1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 35 if (WillMaterializeAllForwardRefs) 36 return std::error_code(); 37 38 // Prevent recursion. 39 WillMaterializeAllForwardRefs = true; 40 41 while (!BasicBlockFwdRefQueue.empty()) { 42 Function *F = BasicBlockFwdRefQueue.front(); 43 BasicBlockFwdRefQueue.pop_front(); 44 assert(F && "Expected valid function"); 45 if (!BasicBlockFwdRefs.count(F)) 46 // Already materialized. 47 continue; 48 49 // Check for a function that isn't materializable to prevent an infinite 50 // loop. When parsing a blockaddress stored in a global variable, there 51 // isn't a trivial way to check if a function will have a body without a 52 // linear search through FunctionsWithBodies, so just check it here. 53 if (!F->isMaterializable()) 54 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 55 56 // Try to materialize F. 57 if (std::error_code EC = Materialize(F)) 58 return EC; 59 } 60 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 61 62 // Reset state. 63 WillMaterializeAllForwardRefs = false; 64 return std::error_code(); 65 } 66 67 void BitcodeReader::FreeState() { 68 Buffer = nullptr; 69 std::vector<Type*>().swap(TypeList); 70 ValueList.clear(); 71 MDValueList.clear(); 72 std::vector<Comdat *>().swap(ComdatList); 73 74 std::vector<AttributeSet>().swap(MAttributes); 75 std::vector<BasicBlock*>().swap(FunctionBBs); 76 std::vector<Function*>().swap(FunctionsWithBodies); 77 DeferredFunctionInfo.clear(); 78 MDKindMap.clear(); 79 80 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 81 BasicBlockFwdRefQueue.clear(); 82 } 83 84 //===----------------------------------------------------------------------===// 85 // Helper functions to implement forward reference resolution, etc. 86 //===----------------------------------------------------------------------===// 87 88 /// ConvertToString - Convert a string from a record into an std::string, return 89 /// true on failure. 90 template<typename StrTy> 91 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 92 StrTy &Result) { 93 if (Idx > Record.size()) 94 return true; 95 96 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 97 Result += (char)Record[i]; 98 return false; 99 } 100 101 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 102 switch (Val) { 103 default: // Map unknown/new linkages to external 104 case 0: return GlobalValue::ExternalLinkage; 105 case 1: return GlobalValue::WeakAnyLinkage; 106 case 2: return GlobalValue::AppendingLinkage; 107 case 3: return GlobalValue::InternalLinkage; 108 case 4: return GlobalValue::LinkOnceAnyLinkage; 109 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 110 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 111 case 7: return GlobalValue::ExternalWeakLinkage; 112 case 8: return GlobalValue::CommonLinkage; 113 case 9: return GlobalValue::PrivateLinkage; 114 case 10: return GlobalValue::WeakODRLinkage; 115 case 11: return GlobalValue::LinkOnceODRLinkage; 116 case 12: return GlobalValue::AvailableExternallyLinkage; 117 case 13: 118 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 119 case 14: 120 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 121 } 122 } 123 124 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 125 switch (Val) { 126 default: // Map unknown visibilities to default. 127 case 0: return GlobalValue::DefaultVisibility; 128 case 1: return GlobalValue::HiddenVisibility; 129 case 2: return GlobalValue::ProtectedVisibility; 130 } 131 } 132 133 static GlobalValue::DLLStorageClassTypes 134 GetDecodedDLLStorageClass(unsigned Val) { 135 switch (Val) { 136 default: // Map unknown values to default. 137 case 0: return GlobalValue::DefaultStorageClass; 138 case 1: return GlobalValue::DLLImportStorageClass; 139 case 2: return GlobalValue::DLLExportStorageClass; 140 } 141 } 142 143 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 144 switch (Val) { 145 case 0: return GlobalVariable::NotThreadLocal; 146 default: // Map unknown non-zero value to general dynamic. 147 case 1: return GlobalVariable::GeneralDynamicTLSModel; 148 case 2: return GlobalVariable::LocalDynamicTLSModel; 149 case 3: return GlobalVariable::InitialExecTLSModel; 150 case 4: return GlobalVariable::LocalExecTLSModel; 151 } 152 } 153 154 static int GetDecodedCastOpcode(unsigned Val) { 155 switch (Val) { 156 default: return -1; 157 case bitc::CAST_TRUNC : return Instruction::Trunc; 158 case bitc::CAST_ZEXT : return Instruction::ZExt; 159 case bitc::CAST_SEXT : return Instruction::SExt; 160 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 161 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 162 case bitc::CAST_UITOFP : return Instruction::UIToFP; 163 case bitc::CAST_SITOFP : return