1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 void BitcodeReader::materializeForwardReferencedFunctions() { 35 while (!BlockAddrFwdRefs.empty()) { 36 Function *F = BlockAddrFwdRefs.begin()->first; 37 F->Materialize(); 38 } 39 } 40 41 void BitcodeReader::FreeState() { 42 if (BufferOwned) 43 delete Buffer; 44 Buffer = nullptr; 45 std::vector<Type*>().swap(TypeList); 46 ValueList.clear(); 47 MDValueList.clear(); 48 49 std::vector<AttributeSet>().swap(MAttributes); 50 std::vector<BasicBlock*>().swap(FunctionBBs); 51 std::vector<Function*>().swap(FunctionsWithBodies); 52 DeferredFunctionInfo.clear(); 53 MDKindMap.clear(); 54 55 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 56 } 57 58 //===----------------------------------------------------------------------===// 59 // Helper functions to implement forward reference resolution, etc. 60 //===----------------------------------------------------------------------===// 61 62 /// ConvertToString - Convert a string from a record into an std::string, return 63 /// true on failure. 64 template<typename StrTy> 65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 66 StrTy &Result) { 67 if (Idx > Record.size()) 68 return true; 69 70 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 71 Result += (char)Record[i]; 72 return false; 73 } 74 75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 76 switch (Val) { 77 default: // Map unknown/new linkages to external 78 case 0: return GlobalValue::ExternalLinkage; 79 case 1: return GlobalValue::WeakAnyLinkage; 80 case 2: return GlobalValue::AppendingLinkage; 81 case 3: return GlobalValue::InternalLinkage; 82 case 4: return GlobalValue::LinkOnceAnyLinkage; 83 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 84 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 85 case 7: return GlobalValue::ExternalWeakLinkage; 86 case 8: return GlobalValue::CommonLinkage; 87 case 9: return GlobalValue::PrivateLinkage; 88 case 10: return GlobalValue::WeakODRLinkage; 89 case 11: return GlobalValue::LinkOnceODRLinkage; 90 case 12: return GlobalValue::AvailableExternallyLinkage; 91 case 13: 92 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 93 case 14: 94 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 95 } 96 } 97 98 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 99 switch (Val) { 100 default: // Map unknown visibilities to default. 101 case 0: return GlobalValue::DefaultVisibility; 102 case 1: return GlobalValue::HiddenVisibility; 103 case 2: return GlobalValue::ProtectedVisibility; 104 } 105 } 106 107 static GlobalValue::DLLStorageClassTypes 108 GetDecodedDLLStorageClass(unsigned Val) { 109 switch (Val) { 110 default: // Map unknown values to default. 111 case 0: return GlobalValue::DefaultStorageClass; 112 case 1: return GlobalValue::DLLImportStorageClass; 113 case 2: return GlobalValue::DLLExportStorageClass; 114 } 115 } 116 117 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 118 switch (Val) { 119 case 0: return GlobalVariable::NotThreadLocal; 120 default: // Map unknown non-zero value to general dynamic. 121 case 1: return GlobalVariable::GeneralDynamicTLSModel; 122 case 2: return GlobalVariable::LocalDynamicTLSModel; 123 case 3: return GlobalVariable::InitialExecTLSModel; 124 case 4: return GlobalVariable::LocalExecTLSModel; 125 } 126 } 127 128 static int GetDecodedCastOpcode(unsigned Val) { 129 switch (Val) { 130 default: return -1; 131 case bitc::CAST_TRUNC : return Instruction::Trunc; 132 case bitc::CAST_ZEXT : return Instruction::ZExt; 133 case bitc::CAST_SEXT : return Instruction::SExt; 134 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 135 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 136 case bitc::CAST_UITOFP : return Instruction::UIToFP; 137 case bitc::CAST_SITOFP : return Instruction::SIToFP; 138 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 139 case bitc::CAST_FPEXT : return Instruction::FPExt; 140 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 141 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 142 case bitc::CAST_BITCAST : return Instruction::BitCast; 143 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 144 } 145 } 146 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 147 switch (Val) { 148 default: return -1; 149 case bitc::BINOP_ADD: 150 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 151 case bitc::BINOP_SUB: 152 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 153 case bitc::BINOP_MUL: 154 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 155 case bitc::BINOP_UDIV: return Instruction::UDiv; 156 case bitc::BINOP_SDIV: 157 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 158 case bitc::BINOP_UREM: return Instruction::URem; 159 case bitc::BINOP_SREM: 160 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 161 case bitc::BINOP_SHL: return Instruction::Shl; 162 case bitc::BINOP_LSHR: return Instruction::LShr; 163 case bitc::BINOP_ASHR: return Instruction::AShr; 164 case bitc::BINOP_AND: return Instruction::And; 165 case bitc::BINOP_OR: return Instruction::Or; 166 case bitc::BINOP_XOR: return Instruction::Xor; 167 } 168 } 169 170 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 171 switch (Val) { 172 default: return AtomicRMWInst::BAD_BINOP; 173 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 174 case bitc::RMW_ADD: return AtomicRMWInst::Add; 175 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 176 case bitc::RMW_AND: return AtomicRMWInst::And; 177 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 178 case bitc::RMW_OR: return AtomicRMWInst::Or; 179 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 180 case bitc::RMW_MAX: return AtomicRMWInst::Max; 181 case bitc::RMW_MIN: return AtomicRMWInst::Min; 182 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 183 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 184 } 185 } 186 187 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 188 switch (Val) { 189 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 190 case bitc::ORDERING_UNORDERED: return Unordered; 191 case bitc::ORDERING_MONOTONIC: return Monotonic; 192 case bitc::ORDERING_ACQUIRE: return Acquire; 193 case bitc::ORDERING_RELEASE: return Release; 194 case bitc::ORDERING_ACQREL: return AcquireRelease; 195 default: // Map unknown orderings to sequentially-consistent. 196 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 197 } 198 } 199 200 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 201 switch (Val) { 202 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 203 default: // Map unknown scopes to cross-thread. 204 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 205 } 206 } 207 208 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 209 switch (Val) { 210 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 211 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 212 } 213 } 214 215 namespace llvm { 216 namespace { 217 /// @brief A class for maintaining the slot number definition 218 /// as a placeholder for the actual definition for forward constants defs. 219 class ConstantPlaceHolder : public ConstantExpr { 220 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 221 public: 222 // allocate space for exactly one operand 223 void *operator new(size_t s) { 224 return User::operator new(s, 1); 225 } 226 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 227 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 228 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 229 } 230 231 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 232 static bool classof(const Value *V) { 233 return isa<ConstantExpr>(V) && 234 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 235 } 236 237 238 /// Provide fast operand accessors 239 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 240 }; 241 } 242 243 // FIXME: can we inherit this from ConstantExpr? 244 template <> 245 struct OperandTraits<ConstantPlaceHolder> : 246 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 247 }; 248 } 249 250 251 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 252 if (Idx == size()) { 253 push_back(V); 254 return; 255 } 256 257 if (Idx >= size()) 258 resize(Idx+1); 259 260 WeakVH &OldV = ValuePtrs[Idx]; 261 if (!OldV) { 262 OldV = V; 263 return; 264 } 265 266 // Handle constants and non-constants (e.g. instrs) differently for 267 // efficiency. 268 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 269 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 270 OldV = V; 271 } else { 272 // If there was a forward reference to this value, replace it. 273 Value *PrevVal = OldV; 274 OldV->replaceAllUsesWith(V); 275 delete PrevVal; 276 } 277 } 278 279 280 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 281 Type *Ty) { 282 if (Idx >= size()) 283 resize(Idx + 1); 284 285 if (Value *V = ValuePtrs[Idx]) { 286 assert(Ty == V->getType() && "Type mismatch in constant table!"); 287 return cast<Constant>(V); 288 } 289 290 // Create and return a placeholder, which will later be RAUW'd. 291 Constant *C = new ConstantPlaceHolder(Ty, Context); 292 ValuePtrs[Idx] = C; 293 return C; 294 } 295 296 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 297 if (Idx >= size()) 298 resize(Idx + 1); 299 300 if (Value *V = ValuePtrs[Idx]) { 301 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 302 return V; 303 } 304 305 // No type specified, must be invalid reference. 306 if (!Ty) return nullptr; 307 308 // Create and return a placeholder, which will later be RAUW'd. 309 Value *V = new Argument(Ty); 310 ValuePtrs[Idx] = V; 311 return V; 312 } 313 314 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 315 /// resolves any forward references. The idea behind this is that we sometimes 316 /// get constants (such as large arrays) which reference *many* forward ref 317 /// constants. Replacing each of these causes a lot of thrashing when 318 /// building/reuniquing the constant. Instead of doing this, we look at all the 319 /// uses and rewrite all the place holders at once for any constant that uses 320 /// a placeholder. 321 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 322 // Sort the values by-pointer so that they are efficient to look up with a 323 // binary search. 324 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 325 326 SmallVector<Constant*, 64> NewOps; 327 328 while (!ResolveConstants.empty()) { 329 Value *RealVal = operator[](ResolveConstants.back().second); 330 Constant *Placeholder = ResolveConstants.back().first; 331 ResolveConstants.pop_back(); 332 333 // Loop over all users of the placeholder, updating them to reference the 334 // new value. If they reference more than one placeholder, update them all 335 // at once. 336 while (!Placeholder->use_empty()) { 337 auto UI = Placeholder->user_begin(); 338 User *U = *UI; 339 340 // If the using object isn't uniqued, just update the operands. This 341 // handles instructions and initializers for global variables. 342 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 343 UI.getUse().set(RealVal); 344 continue; 345 } 346 347 // Otherwise, we have a constant that uses the placeholder. Replace that 348 // constant with a new constant that has *all* placeholder uses updated. 349 Constant *UserC = cast<Constant>(U); 350 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 351 I != E; ++I) { 352 Value *NewOp; 353 if (!isa<ConstantPlaceHolder>(*I)) { 354 // Not a placeholder reference. 355 NewOp = *I; 356 } else if (*I == Placeholder) { 357 // Common case is that it just references this one placeholder. 358 NewOp = RealVal; 359 } else { 360 // Otherwise, look up the placeholder in ResolveConstants. 361 ResolveConstantsTy::iterator It = 362 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 363 std::pair<Constant*, unsigned>(cast<Constant>(*I), 364 0)); 365 assert(It != ResolveConstants.end() && It->first == *I); 366 NewOp = operator[](It->second); 367 } 368 369 NewOps.push_back(cast<Constant>(NewOp)); 370 } 371 372 // Make the new constant. 373 Constant *NewC; 374 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 375 NewC = ConstantArray::get(UserCA->getType(), NewOps); 376 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 377 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 378 } else if (isa<ConstantVector>(UserC)) { 379 NewC = ConstantVector::get(NewOps); 380 } else { 381 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 382 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 383 } 384 385 UserC->replaceAllUsesWith(NewC); 386 UserC->destroyConstant(); 387 NewOps.clear(); 388 } 389 390 // Update all ValueHandles, they should be the only users at this point. 391 Placeholder->replaceAllUsesWith(RealVal); 392 delete Placeholder; 393 } 394 } 395 396 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 397 if (Idx == size()) { 398 push_back(V); 399 return; 400 } 401 402 if (Idx >= size()) 403 resize(Idx+1); 404 405 WeakVH &OldV = MDValuePtrs[Idx]; 406 if (!OldV) { 407 OldV = V; 408 return; 409 } 410 411 // If there was a forward reference to this value, replace it. 412 MDNode *PrevVal = cast<MDNode>(OldV); 413 OldV->replaceAllUsesWith(V); 414 MDNode::deleteTemporary(PrevVal); 415 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 416 // value for Idx. 417 MDValuePtrs[Idx] = V; 418 } 419 420 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 421 if (Idx >= size()) 422 resize(Idx + 1); 423 424 if (Value *V = MDValuePtrs[Idx]) { 425 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 426 return V; 427 } 428 429 // Create and return a placeholder, which will later be RAUW'd. 430 Value *V = MDNode::getTemporary(Context, None); 431 MDValuePtrs[Idx] = V; 432 return V; 433 } 434 435 Type *BitcodeReader::getTypeByID(unsigned ID) { 436 // The type table size is always specified correctly. 437 if (ID >= TypeList.size()) 438 return nullptr; 439 440 if (Type *Ty = TypeList[ID]) 441 return Ty; 442 443 // If we have a forward reference, the only possible case is when it is to a 444 // named struct. Just create a placeholder for now. 445 return TypeList[ID] = StructType::create(Context); 446 } 447 448 449 //===----------------------------------------------------------------------===// 450 // Functions for parsing blocks from the bitcode file 451 //===----------------------------------------------------------------------===// 452 453 454 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 455 /// been decoded from the given integer. This function must stay in sync with 456 /// 'encodeLLVMAttributesForBitcode'. 