xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision db00953ff32aa3c64200871ae4bcd15a776acca0)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
972 //
973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
974 // visibility: [8, 10).
975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
976                                                             uint64_t Version) {
977   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
978   // like getDecodedLinkage() above. Any future change to the linkage enum and
979   // to getDecodedLinkage() will need to be taken into account here as above.
980   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
981   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
982   RawFlags = RawFlags >> 4;
983   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
984   // The Live flag wasn't introduced until version 3. For dead stripping
985   // to work correctly on earlier versions, we must conservatively treat all
986   // values as live.
987   bool Live = (RawFlags & 0x2) || Version < 3;
988   bool Local = (RawFlags & 0x4);
989   bool AutoHide = (RawFlags & 0x8);
990 
991   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
992                                      Live, Local, AutoHide);
993 }
994 
995 // Decode the flags for GlobalVariable in the summary
996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
997   return GlobalVarSummary::GVarFlags(
998       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
999       (RawFlags & 0x4) ? true : false,
1000       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1001 }
1002 
1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown visibilities to default.
1006   case 0: return GlobalValue::DefaultVisibility;
1007   case 1: return GlobalValue::HiddenVisibility;
1008   case 2: return GlobalValue::ProtectedVisibility;
1009   }
1010 }
1011 
1012 static GlobalValue::DLLStorageClassTypes
1013 getDecodedDLLStorageClass(unsigned Val) {
1014   switch (Val) {
1015   default: // Map unknown values to default.
1016   case 0: return GlobalValue::DefaultStorageClass;
1017   case 1: return GlobalValue::DLLImportStorageClass;
1018   case 2: return GlobalValue::DLLExportStorageClass;
1019   }
1020 }
1021 
1022 static bool getDecodedDSOLocal(unsigned Val) {
1023   switch(Val) {
1024   default: // Map unknown values to preemptable.
1025   case 0:  return false;
1026   case 1:  return true;
1027   }
1028 }
1029 
1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1031   switch (Val) {
1032     case 0: return GlobalVariable::NotThreadLocal;
1033     default: // Map unknown non-zero value to general dynamic.
1034     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1035     case 2: return GlobalVariable::LocalDynamicTLSModel;
1036     case 3: return GlobalVariable::InitialExecTLSModel;
1037     case 4: return GlobalVariable::LocalExecTLSModel;
1038   }
1039 }
1040 
1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1042   switch (Val) {
1043     default: // Map unknown to UnnamedAddr::None.
1044     case 0: return GlobalVariable::UnnamedAddr::None;
1045     case 1: return GlobalVariable::UnnamedAddr::Global;
1046     case 2: return GlobalVariable::UnnamedAddr::Local;
1047   }
1048 }
1049 
1050 static int getDecodedCastOpcode(unsigned Val) {
1051   switch (Val) {
1052   default: return -1;
1053   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1054   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1055   case bitc::CAST_SEXT    : return Instruction::SExt;
1056   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1057   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1058   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1059   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1060   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1061   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1062   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1063   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1064   case bitc::CAST_BITCAST : return Instruction::BitCast;
1065   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1066   }
1067 }
1068 
1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1070   bool IsFP = Ty->isFPOrFPVectorTy();
1071   // UnOps are only valid for int/fp or vector of int/fp types
1072   if (!IsFP && !Ty->isIntOrIntVectorTy())
1073     return -1;
1074 
1075   switch (Val) {
1076   default:
1077     return -1;
1078   case bitc::UNOP_FNEG:
1079     return IsFP ? Instruction::FNeg : -1;
1080   }
1081 }
1082 
1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1084   bool IsFP = Ty->isFPOrFPVectorTy();
1085   // BinOps are only valid for int/fp or vector of int/fp types
1086   if (!IsFP && !Ty->isIntOrIntVectorTy())
1087     return -1;
1088 
1089   switch (Val) {
1090   default:
1091     return -1;
1092   case bitc::BINOP_ADD:
1093     return IsFP ? Instruction::FAdd : Instruction::Add;
1094   case bitc::BINOP_SUB:
1095     return IsFP ? Instruction::FSub : Instruction::Sub;
1096   case bitc::BINOP_MUL:
1097     return IsFP ? Instruction::FMul : Instruction::Mul;
1098   case bitc::BINOP_UDIV:
1099     return IsFP ? -1 : Instruction::UDiv;
1100   case bitc::BINOP_SDIV:
1101     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1102   case bitc::BINOP_UREM:
1103     return IsFP ? -1 : Instruction::URem;
1104   case bitc::BINOP_SREM:
1105     return IsFP ? Instruction::FRem : Instruction::SRem;
1106   case bitc::BINOP_SHL:
1107     return IsFP ? -1 : Instruction::Shl;
1108   case bitc::BINOP_LSHR:
1109     return IsFP ? -1 : Instruction::LShr;
1110   case bitc::BINOP_ASHR:
1111     return IsFP ? -1 : Instruction::AShr;
1112   case bitc::BINOP_AND:
1113     return IsFP ? -1 : Instruction::And;
1114   case bitc::BINOP_OR:
1115     return IsFP ? -1 : Instruction::Or;
1116   case bitc::BINOP_XOR:
1117     return IsFP ? -1 : Instruction::Xor;
1118   }
1119 }
1120 
1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1122   switch (Val) {
1123   default: return AtomicRMWInst::BAD_BINOP;
1124   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1125   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1126   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1127   case bitc::RMW_AND: return AtomicRMWInst::And;
1128   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1129   case bitc::RMW_OR: return AtomicRMWInst::Or;
1130   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1131   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1132   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1133   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1134   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1135   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1136   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1137   }
1138 }
1139 
1140 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1141   switch (Val) {
1142   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1143   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1144   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1145   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1146   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1147   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1148   default: // Map unknown orderings to sequentially-consistent.
1149   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1150   }
1151 }
1152 
1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1154   switch (Val) {
1155   default: // Map unknown selection kinds to any.
1156   case bitc::COMDAT_SELECTION_KIND_ANY:
1157     return Comdat::Any;
1158   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1159     return Comdat::ExactMatch;
1160   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1161     return Comdat::Largest;
1162   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1163     return Comdat::NoDuplicates;
1164   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1165     return Comdat::SameSize;
1166   }
1167 }
1168 
1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1170   FastMathFlags FMF;
1171   if (0 != (Val & bitc::UnsafeAlgebra))
1172     FMF.setFast();
1173   if (0 != (Val & bitc::AllowReassoc))
1174     FMF.setAllowReassoc();
1175   if (0 != (Val & bitc::NoNaNs))
1176     FMF.setNoNaNs();
1177   if (0 != (Val & bitc::NoInfs))
1178     FMF.setNoInfs();
1179   if (0 != (Val & bitc::NoSignedZeros))
1180     FMF.setNoSignedZeros();
1181   if (0 != (Val & bitc::AllowReciprocal))
1182     FMF.setAllowReciprocal();
1183   if (0 != (Val & bitc::AllowContract))
1184     FMF.setAllowContract(true);
1185   if (0 != (Val & bitc::ApproxFunc))
1186     FMF.setApproxFunc();
1187   return FMF;
1188 }
1189 
1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1191   switch (Val) {
1192   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1193   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1194   }
1195 }
1196 
1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1198   // The type table size is always specified correctly.
1199   if (ID >= TypeList.size())
1200     return nullptr;
1201 
1202   if (Type *Ty = TypeList[ID])
1203     return Ty;
1204 
1205   // If we have a forward reference, the only possible case is when it is to a
1206   // named struct.  Just create a placeholder for now.
1207   return TypeList[ID] = createIdentifiedStructType(Context);
1208 }
1209 
1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1211                                                       StringRef Name) {
1212   auto *Ret = StructType::create(Context, Name);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1218   auto *Ret = StructType::create(Context);
1219   IdentifiedStructTypes.push_back(Ret);
1220   return Ret;
1221 }
1222 
1223 //===----------------------------------------------------------------------===//
1224 //  Functions for parsing blocks from the bitcode file
1225 //===----------------------------------------------------------------------===//
1226 
1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1228   switch (Val) {
1229   case Attribute::EndAttrKinds:
1230   case Attribute::EmptyKey:
1231   case Attribute::TombstoneKey:
1232     llvm_unreachable("Synthetic enumerators which should never get here");
1233 
1234   case Attribute::None:            return 0;
1235   case Attribute::ZExt:            return 1 << 0;
1236   case Attribute::SExt:            return 1 << 1;
1237   case Attribute::NoReturn:        return 1 << 2;
1238   case Attribute::InReg:           return 1 << 3;
1239   case Attribute::StructRet:       return 1 << 4;
1240   case Attribute::NoUnwind:        return 1 << 5;
1241   case Attribute::NoAlias:         return 1 << 6;
1242   case Attribute::ByVal:           return 1 << 7;
1243   case Attribute::Nest:            return 1 << 8;
1244   case Attribute::ReadNone:        return 1 << 9;
1245   case Attribute::ReadOnly:        return 1 << 10;
1246   case Attribute::NoInline:        return 1 << 11;
1247   case Attribute::AlwaysInline:    return 1 << 12;
1248   case Attribute::OptimizeForSize: return 1 << 13;
1249   case Attribute::StackProtect:    return 1 << 14;
1250   case Attribute::StackProtectReq: return 1 << 15;
1251   case Attribute::Alignment:       return 31 << 16;
1252   case Attribute::NoCapture:       return 1 << 21;
1253   case Attribute::NoRedZone:       return 1 << 22;
1254   case Attribute::NoImplicitFloat: return 1 << 23;
1255   case Attribute::Naked:           return 1 << 24;
1256   case Attribute::InlineHint:      return 1 << 25;
1257   case Attribute::StackAlignment:  return 7 << 26;
1258   case Attribute::ReturnsTwice:    return 1 << 29;
1259   case Attribute::UWTable:         return 1 << 30;
1260   case Attribute::NonLazyBind:     return 1U << 31;
1261   case Attribute::SanitizeAddress: return 1ULL << 32;
1262   case Attribute::MinSize:         return 1ULL << 33;
1263   case Attribute::NoDuplicate:     return 1ULL << 34;
1264   case Attribute::StackProtectStrong: return 1ULL << 35;
1265   case Attribute::SanitizeThread:  return 1ULL << 36;
1266   case Attribute::SanitizeMemory:  return 1ULL << 37;
1267   case Attribute::NoBuiltin:       return 1ULL << 38;
1268   case Attribute::Returned:        return 1ULL << 39;
1269   case Attribute::Cold:            return 1ULL << 40;
1270   case Attribute::Builtin:         return 1ULL << 41;
1271   case Attribute::OptimizeNone:    return 1ULL << 42;
1272   case Attribute::InAlloca:        return 1ULL << 43;
1273   case Attribute::NonNull:         return 1ULL << 44;
1274   case Attribute::JumpTable:       return 1ULL << 45;
1275   case Attribute::Convergent:      return 1ULL << 46;
1276   case Attribute::SafeStack:       return 1ULL << 47;
1277   case Attribute::NoRecurse:       return 1ULL << 48;
1278   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1279   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1280   case Attribute::SwiftSelf:       return 1ULL << 51;
1281   case Attribute::SwiftError:      return 1ULL << 52;
1282   case Attribute::WriteOnly:       return 1ULL << 53;
1283   case Attribute::Speculatable:    return 1ULL << 54;
1284   case Attribute::StrictFP:        return 1ULL << 55;
1285   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1286   case Attribute::NoCfCheck:       return 1ULL << 57;
1287   case Attribute::OptForFuzzing:   return 1ULL << 58;
1288   case Attribute::ShadowCallStack: return 1ULL << 59;
1289   case Attribute::SpeculativeLoadHardening:
1290     return 1ULL << 60;
1291   case Attribute::ImmArg:
1292     return 1ULL << 61;
1293   case Attribute::WillReturn:
1294     return 1ULL << 62;
1295   case Attribute::NoFree:
1296     return 1ULL << 63;
1297   default:
1298     // Other attributes are not supported in the raw format,
1299     // as we ran out of space.
1300     return 0;
1301   }
1302   llvm_unreachable("Unsupported attribute type");
1303 }
1304 
1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1306   if (!Val) return;
1307 
1308   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1309        I = Attribute::AttrKind(I + 1)) {
1310     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311       if (I == Attribute::Alignment)
1312         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313       else if (I == Attribute::StackAlignment)
1314         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315       else
1316         B.addAttribute(I);
1317     }
1318   }
1319 }
1320 
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325                                            uint64_t EncodedAttrs) {
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // Deprecated, but still needed to read old bitcode files.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CALLBACK:
1442     return Attribute::NoCallback;
1443   case bitc::ATTR_KIND_NO_CAPTURE:
1444     return Attribute::NoCapture;
1445   case bitc::ATTR_KIND_NO_DUPLICATE:
1446     return Attribute::NoDuplicate;
1447   case bitc::ATTR_KIND_NOFREE:
1448     return Attribute::NoFree;
1449   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450     return Attribute::NoImplicitFloat;
1451   case bitc::ATTR_KIND_NO_INLINE:
1452     return Attribute::NoInline;
1453   case bitc::ATTR_KIND_NO_RECURSE:
1454     return Attribute::NoRecurse;
1455   case bitc::ATTR_KIND_NO_MERGE:
1456     return Attribute::NoMerge;
1457   case bitc::ATTR_KIND_NON_LAZY_BIND:
1458     return Attribute::NonLazyBind;
1459   case bitc::ATTR_KIND_NON_NULL:
1460     return Attribute::NonNull;
1461   case bitc::ATTR_KIND_DEREFERENCEABLE:
1462     return Attribute::Dereferenceable;
1463   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1464     return Attribute::DereferenceableOrNull;
1465   case bitc::ATTR_KIND_ALLOC_SIZE:
1466     return Attribute::AllocSize;
1467   case bitc::ATTR_KIND_NO_RED_ZONE:
1468     return Attribute::NoRedZone;
1469   case bitc::ATTR_KIND_NO_RETURN:
1470     return Attribute::NoReturn;
1471   case bitc::ATTR_KIND_NOSYNC:
1472     return Attribute::NoSync;
1473   case bitc::ATTR_KIND_NOCF_CHECK:
1474     return Attribute::NoCfCheck;
1475   case bitc::ATTR_KIND_NO_UNWIND:
1476     return Attribute::NoUnwind;
1477   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1478     return Attribute::NullPointerIsValid;
1479   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1480     return Attribute::OptForFuzzing;
1481   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1482     return Attribute::OptimizeForSize;
1483   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1484     return Attribute::OptimizeNone;
1485   case bitc::ATTR_KIND_READ_NONE:
1486     return Attribute::ReadNone;
1487   case bitc::ATTR_KIND_READ_ONLY:
1488     return Attribute::ReadOnly;
1489   case bitc::ATTR_KIND_RETURNED:
1490     return Attribute::Returned;
1491   case bitc::ATTR_KIND_RETURNS_TWICE:
1492     return Attribute::ReturnsTwice;
1493   case bitc::ATTR_KIND_S_EXT:
1494     return Attribute::SExt;
1495   case bitc::ATTR_KIND_SPECULATABLE:
1496     return Attribute::Speculatable;
1497   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1498     return Attribute::StackAlignment;
1499   case bitc::ATTR_KIND_STACK_PROTECT:
1500     return Attribute::StackProtect;
1501   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1502     return Attribute::StackProtectReq;
1503   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1504     return Attribute::StackProtectStrong;
1505   case bitc::ATTR_KIND_SAFESTACK:
1506     return Attribute::SafeStack;
1507   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1508     return Attribute::ShadowCallStack;
1509   case bitc::ATTR_KIND_STRICT_FP:
1510     return Attribute::StrictFP;
1511   case bitc::ATTR_KIND_STRUCT_RET:
1512     return Attribute::StructRet;
1513   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1514     return Attribute::SanitizeAddress;
1515   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1516     return Attribute::SanitizeHWAddress;
1517   case bitc::ATTR_KIND_SANITIZE_THREAD:
1518     return Attribute::SanitizeThread;
1519   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1520     return Attribute::SanitizeMemory;
1521   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1522     return Attribute::SpeculativeLoadHardening;
1523   case bitc::ATTR_KIND_SWIFT_ERROR:
1524     return Attribute::SwiftError;
1525   case bitc::ATTR_KIND_SWIFT_SELF:
1526     return Attribute::SwiftSelf;
1527   case bitc::ATTR_KIND_UW_TABLE:
1528     return Attribute::UWTable;
1529   case bitc::ATTR_KIND_WILLRETURN:
1530     return Attribute::WillReturn;
1531   case bitc::ATTR_KIND_WRITEONLY:
1532     return Attribute::WriteOnly;
1533   case bitc::ATTR_KIND_Z_EXT:
1534     return Attribute::ZExt;
1535   case bitc::ATTR_KIND_IMMARG:
1536     return Attribute::ImmArg;
1537   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1538     return Attribute::SanitizeMemTag;
1539   case bitc::ATTR_KIND_PREALLOCATED:
1540     return Attribute::Preallocated;
1541   case bitc::ATTR_KIND_NOUNDEF:
1542     return Attribute::NoUndef;
1543   case bitc::ATTR_KIND_BYREF:
1544     return Attribute::ByRef;
1545   case bitc::ATTR_KIND_MUSTPROGRESS:
1546     return Attribute::MustProgress;
1547   case bitc::ATTR_KIND_HOT:
1548     return Attribute::Hot;
1549   }
1550 }
1551 
1552 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1553                                          MaybeAlign &Alignment) {
1554   // Note: Alignment in bitcode files is incremented by 1, so that zero
1555   // can be used for default alignment.
1556   if (Exponent > Value::MaxAlignmentExponent + 1)
1557     return error("Invalid alignment value");
1558   Alignment = decodeMaybeAlign(Exponent);
1559   return Error::success();
1560 }
1561 
1562 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1563   *Kind = getAttrFromCode(Code);
1564   if (*Kind == Attribute::None)
1565     return error("Unknown attribute kind (" + Twine(Code) + ")");
1566   return Error::success();
1567 }
1568 
1569 Error BitcodeReader::parseAttributeGroupBlock() {
1570   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1571     return Err;
1572 
1573   if (!MAttributeGroups.empty())
1574     return error("Invalid multiple blocks");
1575 
1576   SmallVector<uint64_t, 64> Record;
1577 
1578   // Read all the records.
1579   while (true) {
1580     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1581     if (!MaybeEntry)
1582       return MaybeEntry.takeError();
1583     BitstreamEntry Entry = MaybeEntry.get();
1584 
1585     switch (Entry.Kind) {
1586     case BitstreamEntry::SubBlock: // Handled for us already.
1587     case BitstreamEntry::Error:
1588       return error("Malformed block");
1589     case BitstreamEntry::EndBlock:
1590       return Error::success();
1591     case BitstreamEntry::Record:
1592       // The interesting case.
1593       break;
1594     }
1595 
1596     // Read a record.
1597     Record.clear();
1598     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1599     if (!MaybeRecord)
1600       return MaybeRecord.takeError();
1601     switch (MaybeRecord.get()) {
1602     default:  // Default behavior: ignore.
1603       break;
1604     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1605       if (Record.size() < 3)
1606         return error("Invalid record");
1607 
1608       uint64_t GrpID = Record[0];
1609       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1610 
1611       AttrBuilder B;
1612       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1613         if (Record[i] == 0) {        // Enum attribute
1614           Attribute::AttrKind Kind;
1615           if (Error Err = parseAttrKind(Record[++i], &Kind))
1616             return Err;
1617 
1618           // Upgrade old-style byval attribute to one with a type, even if it's
1619           // nullptr. We will have to insert the real type when we associate
1620           // this AttributeList with a function.
1621           if (Kind == Attribute::ByVal)
1622             B.addByValAttr(nullptr);
1623           else if (Kind == Attribute::StructRet)
1624             B.addStructRetAttr(nullptr);
1625 
1626           B.addAttribute(Kind);
1627         } else if (Record[i] == 1) { // Integer attribute
1628           Attribute::AttrKind Kind;
1629           if (Error Err = parseAttrKind(Record[++i], &Kind))
1630             return Err;
1631           if (Kind == Attribute::Alignment)
1632             B.addAlignmentAttr(Record[++i]);
1633           else if (Kind == Attribute::StackAlignment)
1634             B.addStackAlignmentAttr(Record[++i]);
1635           else if (Kind == Attribute::Dereferenceable)
1636             B.addDereferenceableAttr(Record[++i]);
1637           else if (Kind == Attribute::DereferenceableOrNull)
1638             B.addDereferenceableOrNullAttr(Record[++i]);
1639           else if (Kind == Attribute::AllocSize)
1640             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1641         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1642           bool HasValue = (Record[i++] == 4);
1643           SmallString<64> KindStr;
1644           SmallString<64> ValStr;
1645 
1646           while (Record[i] != 0 && i != e)
1647             KindStr += Record[i++];
1648           assert(Record[i] == 0 && "Kind string not null terminated");
1649 
1650           if (HasValue) {
1651             // Has a value associated with it.
1652             ++i; // Skip the '0' that terminates the "kind" string.
1653             while (Record[i] != 0 && i != e)
1654               ValStr += Record[i++];
1655             assert(Record[i] == 0 && "Value string not null terminated");
1656           }
1657 
1658           B.addAttribute(KindStr.str(), ValStr.str());
1659         } else {
1660           assert((Record[i] == 5 || Record[i] == 6) &&
1661                  "Invalid attribute group entry");
1662           bool HasType = Record[i] == 6;
1663           Attribute::AttrKind Kind;
1664           if (Error Err = parseAttrKind(Record[++i], &Kind))
1665             return Err;
1666           if (Kind == Attribute::ByVal) {
1667             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1668           } else if (Kind == Attribute::StructRet) {
1669             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1670           } else if (Kind == Attribute::ByRef) {
1671             B.addByRefAttr(getTypeByID(Record[++i]));
1672           } else if (Kind == Attribute::Preallocated) {
1673             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1674           }
1675         }
1676       }
1677 
1678       UpgradeAttributes(B);
1679       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1680       break;
1681     }
1682     }
1683   }
1684 }
1685 
1686 Error BitcodeReader::parseTypeTable() {
1687   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1688     return Err;
1689 
1690   return parseTypeTableBody();
1691 }
1692 
1693 Error BitcodeReader::parseTypeTableBody() {
1694   if (!TypeList.empty())
1695     return error("Invalid multiple blocks");
1696 
1697   SmallVector<uint64_t, 64> Record;
1698   unsigned NumRecords = 0;
1699 
1700   SmallString<64> TypeName;
1701 
1702   // Read all the records for this type table.
1703   while (true) {
1704     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1705     if (!MaybeEntry)
1706       return MaybeEntry.takeError();
1707     BitstreamEntry Entry = MaybeEntry.get();
1708 
1709     switch (Entry.Kind) {
1710     case BitstreamEntry::SubBlock: // Handled for us already.
1711     case BitstreamEntry::Error:
1712       return error("Malformed block");
1713     case BitstreamEntry::EndBlock:
1714       if (NumRecords != TypeList.size())
1715         return error("Malformed block");
1716       return Error::success();
1717     case BitstreamEntry::Record:
1718       // The interesting case.
1719       break;
1720     }
1721 
1722     // Read a record.
1723     Record.clear();
1724     Type *ResultTy = nullptr;
1725     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1726     if (!MaybeRecord)
1727       return MaybeRecord.takeError();
1728     switch (MaybeRecord.get()) {
1729     default:
1730       return error("Invalid value");
1731     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1732       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1733       // type list.  This allows us to reserve space.