Instruction::SIToFP; 164 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 165 case bitc::CAST_FPEXT : return Instruction::FPExt; 166 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 167 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 168 case bitc::CAST_BITCAST : return Instruction::BitCast; 169 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 170 } 171 } 172 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 173 switch (Val) { 174 default: return -1; 175 case bitc::BINOP_ADD: 176 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 177 case bitc::BINOP_SUB: 178 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 179 case bitc::BINOP_MUL: 180 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 181 case bitc::BINOP_UDIV: return Instruction::UDiv; 182 case bitc::BINOP_SDIV: 183 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 184 case bitc::BINOP_UREM: return Instruction::URem; 185 case bitc::BINOP_SREM: 186 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 187 case bitc::BINOP_SHL: return Instruction::Shl; 188 case bitc::BINOP_LSHR: return Instruction::LShr; 189 case bitc::BINOP_ASHR: return Instruction::AShr; 190 case bitc::BINOP_AND: return Instruction::And; 191 case bitc::BINOP_OR: return Instruction::Or; 192 case bitc::BINOP_XOR: return Instruction::Xor; 193 } 194 } 195 196 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 197 switch (Val) { 198 default: return AtomicRMWInst::BAD_BINOP; 199 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 200 case bitc::RMW_ADD: return AtomicRMWInst::Add; 201 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 202 case bitc::RMW_AND: return AtomicRMWInst::And; 203 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 204 case bitc::RMW_OR: return AtomicRMWInst::Or; 205 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 206 case bitc::RMW_MAX: return AtomicRMWInst::Max; 207 case bitc::RMW_MIN: return AtomicRMWInst::Min; 208 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 209 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 210 } 211 } 212 213 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 214 switch (Val) { 215 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 216 case bitc::ORDERING_UNORDERED: return Unordered; 217 case bitc::ORDERING_MONOTONIC: return Monotonic; 218 case bitc::ORDERING_ACQUIRE: return Acquire; 219 case bitc::ORDERING_RELEASE: return Release; 220 case bitc::ORDERING_ACQREL: return AcquireRelease; 221 default: // Map unknown orderings to sequentially-consistent. 222 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 223 } 224 } 225 226 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 227 switch (Val) { 228 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 229 default: // Map unknown scopes to cross-thread. 230 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 231 } 232 } 233 234 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 235 switch (Val) { 236 default: // Map unknown selection kinds to any. 237 case bitc::COMDAT_SELECTION_KIND_ANY: 238 return Comdat::Any; 239 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 240 return Comdat::ExactMatch; 241 case bitc::COMDAT_SELECTION_KIND_LARGEST: 242 return Comdat::Largest; 243 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 244 return Comdat::NoDuplicates; 245 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 246 return Comdat::SameSize; 247 } 248 } 249 250 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 251 switch (Val) { 252 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 253 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 254 } 255 } 256 257 namespace llvm { 258 namespace { 259 /// @brief A class for maintaining the slot number definition 260 /// as a placeholder for the actual definition for forward constants defs. 261 class ConstantPlaceHolder : public ConstantExpr { 262 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 263 public: 264 // allocate space for exactly one operand 265 void *operator new(size_t s) { 266 return User::operator new(s, 1); 267 } 268 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 269 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 270 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 271 } 272 273 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 274 static bool classof(const Value *V) { 275 return isa<ConstantExpr>(V) && 276 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 277 } 278 279 280 /// Provide fast operand accessors 281 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 282 }; 283 } 284 285 // FIXME: can we inherit this from ConstantExpr? 