457 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 458 uint64_t EncodedAttrs) { 459 // FIXME: Remove in 4.0. 460 461 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 462 // the bits above 31 down by 11 bits. 463 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 464 assert((!Alignment || isPowerOf2_32(Alignment)) && 465 "Alignment must be a power of two."); 466 467 if (Alignment) 468 B.addAlignmentAttr(Alignment); 469 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 470 (EncodedAttrs & 0xffff)); 471 } 472 473 std::error_code BitcodeReader::ParseAttributeBlock() { 474 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 475 return Error(InvalidRecord); 476 477 if (!MAttributes.empty()) 478 return Error(InvalidMultipleBlocks); 479 480 SmallVector<uint64_t, 64> Record; 481 482 SmallVector<AttributeSet, 8> Attrs; 483 484 // Read all the records. 485 while (1) { 486 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 487 488 switch (Entry.Kind) { 489 case BitstreamEntry::SubBlock: // Handled for us already. 490 case BitstreamEntry::Error: 491 return Error(MalformedBlock); 492 case BitstreamEntry::EndBlock: 493 return std::error_code(); 494 case BitstreamEntry::Record: 495 // The interesting case. 496 break; 497 } 498 499 // Read a record. 500 Record.clear(); 501 switch (Stream.readRecord(Entry.ID, Record)) { 502 default: // Default behavior: ignore. 503 break; 504 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 505 // FIXME: Remove in 4.0. 506 if (Record.size() & 1) 507 return Error(InvalidRecord); 508 509 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 510 AttrBuilder B; 511 decodeLLVMAttributesForBitcode(B, Record[i+1]); 512 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 513 } 514 515 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 516 Attrs.clear(); 517 break; 518 } 519 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 520 for (unsigned i = 0, e = Record.size(); i != e; ++i) 521 Attrs.push_back(MAttributeGroups[Record[i]]); 522 523 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 524 Attrs.clear(); 525 break; 526 } 527 } 528 } 529 } 530 531 // Returns Attribute::None on unrecognized codes. 532 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 533 switch (Code) { 534 default: 535 return Attribute::None; 536 case bitc::ATTR_KIND_ALIGNMENT: 537 return Attribute::Alignment; 538 case bitc::ATTR_KIND_ALWAYS_INLINE: 539 return Attribute::AlwaysInline; 540 case bitc::ATTR_KIND_BUILTIN: 541 return Attribute::Builtin; 542 case bitc::ATTR_KIND_BY_VAL: 543 return Attribute::ByVal; 544 case bitc::ATTR_KIND_IN_ALLOCA: 545 return Attribute::InAlloca; 546 case bitc::ATTR_KIND_COLD: 547 return Attribute::Cold; 548 case bitc::ATTR_KIND_INLINE_HINT: 549 return Attribute::InlineHint; 550 case bitc::ATTR_KIND_IN_REG: 551 return Attribute::InReg; 552 case bitc::ATTR_KIND_JUMP_TABLE: 553 return Attribute::JumpTable; 554 case bitc::ATTR_KIND_MIN_SIZE: 555 return Attribute::MinSize; 556 case bitc::ATTR_KIND_NAKED: 557 return Attribute::Naked; 558 case bitc::ATTR_KIND_NEST: 559 return Attribute::Nest; 560 case bitc::ATTR_KIND_NO_ALIAS: 561 return Attribute::NoAlias; 562 case bitc::ATTR_KIND_NO_BUILTIN: 563 return Attribute::NoBuiltin; 564 case bitc::ATTR_KIND_NO_CAPTURE: 565 return Attribute::NoCapture; 566 case bitc::ATTR_KIND_NO_DUPLICATE: 567 return Attribute::NoDuplicate; 568 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 569 return Attribute::NoImplicitFloat; 570 case bitc::ATTR_KIND_NO_INLINE: 571 return Attribute::NoInline; 572 case bitc::ATTR_KIND_NON_LAZY_BIND: 573 return Attribute::NonLazyBind; 574 case bitc::ATTR_KIND_NON_NULL: 575 return Attribute::NonNull; 576 case bitc::ATTR_KIND_NO_RED_ZONE: 577 return Attribute::NoRedZone; 578 case bitc::ATTR_KIND_NO_RETURN: 579 return Attribute::NoReturn; 580 case bitc::ATTR_KIND_NO_UNWIND: 581 return Attribute::NoUnwind; 582 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 583 return Attribute::OptimizeForSize; 584 case bitc::ATTR_KIND_OPTIMIZE_NONE: 585 return Attribute::OptimizeNone; 586 case bitc::ATTR_KIND_READ_NONE: 587 return Attribute::ReadNone; 588 case bitc::ATTR_KIND_READ_ONLY: 589 return Attribute::ReadOnly; 590 case bitc::ATTR_KIND_RETURNED: 591 return Attribute::Returned; 592 case bitc::ATTR_KIND_RETURNS_TWICE: 593 return Attribute::ReturnsTwice; 594 case bitc::ATTR_KIND_S_EXT: 595 return Attribute::SExt; 596 case bitc::ATTR_KIND_STACK_ALIGNMENT: 597 return Attribute::StackAlignment; 598 case bitc::ATTR_KIND_STACK_PROTECT: 599 return Attribute::StackProtect; 600 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 601 return Attribute::StackProtectReq; 602 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 603 return Attribute::StackProtectStrong; 604 case bitc::ATTR_KIND_STRUCT_RET: 605 return Attribute::StructRet; 606 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 607 return Attribute::SanitizeAddress; 608 case bitc::ATTR_KIND_SANITIZE_THREAD: 609 return Attribute::SanitizeThread; 610 case bitc::ATTR_KIND_SANITIZE_MEMORY: 611 return Attribute::SanitizeMemory; 612 case bitc::ATTR_KIND_UW_TABLE: 613 return Attribute::UWTable; 614 case bitc::ATTR_KIND_Z_EXT: 615 return Attribute::ZExt; 616 } 617 } 618 619 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 620 Attribute::AttrKind *Kind) { 621 *Kind = GetAttrFromCode(Code); 622 if (*Kind == Attribute::None) 623 return Error(InvalidValue); 624 return std::error_code(); 625 } 626 627 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 628 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 629 return Error(InvalidRecord); 630 631 if (!MAttributeGroups.empty()) 632 return Error(InvalidMultipleBlocks); 633 634 SmallVector<uint64_t, 64> Record; 635 636 // Read all the records. 637 while (1) { 638 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 639 640 switch (Entry.Kind) { 641 case BitstreamEntry::SubBlock: // Handled for us already. 642 case BitstreamEntry::Error: 643 return Error(MalformedBlock); 644 case BitstreamEntry::EndBlock: 645 return std::error_code(); 646 case BitstreamEntry::Record: 647 // The interesting case. 648 break; 649 } 650 651 // Read a record. 652 Record.clear(); 653 switch (Stream.readRecord(Entry.ID, Record)) { 654 default: // Default behavior: ignore. 655 break; 656 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 657 if (Record.size() < 3) 658 return Error(InvalidRecord); 659 660 uint64_t GrpID = Record[0]; 661 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 662 663 AttrBuilder B; 664 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 665 if (Record[i] == 0) { // Enum attribute 666 Attribute::AttrKind Kind; 667 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 668 return EC; 669 670 B.addAttribute(Kind); 671 } else if (Record[i] == 1) { // Align attribute 672 Attribute::AttrKind Kind; 673 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 674 return EC; 675 if (Kind == Attribute::Alignment) 676 B.addAlignmentAttr(Record[++i]); 677 else 678 B.addStackAlignmentAttr(Record[++i]); 679 } else { // String attribute 680 assert((Record[i] == 3 || Record[i] == 4) && 681 "Invalid attribute group entry"); 682 bool HasValue = (Record[i++] == 4); 683 SmallString<64> KindStr; 684 SmallString<64> ValStr; 685 686 while (Record[i] != 0 && i != e) 687 KindStr += Record[i++]; 688 assert(Record[i] == 0 && "Kind string not null terminated"); 689 690 if (HasValue) { 691 // Has a value associated with it. 692 ++i; // Skip the '0' that terminates the "kind" string. 693 while (Record[i] != 0 && i != e) 694 ValStr += Record[i++]; 695 assert(Record[i] == 0 && "Value string not null terminated"); 696 } 697 698 B.addAttribute(KindStr.str(), ValStr.str()); 699 } 700 } 701 702 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 703 break; 704 } 705 } 706 } 707 } 708 709 std::error_code BitcodeReader::ParseTypeTable() { 710 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 711 return Error(InvalidRecord); 712 713 return ParseTypeTableBody(); 714 } 715 716 std::error_code BitcodeReader::ParseTypeTableBody() { 717 if (!TypeList.empty()) 718 return Error(InvalidMultipleBlocks); 719 720 SmallVector<uint64_t, 64> Record; 721 unsigned NumRecords = 0; 722 723 SmallString<64> TypeName; 724 725 // Read all the records for this type table. 726 while (1) { 727 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 728 729 switch (Entry.Kind) { 730 case BitstreamEntry::SubBlock: // Handled for us already. 731 case BitstreamEntry::Error: 732 return Error(MalformedBlock); 733 case BitstreamEntry::EndBlock: 734 if (NumRecords != TypeList.size()) 735 return Error(MalformedBlock); 736 return std::error_code(); 737 case BitstreamEntry::Record: 738 // The interesting case. 739 break; 740 } 741 742 // Read a record. 743 Record.clear(); 744 Type *ResultTy = nullptr; 745 switch (Stream.readRecord(Entry.ID, Record)) { 746 default: 747 return Error(InvalidValue); 748 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 749 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 750 // type list. This allows us to reserve space. 751 if (Record.size() < 1) 752 return Error(InvalidRecord); 753 TypeList.resize(Record[0]); 754 continue; 755 case bitc::TYPE_CODE_VOID: // VOID 756 ResultTy = Type::getVoidTy(Context); 757 break; 758 case bitc::TYPE_CODE_HALF: // HALF 759 ResultTy = Type::getHalfTy(Context); 760 break; 761 case bitc::TYPE_CODE_FLOAT: // FLOAT 762 ResultTy = Type::getFloatTy(Context); 763 break; 764 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 765 ResultTy = Type::getDoubleTy(Context); 766 break; 767 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 768 ResultTy = Type::getX86_FP80Ty(Context); 769 break; 770 case bitc::TYPE_CODE_FP128: // FP128 771 ResultTy = Type::getFP128Ty(Context); 772 break; 773 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 774 ResultTy = Type::getPPC_FP128Ty(Context); 775 break; 776 case bitc::TYPE_CODE_LABEL: // LABEL 777 ResultTy = Type::getLabelTy(Context); 778 break; 779 case bitc::TYPE_CODE_METADATA: // METADATA 780 ResultTy = Type::getMetadataTy(Context); 781 break; 782 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 783 ResultTy = Type::getX86_MMXTy(Context); 784 break; 785 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 786 if (Record.size() < 1) 787 return Error(InvalidRecord); 788 789 ResultTy = IntegerType::get(Context, Record[0]); 790 break; 791 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 792 // [pointee type, address space] 793 if (Record.size() < 1) 794 return Error(InvalidRecord); 795 unsigned AddressSpace = 0; 796 if (Record.size() == 2) 797 AddressSpace = Record[1]; 798 ResultTy = getTypeByID(Record[0]); 799 if (!ResultTy) 800 return Error(InvalidType); 801 ResultTy = PointerType::get(ResultTy, AddressSpace); 802 break; 803 } 804 case bitc::TYPE_CODE_FUNCTION_OLD: { 805 // FIXME: attrid is dead, remove it in LLVM 4.0 806 // FUNCTION: [vararg, attrid, retty, paramty x N] 807 if (Record.size() < 3) 808 return Error(InvalidRecord); 809 SmallVector<Type*, 8> ArgTys; 810 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 811 if (Type *T = getTypeByID(Record[i])) 812 ArgTys.push_back(T); 813 else 814 break; 815 } 816 817 ResultTy = getTypeByID(Record[2]); 818 if (!ResultTy || ArgTys.size() < Record.size()-3) 819 return Error(InvalidType); 820 821 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 822 break; 823 } 824 case bitc::TYPE_CODE_FUNCTION: { 825 // FUNCTION: [vararg, retty, paramty x N] 826 if (Record.size() < 2) 827 return Error(InvalidRecord); 828 SmallVector<Type*, 8> ArgTys; 829 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 830 if (Type *T = getTypeByID(Record[i])) 831 ArgTys.push_back(T); 832 else 833 break; 834 } 835 836 ResultTy = getTypeByID(Record[1]); 837 if (!ResultTy || ArgTys.size() < Record.size()-2) 838 return Error(InvalidType); 839 840 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 841 break; 842 } 843 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 844 if (Record.size() < 1) 845 return Error(InvalidRecord); 846 SmallVector<Type*, 8> EltTys; 847 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 848 if (Type *T = getTypeByID(Record[i])) 849 EltTys.push_back(T); 850 else 851 break; 852 } 853 if (EltTys.size() != Record.size()-1) 854 return Error(InvalidType); 855 ResultTy = StructType::get(Context, EltTys, Record[0]); 856 break; 857 } 858 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 859 if (ConvertToString(Record, 0, TypeName)) 860 return Error(InvalidRecord); 861 continue; 862 863 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 864 if (Record.size() < 1) 865 return Error(InvalidRecord); 866 867 if (NumRecords >= TypeList.size()) 868 return Error(InvalidTYPETable); 869 870 // Check to see if this was forward referenced, if so fill in the temp. 871 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 872 if (Res) { 873 Res->setName(TypeName); 874 TypeList[NumRecords] = nullptr; 875 } else // Otherwise, create a new struct. 