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4153 SwiftErrorMask; 4154 bool InAlloca = AlignRecord & InAllocaMask; 4155 bool SwiftError = AlignRecord & SwiftErrorMask; 4156 Type *Ty = getTypeByID(Record[0]); 4157 if ((AlignRecord & ExplicitTypeMask) == 0) { 4158 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4159 if (!PTy) 4160 return error("Old-style alloca with a non-pointer type"); 4161 Ty = PTy->getElementType(); 4162 } 4163 Type *OpTy = getTypeByID(Record[1]); 4164 Value *Size = getFnValueByID(Record[2], OpTy); 4165 unsigned Align; 4166 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4167 return Err; 4168 } 4169 if (!Ty || !Size) 4170 return error("Invalid record"); 4171 4172 // FIXME: Make this an optional field. 4173 const DataLayout &DL = TheModule->getDataLayout(); 4174 unsigned AS = DL.getAllocaAddrSpace(); 4175 4176 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4177 AI->setUsedWithInAlloca(InAlloca); 4178 AI->setSwiftError(SwiftError); 4179 I = AI; 4180 InstructionList.push_back(I); 4181 break; 4182 } 4183 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4184 unsigned OpNum = 0; 4185 Value *Op; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4187 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4188 return error("Invalid record"); 4189 4190 Type *Ty = nullptr; 4191 if (OpNum + 3 == Record.size()) 4192 Ty = getTypeByID(Record[OpNum++]); 4193 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4194 return Err; 4195 if (!Ty) 4196 Ty = cast<PointerType>(Op->getType())->getElementType(); 4197 4198 unsigned Align; 4199 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4200 return Err; 4201 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4202 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4207 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4208 unsigned OpNum = 0; 4209 Value *Op; 4210 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4211 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4212 return error("Invalid record"); 4213 4214 Type *Ty = nullptr; 4215 if (OpNum + 5 == Record.size()) 4216 Ty = getTypeByID(Record[OpNum++]); 4217 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4218 return Err; 4219 if (!Ty) 4220 Ty = cast<PointerType>(Op->getType())->getElementType(); 4221 4222 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4223 if (Ordering == AtomicOrdering::NotAtomic || 4224 Ordering == AtomicOrdering::Release || 4225 Ordering == AtomicOrdering::AcquireRelease) 4226 return error("Invalid record"); 4227 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4228 return error("Invalid record"); 4229 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4230 4231 unsigned Align; 4232 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4233 return Err; 4234 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4235 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 case bitc::FUNC_CODE_INST_STORE: 4240 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4241 unsigned OpNum = 0; 4242 Value *Val, *Ptr; 4243 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4244 (BitCode == bitc::FUNC_CODE_INST_STORE 4245 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4246 : popValue(Record, OpNum, NextValueNo, 4247 cast<PointerType>(Ptr->getType())->getElementType(), 4248 Val)) || 4249 OpNum + 2 != Record.size()) 4250 return error("Invalid record"); 4251 4252 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4253 return Err; 4254 unsigned Align; 4255 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4256 return Err; 4257 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4258 InstructionList.push_back(I); 4259 break; 4260 } 4261 case bitc::FUNC_CODE_INST_STOREATOMIC: 4262 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4263 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4264 unsigned OpNum = 0; 4265 Value *Val, *Ptr; 4266 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4267 !isa<PointerType>(Ptr->getType()) || 4268 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4269 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4270 : popValue(Record, OpNum, NextValueNo, 4271 cast<PointerType>(Ptr->getType())->getElementType(), 4272 Val)) || 4273 OpNum + 4 != Record.size()) 4274 return error("Invalid record"); 4275 4276 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4277 return Err; 4278 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4279 if (Ordering == AtomicOrdering::NotAtomic || 4280 Ordering == AtomicOrdering::Acquire || 4281 Ordering == AtomicOrdering::AcquireRelease) 4282 return error("Invalid record"); 4283 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4284 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4285 return error("Invalid record"); 4286 4287 unsigned Align; 4288 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4289 return Err; 4290 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4291 InstructionList.push_back(I); 4292 break; 4293 } 4294 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4295 case bitc::FUNC_CODE_INST_CMPXCHG: { 4296 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4297 // failureordering?, isweak?] 4298 unsigned OpNum = 0; 4299 Value *Ptr, *Cmp, *New; 4300 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4301 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4302 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4303 : popValue(Record, OpNum, NextValueNo, 4304 cast<PointerType>(Ptr->getType())->getElementType(), 4305 Cmp)) || 4306 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4307 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4308 return error("Invalid record"); 4309 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4310 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4311 SuccessOrdering == AtomicOrdering::Unordered) 4312 return error("Invalid record"); 4313 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4314 4315 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4316 return Err; 4317 AtomicOrdering FailureOrdering; 4318 if (Record.size() < 7) 4319 FailureOrdering = 4320 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4321 else 4322 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4323 4324 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4325 SynchScope); 4326 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4327 4328 if (Record.size() < 8) { 4329 // Before weak cmpxchgs existed, the instruction simply returned the 4330 // value loaded from memory, so bitcode files from that era will be 4331 // expecting the first component of a modern cmpxchg. 