1734       if (Record.empty())
1735         return error("Invalid record");
1736       TypeList.resize(Record[0]);
1737       continue;
1738     case bitc::TYPE_CODE_VOID:      // VOID
1739       ResultTy = Type::getVoidTy(Context);
1740       break;
1741     case bitc::TYPE_CODE_HALF:     // HALF
1742       ResultTy = Type::getHalfTy(Context);
1743       break;
1744     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1745       ResultTy = Type::getBFloatTy(Context);
1746       break;
1747     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1748       ResultTy = Type::getFloatTy(Context);
1749       break;
1750     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1751       ResultTy = Type::getDoubleTy(Context);
1752       break;
1753     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1754       ResultTy = Type::getX86_FP80Ty(Context);
1755       break;
1756     case bitc::TYPE_CODE_FP128:     // FP128
1757       ResultTy = Type::getFP128Ty(Context);
1758       break;
1759     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1760       ResultTy = Type::getPPC_FP128Ty(Context);
1761       break;
1762     case bitc::TYPE_CODE_LABEL:     // LABEL
1763       ResultTy = Type::getLabelTy(Context);
1764       break;
1765     case bitc::TYPE_CODE_METADATA:  // METADATA
1766       ResultTy = Type::getMetadataTy(Context);
1767       break;
1768     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1769       ResultTy = Type::getX86_MMXTy(Context);
1770       break;
1771     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1772       ResultTy = Type::getX86_AMXTy(Context);
1773       break;
1774     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1775       ResultTy = Type::getTokenTy(Context);
1776       break;
1777     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1778       if (Record.empty())
1779         return error("Invalid record");
1780 
1781       uint64_t NumBits = Record[0];
1782       if (NumBits < IntegerType::MIN_INT_BITS ||
1783           NumBits > IntegerType::MAX_INT_BITS)
1784         return error("Bitwidth for integer type out of range");
1785       ResultTy = IntegerType::get(Context, NumBits);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1789                                     //          [pointee type, address space]
1790       if (Record.empty())
1791         return error("Invalid record");
1792       unsigned AddressSpace = 0;
1793       if (Record.size() == 2)
1794         AddressSpace = Record[1];
1795       ResultTy = getTypeByID(Record[0]);
1796       if (!ResultTy ||
1797           !PointerType::isValidElementType(ResultTy))
1798         return error("Invalid type");
1799       ResultTy = PointerType::get(ResultTy, AddressSpace);
1800       break;
1801     }
1802     case bitc::TYPE_CODE_FUNCTION_OLD: {
1803       // Deprecated, but still needed to read old bitcode files.
1804       // FUNCTION: [vararg, attrid, retty, paramty x N]
1805       if (Record.size() < 3)
1806         return error("Invalid record");
1807       SmallVector<Type*, 8> ArgTys;
1808       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1809         if (Type *T = getTypeByID(Record[i]))
1810           ArgTys.push_back(T);
1811         else
1812           break;
1813       }
1814 
1815       ResultTy = getTypeByID(Record[2]);
1816       if (!ResultTy || ArgTys.size() < Record.size()-3)
1817         return error("Invalid type");
1818 
1819       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1820       break;
1821     }
1822     case bitc::TYPE_CODE_FUNCTION: {
1823       // FUNCTION: [vararg, retty, paramty x N]
1824       if (Record.size() < 2)
1825         return error("Invalid record");
1826       SmallVector<Type*, 8> ArgTys;
1827       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1828         if (Type *T = getTypeByID(Record[i])) {
1829           if (!FunctionType::isValidArgumentType(T))
1830             return error("Invalid function argument type");
1831           ArgTys.push_back(T);
1832         }
1833         else
1834           break;
1835       }
1836 
1837       ResultTy = getTypeByID(Record[1]);
1838       if (!ResultTy || ArgTys.size() < Record.size()-2)
1839         return error("Invalid type");
1840 
1841       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1842       break;
1843     }
1844     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1845       if (Record.empty())
1846         return error("Invalid record");
1847       SmallVector<Type*, 8> EltTys;
1848       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1849         if (Type *T = getTypeByID(Record[i]))
1850           EltTys.push_back(T);
1851         else
1852           break;
1853       }
1854       if (EltTys.size() != Record.size()-1)
1855         return error("Invalid type");
1856       ResultTy = StructType::get(Context, EltTys, Record[0]);
1857       break;
1858     }
1859     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1860       if (convertToString(Record, 0, TypeName))
1861         return error("Invalid record");
1862       continue;
1863 
1864     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1865       if (Record.empty())
1866         return error("Invalid record");
1867 
1868       if (NumRecords >= TypeList.size())
1869         return error("Invalid TYPE table");
1870 
1871       // Check to see if this was forward referenced, if so fill in the temp.
1872       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1873       if (Res) {
1874         Res->setName(TypeName);
1875         TypeList[NumRecords] = nullptr;
1876       } else  // Otherwise, create a new struct.
1877         Res = createIdentifiedStructType(Context, TypeName);
1878       TypeName.clear();
1879 
1880       SmallVector<Type*, 8> EltTys;
1881       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1882         if (Type *T = getTypeByID(Record[i]))
1883           EltTys.push_back(T);
1884         else
1885           break;
1886       }
1887       if (EltTys.size() != Record.size()-1)
1888         return error("Invalid record");
1889       Res->setBody(EltTys, Record[0]);
1890       ResultTy = Res;
1891       break;
1892     }
1893     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1894       if (Record.size() != 1)
1895         return error("Invalid record");
1896 
1897       if (NumRecords >= TypeList.size())
1898         return error("Invalid TYPE table");
1899 
1900       // Check to see if this was forward referenced, if so fill in the temp.
1901       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1902       if (Res) {
1903         Res->setName(TypeName);
1904         TypeList[NumRecords] = nullptr;
1905       } else  // Otherwise, create a new struct with no body.
1906         Res = createIdentifiedStructType(Context, TypeName);
1907       TypeName.clear();
1908       ResultTy = Res;
1909       break;
1910     }
1911     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1912       if (Record.size() < 2)
1913         return error("Invalid record");
1914       ResultTy = getTypeByID(Record[1]);
1915       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1916         return error("Invalid type");
1917       ResultTy = ArrayType::get(ResultTy, Record[0]);
1918       break;
1919     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1920                                     //         [numelts, eltty, scalable]
1921       if (Record.size() < 2)
1922         return error("Invalid record");
1923       if (Record[0] == 0)
1924         return error("Invalid vector length");
1925       ResultTy = getTypeByID(Record[1]);
1926       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1927         return error("Invalid type");
1928       bool Scalable = Record.size() > 2 ? Record[2] : false;
1929       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1930       break;
1931     }
1932 
1933     if (NumRecords >= TypeList.size())
1934       return error("Invalid TYPE table");
1935     if (TypeList[NumRecords])
1936       return error(
1937           "Invalid TYPE table: Only named structs can be forward referenced");
1938     assert(ResultTy && "Didn't read a type?");
1939     TypeList[NumRecords++] = ResultTy;
1940   }
1941 }
1942 
1943 Error BitcodeReader::parseOperandBundleTags() {
1944   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1945     return Err;
1946 
1947   if (!BundleTags.empty())
1948     return error("Invalid multiple blocks");
1949 
1950   SmallVector<uint64_t, 64> Record;
1951 
1952   while (true) {
1953     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1954     if (!MaybeEntry)
1955       return MaybeEntry.takeError();
1956     BitstreamEntry Entry = MaybeEntry.get();
1957 
1958     switch (Entry.Kind) {
1959     case BitstreamEntry::SubBlock: // Handled for us already.
1960     case BitstreamEntry::Error:
1961       return error("Malformed block");
1962     case BitstreamEntry::EndBlock:
1963       return Error::success();
1964     case BitstreamEntry::Record:
1965       // The interesting case.
1966       break;
1967     }
1968 
1969     // Tags are implicitly mapped to integers by their order.
1970 
1971     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1972     if (!MaybeRecord)
1973       return MaybeRecord.takeError();
1974     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1975       return error("Invalid record");
1976 
1977     // OPERAND_BUNDLE_TAG: [strchr x N]
1978     BundleTags.emplace_back();
1979     if (convertToString(Record, 0, BundleTags.back()))
1980       return error("Invalid record");
1981     Record.clear();
1982   }
1983 }
1984 
1985 Error BitcodeReader::parseSyncScopeNames() {
1986   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1987     return Err;
1988 
1989   if (!SSIDs.empty())
1990     return error("Invalid multiple synchronization scope names blocks");
1991 
1992   SmallVector<uint64_t, 64> Record;
1993   while (true) {
1994     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1995     if (!MaybeEntry)
1996       return MaybeEntry.takeError();
1997     BitstreamEntry Entry = MaybeEntry.get();
1998 
1999     switch (Entry.Kind) {
2000     case BitstreamEntry::SubBlock: // Handled for us already.
2001     case BitstreamEntry::Error:
2002       return error("Malformed block");
2003     case BitstreamEntry::EndBlock:
2004       if (SSIDs.empty())
2005         return error("Invalid empty synchronization scope names block");
2006       return Error::success();
2007     case BitstreamEntry::Record:
2008       // The interesting case.
2009       break;
2010     }
2011 
2012     // Synchronization scope names are implicitly mapped to synchronization
2013     // scope IDs by their order.
2014 
2015     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2016     if (!MaybeRecord)
2017       return MaybeRecord.takeError();
2018     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2019       return error("Invalid record");
2020 
2021     SmallString<16> SSN;
2022     if (convertToString(Record, 0, SSN))
2023       return error("Invalid record");
2024 
2025     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2026     Record.clear();
2027   }
2028 }
2029 
2030 /// Associate a value with its name from the given index in the provided record.
2031 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2032                                              unsigned NameIndex, Triple &TT) {
2033   SmallString<128> ValueName;
2034   if (convertToString(Record, NameIndex, ValueName))
2035     return error("Invalid record");
2036   unsigned ValueID = Record[0];
2037   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2038     return error("Invalid record");
2039   Value *V = ValueList[ValueID];
2040 
2041   StringRef NameStr(ValueName.data(), ValueName.size());
2042   if (NameStr.find_first_of(0) != StringRef::npos)
2043     return error("Invalid value name");
2044   V->setName(NameStr);
2045   auto *GO = dyn_cast<GlobalObject>(V);
2046   if (GO) {
2047     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2048       if (TT.supportsCOMDAT())
2049         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2050       else
2051         GO->setComdat(nullptr);
2052     }
2053   }
2054   return V;
2055 }
2056 
2057 /// Helper to note and return the current location, and jump to the given
2058 /// offset.
2059 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2060                                                  BitstreamCursor &Stream) {
2061   // Save the current parsing location so we can jump back at the end
2062   // of the VST read.
2063   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2064   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2065     return std::move(JumpFailed);
2066   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2067   if (!MaybeEntry)
2068     return MaybeEntry.takeError();
2069   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2070   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2071   return CurrentBit;
2072 }
2073 
2074 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2075                                             Function *F,
2076                                             ArrayRef<uint64_t> Record) {
2077   // Note that we subtract 1 here because the offset is relative to one word
2078   // before the start of the identification or module block, which was
2079   // historically always the start of the regular bitcode header.
2080   uint64_t FuncWordOffset = Record[1] - 1;
2081   uint64_t FuncBitOffset = FuncWordOffset * 32;
2082   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2083   // Set the LastFunctionBlockBit to point to the last function block.
2084   // Later when parsing is resumed after function materialization,
2085   // we can simply skip that last function block.
2086   if (FuncBitOffset > LastFunctionBlockBit)
2087     LastFunctionBlockBit = FuncBitOffset;
2088 }
2089 
2090 /// Read a new-style GlobalValue symbol table.
2091 Error BitcodeReader::parseGlobalValueSymbolTable() {
2092   unsigned FuncBitcodeOffsetDelta =
2093       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2094 
2095   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2096     return Err;
2097 
2098   SmallVector<uint64_t, 64> Record;
2099   while (true) {
2100     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2101     if (!MaybeEntry)
2102       return MaybeEntry.takeError();
2103     BitstreamEntry Entry = MaybeEntry.get();
2104 
2105     switch (Entry.Kind) {
2106     case BitstreamEntry::SubBlock:
2107     case BitstreamEntry::Error:
2108       return error("Malformed block");
2109     case BitstreamEntry::EndBlock:
2110       return Error::success();
2111     case BitstreamEntry::Record:
2112       break;
2113     }
2114 
2115     Record.clear();
2116     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2117     if (!MaybeRecord)
2118       return MaybeRecord.takeError();
2119     switch (MaybeRecord.get()) {
2120     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2121       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2122                               cast<Function>(ValueList[Record[0]]), Record);
2123       break;
2124     }
2125   }
2126 }
2127 
2128 /// Parse the value symbol table at either the current parsing location or
2129 /// at the given bit offset if provided.
2130 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2131   uint64_t CurrentBit;
2132   // Pass in the Offset to distinguish between calling for the module-level
2133   // VST (where we want to jump to the VST offset) and the function-level
2134   // VST (where we don't).
2135   if (Offset > 0) {
2136     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2137     if (!MaybeCurrentBit)
2138       return MaybeCurrentBit.takeError();
2139     CurrentBit = MaybeCurrentBit.get();
2140     // If this module uses a string table, read this as a module-level VST.
2141     if (UseStrtab) {
2142       if (Error Err = parseGlobalValueSymbolTable())
2143         return Err;
2144       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2145         return JumpFailed;
2146       return Error::success();
2147     }
2148     // Otherwise, the VST will be in a similar format to a function-level VST,
2149     // and will contain symbol names.
2150   }
2151 
2152   // Compute the delta between the bitcode indices in the VST (the word offset
2153   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2154   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2155   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2156   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2157   // just before entering the VST subblock because: 1) the EnterSubBlock
2158   // changes the AbbrevID width; 2) the VST block is nested within the same
2159   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2160   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2161   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2162   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2163   unsigned FuncBitcodeOffsetDelta =
2164       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2165 
2166   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2167     return Err;
2168 
2169   SmallVector<uint64_t, 64> Record;
2170 
2171   Triple TT(TheModule->getTargetTriple());
2172 
2173   // Read all the records for this value table.
2174   SmallString<128> ValueName;
2175 
2176   while (true) {
2177     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2178     if (!MaybeEntry)
2179       return MaybeEntry.takeError();
2180     BitstreamEntry Entry = MaybeEntry.get();
2181 
2182     switch (Entry.Kind) {
2183     case BitstreamEntry::SubBlock: // Handled for us already.
2184     case BitstreamEntry::Error:
2185       return error("Malformed block");
2186     case BitstreamEntry::EndBlock:
2187       if (Offset > 0)
2188         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2189           return JumpFailed;
2190       return Error::success();
2191     case BitstreamEntry::Record:
2192       // The interesting case.
2193       break;
2194     }
2195 
2196     // Read a record.
2197     Record.clear();
2198     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2199     if (!MaybeRecord)
2200       return MaybeRecord.takeError();
2201     switch (MaybeRecord.get()) {
2202     default:  // Default behavior: unknown type.
2203       break;
2204     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2205       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2206       if (Error Err = ValOrErr.takeError())
2207         return Err;
2208       ValOrErr.get();
2209       break;
2210     }
2211     case bitc::VST_CODE_FNENTRY: {
2212       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2213       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2214       if (Error Err = ValOrErr.takeError())
2215         return Err;
2216       Value *V = ValOrErr.get();
2217 
2218       // Ignore function offsets emitted for aliases of functions in older
2219       // versions of LLVM.
2220       if (auto *F = dyn_cast<Function>(V))
2221         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2222       break;
2223     }
2224     case bitc::VST_CODE_BBENTRY: {
2225       if (convertToString(Record, 1, ValueName))
2226         return error("Invalid record");
2227       BasicBlock *BB = getBasicBlock(Record[0]);
2228       if (!BB)
2229         return error("Invalid record");
2230 
2231       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2232       ValueName.clear();
2233       break;
2234     }
2235     }
2236   }
2237 }
2238 
2239 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2240 /// encoding.
2241 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2242   if ((V & 1) == 0)
2243     return V >> 1;
2244   if (V != 1)
2245     return -(V >> 1);
2246   // There is no such thing as -0 with integers.  "-0" really means MININT.
2247   return 1ULL << 63;
2248 }
2249 
2250 /// Resolve all of the initializers for global values and aliases that we can.
2251 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2252   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2253   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2254       IndirectSymbolInitWorklist;
2255   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2256   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2257   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2258 
2259   GlobalInitWorklist.swap(GlobalInits);
2260   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2261   FunctionPrefixWorklist.swap(FunctionPrefixes);
2262   FunctionPrologueWorklist.swap(FunctionPrologues);
2263   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2264 
2265   while (!GlobalInitWorklist.empty()) {
2266     unsigned ValID = GlobalInitWorklist.back().second;
2267     if (ValID >= ValueList.size()) {
2268       // Not ready to resolve this yet, it requires something later in the file.
2269       GlobalInits.push_back(GlobalInitWorklist.back());
2270     } else {
2271       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2272         GlobalInitWorklist.back().first->setInitializer(C);
2273       else
2274         return error("Expected a constant");
2275     }
2276     GlobalInitWorklist.pop_back();
2277   }
2278 
2279   while (!IndirectSymbolInitWorklist.empty()) {
2280     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2281     if (ValID >= ValueList.size()) {
2282       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2283     } else {
2284       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2285       if (!C)
2286         return error("Expected a constant");
2287       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2288       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2289         return error("Alias and aliasee types don't match");
2290       GIS->setIndirectSymbol(C);
2291     }
2292     IndirectSymbolInitWorklist.pop_back();
2293   }
2294 
2295   while (!FunctionPrefixWorklist.empty()) {
2296     unsigned ValID = FunctionPrefixWorklist.back().second;
2297     if (ValID >= ValueList.size()) {
2298       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2299     } else {
2300       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2301         FunctionPrefixWorklist.back().first->setPrefixData(C);
2302       else
2303         return error("Expected a constant");
2304     }
2305     FunctionPrefixWorklist.pop_back();
2306   }
2307 
2308   while (!FunctionPrologueWorklist.empty()) {
2309     unsigned ValID = FunctionPrologueWorklist.back().second;
2310     if (ValID >= ValueList.size()) {
2311       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2312     } else {
2313       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2314         FunctionPrologueWorklist.back().first->setPrologueData(C);
2315       else
2316         return error("Expected a constant");
2317     }
2318     FunctionPrologueWorklist.pop_back();
2319   }
2320 
2321   while (!FunctionPersonalityFnWorklist.empty()) {
2322     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2323     if (ValID >= ValueList.size()) {
2324       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2325     } else {
2326       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2327         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2328       else
2329         return error("Expected a constant");
2330     }
2331     FunctionPersonalityFnWorklist.pop_back();
2332   }
2333 
2334   return Error::success();
2335 }
2336 
2337 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2338   SmallVector<uint64_t, 8> Words(Vals.size());
2339   transform(Vals, Words.begin(),
2340                  BitcodeReader::decodeSignRotatedValue);
2341 
2342   return APInt(TypeBits, Words);
2343 }
2344 
2345 Error BitcodeReader::parseConstants() {
2346   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2347     return Err;
2348 
2349   SmallVector<uint64_t, 64> Record;
2350 
2351   // Read all the records for this value table.
2352   Type *CurTy = Type::getInt32Ty(Context);
2353   Type *CurFullTy = Type::getInt32Ty(Context);
2354   unsigned NextCstNo = ValueList.size();
2355 
2356   struct DelayedShufTy {
2357     VectorType *OpTy;
2358     VectorType *RTy;
2359     Type *CurFullTy;
2360     uint64_t Op0Idx;
2361     uint64_t Op1Idx;
2362     uint64_t Op2Idx;
2363     unsigned CstNo;
2364   };
2365   std::vector<DelayedShufTy> DelayedShuffles;
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2401       }
2402 
2403       if (NextCstNo != ValueList.size())
2404         return error("Invalid constant reference");
2405 
2406       ValueList.resolveConstantForwardRefs();
2407       return Error::success();
2408     case BitstreamEntry::Record:
2409       // The interesting case.
2410       break;
2411     }
2412 
2413     // Read a record.
2414     Record.clear();
2415     Type *VoidType = Type::getVoidTy(Context);
2416     Value *V = nullptr;
2417     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2418     if (!MaybeBitCode)
2419       return MaybeBitCode.takeError();
2420     switch (unsigned BitCode = MaybeBitCode.get()) {
2421     default:  // Default behavior: unknown constant
2422     case bitc::CST_CODE_UNDEF:     // UNDEF
2423       V = UndefValue::get(CurTy);
2424       break;
2425     case bitc::CST_CODE_POISON:    // POISON
2426       V = PoisonValue::get(CurTy);
2427       break;
2428     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2429       if (Record.empty())
2430         return error("Invalid record");
2431       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2432         return error("Invalid record");
2433       if (TypeList[Record[0]] == VoidType)
2434         return error("Invalid constant type");
2435       CurFullTy = TypeList[Record[0]];
2436       CurTy = flattenPointerTypes(CurFullTy);
2437       continue;  // Skip the ValueList manipulation.
2438     case bitc::CST_CODE_NULL:      // NULL
2439       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2440         return error("Invalid type for a constant null value");
2441       V = Constant::getNullValue(CurTy);
2442       break;
2443     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2444       if (!CurTy->isIntegerTy() || Record.empty())
2445         return error("Invalid record");
2446       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2447       break;
2448     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2449       if (!CurTy->isIntegerTy() || Record.empty())
2450         return error("Invalid record");
2451 
2452       APInt VInt =
2453           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2454       V = ConstantInt::get(Context, VInt);
2455 
2456       break;
2457     }
2458     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2459       if (Record.empty())
2460         return error("Invalid record");
2461       if (CurTy->isHalfTy())
2462         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2463                                              APInt(16, (uint16_t)Record[0])));
2464       else if (CurTy->isBFloatTy())
2465         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2466                                              APInt(16, (uint32_t)Record[0])));
2467       else if (CurTy->isFloatTy())
2468         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2469                                              APInt(32, (uint32_t)Record[0])));
2470       else if (CurTy->isDoubleTy())
2471         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2472                                              APInt(64, Record[0])));
2473       else if (CurTy->isX86_FP80Ty()) {
2474         // Bits are not stored the same way as a normal i80 APInt, compensate.