876 Res = StructType::create(Context, TypeName); 877 TypeName.clear(); 878 879 SmallVector<Type*, 8> EltTys; 880 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 881 if (Type *T = getTypeByID(Record[i])) 882 EltTys.push_back(T); 883 else 884 break; 885 } 886 if (EltTys.size() != Record.size()-1) 887 return Error(InvalidRecord); 888 Res->setBody(EltTys, Record[0]); 889 ResultTy = Res; 890 break; 891 } 892 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 893 if (Record.size() != 1) 894 return Error(InvalidRecord); 895 896 if (NumRecords >= TypeList.size()) 897 return Error(InvalidTYPETable); 898 899 // Check to see if this was forward referenced, if so fill in the temp. 900 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 901 if (Res) { 902 Res->setName(TypeName); 903 TypeList[NumRecords] = nullptr; 904 } else // Otherwise, create a new struct with no body. 905 Res = StructType::create(Context, TypeName); 906 TypeName.clear(); 907 ResultTy = Res; 908 break; 909 } 910 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 911 if (Record.size() < 2) 912 return Error(InvalidRecord); 913 if ((ResultTy = getTypeByID(Record[1]))) 914 ResultTy = ArrayType::get(ResultTy, Record[0]); 915 else 916 return Error(InvalidType); 917 break; 918 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 919 if (Record.size() < 2) 920 return Error(InvalidRecord); 921 if ((ResultTy = getTypeByID(Record[1]))) 922 ResultTy = VectorType::get(ResultTy, Record[0]); 923 else 924 return Error(InvalidType); 925 break; 926 } 927 928 if (NumRecords >= TypeList.size()) 929 return Error(InvalidTYPETable); 930 assert(ResultTy && "Didn't read a type?"); 931 assert(!TypeList[NumRecords] && "Already read type?"); 932 TypeList[NumRecords++] = ResultTy; 933 } 934 } 935 936 std::error_code BitcodeReader::ParseValueSymbolTable() { 937 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 938 return Error(InvalidRecord); 939 940 SmallVector<uint64_t, 64> Record; 941 942 // Read all the records for this value table. 943 SmallString<128> ValueName; 944 while (1) { 945 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 946 947 switch (Entry.Kind) { 948 case BitstreamEntry::SubBlock: // Handled for us already. 949 case BitstreamEntry::Error: 950 return Error(MalformedBlock); 951 case BitstreamEntry::EndBlock: 952 return std::error_code(); 953 case BitstreamEntry::Record: 954 // The interesting case. 955 break; 956 } 957 958 // Read a record. 959 Record.clear(); 960 switch (Stream.readRecord(Entry.ID, Record)) { 961 default: // Default behavior: unknown type. 962 break; 963 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 964 if (ConvertToString(Record, 1, ValueName)) 965 return Error(InvalidRecord); 966 unsigned ValueID = Record[0]; 967 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 968 return Error(InvalidRecord); 969 Value *V = ValueList[ValueID]; 970 971 V->setName(StringRef(ValueName.data(), ValueName.size())); 972 ValueName.clear(); 973 break; 974 } 975 case bitc::VST_CODE_BBENTRY: { 976 if (ConvertToString(Record, 1, ValueName)) 977 return Error(InvalidRecord); 978 BasicBlock *BB = getBasicBlock(Record[0]); 979 if (!BB) 980 return Error(InvalidRecord); 981 982 BB->setName(StringRef(ValueName.data(), ValueName.size())); 983 ValueName.clear(); 984 break; 985 } 986 } 987 } 988 } 989 990 std::error_code BitcodeReader::ParseMetadata() { 991 unsigned NextMDValueNo = MDValueList.size(); 992 993 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 994 return Error(InvalidRecord); 995 996 SmallVector<uint64_t, 64> Record; 997 998 // Read all the records. 999 while (1) { 1000 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1001 1002 switch (Entry.Kind) { 1003 case BitstreamEntry::SubBlock: // Handled for us already. 1004 case BitstreamEntry::Error: 1005 return Error(MalformedBlock); 1006 case BitstreamEntry::EndBlock: 1007 return std::error_code(); 1008 case BitstreamEntry::Record: 1009 // The interesting case. 1010 break; 1011 } 1012 1013 bool IsFunctionLocal = false; 1014 // Read a record. 1015 Record.clear(); 1016 unsigned Code = Stream.readRecord(Entry.ID, Record); 1017 switch (Code) { 1018 default: // Default behavior: ignore. 1019 break; 1020 case bitc::METADATA_NAME: { 1021 // Read name of the named metadata. 1022 SmallString<8> Name(Record.begin(), Record.end()); 1023 Record.clear(); 1024 Code = Stream.ReadCode(); 1025 1026 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1027 unsigned NextBitCode = Stream.readRecord(Code, Record); 1028 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1029 1030 // Read named metadata elements. 1031 unsigned Size = Record.size(); 1032 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1033 for (unsigned i = 0; i != Size; ++i) { 1034 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1035 if (!MD) 1036 return Error(InvalidRecord); 1037 NMD->addOperand(MD); 1038 } 1039 break; 1040 } 1041 case bitc::METADATA_FN_NODE: 1042 IsFunctionLocal = true; 1043 // fall-through 1044 case bitc::METADATA_NODE: { 1045 if (Record.size() % 2 == 1) 1046 return Error(InvalidRecord); 1047 1048 unsigned Size = Record.size(); 1049 SmallVector<Value*, 8> Elts; 1050 for (unsigned i = 0; i != Size; i += 2) { 1051 Type *Ty = getTypeByID(Record[i]); 1052 if (!Ty) 1053 return Error(InvalidRecord); 1054 if (Ty->isMetadataTy()) 1055 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1056 else if (!Ty->isVoidTy()) 1057 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1058 else 1059 Elts.push_back(nullptr); 1060 } 1061 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1062 IsFunctionLocal = false; 1063 MDValueList.AssignValue(V, NextMDValueNo++); 1064 break; 1065 } 1066 case bitc::METADATA_STRING: { 1067 SmallString<8> String(Record.begin(), Record.end()); 1068 Value *V = MDString::get(Context, String); 1069 MDValueList.AssignValue(V, NextMDValueNo++); 1070 break; 1071 } 1072 case bitc::METADATA_KIND: { 1073 if (Record.size() < 2) 1074 return Error(InvalidRecord); 1075 1076 unsigned Kind = Record[0]; 1077 SmallString<8> Name(Record.begin()+1, Record.end()); 1078 1079 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1080 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1081 return Error(ConflictingMETADATA_KINDRecords); 1082 break; 1083 } 1084 } 1085 } 1086 } 1087 1088 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1089 /// the LSB for dense VBR encoding. 1090 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1091 if ((V & 1) == 0) 1092 return V >> 1; 1093 if (V != 1) 1094 return -(V >> 1); 1095 // There is no such thing as -0 with integers. "-0" really means MININT. 1096 return 1ULL << 63; 1097 } 1098 1099 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1100 /// values and aliases that we can. 1101 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1102 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1103 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1104 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1105 1106 GlobalInitWorklist.swap(GlobalInits); 1107 AliasInitWorklist.swap(AliasInits); 1108 FunctionPrefixWorklist.swap(FunctionPrefixes); 1109 1110 while (!GlobalInitWorklist.empty()) { 1111 unsigned ValID = GlobalInitWorklist.back().second; 1112 if (ValID >= ValueList.size()) { 1113 // Not ready to resolve this yet, it requires something later in the file. 1114 GlobalInits.push_back(GlobalInitWorklist.back()); 1115 } else { 1116 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1117 GlobalInitWorklist.back().first->setInitializer(C); 1118 else 1119 return Error(ExpectedConstant); 1120 } 1121 GlobalInitWorklist.pop_back(); 1122 } 1123 1124 while (!AliasInitWorklist.empty()) { 1125 unsigned ValID = AliasInitWorklist.back().second; 1126 if (ValID >= ValueList.size()) { 1127 AliasInits.push_back(AliasInitWorklist.back()); 1128 } else { 1129 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1130 AliasInitWorklist.back().first->setAliasee(C); 1131 else 1132 return Error(ExpectedConstant); 1133 } 1134 AliasInitWorklist.pop_back(); 1135 } 1136 1137 while (!FunctionPrefixWorklist.empty()) { 1138 unsigned ValID = FunctionPrefixWorklist.back().second; 1139 if (ValID >= ValueList.size()) { 1140 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1141 } else { 1142 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1143 FunctionPrefixWorklist.back().first->setPrefixData(C); 1144 else 1145 return Error(ExpectedConstant); 1146 } 1147 FunctionPrefixWorklist.pop_back(); 1148 } 1149 1150 return std::error_code(); 1151 } 1152 1153 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1154 SmallVector<uint64_t, 8> Words(Vals.size()); 1155 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1156 BitcodeReader::decodeSignRotatedValue); 1157 1158 return APInt(TypeBits, Words); 1159 } 1160 1161 std::error_code BitcodeReader::ParseConstants() { 1162 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1163 return Error(InvalidRecord); 1164 1165 SmallVector<uint64_t, 64> Record; 1166 1167 // Read all the records for this value table. 1168 Type *CurTy = Type::getInt32Ty(Context); 1169 unsigned NextCstNo = ValueList.size(); 1170 while (1) { 1171 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1172 1173 switch (Entry.Kind) { 1174 case BitstreamEntry::SubBlock: // Handled for us already. 1175 case BitstreamEntry::Error: 1176 return Error(MalformedBlock); 1177 case BitstreamEntry::EndBlock: 1178 if (NextCstNo != ValueList.size()) 1179 return Error(InvalidConstantReference); 1180 1181 // Once all the constants have been read, go through and resolve forward 1182 // references. 1183 ValueList.ResolveConstantForwardRefs(); 1184 return std::error_code(); 1185 case BitstreamEntry::Record: 1186 // The interesting case. 1187 break; 1188 } 1189 1190 // Read a record. 1191 Record.clear(); 1192 Value *V = nullptr; 1193 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1194 switch (BitCode) { 1195 default: // Default behavior: unknown constant 1196 case bitc::CST_CODE_UNDEF: // UNDEF 1197 V = UndefValue::get(CurTy); 1198 break; 1199 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1200 if (Record.empty()) 1201 return Error(InvalidRecord); 1202 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1203 return Error(InvalidRecord); 1204 CurTy = TypeList[Record[0]]; 1205 continue; // Skip the ValueList manipulation. 1206 case bitc::CST_CODE_NULL: // NULL 1207 V = Constant::getNullValue(CurTy); 1208 break; 1209 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1210 if (!CurTy->isIntegerTy() || Record.empty()) 1211 return Error(InvalidRecord); 1212 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1213 break; 1214 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1215 if (!CurTy->isIntegerTy() || Record.empty()) 1216 return Error(InvalidRecord); 1217 1218 APInt VInt = ReadWideAPInt(Record, 1219 cast<IntegerType>(CurTy)->getBitWidth()); 1220 V = ConstantInt::get(Context, VInt); 1221 1222 break; 1223 } 1224 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1225 if (Record.empty()) 1226 return Error(InvalidRecord); 1227 if (CurTy->isHalfTy()) 1228 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1229 APInt(16, (uint16_t)Record[0]))); 1230 else if (CurTy->isFloatTy()) 1231 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1232 APInt(32, (uint32_t)Record[0]))); 1233 else if (CurTy->isDoubleTy()) 1234 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1235 APInt(64, Record[0]))); 1236 else if (CurTy->isX86_FP80Ty()) { 1237 // Bits are not stored the same way as a normal i80 APInt, compensate. 1238 uint64_t Rearrange[2]; 1239 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1240 Rearrange[1] = Record[0] >> 48; 1241 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1242 APInt(80, Rearrange))); 1243 } else if (CurTy->isFP128Ty()) 1244 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1245 APInt(128, Record))); 1246 else if (CurTy->isPPC_FP128Ty()) 1247 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1248 APInt(128, Record))); 1249 else 1250 V = UndefValue::get(CurTy); 1251 break; 1252 } 1253 1254 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1255 if (Record.empty()) 1256 return Error(InvalidRecord); 1257 1258 unsigned Size = Record.size(); 1259 SmallVector<Constant*, 16> Elts; 1260 1261 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1262 for (unsigned i = 0; i != Size; ++i) 1263 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1264 STy->getElementType(i))); 1265 V = ConstantStruct::get(STy, Elts); 1266 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1267 Type *EltTy = ATy->getElementType(); 1268 for (unsigned i = 0; i != Size; ++i) 1269 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1270 V = ConstantArray::get(ATy, Elts); 1271 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1272 Type *EltTy = VTy->getElementType(); 1273 for (unsigned i = 0; i != Size; ++i) 1274 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1275 V = ConstantVector::get(Elts); 1276 } else { 1277 V = UndefValue::get(CurTy); 1278 } 1279 break; 1280 } 1281 case bitc::CST_CODE_STRING: // STRING: [values] 1282 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1283 if (Record.empty()) 1284 return Error(InvalidRecord); 1285 1286 SmallString<16> Elts(Record.begin(), Record.end()); 1287 V = ConstantDataArray::getString(Context, Elts, 1288 BitCode == bitc::CST_CODE_CSTRING); 1289 break; 1290 } 1291 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1292 if (Record.empty()) 1293 return Error(InvalidRecord); 1294 1295 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1296 unsigned Size = Record.size(); 1297 1298 if (EltTy->isIntegerTy(8)) { 1299 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1300 if (isa<VectorType>(CurTy)) 1301 V = ConstantDataVector::get(Context, Elts); 1302 else 1303 V = ConstantDataArray::get(Context, Elts); 1304 } else if (EltTy->isIntegerTy(16)) { 1305 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1306 if (isa<VectorType>(CurTy)) 1307 V = ConstantDataVector::get(Context, Elts); 1308 else 1309 V = ConstantDataArray::get(Context, Elts); 1310 } else if (EltTy->isIntegerTy(32)) { 1311 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1312 if (isa<VectorType>(CurTy)) 1313 V = ConstantDataVector::get(Context, Elts); 1314 else 1315 V = ConstantDataArray::get(Context, Elts); 1316 } else if (EltTy->isIntegerTy(64)) { 1317 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1318 if (isa<VectorType>(CurTy)) 1319 V = ConstantDataVector::get(Context, Elts); 1320 else 1321 V = ConstantDataArray::get(Context, Elts); 1322 } else if (EltTy->isFloatTy()) { 1323 SmallVector<float, 16> Elts(Size); 1324 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1325 if (isa<VectorType>(CurTy)) 1326 V = ConstantDataVector::get(Context, Elts); 1327 else 1328 V = ConstantDataArray::get(Context, Elts); 1329 } else if (EltTy->isDoubleTy()) { 1330 SmallVector<double, 16> Elts(Size); 1331 std::transform(Record.begin(), Record.end(), Elts.begin(), 1332 BitsToDouble); 1333 if (isa<VectorType>(CurTy)) 1334 V = ConstantDataVector::get(Context, Elts); 1335 else 1336 V = ConstantDataArray::get(Context, Elts); 1337 } else { 1338 return Error(InvalidTypeForValue); 1339 } 1340 break; 1341 } 1342 1343 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1344 if (Record.size() < 3) 1345 return Error(InvalidRecord); 1346 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1347 if (Opc < 0) { 1348 V = UndefValue::get(CurTy); // Unknown binop. 