4332 CurBB->getInstList().push_back(I); 4333 I = ExtractValueInst::Create(I, 0); 4334 } else { 4335 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4336 } 4337 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4342 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4343 unsigned OpNum = 0; 4344 Value *Ptr, *Val; 4345 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4346 !isa<PointerType>(Ptr->getType()) || 4347 popValue(Record, OpNum, NextValueNo, 4348 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4349 OpNum+4 != Record.size()) 4350 return error("Invalid record"); 4351 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4352 if (Operation < AtomicRMWInst::FIRST_BINOP || 4353 Operation > AtomicRMWInst::LAST_BINOP) 4354 return error("Invalid record"); 4355 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4356 if (Ordering == AtomicOrdering::NotAtomic || 4357 Ordering == AtomicOrdering::Unordered) 4358 return error("Invalid record"); 4359 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4360 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4361 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4366 if (2 != Record.size()) 4367 return error("Invalid record"); 4368 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4369 if (Ordering == AtomicOrdering::NotAtomic || 4370 Ordering == AtomicOrdering::Unordered || 4371 Ordering == AtomicOrdering::Monotonic) 4372 return error("Invalid record"); 4373 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4374 I = new FenceInst(Context, Ordering, SynchScope); 4375 InstructionList.push_back(I); 4376 break; 4377 } 4378 case bitc::FUNC_CODE_INST_CALL: { 4379 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4380 if (Record.size() < 3) 4381 return error("Invalid record"); 4382 4383 unsigned OpNum = 0; 4384 AttributeList PAL = getAttributes(Record[OpNum++]); 4385 unsigned CCInfo = Record[OpNum++]; 4386 4387 FastMathFlags FMF; 4388 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4389 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4390 if (!FMF.any()) 4391 return error("Fast math flags indicator set for call with no FMF"); 4392 } 4393 4394 FunctionType *FTy = nullptr; 4395 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4396 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4397 return error("Explicit call type is not a function type"); 4398 4399 Value *Callee; 4400 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4401 return error("Invalid record"); 4402 4403 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4404 if (!OpTy) 4405 return error("Callee is not a pointer type"); 4406 if (!FTy) { 4407 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4408 if (!FTy) 4409 return error("Callee is not of pointer to function type"); 4410 } else if (OpTy->getElementType() != FTy) 4411 return error("Explicit call type does not match pointee type of " 4412 "callee operand"); 4413 if (Record.size() < FTy->getNumParams() + OpNum) 4414 return error("Insufficient operands to call"); 4415 4416 SmallVector<Value*, 16> Args; 4417 // Read the fixed params. 4418 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4419 if (FTy->getParamType(i)->isLabelTy()) 4420 Args.push_back(getBasicBlock(Record[OpNum])); 4421 else 4422 Args.push_back(getValue(Record, OpNum, NextValueNo, 4423 FTy->getParamType(i))); 4424 if (!Args.back()) 4425 return error("Invalid record"); 4426 } 4427 4428 // Read type/value pairs for varargs params. 4429 if (!FTy->isVarArg()) { 4430 if (OpNum != Record.size()) 4431 return error("Invalid record"); 4432 } else { 4433 while (OpNum != Record.size()) { 4434 Value *Op; 4435 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4436 return error("Invalid record"); 4437 Args.push_back(Op); 4438 } 4439 } 4440 4441 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4442 OperandBundles.clear(); 4443 InstructionList.push_back(I); 4444 cast<CallInst>(I)->setCallingConv( 4445 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4446 CallInst::TailCallKind TCK = CallInst::TCK_None; 4447 if (CCInfo & 1 << bitc::CALL_TAIL) 4448 TCK = CallInst::TCK_Tail; 4449 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4450 TCK = CallInst::TCK_MustTail; 4451 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4452 TCK = CallInst::TCK_NoTail; 4453 cast<CallInst>(I)->setTailCallKind(TCK); 4454 cast<CallInst>(I)->setAttributes(PAL); 4455 if (FMF.any()) { 4456 if (!isa<FPMathOperator>(I)) 4457 return error("Fast-math-flags specified for call without " 4458 "floating-point scalar or vector return type"); 4459 I->setFastMathFlags(FMF); 4460 } 4461 break; 4462 } 4463 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4464 if (Record.size() < 3) 4465 return error("Invalid record"); 4466 Type *OpTy = getTypeByID(Record[0]); 4467 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4468 Type *ResTy = getTypeByID(Record[2]); 4469 if (!OpTy || !Op || !ResTy) 4470 return error("Invalid record"); 4471 I = new VAArgInst(Op, ResTy); 4472 InstructionList.push_back(I); 4473 break; 4474 } 4475 4476 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4477 // A call or an invoke can be optionally prefixed with some variable 4478 // number of operand bundle blocks. These blocks are read into 4479 // OperandBundles and consumed at the next call or invoke instruction. 4480 4481 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4482 return error("Invalid record"); 4483 4484 std::vector<Value *> Inputs; 4485 4486 unsigned OpNum = 1; 4487 while (OpNum != Record.size()) { 4488 Value *Op; 4489 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4490 return error("Invalid record"); 4491 Inputs.push_back(Op); 4492 } 4493 4494 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4495 continue; 4496 } 4497 } 4498 4499 // Add instruction to end of current BB. If there is no current BB, reject 4500 // this file. 4501 if (!CurBB) { 4502 I->deleteValue(); 4503 return error("Invalid instruction with no BB"); 4504 } 4505 if (!OperandBundles.empty()) { 4506 I->deleteValue(); 4507 return error("Operand bundles found with no consumer"); 4508 } 4509 CurBB->getInstList().push_back(I); 4510 4511 // If this was a terminator instruction, move to the next block. 4512 if (isa<TerminatorInst>(I)) { 4513 ++CurBBNo; 4514 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4515 } 4516 4517 // Non-void values get registered in the value table for future use. 4518 if (I && !I->getType()->isVoidTy()) 4519 ValueList.assignValue(I, NextValueNo++); 4520 } 4521 4522 OutOfRecordLoop: 4523 4524 if (!OperandBundles.empty()) 4525 return error("Operand bundles found with no consumer"); 4526 4527 // Check the function list for unresolved values. 4528 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4529 if (!A->getParent()) { 4530 // We found at least one unresolved value. Nuke them all to avoid leaks. 4531 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4532 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4533 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4534 delete A; 4535 } 4536 } 4537 return error("Never resolved value found in function"); 4538 } 4539 } 4540 4541 // Unexpected unresolved metadata about to be dropped. 