2475         uint64_t Rearrange[2];
2476         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2477         Rearrange[1] = Record[0] >> 48;
2478         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2479                                              APInt(80, Rearrange)));
2480       } else if (CurTy->isFP128Ty())
2481         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2482                                              APInt(128, Record)));
2483       else if (CurTy->isPPC_FP128Ty())
2484         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2485                                              APInt(128, Record)));
2486       else
2487         V = UndefValue::get(CurTy);
2488       break;
2489     }
2490 
2491     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2492       if (Record.empty())
2493         return error("Invalid record");
2494 
2495       unsigned Size = Record.size();
2496       SmallVector<Constant*, 16> Elts;
2497 
2498       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2499         for (unsigned i = 0; i != Size; ++i)
2500           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2501                                                      STy->getElementType(i)));
2502         V = ConstantStruct::get(STy, Elts);
2503       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2504         Type *EltTy = ATy->getElementType();
2505         for (unsigned i = 0; i != Size; ++i)
2506           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2507         V = ConstantArray::get(ATy, Elts);
2508       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2509         Type *EltTy = VTy->getElementType();
2510         for (unsigned i = 0; i != Size; ++i)
2511           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2512         V = ConstantVector::get(Elts);
2513       } else {
2514         V = UndefValue::get(CurTy);
2515       }
2516       break;
2517     }
2518     case bitc::CST_CODE_STRING:    // STRING: [values]
2519     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2520       if (Record.empty())
2521         return error("Invalid record");
2522 
2523       SmallString<16> Elts(Record.begin(), Record.end());
2524       V = ConstantDataArray::getString(Context, Elts,
2525                                        BitCode == bitc::CST_CODE_CSTRING);
2526       break;
2527     }
2528     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2529       if (Record.empty())
2530         return error("Invalid record");
2531 
2532       Type *EltTy;
2533       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2534         EltTy = Array->getElementType();
2535       else
2536         EltTy = cast<VectorType>(CurTy)->getElementType();
2537       if (EltTy->isIntegerTy(8)) {
2538         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2539         if (isa<VectorType>(CurTy))
2540           V = ConstantDataVector::get(Context, Elts);
2541         else
2542           V = ConstantDataArray::get(Context, Elts);
2543       } else if (EltTy->isIntegerTy(16)) {
2544         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2545         if (isa<VectorType>(CurTy))
2546           V = ConstantDataVector::get(Context, Elts);
2547         else
2548           V = ConstantDataArray::get(Context, Elts);
2549       } else if (EltTy->isIntegerTy(32)) {
2550         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2551         if (isa<VectorType>(CurTy))
2552           V = ConstantDataVector::get(Context, Elts);
2553         else
2554           V = ConstantDataArray::get(Context, Elts);
2555       } else if (EltTy->isIntegerTy(64)) {
2556         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2557         if (isa<VectorType>(CurTy))
2558           V = ConstantDataVector::get(Context, Elts);
2559         else
2560           V = ConstantDataArray::get(Context, Elts);
2561       } else if (EltTy->isHalfTy()) {
2562         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2563         if (isa<VectorType>(CurTy))
2564           V = ConstantDataVector::getFP(EltTy, Elts);
2565         else
2566           V = ConstantDataArray::getFP(EltTy, Elts);
2567       } else if (EltTy->isBFloatTy()) {
2568         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2569         if (isa<VectorType>(CurTy))
2570           V = ConstantDataVector::getFP(EltTy, Elts);
2571         else
2572           V = ConstantDataArray::getFP(EltTy, Elts);
2573       } else if (EltTy->isFloatTy()) {
2574         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2575         if (isa<VectorType>(CurTy))
2576           V = ConstantDataVector::getFP(EltTy, Elts);
2577         else
2578           V = ConstantDataArray::getFP(EltTy, Elts);
2579       } else if (EltTy->isDoubleTy()) {
2580         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2581         if (isa<VectorType>(CurTy))
2582           V = ConstantDataVector::getFP(EltTy, Elts);
2583         else
2584           V = ConstantDataArray::getFP(EltTy, Elts);
2585       } else {
2586         return error("Invalid type for value");
2587       }
2588       break;
2589     }
2590     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2591       if (Record.size() < 2)
2592         return error("Invalid record");
2593       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2594       if (Opc < 0) {
2595         V = UndefValue::get(CurTy);  // Unknown unop.
2596       } else {
2597         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2598         unsigned Flags = 0;
2599         V = ConstantExpr::get(Opc, LHS, Flags);
2600       }
2601       break;
2602     }
2603     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2604       if (Record.size() < 3)
2605         return error("Invalid record");
2606       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2607       if (Opc < 0) {
2608         V = UndefValue::get(CurTy);  // Unknown binop.
2609       } else {
2610         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2611         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2612         unsigned Flags = 0;
2613         if (Record.size() >= 4) {
2614           if (Opc == Instruction::Add ||
2615               Opc == Instruction::Sub ||
2616               Opc == Instruction::Mul ||
2617               Opc == Instruction::Shl) {
2618             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2619               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2620             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2621               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2622           } else if (Opc == Instruction::SDiv ||
2623                      Opc == Instruction::UDiv ||
2624                      Opc == Instruction::LShr ||
2625                      Opc == Instruction::AShr) {
2626             if (Record[3] & (1 << bitc::PEO_EXACT))
2627               Flags |= SDivOperator::IsExact;
2628           }
2629         }
2630         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2631       }
2632       break;
2633     }
2634     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2635       if (Record.size() < 3)
2636         return error("Invalid record");
2637       int Opc = getDecodedCastOpcode(Record[0]);
2638       if (Opc < 0) {
2639         V = UndefValue::get(CurTy);  // Unknown cast.
2640       } else {
2641         Type *OpTy = getTypeByID(Record[1]);
2642         if (!OpTy)
2643           return error("Invalid record");
2644         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2645         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2646         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2647       }
2648       break;
2649     }
2650     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2651     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2652     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2653                                                      // operands]
2654       unsigned OpNum = 0;
2655       Type *PointeeType = nullptr;
2656       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2657           Record.size() % 2)
2658         PointeeType = getTypeByID(Record[OpNum++]);
2659 
2660       bool InBounds = false;
2661       Optional<unsigned> InRangeIndex;
2662       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2663         uint64_t Op = Record[OpNum++];
2664         InBounds = Op & 1;
2665         InRangeIndex = Op >> 1;
2666       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2667         InBounds = true;
2668 
2669       SmallVector<Constant*, 16> Elts;
2670       Type *Elt0FullTy = nullptr;
2671       while (OpNum != Record.size()) {
2672         if (!Elt0FullTy)
2673           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2674         Type *ElTy = getTypeByID(Record[OpNum++]);
2675         if (!ElTy)
2676           return error("Invalid record");
2677         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2678       }
2679 
2680       if (Elts.size() < 1)
2681         return error("Invalid gep with no operands");
2682 
2683       Type *ImplicitPointeeType =
2684           getPointerElementFlatType(Elt0FullTy->getScalarType());
2685       if (!PointeeType)
2686         PointeeType = ImplicitPointeeType;
2687       else if (PointeeType != ImplicitPointeeType)
2688         return error("Explicit gep operator type does not match pointee type "
2689                      "of pointer operand");
2690 
2691       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2692       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2693                                          InBounds, InRangeIndex);
2694       break;
2695     }
2696     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2697       if (Record.size() < 3)
2698         return error("Invalid record");
2699 
2700       Type *SelectorTy = Type::getInt1Ty(Context);
2701 
2702       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2703       // Get the type from the ValueList before getting a forward ref.
2704       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2705         if (Value *V = ValueList[Record[0]])
2706           if (SelectorTy != V->getType())
2707             SelectorTy = VectorType::get(SelectorTy,
2708                                          VTy->getElementCount());
2709 
2710       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2711                                                               SelectorTy),
2712                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2713                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2714       break;
2715     }
2716     case bitc::CST_CODE_CE_EXTRACTELT
2717         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2718       if (Record.size() < 3)
2719         return error("Invalid record");
2720       VectorType *OpTy =
2721         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2722       if (!OpTy)
2723         return error("Invalid record");
2724       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2725       Constant *Op1 = nullptr;
2726       if (Record.size() == 4) {
2727         Type *IdxTy = getTypeByID(Record[2]);
2728         if (!IdxTy)
2729           return error("Invalid record");
2730         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2731       } else {
2732         // Deprecated, but still needed to read old bitcode files.
2733         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2734       }
2735       if (!Op1)
2736         return error("Invalid record");
2737       V = ConstantExpr::getExtractElement(Op0, Op1);
2738       break;
2739     }
2740     case bitc::CST_CODE_CE_INSERTELT
2741         : { // CE_INSERTELT: [opval, opval, opty, opval]
2742       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2743       if (Record.size() < 3 || !OpTy)
2744         return error("Invalid record");
2745       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2746       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2747                                                   OpTy->getElementType());
2748       Constant *Op2 = nullptr;
2749       if (Record.size() == 4) {
2750         Type *IdxTy = getTypeByID(Record[2]);
2751         if (!IdxTy)
2752           return error("Invalid record");
2753         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2754       } else {
2755         // Deprecated, but still needed to read old bitcode files.
2756         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2757       }
2758       if (!Op2)
2759         return error("Invalid record");
2760       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2761       break;
2762     }
2763     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2764       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2765       if (Record.size() < 3 || !OpTy)
2766         return error("Invalid record");
2767       DelayedShuffles.push_back(
2768           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2769       ++NextCstNo;
2770       continue;
2771     }
2772     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2773       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2774       VectorType *OpTy =
2775         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2776       if (Record.size() < 4 || !RTy || !OpTy)
2777         return error("Invalid record");
2778       DelayedShuffles.push_back(
2779           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2780       ++NextCstNo;
2781       continue;
2782     }
2783     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2784       if (Record.size() < 4)
2785         return error("Invalid record");
2786       Type *OpTy = getTypeByID(Record[0]);
2787       if (!OpTy)
2788         return error("Invalid record");
2789       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2790       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2791 
2792       if (OpTy->isFPOrFPVectorTy())
2793         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2794       else
2795         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2796       break;
2797     }
2798     // This maintains backward compatibility, pre-asm dialect keywords.
2799     // Deprecated, but still needed to read old bitcode files.
2800     case bitc::CST_CODE_INLINEASM_OLD: {
2801       if (Record.size() < 2)
2802         return error("Invalid record");
2803       std::string AsmStr, ConstrStr;
2804       bool HasSideEffects = Record[0] & 1;
2805       bool IsAlignStack = Record[0] >> 1;
2806       unsigned AsmStrSize = Record[1];
2807       if (2+AsmStrSize >= Record.size())
2808         return error("Invalid record");
2809       unsigned ConstStrSize = Record[2+AsmStrSize];
2810       if (3+AsmStrSize+ConstStrSize > Record.size())
2811         return error("Invalid record");
2812 
2813       for (unsigned i = 0; i != AsmStrSize; ++i)
2814         AsmStr += (char)Record[2+i];
2815       for (unsigned i = 0; i != ConstStrSize; ++i)
2816         ConstrStr += (char)Record[3+AsmStrSize+i];
2817       UpgradeInlineAsmString(&AsmStr);
2818       V = InlineAsm::get(
2819           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2820           ConstrStr, HasSideEffects, IsAlignStack);
2821       break;
2822     }
2823     // This version adds support for the asm dialect keywords (e.g.,
2824     // inteldialect).
2825     case bitc::CST_CODE_INLINEASM: {
2826       if (Record.size() < 2)
2827         return error("Invalid record");
2828       std::string AsmStr, ConstrStr;
2829       bool HasSideEffects = Record[0] & 1;
2830       bool IsAlignStack = (Record[0] >> 1) & 1;
2831       unsigned AsmDialect = Record[0] >> 2;
2832       unsigned AsmStrSize = Record[1];
2833       if (2+AsmStrSize >= Record.size())
2834         return error("Invalid record");
2835       unsigned ConstStrSize = Record[2+AsmStrSize];
2836       if (3+AsmStrSize+ConstStrSize > Record.size())
2837         return error("Invalid record");
2838 
2839       for (unsigned i = 0; i != AsmStrSize; ++i)
2840         AsmStr += (char)Record[2+i];
2841       for (unsigned i = 0; i != ConstStrSize; ++i)
2842         ConstrStr += (char)Record[3+AsmStrSize+i];
2843       UpgradeInlineAsmString(&AsmStr);
2844       V = InlineAsm::get(
2845           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2846           ConstrStr, HasSideEffects, IsAlignStack,
2847           InlineAsm::AsmDialect(AsmDialect));
2848       break;
2849     }
2850     case bitc::CST_CODE_BLOCKADDRESS:{
2851       if (Record.size() < 3)
2852         return error("Invalid record");
2853       Type *FnTy = getTypeByID(Record[0]);
2854       if (!FnTy)
2855         return error("Invalid record");
2856       Function *Fn =
2857         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2858       if (!Fn)
2859         return error("Invalid record");
2860 
2861       // If the function is already parsed we can insert the block address right
2862       // away.
2863       BasicBlock *BB;
2864       unsigned BBID = Record[2];
2865       if (!BBID)
2866         // Invalid reference to entry block.
2867         return error("Invalid ID");
2868       if (!Fn->empty()) {
2869         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2870         for (size_t I = 0, E = BBID; I != E; ++I) {
2871           if (BBI == BBE)
2872             return error("Invalid ID");
2873           ++BBI;
2874         }
2875         BB = &*BBI;
2876       } else {
2877         // Otherwise insert a placeholder and remember it so it can be inserted
2878         // when the function is parsed.
2879         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2880         if (FwdBBs.empty())
2881           BasicBlockFwdRefQueue.push_back(Fn);
2882         if (FwdBBs.size() < BBID + 1)
2883           FwdBBs.resize(BBID + 1);
2884         if (!FwdBBs[BBID])
2885           FwdBBs[BBID] = BasicBlock::Create(Context);
2886         BB = FwdBBs[BBID];
2887       }
2888       V = BlockAddress::get(Fn, BB);
2889       break;
2890     }
2891     }
2892 
2893     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2894            "Incorrect fully structured type provided for Constant");
2895     ValueList.assignValue(V, NextCstNo, CurFullTy);
2896     ++NextCstNo;
2897   }
2898 }
2899 
2900 Error BitcodeReader::parseUseLists() {
2901   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2902     return Err;
2903 
2904   // Read all the records.
2905   SmallVector<uint64_t, 64> Record;
2906 
2907   while (true) {
2908     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2909     if (!MaybeEntry)
2910       return MaybeEntry.takeError();
2911     BitstreamEntry Entry = MaybeEntry.get();
2912 
2913     switch (Entry.Kind) {
2914     case BitstreamEntry::SubBlock: // Handled for us already.
2915     case BitstreamEntry::Error:
2916       return error("Malformed block");
2917     case BitstreamEntry::EndBlock:
2918       return Error::success();
2919     case BitstreamEntry::Record:
2920       // The interesting case.
2921       break;
2922     }
2923 
2924     // Read a use list record.
2925     Record.clear();
2926     bool IsBB = false;
2927     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2928     if (!MaybeRecord)
2929       return MaybeRecord.takeError();
2930     switch (MaybeRecord.get()) {
2931     default:  // Default behavior: unknown type.
2932       break;
2933     case bitc::USELIST_CODE_BB:
2934       IsBB = true;
2935       LLVM_FALLTHROUGH;
2936     case bitc::USELIST_CODE_DEFAULT: {
2937       unsigned RecordLength = Record.size();
2938       if (RecordLength < 3)
2939         // Records should have at least an ID and two indexes.
2940         return error("Invalid record");
2941       unsigned ID = Record.pop_back_val();
2942 
2943       Value *V;
2944       if (IsBB) {
2945         assert(ID < FunctionBBs.size() && "Basic block not found");
2946         V = FunctionBBs[ID];
2947       } else
2948         V = ValueList[ID];
2949       unsigned NumUses = 0;
2950       SmallDenseMap<const Use *, unsigned, 16> Order;
2951       for (const Use &U : V->materialized_uses()) {
2952         if (++NumUses > Record.size())
2953           break;
2954         Order[&U] = Record[NumUses - 1];
2955       }
2956       if (Order.size() != Record.size() || NumUses > Record.size())
2957         // Mismatches can happen if the functions are being materialized lazily
2958         // (out-of-order), or a value has been upgraded.
2959         break;
2960 
2961       V->sortUseList([&](const Use &L, const Use &R) {
2962         return Order.lookup(&L) < Order.lookup(&R);
2963       });
2964       break;
2965     }
2966     }
2967   }
2968 }
2969 
2970 /// When we see the block for metadata, remember where it is and then skip it.
2971 /// This lets us lazily deserialize the metadata.
2972 Error BitcodeReader::rememberAndSkipMetadata() {
2973   // Save the current stream state.
2974   uint64_t CurBit = Stream.GetCurrentBitNo();
2975   DeferredMetadataInfo.push_back(CurBit);
2976 
2977   // Skip over the block for now.
2978   if (Error Err = Stream.SkipBlock())
2979     return Err;
2980   return Error::success();
2981 }
2982 
2983 Error BitcodeReader::materializeMetadata() {
2984   for (uint64_t BitPos : DeferredMetadataInfo) {
2985     // Move the bit stream to the saved position.
2986     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2987       return JumpFailed;
2988     if (Error Err = MDLoader->parseModuleMetadata())
2989       return Err;
2990   }
2991 
2992   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2993   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
2994   // multiple times.
2995   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
2996     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2997       NamedMDNode *LinkerOpts =
2998           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2999       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3000         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3001     }
3002   }
3003 
3004   DeferredMetadataInfo.clear();
3005   return Error::success();
3006 }
3007 
3008 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3009 
3010 /// When we see the block for a function body, remember where it is and then
3011 /// skip it.  This lets us lazily deserialize the functions.
3012 Error BitcodeReader::rememberAndSkipFunctionBody() {
3013   // Get the function we are talking about.
3014   if (FunctionsWithBodies.empty())
3015     return error("Insufficient function protos");
3016 
3017   Function *Fn = FunctionsWithBodies.back();
3018   FunctionsWithBodies.pop_back();
3019 
3020   // Save the current stream state.
3021   uint64_t CurBit = Stream.GetCurrentBitNo();
3022   assert(
3023       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3024       "Mismatch between VST and scanned function offsets");
3025   DeferredFunctionInfo[Fn] = CurBit;
3026 
3027   // Skip over the function block for now.
3028   if (Error Err = Stream.SkipBlock())
3029     return Err;
3030   return Error::success();
3031 }
3032 
3033 Error BitcodeReader::globalCleanup() {
3034   // Patch the initializers for globals and aliases up.
3035   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3036     return Err;
3037   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3038     return error("Malformed global initializer set");
3039 
3040   // Look for intrinsic functions which need to be upgraded at some point
3041   // and functions that need to have their function attributes upgraded.
3042   for (Function &F : *TheModule) {
3043     MDLoader->upgradeDebugIntrinsics(F);
3044     Function *NewFn;
3045     if (UpgradeIntrinsicFunction(&F, NewFn))
3046       UpgradedIntrinsics[&F] = NewFn;
3047     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3048       // Some types could be renamed during loading if several modules are
3049       // loaded in the same LLVMContext (LTO scenario). In this case we should
3050       // remangle intrinsics names as well.
3051       RemangledIntrinsics[&F] = Remangled.getValue();
3052     // Look for functions that rely on old function attribute behavior.
3053     UpgradeFunctionAttributes(F);
3054   }
3055 
3056   // Look for global variables which need to be renamed.
3057   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3058   for (GlobalVariable &GV : TheModule->globals())
3059     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3060       UpgradedVariables.emplace_back(&GV, Upgraded);
3061   for (auto &Pair : UpgradedVariables) {
3062     Pair.first->eraseFromParent();
3063     TheModule->getGlobalList().push_back(Pair.second);
3064   }
3065 
3066   // Force deallocation of memory for these vectors to favor the client that
3067   // want lazy deserialization.
3068   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3069   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3070       IndirectSymbolInits);
3071   return Error::success();
3072 }
3073 
3074 /// Support for lazy parsing of function bodies. This is required if we
3075 /// either have an old bitcode file without a VST forward declaration record,
3076 /// or if we have an anonymous function being materialized, since anonymous
3077 /// functions do not have a name and are therefore not in the VST.
3078 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3079   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3080     return JumpFailed;
3081 
3082   if (Stream.AtEndOfStream())
3083     return error("Could not find function in stream");
3084 
3085   if (!SeenFirstFunctionBody)
3086     return error("Trying to materialize functions before seeing function blocks");
3087 
3088   // An old bitcode file with the symbol table at the end would have
3089   // finished the parse greedily.
3090   assert(SeenValueSymbolTable);
3091 
3092   SmallVector<uint64_t, 64> Record;
3093 
3094   while (true) {
3095     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3096     if (!MaybeEntry)
3097       return MaybeEntry.takeError();
3098     llvm::BitstreamEntry Entry = MaybeEntry.get();
3099 
3100     switch (Entry.Kind) {
3101     default:
3102       return error("Expect SubBlock");
3103     case BitstreamEntry::SubBlock:
3104       switch (Entry.ID) {
3105       default:
3106         return error("Expect function block");
3107       case bitc::FUNCTION_BLOCK_ID:
3108         if (Error Err = rememberAndSkipFunctionBody())
3109           return Err;
3110         NextUnreadBit = Stream.GetCurrentBitNo();
3111         return Error::success();
3112       }
3113     }
3114   }
3115 }
3116 
3117 bool BitcodeReaderBase::readBlockInfo() {
3118   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3119       Stream.ReadBlockInfoBlock();
3120   if (!MaybeNewBlockInfo)
3121     return true; // FIXME Handle the error.
3122   Optional<BitstreamBlockInfo> NewBlockInfo =
3123       std::move(MaybeNewBlockInfo.get());
3124   if (!NewBlockInfo)
3125     return true;
3126   BlockInfo = std::move(*NewBlockInfo);
3127   return false;
3128 }
3129 
3130 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3131   // v1: [selection_kind, name]
3132   // v2: [strtab_offset, strtab_size, selection_kind]
3133   StringRef Name;
3134   std::tie(Name, Record) = readNameFromStrtab(Record);
3135 
3136   if (Record.empty())
3137     return error("Invalid record");
3138   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3139   std::string OldFormatName;
3140   if (!UseStrtab) {
3141     if (Record.size() < 2)
3142       return error("Invalid record");
3143     unsigned ComdatNameSize = Record[1];
3144     OldFormatName.reserve(ComdatNameSize);
3145     for (unsigned i = 0; i != ComdatNameSize; ++i)
3146       OldFormatName += (char)Record[2 + i];
3147     Name = OldFormatName;
3148   }
3149   Comdat *C = TheModule->getOrInsertComdat(Name);
3150   C->setSelectionKind(SK);
3151   ComdatList.push_back(C);
3152   return Error::success();
3153 }
3154 
3155 static void inferDSOLocal(GlobalValue *GV) {
3156   // infer dso_local from linkage and visibility if it is not encoded.
3157   if (GV->hasLocalLinkage() ||
3158       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3159     GV->setDSOLocal(true);
3160 }
3161 
3162 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3163   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3164   // visibility, threadlocal, unnamed_addr, externally_initialized,
3165   // dllstorageclass, comdat, attributes, preemption specifier,
3166   // partition strtab offset, partition strtab size] (name in VST)
3167   // v2: [strtab_offset, strtab_size, v1]
3168   StringRef Name;
3169   std::tie(Name, Record) = readNameFromStrtab(Record);
3170 
3171   if (Record.size() < 6)
3172     return error("Invalid record");
3173   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3174   Type *Ty = flattenPointerTypes(FullTy);
3175   if (!Ty)
3176     return error("Invalid record");
3177   bool isConstant = Record[1] & 1;
3178   bool explicitType = Record[1] & 2;
3179   unsigned AddressSpace;
3180   if (explicitType) {
3181     AddressSpace = Record[1] >> 2;
3182   } else {
3183     if (!Ty->isPointerTy())
3184       return error("Invalid type for value");
3185     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3186     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3187   }
3188 
3189   uint64_t RawLinkage = Record[3];
3190   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3191   MaybeAlign Alignment;
3192   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3193     return Err;
3194   std::string Section;
3195   if (Record[5]) {
3196     if (Record[5] - 1 >= SectionTable.size())
3197       return error("Invalid ID");
3198     Section = SectionTable[Record[5] - 1];
3199   }
3200   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3201   // Local linkage must have default visibility.
3202   // auto-upgrade `hidden` and `protected` for old bitcode.
3203   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3204     Visibility = getDecodedVisibility(Record[6]);
3205 
3206   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3207   if (Record.size() > 7)
3208     TLM = getDecodedThreadLocalMode(Record[7]);
3209 
3210   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3211   if (Record.size() > 8)
3212     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3213 
3214   bool ExternallyInitialized = false;
3215   if (Record.size() > 9)
3216     ExternallyInitialized = Record[9];
3217 
3218   GlobalVariable *NewGV =
3219       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3220                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3221   NewGV->setAlignment(Alignment);
3222   if (!Section.empty())
3223     NewGV->setSection(Section);
3224   NewGV->setVisibility(Visibility);
3225   NewGV->setUnnamedAddr(UnnamedAddr);
3226 
3227   if (Record.size() > 10)
3228     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3229   else
3230     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3231 
3232   FullTy = PointerType::get(FullTy, AddressSpace);
3233   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3234          "Incorrect fully specified type for GlobalVariable");
3235   ValueList.push_back(NewGV, FullTy);
3236 
3237   // Remember which value to use for the global initializer.