1349 } else { 1350 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1351 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1352 unsigned Flags = 0; 1353 if (Record.size() >= 4) { 1354 if (Opc == Instruction::Add || 1355 Opc == Instruction::Sub || 1356 Opc == Instruction::Mul || 1357 Opc == Instruction::Shl) { 1358 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1359 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1360 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1361 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1362 } else if (Opc == Instruction::SDiv || 1363 Opc == Instruction::UDiv || 1364 Opc == Instruction::LShr || 1365 Opc == Instruction::AShr) { 1366 if (Record[3] & (1 << bitc::PEO_EXACT)) 1367 Flags |= SDivOperator::IsExact; 1368 } 1369 } 1370 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1371 } 1372 break; 1373 } 1374 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1375 if (Record.size() < 3) 1376 return Error(InvalidRecord); 1377 int Opc = GetDecodedCastOpcode(Record[0]); 1378 if (Opc < 0) { 1379 V = UndefValue::get(CurTy); // Unknown cast. 1380 } else { 1381 Type *OpTy = getTypeByID(Record[1]); 1382 if (!OpTy) 1383 return Error(InvalidRecord); 1384 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1385 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1386 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1387 } 1388 break; 1389 } 1390 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1391 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1392 if (Record.size() & 1) 1393 return Error(InvalidRecord); 1394 SmallVector<Constant*, 16> Elts; 1395 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1396 Type *ElTy = getTypeByID(Record[i]); 1397 if (!ElTy) 1398 return Error(InvalidRecord); 1399 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1400 } 1401 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1402 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1403 BitCode == 1404 bitc::CST_CODE_CE_INBOUNDS_GEP); 1405 break; 1406 } 1407 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1408 if (Record.size() < 3) 1409 return Error(InvalidRecord); 1410 1411 Type *SelectorTy = Type::getInt1Ty(Context); 1412 1413 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1414 // vector. Otherwise, it must be a single bit. 1415 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1416 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1417 VTy->getNumElements()); 1418 1419 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1420 SelectorTy), 1421 ValueList.getConstantFwdRef(Record[1],CurTy), 1422 ValueList.getConstantFwdRef(Record[2],CurTy)); 1423 break; 1424 } 1425 case bitc::CST_CODE_CE_EXTRACTELT 1426 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1427 if (Record.size() < 3) 1428 return Error(InvalidRecord); 1429 VectorType *OpTy = 1430 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1431 if (!OpTy) 1432 return Error(InvalidRecord); 1433 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1434 Constant *Op1 = nullptr; 1435 if (Record.size() == 4) { 1436 Type *IdxTy = getTypeByID(Record[2]); 1437 if (!IdxTy) 1438 return Error(InvalidRecord); 1439 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1440 } else // TODO: Remove with llvm 4.0 1441 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1442 if (!Op1) 1443 return Error(InvalidRecord); 1444 V = ConstantExpr::getExtractElement(Op0, Op1); 1445 break; 1446 } 1447 case bitc::CST_CODE_CE_INSERTELT 1448 : { // CE_INSERTELT: [opval, opval, opty, opval] 1449 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1450 if (Record.size() < 3 || !OpTy) 1451 return Error(InvalidRecord); 1452 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1453 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1454 OpTy->getElementType()); 1455 Constant *Op2 = nullptr; 1456 if (Record.size() == 4) { 1457 Type *IdxTy = getTypeByID(Record[2]); 1458 if (!IdxTy) 1459 return Error(InvalidRecord); 1460 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1461 } else // TODO: Remove with llvm 4.0 1462 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1463 if (!Op2) 1464 return Error(InvalidRecord); 1465 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1466 break; 1467 } 1468 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1469 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1470 if (Record.size() < 3 || !OpTy) 1471 return Error(InvalidRecord); 1472 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1473 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1474 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1475 OpTy->getNumElements()); 1476 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1477 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1478 break; 1479 } 1480 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1481 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1482 VectorType *OpTy = 1483 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1484 if (Record.size() < 4 || !RTy || !OpTy) 1485 return Error(InvalidRecord); 1486 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1487 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1488 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1489 RTy->getNumElements()); 1490 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1491 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1492 break; 1493 } 1494 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1495 if (Record.size() < 4) 1496 return Error(InvalidRecord); 1497 Type *OpTy = getTypeByID(Record[0]); 1498 if (!OpTy) 1499 return Error(InvalidRecord); 1500 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1501 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1502 1503 if (OpTy->isFPOrFPVectorTy()) 1504 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1505 else 1506 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1507 break; 1508 } 1509 // This maintains backward compatibility, pre-asm dialect keywords. 1510 // FIXME: Remove with the 4.0 release. 1511 case bitc::CST_CODE_INLINEASM_OLD: { 1512 if (Record.size() < 2) 1513 return Error(InvalidRecord); 1514 std::string AsmStr, ConstrStr; 1515 bool HasSideEffects = Record[0] & 1; 1516 bool IsAlignStack = Record[0] >> 1; 1517 unsigned AsmStrSize = Record[1]; 1518 if (2+AsmStrSize >= Record.size()) 1519 return Error(InvalidRecord); 1520 unsigned ConstStrSize = Record[2+AsmStrSize]; 1521 if (3+AsmStrSize+ConstStrSize > Record.size()) 1522 return Error(InvalidRecord); 1523 1524 for (unsigned i = 0; i != AsmStrSize; ++i) 1525 AsmStr += (char)Record[2+i]; 1526 for (unsigned i = 0; i != ConstStrSize; ++i) 1527 ConstrStr += (char)Record[3+AsmStrSize+i]; 1528 PointerType *PTy = cast<PointerType>(CurTy); 1529 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1530 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1531 break; 1532 } 1533 // This version adds support for the asm dialect keywords (e.g., 1534 // inteldialect). 1535 case bitc::CST_CODE_INLINEASM: { 1536 if (Record.size() < 2) 1537 return Error(InvalidRecord); 1538 std::string AsmStr, ConstrStr; 1539 bool HasSideEffects = Record[0] & 1; 1540 bool IsAlignStack = (Record[0] >> 1) & 1; 1541 unsigned AsmDialect = Record[0] >> 2; 1542 unsigned AsmStrSize = Record[1]; 1543 if (2+AsmStrSize >= Record.size()) 1544 return Error(InvalidRecord); 1545 unsigned ConstStrSize = Record[2+AsmStrSize]; 1546 if (3+AsmStrSize+ConstStrSize > Record.size()) 1547 return Error(InvalidRecord); 1548 1549 for (unsigned i = 0; i != AsmStrSize; ++i) 1550 AsmStr += (char)Record[2+i]; 1551 for (unsigned i = 0; i != ConstStrSize; ++i) 1552 ConstrStr += (char)Record[3+AsmStrSize+i]; 1553 PointerType *PTy = cast<PointerType>(CurTy); 1554 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1555 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1556 InlineAsm::AsmDialect(AsmDialect)); 1557 break; 1558 } 1559 case bitc::CST_CODE_BLOCKADDRESS:{ 1560 if (Record.size() < 3) 1561 return Error(InvalidRecord); 1562 Type *FnTy = getTypeByID(Record[0]); 1563 if (!FnTy) 1564 return Error(InvalidRecord); 1565 Function *Fn = 1566 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1567 if (!Fn) 1568 return Error(InvalidRecord); 1569 1570 // If the function is already parsed we can insert the block address right 1571 // away. 1572 if (!Fn->empty()) { 1573 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1574 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1575 if (BBI == BBE) 1576 return Error(InvalidID); 1577 ++BBI; 1578 } 1579 V = BlockAddress::get(Fn, BBI); 1580 } else { 1581 // Otherwise insert a placeholder and remember it so it can be inserted 1582 // when the function is parsed. 1583 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1584 Type::getInt8Ty(Context), 1585 false, GlobalValue::InternalLinkage, 1586 nullptr, ""); 1587 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1588 V = FwdRef; 1589 } 1590 break; 1591 } 1592 } 1593 1594 ValueList.AssignValue(V, NextCstNo); 1595 ++NextCstNo; 1596 } 1597 } 1598 1599 std::error_code BitcodeReader::ParseUseLists() { 1600 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1601 return Error(InvalidRecord); 1602 1603 SmallVector<uint64_t, 64> Record; 1604 1605 // Read all the records. 1606 while (1) { 1607 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1608 1609 switch (Entry.Kind) { 1610 case BitstreamEntry::SubBlock: // Handled for us already. 1611 case BitstreamEntry::Error: 1612 return Error(MalformedBlock); 1613 case BitstreamEntry::EndBlock: 1614 return std::error_code(); 1615 case BitstreamEntry::Record: 1616 // The interesting case. 1617 break; 1618 } 1619 1620 // Read a use list record. 1621 Record.clear(); 1622 switch (Stream.readRecord(Entry.ID, Record)) { 1623 default: // Default behavior: unknown type. 1624 break; 1625 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1626 unsigned RecordLength = Record.size(); 1627 if (RecordLength < 1) 1628 return Error(InvalidRecord); 1629 UseListRecords.push_back(Record); 1630 break; 1631 } 1632 } 1633 } 1634 } 1635 1636 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1637 /// remember where it is and then skip it. This lets us lazily deserialize the 1638 /// functions. 1639 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1640 // Get the function we are talking about. 1641 if (FunctionsWithBodies.empty()) 1642 return Error(InsufficientFunctionProtos); 1643 1644 Function *Fn = FunctionsWithBodies.back(); 1645 FunctionsWithBodies.pop_back(); 1646 1647 // Save the current stream state. 1648 uint64_t CurBit = Stream.GetCurrentBitNo(); 1649 DeferredFunctionInfo[Fn] = CurBit; 1650 1651 // Skip over the function block for now. 1652 if (Stream.SkipBlock()) 1653 return Error(InvalidRecord); 1654 return std::error_code(); 1655 } 1656 1657 std::error_code BitcodeReader::GlobalCleanup() { 1658 // Patch the initializers for globals and aliases up. 1659 ResolveGlobalAndAliasInits(); 1660 if (!GlobalInits.empty() || !AliasInits.empty()) 1661 return Error(MalformedGlobalInitializerSet); 1662 1663 // Look for intrinsic functions which need to be upgraded at some point 1664 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1665 FI != FE; ++FI) { 1666 Function *NewFn; 1667 if (UpgradeIntrinsicFunction(FI, NewFn)) 1668 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1669 } 1670 1671 // Look for global variables which need to be renamed. 1672 for (Module::global_iterator 1673 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1674 GI != GE;) { 1675 GlobalVariable *GV = GI++; 1676 UpgradeGlobalVariable(GV); 1677 } 1678 1679 // Force deallocation of memory for these vectors to favor the client that 1680 // want lazy deserialization. 1681 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1682 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1683 return std::error_code(); 1684 } 1685 1686 std::error_code BitcodeReader::ParseModule(bool Resume) { 1687 if (Resume) 1688 Stream.JumpToBit(NextUnreadBit); 1689 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1690 return Error(InvalidRecord); 1691 1692 SmallVector<uint64_t, 64> Record; 1693 std::vector<std::string> SectionTable; 1694 std::vector<std::string> GCTable; 1695 1696 // Read all the records for this module. 1697 while (1) { 1698 BitstreamEntry Entry = Stream.advance(); 1699 1700 switch (Entry.Kind) { 1701 case BitstreamEntry::Error: 1702 return Error(MalformedBlock); 1703 case BitstreamEntry::EndBlock: 1704 return GlobalCleanup(); 1705 1706 case BitstreamEntry::SubBlock: 1707 switch (Entry.ID) { 1708 default: // Skip unknown content. 