4542 if (MDLoader->hasFwdRefs()) 4543 return error("Invalid function metadata: outgoing forward refs"); 4544 4545 // Trim the value list down to the size it was before we parsed this function. 4546 ValueList.shrinkTo(ModuleValueListSize); 4547 MDLoader->shrinkTo(ModuleMDLoaderSize); 4548 std::vector<BasicBlock*>().swap(FunctionBBs); 4549 return Error::success(); 4550 } 4551 4552 /// Find the function body in the bitcode stream 4553 Error BitcodeReader::findFunctionInStream( 4554 Function *F, 4555 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4556 while (DeferredFunctionInfoIterator->second == 0) { 4557 // This is the fallback handling for the old format bitcode that 4558 // didn't contain the function index in the VST, or when we have 4559 // an anonymous function which would not have a VST entry. 4560 // Assert that we have one of those two cases. 4561 assert(VSTOffset == 0 || !F->hasName()); 4562 // Parse the next body in the stream and set its position in the 4563 // DeferredFunctionInfo map. 4564 if (Error Err = rememberAndSkipFunctionBodies()) 4565 return Err; 4566 } 4567 return Error::success(); 4568 } 4569 4570 //===----------------------------------------------------------------------===// 4571 // GVMaterializer implementation 4572 //===----------------------------------------------------------------------===// 4573 4574 Error BitcodeReader::materialize(GlobalValue *GV) { 4575 Function *F = dyn_cast<Function>(GV); 4576 // If it's not a function or is already material, ignore the request. 4577 if (!F || !F->isMaterializable()) 4578 return Error::success(); 4579 4580 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4581 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4582 // If its position is recorded as 0, its body is somewhere in the stream 4583 // but we haven't seen it yet. 4584 if (DFII->second == 0) 4585 if (Error Err = findFunctionInStream(F, DFII)) 4586 return Err; 4587 4588 // Materialize metadata before parsing any function bodies. 4589 if (Error Err = materializeMetadata()) 4590 return Err; 4591 4592 // Move the bit stream to the saved position of the deferred function body. 4593 Stream.JumpToBit(DFII->second); 4594 4595 if (Error Err = parseFunctionBody(F)) 4596 return Err; 4597 F->setIsMaterializable(false); 4598 4599 if (StripDebugInfo) 4600 stripDebugInfo(*F); 4601 4602 // Upgrade any old intrinsic calls in the function. 4603 for (auto &I : UpgradedIntrinsics) { 4604 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4605 UI != UE;) { 4606 User *U = *UI; 4607 ++UI; 4608 if (CallInst *CI = dyn_cast<CallInst>(U)) 4609 UpgradeIntrinsicCall(CI, I.second); 4610 } 4611 } 4612 4613 // Update calls to the remangled intrinsics 4614 for (auto &I : RemangledIntrinsics) 4615 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4616 UI != UE;) 4617 // Don't expect any other users than call sites 4618 CallSite(*UI++).setCalledFunction(I.second); 4619 4620 // Finish fn->subprogram upgrade for materialized functions. 4621 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4622 F->setSubprogram(SP); 4623 4624 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4625 if (!MDLoader->isStrippingTBAA()) { 4626 for (auto &I : instructions(F)) { 4627 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4628 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4629 continue; 4630 MDLoader->setStripTBAA(true); 4631 stripTBAA(F->getParent()); 4632 } 4633 } 4634 4635 // Bring in any functions that this function forward-referenced via 4636 // blockaddresses. 4637 return materializeForwardReferencedFunctions(); 4638 } 4639 4640 Error BitcodeReader::materializeModule() { 4641 if (Error Err = materializeMetadata()) 4642 return Err; 4643 4644 // Promise to materialize all forward references. 4645 WillMaterializeAllForwardRefs = true; 4646 4647 // Iterate over the module, deserializing any functions that are still on 4648 // disk. 4649 for (Function &F : *TheModule) { 4650 if (Error Err = materialize(&F)) 4651 return Err; 4652 } 4653 // At this point, if there are any function bodies, parse the rest of 4654 // the bits in the module past the last function block we have recorded 4655 // through either lazy scanning or the VST. 4656 if (LastFunctionBlockBit || NextUnreadBit) 4657 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4658 ? LastFunctionBlockBit 4659 : NextUnreadBit)) 4660 return Err; 4661 4662 // Check that all block address forward references got resolved (as we 4663 // promised above). 4664 if (!BasicBlockFwdRefs.empty()) 4665 return error("Never resolved function from blockaddress"); 4666 4667 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4668 // delete the old functions to clean up. We can't do this unless the entire 4669 // module is materialized because there could always be another function body 4670 // with calls to the old function. 4671 for (auto &I : UpgradedIntrinsics) { 4672 for (auto *U : I.first->users()) { 4673 if (CallInst *CI = dyn_cast<CallInst>(U)) 4674 UpgradeIntrinsicCall(CI, I.second); 4675 } 4676 if (!I.first->use_empty()) 4677 I.first->replaceAllUsesWith(I.second); 4678 I.first->eraseFromParent(); 4679 } 4680 UpgradedIntrinsics.clear(); 4681 // Do the same for remangled intrinsics 4682 for (auto &I : RemangledIntrinsics) { 4683 I.first->replaceAllUsesWith(I.second); 4684 I.first->eraseFromParent(); 4685 } 4686 RemangledIntrinsics.clear(); 4687 4688 UpgradeDebugInfo(*TheModule); 4689 4690 UpgradeModuleFlags(*TheModule); 4691 return Error::success(); 4692 } 4693 4694 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4695 return IdentifiedStructTypes; 4696 } 4697 4698 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4699 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4700 StringRef ModulePath, unsigned ModuleId) 4701 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4702 ModulePath(ModulePath), ModuleId(ModuleId) {} 4703 4704 ModuleSummaryIndex::ModuleInfo * 4705 ModuleSummaryIndexBitcodeReader::addThisModule() { 4706 return TheIndex.addModule(ModulePath, ModuleId); 4707 } 4708 4709 std::pair<ValueInfo, GlobalValue::GUID> 4710 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4711 auto VGI = ValueIdToValueInfoMap[ValueId]; 4712 assert(VGI.first); 4713 return VGI; 4714 } 4715 4716 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4717 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4718 StringRef SourceFileName) { 4719 std::string GlobalId = 4720 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4721 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4722 auto OriginalNameID = ValueGUID; 4723 if (GlobalValue::isLocalLinkage(Linkage)) 4724 OriginalNameID = GlobalValue::getGUID(ValueName); 4725 if (PrintSummaryGUIDs) 4726 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4727 << ValueName << "\n"; 4728 ValueIdToValueInfoMap[ValueID] = 4729 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4730 } 4731 4732 // Specialized value symbol table parser used when reading module index 4733 // blocks where we don't actually create global values. The parsed information 4734 // is saved in the bitcode reader for use when later parsing summaries. 