286 template <> 287 struct OperandTraits<ConstantPlaceHolder> : 288 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 289 }; 290 } 291 292 293 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 294 if (Idx == size()) { 295 push_back(V); 296 return; 297 } 298 299 if (Idx >= size()) 300 resize(Idx+1); 301 302 WeakVH &OldV = ValuePtrs[Idx]; 303 if (!OldV) { 304 OldV = V; 305 return; 306 } 307 308 // Handle constants and non-constants (e.g. instrs) differently for 309 // efficiency. 310 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 311 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 312 OldV = V; 313 } else { 314 // If there was a forward reference to this value, replace it. 315 Value *PrevVal = OldV; 316 OldV->replaceAllUsesWith(V); 317 delete PrevVal; 318 } 319 } 320 321 322 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 323 Type *Ty) { 324 if (Idx >= size()) 325 resize(Idx + 1); 326 327 if (Value *V = ValuePtrs[Idx]) { 328 assert(Ty == V->getType() && "Type mismatch in constant table!"); 329 return cast<Constant>(V); 330 } 331 332 // Create and return a placeholder, which will later be RAUW'd. 333 Constant *C = new ConstantPlaceHolder(Ty, Context); 334 ValuePtrs[Idx] = C; 335 return C; 336 } 337 338 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 339 if (Idx >= size()) 340 resize(Idx + 1); 341 342 if (Value *V = ValuePtrs[Idx]) { 343 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 344 return V; 345 } 346 347 // No type specified, must be invalid reference. 348 if (!Ty) return nullptr; 349 350 // Create and return a placeholder, which will later be RAUW'd. 351 Value *V = new Argument(Ty); 352 ValuePtrs[Idx] = V; 353 return V; 354 } 355 356 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 357 /// resolves any forward references. The idea behind this is that we sometimes 358 /// get constants (such as large arrays) which reference *many* forward ref 359 /// constants. Replacing each of these causes a lot of thrashing when 360 /// building/reuniquing the constant. Instead of doing this, we look at all the 361 /// uses and rewrite all the place holders at once for any constant that uses 362 /// a placeholder. 363 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 364 // Sort the values by-pointer so that they are efficient to look up with a 365 // binary search. 366 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 367 368 SmallVector<Constant*, 64> NewOps; 369 370 while (!ResolveConstants.empty()) { 371 Value *RealVal = operator[](ResolveConstants.back().second); 372 Constant *Placeholder = ResolveConstants.back().first; 373 ResolveConstants.pop_back(); 374 375 // Loop over all users of the placeholder, updating them to reference the 376 // new value. If they reference more than one placeholder, update them all 377 // at once. 378 while (!Placeholder->use_empty()) { 379 auto UI = Placeholder->user_begin(); 380 User *U = *UI; 381 382 // If the using object isn't uniqued, just update the operands. This 383 // handles instructions and initializers for global variables. 384 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 385 UI.getUse().set(RealVal); 386 continue; 387 } 388 389 // Otherwise, we have a constant that uses the placeholder. Replace that 390 // constant with a new constant that has *all* placeholder uses updated. 391 Constant *UserC = cast<Constant>(U); 392 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 393 I != E; ++I) { 394 Value *NewOp; 395 if (!isa<ConstantPlaceHolder>(*I)) { 396 // Not a placeholder reference. 397 NewOp = *I; 398 } else if (*I == Placeholder) { 399 // Common case is that it just references this one placeholder. 400 NewOp = RealVal; 401 } else { 402 // Otherwise, look up the placeholder in ResolveConstants. 403 ResolveConstantsTy::iterator It = 404 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 405 std::pair<Constant*, unsigned>(cast<Constant>(*I), 406 0)); 407 assert(It != ResolveConstants.end() && It->first == *I); 408 NewOp = operator[](It->second); 409 } 410 411 NewOps.push_back(cast<Constant>(NewOp)); 412 } 413 414 // Make the new constant. 415 Constant *NewC; 416 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 417 NewC = ConstantArray::get(UserCA->getType(), NewOps); 418 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 419 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 420 } else if (isa<ConstantVector>(UserC)) { 421 NewC = ConstantVector::get(NewOps); 422 } else { 423 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 424 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 425 } 426 427 UserC->replaceAllUsesWith(NewC); 428 UserC->destroyConstant(); 429 NewOps.clear(); 430 } 431 432 // Update all ValueHandles, they should be the only users at this point. 