1709 if (Stream.SkipBlock()) 1710 return Error(InvalidRecord); 1711 break; 1712 case bitc::BLOCKINFO_BLOCK_ID: 1713 if (Stream.ReadBlockInfoBlock()) 1714 return Error(MalformedBlock); 1715 break; 1716 case bitc::PARAMATTR_BLOCK_ID: 1717 if (std::error_code EC = ParseAttributeBlock()) 1718 return EC; 1719 break; 1720 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1721 if (std::error_code EC = ParseAttributeGroupBlock()) 1722 return EC; 1723 break; 1724 case bitc::TYPE_BLOCK_ID_NEW: 1725 if (std::error_code EC = ParseTypeTable()) 1726 return EC; 1727 break; 1728 case bitc::VALUE_SYMTAB_BLOCK_ID: 1729 if (std::error_code EC = ParseValueSymbolTable()) 1730 return EC; 1731 SeenValueSymbolTable = true; 1732 break; 1733 case bitc::CONSTANTS_BLOCK_ID: 1734 if (std::error_code EC = ParseConstants()) 1735 return EC; 1736 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1737 return EC; 1738 break; 1739 case bitc::METADATA_BLOCK_ID: 1740 if (std::error_code EC = ParseMetadata()) 1741 return EC; 1742 break; 1743 case bitc::FUNCTION_BLOCK_ID: 1744 // If this is the first function body we've seen, reverse the 1745 // FunctionsWithBodies list. 1746 if (!SeenFirstFunctionBody) { 1747 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1748 if (std::error_code EC = GlobalCleanup()) 1749 return EC; 1750 SeenFirstFunctionBody = true; 1751 } 1752 1753 if (std::error_code EC = RememberAndSkipFunctionBody()) 1754 return EC; 1755 // For streaming bitcode, suspend parsing when we reach the function 1756 // bodies. Subsequent materialization calls will resume it when 1757 // necessary. For streaming, the function bodies must be at the end of 1758 // the bitcode. If the bitcode file is old, the symbol table will be 1759 // at the end instead and will not have been seen yet. In this case, 1760 // just finish the parse now. 1761 if (LazyStreamer && SeenValueSymbolTable) { 1762 NextUnreadBit = Stream.GetCurrentBitNo(); 1763 return std::error_code(); 1764 } 1765 break; 1766 case bitc::USELIST_BLOCK_ID: 1767 if (std::error_code EC = ParseUseLists()) 1768 return EC; 1769 break; 1770 } 1771 continue; 1772 1773 case BitstreamEntry::Record: 1774 // The interesting case. 1775 break; 1776 } 1777 1778 1779 // Read a record. 1780 switch (Stream.readRecord(Entry.ID, Record)) { 1781 default: break; // Default behavior, ignore unknown content. 1782 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1783 if (Record.size() < 1) 1784 return Error(InvalidRecord); 1785 // Only version #0 and #1 are supported so far. 1786 unsigned module_version = Record[0]; 1787 switch (module_version) { 1788 default: 1789 return Error(InvalidValue); 1790 case 0: 1791 UseRelativeIDs = false; 1792 break; 1793 case 1: 1794 UseRelativeIDs = true; 1795 break; 1796 } 1797 break; 1798 } 1799 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1800 std::string S; 1801 if (ConvertToString(Record, 0, S)) 1802 return Error(InvalidRecord); 1803 TheModule->setTargetTriple(S); 1804 break; 1805 } 1806 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1807 std::string S; 1808 if (ConvertToString(Record, 0, S)) 1809 return Error(InvalidRecord); 1810 TheModule->setDataLayout(S); 1811 break; 1812 } 1813 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1814 std::string S; 1815 if (ConvertToString(Record, 0, S)) 1816 return Error(InvalidRecord); 1817 TheModule->setModuleInlineAsm(S); 1818 break; 1819 } 1820 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1821 // FIXME: Remove in 4.0. 1822 std::string S; 1823 if (ConvertToString(Record, 0, S)) 1824 return Error(InvalidRecord); 1825 // Ignore value. 1826 break; 1827 } 1828 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1829 std::string S; 1830 if (ConvertToString(Record, 0, S)) 1831 return Error(InvalidRecord); 1832 SectionTable.push_back(S); 1833 break; 1834 } 1835 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1836 std::string S; 1837 if (ConvertToString(Record, 0, S)) 1838 return Error(InvalidRecord); 1839 GCTable.push_back(S); 1840 break; 1841 } 1842 // GLOBALVAR: [pointer type, isconst, initid, 1843 // linkage, alignment, section, visibility, threadlocal, 1844 // unnamed_addr, dllstorageclass] 1845 case bitc::MODULE_CODE_GLOBALVAR: { 1846 if (Record.size() < 6) 1847 return Error(InvalidRecord); 1848 Type *Ty = getTypeByID(Record[0]); 1849 if (!Ty) 1850 return Error(InvalidRecord); 1851 if (!Ty->isPointerTy()) 1852 return Error(InvalidTypeForValue); 1853 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1854 Ty = cast<PointerType>(Ty)->getElementType(); 1855 1856 bool isConstant = Record[1]; 1857 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1858 unsigned Alignment = (1 << Record[4]) >> 1; 1859 std::string Section; 1860 if (Record[5]) { 1861 if (Record[5]-1 >= SectionTable.size()) 1862 return Error(InvalidID); 1863 Section = SectionTable[Record[5]-1]; 1864 } 1865 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1866 // Local linkage must have default visibility. 1867 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1868 // FIXME: Change to an error if non-default in 4.0. 1869 Visibility = GetDecodedVisibility(Record[6]); 1870 1871 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1872 if (Record.size() > 7) 1873 TLM = GetDecodedThreadLocalMode(Record[7]); 1874 1875 bool UnnamedAddr = false; 1876 if (Record.size() > 8) 1877 UnnamedAddr = Record[8]; 1878 1879 bool ExternallyInitialized = false; 1880 if (Record.size() > 9) 1881 ExternallyInitialized = Record[9]; 1882 1883 GlobalVariable *NewGV = 1884 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1885 TLM, AddressSpace, ExternallyInitialized); 1886 NewGV->setAlignment(Alignment); 1887 if (!Section.empty()) 1888 NewGV->setSection(Section); 1889 NewGV->setVisibility(Visibility); 1890 NewGV->setUnnamedAddr(UnnamedAddr); 1891 1892 if (Record.size() > 10) 1893 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1894 else 1895 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1896 1897 ValueList.push_back(NewGV); 1898 1899 // Remember which value to use for the global initializer. 1900 if (unsigned InitID = Record[2]) 1901 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1902 break; 1903 } 1904 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1905 // alignment, section, visibility, gc, unnamed_addr, 1906 // dllstorageclass] 1907 case bitc::MODULE_CODE_FUNCTION: { 1908 if (Record.size() < 8) 1909 return Error(InvalidRecord); 1910 Type *Ty = getTypeByID(Record[0]); 1911 if (!Ty) 1912 return Error(InvalidRecord); 1913 if (!Ty->isPointerTy()) 1914 return Error(InvalidTypeForValue); 1915 FunctionType *FTy = 1916 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1917 if (!FTy) 1918 return Error(InvalidTypeForValue); 1919 1920 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1921 "", TheModule); 1922 1923 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1924 bool isProto = Record[2]; 1925 Func->setLinkage(GetDecodedLinkage(Record[3])); 1926 Func->setAttributes(getAttributes(Record[4])); 1927 1928 Func->setAlignment((1 << Record[5]) >> 1); 1929 if (Record[6]) { 1930 if (Record[6]-1 >= SectionTable.size()) 1931 return Error(InvalidID); 1932 Func->setSection(SectionTable[Record[6]-1]); 1933 } 1934 // Local linkage must have default visibility. 1935 if (!Func->hasLocalLinkage()) 1936 // FIXME: Change to an error if non-default in 4.0. 1937 Func->setVisibility(GetDecodedVisibility(Record[7])); 1938 if (Record.size() > 8 && Record[8]) { 1939 if (Record[8]-1 > GCTable.size()) 1940 return Error(InvalidID); 1941 Func->setGC(GCTable[Record[8]-1].c_str()); 1942 } 1943 bool UnnamedAddr = false; 1944 if (Record.size() > 9) 1945 UnnamedAddr = Record[9]; 1946 Func->setUnnamedAddr(UnnamedAddr); 1947 if (Record.size() > 10 && Record[10] != 0) 1948 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1949 1950 if (Record.size() > 11) 1951 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 1952 else 1953 UpgradeDLLImportExportLinkage(Func, Record[3]); 1954 1955 ValueList.push_back(Func); 1956 1957 // If this is a function with a body, remember the prototype we are 1958 // creating now, so that we can match up the body with them later. 1959 if (!isProto) { 1960 FunctionsWithBodies.push_back(Func); 1961 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1962 } 1963 break; 1964 } 1965 // ALIAS: [alias type, aliasee val#, linkage] 1966 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 1967 case bitc::MODULE_CODE_ALIAS: { 1968 if (Record.size() < 3) 1969 return Error(InvalidRecord); 1970 Type *Ty = getTypeByID(Record[0]); 1971 if (!Ty) 1972 return Error(InvalidRecord); 1973 auto *PTy = dyn_cast<PointerType>(Ty); 1974 if (!PTy) 1975 return Error(InvalidTypeForValue); 1976 1977 auto *NewGA = 1978 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 1979 GetDecodedLinkage(Record[2]), "", TheModule); 1980 // Old bitcode files didn't have visibility field. 1981 // Local linkage must have default visibility. 1982 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 1983 // FIXME: Change to an error if non-default in 4.0. 1984 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1985 if (Record.size() > 4) 1986 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 1987 else 1988 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 1989 if (Record.size() > 5) 1990 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 1991 if (Record.size() > 6) 1992 NewGA->setUnnamedAddr(Record[6]); 1993 ValueList.push_back(NewGA); 1994 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1995 break; 1996 } 1997 /// MODULE_CODE_PURGEVALS: [numvals] 1998 case bitc::MODULE_CODE_PURGEVALS: 1999 // Trim down the value list to the specified size. 2000 if (Record.size() < 1 || Record[0] > ValueList.size()) 2001 return Error(InvalidRecord); 2002 ValueList.shrinkTo(Record[0]); 2003 break; 2004 } 2005 Record.clear(); 2006 } 2007 } 2008 2009 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2010 TheModule = nullptr; 2011 2012 if (std::error_code EC = InitStream()) 2013 return EC; 2014 2015 // Sniff for the signature. 2016 if (Stream.Read(8) != 'B' || 2017 Stream.Read(8) != 'C' || 2018 Stream.Read(4) != 0x0 || 2019 Stream.Read(4) != 0xC || 2020 Stream.Read(4) != 0xE || 2021 Stream.Read(4) != 0xD) 2022 return Error(InvalidBitcodeSignature); 2023 2024 // We expect a number of well-defined blocks, though we don't necessarily 2025 // need to understand them all. 2026 while (1) { 2027 if (Stream.AtEndOfStream()) 2028 return std::error_code(); 2029 2030 BitstreamEntry Entry = 2031 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2032 2033 switch (Entry.Kind) { 2034 case BitstreamEntry::Error: 2035 return Error(MalformedBlock); 2036 case BitstreamEntry::EndBlock: 2037 return std::error_code(); 2038 2039 case BitstreamEntry::SubBlock: 2040 switch (Entry.ID) { 2041 case bitc::BLOCKINFO_BLOCK_ID: 2042 if (Stream.ReadBlockInfoBlock()) 2043 return Error(MalformedBlock); 2044 break; 2045 case bitc::MODULE_BLOCK_ID: 2046 // Reject multiple MODULE_BLOCK's in a single bitstream. 2047 if (TheModule) 2048 return Error(InvalidMultipleBlocks); 2049 TheModule = M; 2050 if (std::error_code EC = ParseModule(false)) 2051 return EC; 2052 if (LazyStreamer) 2053 return std::error_code(); 2054 break; 2055 default: 2056 if (Stream.SkipBlock()) 2057 return Error(InvalidRecord); 2058 break; 2059 } 2060 continue; 2061 case BitstreamEntry::Record: 2062 // There should be no records in the top-level of blocks. 2063 2064 // The ranlib in Xcode 4 will align archive members by appending newlines 2065 // to the end of them. If this file size is a multiple of 4 but not 8, we 2066 // have to read and ignore these final 4 bytes :-( 2067 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2068 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2069 Stream.AtEndOfStream()) 2070 return std::error_code(); 2071 2072 return Error(InvalidRecord); 2073 } 2074 } 2075 } 2076 2077 std::error_code BitcodeReader::ParseModuleTriple(std::string &Triple) { 2078 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2079 return Error(InvalidRecord); 2080 2081 SmallVector<uint64_t, 64> Record; 2082 2083 // Read all the records for this module. 2084 while (1) { 2085 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2086 2087 switch (Entry.Kind) { 2088 case BitstreamEntry::SubBlock: // Handled for us already. 2089 case BitstreamEntry::Error: 2090 return Error(MalformedBlock); 2091 case BitstreamEntry::EndBlock: 2092 return std::error_code(); 2093 case BitstreamEntry::Record: 2094 // The interesting case. 2095 break; 2096 } 2097 2098 // Read a record. 2099 switch (Stream.readRecord(Entry.ID, Record)) { 2100 default: break; // Default behavior, ignore unknown content. 2101 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2102 std::string S; 2103 if (ConvertToString(Record, 0, S)) 2104 return Error(InvalidRecord); 2105 Triple = S; 2106 break; 2107 } 2108 } 2109 Record.clear(); 2110 } 2111 } 2112 2113 std::error_code BitcodeReader::ParseTriple(std::string &Triple) { 2114 if (std::error_code EC = InitStream()) 2115 return EC; 2116 2117 // Sniff for the signature. 2118 if (Stream.Read(8) != 'B' || 2119 Stream.Read(8) != 'C' || 2120 Stream.Read(4) != 0x0 || 2121 Stream.Read(4) != 0xC || 2122 Stream.Read(4) != 0xE || 2123 Stream.Read(4) != 0xD) 2124 return Error(InvalidBitcodeSignature); 2125 2126 // We expect a number of well-defined blocks, though we don't necessarily 2127 // need to understand them all. 2128 while (1) { 2129 BitstreamEntry Entry = Stream.advance(); 2130 2131 switch (Entry.Kind) { 2132 case BitstreamEntry::Error: 2133 return Error(MalformedBlock); 2134 case BitstreamEntry::EndBlock: 2135 return std::error_code(); 2136 2137 case BitstreamEntry::SubBlock: 2138 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2139 return ParseModuleTriple(Triple); 2140 2141 // Ignore other sub-blocks. 2142 if (Stream.SkipBlock()) 2143 return Error(MalformedBlock); 2144 continue; 2145 2146 case BitstreamEntry::Record: 2147 Stream.skipRecord(Entry.ID); 2148 continue; 2149 } 2150 } 2151 } 2152 2153 /// ParseMetadataAttachment - Parse metadata attachments. 2154 std::error_code BitcodeReader::ParseMetadataAttachment() { 2155 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2156 return Error(InvalidRecord); 2157 2158 SmallVector<uint64_t, 64> Record; 2159 while (1) { 2160 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2161 2162 switch (Entry.Kind) { 2163 case BitstreamEntry::SubBlock: // Handled for us already. 2164 case BitstreamEntry::Error: 2165 return Error(MalformedBlock); 2166 case BitstreamEntry::EndBlock: 2167 return std::error_code(); 2168 case BitstreamEntry::Record: 2169 // The interesting case. 2170 break; 2171 } 2172 2173 // Read a metadata attachment record. 2174 Record.clear(); 2175 switch (Stream.readRecord(Entry.ID, Record)) { 2176 default: // Default behavior: ignore. 