3238   if (unsigned InitID = Record[2])
3239     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3240 
3241   if (Record.size() > 11) {
3242     if (unsigned ComdatID = Record[11]) {
3243       if (ComdatID > ComdatList.size())
3244         return error("Invalid global variable comdat ID");
3245       NewGV->setComdat(ComdatList[ComdatID - 1]);
3246     }
3247   } else if (hasImplicitComdat(RawLinkage)) {
3248     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3249   }
3250 
3251   if (Record.size() > 12) {
3252     auto AS = getAttributes(Record[12]).getFnAttributes();
3253     NewGV->setAttributes(AS);
3254   }
3255 
3256   if (Record.size() > 13) {
3257     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3258   }
3259   inferDSOLocal(NewGV);
3260 
3261   // Check whether we have enough values to read a partition name.
3262   if (Record.size() > 15)
3263     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3264 
3265   return Error::success();
3266 }
3267 
3268 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3269   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3270   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3271   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3272   // v2: [strtab_offset, strtab_size, v1]
3273   StringRef Name;
3274   std::tie(Name, Record) = readNameFromStrtab(Record);
3275 
3276   if (Record.size() < 8)
3277     return error("Invalid record");
3278   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3279   Type *FTy = flattenPointerTypes(FullFTy);
3280   if (!FTy)
3281     return error("Invalid record");
3282   if (isa<PointerType>(FTy))
3283     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3284 
3285   if (!isa<FunctionType>(FTy))
3286     return error("Invalid type for value");
3287   auto CC = static_cast<CallingConv::ID>(Record[1]);
3288   if (CC & ~CallingConv::MaxID)
3289     return error("Invalid calling convention ID");
3290 
3291   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3292   if (Record.size() > 16)
3293     AddrSpace = Record[16];
3294 
3295   Function *Func =
3296       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3297                        AddrSpace, Name, TheModule);
3298 
3299   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3300          "Incorrect fully specified type provided for function");
3301   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3302 
3303   Func->setCallingConv(CC);
3304   bool isProto = Record[2];
3305   uint64_t RawLinkage = Record[3];
3306   Func->setLinkage(getDecodedLinkage(RawLinkage));
3307   Func->setAttributes(getAttributes(Record[4]));
3308 
3309   // Upgrade any old-style byval or sret without a type by propagating the
3310   // argument's pointee type. There should be no opaque pointers where the byval
3311   // type is implicit.
3312   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3313     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3314       if (!Func->hasParamAttribute(i, Kind))
3315         continue;
3316 
3317       Func->removeParamAttr(i, Kind);
3318 
3319       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3320       Type *PtrEltTy = getPointerElementFlatType(PTy);
3321       Attribute NewAttr =
3322           Kind == Attribute::ByVal
3323               ? Attribute::getWithByValType(Context, PtrEltTy)
3324               : Attribute::getWithStructRetType(Context, PtrEltTy);
3325       Func->addParamAttr(i, NewAttr);
3326     }
3327   }
3328 
3329   MaybeAlign Alignment;
3330   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3331     return Err;
3332   Func->setAlignment(Alignment);
3333   if (Record[6]) {
3334     if (Record[6] - 1 >= SectionTable.size())
3335       return error("Invalid ID");
3336     Func->setSection(SectionTable[Record[6] - 1]);
3337   }
3338   // Local linkage must have default visibility.
3339   // auto-upgrade `hidden` and `protected` for old bitcode.
3340   if (!Func->hasLocalLinkage())
3341     Func->setVisibility(getDecodedVisibility(Record[7]));
3342   if (Record.size() > 8 && Record[8]) {
3343     if (Record[8] - 1 >= GCTable.size())
3344       return error("Invalid ID");
3345     Func->setGC(GCTable[Record[8] - 1]);
3346   }
3347   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3348   if (Record.size() > 9)
3349     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3350   Func->setUnnamedAddr(UnnamedAddr);
3351   if (Record.size() > 10 && Record[10] != 0)
3352     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3353 
3354   if (Record.size() > 11)
3355     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3356   else
3357     upgradeDLLImportExportLinkage(Func, RawLinkage);
3358 
3359   if (Record.size() > 12) {
3360     if (unsigned ComdatID = Record[12]) {
3361       if (ComdatID > ComdatList.size())
3362         return error("Invalid function comdat ID");
3363       Func->setComdat(ComdatList[ComdatID - 1]);
3364     }
3365   } else if (hasImplicitComdat(RawLinkage)) {
3366     Func->setComdat(reinterpret_cast<Comdat *>(1));
3367   }
3368 
3369   if (Record.size() > 13 && Record[13] != 0)
3370     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3371 
3372   if (Record.size() > 14 && Record[14] != 0)
3373     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3374 
3375   if (Record.size() > 15) {
3376     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3377   }
3378   inferDSOLocal(Func);
3379 
3380   // Record[16] is the address space number.
3381 
3382   // Check whether we have enough values to read a partition name.
3383   if (Record.size() > 18)
3384     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3385 
3386   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3387   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3388          "Incorrect fully specified type provided for Function");
3389   ValueList.push_back(Func, FullTy);
3390 
3391   // If this is a function with a body, remember the prototype we are
3392   // creating now, so that we can match up the body with them later.
3393   if (!isProto) {
3394     Func->setIsMaterializable(true);
3395     FunctionsWithBodies.push_back(Func);
3396     DeferredFunctionInfo[Func] = 0;
3397   }
3398   return Error::success();
3399 }
3400 
3401 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3402     unsigned BitCode, ArrayRef<uint64_t> Record) {
3403   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3404   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3405   // dllstorageclass, threadlocal, unnamed_addr,
3406   // preemption specifier] (name in VST)
3407   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3408   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3409   // preemption specifier] (name in VST)
3410   // v2: [strtab_offset, strtab_size, v1]
3411   StringRef Name;
3412   std::tie(Name, Record) = readNameFromStrtab(Record);
3413 
3414   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3415   if (Record.size() < (3 + (unsigned)NewRecord))
3416     return error("Invalid record");
3417   unsigned OpNum = 0;
3418   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3419   Type *Ty = flattenPointerTypes(FullTy);
3420   if (!Ty)
3421     return error("Invalid record");
3422 
3423   unsigned AddrSpace;
3424   if (!NewRecord) {
3425     auto *PTy = dyn_cast<PointerType>(Ty);
3426     if (!PTy)
3427       return error("Invalid type for value");
3428     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3429     AddrSpace = PTy->getAddressSpace();
3430   } else {
3431     AddrSpace = Record[OpNum++];
3432   }
3433 
3434   auto Val = Record[OpNum++];
3435   auto Linkage = Record[OpNum++];
3436   GlobalIndirectSymbol *NewGA;
3437   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3438       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3439     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3440                                 TheModule);
3441   else
3442     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3443                                 nullptr, TheModule);
3444 
3445   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3446          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3447   // Local linkage must have default visibility.
3448   // auto-upgrade `hidden` and `protected` for old bitcode.
3449   if (OpNum != Record.size()) {
3450     auto VisInd = OpNum++;
3451     if (!NewGA->hasLocalLinkage())
3452       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3453   }
3454   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3455       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3456     if (OpNum != Record.size())
3457       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3458     else
3459       upgradeDLLImportExportLinkage(NewGA, Linkage);
3460     if (OpNum != Record.size())
3461       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3462     if (OpNum != Record.size())
3463       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3464   }
3465   if (OpNum != Record.size())
3466     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3467   inferDSOLocal(NewGA);
3468 
3469   // Check whether we have enough values to read a partition name.
3470   if (OpNum + 1 < Record.size()) {
3471     NewGA->setPartition(
3472         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3473     OpNum += 2;
3474   }
3475 
3476   FullTy = PointerType::get(FullTy, AddrSpace);
3477   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3478          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3479   ValueList.push_back(NewGA, FullTy);
3480   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3481   return Error::success();
3482 }
3483 
3484 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3485                                  bool ShouldLazyLoadMetadata,
3486                                  DataLayoutCallbackTy DataLayoutCallback) {
3487   if (ResumeBit) {
3488     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3489       return JumpFailed;
3490   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3491     return Err;
3492 
3493   SmallVector<uint64_t, 64> Record;
3494 
3495   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3496   // finalize the datalayout before we run any of that code.
3497   bool ResolvedDataLayout = false;
3498   auto ResolveDataLayout = [&] {
3499     if (ResolvedDataLayout)
3500       return;
3501 
3502     // datalayout and triple can't be parsed after this point.
3503     ResolvedDataLayout = true;
3504 
3505     // Upgrade data layout string.
3506     std::string DL = llvm::UpgradeDataLayoutString(
3507         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3508     TheModule->setDataLayout(DL);
3509 
3510     if (auto LayoutOverride =
3511             DataLayoutCallback(TheModule->getTargetTriple()))
3512       TheModule->setDataLayout(*LayoutOverride);
3513   };
3514 
3515   // Read all the records for this module.
3516   while (true) {
3517     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3518     if (!MaybeEntry)
3519       return MaybeEntry.takeError();
3520     llvm::BitstreamEntry Entry = MaybeEntry.get();
3521 
3522     switch (Entry.Kind) {
3523     case BitstreamEntry::Error:
3524       return error("Malformed block");
3525     case BitstreamEntry::EndBlock:
3526       ResolveDataLayout();
3527       return globalCleanup();
3528 
3529     case BitstreamEntry::SubBlock:
3530       switch (Entry.ID) {
3531       default:  // Skip unknown content.
3532         if (Error Err = Stream.SkipBlock())
3533           return Err;
3534         break;
3535       case bitc::BLOCKINFO_BLOCK_ID:
3536         if (readBlockInfo())
3537           return error("Malformed block");
3538         break;
3539       case bitc::PARAMATTR_BLOCK_ID:
3540         if (Error Err = parseAttributeBlock())
3541           return Err;
3542         break;
3543       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3544         if (Error Err = parseAttributeGroupBlock())
3545           return Err;
3546         break;
3547       case bitc::TYPE_BLOCK_ID_NEW:
3548         if (Error Err = parseTypeTable())
3549           return Err;
3550         break;
3551       case bitc::VALUE_SYMTAB_BLOCK_ID:
3552         if (!SeenValueSymbolTable) {
3553           // Either this is an old form VST without function index and an
3554           // associated VST forward declaration record (which would have caused
3555           // the VST to be jumped to and parsed before it was encountered
3556           // normally in the stream), or there were no function blocks to
3557           // trigger an earlier parsing of the VST.
3558           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3559           if (Error Err = parseValueSymbolTable())
3560             return Err;
3561           SeenValueSymbolTable = true;
3562         } else {
3563           // We must have had a VST forward declaration record, which caused
3564           // the parser to jump to and parse the VST earlier.
3565           assert(VSTOffset > 0);
3566           if (Error Err = Stream.SkipBlock())
3567             return Err;
3568         }
3569         break;
3570       case bitc::CONSTANTS_BLOCK_ID:
3571         if (Error Err = parseConstants())
3572           return Err;
3573         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3574           return Err;
3575         break;
3576       case bitc::METADATA_BLOCK_ID:
3577         if (ShouldLazyLoadMetadata) {
3578           if (Error Err = rememberAndSkipMetadata())
3579             return Err;
3580           break;
3581         }
3582         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3583         if (Error Err = MDLoader->parseModuleMetadata())
3584           return Err;
3585         break;
3586       case bitc::METADATA_KIND_BLOCK_ID:
3587         if (Error Err = MDLoader->parseMetadataKinds())
3588           return Err;
3589         break;
3590       case bitc::FUNCTION_BLOCK_ID:
3591         ResolveDataLayout();
3592 
3593         // If this is the first function body we've seen, reverse the
3594         // FunctionsWithBodies list.
3595         if (!SeenFirstFunctionBody) {
3596           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3597           if (Error Err = globalCleanup())
3598             return Err;
3599           SeenFirstFunctionBody = true;
3600         }
3601 
3602         if (VSTOffset > 0) {
3603           // If we have a VST forward declaration record, make sure we
3604           // parse the VST now if we haven't already. It is needed to
3605           // set up the DeferredFunctionInfo vector for lazy reading.
3606           if (!SeenValueSymbolTable) {
3607             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3608               return Err;
3609             SeenValueSymbolTable = true;
3610             // Fall through so that we record the NextUnreadBit below.
3611             // This is necessary in case we have an anonymous function that
3612             // is later materialized. Since it will not have a VST entry we
3613             // need to fall back to the lazy parse to find its offset.
3614           } else {
3615             // If we have a VST forward declaration record, but have already
3616             // parsed the VST (just above, when the first function body was
3617             // encountered here), then we are resuming the parse after
3618             // materializing functions. The ResumeBit points to the
3619             // start of the last function block recorded in the
3620             // DeferredFunctionInfo map. Skip it.
3621             if (Error Err = Stream.SkipBlock())
3622               return Err;
3623             continue;
3624           }
3625         }
3626 
3627         // Support older bitcode files that did not have the function
3628         // index in the VST, nor a VST forward declaration record, as
3629         // well as anonymous functions that do not have VST entries.
3630         // Build the DeferredFunctionInfo vector on the fly.
3631         if (Error Err = rememberAndSkipFunctionBody())
3632           return Err;
3633 
3634         // Suspend parsing when we reach the function bodies. Subsequent
3635         // materialization calls will resume it when necessary. If the bitcode
3636         // file is old, the symbol table will be at the end instead and will not
3637         // have been seen yet. In this case, just finish the parse now.
3638         if (SeenValueSymbolTable) {
3639           NextUnreadBit = Stream.GetCurrentBitNo();
3640           // After the VST has been parsed, we need to make sure intrinsic name
3641           // are auto-upgraded.
3642           return globalCleanup();
3643         }
3644         break;
3645       case bitc::USELIST_BLOCK_ID:
3646         if (Error Err = parseUseLists())
3647           return Err;
3648         break;
3649       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3650         if (Error Err = parseOperandBundleTags())
3651           return Err;
3652         break;
3653       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3654         if (Error Err = parseSyncScopeNames())
3655           return Err;
3656         break;
3657       }
3658       continue;
3659 
3660     case BitstreamEntry::Record:
3661       // The interesting case.
3662       break;
3663     }
3664 
3665     // Read a record.
3666     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3667     if (!MaybeBitCode)
3668       return MaybeBitCode.takeError();
3669     switch (unsigned BitCode = MaybeBitCode.get()) {
3670     default: break;  // Default behavior, ignore unknown content.
3671     case bitc::MODULE_CODE_VERSION: {
3672       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3673       if (!VersionOrErr)
3674         return VersionOrErr.takeError();
3675       UseRelativeIDs = *VersionOrErr >= 1;
3676       break;
3677     }
3678     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3679       if (ResolvedDataLayout)
3680         return error("target triple too late in module");
3681       std::string S;
3682       if (convertToString(Record, 0, S))
3683         return error("Invalid record");
3684       TheModule->setTargetTriple(S);
3685       break;
3686     }
3687     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3688       if (ResolvedDataLayout)
3689         return error("datalayout too late in module");
3690       std::string S;
3691       if (convertToString(Record, 0, S))
3692         return error("Invalid record");
3693       TheModule->setDataLayout(S);
3694       break;
3695     }
3696     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3697       std::string S;
3698       if (convertToString(Record, 0, S))
3699         return error("Invalid record");
3700       TheModule->setModuleInlineAsm(S);
3701       break;
3702     }
3703     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3704       // Deprecated, but still needed to read old bitcode files.
3705       std::string S;
3706       if (convertToString(Record, 0, S))
3707         return error("Invalid record");
3708       // Ignore value.
3709       break;
3710     }
3711     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3712       std::string S;
3713       if (convertToString(Record, 0, S))
3714         return error("Invalid record");
3715       SectionTable.push_back(S);
3716       break;
3717     }
3718     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3719       std::string S;
3720       if (convertToString(Record, 0, S))
3721         return error("Invalid record");
3722       GCTable.push_back(S);
3723       break;
3724     }
3725     case bitc::MODULE_CODE_COMDAT:
3726       if (Error Err = parseComdatRecord(Record))
3727         return Err;
3728       break;
3729     case bitc::MODULE_CODE_GLOBALVAR:
3730       if (Error Err = parseGlobalVarRecord(Record))
3731         return Err;
3732       break;
3733     case bitc::MODULE_CODE_FUNCTION:
3734       ResolveDataLayout();
3735       if (Error Err = parseFunctionRecord(Record))
3736         return Err;
3737       break;
3738     case bitc::MODULE_CODE_IFUNC:
3739     case bitc::MODULE_CODE_ALIAS:
3740     case bitc::MODULE_CODE_ALIAS_OLD:
3741       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3742         return Err;
3743       break;
3744     /// MODULE_CODE_VSTOFFSET: [offset]
3745     case bitc::MODULE_CODE_VSTOFFSET:
3746       if (Record.empty())
3747         return error("Invalid record");
3748       // Note that we subtract 1 here because the offset is relative to one word
3749       // before the start of the identification or module block, which was
3750       // historically always the start of the regular bitcode header.
3751       VSTOffset = Record[0] - 1;
3752       break;
3753     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3754     case bitc::MODULE_CODE_SOURCE_FILENAME:
3755       SmallString<128> ValueName;
3756       if (convertToString(Record, 0, ValueName))
3757         return error("Invalid record");
3758       TheModule->setSourceFileName(ValueName);
3759       break;
3760     }
3761     Record.clear();
3762   }
3763 }
3764 
3765 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3766                                       bool IsImporting,
3767                                       DataLayoutCallbackTy DataLayoutCallback) {
3768   TheModule = M;
3769   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3770                             [&](unsigned ID) { return getTypeByID(ID); });
3771   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3772 }
3773 
3774 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3775   if (!isa<PointerType>(PtrType))
3776     return error("Load/Store operand is not a pointer type");
3777   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3778 
3779   if (ValType && ValType != ElemType)
3780     return error("Explicit load/store type does not match pointee "
3781                  "type of pointer operand");
3782   if (!PointerType::isLoadableOrStorableType(ElemType))
3783     return error("Cannot load/store from pointer");
3784   return Error::success();
3785 }
3786 
3787 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3788                                             ArrayRef<Type *> ArgsFullTys) {
3789   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3790     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3791       if (!CB->paramHasAttr(i, Kind))
3792         continue;
3793 
3794       CB->removeParamAttr(i, Kind);
3795 
3796       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3797       Attribute NewAttr =
3798           Kind == Attribute::ByVal
3799               ? Attribute::getWithByValType(Context, PtrEltTy)
3800               : Attribute::getWithStructRetType(Context, PtrEltTy);
3801       CB->addParamAttr(i, NewAttr);
3802     }
3803   }
3804 }
3805 
3806 /// Lazily parse the specified function body block.
3807 Error BitcodeReader::parseFunctionBody(Function *F) {
3808   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3809     return Err;
3810 
3811   // Unexpected unresolved metadata when parsing function.
3812   if (MDLoader->hasFwdRefs())
3813     return error("Invalid function metadata: incoming forward references");
3814 
3815   InstructionList.clear();
3816   unsigned ModuleValueListSize = ValueList.size();
3817   unsigned ModuleMDLoaderSize = MDLoader->size();
3818 
3819   // Add all the function arguments to the value table.
3820   unsigned ArgNo = 0;
3821   FunctionType *FullFTy = FunctionTypes[F];
3822   for (Argument &I : F->args()) {
3823     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3824            "Incorrect fully specified type for Function Argument");
3825     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3826   }
3827   unsigned NextValueNo = ValueList.size();
3828   BasicBlock *CurBB = nullptr;
3829   unsigned CurBBNo = 0;
3830 
3831   DebugLoc LastLoc;
3832   auto getLastInstruction = [&]() -> Instruction * {
3833     if (CurBB && !CurBB->empty())
3834       return &CurBB->back();
3835     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3836              !FunctionBBs[CurBBNo - 1]->empty())
3837       return &FunctionBBs[CurBBNo - 1]->back();
3838     return nullptr;
3839   };
3840 
3841   std::vector<OperandBundleDef> OperandBundles;
3842 
3843   // Read all the records.
3844   SmallVector<uint64_t, 64> Record;
3845 
3846   while (true) {
3847     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3848     if (!MaybeEntry)
3849       return MaybeEntry.takeError();
3850     llvm::BitstreamEntry Entry = MaybeEntry.get();
3851 
3852     switch (Entry.Kind) {
3853     case BitstreamEntry::Error:
3854       return error("Malformed block");
3855     case BitstreamEntry::EndBlock:
3856       goto OutOfRecordLoop;
3857 
3858     case BitstreamEntry::SubBlock:
3859       switch (Entry.ID) {
3860       default:  // Skip unknown content.
3861         if (Error Err = Stream.SkipBlock())
3862           return Err;
3863         break;
3864       case bitc::CONSTANTS_BLOCK_ID:
3865         if (Error Err = parseConstants())
3866           return Err;
3867         NextValueNo = ValueList.size();
3868         break;
3869       case bitc::VALUE_SYMTAB_BLOCK_ID:
3870         if (Error Err = parseValueSymbolTable())
3871           return Err;
3872         break;
3873       case bitc::METADATA_ATTACHMENT_ID:
3874         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3875           return Err;
3876         break;
3877       case bitc::METADATA_BLOCK_ID:
3878         assert(DeferredMetadataInfo.empty() &&
3879                "Must read all module-level metadata before function-level");
3880         if (Error Err = MDLoader->parseFunctionMetadata())
3881           return Err;
3882         break;
3883       case bitc::USELIST_BLOCK_ID:
3884         if (Error Err = parseUseLists())
3885           return Err;
3886         break;
3887       }
3888       continue;
3889 
3890     case BitstreamEntry::Record:
3891       // The interesting case.
3892       break;
3893     }
3894 
3895     // Read a record.
3896     Record.clear();
3897     Instruction *I = nullptr;
3898     Type *FullTy = nullptr;
3899     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3900     if (!MaybeBitCode)
3901       return MaybeBitCode.takeError();
3902     switch (unsigned BitCode = MaybeBitCode.get()) {
3903     default: // Default behavior: reject
3904       return error("Invalid value");
3905     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3906       if (Record.empty() || Record[0] == 0)
3907         return error("Invalid record");
3908       // Create all the basic blocks for the function.
3909       FunctionBBs.resize(Record[0]);
3910 
3911       // See if anything took the address of blocks in this function.
3912       auto BBFRI = BasicBlockFwdRefs.find(F);
3913       if (BBFRI == BasicBlockFwdRefs.end()) {
3914         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3915           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3916       } else {
3917         auto &BBRefs = BBFRI->second;
3918         // Check for invalid basic block references.
3919         if (BBRefs.size() > FunctionBBs.size())
3920           return error("Invalid ID");
3921         assert(!BBRefs.empty() && "Unexpected empty array");
3922         assert(!BBRefs.front() && "Invalid reference to entry block");
3923         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3924              ++I)
3925           if (I < RE && BBRefs[I]) {
3926             BBRefs[I]->insertInto(F);
3927             FunctionBBs[I] = BBRefs[I];
3928           } else {
3929             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3930           }
3931 
3932         // Erase from the table.
3933         BasicBlockFwdRefs.erase(BBFRI);
3934       }
3935 
3936       CurBB = FunctionBBs[0];
3937       continue;
3938     }
3939 
3940     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3941       // This record indicates that the last instruction is at the same
3942       // location as the previous instruction with a location.