4735 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4736 uint64_t Offset, 4737 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4738 // With a strtab the VST is not required to parse the summary. 4739 if (UseStrtab) 4740 return Error::success(); 4741 4742 assert(Offset > 0 && "Expected non-zero VST offset"); 4743 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4744 4745 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4746 return error("Invalid record"); 4747 4748 SmallVector<uint64_t, 64> Record; 4749 4750 // Read all the records for this value table. 4751 SmallString<128> ValueName; 4752 4753 while (true) { 4754 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4755 4756 switch (Entry.Kind) { 4757 case BitstreamEntry::SubBlock: // Handled for us already. 4758 case BitstreamEntry::Error: 4759 return error("Malformed block"); 4760 case BitstreamEntry::EndBlock: 4761 // Done parsing VST, jump back to wherever we came from. 4762 Stream.JumpToBit(CurrentBit); 4763 return Error::success(); 4764 case BitstreamEntry::Record: 4765 // The interesting case. 4766 break; 4767 } 4768 4769 // Read a record. 4770 Record.clear(); 4771 switch (Stream.readRecord(Entry.ID, Record)) { 4772 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4773 break; 4774 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4775 if (convertToString(Record, 1, ValueName)) 4776 return error("Invalid record"); 4777 unsigned ValueID = Record[0]; 4778 assert(!SourceFileName.empty()); 4779 auto VLI = ValueIdToLinkageMap.find(ValueID); 4780 assert(VLI != ValueIdToLinkageMap.end() && 4781 "No linkage found for VST entry?"); 4782 auto Linkage = VLI->second; 4783 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4784 ValueName.clear(); 4785 break; 4786 } 4787 case bitc::VST_CODE_FNENTRY: { 4788 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4789 if (convertToString(Record, 2, ValueName)) 4790 return error("Invalid record"); 4791 unsigned ValueID = Record[0]; 4792 assert(!SourceFileName.empty()); 4793 auto VLI = ValueIdToLinkageMap.find(ValueID); 4794 assert(VLI != ValueIdToLinkageMap.end() && 4795 "No linkage found for VST entry?"); 4796 auto Linkage = VLI->second; 4797 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4798 ValueName.clear(); 4799 break; 4800 } 4801 case bitc::VST_CODE_COMBINED_ENTRY: { 4802 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4803 unsigned ValueID = Record[0]; 4804 GlobalValue::GUID RefGUID = Record[1]; 4805 // The "original name", which is the second value of the pair will be 4806 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4807 ValueIdToValueInfoMap[ValueID] = 4808 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4809 break; 4810 } 4811 } 4812 } 4813 } 4814 4815 // Parse just the blocks needed for building the index out of the module. 4816 // At the end of this routine the module Index is populated with a map 4817 // from global value id to GlobalValueSummary objects. 4818 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4819 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4820 return error("Invalid record"); 4821 4822 SmallVector<uint64_t, 64> Record; 4823 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4824 unsigned ValueId = 0; 4825 4826 // Read the index for this module. 4827 while (true) { 4828 BitstreamEntry Entry = Stream.advance(); 4829 4830 switch (Entry.Kind) { 4831 case BitstreamEntry::Error: 4832 return error("Malformed block"); 4833 case BitstreamEntry::EndBlock: 4834 return Error::success(); 4835 4836 case BitstreamEntry::SubBlock: 4837 switch (Entry.ID) { 4838 default: // Skip unknown content. 4839 if (Stream.SkipBlock()) 4840 return error("Invalid record"); 4841 break; 4842 case bitc::BLOCKINFO_BLOCK_ID: 4843 // Need to parse these to get abbrev ids (e.g. for VST) 4844 if (readBlockInfo()) 4845 return error("Malformed block"); 4846 break; 4847 case bitc::VALUE_SYMTAB_BLOCK_ID: 4848 // Should have been parsed earlier via VSTOffset, unless there 4849 // is no summary section. 4850 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4851 !SeenGlobalValSummary) && 4852 "Expected early VST parse via VSTOffset record"); 4853 if (Stream.SkipBlock()) 4854 return error("Invalid record"); 4855 break; 4856 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4857 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4858 assert(!SeenValueSymbolTable && 4859 "Already read VST when parsing summary block?"); 4860 // We might not have a VST if there were no values in the 4861 // summary. An empty summary block generated when we are 4862 // performing ThinLTO compiles so we don't later invoke 4863 // the regular LTO process on them. 4864 if (VSTOffset > 0) { 4865 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4866 return Err; 4867 SeenValueSymbolTable = true; 4868 } 4869 SeenGlobalValSummary = true; 4870 if (Error Err = parseEntireSummary(Entry.ID)) 4871 return Err; 4872 break; 4873 case bitc::MODULE_STRTAB_BLOCK_ID: 4874 if (Error Err = parseModuleStringTable()) 4875 return Err; 4876 break; 4877 } 4878 continue; 4879 4880 case BitstreamEntry::Record: { 4881 Record.clear(); 4882 auto BitCode = Stream.readRecord(Entry.ID, Record); 4883 switch (BitCode) { 4884 default: 4885 break; // Default behavior, ignore unknown content. 4886 case bitc::MODULE_CODE_VERSION: { 4887 if (Error Err = parseVersionRecord(Record).takeError()) 4888 return Err; 4889 break; 4890 } 4891 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4892 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4893 SmallString<128> ValueName; 4894 if (convertToString(Record, 0, ValueName)) 4895 return error("Invalid record"); 4896 SourceFileName = ValueName.c_str(); 4897 break; 4898 } 4899 /// MODULE_CODE_HASH: [5*i32] 4900 case bitc::MODULE_CODE_HASH: { 4901 if (Record.size() != 5) 4902 return error("Invalid hash length " + Twine(Record.size()).str()); 4903 auto &Hash = addThisModule()->second.second; 4904 int Pos = 0; 4905 for (auto &Val : Record) { 4906 assert(!(Val >> 32) && "Unexpected high bits set"); 4907 Hash[Pos++] = Val; 4908 } 4909 break; 4910 } 4911 /// MODULE_CODE_VSTOFFSET: [offset] 4912 case bitc::MODULE_CODE_VSTOFFSET: 4913 if (Record.size() < 1) 4914 return error("Invalid record"); 4915 // Note that we subtract 1 here because the offset is relative to one 4916 // word before the start of the identification or module block, which 4917 // was historically always the start of the regular bitcode header. 