2177 break; 2178 case bitc::METADATA_ATTACHMENT: { 2179 unsigned RecordLength = Record.size(); 2180 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2181 return Error(InvalidRecord); 2182 Instruction *Inst = InstructionList[Record[0]]; 2183 for (unsigned i = 1; i != RecordLength; i = i+2) { 2184 unsigned Kind = Record[i]; 2185 DenseMap<unsigned, unsigned>::iterator I = 2186 MDKindMap.find(Kind); 2187 if (I == MDKindMap.end()) 2188 return Error(InvalidID); 2189 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2190 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2191 if (I->second == LLVMContext::MD_tbaa) 2192 InstsWithTBAATag.push_back(Inst); 2193 } 2194 break; 2195 } 2196 } 2197 } 2198 } 2199 2200 /// ParseFunctionBody - Lazily parse the specified function body block. 2201 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2202 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2203 return Error(InvalidRecord); 2204 2205 InstructionList.clear(); 2206 unsigned ModuleValueListSize = ValueList.size(); 2207 unsigned ModuleMDValueListSize = MDValueList.size(); 2208 2209 // Add all the function arguments to the value table. 2210 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2211 ValueList.push_back(I); 2212 2213 unsigned NextValueNo = ValueList.size(); 2214 BasicBlock *CurBB = nullptr; 2215 unsigned CurBBNo = 0; 2216 2217 DebugLoc LastLoc; 2218 2219 // Read all the records. 2220 SmallVector<uint64_t, 64> Record; 2221 while (1) { 2222 BitstreamEntry Entry = Stream.advance(); 2223 2224 switch (Entry.Kind) { 2225 case BitstreamEntry::Error: 2226 return Error(MalformedBlock); 2227 case BitstreamEntry::EndBlock: 2228 goto OutOfRecordLoop; 2229 2230 case BitstreamEntry::SubBlock: 2231 switch (Entry.ID) { 2232 default: // Skip unknown content. 2233 if (Stream.SkipBlock()) 2234 return Error(InvalidRecord); 2235 break; 2236 case bitc::CONSTANTS_BLOCK_ID: 2237 if (std::error_code EC = ParseConstants()) 2238 return EC; 2239 NextValueNo = ValueList.size(); 2240 break; 2241 case bitc::VALUE_SYMTAB_BLOCK_ID: 2242 if (std::error_code EC = ParseValueSymbolTable()) 2243 return EC; 2244 break; 2245 case bitc::METADATA_ATTACHMENT_ID: 2246 if (std::error_code EC = ParseMetadataAttachment()) 2247 return EC; 2248 break; 2249 case bitc::METADATA_BLOCK_ID: 2250 if (std::error_code EC = ParseMetadata()) 2251 return EC; 2252 break; 2253 } 2254 continue; 2255 2256 case BitstreamEntry::Record: 2257 // The interesting case. 2258 break; 2259 } 2260 2261 // Read a record. 2262 Record.clear(); 2263 Instruction *I = nullptr; 2264 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2265 switch (BitCode) { 2266 default: // Default behavior: reject 2267 return Error(InvalidValue); 2268 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2269 if (Record.size() < 1 || Record[0] == 0) 2270 return Error(InvalidRecord); 2271 // Create all the basic blocks for the function. 2272 FunctionBBs.resize(Record[0]); 2273 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2274 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2275 CurBB = FunctionBBs[0]; 2276 continue; 2277 2278 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2279 // This record indicates that the last instruction is at the same 2280 // location as the previous instruction with a location. 2281 I = nullptr; 2282 2283 // Get the last instruction emitted. 2284 if (CurBB && !CurBB->empty()) 2285 I = &CurBB->back(); 2286 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2287 !FunctionBBs[CurBBNo-1]->empty()) 2288 I = &FunctionBBs[CurBBNo-1]->back(); 2289 2290 if (!I) 2291 return Error(InvalidRecord); 2292 I->setDebugLoc(LastLoc); 2293 I = nullptr; 2294 continue; 2295 2296 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2297 I = nullptr; // Get the last instruction emitted. 2298 if (CurBB && !CurBB->empty()) 2299 I = &CurBB->back(); 2300 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2301 !FunctionBBs[CurBBNo-1]->empty()) 2302 I = &FunctionBBs[CurBBNo-1]->back(); 2303 if (!I || Record.size() < 4) 2304 return Error(InvalidRecord); 2305 2306 unsigned Line = Record[0], Col = Record[1]; 2307 unsigned ScopeID = Record[2], IAID = Record[3]; 2308 2309 MDNode *Scope = nullptr, *IA = nullptr; 2310 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2311 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2312 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2313 I->setDebugLoc(LastLoc); 2314 I = nullptr; 2315 continue; 2316 } 2317 2318 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2319 unsigned OpNum = 0; 2320 Value *LHS, *RHS; 2321 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2322 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2323 OpNum+1 > Record.size()) 2324 return Error(InvalidRecord); 2325 2326 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2327 if (Opc == -1) 2328 return Error(InvalidRecord); 2329 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2330 InstructionList.push_back(I); 2331 if (OpNum < Record.size()) { 2332 if (Opc == Instruction::Add || 2333 Opc == Instruction::Sub || 2334 Opc == Instruction::Mul || 2335 Opc == Instruction::Shl) { 2336 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2337 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2338 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2339 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2340 } else if (Opc == Instruction::SDiv || 2341 Opc == Instruction::UDiv || 2342 Opc == Instruction::LShr || 2343 Opc == Instruction::AShr) { 2344 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2345 cast<BinaryOperator>(I)->setIsExact(true); 2346 } else if (isa<FPMathOperator>(I)) { 2347 FastMathFlags FMF; 2348 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2349 FMF.setUnsafeAlgebra(); 2350 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2351 FMF.setNoNaNs(); 2352 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2353 FMF.setNoInfs(); 2354 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2355 FMF.setNoSignedZeros(); 2356 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2357 FMF.setAllowReciprocal(); 2358 if (FMF.any()) 2359 I->setFastMathFlags(FMF); 2360 } 2361 2362 } 2363 break; 2364 } 2365 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2366 unsigned OpNum = 0; 2367 Value *Op; 2368 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2369 OpNum+2 != Record.size()) 2370 return Error(InvalidRecord); 2371 2372 Type *ResTy = getTypeByID(Record[OpNum]); 2373 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2374 if (Opc == -1 || !ResTy) 2375 return Error(InvalidRecord); 2376 Instruction *Temp = nullptr; 2377 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2378 if (Temp) { 2379 InstructionList.push_back(Temp); 2380 CurBB->getInstList().push_back(Temp); 2381 } 2382 } else { 2383 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2384 } 2385 InstructionList.push_back(I); 2386 break; 2387 } 2388 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2389 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2390 unsigned OpNum = 0; 2391 Value *BasePtr; 2392 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2393 return Error(InvalidRecord); 2394 2395 SmallVector<Value*, 16> GEPIdx; 2396 while (OpNum != Record.size()) { 2397 Value *Op; 2398 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2399 return Error(InvalidRecord); 2400 GEPIdx.push_back(Op); 2401 } 2402 2403 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2404 InstructionList.push_back(I); 2405 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2406 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2407 break; 2408 } 2409 2410 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2411 // EXTRACTVAL: [opty, opval, n x indices] 2412 unsigned OpNum = 0; 2413 Value *Agg; 2414 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2415 return Error(InvalidRecord); 2416 2417 SmallVector<unsigned, 4> EXTRACTVALIdx; 2418 for (unsigned RecSize = Record.size(); 2419 OpNum != RecSize; ++OpNum) { 2420 uint64_t Index = Record[OpNum]; 2421 if ((unsigned)Index != Index) 2422 return Error(InvalidValue); 2423 EXTRACTVALIdx.push_back((unsigned)Index); 2424 } 2425 2426 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2427 InstructionList.push_back(I); 2428 break; 2429 } 2430 2431 case bitc::FUNC_CODE_INST_INSERTVAL: { 2432 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2433 unsigned OpNum = 0; 2434 Value *Agg; 2435 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2436 return Error(InvalidRecord); 2437 Value *Val; 2438 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2439 return Error(InvalidRecord); 2440 2441 SmallVector<unsigned, 4> INSERTVALIdx; 2442 for (unsigned RecSize = Record.size(); 2443 OpNum != RecSize; ++OpNum) { 2444 uint64_t Index = Record[OpNum]; 2445 if ((unsigned)Index != Index) 2446 return Error(InvalidValue); 2447 INSERTVALIdx.push_back((unsigned)Index); 2448 } 2449 2450 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2451 InstructionList.push_back(I); 2452 break; 2453 } 2454 2455 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2456 // obsolete form of select 2457 // handles select i1 ... in old bitcode 2458 unsigned OpNum = 0; 2459 Value *TrueVal, *FalseVal, *Cond; 2460 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2461 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2462 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2463 return Error(InvalidRecord); 2464 2465 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2466 InstructionList.push_back(I); 2467 break; 2468 } 2469 2470 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2471 // new form of select 2472 // handles select i1 or select [N x i1] 2473 unsigned OpNum = 0; 2474 Value *TrueVal, *FalseVal, *Cond; 2475 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2476 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2477 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2478 return Error(InvalidRecord); 2479 2480 // select condition can be either i1 or [N x i1] 2481 if (VectorType* vector_type = 2482 dyn_cast<VectorType>(Cond->getType())) { 2483 // expect <n x i1> 2484 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2485 return Error(InvalidTypeForValue); 2486 } else { 2487 // expect i1 2488 if (Cond->getType() != Type::getInt1Ty(Context)) 2489 return Error(InvalidTypeForValue); 2490 } 2491 2492 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2493 InstructionList.push_back(I); 2494 break; 2495 } 2496 2497 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2498 unsigned OpNum = 0; 2499 Value *Vec, *Idx; 2500 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2501 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2502 return Error(InvalidRecord); 2503 I = ExtractElementInst::Create(Vec, Idx); 2504 InstructionList.push_back(I); 2505 break; 2506 } 2507 2508 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2509 unsigned OpNum = 0; 2510 Value *Vec, *Elt, *Idx; 2511 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2512 popValue(Record, OpNum, NextValueNo, 2513 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2514 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2515 return Error(InvalidRecord); 2516 I = InsertElementInst::Create(Vec, Elt, Idx); 2517 InstructionList.push_back(I); 2518 break; 2519 } 2520 2521 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2522 unsigned OpNum = 0; 2523 Value *Vec1, *Vec2, *Mask; 2524 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2525 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2526 return Error(InvalidRecord); 2527 2528 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2529 return Error(InvalidRecord); 2530 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2531 InstructionList.push_back(I); 2532 break; 2533 } 2534 2535 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2536 // Old form of ICmp/FCmp returning bool 2537 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2538 // both legal on vectors but had different behaviour. 2539 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2540 // FCmp/ICmp returning bool or vector of bool 2541 2542 unsigned OpNum = 0; 2543 Value *LHS, *RHS; 2544 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2545 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2546 OpNum+1 != Record.size()) 2547 return Error(InvalidRecord); 2548 2549 if (LHS->getType()->isFPOrFPVectorTy()) 2550 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2551 else 2552 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2553 InstructionList.push_back(I); 2554 break; 2555 } 2556 2557 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2558 { 2559 unsigned Size = Record.size(); 2560 if (Size == 0) { 2561 I = ReturnInst::Create(Context); 2562 InstructionList.push_back(I); 2563 break; 2564 } 2565 2566 unsigned OpNum = 0; 2567 Value *Op = nullptr; 2568 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2569 return Error(InvalidRecord); 2570 if (OpNum != Record.size()) 2571 return Error(InvalidRecord); 2572 2573 I = ReturnInst::Create(Context, Op); 2574 InstructionList.push_back(I); 2575 break; 2576 } 2577 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2578 if (Record.size() != 1 && Record.size() != 3) 2579 return Error(InvalidRecord); 2580 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2581 if (!TrueDest) 2582 return Error(InvalidRecord); 2583 2584 if (Record.size() == 1) { 2585 I = BranchInst::Create(TrueDest); 2586 InstructionList.push_back(I); 2587 } 2588 else { 2589 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2590 Value *Cond = getValue(Record, 2, NextValueNo, 2591 Type::getInt1Ty(Context)); 2592 if (!FalseDest || !Cond) 2593 return Error(InvalidRecord); 2594 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2595 InstructionList.push_back(I); 2596 } 2597 break; 2598 } 2599 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2600 // Check magic 2601 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2602 // "New" SwitchInst format with case ranges. The changes to write this 2603 // format were reverted but we still recognize bitcode that uses it. 2604 // Hopefully someday we will have support for case ranges and can use 2605 // this format again. 