3943       I = getLastInstruction();
3944 
3945       if (!I)
3946         return error("Invalid record");
3947       I->setDebugLoc(LastLoc);
3948       I = nullptr;
3949       continue;
3950 
3951     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3952       I = getLastInstruction();
3953       if (!I || Record.size() < 4)
3954         return error("Invalid record");
3955 
3956       unsigned Line = Record[0], Col = Record[1];
3957       unsigned ScopeID = Record[2], IAID = Record[3];
3958       bool isImplicitCode = Record.size() == 5 && Record[4];
3959 
3960       MDNode *Scope = nullptr, *IA = nullptr;
3961       if (ScopeID) {
3962         Scope = dyn_cast_or_null<MDNode>(
3963             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3964         if (!Scope)
3965           return error("Invalid record");
3966       }
3967       if (IAID) {
3968         IA = dyn_cast_or_null<MDNode>(
3969             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3970         if (!IA)
3971           return error("Invalid record");
3972       }
3973       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
3974                                 isImplicitCode);
3975       I->setDebugLoc(LastLoc);
3976       I = nullptr;
3977       continue;
3978     }
3979     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3980       unsigned OpNum = 0;
3981       Value *LHS;
3982       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3983           OpNum+1 > Record.size())
3984         return error("Invalid record");
3985 
3986       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3987       if (Opc == -1)
3988         return error("Invalid record");
3989       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3990       InstructionList.push_back(I);
3991       if (OpNum < Record.size()) {
3992         if (isa<FPMathOperator>(I)) {
3993           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3994           if (FMF.any())
3995             I->setFastMathFlags(FMF);
3996         }
3997       }
3998       break;
3999     }
4000     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4001       unsigned OpNum = 0;
4002       Value *LHS, *RHS;
4003       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4004           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4005           OpNum+1 > Record.size())
4006         return error("Invalid record");
4007 
4008       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4009       if (Opc == -1)
4010         return error("Invalid record");
4011       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4012       InstructionList.push_back(I);
4013       if (OpNum < Record.size()) {
4014         if (Opc == Instruction::Add ||
4015             Opc == Instruction::Sub ||
4016             Opc == Instruction::Mul ||
4017             Opc == Instruction::Shl) {
4018           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4019             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4020           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4021             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4022         } else if (Opc == Instruction::SDiv ||
4023                    Opc == Instruction::UDiv ||
4024                    Opc == Instruction::LShr ||
4025                    Opc == Instruction::AShr) {
4026           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4027             cast<BinaryOperator>(I)->setIsExact(true);
4028         } else if (isa<FPMathOperator>(I)) {
4029           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4030           if (FMF.any())
4031             I->setFastMathFlags(FMF);
4032         }
4033 
4034       }
4035       break;
4036     }
4037     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4038       unsigned OpNum = 0;
4039       Value *Op;
4040       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4041           OpNum+2 != Record.size())
4042         return error("Invalid record");
4043 
4044       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4045       Type *ResTy = flattenPointerTypes(FullTy);
4046       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4047       if (Opc == -1 || !ResTy)
4048         return error("Invalid record");
4049       Instruction *Temp = nullptr;
4050       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4051         if (Temp) {
4052           InstructionList.push_back(Temp);
4053           assert(CurBB && "No current BB?");
4054           CurBB->getInstList().push_back(Temp);
4055         }
4056       } else {
4057         auto CastOp = (Instruction::CastOps)Opc;
4058         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4059           return error("Invalid cast");
4060         I = CastInst::Create(CastOp, Op, ResTy);
4061       }
4062       InstructionList.push_back(I);
4063       break;
4064     }
4065     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4066     case bitc::FUNC_CODE_INST_GEP_OLD:
4067     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4068       unsigned OpNum = 0;
4069 
4070       Type *Ty;
4071       bool InBounds;
4072 
4073       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4074         InBounds = Record[OpNum++];
4075         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4076         Ty = flattenPointerTypes(FullTy);
4077       } else {
4078         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4079         Ty = nullptr;
4080       }
4081 
4082       Value *BasePtr;
4083       Type *FullBaseTy = nullptr;
4084       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4085         return error("Invalid record");
4086 
4087       if (!Ty) {
4088         std::tie(FullTy, Ty) =
4089             getPointerElementTypes(FullBaseTy->getScalarType());
4090       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4091         return error(
4092             "Explicit gep type does not match pointee type of pointer operand");
4093 
4094       SmallVector<Value*, 16> GEPIdx;
4095       while (OpNum != Record.size()) {
4096         Value *Op;
4097         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4098           return error("Invalid record");
4099         GEPIdx.push_back(Op);
4100       }
4101 
4102       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4103       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4104 
4105       InstructionList.push_back(I);
4106       if (InBounds)
4107         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4108       break;
4109     }
4110 
4111     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4112                                        // EXTRACTVAL: [opty, opval, n x indices]
4113       unsigned OpNum = 0;
4114       Value *Agg;
4115       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4116         return error("Invalid record");
4117 
4118       unsigned RecSize = Record.size();
4119       if (OpNum == RecSize)
4120         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4121 
4122       SmallVector<unsigned, 4> EXTRACTVALIdx;
4123       for (; OpNum != RecSize; ++OpNum) {
4124         bool IsArray = FullTy->isArrayTy();
4125         bool IsStruct = FullTy->isStructTy();
4126         uint64_t Index = Record[OpNum];
4127 
4128         if (!IsStruct && !IsArray)
4129           return error("EXTRACTVAL: Invalid type");
4130         if ((unsigned)Index != Index)
4131           return error("Invalid value");
4132         if (IsStruct && Index >= FullTy->getStructNumElements())
4133           return error("EXTRACTVAL: Invalid struct index");
4134         if (IsArray && Index >= FullTy->getArrayNumElements())
4135           return error("EXTRACTVAL: Invalid array index");
4136         EXTRACTVALIdx.push_back((unsigned)Index);
4137 
4138         if (IsStruct)
4139           FullTy = FullTy->getStructElementType(Index);
4140         else
4141           FullTy = FullTy->getArrayElementType();
4142       }
4143 
4144       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4145       InstructionList.push_back(I);
4146       break;
4147     }
4148 
4149     case bitc::FUNC_CODE_INST_INSERTVAL: {
4150                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4151       unsigned OpNum = 0;
4152       Value *Agg;
4153       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4154         return error("Invalid record");
4155       Value *Val;
4156       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4157         return error("Invalid record");
4158 
4159       unsigned RecSize = Record.size();
4160       if (OpNum == RecSize)
4161         return error("INSERTVAL: Invalid instruction with 0 indices");
4162 
4163       SmallVector<unsigned, 4> INSERTVALIdx;
4164       Type *CurTy = Agg->getType();
4165       for (; OpNum != RecSize; ++OpNum) {
4166         bool IsArray = CurTy->isArrayTy();
4167         bool IsStruct = CurTy->isStructTy();
4168         uint64_t Index = Record[OpNum];
4169 
4170         if (!IsStruct && !IsArray)
4171           return error("INSERTVAL: Invalid type");
4172         if ((unsigned)Index != Index)
4173           return error("Invalid value");
4174         if (IsStruct && Index >= CurTy->getStructNumElements())
4175           return error("INSERTVAL: Invalid struct index");
4176         if (IsArray && Index >= CurTy->getArrayNumElements())
4177           return error("INSERTVAL: Invalid array index");
4178 
4179         INSERTVALIdx.push_back((unsigned)Index);
4180         if (IsStruct)
4181           CurTy = CurTy->getStructElementType(Index);
4182         else
4183           CurTy = CurTy->getArrayElementType();
4184       }
4185 
4186       if (CurTy != Val->getType())
4187         return error("Inserted value type doesn't match aggregate type");
4188 
4189       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4190       InstructionList.push_back(I);
4191       break;
4192     }
4193 
4194     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4195       // obsolete form of select
4196       // handles select i1 ... in old bitcode
4197       unsigned OpNum = 0;
4198       Value *TrueVal, *FalseVal, *Cond;
4199       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4200           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4201           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4202         return error("Invalid record");
4203 
4204       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4205       InstructionList.push_back(I);
4206       break;
4207     }
4208 
4209     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4210       // new form of select
4211       // handles select i1 or select [N x i1]
4212       unsigned OpNum = 0;
4213       Value *TrueVal, *FalseVal, *Cond;
4214       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4215           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4216           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4217         return error("Invalid record");
4218 
4219       // select condition can be either i1 or [N x i1]
4220       if (VectorType* vector_type =
4221           dyn_cast<VectorType>(Cond->getType())) {
4222         // expect <n x i1>
4223         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4224           return error("Invalid type for value");
4225       } else {
4226         // expect i1
4227         if (Cond->getType() != Type::getInt1Ty(Context))
4228           return error("Invalid type for value");
4229       }
4230 
4231       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4232       InstructionList.push_back(I);
4233       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4234         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4235         if (FMF.any())
4236           I->setFastMathFlags(FMF);
4237       }
4238       break;
4239     }
4240 
4241     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4242       unsigned OpNum = 0;
4243       Value *Vec, *Idx;
4244       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4245           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4246         return error("Invalid record");
4247       if (!Vec->getType()->isVectorTy())
4248         return error("Invalid type for value");
4249       I = ExtractElementInst::Create(Vec, Idx);
4250       FullTy = cast<VectorType>(FullTy)->getElementType();
4251       InstructionList.push_back(I);
4252       break;
4253     }
4254 
4255     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4256       unsigned OpNum = 0;
4257       Value *Vec, *Elt, *Idx;
4258       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4259         return error("Invalid record");
4260       if (!Vec->getType()->isVectorTy())
4261         return error("Invalid type for value");
4262       if (popValue(Record, OpNum, NextValueNo,
4263                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4264           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4265         return error("Invalid record");
4266       I = InsertElementInst::Create(Vec, Elt, Idx);
4267       InstructionList.push_back(I);
4268       break;
4269     }
4270 
4271     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4272       unsigned OpNum = 0;
4273       Value *Vec1, *Vec2, *Mask;
4274       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4275           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4276         return error("Invalid record");
4277 
4278       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4279         return error("Invalid record");
4280       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4281         return error("Invalid type for value");
4282 
4283       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4284       FullTy =
4285           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4286                           cast<VectorType>(Mask->getType())->getElementCount());
4287       InstructionList.push_back(I);
4288       break;
4289     }
4290 
4291     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4292       // Old form of ICmp/FCmp returning bool
4293       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4294       // both legal on vectors but had different behaviour.
4295     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4296       // FCmp/ICmp returning bool or vector of bool
4297 
4298       unsigned OpNum = 0;
4299       Value *LHS, *RHS;
4300       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4301           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4302         return error("Invalid record");
4303 
4304       if (OpNum >= Record.size())
4305         return error(
4306             "Invalid record: operand number exceeded available operands");
4307 
4308       unsigned PredVal = Record[OpNum];
4309       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4310       FastMathFlags FMF;
4311       if (IsFP && Record.size() > OpNum+1)
4312         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4313 
4314       if (OpNum+1 != Record.size())
4315         return error("Invalid record");
4316 
4317       if (LHS->getType()->isFPOrFPVectorTy())
4318         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4319       else
4320         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4321 
4322       if (FMF.any())
4323         I->setFastMathFlags(FMF);
4324       InstructionList.push_back(I);
4325       break;
4326     }
4327 
4328     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4329       {
4330         unsigned Size = Record.size();
4331         if (Size == 0) {
4332           I = ReturnInst::Create(Context);
4333           InstructionList.push_back(I);
4334           break;
4335         }
4336 
4337         unsigned OpNum = 0;
4338         Value *Op = nullptr;
4339         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4340           return error("Invalid record");
4341         if (OpNum != Record.size())
4342           return error("Invalid record");
4343 
4344         I = ReturnInst::Create(Context, Op);
4345         InstructionList.push_back(I);
4346         break;
4347       }
4348     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4349       if (Record.size() != 1 && Record.size() != 3)
4350         return error("Invalid record");
4351       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4352       if (!TrueDest)
4353         return error("Invalid record");
4354 
4355       if (Record.size() == 1) {
4356         I = BranchInst::Create(TrueDest);
4357         InstructionList.push_back(I);
4358       }
4359       else {
4360         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4361         Value *Cond = getValue(Record, 2, NextValueNo,
4362                                Type::getInt1Ty(Context));
4363         if (!FalseDest || !Cond)
4364           return error("Invalid record");
4365         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4366         InstructionList.push_back(I);
4367       }
4368       break;
4369     }
4370     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4371       if (Record.size() != 1 && Record.size() != 2)
4372         return error("Invalid record");
4373       unsigned Idx = 0;
4374       Value *CleanupPad =
4375           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4376       if (!CleanupPad)
4377         return error("Invalid record");
4378       BasicBlock *UnwindDest = nullptr;
4379       if (Record.size() == 2) {
4380         UnwindDest = getBasicBlock(Record[Idx++]);
4381         if (!UnwindDest)
4382           return error("Invalid record");
4383       }
4384 
4385       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4386       InstructionList.push_back(I);
4387       break;
4388     }
4389     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4390       if (Record.size() != 2)
4391         return error("Invalid record");
4392       unsigned Idx = 0;
4393       Value *CatchPad =
4394           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4395       if (!CatchPad)
4396         return error("Invalid record");
4397       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4398       if (!BB)
4399         return error("Invalid record");
4400 
4401       I = CatchReturnInst::Create(CatchPad, BB);
4402       InstructionList.push_back(I);
4403       break;
4404     }
4405     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4406       // We must have, at minimum, the outer scope and the number of arguments.
4407       if (Record.size() < 2)
4408         return error("Invalid record");
4409 
4410       unsigned Idx = 0;
4411 
4412       Value *ParentPad =
4413           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4414 
4415       unsigned NumHandlers = Record[Idx++];
4416 
4417       SmallVector<BasicBlock *, 2> Handlers;
4418       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4419         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4420         if (!BB)
4421           return error("Invalid record");
4422         Handlers.push_back(BB);
4423       }
4424 
4425       BasicBlock *UnwindDest = nullptr;
4426       if (Idx + 1 == Record.size()) {
4427         UnwindDest = getBasicBlock(Record[Idx++]);
4428         if (!UnwindDest)
4429           return error("Invalid record");
4430       }
4431 
4432       if (Record.size() != Idx)
4433         return error("Invalid record");
4434 
4435       auto *CatchSwitch =
4436           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4437       for (BasicBlock *Handler : Handlers)
4438         CatchSwitch->addHandler(Handler);
4439       I = CatchSwitch;
4440       InstructionList.push_back(I);
4441       break;
4442     }
4443     case bitc::FUNC_CODE_INST_CATCHPAD:
4444     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4445       // We must have, at minimum, the outer scope and the number of arguments.
4446       if (Record.size() < 2)
4447         return error("Invalid record");
4448 
4449       unsigned Idx = 0;
4450 
4451       Value *ParentPad =
4452           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4453 
4454       unsigned NumArgOperands = Record[Idx++];
4455 
4456       SmallVector<Value *, 2> Args;
4457       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4458         Value *Val;
4459         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4460           return error("Invalid record");
4461         Args.push_back(Val);
4462       }
4463 
4464       if (Record.size() != Idx)
4465         return error("Invalid record");
4466 
4467       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4468         I = CleanupPadInst::Create(ParentPad, Args);
4469       else
4470         I = CatchPadInst::Create(ParentPad, Args);
4471       InstructionList.push_back(I);
4472       break;
4473     }
4474     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4475       // Check magic
4476       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4477         // "New" SwitchInst format with case ranges. The changes to write this
4478         // format were reverted but we still recognize bitcode that uses it.
4479         // Hopefully someday we will have support for case ranges and can use
4480         // this format again.
4481 
4482         Type *OpTy = getTypeByID(Record[1]);
4483         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4484 
4485         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4486         BasicBlock *Default = getBasicBlock(Record[3]);
4487         if (!OpTy || !Cond || !Default)
4488           return error("Invalid record");
4489 
4490         unsigned NumCases = Record[4];
4491 
4492         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4493         InstructionList.push_back(SI);
4494 
4495         unsigned CurIdx = 5;
4496         for (unsigned i = 0; i != NumCases; ++i) {
4497           SmallVector<ConstantInt*, 1> CaseVals;
4498           unsigned NumItems = Record[CurIdx++];
4499           for (unsigned ci = 0; ci != NumItems; ++ci) {
4500             bool isSingleNumber = Record[CurIdx++];
4501 
4502             APInt Low;
4503             unsigned ActiveWords = 1;
4504             if (ValueBitWidth > 64)
4505               ActiveWords = Record[CurIdx++];
4506             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4507                                 ValueBitWidth);
4508             CurIdx += ActiveWords;
4509 
4510             if (!isSingleNumber) {
4511               ActiveWords = 1;
4512               if (ValueBitWidth > 64)
4513                 ActiveWords = Record[CurIdx++];
4514               APInt High = readWideAPInt(
4515                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4516               CurIdx += ActiveWords;
4517 
4518               // FIXME: It is not clear whether values in the range should be
4519               // compared as signed or unsigned values. The partially
4520               // implemented changes that used this format in the past used
4521               // unsigned comparisons.
4522               for ( ; Low.ule(High); ++Low)
4523                 CaseVals.push_back(ConstantInt::get(Context, Low));
4524             } else
4525               CaseVals.push_back(ConstantInt::get(Context, Low));
4526           }
4527           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4528           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4529                  cve = CaseVals.end(); cvi != cve; ++cvi)
4530             SI->addCase(*cvi, DestBB);
4531         }
4532         I = SI;
4533         break;
4534       }
4535 
4536       // Old SwitchInst format without case ranges.
4537 
4538       if (Record.size() < 3 || (Record.size() & 1) == 0)
4539         return error("Invalid record");
4540       Type *OpTy = getTypeByID(Record[0]);
4541       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4542       BasicBlock *Default = getBasicBlock(Record[2]);
4543       if (!OpTy || !Cond || !Default)
4544         return error("Invalid record");
4545       unsigned NumCases = (Record.size()-3)/2;
4546       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4547       InstructionList.push_back(SI);
4548       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4549         ConstantInt *CaseVal =
4550           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4551         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4552         if (!CaseVal || !DestBB) {
4553           delete SI;
4554           return error("Invalid record");
4555         }
4556         SI->addCase(CaseVal, DestBB);
4557       }
4558       I = SI;
4559       break;
4560     }
4561     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4562       if (Record.size() < 2)
4563         return error("Invalid record");
4564       Type *OpTy = getTypeByID(Record[0]);
4565       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4566       if (!OpTy || !Address)
4567         return error("Invalid record");
4568       unsigned NumDests = Record.size()-2;
4569       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4570       InstructionList.push_back(IBI);
4571       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4572         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4573           IBI->addDestination(DestBB);
4574         } else {
4575           delete IBI;
4576           return error("Invalid record");
4577         }
4578       }
4579       I = IBI;
4580       break;
4581     }
4582 
4583     case bitc::FUNC_CODE_INST_INVOKE: {
4584       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4585       if (Record.size() < 4)
4586         return error("Invalid record");
4587       unsigned OpNum = 0;
4588       AttributeList PAL = getAttributes(Record[OpNum++]);
4589       unsigned CCInfo = Record[OpNum++];
4590       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4591       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4592 
4593       FunctionType *FTy = nullptr;
4594       FunctionType *FullFTy = nullptr;
4595       if ((CCInfo >> 13) & 1) {
4596         FullFTy =
4597             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4598         if (!FullFTy)
4599           return error("Explicit invoke type is not a function type");
4600         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4601       }
4602 
4603       Value *Callee;
4604       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4605         return error("Invalid record");
4606 
4607       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4608       if (!CalleeTy)
4609         return error("Callee is not a pointer");
4610       if (!FTy) {
4611         FullFTy =
4612             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4613         if (!FullFTy)
4614           return error("Callee is not of pointer to function type");
4615         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4616       } else if (getPointerElementFlatType(FullTy) != FTy)
4617         return error("Explicit invoke type does not match pointee type of "
4618                      "callee operand");
4619       if (Record.size() < FTy->getNumParams() + OpNum)
4620         return error("Insufficient operands to call");
4621 
4622       SmallVector<Value*, 16> Ops;
4623       SmallVector<Type *, 16> ArgsFullTys;
4624       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4625         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4626                                FTy->getParamType(i)));
4627         ArgsFullTys.push_back(FullFTy->getParamType(i));
4628         if (!Ops.back())
4629           return error("Invalid record");
4630       }
4631 
4632       if (!FTy->isVarArg()) {
4633         if (Record.size() != OpNum)
4634           return error("Invalid record");
4635       } else {
4636         // Read type/value pairs for varargs params.
4637         while (OpNum != Record.size()) {
4638           Value *Op;
4639           Type *FullTy;
4640           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4641             return error("Invalid record");
4642           Ops.push_back(Op);
4643           ArgsFullTys.push_back(FullTy);
4644         }
4645       }
4646 
4647       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4648                              OperandBundles);
4649       FullTy = FullFTy->getReturnType();
4650       OperandBundles.clear();
4651       InstructionList.push_back(I);
4652       cast<InvokeInst>(I)->setCallingConv(
4653           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4654       cast<InvokeInst>(I)->setAttributes(PAL);
4655       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4656 
4657       break;
4658     }
4659     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4660       unsigned Idx = 0;
4661       Value *Val = nullptr;
4662       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4663         return error("Invalid record");
4664       I = ResumeInst::Create(Val);
4665       InstructionList.push_back(I);
4666       break;
4667     }
4668     case bitc::FUNC_CODE_INST_CALLBR: {
4669       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4670       unsigned OpNum = 0;
4671       AttributeList PAL = getAttributes(Record[OpNum++]);
4672       unsigned CCInfo = Record[OpNum++];
4673 
4674       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4675       unsigned NumIndirectDests = Record[OpNum++];
4676       SmallVector<BasicBlock *, 16> IndirectDests;
4677       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4678         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4679 
4680       FunctionType *FTy = nullptr;
4681       FunctionType *FullFTy = nullptr;
4682       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4683         FullFTy =
4684             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4685         if (!FullFTy)
4686           return error("Explicit call type is not a function type");
4687         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4688       }
4689 
4690       Value *Callee;
4691       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4692         return error("Invalid record");
4693 
4694       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4695       if (!OpTy)
4696         return error("Callee is not a pointer type");
4697       if (!FTy) {
4698         FullFTy =
4699             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4700         if (!FullFTy)
4701           return error("Callee is not of pointer to function type");
4702         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4703       } else if (getPointerElementFlatType(FullTy) != FTy)
4704         return error("Explicit call type does not match pointee type of "
4705                      "callee operand");
4706       if (Record.size() < FTy->getNumParams() + OpNum)
4707         return error("Insufficient operands to call");
4708 
4709       SmallVector<Value*, 16> Args;
4710       // Read the fixed params.
4711       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4712         if (FTy->getParamType(i)->isLabelTy())
4713           Args.push_back(getBasicBlock(Record[OpNum]));
4714         else
4715           Args.push_back(getValue(Record, OpNum, NextValueNo,
4716                                   FTy->getParamType(i)));
4717         if (!Args.back())
4718           return error("Invalid record");
4719       }
4720 
4721       // Read type/value pairs for varargs params.
4722       if (!FTy->isVarArg()) {
4723         if (OpNum != Record.size())
4724           return error("Invalid record");
4725       } else {
4726         while (OpNum != Record.size()) {
4727           Value *Op;
4728           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4729             return error("Invalid record");
4730           Args.push_back(Op);
4731         }
4732       }
4733 
4734       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4735                              OperandBundles);
4736       FullTy = FullFTy->getReturnType();
4737       OperandBundles.clear();
4738       InstructionList.push_back(I);
4739       cast<CallBrInst>(I)->setCallingConv(
4740           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4741       cast<CallBrInst>(I)->setAttributes(PAL);
4742       break;
4743     }
4744     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4745       I = new UnreachableInst(Context);
4746       InstructionList.push_back(I);
4747       break;
4748     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4749       if (Record.empty())
4750         return error("Invalid record");
4751       // The first record specifies the type.