4918 VSTOffset = Record[0] - 1; 4919 break; 4920 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4921 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4922 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4923 // v2: [strtab offset, strtab size, v1] 4924 case bitc::MODULE_CODE_GLOBALVAR: 4925 case bitc::MODULE_CODE_FUNCTION: 4926 case bitc::MODULE_CODE_ALIAS: { 4927 StringRef Name; 4928 ArrayRef<uint64_t> GVRecord; 4929 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4930 if (GVRecord.size() <= 3) 4931 return error("Invalid record"); 4932 uint64_t RawLinkage = GVRecord[3]; 4933 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4934 if (!UseStrtab) { 4935 ValueIdToLinkageMap[ValueId++] = Linkage; 4936 break; 4937 } 4938 4939 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4940 break; 4941 } 4942 } 4943 } 4944 continue; 4945 } 4946 } 4947 } 4948 4949 std::vector<ValueInfo> 4950 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4951 std::vector<ValueInfo> Ret; 4952 Ret.reserve(Record.size()); 4953 for (uint64_t RefValueId : Record) 4954 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 4955 return Ret; 4956 } 4957 4958 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4959 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4960 std::vector<FunctionSummary::EdgeTy> Ret; 4961 Ret.reserve(Record.size()); 4962 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4963 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4964 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 4965 if (IsOldProfileFormat) { 4966 I += 1; // Skip old callsitecount field 4967 if (HasProfile) 4968 I += 1; // Skip old profilecount field 4969 } else if (HasProfile) 4970 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4971 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 4972 } 4973 return Ret; 4974 } 4975 4976 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4977 // objects in the index. 4978 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 4979 if (Stream.EnterSubBlock(ID)) 4980 return error("Invalid record"); 4981 SmallVector<uint64_t, 64> Record; 4982 4983 // Parse version 4984 { 4985 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4986 if (Entry.Kind != BitstreamEntry::Record) 4987 return error("Invalid Summary Block: record for version expected"); 4988 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4989 return error("Invalid Summary Block: version expected"); 4990 } 4991 const uint64_t Version = Record[0]; 4992 const bool IsOldProfileFormat = Version == 1; 4993 if (Version < 1 || Version > 3) 4994 return error("Invalid summary version " + Twine(Version) + 4995 ", 1, 2 or 3 expected"); 4996 Record.clear(); 4997 4998 // Keep around the last seen summary to be used when we see an optional 4999 // "OriginalName" attachement. 5000 GlobalValueSummary *LastSeenSummary = nullptr; 5001 GlobalValue::GUID LastSeenGUID = 0; 5002 5003 // We can expect to see any number of type ID information records before 5004 // each function summary records; these variables store the information 5005 // collected so far so that it can be used to create the summary object. 5006 std::vector<GlobalValue::GUID> PendingTypeTests; 5007 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5008 PendingTypeCheckedLoadVCalls; 5009 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5010 PendingTypeCheckedLoadConstVCalls; 5011 5012 while (true) { 5013 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5014 5015 switch (Entry.Kind) { 5016 case BitstreamEntry::SubBlock: // Handled for us already. 5017 case BitstreamEntry::Error: 5018 return error("Malformed block"); 5019 case BitstreamEntry::EndBlock: 5020 return Error::success(); 5021 case BitstreamEntry::Record: 5022 // The interesting case. 5023 break; 5024 } 5025 5026 // Read a record. The record format depends on whether this 5027 // is a per-module index or a combined index file. In the per-module 5028 // case the records contain the associated value's ID for correlation 5029 // with VST entries. In the combined index the correlation is done 5030 // via the bitcode offset of the summary records (which were saved 5031 // in the combined index VST entries). The records also contain 5032 // information used for ThinLTO renaming and importing. 5033 Record.clear(); 5034 auto BitCode = Stream.readRecord(Entry.ID, Record); 5035 switch (BitCode) { 5036 default: // Default behavior: ignore. 5037 break; 5038 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5039 uint64_t ValueID = Record[0]; 5040 GlobalValue::GUID RefGUID = Record[1]; 5041 ValueIdToValueInfoMap[ValueID] = 5042 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5043 break; 5044 } 5045 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 5046 // n x (valueid)] 5047 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 5048 // numrefs x valueid, 5049 // n x (valueid, hotness)] 5050 case bitc::FS_PERMODULE: 5051 case bitc::FS_PERMODULE_PROFILE: { 5052 unsigned ValueID = Record[0]; 5053 uint64_t RawFlags = Record[1]; 5054 unsigned InstCount = Record[2]; 5055 unsigned NumRefs = Record[3]; 5056 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5057 // The module path string ref set in the summary must be owned by the 5058 // index's module string table. Since we don't have a module path 5059 // string table section in the per-module index, we create a single 5060 // module path string table entry with an empty (0) ID to take 5061 // ownership. 5062 static int RefListStartIndex = 4; 5063 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5064 assert(Record.size() >= RefListStartIndex + NumRefs && 5065 "Record size inconsistent with number of references"); 5066 std::vector<ValueInfo> Refs = makeRefList( 5067 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5068 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5069 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5070 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5071 IsOldProfileFormat, HasProfile); 5072 auto FS = llvm::make_unique<FunctionSummary>( 5073 Flags, InstCount, std::move(Refs), std::move(Calls), 5074 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5075 std::move(PendingTypeCheckedLoadVCalls), 5076 std::move(PendingTypeTestAssumeConstVCalls), 5077 std::move(PendingTypeCheckedLoadConstVCalls)); 5078 PendingTypeTests.clear(); 5079 PendingTypeTestAssumeVCalls.clear(); 5080 PendingTypeCheckedLoadVCalls.clear(); 5081 PendingTypeTestAssumeConstVCalls.clear(); 5082 PendingTypeCheckedLoadConstVCalls.clear(); 5083 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5084 FS->setModulePath(addThisModule()->first()); 5085 FS->setOriginalName(VIAndOriginalGUID.second); 5086 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5087 break; 5088 } 5089 // FS_ALIAS: [valueid, flags, valueid] 5090 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5091 // they expect all aliasee summaries to be available. 