433 Placeholder->replaceAllUsesWith(RealVal); 434 delete Placeholder; 435 } 436 } 437 438 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 439 if (Idx == size()) { 440 push_back(V); 441 return; 442 } 443 444 if (Idx >= size()) 445 resize(Idx+1); 446 447 WeakVH &OldV = MDValuePtrs[Idx]; 448 if (!OldV) { 449 OldV = V; 450 return; 451 } 452 453 // If there was a forward reference to this value, replace it. 454 MDNode *PrevVal = cast<MDNode>(OldV); 455 OldV->replaceAllUsesWith(V); 456 MDNode::deleteTemporary(PrevVal); 457 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 458 // value for Idx. 459 MDValuePtrs[Idx] = V; 460 } 461 462 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 463 if (Idx >= size()) 464 resize(Idx + 1); 465 466 if (Value *V = MDValuePtrs[Idx]) { 467 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 468 return V; 469 } 470 471 // Create and return a placeholder, which will later be RAUW'd. 472 Value *V = MDNode::getTemporary(Context, None); 473 MDValuePtrs[Idx] = V; 474 return V; 475 } 476 477 Type *BitcodeReader::getTypeByID(unsigned ID) { 478 // The type table size is always specified correctly. 479 if (ID >= TypeList.size()) 480 return nullptr; 481 482 if (Type *Ty = TypeList[ID]) 483 return Ty; 484 485 // If we have a forward reference, the only possible case is when it is to a 486 // named struct. Just create a placeholder for now. 487 return TypeList[ID] = StructType::create(Context); 488 } 489 490 491 //===----------------------------------------------------------------------===// 492 // Functions for parsing blocks from the bitcode file 493 //===----------------------------------------------------------------------===// 494 495 496 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 497 /// been decoded from the given integer. This function must stay in sync with 498 /// 'encodeLLVMAttributesForBitcode'. 499 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 500 uint64_t EncodedAttrs) { 501 // FIXME: Remove in 4.0. 502 503 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 504 // the bits above 31 down by 11 bits. 505 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 506 assert((!Alignment || isPowerOf2_32(Alignment)) && 507 "Alignment must be a power of two."); 508 509 if (Alignment) 510 B.addAlignmentAttr(Alignment); 511 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 512 (EncodedAttrs & 0xffff)); 513 } 514 515 std::error_code BitcodeReader::ParseAttributeBlock() { 516 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 517 return Error(BitcodeError::InvalidRecord); 518 519 if (!MAttributes.empty()) 520 return Error(BitcodeError::InvalidMultipleBlocks); 521 522 SmallVector<uint64_t, 64> Record; 523 524 SmallVector<AttributeSet, 8> Attrs; 525 526 // Read all the records. 527 while (1) { 528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 529 530 switch (Entry.Kind) { 531 case BitstreamEntry::SubBlock: // Handled for us already. 532 case BitstreamEntry::Error: 533 return Error(BitcodeError::MalformedBlock); 534 case BitstreamEntry::EndBlock: 535 return std::error_code(); 536 case BitstreamEntry::Record: 537 // The interesting case. 538 break; 539 } 540 541 // Read a record. 542 Record.clear(); 543 switch (Stream.readRecord(Entry.ID, Record)) { 544 default: // Default behavior: ignore. 545 break; 546 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 547 // FIXME: Remove in 4.0. 548 if (Record.size() & 1) 549 return Error(BitcodeError::InvalidRecord); 550 551 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 552 AttrBuilder B; 553 decodeLLVMAttributesForBitcode(B, Record[i+1]); 554 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 555 } 556 557 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 558 Attrs.clear(); 559 break; 560 } 561 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 562 for (unsigned i = 0, e = Record.size(); i != e; ++i) 563 Attrs.push_back(MAttributeGroups[Record[i]]); 564 565 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 566 Attrs.clear(); 567 break; 568 } 569 } 570 } 571 } 572 573 // Returns Attribute::None on unrecognized codes. 