4752       FullTy = getFullyStructuredTypeByID(Record[0]);
4753       Type *Ty = flattenPointerTypes(FullTy);
4754       if (!Ty)
4755         return error("Invalid record");
4756 
4757       // Phi arguments are pairs of records of [value, basic block].
4758       // There is an optional final record for fast-math-flags if this phi has a
4759       // floating-point type.
4760       size_t NumArgs = (Record.size() - 1) / 2;
4761       PHINode *PN = PHINode::Create(Ty, NumArgs);
4762       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4763         return error("Invalid record");
4764       InstructionList.push_back(PN);
4765 
4766       for (unsigned i = 0; i != NumArgs; i++) {
4767         Value *V;
4768         // With the new function encoding, it is possible that operands have
4769         // negative IDs (for forward references).  Use a signed VBR
4770         // representation to keep the encoding small.
4771         if (UseRelativeIDs)
4772           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4773         else
4774           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4775         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4776         if (!V || !BB)
4777           return error("Invalid record");
4778         PN->addIncoming(V, BB);
4779       }
4780       I = PN;
4781 
4782       // If there are an even number of records, the final record must be FMF.
4783       if (Record.size() % 2 == 0) {
4784         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4785         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4786         if (FMF.any())
4787           I->setFastMathFlags(FMF);
4788       }
4789 
4790       break;
4791     }
4792 
4793     case bitc::FUNC_CODE_INST_LANDINGPAD:
4794     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4795       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4796       unsigned Idx = 0;
4797       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4798         if (Record.size() < 3)
4799           return error("Invalid record");
4800       } else {
4801         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4802         if (Record.size() < 4)
4803           return error("Invalid record");
4804       }
4805       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4806       Type *Ty = flattenPointerTypes(FullTy);
4807       if (!Ty)
4808         return error("Invalid record");
4809       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4810         Value *PersFn = nullptr;
4811         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4812           return error("Invalid record");
4813 
4814         if (!F->hasPersonalityFn())
4815           F->setPersonalityFn(cast<Constant>(PersFn));
4816         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4817           return error("Personality function mismatch");
4818       }
4819 
4820       bool IsCleanup = !!Record[Idx++];
4821       unsigned NumClauses = Record[Idx++];
4822       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4823       LP->setCleanup(IsCleanup);
4824       for (unsigned J = 0; J != NumClauses; ++J) {
4825         LandingPadInst::ClauseType CT =
4826           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4827         Value *Val;
4828 
4829         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4830           delete LP;
4831           return error("Invalid record");
4832         }
4833 
4834         assert((CT != LandingPadInst::Catch ||
4835                 !isa<ArrayType>(Val->getType())) &&
4836                "Catch clause has a invalid type!");
4837         assert((CT != LandingPadInst::Filter ||
4838                 isa<ArrayType>(Val->getType())) &&
4839                "Filter clause has invalid type!");
4840         LP->addClause(cast<Constant>(Val));
4841       }
4842 
4843       I = LP;
4844       InstructionList.push_back(I);
4845       break;
4846     }
4847 
4848     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4849       if (Record.size() != 4)
4850         return error("Invalid record");
4851       using APV = AllocaPackedValues;
4852       const uint64_t Rec = Record[3];
4853       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4854       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4855       FullTy = getFullyStructuredTypeByID(Record[0]);
4856       Type *Ty = flattenPointerTypes(FullTy);
4857       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4858         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4859         if (!PTy)
4860           return error("Old-style alloca with a non-pointer type");
4861         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4862       }
4863       Type *OpTy = getTypeByID(Record[1]);
4864       Value *Size = getFnValueByID(Record[2], OpTy);
4865       MaybeAlign Align;
4866       if (Error Err =
4867               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4868         return Err;
4869       }
4870       if (!Ty || !Size)
4871         return error("Invalid record");
4872 
4873       // FIXME: Make this an optional field.
4874       const DataLayout &DL = TheModule->getDataLayout();
4875       unsigned AS = DL.getAllocaAddrSpace();
4876 
4877       SmallPtrSet<Type *, 4> Visited;
4878       if (!Align && !Ty->isSized(&Visited))
4879         return error("alloca of unsized type");
4880       if (!Align)
4881         Align = DL.getPrefTypeAlign(Ty);
4882 
4883       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4884       AI->setUsedWithInAlloca(InAlloca);
4885       AI->setSwiftError(SwiftError);
4886       I = AI;
4887       FullTy = PointerType::get(FullTy, AS);
4888       InstructionList.push_back(I);
4889       break;
4890     }
4891     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4892       unsigned OpNum = 0;
4893       Value *Op;
4894       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4895           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4896         return error("Invalid record");
4897 
4898       if (!isa<PointerType>(Op->getType()))
4899         return error("Load operand is not a pointer type");
4900 
4901       Type *Ty = nullptr;
4902       if (OpNum + 3 == Record.size()) {
4903         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4904         Ty = flattenPointerTypes(FullTy);
4905       } else
4906         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4907 
4908       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4909         return Err;
4910 
4911       MaybeAlign Align;
4912       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4913         return Err;
4914       SmallPtrSet<Type *, 4> Visited;
4915       if (!Align && !Ty->isSized(&Visited))
4916         return error("load of unsized type");
4917       if (!Align)
4918         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4919       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4920       InstructionList.push_back(I);
4921       break;
4922     }
4923     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4924        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4925       unsigned OpNum = 0;
4926       Value *Op;
4927       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4928           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4929         return error("Invalid record");
4930 
4931       if (!isa<PointerType>(Op->getType()))
4932         return error("Load operand is not a pointer type");
4933 
4934       Type *Ty = nullptr;
4935       if (OpNum + 5 == Record.size()) {
4936         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4937         Ty = flattenPointerTypes(FullTy);
4938       } else
4939         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4940 
4941       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4942         return Err;
4943 
4944       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4945       if (Ordering == AtomicOrdering::NotAtomic ||
4946           Ordering == AtomicOrdering::Release ||
4947           Ordering == AtomicOrdering::AcquireRelease)
4948         return error("Invalid record");
4949       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4950         return error("Invalid record");
4951       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4952 
4953       MaybeAlign Align;
4954       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4955         return Err;
4956       if (!Align)
4957         return error("Alignment missing from atomic load");
4958       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4959       InstructionList.push_back(I);
4960       break;
4961     }
4962     case bitc::FUNC_CODE_INST_STORE:
4963     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4964       unsigned OpNum = 0;
4965       Value *Val, *Ptr;
4966       Type *FullTy;
4967       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4968           (BitCode == bitc::FUNC_CODE_INST_STORE
4969                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4970                : popValue(Record, OpNum, NextValueNo,
4971                           getPointerElementFlatType(FullTy), Val)) ||
4972           OpNum + 2 != Record.size())
4973         return error("Invalid record");
4974 
4975       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4976         return Err;
4977       MaybeAlign Align;
4978       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4979         return Err;
4980       SmallPtrSet<Type *, 4> Visited;
4981       if (!Align && !Val->getType()->isSized(&Visited))
4982         return error("store of unsized type");
4983       if (!Align)
4984         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4985       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4986       InstructionList.push_back(I);
4987       break;
4988     }
4989     case bitc::FUNC_CODE_INST_STOREATOMIC:
4990     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4991       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4992       unsigned OpNum = 0;
4993       Value *Val, *Ptr;
4994       Type *FullTy;
4995       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4996           !isa<PointerType>(Ptr->getType()) ||
4997           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4998                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4999                : popValue(Record, OpNum, NextValueNo,
5000                           getPointerElementFlatType(FullTy), Val)) ||
5001           OpNum + 4 != Record.size())
5002         return error("Invalid record");
5003 
5004       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5005         return Err;
5006       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5007       if (Ordering == AtomicOrdering::NotAtomic ||
5008           Ordering == AtomicOrdering::Acquire ||
5009           Ordering == AtomicOrdering::AcquireRelease)
5010         return error("Invalid record");
5011       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5012       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5013         return error("Invalid record");
5014 
5015       MaybeAlign Align;
5016       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5017         return Err;
5018       if (!Align)
5019         return error("Alignment missing from atomic store");
5020       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5021       InstructionList.push_back(I);
5022       break;
5023     }
5024     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5025       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5026       // failure_ordering?, weak?]
5027       const size_t NumRecords = Record.size();
5028       unsigned OpNum = 0;
5029       Value *Ptr = nullptr;
5030       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5031         return error("Invalid record");
5032 
5033       if (!isa<PointerType>(Ptr->getType()))
5034         return error("Cmpxchg operand is not a pointer type");
5035 
5036       Value *Cmp = nullptr;
5037       if (popValue(Record, OpNum, NextValueNo,
5038                    getPointerElementFlatType(FullTy), Cmp))
5039         return error("Invalid record");
5040 
5041       FullTy = cast<PointerType>(FullTy)->getElementType();
5042 
5043       Value *New = nullptr;
5044       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5045           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5046         return error("Invalid record");
5047 
5048       const AtomicOrdering SuccessOrdering =
5049           getDecodedOrdering(Record[OpNum + 1]);
5050       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5051           SuccessOrdering == AtomicOrdering::Unordered)
5052         return error("Invalid record");
5053 
5054       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5055 
5056       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5057         return Err;
5058 
5059       const AtomicOrdering FailureOrdering =
5060           NumRecords < 7
5061               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5062               : getDecodedOrdering(Record[OpNum + 3]);
5063 
5064       const Align Alignment(
5065           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5066 
5067       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5068                                 FailureOrdering, SSID);
5069       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5070       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5071 
5072       if (NumRecords < 8) {
5073         // Before weak cmpxchgs existed, the instruction simply returned the
5074         // value loaded from memory, so bitcode files from that era will be
5075         // expecting the first component of a modern cmpxchg.
5076         CurBB->getInstList().push_back(I);
5077         I = ExtractValueInst::Create(I, 0);
5078         FullTy = cast<StructType>(FullTy)->getElementType(0);
5079       } else {
5080         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5081       }
5082 
5083       InstructionList.push_back(I);
5084       break;
5085     }
5086     case bitc::FUNC_CODE_INST_CMPXCHG: {
5087       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5088       // failure_ordering, weak, align?]
5089       const size_t NumRecords = Record.size();
5090       unsigned OpNum = 0;
5091       Value *Ptr = nullptr;
5092       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5093         return error("Invalid record");
5094 
5095       if (!isa<PointerType>(Ptr->getType()))
5096         return error("Cmpxchg operand is not a pointer type");
5097 
5098       Value *Cmp = nullptr;
5099       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5100         return error("Invalid record");
5101 
5102       Value *Val = nullptr;
5103       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5104         return error("Invalid record");
5105 
5106       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5107         return error("Invalid record");
5108 
5109       const bool IsVol = Record[OpNum];
5110 
5111       const AtomicOrdering SuccessOrdering =
5112           getDecodedOrdering(Record[OpNum + 1]);
5113       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5114           SuccessOrdering == AtomicOrdering::Unordered)
5115         return error("Invalid record");
5116 
5117       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5118 
5119       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5120         return Err;
5121 
5122       const AtomicOrdering FailureOrdering =
5123           getDecodedOrdering(Record[OpNum + 3]);
5124 
5125       const bool IsWeak = Record[OpNum + 4];
5126 
5127       MaybeAlign Alignment;
5128 
5129       if (NumRecords == (OpNum + 6)) {
5130         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5131           return Err;
5132       }
5133       if (!Alignment)
5134         Alignment =
5135             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5136 
5137       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5138                                 FailureOrdering, SSID);
5139       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5140       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5141       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5142 
5143       InstructionList.push_back(I);
5144       break;
5145     }
5146     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5147       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?]
5148       const size_t NumRecords = Record.size();
5149       unsigned OpNum = 0;
5150 
5151       Value *Ptr = nullptr;
5152       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5153         return error("Invalid record");
5154 
5155       if (!isa<PointerType>(Ptr->getType()))
5156         return error("Invalid record");
5157 
5158       Value *Val = nullptr;
5159       if (popValue(Record, OpNum, NextValueNo,
5160                    getPointerElementFlatType(FullTy), Val))
5161         return error("Invalid record");
5162 
5163       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5164         return error("Invalid record");
5165 
5166       const AtomicRMWInst::BinOp Operation =
5167           getDecodedRMWOperation(Record[OpNum]);
5168       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5169           Operation > AtomicRMWInst::LAST_BINOP)
5170         return error("Invalid record");
5171 
5172       const bool IsVol = Record[OpNum + 1];
5173 
5174       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5175       if (Ordering == AtomicOrdering::NotAtomic ||
5176           Ordering == AtomicOrdering::Unordered)
5177         return error("Invalid record");
5178 
5179       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5180 
5181       MaybeAlign Alignment;
5182 
5183       if (NumRecords == (OpNum + 5)) {
5184         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5185           return Err;
5186       }
5187 
5188       if (!Alignment)
5189         Alignment =
5190             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5191 
5192       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5193       FullTy = getPointerElementFlatType(FullTy);
5194       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5195 
5196       InstructionList.push_back(I);
5197       break;
5198     }
5199     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5200       if (2 != Record.size())
5201         return error("Invalid record");
5202       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5203       if (Ordering == AtomicOrdering::NotAtomic ||
5204           Ordering == AtomicOrdering::Unordered ||
5205           Ordering == AtomicOrdering::Monotonic)
5206         return error("Invalid record");
5207       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5208       I = new FenceInst(Context, Ordering, SSID);
5209       InstructionList.push_back(I);
5210       break;
5211     }
5212     case bitc::FUNC_CODE_INST_CALL: {
5213       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5214       if (Record.size() < 3)
5215         return error("Invalid record");
5216 
5217       unsigned OpNum = 0;
5218       AttributeList PAL = getAttributes(Record[OpNum++]);
5219       unsigned CCInfo = Record[OpNum++];
5220 
5221       FastMathFlags FMF;
5222       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5223         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5224         if (!FMF.any())
5225           return error("Fast math flags indicator set for call with no FMF");
5226       }
5227 
5228       FunctionType *FTy = nullptr;
5229       FunctionType *FullFTy = nullptr;
5230       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5231         FullFTy =
5232             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5233         if (!FullFTy)
5234           return error("Explicit call type is not a function type");
5235         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5236       }
5237 
5238       Value *Callee;
5239       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5240         return error("Invalid record");
5241 
5242       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5243       if (!OpTy)
5244         return error("Callee is not a pointer type");
5245       if (!FTy) {
5246         FullFTy =
5247             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5248         if (!FullFTy)
5249           return error("Callee is not of pointer to function type");
5250         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5251       } else if (getPointerElementFlatType(FullTy) != FTy)
5252         return error("Explicit call type does not match pointee type of "
5253                      "callee operand");
5254       if (Record.size() < FTy->getNumParams() + OpNum)
5255         return error("Insufficient operands to call");
5256 
5257       SmallVector<Value*, 16> Args;
5258       SmallVector<Type*, 16> ArgsFullTys;
5259       // Read the fixed params.
5260       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5261         if (FTy->getParamType(i)->isLabelTy())
5262           Args.push_back(getBasicBlock(Record[OpNum]));
5263         else
5264           Args.push_back(getValue(Record, OpNum, NextValueNo,
5265                                   FTy->getParamType(i)));
5266         ArgsFullTys.push_back(FullFTy->getParamType(i));
5267         if (!Args.back())
5268           return error("Invalid record");
5269       }
5270 
5271       // Read type/value pairs for varargs params.
5272       if (!FTy->isVarArg()) {
5273         if (OpNum != Record.size())
5274           return error("Invalid record");
5275       } else {
5276         while (OpNum != Record.size()) {
5277           Value *Op;
5278           Type *FullTy;
5279           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5280             return error("Invalid record");
5281           Args.push_back(Op);
5282           ArgsFullTys.push_back(FullTy);
5283         }
5284       }
5285 
5286       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5287       FullTy = FullFTy->getReturnType();
5288       OperandBundles.clear();
5289       InstructionList.push_back(I);
5290       cast<CallInst>(I)->setCallingConv(
5291           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5292       CallInst::TailCallKind TCK = CallInst::TCK_None;
5293       if (CCInfo & 1 << bitc::CALL_TAIL)
5294         TCK = CallInst::TCK_Tail;
5295       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5296         TCK = CallInst::TCK_MustTail;
5297       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5298         TCK = CallInst::TCK_NoTail;
5299       cast<CallInst>(I)->setTailCallKind(TCK);
5300       cast<CallInst>(I)->setAttributes(PAL);
5301       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5302       if (FMF.any()) {
5303         if (!isa<FPMathOperator>(I))
5304           return error("Fast-math-flags specified for call without "
5305                        "floating-point scalar or vector return type");
5306         I->setFastMathFlags(FMF);
5307       }
5308       break;
5309     }
5310     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5311       if (Record.size() < 3)
5312         return error("Invalid record");
5313       Type *OpTy = getTypeByID(Record[0]);
5314       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5315       FullTy = getFullyStructuredTypeByID(Record[2]);
5316       Type *ResTy = flattenPointerTypes(FullTy);
5317       if (!OpTy || !Op || !ResTy)
5318         return error("Invalid record");
5319       I = new VAArgInst(Op, ResTy);
5320       InstructionList.push_back(I);
5321       break;
5322     }
5323 
5324     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5325       // A call or an invoke can be optionally prefixed with some variable
5326       // number of operand bundle blocks.  These blocks are read into
5327       // OperandBundles and consumed at the next call or invoke instruction.
5328 
5329       if (Record.empty() || Record[0] >= BundleTags.size())
5330         return error("Invalid record");
5331 
5332       std::vector<Value *> Inputs;
5333 
5334       unsigned OpNum = 1;
5335       while (OpNum != Record.size()) {
5336         Value *Op;
5337         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5338           return error("Invalid record");
5339         Inputs.push_back(Op);
5340       }
5341 
5342       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5343       continue;
5344     }
5345 
5346     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5347       unsigned OpNum = 0;
5348       Value *Op = nullptr;
5349       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5350         return error("Invalid record");
5351       if (OpNum != Record.size())
5352         return error("Invalid record");
5353 
5354       I = new FreezeInst(Op);
5355       InstructionList.push_back(I);
5356       break;
5357     }
5358     }
5359 
5360     // Add instruction to end of current BB.  If there is no current BB, reject
5361     // this file.
5362     if (!CurBB) {
5363       I->deleteValue();
5364       return error("Invalid instruction with no BB");
5365     }
5366     if (!OperandBundles.empty()) {
5367       I->deleteValue();
5368       return error("Operand bundles found with no consumer");
5369     }
5370     CurBB->getInstList().push_back(I);
5371 
5372     // If this was a terminator instruction, move to the next block.
5373     if (I->isTerminator()) {
5374       ++CurBBNo;
5375       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5376     }
5377 
5378     // Non-void values get registered in the value table for future use.
5379     if (!I->getType()->isVoidTy()) {
5380       if (!FullTy) {
5381         FullTy = I->getType();
5382         assert(
5383             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5384             !isa<ArrayType>(FullTy) &&
5385             (!isa<VectorType>(FullTy) ||
5386              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5387              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5388             "Structured types must be assigned with corresponding non-opaque "
5389             "pointer type");
5390       }
5391 
5392       assert(I->getType() == flattenPointerTypes(FullTy) &&
5393              "Incorrect fully structured type provided for Instruction");
5394       ValueList.assignValue(I, NextValueNo++, FullTy);
5395     }
5396   }
5397 
5398 OutOfRecordLoop:
5399 
5400   if (!OperandBundles.empty())
5401     return error("Operand bundles found with no consumer");
5402 
5403   // Check the function list for unresolved values.
5404   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5405     if (!A->getParent()) {
5406       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5407       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5408         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5409           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5410           delete A;
5411         }
5412       }
5413       return error("Never resolved value found in function");
5414     }
5415   }
5416 
5417   // Unexpected unresolved metadata about to be dropped.
5418   if (MDLoader->hasFwdRefs())
5419     return error("Invalid function metadata: outgoing forward refs");
5420 
5421   // Trim the value list down to the size it was before we parsed this function.
5422   ValueList.shrinkTo(ModuleValueListSize);
5423   MDLoader->shrinkTo(ModuleMDLoaderSize);
5424   std::vector<BasicBlock*>().swap(FunctionBBs);
5425   return Error::success();
5426 }
5427 
5428 /// Find the function body in the bitcode stream
5429 Error BitcodeReader::findFunctionInStream(
5430     Function *F,
5431     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5432   while (DeferredFunctionInfoIterator->second == 0) {
5433     // This is the fallback handling for the old format bitcode that
5434     // didn't contain the function index in the VST, or when we have
5435     // an anonymous function which would not have a VST entry.
5436     // Assert that we have one of those two cases.
5437     assert(VSTOffset == 0 || !F->hasName());
5438     // Parse the next body in the stream and set its position in the
5439     // DeferredFunctionInfo map.
5440     if (Error Err = rememberAndSkipFunctionBodies())
5441       return Err;
5442   }
5443   return Error::success();
5444 }
5445 
5446 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5447   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5448     return SyncScope::ID(Val);
5449   if (Val >= SSIDs.size())
5450     return SyncScope::System; // Map unknown synchronization scopes to system.
5451   return SSIDs[Val];
5452 }
5453 
5454 //===----------------------------------------------------------------------===//
5455 // GVMaterializer implementation
5456 //===----------------------------------------------------------------------===//
5457 
5458 Error BitcodeReader::materialize(GlobalValue *GV) {
5459   Function *F = dyn_cast<Function>(GV);
5460   // If it's not a function or is already material, ignore the request.
5461   if (!F || !F->isMaterializable())
5462     return Error::success();
5463 
5464   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5465   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5466   // If its position is recorded as 0, its body is somewhere in the stream
5467   // but we haven't seen it yet.
5468   if (DFII->second == 0)
5469     if (Error Err = findFunctionInStream(F, DFII))
5470       return Err;
5471 
5472   // Materialize metadata before parsing any function bodies.
5473   if (Error Err = materializeMetadata())
5474     return Err;
5475 
5476   // Move the bit stream to the saved position of the deferred function body.
5477   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5478     return JumpFailed;
5479   if (Error Err = parseFunctionBody(F))
5480     return Err;
5481   F->setIsMaterializable(false);
5482 
5483   if (StripDebugInfo)
5484     stripDebugInfo(*F);
5485 
5486   // Upgrade any old intrinsic calls in the function.
5487   for (auto &I : UpgradedIntrinsics) {
5488     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5489          UI != UE;) {
5490       User *U = *UI;
5491       ++UI;
5492       if (CallInst *CI = dyn_cast<CallInst>(U))
5493         UpgradeIntrinsicCall(CI, I.second);
5494     }
5495   }
5496 
5497   // Update calls to the remangled intrinsics
5498   for (auto &I : RemangledIntrinsics)
5499     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5500          UI != UE;)
5501       // Don't expect any other users than call sites
5502       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5503 
5504   // Finish fn->subprogram upgrade for materialized functions.
5505   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5506     F->setSubprogram(SP);
5507 
5508   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5509   if (!MDLoader->isStrippingTBAA()) {
5510     for (auto &I : instructions(F)) {
5511       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5512       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5513         continue;
5514       MDLoader->setStripTBAA(true);
5515       stripTBAA(F->getParent());
5516     }
5517   }
5518 
5519   // "Upgrade" older incorrect branch weights by dropping them.
5520   for (auto &I : instructions(F)) {
5521     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5522       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5523         MDString *MDS = cast<MDString>(MD->getOperand(0));
5524         StringRef ProfName = MDS->getString();
5525         // Check consistency of !prof branch_weights metadata.
5526         if (!ProfName.equals("branch_weights"))
5527           continue;
5528         unsigned ExpectedNumOperands = 0;
5529         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5530           ExpectedNumOperands = BI->getNumSuccessors();
5531         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5532           ExpectedNumOperands = SI->getNumSuccessors();
5533         else if (isa<CallInst>(&I))
5534           ExpectedNumOperands = 1;
5535         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5536           ExpectedNumOperands = IBI->getNumDestinations();
5537         else if (isa<SelectInst>(&I))
5538           ExpectedNumOperands = 2;
5539         else
5540           continue; // ignore and continue.