5092 case bitc::FS_ALIAS: { 5093 unsigned ValueID = Record[0]; 5094 uint64_t RawFlags = Record[1]; 5095 unsigned AliaseeID = Record[2]; 5096 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5097 auto AS = 5098 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5099 // The module path string ref set in the summary must be owned by the 5100 // index's module string table. Since we don't have a module path 5101 // string table section in the per-module index, we create a single 5102 // module path string table entry with an empty (0) ID to take 5103 // ownership. 5104 AS->setModulePath(addThisModule()->first()); 5105 5106 GlobalValue::GUID AliaseeGUID = 5107 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5108 auto AliaseeInModule = 5109 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5110 if (!AliaseeInModule) 5111 return error("Alias expects aliasee summary to be parsed"); 5112 AS->setAliasee(AliaseeInModule); 5113 5114 auto GUID = getValueInfoFromValueId(ValueID); 5115 AS->setOriginalName(GUID.second); 5116 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5117 break; 5118 } 5119 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5120 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5121 unsigned ValueID = Record[0]; 5122 uint64_t RawFlags = Record[1]; 5123 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5124 std::vector<ValueInfo> Refs = 5125 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5126 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5127 FS->setModulePath(addThisModule()->first()); 5128 auto GUID = getValueInfoFromValueId(ValueID); 5129 FS->setOriginalName(GUID.second); 5130 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5131 break; 5132 } 5133 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 5134 // numrefs x valueid, n x (valueid)] 5135 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 5136 // numrefs x valueid, n x (valueid, hotness)] 5137 case bitc::FS_COMBINED: 5138 case bitc::FS_COMBINED_PROFILE: { 5139 unsigned ValueID = Record[0]; 5140 uint64_t ModuleId = Record[1]; 5141 uint64_t RawFlags = Record[2]; 5142 unsigned InstCount = Record[3]; 5143 unsigned NumRefs = Record[4]; 5144 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5145 static int RefListStartIndex = 5; 5146 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5147 assert(Record.size() >= RefListStartIndex + NumRefs && 5148 "Record size inconsistent with number of references"); 5149 std::vector<ValueInfo> Refs = makeRefList( 5150 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5151 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5152 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5153 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5154 IsOldProfileFormat, HasProfile); 5155 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5156 auto FS = llvm::make_unique<FunctionSummary>( 5157 Flags, InstCount, std::move(Refs), std::move(Edges), 5158 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5159 std::move(PendingTypeCheckedLoadVCalls), 5160 std::move(PendingTypeTestAssumeConstVCalls), 5161 std::move(PendingTypeCheckedLoadConstVCalls)); 5162 PendingTypeTests.clear(); 5163 PendingTypeTestAssumeVCalls.clear(); 5164 PendingTypeCheckedLoadVCalls.clear(); 5165 PendingTypeTestAssumeConstVCalls.clear(); 5166 PendingTypeCheckedLoadConstVCalls.clear(); 5167 LastSeenSummary = FS.get(); 5168 LastSeenGUID = VI.getGUID(); 5169 FS->setModulePath(ModuleIdMap[ModuleId]); 5170 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5171 break; 5172 } 5173 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5174 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5175 // they expect all aliasee summaries to be available. 5176 case bitc::FS_COMBINED_ALIAS: { 5177 unsigned ValueID = Record[0]; 5178 uint64_t ModuleId = Record[1]; 5179 uint64_t RawFlags = Record[2]; 5180 unsigned AliaseeValueId = Record[3]; 5181 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5182 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5183 LastSeenSummary = AS.get(); 5184 AS->setModulePath(ModuleIdMap[ModuleId]); 5185 5186 auto AliaseeGUID = 5187 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5188 auto AliaseeInModule = 5189 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5190 if (!AliaseeInModule) 5191 return error("Alias expects aliasee summary to be parsed"); 5192 AS->setAliasee(AliaseeInModule); 5193 5194 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5195 LastSeenGUID = VI.getGUID(); 5196 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5197 break; 5198 } 5199 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5200 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5201 unsigned ValueID = Record[0]; 5202 uint64_t ModuleId = Record[1]; 5203 uint64_t RawFlags = Record[2]; 5204 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5205 std::vector<ValueInfo> Refs = 5206 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5207 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5208 LastSeenSummary = FS.get(); 5209 FS->setModulePath(ModuleIdMap[ModuleId]); 5210 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5211 LastSeenGUID = VI.getGUID(); 5212 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5213 break; 5214 } 5215 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5216 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5217 uint64_t OriginalName = Record[0]; 5218 if (!LastSeenSummary) 5219 return error("Name attachment that does not follow a combined record"); 5220 LastSeenSummary->setOriginalName(OriginalName); 5221 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5222 // Reset the LastSeenSummary 5223 LastSeenSummary = nullptr; 5224 LastSeenGUID = 0; 5225 break; 5226 } 5227 case bitc::FS_TYPE_TESTS: { 5228 assert(PendingTypeTests.empty()); 5229 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5230 Record.end()); 5231 break; 5232 } 5233 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5234 assert(PendingTypeTestAssumeVCalls.empty()); 5235 for (unsigned I = 0; I != Record.size(); I += 2) 5236 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5237 break; 5238 } 5239 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5240 assert(PendingTypeCheckedLoadVCalls.empty()); 5241 for (unsigned I = 0; I != Record.size(); I += 2) 5242 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5243 break; 5244 } 5245 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5246 PendingTypeTestAssumeConstVCalls.push_back( 5247 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5248 break; 5249 } 5250 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5251 PendingTypeCheckedLoadConstVCalls.push_back( 5252 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5253 break; 5254 } 5255 } 5256 } 5257 llvm_unreachable("Exit infinite loop"); 5258 } 5259 5260 // Parse the module string table block into the Index. 5261 // This populates the ModulePathStringTable map in the index. 