2606 2607 Type *OpTy = getTypeByID(Record[1]); 2608 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2609 2610 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2611 BasicBlock *Default = getBasicBlock(Record[3]); 2612 if (!OpTy || !Cond || !Default) 2613 return Error(InvalidRecord); 2614 2615 unsigned NumCases = Record[4]; 2616 2617 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2618 InstructionList.push_back(SI); 2619 2620 unsigned CurIdx = 5; 2621 for (unsigned i = 0; i != NumCases; ++i) { 2622 SmallVector<ConstantInt*, 1> CaseVals; 2623 unsigned NumItems = Record[CurIdx++]; 2624 for (unsigned ci = 0; ci != NumItems; ++ci) { 2625 bool isSingleNumber = Record[CurIdx++]; 2626 2627 APInt Low; 2628 unsigned ActiveWords = 1; 2629 if (ValueBitWidth > 64) 2630 ActiveWords = Record[CurIdx++]; 2631 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2632 ValueBitWidth); 2633 CurIdx += ActiveWords; 2634 2635 if (!isSingleNumber) { 2636 ActiveWords = 1; 2637 if (ValueBitWidth > 64) 2638 ActiveWords = Record[CurIdx++]; 2639 APInt High = 2640 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2641 ValueBitWidth); 2642 CurIdx += ActiveWords; 2643 2644 // FIXME: It is not clear whether values in the range should be 2645 // compared as signed or unsigned values. The partially 2646 // implemented changes that used this format in the past used 2647 // unsigned comparisons. 2648 for ( ; Low.ule(High); ++Low) 2649 CaseVals.push_back(ConstantInt::get(Context, Low)); 2650 } else 2651 CaseVals.push_back(ConstantInt::get(Context, Low)); 2652 } 2653 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2654 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2655 cve = CaseVals.end(); cvi != cve; ++cvi) 2656 SI->addCase(*cvi, DestBB); 2657 } 2658 I = SI; 2659 break; 2660 } 2661 2662 // Old SwitchInst format without case ranges. 2663 2664 if (Record.size() < 3 || (Record.size() & 1) == 0) 2665 return Error(InvalidRecord); 2666 Type *OpTy = getTypeByID(Record[0]); 2667 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2668 BasicBlock *Default = getBasicBlock(Record[2]); 2669 if (!OpTy || !Cond || !Default) 2670 return Error(InvalidRecord); 2671 unsigned NumCases = (Record.size()-3)/2; 2672 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2673 InstructionList.push_back(SI); 2674 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2675 ConstantInt *CaseVal = 2676 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2677 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2678 if (!CaseVal || !DestBB) { 2679 delete SI; 2680 return Error(InvalidRecord); 2681 } 2682 SI->addCase(CaseVal, DestBB); 2683 } 2684 I = SI; 2685 break; 2686 } 2687 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2688 if (Record.size() < 2) 2689 return Error(InvalidRecord); 2690 Type *OpTy = getTypeByID(Record[0]); 2691 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2692 if (!OpTy || !Address) 2693 return Error(InvalidRecord); 2694 unsigned NumDests = Record.size()-2; 2695 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2696 InstructionList.push_back(IBI); 2697 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2698 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2699 IBI->addDestination(DestBB); 2700 } else { 2701 delete IBI; 2702 return Error(InvalidRecord); 2703 } 2704 } 2705 I = IBI; 2706 break; 2707 } 2708 2709 case bitc::FUNC_CODE_INST_INVOKE: { 2710 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2711 if (Record.size() < 4) 2712 return Error(InvalidRecord); 2713 AttributeSet PAL = getAttributes(Record[0]); 2714 unsigned CCInfo = Record[1]; 2715 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2716 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2717 2718 unsigned OpNum = 4; 2719 Value *Callee; 2720 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2721 return Error(InvalidRecord); 2722 2723 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2724 FunctionType *FTy = !CalleeTy ? nullptr : 2725 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2726 2727 // Check that the right number of fixed parameters are here. 2728 if (!FTy || !NormalBB || !UnwindBB || 2729 Record.size() < OpNum+FTy->getNumParams()) 2730 return Error(InvalidRecord); 2731 2732 SmallVector<Value*, 16> Ops; 2733 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2734 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2735 FTy->getParamType(i))); 2736 if (!Ops.back()) 2737 return Error(InvalidRecord); 2738 } 2739 2740 if (!FTy->isVarArg()) { 2741 if (Record.size() != OpNum) 2742 return Error(InvalidRecord); 2743 } else { 2744 // Read type/value pairs for varargs params. 2745 while (OpNum != Record.size()) { 2746 Value *Op; 2747 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2748 return Error(InvalidRecord); 2749 Ops.push_back(Op); 2750 } 2751 } 2752 2753 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2754 InstructionList.push_back(I); 2755 cast<InvokeInst>(I)->setCallingConv( 2756 static_cast<CallingConv::ID>(CCInfo)); 2757 cast<InvokeInst>(I)->setAttributes(PAL); 2758 break; 2759 } 2760 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2761 unsigned Idx = 0; 2762 Value *Val = nullptr; 2763 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2764 return Error(InvalidRecord); 2765 I = ResumeInst::Create(Val); 2766 InstructionList.push_back(I); 2767 break; 2768 } 2769 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2770 I = new UnreachableInst(Context); 2771 InstructionList.push_back(I); 2772 break; 2773 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2774 if (Record.size() < 1 || ((Record.size()-1)&1)) 2775 return Error(InvalidRecord); 2776 Type *Ty = getTypeByID(Record[0]); 2777 if (!Ty) 2778 return Error(InvalidRecord); 2779 2780 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2781 InstructionList.push_back(PN); 2782 2783 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2784 Value *V; 2785 // With the new function encoding, it is possible that operands have 2786 // negative IDs (for forward references). Use a signed VBR 2787 // representation to keep the encoding small. 2788 if (UseRelativeIDs) 2789 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2790 else 2791 V = getValue(Record, 1+i, NextValueNo, Ty); 2792 BasicBlock *BB = getBasicBlock(Record[2+i]); 2793 if (!V || !BB) 2794 return Error(InvalidRecord); 2795 PN->addIncoming(V, BB); 2796 } 2797 I = PN; 2798 break; 2799 } 2800 2801 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2802 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2803 unsigned Idx = 0; 2804 if (Record.size() < 4) 2805 return Error(InvalidRecord); 2806 Type *Ty = getTypeByID(Record[Idx++]); 2807 if (!Ty) 2808 return Error(InvalidRecord); 2809 Value *PersFn = nullptr; 2810 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2811 return Error(InvalidRecord); 2812 2813 bool IsCleanup = !!Record[Idx++]; 2814 unsigned NumClauses = Record[Idx++]; 2815 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2816 LP->setCleanup(IsCleanup); 2817 for (unsigned J = 0; J != NumClauses; ++J) { 2818 LandingPadInst::ClauseType CT = 2819 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2820 Value *Val; 2821 2822 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2823 delete LP; 2824 return Error(InvalidRecord); 2825 } 2826 2827 assert((CT != LandingPadInst::Catch || 2828 !isa<ArrayType>(Val->getType())) && 2829 "Catch clause has a invalid type!"); 2830 assert((CT != LandingPadInst::Filter || 2831 isa<ArrayType>(Val->getType())) && 2832 "Filter clause has invalid type!"); 2833 LP->addClause(cast<Constant>(Val)); 2834 } 2835 2836 I = LP; 2837 InstructionList.push_back(I); 2838 break; 2839 } 2840 2841 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2842 if (Record.size() != 4) 2843 return Error(InvalidRecord); 2844 PointerType *Ty = 2845 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2846 Type *OpTy = getTypeByID(Record[1]); 2847 Value *Size = getFnValueByID(Record[2], OpTy); 2848 unsigned Align = Record[3]; 2849 if (!Ty || !Size) 2850 return Error(InvalidRecord); 2851 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2852 InstructionList.push_back(I); 2853 break; 2854 } 2855 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2856 unsigned OpNum = 0; 2857 Value *Op; 2858 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2859 OpNum+2 != Record.size()) 2860 return Error(InvalidRecord); 2861 2862 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2863 InstructionList.push_back(I); 2864 break; 2865 } 2866 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2867 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2868 unsigned OpNum = 0; 2869 Value *Op; 2870 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2871 OpNum+4 != Record.size()) 2872 return Error(InvalidRecord); 2873 2874 2875 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2876 if (Ordering == NotAtomic || Ordering == Release || 2877 Ordering == AcquireRelease) 2878 return Error(InvalidRecord); 2879 if (Ordering != NotAtomic && Record[OpNum] == 0) 2880 return Error(InvalidRecord); 2881 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2882 2883 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2884 Ordering, SynchScope); 2885 InstructionList.push_back(I); 2886 break; 2887 } 2888 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2889 unsigned OpNum = 0; 2890 Value *Val, *Ptr; 2891 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2892 popValue(Record, OpNum, NextValueNo, 2893 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2894 OpNum+2 != Record.size()) 2895 return Error(InvalidRecord); 2896 2897 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2898 InstructionList.push_back(I); 2899 break; 2900 } 2901 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2902 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2903 unsigned OpNum = 0; 2904 Value *Val, *Ptr; 2905 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2906 popValue(Record, OpNum, NextValueNo, 2907 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2908 OpNum+4 != Record.size()) 2909 return Error(InvalidRecord); 2910 2911 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2912 if (Ordering == NotAtomic || Ordering == Acquire || 2913 Ordering == AcquireRelease) 2914 return Error(InvalidRecord); 2915 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2916 if (Ordering != NotAtomic && Record[OpNum] == 0) 2917 return Error(InvalidRecord); 2918 2919 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2920 Ordering, SynchScope); 2921 InstructionList.push_back(I); 2922 break; 2923 } 2924 case bitc::FUNC_CODE_INST_CMPXCHG: { 2925 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 2926 // failureordering] 2927 unsigned OpNum = 0; 2928 Value *Ptr, *Cmp, *New; 2929 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2930 popValue(Record, OpNum, NextValueNo, 2931 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2932 popValue(Record, OpNum, NextValueNo, 2933 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2934 (OpNum + 3 != Record.size() && OpNum + 4 != Record.size())) 2935 return Error(InvalidRecord); 2936 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 2937 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 2938 return Error(InvalidRecord); 2939 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2940 2941 AtomicOrdering FailureOrdering; 2942 if (Record.size() < 7) 2943 FailureOrdering = 2944 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 2945 else 2946 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 2947 2948 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 2949 SynchScope); 2950 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2951 InstructionList.push_back(I); 2952 break; 2953 } 2954 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2955 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2956 unsigned OpNum = 0; 2957 Value *Ptr, *Val; 2958 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2959 popValue(Record, OpNum, NextValueNo, 2960 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2961 OpNum+4 != Record.size()) 2962 return Error(InvalidRecord); 2963 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2964 if (Operation < AtomicRMWInst::FIRST_BINOP || 2965 Operation > AtomicRMWInst::LAST_BINOP) 2966 return Error(InvalidRecord); 2967 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2968 if (Ordering == NotAtomic || Ordering == Unordered) 2969 return Error(InvalidRecord); 2970 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2971 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2972 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2973 InstructionList.push_back(I); 2974 break; 2975 } 2976 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2977 if (2 != Record.size()) 2978 return Error(InvalidRecord); 2979 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2980 if (Ordering == NotAtomic || Ordering == Unordered || 2981 Ordering == Monotonic) 2982 return Error(InvalidRecord); 2983 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2984 I = new FenceInst(Context, Ordering, SynchScope); 2985 InstructionList.push_back(I); 2986 break; 2987 } 2988 case bitc::FUNC_CODE_INST_CALL: { 2989 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2990 if (Record.size() < 3) 2991 return Error(InvalidRecord); 2992 2993 AttributeSet PAL = getAttributes(Record[0]); 2994 unsigned CCInfo = Record[1]; 2995 2996 unsigned OpNum = 2; 2997 Value *Callee; 2998 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2999 return Error(InvalidRecord); 3000 3001 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3002 FunctionType *FTy = nullptr; 3003 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3004 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3005 return Error(InvalidRecord); 3006 3007 SmallVector<Value*, 16> Args; 3008 // Read the fixed params. 3009 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3010 if (FTy->getParamType(i)->isLabelTy()) 3011 Args.push_back(getBasicBlock(Record[OpNum])); 3012 else 3013 Args.push_back(getValue(Record, OpNum, NextValueNo, 3014 FTy->getParamType(i))); 3015 if (!Args.back()) 3016 return Error(InvalidRecord); 3017 } 3018 3019 // Read type/value pairs for varargs params. 