5541 
5542         // If branch weight doesn't match, just strip branch weight.
5543         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5544           I.setMetadata(LLVMContext::MD_prof, nullptr);
5545       }
5546     }
5547   }
5548 
5549   // Look for functions that rely on old function attribute behavior.
5550   UpgradeFunctionAttributes(*F);
5551 
5552   // Bring in any functions that this function forward-referenced via
5553   // blockaddresses.
5554   return materializeForwardReferencedFunctions();
5555 }
5556 
5557 Error BitcodeReader::materializeModule() {
5558   if (Error Err = materializeMetadata())
5559     return Err;
5560 
5561   // Promise to materialize all forward references.
5562   WillMaterializeAllForwardRefs = true;
5563 
5564   // Iterate over the module, deserializing any functions that are still on
5565   // disk.
5566   for (Function &F : *TheModule) {
5567     if (Error Err = materialize(&F))
5568       return Err;
5569   }
5570   // At this point, if there are any function bodies, parse the rest of
5571   // the bits in the module past the last function block we have recorded
5572   // through either lazy scanning or the VST.
5573   if (LastFunctionBlockBit || NextUnreadBit)
5574     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5575                                     ? LastFunctionBlockBit
5576                                     : NextUnreadBit))
5577       return Err;
5578 
5579   // Check that all block address forward references got resolved (as we
5580   // promised above).
5581   if (!BasicBlockFwdRefs.empty())
5582     return error("Never resolved function from blockaddress");
5583 
5584   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5585   // delete the old functions to clean up. We can't do this unless the entire
5586   // module is materialized because there could always be another function body
5587   // with calls to the old function.
5588   for (auto &I : UpgradedIntrinsics) {
5589     for (auto *U : I.first->users()) {
5590       if (CallInst *CI = dyn_cast<CallInst>(U))
5591         UpgradeIntrinsicCall(CI, I.second);
5592     }
5593     if (!I.first->use_empty())
5594       I.first->replaceAllUsesWith(I.second);
5595     I.first->eraseFromParent();
5596   }
5597   UpgradedIntrinsics.clear();
5598   // Do the same for remangled intrinsics
5599   for (auto &I : RemangledIntrinsics) {
5600     I.first->replaceAllUsesWith(I.second);
5601     I.first->eraseFromParent();
5602   }
5603   RemangledIntrinsics.clear();
5604 
5605   UpgradeDebugInfo(*TheModule);
5606 
5607   UpgradeModuleFlags(*TheModule);
5608 
5609   UpgradeARCRuntime(*TheModule);
5610 
5611   return Error::success();
5612 }
5613 
5614 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5615   return IdentifiedStructTypes;
5616 }
5617 
5618 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5619     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5620     StringRef ModulePath, unsigned ModuleId)
5621     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5622       ModulePath(ModulePath), ModuleId(ModuleId) {}
5623 
5624 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5625   TheIndex.addModule(ModulePath, ModuleId);
5626 }
5627 
5628 ModuleSummaryIndex::ModuleInfo *
5629 ModuleSummaryIndexBitcodeReader::getThisModule() {
5630   return TheIndex.getModule(ModulePath);
5631 }
5632 
5633 std::pair<ValueInfo, GlobalValue::GUID>
5634 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5635   auto VGI = ValueIdToValueInfoMap[ValueId];
5636   assert(VGI.first);
5637   return VGI;
5638 }
5639 
5640 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5641     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5642     StringRef SourceFileName) {
5643   std::string GlobalId =
5644       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5645   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5646   auto OriginalNameID = ValueGUID;
5647   if (GlobalValue::isLocalLinkage(Linkage))
5648     OriginalNameID = GlobalValue::getGUID(ValueName);
5649   if (PrintSummaryGUIDs)
5650     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5651            << ValueName << "\n";
5652 
5653   // UseStrtab is false for legacy summary formats and value names are
5654   // created on stack. In that case we save the name in a string saver in
5655   // the index so that the value name can be recorded.
5656   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5657       TheIndex.getOrInsertValueInfo(
5658           ValueGUID,
5659           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5660       OriginalNameID);
5661 }
5662 
5663 // Specialized value symbol table parser used when reading module index
5664 // blocks where we don't actually create global values. The parsed information
5665 // is saved in the bitcode reader for use when later parsing summaries.
5666 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5667     uint64_t Offset,
5668     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5669   // With a strtab the VST is not required to parse the summary.
5670   if (UseStrtab)
5671     return Error::success();
5672 
5673   assert(Offset > 0 && "Expected non-zero VST offset");
5674   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5675   if (!MaybeCurrentBit)
5676     return MaybeCurrentBit.takeError();
5677   uint64_t CurrentBit = MaybeCurrentBit.get();
5678 
5679   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5680     return Err;
5681 
5682   SmallVector<uint64_t, 64> Record;
5683 
5684   // Read all the records for this value table.
5685   SmallString<128> ValueName;
5686 
5687   while (true) {
5688     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5689     if (!MaybeEntry)
5690       return MaybeEntry.takeError();
5691     BitstreamEntry Entry = MaybeEntry.get();
5692 
5693     switch (Entry.Kind) {
5694     case BitstreamEntry::SubBlock: // Handled for us already.
5695     case BitstreamEntry::Error:
5696       return error("Malformed block");
5697     case BitstreamEntry::EndBlock:
5698       // Done parsing VST, jump back to wherever we came from.
5699       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5700         return JumpFailed;
5701       return Error::success();
5702     case BitstreamEntry::Record:
5703       // The interesting case.
5704       break;
5705     }
5706 
5707     // Read a record.
5708     Record.clear();
5709     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5710     if (!MaybeRecord)
5711       return MaybeRecord.takeError();
5712     switch (MaybeRecord.get()) {
5713     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5714       break;
5715     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5716       if (convertToString(Record, 1, ValueName))
5717         return error("Invalid record");
5718       unsigned ValueID = Record[0];
5719       assert(!SourceFileName.empty());
5720       auto VLI = ValueIdToLinkageMap.find(ValueID);
5721       assert(VLI != ValueIdToLinkageMap.end() &&
5722              "No linkage found for VST entry?");
5723       auto Linkage = VLI->second;
5724       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5725       ValueName.clear();
5726       break;
5727     }
5728     case bitc::VST_CODE_FNENTRY: {
5729       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5730       if (convertToString(Record, 2, ValueName))
5731         return error("Invalid record");
5732       unsigned ValueID = Record[0];
5733       assert(!SourceFileName.empty());
5734       auto VLI = ValueIdToLinkageMap.find(ValueID);
5735       assert(VLI != ValueIdToLinkageMap.end() &&
5736              "No linkage found for VST entry?");
5737       auto Linkage = VLI->second;
5738       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5739       ValueName.clear();
5740       break;
5741     }
5742     case bitc::VST_CODE_COMBINED_ENTRY: {
5743       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5744       unsigned ValueID = Record[0];
5745       GlobalValue::GUID RefGUID = Record[1];
5746       // The "original name", which is the second value of the pair will be
5747       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5748       ValueIdToValueInfoMap[ValueID] =
5749           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5750       break;
5751     }
5752     }
5753   }
5754 }
5755 
5756 // Parse just the blocks needed for building the index out of the module.
5757 // At the end of this routine the module Index is populated with a map
5758 // from global value id to GlobalValueSummary objects.
5759 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5760   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5761     return Err;
5762 
5763   SmallVector<uint64_t, 64> Record;
5764   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5765   unsigned ValueId = 0;
5766 
5767   // Read the index for this module.
5768   while (true) {
5769     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5770     if (!MaybeEntry)
5771       return MaybeEntry.takeError();
5772     llvm::BitstreamEntry Entry = MaybeEntry.get();
5773 
5774     switch (Entry.Kind) {
5775     case BitstreamEntry::Error:
5776       return error("Malformed block");
5777     case BitstreamEntry::EndBlock:
5778       return Error::success();
5779 
5780     case BitstreamEntry::SubBlock:
5781       switch (Entry.ID) {
5782       default: // Skip unknown content.
5783         if (Error Err = Stream.SkipBlock())
5784           return Err;
5785         break;
5786       case bitc::BLOCKINFO_BLOCK_ID:
5787         // Need to parse these to get abbrev ids (e.g. for VST)
5788         if (readBlockInfo())
5789           return error("Malformed block");
5790         break;
5791       case bitc::VALUE_SYMTAB_BLOCK_ID:
5792         // Should have been parsed earlier via VSTOffset, unless there
5793         // is no summary section.
5794         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5795                 !SeenGlobalValSummary) &&
5796                "Expected early VST parse via VSTOffset record");
5797         if (Error Err = Stream.SkipBlock())
5798           return Err;
5799         break;
5800       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5801       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5802         // Add the module if it is a per-module index (has a source file name).
5803         if (!SourceFileName.empty())
5804           addThisModule();
5805         assert(!SeenValueSymbolTable &&
5806                "Already read VST when parsing summary block?");
5807         // We might not have a VST if there were no values in the
5808         // summary. An empty summary block generated when we are
5809         // performing ThinLTO compiles so we don't later invoke
5810         // the regular LTO process on them.
5811         if (VSTOffset > 0) {
5812           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5813             return Err;
5814           SeenValueSymbolTable = true;
5815         }
5816         SeenGlobalValSummary = true;
5817         if (Error Err = parseEntireSummary(Entry.ID))
5818           return Err;
5819         break;
5820       case bitc::MODULE_STRTAB_BLOCK_ID:
5821         if (Error Err = parseModuleStringTable())
5822           return Err;
5823         break;
5824       }
5825       continue;
5826 
5827     case BitstreamEntry::Record: {
5828         Record.clear();
5829         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5830         if (!MaybeBitCode)
5831           return MaybeBitCode.takeError();
5832         switch (MaybeBitCode.get()) {
5833         default:
5834           break; // Default behavior, ignore unknown content.
5835         case bitc::MODULE_CODE_VERSION: {
5836           if (Error Err = parseVersionRecord(Record).takeError())
5837             return Err;
5838           break;
5839         }
5840         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5841         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5842           SmallString<128> ValueName;
5843           if (convertToString(Record, 0, ValueName))
5844             return error("Invalid record");
5845           SourceFileName = ValueName.c_str();
5846           break;
5847         }
5848         /// MODULE_CODE_HASH: [5*i32]
5849         case bitc::MODULE_CODE_HASH: {
5850           if (Record.size() != 5)
5851             return error("Invalid hash length " + Twine(Record.size()).str());
5852           auto &Hash = getThisModule()->second.second;
5853           int Pos = 0;
5854           for (auto &Val : Record) {
5855             assert(!(Val >> 32) && "Unexpected high bits set");
5856             Hash[Pos++] = Val;
5857           }
5858           break;
5859         }
5860         /// MODULE_CODE_VSTOFFSET: [offset]
5861         case bitc::MODULE_CODE_VSTOFFSET:
5862           if (Record.empty())
5863             return error("Invalid record");
5864           // Note that we subtract 1 here because the offset is relative to one
5865           // word before the start of the identification or module block, which
5866           // was historically always the start of the regular bitcode header.
5867           VSTOffset = Record[0] - 1;
5868           break;
5869         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5870         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5871         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5872         // v2: [strtab offset, strtab size, v1]
5873         case bitc::MODULE_CODE_GLOBALVAR:
5874         case bitc::MODULE_CODE_FUNCTION:
5875         case bitc::MODULE_CODE_ALIAS: {
5876           StringRef Name;
5877           ArrayRef<uint64_t> GVRecord;
5878           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5879           if (GVRecord.size() <= 3)
5880             return error("Invalid record");
5881           uint64_t RawLinkage = GVRecord[3];
5882           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5883           if (!UseStrtab) {
5884             ValueIdToLinkageMap[ValueId++] = Linkage;
5885             break;
5886           }
5887 
5888           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5889           break;
5890         }
5891         }
5892       }
5893       continue;
5894     }
5895   }
5896 }
5897 
5898 std::vector<ValueInfo>
5899 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5900   std::vector<ValueInfo> Ret;
5901   Ret.reserve(Record.size());
5902   for (uint64_t RefValueId : Record)
5903     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5904   return Ret;
5905 }
5906 
5907 std::vector<FunctionSummary::EdgeTy>
5908 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5909                                               bool IsOldProfileFormat,
5910                                               bool HasProfile, bool HasRelBF) {
5911   std::vector<FunctionSummary::EdgeTy> Ret;
5912   Ret.reserve(Record.size());
5913   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5914     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5915     uint64_t RelBF = 0;
5916     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5917     if (IsOldProfileFormat) {
5918       I += 1; // Skip old callsitecount field
5919       if (HasProfile)
5920         I += 1; // Skip old profilecount field
5921     } else if (HasProfile)
5922       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5923     else if (HasRelBF)
5924       RelBF = Record[++I];
5925     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5926   }
5927   return Ret;
5928 }
5929 
5930 static void
5931 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5932                                        WholeProgramDevirtResolution &Wpd) {
5933   uint64_t ArgNum = Record[Slot++];
5934   WholeProgramDevirtResolution::ByArg &B =
5935       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5936   Slot += ArgNum;
5937 
5938   B.TheKind =
5939       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5940   B.Info = Record[Slot++];
5941   B.Byte = Record[Slot++];
5942   B.Bit = Record[Slot++];
5943 }
5944 
5945 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5946                                               StringRef Strtab, size_t &Slot,
5947                                               TypeIdSummary &TypeId) {
5948   uint64_t Id = Record[Slot++];
5949   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5950 
5951   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5952   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5953                         static_cast<size_t>(Record[Slot + 1])};
5954   Slot += 2;
5955 
5956   uint64_t ResByArgNum = Record[Slot++];
5957   for (uint64_t I = 0; I != ResByArgNum; ++I)
5958     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5959 }
5960 
5961 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5962                                      StringRef Strtab,
5963                                      ModuleSummaryIndex &TheIndex) {
5964   size_t Slot = 0;
5965   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5966       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5967   Slot += 2;
5968 
5969   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5970   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5971   TypeId.TTRes.AlignLog2 = Record[Slot++];
5972   TypeId.TTRes.SizeM1 = Record[Slot++];
5973   TypeId.TTRes.BitMask = Record[Slot++];
5974   TypeId.TTRes.InlineBits = Record[Slot++];
5975 
5976   while (Slot < Record.size())
5977     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5978 }
5979 
5980 std::vector<FunctionSummary::ParamAccess>
5981 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5982   auto ReadRange = [&]() {
5983     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5984                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5985     Record = Record.drop_front();
5986     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5987                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5988     Record = Record.drop_front();
5989     ConstantRange Range{Lower, Upper};
5990     assert(!Range.isFullSet());
5991     assert(!Range.isUpperSignWrapped());
5992     return Range;
5993   };
5994 
5995   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5996   while (!Record.empty()) {
5997     PendingParamAccesses.emplace_back();
5998     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5999     ParamAccess.ParamNo = Record.front();
6000     Record = Record.drop_front();
6001     ParamAccess.Use = ReadRange();
6002     ParamAccess.Calls.resize(Record.front());
6003     Record = Record.drop_front();
6004     for (auto &Call : ParamAccess.Calls) {
6005       Call.ParamNo = Record.front();
6006       Record = Record.drop_front();
6007       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6008       Record = Record.drop_front();
6009       Call.Offsets = ReadRange();
6010     }
6011   }
6012   return PendingParamAccesses;
6013 }
6014 
6015 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6016     ArrayRef<uint64_t> Record, size_t &Slot,
6017     TypeIdCompatibleVtableInfo &TypeId) {
6018   uint64_t Offset = Record[Slot++];
6019   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6020   TypeId.push_back({Offset, Callee});
6021 }
6022 
6023 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6024     ArrayRef<uint64_t> Record) {
6025   size_t Slot = 0;
6026   TypeIdCompatibleVtableInfo &TypeId =
6027       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6028           {Strtab.data() + Record[Slot],
6029            static_cast<size_t>(Record[Slot + 1])});
6030   Slot += 2;
6031 
6032   while (Slot < Record.size())
6033     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6034 }
6035 
6036 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6037                            unsigned WOCnt) {
6038   // Readonly and writeonly refs are in the end of the refs list.
6039   assert(ROCnt + WOCnt <= Refs.size());
6040   unsigned FirstWORef = Refs.size() - WOCnt;
6041   unsigned RefNo = FirstWORef - ROCnt;
6042   for (; RefNo < FirstWORef; ++RefNo)
6043     Refs[RefNo].setReadOnly();
6044   for (; RefNo < Refs.size(); ++RefNo)
6045     Refs[RefNo].setWriteOnly();
6046 }
6047 
6048 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6049 // objects in the index.
6050 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6051   if (Error Err = Stream.EnterSubBlock(ID))
6052     return Err;
6053   SmallVector<uint64_t, 64> Record;
6054 
6055   // Parse version
6056   {
6057     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6058     if (!MaybeEntry)
6059       return MaybeEntry.takeError();
6060     BitstreamEntry Entry = MaybeEntry.get();
6061 
6062     if (Entry.Kind != BitstreamEntry::Record)
6063       return error("Invalid Summary Block: record for version expected");
6064     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6065     if (!MaybeRecord)
6066       return MaybeRecord.takeError();
6067     if (MaybeRecord.get() != bitc::FS_VERSION)
6068       return error("Invalid Summary Block: version expected");
6069   }
6070   const uint64_t Version = Record[0];
6071   const bool IsOldProfileFormat = Version == 1;
6072   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6073     return error("Invalid summary version " + Twine(Version) +
6074                  ". Version should be in the range [1-" +
6075                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6076                  "].");
6077   Record.clear();
6078 
6079   // Keep around the last seen summary to be used when we see an optional
6080   // "OriginalName" attachement.
6081   GlobalValueSummary *LastSeenSummary = nullptr;
6082   GlobalValue::GUID LastSeenGUID = 0;
6083 
6084   // We can expect to see any number of type ID information records before
6085   // each function summary records; these variables store the information
6086   // collected so far so that it can be used to create the summary object.
6087   std::vector<GlobalValue::GUID> PendingTypeTests;
6088   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6089       PendingTypeCheckedLoadVCalls;
6090   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6091       PendingTypeCheckedLoadConstVCalls;
6092   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6093 
6094   while (true) {
6095     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6096     if (!MaybeEntry)
6097       return MaybeEntry.takeError();
6098     BitstreamEntry Entry = MaybeEntry.get();
6099 
6100     switch (Entry.Kind) {
6101     case BitstreamEntry::SubBlock: // Handled for us already.
6102     case BitstreamEntry::Error:
6103       return error("Malformed block");
6104     case BitstreamEntry::EndBlock:
6105       return Error::success();
6106     case BitstreamEntry::Record:
6107       // The interesting case.
6108       break;
6109     }
6110 
6111     // Read a record. The record format depends on whether this
6112     // is a per-module index or a combined index file. In the per-module
6113     // case the records contain the associated value's ID for correlation
6114     // with VST entries. In the combined index the correlation is done
6115     // via the bitcode offset of the summary records (which were saved
6116     // in the combined index VST entries). The records also contain
6117     // information used for ThinLTO renaming and importing.
6118     Record.clear();
6119     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6120     if (!MaybeBitCode)
6121       return MaybeBitCode.takeError();
6122     switch (unsigned BitCode = MaybeBitCode.get()) {
6123     default: // Default behavior: ignore.
6124       break;
6125     case bitc::FS_FLAGS: {  // [flags]
6126       TheIndex.setFlags(Record[0]);
6127       break;
6128     }
6129     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6130       uint64_t ValueID = Record[0];
6131       GlobalValue::GUID RefGUID = Record[1];
6132       ValueIdToValueInfoMap[ValueID] =
6133           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6134       break;
6135     }
6136     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6137     //                numrefs x valueid, n x (valueid)]
6138     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6139     //                        numrefs x valueid,
6140     //                        n x (valueid, hotness)]
6141     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6142     //                      numrefs x valueid,
6143     //                      n x (valueid, relblockfreq)]
6144     case bitc::FS_PERMODULE:
6145     case bitc::FS_PERMODULE_RELBF:
6146     case bitc::FS_PERMODULE_PROFILE: {
6147       unsigned ValueID = Record[0];
6148       uint64_t RawFlags = Record[1];
6149       unsigned InstCount = Record[2];
6150       uint64_t RawFunFlags = 0;
6151       unsigned NumRefs = Record[3];
6152       unsigned NumRORefs = 0, NumWORefs = 0;
6153       int RefListStartIndex = 4;
6154       if (Version >= 4) {
6155         RawFunFlags = Record[3];
6156         NumRefs = Record[4];
6157         RefListStartIndex = 5;
6158         if (Version >= 5) {
6159           NumRORefs = Record[5];
6160           RefListStartIndex = 6;
6161           if (Version >= 7) {
6162             NumWORefs = Record[6];
6163             RefListStartIndex = 7;
6164           }
6165         }
6166       }
6167 
6168       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6169       // The module path string ref set in the summary must be owned by the
6170       // index's module string table. Since we don't have a module path
6171       // string table section in the per-module index, we create a single
6172       // module path string table entry with an empty (0) ID to take
6173       // ownership.
6174       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6175       assert(Record.size() >= RefListStartIndex + NumRefs &&
6176              "Record size inconsistent with number of references");
6177       std::vector<ValueInfo> Refs = makeRefList(
6178           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6179       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6180       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6181       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6182           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6183           IsOldProfileFormat, HasProfile, HasRelBF);
6184       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6185       auto FS = std::make_unique<FunctionSummary>(
6186           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6187           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6188           std::move(PendingTypeTestAssumeVCalls),
6189           std::move(PendingTypeCheckedLoadVCalls),
6190           std::move(PendingTypeTestAssumeConstVCalls),
6191           std::move(PendingTypeCheckedLoadConstVCalls),
6192           std::move(PendingParamAccesses));
6193       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6194       FS->setModulePath(getThisModule()->first());
6195       FS->setOriginalName(VIAndOriginalGUID.second);
6196       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6197       break;
6198     }
6199     // FS_ALIAS: [valueid, flags, valueid]
6200     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6201     // they expect all aliasee summaries to be available.
6202     case bitc::FS_ALIAS: {
6203       unsigned ValueID = Record[0];
6204       uint64_t RawFlags = Record[1];
6205       unsigned AliaseeID = Record[2];
6206       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6207       auto AS = std::make_unique<AliasSummary>(Flags);
6208       // The module path string ref set in the summary must be owned by the
6209       // index's module string table. Since we don't have a module path
6210       // string table section in the per-module index, we create a single
6211       // module path string table entry with an empty (0) ID to take
6212       // ownership.