5262 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5263 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5264 return error("Invalid record"); 5265 5266 SmallVector<uint64_t, 64> Record; 5267 5268 SmallString<128> ModulePath; 5269 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5270 5271 while (true) { 5272 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5273 5274 switch (Entry.Kind) { 5275 case BitstreamEntry::SubBlock: // Handled for us already. 5276 case BitstreamEntry::Error: 5277 return error("Malformed block"); 5278 case BitstreamEntry::EndBlock: 5279 return Error::success(); 5280 case BitstreamEntry::Record: 5281 // The interesting case. 5282 break; 5283 } 5284 5285 Record.clear(); 5286 switch (Stream.readRecord(Entry.ID, Record)) { 5287 default: // Default behavior: ignore. 5288 break; 5289 case bitc::MST_CODE_ENTRY: { 5290 // MST_ENTRY: [modid, namechar x N] 5291 uint64_t ModuleId = Record[0]; 5292 5293 if (convertToString(Record, 1, ModulePath)) 5294 return error("Invalid record"); 5295 5296 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5297 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5298 5299 ModulePath.clear(); 5300 break; 5301 } 5302 /// MST_CODE_HASH: [5*i32] 5303 case bitc::MST_CODE_HASH: { 5304 if (Record.size() != 5) 5305 return error("Invalid hash length " + Twine(Record.size()).str()); 5306 if (!LastSeenModule) 5307 return error("Invalid hash that does not follow a module path"); 5308 int Pos = 0; 5309 for (auto &Val : Record) { 5310 assert(!(Val >> 32) && "Unexpected high bits set"); 5311 LastSeenModule->second.second[Pos++] = Val; 5312 } 5313 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5314 LastSeenModule = nullptr; 5315 break; 5316 } 5317 } 5318 } 5319 llvm_unreachable("Exit infinite loop"); 5320 } 5321 5322 namespace { 5323 5324 // FIXME: This class is only here to support the transition to llvm::Error. It 5325 // will be removed once this transition is complete. Clients should prefer to 5326 // deal with the Error value directly, rather than converting to error_code. 5327 class BitcodeErrorCategoryType : public std::error_category { 5328 const char *name() const noexcept override { 5329 return "llvm.bitcode"; 5330 } 5331 std::string message(int IE) const override { 5332 BitcodeError E = static_cast<BitcodeError>(IE); 5333 switch (E) { 5334 case BitcodeError::CorruptedBitcode: 5335 return "Corrupted bitcode"; 5336 } 5337 llvm_unreachable("Unknown error type!"); 5338 } 5339 }; 5340 5341 } // end anonymous namespace 5342 5343 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5344 5345 const std::error_category &llvm::BitcodeErrorCategory() { 5346 return *ErrorCategory; 5347 } 5348 5349 static Expected<StringRef> readStrtab(BitstreamCursor &Stream) { 5350 if (Stream.EnterSubBlock(bitc::STRTAB_BLOCK_ID)) 5351 return error("Invalid record"); 5352 5353 StringRef Strtab; 5354 while (1) { 5355 BitstreamEntry Entry = Stream.advance(); 5356 switch (Entry.Kind) { 5357 case BitstreamEntry::EndBlock: 5358 return Strtab; 5359 5360 case BitstreamEntry::Error: 5361 return error("Malformed block"); 5362 5363 case BitstreamEntry::SubBlock: 5364 if (Stream.SkipBlock()) 5365 return error("Malformed block"); 5366 break; 5367 5368 case BitstreamEntry::Record: 5369 StringRef Blob; 5370 SmallVector<uint64_t, 1> Record; 5371 if (Stream.readRecord(Entry.ID, Record, &Blob) == bitc::STRTAB_BLOB) 5372 Strtab = Blob; 5373 break; 5374 } 5375 } 5376 } 5377 5378 //===----------------------------------------------------------------------===// 5379 // External interface 5380 //===----------------------------------------------------------------------===// 5381 5382 Expected<std::vector<BitcodeModule>> 5383 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5384 auto FOrErr = getBitcodeFileContents(Buffer); 5385 if (!FOrErr) 5386 return FOrErr.takeError(); 5387 return std::move(FOrErr->Mods); 5388 } 5389 5390 Expected<BitcodeFileContents> 5391 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5392 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5393 if (!StreamOrErr) 5394 return StreamOrErr.takeError(); 5395 BitstreamCursor &Stream = *StreamOrErr; 5396 5397 BitcodeFileContents F; 5398 while (true) { 5399 uint64_t BCBegin = Stream.getCurrentByteNo(); 5400 5401 // We may be consuming bitcode from a client that leaves garbage at the end 5402 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5403 // the end that there cannot possibly be another module, stop looking. 5404 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5405 return F; 5406 5407 BitstreamEntry Entry = Stream.advance(); 5408 switch (Entry.Kind) { 5409 case BitstreamEntry::EndBlock: 5410 case BitstreamEntry::Error: 5411 return error("Malformed block"); 5412 5413 case BitstreamEntry::SubBlock: { 5414 uint64_t IdentificationBit = -1ull; 5415 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5416 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5417 if (Stream.SkipBlock()) 5418 return error("Malformed block"); 5419 5420 Entry = Stream.advance(); 5421 if (Entry.Kind != BitstreamEntry::SubBlock || 5422 Entry.ID != bitc::MODULE_BLOCK_ID) 5423 return error("Malformed block"); 5424 } 5425 5426 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5427 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5428 if (Stream.SkipBlock()) 5429 return error("Malformed block"); 5430 5431 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5432 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5433 Buffer.getBufferIdentifier(), IdentificationBit, 5434 ModuleBit}); 5435 continue; 5436 } 5437 5438 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5439 Expected<StringRef> Strtab = readStrtab(Stream); 5440 if (!Strtab) 5441 return Strtab.takeError(); 5442 // This string table is used by every preceding bitcode module that does 5443 // not have its own string table. A bitcode file may have multiple 5444 // string tables if it was created by binary concatenation, for example 5445 // with "llvm-cat -b". 5446 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5447 if (!I->Strtab.empty()) 5448 break; 5449 I->Strtab = *Strtab; 5450 } 5451 continue; 5452 } 5453 5454 if (Stream.SkipBlock()) 5455 return error("Malformed block"); 5456 continue; 5457 } 5458 case BitstreamEntry::Record: 5459 Stream.skipRecord(Entry.ID); 5460 continue; 5461 } 5462 } 5463 } 5464 5465 /// \brief Get a lazy one-at-time loading module from bitcode. 5466 /// 5467 /// This isn't always used in a lazy context. In particular, it's also used by 5468 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5469 /// in forward-referenced functions from block address references. 5470 /// 5471 /// \param[in] MaterializeAll Set to \c true if we should materialize 5472 /// everything. 