3020 if (!FTy->isVarArg()) { 3021 if (OpNum != Record.size()) 3022 return Error(InvalidRecord); 3023 } else { 3024 while (OpNum != Record.size()) { 3025 Value *Op; 3026 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3027 return Error(InvalidRecord); 3028 Args.push_back(Op); 3029 } 3030 } 3031 3032 I = CallInst::Create(Callee, Args); 3033 InstructionList.push_back(I); 3034 cast<CallInst>(I)->setCallingConv( 3035 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3036 CallInst::TailCallKind TCK = CallInst::TCK_None; 3037 if (CCInfo & 1) 3038 TCK = CallInst::TCK_Tail; 3039 if (CCInfo & (1 << 14)) 3040 TCK = CallInst::TCK_MustTail; 3041 cast<CallInst>(I)->setTailCallKind(TCK); 3042 cast<CallInst>(I)->setAttributes(PAL); 3043 break; 3044 } 3045 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3046 if (Record.size() < 3) 3047 return Error(InvalidRecord); 3048 Type *OpTy = getTypeByID(Record[0]); 3049 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3050 Type *ResTy = getTypeByID(Record[2]); 3051 if (!OpTy || !Op || !ResTy) 3052 return Error(InvalidRecord); 3053 I = new VAArgInst(Op, ResTy); 3054 InstructionList.push_back(I); 3055 break; 3056 } 3057 } 3058 3059 // Add instruction to end of current BB. If there is no current BB, reject 3060 // this file. 3061 if (!CurBB) { 3062 delete I; 3063 return Error(InvalidInstructionWithNoBB); 3064 } 3065 CurBB->getInstList().push_back(I); 3066 3067 // If this was a terminator instruction, move to the next block. 3068 if (isa<TerminatorInst>(I)) { 3069 ++CurBBNo; 3070 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3071 } 3072 3073 // Non-void values get registered in the value table for future use. 3074 if (I && !I->getType()->isVoidTy()) 3075 ValueList.AssignValue(I, NextValueNo++); 3076 } 3077 3078 OutOfRecordLoop: 3079 3080 // Check the function list for unresolved values. 3081 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3082 if (!A->getParent()) { 3083 // We found at least one unresolved value. Nuke them all to avoid leaks. 3084 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3085 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3086 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3087 delete A; 3088 } 3089 } 3090 return Error(NeverResolvedValueFoundInFunction); 3091 } 3092 } 3093 3094 // FIXME: Check for unresolved forward-declared metadata references 3095 // and clean up leaks. 3096 3097 // See if anything took the address of blocks in this function. If so, 3098 // resolve them now. 3099 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 3100 BlockAddrFwdRefs.find(F); 3101 if (BAFRI != BlockAddrFwdRefs.end()) { 3102 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 3103 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3104 unsigned BlockIdx = RefList[i].first; 3105 if (BlockIdx >= FunctionBBs.size()) 3106 return Error(InvalidID); 3107 3108 GlobalVariable *FwdRef = RefList[i].second; 3109 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3110 FwdRef->eraseFromParent(); 3111 } 3112 3113 BlockAddrFwdRefs.erase(BAFRI); 3114 } 3115 3116 // Trim the value list down to the size it was before we parsed this function. 3117 ValueList.shrinkTo(ModuleValueListSize); 3118 MDValueList.shrinkTo(ModuleMDValueListSize); 3119 std::vector<BasicBlock*>().swap(FunctionBBs); 3120 return std::error_code(); 3121 } 3122 3123 /// Find the function body in the bitcode stream 3124 std::error_code BitcodeReader::FindFunctionInStream( 3125 Function *F, 3126 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3127 while (DeferredFunctionInfoIterator->second == 0) { 3128 if (Stream.AtEndOfStream()) 3129 return Error(CouldNotFindFunctionInStream); 3130 // ParseModule will parse the next body in the stream and set its 3131 // position in the DeferredFunctionInfo map. 3132 if (std::error_code EC = ParseModule(true)) 3133 return EC; 3134 } 3135 return std::error_code(); 3136 } 3137 3138 //===----------------------------------------------------------------------===// 3139 // GVMaterializer implementation 3140 //===----------------------------------------------------------------------===// 3141 3142 3143 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3144 if (const Function *F = dyn_cast<Function>(GV)) { 3145 return F->isDeclaration() && 3146 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3147 } 3148 return false; 3149 } 3150 3151 std::error_code BitcodeReader::Materialize(GlobalValue *GV) { 3152 Function *F = dyn_cast<Function>(GV); 3153 // If it's not a function or is already material, ignore the request. 3154 if (!F || !F->isMaterializable()) 3155 return std::error_code(); 3156 3157 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3158 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3159 // If its position is recorded as 0, its body is somewhere in the stream 3160 // but we haven't seen it yet. 3161 if (DFII->second == 0 && LazyStreamer) 3162 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3163 return EC; 3164 3165 // Move the bit stream to the saved position of the deferred function body. 3166 Stream.JumpToBit(DFII->second); 3167 3168 if (std::error_code EC = ParseFunctionBody(F)) 3169 return EC; 3170 3171 // Upgrade any old intrinsic calls in the function. 3172 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3173 E = UpgradedIntrinsics.end(); I != E; ++I) { 3174 if (I->first != I->second) { 3175 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3176 UI != UE;) { 3177 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3178 UpgradeIntrinsicCall(CI, I->second); 3179 } 3180 } 3181 } 3182 3183 return std::error_code(); 3184 } 3185 3186 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3187 const Function *F = dyn_cast<Function>(GV); 3188 if (!F || F->isDeclaration()) 3189 return false; 3190 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3191 } 3192 3193 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3194 Function *F = dyn_cast<Function>(GV); 3195 // If this function isn't dematerializable, this is a noop. 3196 if (!F || !isDematerializable(F)) 3197 return; 3198 3199 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3200 3201 // Just forget the function body, we can remat it later. 3202 F->deleteBody(); 3203 } 3204 3205 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3206 assert(M == TheModule && 3207 "Can only Materialize the Module this BitcodeReader is attached to."); 3208 // Iterate over the module, deserializing any functions that are still on 3209 // disk. 3210 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3211 F != E; ++F) { 3212 if (F->isMaterializable()) { 3213 if (std::error_code EC = Materialize(F)) 3214 return EC; 3215 } 3216 } 3217 // At this point, if there are any function bodies, the current bit is 3218 // pointing to the END_BLOCK record after them. Now make sure the rest 3219 // of the bits in the module have been read. 3220 if (NextUnreadBit) 3221 ParseModule(true); 3222 3223 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3224 // delete the old functions to clean up. We can't do this unless the entire 3225 // module is materialized because there could always be another function body 3226 // with calls to the old function. 3227 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3228 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3229 if (I->first != I->second) { 3230 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3231 UI != UE;) { 3232 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3233 UpgradeIntrinsicCall(CI, I->second); 3234 } 3235 if (!I->first->use_empty()) 3236 I->first->replaceAllUsesWith(I->second); 3237 I->first->eraseFromParent(); 3238 } 3239 } 3240 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3241 3242 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3243 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3244 3245 UpgradeDebugInfo(*M); 3246 return std::error_code(); 3247 } 3248 3249 std::error_code BitcodeReader::InitStream() { 3250 if (LazyStreamer) 3251 return InitLazyStream(); 3252 return InitStreamFromBuffer(); 3253 } 3254 3255 std::error_code BitcodeReader::InitStreamFromBuffer() { 3256 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3257 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3258 3259 if (Buffer->getBufferSize() & 3) { 3260 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3261 return Error(InvalidBitcodeSignature); 3262 else 3263 return Error(BitcodeStreamInvalidSize); 3264 } 3265 3266 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3267 // The magic number is 0x0B17C0DE stored in little endian. 3268 if (isBitcodeWrapper(BufPtr, BufEnd)) 3269 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3270 return Error(InvalidBitcodeWrapperHeader); 3271 3272 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3273 Stream.init(*StreamFile); 3274 3275 return std::error_code(); 3276 } 3277 3278 std::error_code BitcodeReader::InitLazyStream() { 3279 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3280 // see it. 3281 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3282 StreamFile.reset(new BitstreamReader(Bytes)); 3283 Stream.init(*StreamFile); 3284 3285 unsigned char buf[16]; 3286 if (Bytes->readBytes(0, 16, buf) == -1) 3287 return Error(BitcodeStreamInvalidSize); 3288 3289 if (!isBitcode(buf, buf + 16)) 3290 return Error(InvalidBitcodeSignature); 3291 3292 if (isBitcodeWrapper(buf, buf + 4)) { 3293 const unsigned char *bitcodeStart = buf; 3294 const unsigned char *bitcodeEnd = buf + 16; 3295 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3296 Bytes->dropLeadingBytes(bitcodeStart - buf); 3297 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3298 } 3299 return std::error_code(); 3300 } 3301 3302 namespace { 3303 class BitcodeErrorCategoryType : public std::error_category { 3304 const char *name() const LLVM_NOEXCEPT override { 3305 return "llvm.bitcode"; 3306 } 3307 std::string message(int IE) const override { 3308 BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); 3309 switch (E) { 3310 case BitcodeReader::BitcodeStreamInvalidSize: 3311 return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; 3312 case BitcodeReader::ConflictingMETADATA_KINDRecords: 3313 return "Conflicting METADATA_KIND records"; 3314 case BitcodeReader::CouldNotFindFunctionInStream: 3315 return "Could not find function in stream"; 3316 case BitcodeReader::ExpectedConstant: 3317 return "Expected a constant"; 3318 case BitcodeReader::InsufficientFunctionProtos: 3319 return "Insufficient function protos"; 3320 case BitcodeReader::InvalidBitcodeSignature: 3321 return "Invalid bitcode signature"; 3322 case BitcodeReader::InvalidBitcodeWrapperHeader: 3323 return "Invalid bitcode wrapper header"; 3324 case BitcodeReader::InvalidConstantReference: 3325 return "Invalid ronstant reference"; 3326 case BitcodeReader::InvalidID: 3327 return "Invalid ID"; 3328 case BitcodeReader::InvalidInstructionWithNoBB: 3329 return "Invalid instruction with no BB"; 3330 case BitcodeReader::InvalidRecord: 3331 return "Invalid record"; 3332 case BitcodeReader::InvalidTypeForValue: 3333 return "Invalid type for value"; 3334 case BitcodeReader::InvalidTYPETable: 3335 return "Invalid TYPE table"; 3336 case BitcodeReader::InvalidType: 3337 return "Invalid type"; 3338 case BitcodeReader::MalformedBlock: 3339 return "Malformed block"; 3340 case BitcodeReader::MalformedGlobalInitializerSet: 3341 return "Malformed global initializer set"; 3342 case BitcodeReader::InvalidMultipleBlocks: 3343 return "Invalid multiple blocks"; 3344 case BitcodeReader::NeverResolvedValueFoundInFunction: 3345 return "Never resolved value found in function"; 3346 case BitcodeReader::InvalidValue: 3347 return "Invalid value"; 3348 } 3349 llvm_unreachable("Unknown error type!"); 3350 } 3351 }; 3352 } 3353 3354 const std::error_category &BitcodeReader::BitcodeErrorCategory() { 3355 static BitcodeErrorCategoryType O; 3356 return O; 3357 } 3358 3359 //===----------------------------------------------------------------------===// 3360 // External interface 3361 //===----------------------------------------------------------------------===// 3362 3363 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3364 /// 3365 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3366 LLVMContext &Context) { 3367 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3368 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3369 M->setMaterializer(R); 3370 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3371 delete M; // Also deletes R. 3372 return EC; 3373 } 3374 // Have the BitcodeReader dtor delete 'Buffer'. 3375 R->setBufferOwned(true); 3376 3377 R->materializeForwardReferencedFunctions(); 3378 3379 return M; 3380 } 3381 3382 3383 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3384 DataStreamer *streamer, 3385 LLVMContext &Context, 3386 std::string *ErrMsg) { 3387 Module *M = new Module(name, Context); 3388 BitcodeReader *R = new BitcodeReader(streamer, Context); 3389 M->setMaterializer(R); 3390 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3391 if (ErrMsg) 3392 *ErrMsg = EC.message(); 3393 delete M; // Also deletes R. 3394 return nullptr; 3395 } 3396 R->setBufferOwned(false); // no buffer to delete 3397 return M; 3398 } 3399 3400 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer, 3401 LLVMContext &Context) { 3402 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context); 3403 if (!ModuleOrErr) 3404 return ModuleOrErr; 3405 Module *M = ModuleOrErr.get(); 3406 3407 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 3408 // there was an error. 3409 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 3410 3411 // Read in the entire module, and destroy the BitcodeReader. 3412 if (std::error_code EC = M->materializeAllPermanently()) { 3413 delete M; 3414 return EC; 3415 } 3416 3417 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3418 // written. We must defer until the Module has been fully materialized. 3419 3420 return M; 3421 } 3422 3423 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3424 LLVMContext& Context, 3425 std::string *ErrMsg) { 3426 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3427 // Don't let the BitcodeReader dtor delete 'Buffer'. 3428 R->setBufferOwned(false); 3429 3430 std::string Triple(""); 3431 if (std::error_code EC = R->ParseTriple(Triple)) 3432 if (ErrMsg) 3433 *ErrMsg = EC.message(); 3434 3435 delete R; 3436 return Triple; 3437 } 3438