6213       AS->setModulePath(getThisModule()->first());
6214 
6215       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6216       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6217       if (!AliaseeInModule)
6218         return error("Alias expects aliasee summary to be parsed");
6219       AS->setAliasee(AliaseeVI, AliaseeInModule);
6220 
6221       auto GUID = getValueInfoFromValueId(ValueID);
6222       AS->setOriginalName(GUID.second);
6223       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6224       break;
6225     }
6226     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6227     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6228       unsigned ValueID = Record[0];
6229       uint64_t RawFlags = Record[1];
6230       unsigned RefArrayStart = 2;
6231       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6232                                       /* WriteOnly */ false,
6233                                       /* Constant */ false,
6234                                       GlobalObject::VCallVisibilityPublic);
6235       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6236       if (Version >= 5) {
6237         GVF = getDecodedGVarFlags(Record[2]);
6238         RefArrayStart = 3;
6239       }
6240       std::vector<ValueInfo> Refs =
6241           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6242       auto FS =
6243           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6244       FS->setModulePath(getThisModule()->first());
6245       auto GUID = getValueInfoFromValueId(ValueID);
6246       FS->setOriginalName(GUID.second);
6247       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6248       break;
6249     }
6250     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6251     //                        numrefs, numrefs x valueid,
6252     //                        n x (valueid, offset)]
6253     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6254       unsigned ValueID = Record[0];
6255       uint64_t RawFlags = Record[1];
6256       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6257       unsigned NumRefs = Record[3];
6258       unsigned RefListStartIndex = 4;
6259       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6260       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6261       std::vector<ValueInfo> Refs = makeRefList(
6262           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6263       VTableFuncList VTableFuncs;
6264       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6265         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6266         uint64_t Offset = Record[++I];
6267         VTableFuncs.push_back({Callee, Offset});
6268       }
6269       auto VS =
6270           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6271       VS->setModulePath(getThisModule()->first());
6272       VS->setVTableFuncs(VTableFuncs);
6273       auto GUID = getValueInfoFromValueId(ValueID);
6274       VS->setOriginalName(GUID.second);
6275       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6276       break;
6277     }
6278     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6279     //               numrefs x valueid, n x (valueid)]
6280     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6281     //                       numrefs x valueid, n x (valueid, hotness)]
6282     case bitc::FS_COMBINED:
6283     case bitc::FS_COMBINED_PROFILE: {
6284       unsigned ValueID = Record[0];
6285       uint64_t ModuleId = Record[1];
6286       uint64_t RawFlags = Record[2];
6287       unsigned InstCount = Record[3];
6288       uint64_t RawFunFlags = 0;
6289       uint64_t EntryCount = 0;
6290       unsigned NumRefs = Record[4];
6291       unsigned NumRORefs = 0, NumWORefs = 0;
6292       int RefListStartIndex = 5;
6293 
6294       if (Version >= 4) {
6295         RawFunFlags = Record[4];
6296         RefListStartIndex = 6;
6297         size_t NumRefsIndex = 5;
6298         if (Version >= 5) {
6299           unsigned NumRORefsOffset = 1;
6300           RefListStartIndex = 7;
6301           if (Version >= 6) {
6302             NumRefsIndex = 6;
6303             EntryCount = Record[5];
6304             RefListStartIndex = 8;
6305             if (Version >= 7) {
6306               RefListStartIndex = 9;
6307               NumWORefs = Record[8];
6308               NumRORefsOffset = 2;
6309             }
6310           }
6311           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6312         }
6313         NumRefs = Record[NumRefsIndex];
6314       }
6315 
6316       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6317       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6318       assert(Record.size() >= RefListStartIndex + NumRefs &&
6319              "Record size inconsistent with number of references");
6320       std::vector<ValueInfo> Refs = makeRefList(
6321           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6322       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6323       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6324           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6325           IsOldProfileFormat, HasProfile, false);
6326       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6327       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6328       auto FS = std::make_unique<FunctionSummary>(
6329           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6330           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6331           std::move(PendingTypeTestAssumeVCalls),
6332           std::move(PendingTypeCheckedLoadVCalls),
6333           std::move(PendingTypeTestAssumeConstVCalls),
6334           std::move(PendingTypeCheckedLoadConstVCalls),
6335           std::move(PendingParamAccesses));
6336       LastSeenSummary = FS.get();
6337       LastSeenGUID = VI.getGUID();
6338       FS->setModulePath(ModuleIdMap[ModuleId]);
6339       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6340       break;
6341     }
6342     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6343     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6344     // they expect all aliasee summaries to be available.
6345     case bitc::FS_COMBINED_ALIAS: {
6346       unsigned ValueID = Record[0];
6347       uint64_t ModuleId = Record[1];
6348       uint64_t RawFlags = Record[2];
6349       unsigned AliaseeValueId = Record[3];
6350       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6351       auto AS = std::make_unique<AliasSummary>(Flags);
6352       LastSeenSummary = AS.get();
6353       AS->setModulePath(ModuleIdMap[ModuleId]);
6354 
6355       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6356       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6357       AS->setAliasee(AliaseeVI, AliaseeInModule);
6358 
6359       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6360       LastSeenGUID = VI.getGUID();
6361       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6362       break;
6363     }
6364     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6365     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6366       unsigned ValueID = Record[0];
6367       uint64_t ModuleId = Record[1];
6368       uint64_t RawFlags = Record[2];
6369       unsigned RefArrayStart = 3;
6370       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6371                                       /* WriteOnly */ false,
6372                                       /* Constant */ false,
6373                                       GlobalObject::VCallVisibilityPublic);
6374       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6375       if (Version >= 5) {
6376         GVF = getDecodedGVarFlags(Record[3]);
6377         RefArrayStart = 4;
6378       }
6379       std::vector<ValueInfo> Refs =
6380           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6381       auto FS =
6382           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6383       LastSeenSummary = FS.get();
6384       FS->setModulePath(ModuleIdMap[ModuleId]);
6385       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6386       LastSeenGUID = VI.getGUID();
6387       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6388       break;
6389     }
6390     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6391     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6392       uint64_t OriginalName = Record[0];
6393       if (!LastSeenSummary)
6394         return error("Name attachment that does not follow a combined record");
6395       LastSeenSummary->setOriginalName(OriginalName);
6396       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6397       // Reset the LastSeenSummary
6398       LastSeenSummary = nullptr;
6399       LastSeenGUID = 0;
6400       break;
6401     }
6402     case bitc::FS_TYPE_TESTS:
6403       assert(PendingTypeTests.empty());
6404       llvm::append_range(PendingTypeTests, Record);
6405       break;
6406 
6407     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6408       assert(PendingTypeTestAssumeVCalls.empty());
6409       for (unsigned I = 0; I != Record.size(); I += 2)
6410         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6411       break;
6412 
6413     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6414       assert(PendingTypeCheckedLoadVCalls.empty());
6415       for (unsigned I = 0; I != Record.size(); I += 2)
6416         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6417       break;
6418 
6419     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6420       PendingTypeTestAssumeConstVCalls.push_back(
6421           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6422       break;
6423 
6424     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6425       PendingTypeCheckedLoadConstVCalls.push_back(
6426           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6427       break;
6428 
6429     case bitc::FS_CFI_FUNCTION_DEFS: {
6430       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6431       for (unsigned I = 0; I != Record.size(); I += 2)
6432         CfiFunctionDefs.insert(
6433             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6434       break;
6435     }
6436 
6437     case bitc::FS_CFI_FUNCTION_DECLS: {
6438       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6439       for (unsigned I = 0; I != Record.size(); I += 2)
6440         CfiFunctionDecls.insert(
6441             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6442       break;
6443     }
6444 
6445     case bitc::FS_TYPE_ID:
6446       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6447       break;
6448 
6449     case bitc::FS_TYPE_ID_METADATA:
6450       parseTypeIdCompatibleVtableSummaryRecord(Record);
6451       break;
6452 
6453     case bitc::FS_BLOCK_COUNT:
6454       TheIndex.addBlockCount(Record[0]);
6455       break;
6456 
6457     case bitc::FS_PARAM_ACCESS: {
6458       PendingParamAccesses = parseParamAccesses(Record);
6459       break;
6460     }
6461     }
6462   }
6463   llvm_unreachable("Exit infinite loop");
6464 }
6465 
6466 // Parse the  module string table block into the Index.
6467 // This populates the ModulePathStringTable map in the index.
6468 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6469   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6470     return Err;
6471 
6472   SmallVector<uint64_t, 64> Record;
6473 
6474   SmallString<128> ModulePath;
6475   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6476 
6477   while (true) {
6478     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6479     if (!MaybeEntry)
6480       return MaybeEntry.takeError();
6481     BitstreamEntry Entry = MaybeEntry.get();
6482 
6483     switch (Entry.Kind) {
6484     case BitstreamEntry::SubBlock: // Handled for us already.
6485     case BitstreamEntry::Error:
6486       return error("Malformed block");
6487     case BitstreamEntry::EndBlock:
6488       return Error::success();
6489     case BitstreamEntry::Record:
6490       // The interesting case.
6491       break;
6492     }
6493 
6494     Record.clear();
6495     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6496     if (!MaybeRecord)
6497       return MaybeRecord.takeError();
6498     switch (MaybeRecord.get()) {
6499     default: // Default behavior: ignore.
6500       break;
6501     case bitc::MST_CODE_ENTRY: {
6502       // MST_ENTRY: [modid, namechar x N]
6503       uint64_t ModuleId = Record[0];
6504 
6505       if (convertToString(Record, 1, ModulePath))
6506         return error("Invalid record");
6507 
6508       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6509       ModuleIdMap[ModuleId] = LastSeenModule->first();
6510 
6511       ModulePath.clear();
6512       break;
6513     }
6514     /// MST_CODE_HASH: [5*i32]
6515     case bitc::MST_CODE_HASH: {
6516       if (Record.size() != 5)
6517         return error("Invalid hash length " + Twine(Record.size()).str());
6518       if (!LastSeenModule)
6519         return error("Invalid hash that does not follow a module path");
6520       int Pos = 0;
6521       for (auto &Val : Record) {
6522         assert(!(Val >> 32) && "Unexpected high bits set");
6523         LastSeenModule->second.second[Pos++] = Val;
6524       }
6525       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6526       LastSeenModule = nullptr;
6527       break;
6528     }
6529     }
6530   }
6531   llvm_unreachable("Exit infinite loop");
6532 }
6533 
6534 namespace {
6535 
6536 // FIXME: This class is only here to support the transition to llvm::Error. It
6537 // will be removed once this transition is complete. Clients should prefer to
6538 // deal with the Error value directly, rather than converting to error_code.
6539 class BitcodeErrorCategoryType : public std::error_category {
6540   const char *name() const noexcept override {
6541     return "llvm.bitcode";
6542   }
6543 
6544   std::string message(int IE) const override {
6545     BitcodeError E = static_cast<BitcodeError>(IE);
6546     switch (E) {
6547     case BitcodeError::CorruptedBitcode:
6548       return "Corrupted bitcode";
6549     }
6550     llvm_unreachable("Unknown error type!");
6551   }
6552 };
6553 
6554 } // end anonymous namespace
6555 
6556 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6557 
6558 const std::error_category &llvm::BitcodeErrorCategory() {
6559   return *ErrorCategory;
6560 }
6561 
6562 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6563                                             unsigned Block, unsigned RecordID) {
6564   if (Error Err = Stream.EnterSubBlock(Block))
6565     return std::move(Err);
6566 
6567   StringRef Strtab;
6568   while (true) {
6569     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6570     if (!MaybeEntry)
6571       return MaybeEntry.takeError();
6572     llvm::BitstreamEntry Entry = MaybeEntry.get();
6573 
6574     switch (Entry.Kind) {
6575     case BitstreamEntry::EndBlock:
6576       return Strtab;
6577 
6578     case BitstreamEntry::Error:
6579       return error("Malformed block");
6580 
6581     case BitstreamEntry::SubBlock:
6582       if (Error Err = Stream.SkipBlock())
6583         return std::move(Err);
6584       break;
6585 
6586     case BitstreamEntry::Record:
6587       StringRef Blob;
6588       SmallVector<uint64_t, 1> Record;
6589       Expected<unsigned> MaybeRecord =
6590           Stream.readRecord(Entry.ID, Record, &Blob);
6591       if (!MaybeRecord)
6592         return MaybeRecord.takeError();
6593       if (MaybeRecord.get() == RecordID)
6594         Strtab = Blob;
6595       break;
6596     }
6597   }
6598 }
6599 
6600 //===----------------------------------------------------------------------===//
6601 // External interface
6602 //===----------------------------------------------------------------------===//
6603 
6604 Expected<std::vector<BitcodeModule>>
6605 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6606   auto FOrErr = getBitcodeFileContents(Buffer);
6607   if (!FOrErr)
6608     return FOrErr.takeError();
6609   return std::move(FOrErr->Mods);
6610 }
6611 
6612 Expected<BitcodeFileContents>
6613 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6614   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6615   if (!StreamOrErr)
6616     return StreamOrErr.takeError();
6617   BitstreamCursor &Stream = *StreamOrErr;
6618 
6619   BitcodeFileContents F;
6620   while (true) {
6621     uint64_t BCBegin = Stream.getCurrentByteNo();
6622 
6623     // We may be consuming bitcode from a client that leaves garbage at the end
6624     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6625     // the end that there cannot possibly be another module, stop looking.
6626     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6627       return F;
6628 
6629     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6630     if (!MaybeEntry)
6631       return MaybeEntry.takeError();
6632     llvm::BitstreamEntry Entry = MaybeEntry.get();
6633 
6634     switch (Entry.Kind) {
6635     case BitstreamEntry::EndBlock:
6636     case BitstreamEntry::Error:
6637       return error("Malformed block");
6638 
6639     case BitstreamEntry::SubBlock: {
6640       uint64_t IdentificationBit = -1ull;
6641       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6642         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6643         if (Error Err = Stream.SkipBlock())
6644           return std::move(Err);
6645 
6646         {
6647           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6648           if (!MaybeEntry)
6649             return MaybeEntry.takeError();
6650           Entry = MaybeEntry.get();
6651         }
6652 
6653         if (Entry.Kind != BitstreamEntry::SubBlock ||
6654             Entry.ID != bitc::MODULE_BLOCK_ID)
6655           return error("Malformed block");
6656       }
6657 
6658       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6659         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6660         if (Error Err = Stream.SkipBlock())
6661           return std::move(Err);
6662 
6663         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6664                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6665                           Buffer.getBufferIdentifier(), IdentificationBit,
6666                           ModuleBit});
6667         continue;
6668       }
6669 
6670       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6671         Expected<StringRef> Strtab =
6672             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6673         if (!Strtab)
6674           return Strtab.takeError();
6675         // This string table is used by every preceding bitcode module that does
6676         // not have its own string table. A bitcode file may have multiple
6677         // string tables if it was created by binary concatenation, for example
6678         // with "llvm-cat -b".
6679         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6680           if (!I->Strtab.empty())
6681             break;
6682           I->Strtab = *Strtab;
6683         }
6684         // Similarly, the string table is used by every preceding symbol table;
6685         // normally there will be just one unless the bitcode file was created
6686         // by binary concatenation.
6687         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6688           F.StrtabForSymtab = *Strtab;
6689         continue;
6690       }
6691 
6692       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6693         Expected<StringRef> SymtabOrErr =
6694             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6695         if (!SymtabOrErr)
6696           return SymtabOrErr.takeError();
6697 
6698         // We can expect the bitcode file to have multiple symbol tables if it
6699         // was created by binary concatenation. In that case we silently
6700         // ignore any subsequent symbol tables, which is fine because this is a
6701         // low level function. The client is expected to notice that the number
6702         // of modules in the symbol table does not match the number of modules
6703         // in the input file and regenerate the symbol table.
6704         if (F.Symtab.empty())
6705           F.Symtab = *SymtabOrErr;
6706         continue;
6707       }
6708 
6709       if (Error Err = Stream.SkipBlock())
6710         return std::move(Err);
6711       continue;
6712     }
6713     case BitstreamEntry::Record:
6714       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6715         continue;
6716       else
6717         return StreamFailed.takeError();
6718     }
6719   }
6720 }
6721 
6722 /// Get a lazy one-at-time loading module from bitcode.
6723 ///
6724 /// This isn't always used in a lazy context.  In particular, it's also used by
6725 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6726 /// in forward-referenced functions from block address references.
6727 ///
6728 /// \param[in] MaterializeAll Set to \c true if we should materialize
6729 /// everything.
6730 Expected<std::unique_ptr<Module>>
6731 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6732                              bool ShouldLazyLoadMetadata, bool IsImporting,
6733                              DataLayoutCallbackTy DataLayoutCallback) {
6734   BitstreamCursor Stream(Buffer);
6735 
6736   std::string ProducerIdentification;
6737   if (IdentificationBit != -1ull) {
6738     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6739       return std::move(JumpFailed);
6740     Expected<std::string> ProducerIdentificationOrErr =
6741         readIdentificationBlock(Stream);
6742     if (!ProducerIdentificationOrErr)
6743       return ProducerIdentificationOrErr.takeError();
6744 
6745     ProducerIdentification = *ProducerIdentificationOrErr;
6746   }
6747 
6748   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6749     return std::move(JumpFailed);
6750   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6751                               Context);
6752 
6753   std::unique_ptr<Module> M =
6754       std::make_unique<Module>(ModuleIdentifier, Context);
6755   M->setMaterializer(R);
6756 
6757   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6758   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6759                                       IsImporting, DataLayoutCallback))
6760     return std::move(Err);
6761 
6762   if (MaterializeAll) {
6763     // Read in the entire module, and destroy the BitcodeReader.
6764     if (Error Err = M->materializeAll())
6765       return std::move(Err);
6766   } else {
6767     // Resolve forward references from blockaddresses.
6768     if (Error Err = R->materializeForwardReferencedFunctions())
6769       return std::move(Err);
6770   }
6771   return std::move(M);
6772 }
6773 
6774 Expected<std::unique_ptr<Module>>
6775 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6776                              bool IsImporting) {
6777   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6778                        [](StringRef) { return None; });
6779 }
6780 
6781 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6782 // We don't use ModuleIdentifier here because the client may need to control the
6783 // module path used in the combined summary (e.g. when reading summaries for
6784 // regular LTO modules).
6785 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6786                                  StringRef ModulePath, uint64_t ModuleId) {
6787   BitstreamCursor Stream(Buffer);
6788   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6789     return JumpFailed;
6790 
6791   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6792                                     ModulePath, ModuleId);
6793   return R.parseModule();
6794 }
6795 
6796 // Parse the specified bitcode buffer, returning the function info index.
6797 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6798   BitstreamCursor Stream(Buffer);
6799   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6800     return std::move(JumpFailed);
6801 
6802   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6803   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6804                                     ModuleIdentifier, 0);
6805 
6806   if (Error Err = R.parseModule())
6807     return std::move(Err);
6808 
6809   return std::move(Index);
6810 }
6811 
6812 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6813                                                 unsigned ID) {
6814   if (Error Err = Stream.EnterSubBlock(ID))
6815     return std::move(Err);
6816   SmallVector<uint64_t, 64> Record;
6817 
6818   while (true) {
6819     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6820     if (!MaybeEntry)
6821       return MaybeEntry.takeError();
6822     BitstreamEntry Entry = MaybeEntry.get();
6823 
6824     switch (Entry.Kind) {
6825     case BitstreamEntry::SubBlock: // Handled for us already.
6826     case BitstreamEntry::Error:
6827       return error("Malformed block");
6828     case BitstreamEntry::EndBlock:
6829       // If no flags record found, conservatively return true to mimic
6830       // behavior before this flag was added.
6831       return true;
6832     case BitstreamEntry::Record:
6833       // The interesting case.
6834       break;
6835     }
6836 
6837     // Look for the FS_FLAGS record.
6838     Record.clear();
6839     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6840     if (!MaybeBitCode)
6841       return MaybeBitCode.takeError();
6842     switch (MaybeBitCode.get()) {
6843     default: // Default behavior: ignore.
6844       break;
6845     case bitc::FS_FLAGS: { // [flags]
6846       uint64_t Flags = Record[0];
6847       // Scan flags.
6848       assert(Flags <= 0x3f && "Unexpected bits in flag");
6849 
6850       return Flags & 0x8;
6851     }
6852     }
6853   }
6854   llvm_unreachable("Exit infinite loop");
6855 }
6856 
6857 // Check if the given bitcode buffer contains a global value summary block.
6858 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6859   BitstreamCursor Stream(Buffer);
6860   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6861     return std::move(JumpFailed);
6862 
6863   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6864     return std::move(Err);
6865 
6866   while (true) {
6867     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6868     if (!MaybeEntry)
6869       return MaybeEntry.takeError();
6870     llvm::BitstreamEntry Entry = MaybeEntry.get();
6871 
6872     switch (Entry.Kind) {
6873     case BitstreamEntry::Error:
6874       return error("Malformed block");
6875     case BitstreamEntry::EndBlock:
6876       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6877                             /*EnableSplitLTOUnit=*/false};
6878 
6879     case BitstreamEntry::SubBlock:
6880       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6881         Expected<bool> EnableSplitLTOUnit =
6882             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6883         if (!EnableSplitLTOUnit)
6884           return EnableSplitLTOUnit.takeError();
6885         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6886                               *EnableSplitLTOUnit};
6887       }
6888 
6889       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6890         Expected<bool> EnableSplitLTOUnit =
6891             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6892         if (!EnableSplitLTOUnit)
6893           return EnableSplitLTOUnit.takeError();
6894         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6895                               *EnableSplitLTOUnit};
6896       }
6897 
6898       // Ignore other sub-blocks.
6899       if (Error Err = Stream.SkipBlock())
6900         return std::move(Err);
6901       continue;
6902 
6903     case BitstreamEntry::Record:
6904       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6905         continue;
6906       else
6907         return StreamFailed.takeError();
6908     }
6909   }
6910 }
6911 
6912 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6913   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6914   if (!MsOrErr)
6915     return MsOrErr.takeError();
6916 
6917   if (MsOrErr->size() != 1)
6918     return error("Expected a single module");
6919 
6920   return (*MsOrErr)[0];
6921 }
6922 
6923 Expected<std::unique_ptr<Module>>
6924 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6925                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6926   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6927   if (!BM)
6928     return BM.takeError();
6929 
6930   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6931 }
6932 
6933 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6934     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6935     bool ShouldLazyLoadMetadata, bool IsImporting) {
6936   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6937                                      IsImporting);
6938   if (MOrErr)
6939     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6940   return MOrErr;
6941 }
6942 
6943 Expected<std::unique_ptr<Module>>
6944 BitcodeModule::parseModule(LLVMContext &Context,
6945                            DataLayoutCallbackTy DataLayoutCallback) {
6946   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6947   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6948   // written.  We must defer until the Module has been fully materialized.
6949 }
6950 
6951 Expected<std::unique_ptr<Module>>
6952 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6953                        DataLayoutCallbackTy DataLayoutCallback) {
6954   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6955   if (!BM)
6956     return BM.takeError();
6957 
6958   return BM->parseModule(Context, DataLayoutCallback);
6959 }
6960 
6961 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6962   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6963   if (!StreamOrErr)
6964     return StreamOrErr.takeError();
6965 
6966   return readTriple(*StreamOrErr);
6967 }
6968 
6969 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6970   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6971   if (!StreamOrErr)
6972     return StreamOrErr.takeError();
6973 
6974   return hasObjCCategory(*StreamOrErr);
6975 }
6976 
6977 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6978   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6979   if (!StreamOrErr)
6980     return StreamOrErr.takeError();
6981 
6982   return readIdentificationCode(*StreamOrErr);
6983 }
6984 
6985 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6986                                    ModuleSummaryIndex &CombinedIndex,
6987                                    uint64_t ModuleId) {
6988   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6989   if (!BM)
6990     return BM.takeError();
6991 
6992   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6993 }
6994 
6995 Expected<std::unique_ptr<ModuleSummaryIndex>>
6996 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6997   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6998   if (!BM)
6999     return BM.takeError();
7000 
7001   return BM->getSummary();
7002 }
7003 
7004 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7005   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7006   if (!BM)
7007     return BM.takeError();
7008 
7009   return BM->getLTOInfo();
7010 }
7011 
7012 Expected<std::unique_ptr<ModuleSummaryIndex>>
7013 llvm::getModuleSummaryIndexForFile(StringRef Path,
7014                                    bool IgnoreEmptyThinLTOIndexFile) {
7015   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7016       MemoryBuffer::getFileOrSTDIN(Path);
7017   if (!FileOrErr)
7018     return errorCodeToError(FileOrErr.getError());
7019   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7020     return nullptr;
7021   return getModuleSummaryIndex(**FileOrErr);
7022 }
7023