5473 Expected<std::unique_ptr<Module>> 5474 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5475 bool ShouldLazyLoadMetadata, bool IsImporting) { 5476 BitstreamCursor Stream(Buffer); 5477 5478 std::string ProducerIdentification; 5479 if (IdentificationBit != -1ull) { 5480 Stream.JumpToBit(IdentificationBit); 5481 Expected<std::string> ProducerIdentificationOrErr = 5482 readIdentificationBlock(Stream); 5483 if (!ProducerIdentificationOrErr) 5484 return ProducerIdentificationOrErr.takeError(); 5485 5486 ProducerIdentification = *ProducerIdentificationOrErr; 5487 } 5488 5489 Stream.JumpToBit(ModuleBit); 5490 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5491 Context); 5492 5493 std::unique_ptr<Module> M = 5494 llvm::make_unique<Module>(ModuleIdentifier, Context); 5495 M->setMaterializer(R); 5496 5497 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5498 if (Error Err = 5499 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5500 return std::move(Err); 5501 5502 if (MaterializeAll) { 5503 // Read in the entire module, and destroy the BitcodeReader. 5504 if (Error Err = M->materializeAll()) 5505 return std::move(Err); 5506 } else { 5507 // Resolve forward references from blockaddresses. 5508 if (Error Err = R->materializeForwardReferencedFunctions()) 5509 return std::move(Err); 5510 } 5511 return std::move(M); 5512 } 5513 5514 Expected<std::unique_ptr<Module>> 5515 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5516 bool IsImporting) { 5517 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5518 } 5519 5520 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5521 // We don't use ModuleIdentifier here because the client may need to control the 5522 // module path used in the combined summary (e.g. when reading summaries for 5523 // regular LTO modules). 5524 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5525 StringRef ModulePath, uint64_t ModuleId) { 5526 BitstreamCursor Stream(Buffer); 5527 Stream.JumpToBit(ModuleBit); 5528 5529 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5530 ModulePath, ModuleId); 5531 return R.parseModule(); 5532 } 5533 5534 // Parse the specified bitcode buffer, returning the function info index. 5535 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5536 BitstreamCursor Stream(Buffer); 5537 Stream.JumpToBit(ModuleBit); 5538 5539 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5540 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5541 ModuleIdentifier, 0); 5542 5543 if (Error Err = R.parseModule()) 5544 return std::move(Err); 5545 5546 return std::move(Index); 5547 } 5548 5549 // Check if the given bitcode buffer contains a global value summary block. 5550 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5551 BitstreamCursor Stream(Buffer); 5552 Stream.JumpToBit(ModuleBit); 5553 5554 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5555 return error("Invalid record"); 5556 5557 while (true) { 5558 BitstreamEntry Entry = Stream.advance(); 5559 5560 switch (Entry.Kind) { 5561 case BitstreamEntry::Error: 5562 return error("Malformed block"); 5563 case BitstreamEntry::EndBlock: 5564 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5565 5566 case BitstreamEntry::SubBlock: 5567 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5568 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5569 5570 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5571 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5572 5573 // Ignore other sub-blocks. 5574 if (Stream.SkipBlock()) 5575 return error("Malformed block"); 5576 continue; 5577 5578 case BitstreamEntry::Record: 5579 Stream.skipRecord(Entry.ID); 5580 continue; 5581 } 5582 } 5583 } 5584 5585 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5586 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5587 if (!MsOrErr) 5588 return MsOrErr.takeError(); 5589 5590 if (MsOrErr->size() != 1) 5591 return error("Expected a single module"); 5592 5593 return (*MsOrErr)[0]; 5594 } 5595 5596 Expected<std::unique_ptr<Module>> 5597 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5598 bool ShouldLazyLoadMetadata, bool IsImporting) { 5599 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5600 if (!BM) 5601 return BM.takeError(); 5602 5603 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5604 } 5605 5606 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5607 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5608 bool ShouldLazyLoadMetadata, bool IsImporting) { 5609 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5610 IsImporting); 5611 if (MOrErr) 5612 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5613 return MOrErr; 5614 } 5615 5616 Expected<std::unique_ptr<Module>> 5617 BitcodeModule::parseModule(LLVMContext &Context) { 5618 return getModuleImpl(Context, true, false, false); 5619 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5620 // written. We must defer until the Module has been fully materialized. 5621 } 5622 5623 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5624 LLVMContext &Context) { 5625 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5626 if (!BM) 5627 return BM.takeError(); 5628 5629 return BM->parseModule(Context); 5630 } 5631 5632 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5633 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5634 if (!StreamOrErr) 5635 return StreamOrErr.takeError(); 5636 5637 return readTriple(*StreamOrErr); 5638 } 5639 5640 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5641 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5642 if (!StreamOrErr) 5643 return StreamOrErr.takeError(); 5644 5645 return hasObjCCategory(*StreamOrErr); 5646 } 5647 5648 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5649 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5650 if (!StreamOrErr) 5651 return StreamOrErr.takeError(); 5652 5653 return readIdentificationCode(*StreamOrErr); 5654 } 5655 5656 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5657 ModuleSummaryIndex &CombinedIndex, 5658 uint64_t ModuleId) { 5659 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5660 if (!BM) 5661 return BM.takeError(); 5662 5663 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5664 } 5665 5666 Expected<std::unique_ptr<ModuleSummaryIndex>> 5667 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5668 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5669 if (!BM) 5670 return BM.takeError(); 5671 5672 return BM->getSummary(); 5673 } 5674 5675 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5676 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5677 if (!BM) 5678 return BM.takeError(); 5679 5680 return BM->getLTOInfo(); 5681 } 5682 5683 Expected<std::unique_ptr<ModuleSummaryIndex>> 5684 llvm::getModuleSummaryIndexForFile(StringRef Path, 5685 bool IgnoreEmptyThinLTOIndexFile) { 5686 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5687 MemoryBuffer::getFileOrSTDIN(Path); 5688 if (!FileOrErr) 5689 return errorCodeToError(FileOrErr.getError()); 5690 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5691 return nullptr; 5692 return getModuleSummaryIndex(**FileOrErr); 5693 } 5694