574 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 575 switch (Code) { 576 default: 577 return Attribute::None; 578 case bitc::ATTR_KIND_ALIGNMENT: 579 return Attribute::Alignment; 580 case bitc::ATTR_KIND_ALWAYS_INLINE: 581 return Attribute::AlwaysInline; 582 case bitc::ATTR_KIND_BUILTIN: 583 return Attribute::Builtin; 584 case bitc::ATTR_KIND_BY_VAL: 585 return Attribute::ByVal; 586 case bitc::ATTR_KIND_IN_ALLOCA: 587 return Attribute::InAlloca; 588 case bitc::ATTR_KIND_COLD: 589 return Attribute::Cold; 590 case bitc::ATTR_KIND_INLINE_HINT: 591 return Attribute::InlineHint; 592 case bitc::ATTR_KIND_IN_REG: 593 return Attribute::InReg; 594 case bitc::ATTR_KIND_JUMP_TABLE: 595 return Attribute::JumpTable; 596 case bitc::ATTR_KIND_MIN_SIZE: 597 return Attribute::MinSize; 598 case bitc::ATTR_KIND_NAKED: 599 return Attribute::Naked; 600 case bitc::ATTR_KIND_NEST: 601 return Attribute::Nest; 602 case bitc::ATTR_KIND_NO_ALIAS: 603 return Attribute::NoAlias; 604 case bitc::ATTR_KIND_NO_BUILTIN: 605 return Attribute::NoBuiltin; 606 case bitc::ATTR_KIND_NO_CAPTURE: 607 return Attribute::NoCapture; 608 case bitc::ATTR_KIND_NO_DUPLICATE: 609 return Attribute::NoDuplicate; 610 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 611 return Attribute::NoImplicitFloat; 612 case bitc::ATTR_KIND_NO_INLINE: 613 return Attribute::NoInline; 614 case bitc::ATTR_KIND_NON_LAZY_BIND: 615 return Attribute::NonLazyBind; 616 case bitc::ATTR_KIND_NON_NULL: 617 return Attribute::NonNull; 618 case bitc::ATTR_KIND_DEREFERENCEABLE: 619 return Attribute::Dereferenceable; 620 case bitc::ATTR_KIND_NO_RED_ZONE: 621 return Attribute::NoRedZone; 622 case bitc::ATTR_KIND_NO_RETURN: 623 return Attribute::NoReturn; 624 case bitc::ATTR_KIND_NO_UNWIND: 625 return Attribute::NoUnwind; 626 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 627 return Attribute::OptimizeForSize; 628 case bitc::ATTR_KIND_OPTIMIZE_NONE: 629 return Attribute::OptimizeNone; 630 case bitc::ATTR_KIND_READ_NONE: 631 return Attribute::ReadNone; 632 case bitc::ATTR_KIND_READ_ONLY: 633 return Attribute::ReadOnly; 634 case bitc::ATTR_KIND_RETURNED: 635 return Attribute::Returned; 636 case bitc::ATTR_KIND_RETURNS_TWICE: 637 return Attribute::ReturnsTwice; 638 case bitc::ATTR_KIND_S_EXT: 639 return Attribute::SExt; 640 case bitc::ATTR_KIND_STACK_ALIGNMENT: 641 return Attribute::StackAlignment; 642 case bitc::ATTR_KIND_STACK_PROTECT: 643 return Attribute::StackProtect; 644 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 645 return Attribute::StackProtectReq; 646 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 647 return Attribute::StackProtectStrong; 648 case bitc::ATTR_KIND_STRUCT_RET: 649 return Attribute::StructRet; 650 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 651 return Attribute::SanitizeAddress; 652 case bitc::ATTR_KIND_SANITIZE_THREAD: 653 return Attribute::SanitizeThread; 654 case bitc::ATTR_KIND_SANITIZE_MEMORY: 655 return Attribute::SanitizeMemory; 656 case bitc::ATTR_KIND_UW_TABLE: 657 return Attribute::UWTable; 658 case bitc::ATTR_KIND_Z_EXT: 659 return Attribute::ZExt; 660 } 661 } 662 663 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 664 Attribute::AttrKind *Kind) { 665 *Kind = GetAttrFromCode(Code); 666 if (*Kind == Attribute::None) 667 return Error(BitcodeError::InvalidValue); 668 return std::error_code(); 669 } 670 671 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 672 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 673 return Error(BitcodeError::InvalidRecord); 674 675 if (!MAttributeGroups.empty()) 676 return Error(BitcodeError::InvalidMultipleBlocks); 677 678 SmallVector<uint64_t, 64> Record; 679 680 // Read all the records. 681 while (1) { 682 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 683 684 switch (Entry.Kind) { 685 case BitstreamEntry::SubBlock: // Handled for us already. 686 case BitstreamEntry::Error: 687 return Error(BitcodeError::MalformedBlock); 688 case BitstreamEntry::EndBlock: 689 return std::error_code(); 690 case BitstreamEntry::Record: 691 // The interesting case. 692 break; 693 } 694 695 // Read a record. 696 Record.clear(); 697 switch (Stream.readRecord(Entry.ID, Record)) { 698 default: // Default behavior: ignore. 699 break; 700 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 701 if (Record.size() < 3) 702 return Error(BitcodeError::InvalidRecord); 703 704 uint64_t GrpID = Record[0]; 705 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 706 707 AttrBuilder B; 708 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 709 if (Record[i] == 0) { // Enum attribute 710 Attribute::AttrKind Kind; 711 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 712 return EC; 713 714 B.addAttribute(Kind); 715 } else if (Record[i] == 1) { // Integer attribute 716 Attribute::AttrKind Kind; 717 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 718 return EC; 719 if (Kind == Attribute::Alignment) 720 B.addAlignmentAttr(Record[++i]); 721 else if (Kind == Attribute::StackAlignment) 722 B.addStackAlignmentAttr(Record[++i]); 723 else if (Kind == Attribute::Dereferenceable) 724 B.addDereferenceableAttr(Record[++i]); 725 } else { // String attribute 726 assert((Record[i] == 3 || Record[i] == 4) && 727 "Invalid attribute group entry"); 728 bool HasValue = (Record[i++] == 4); 729 SmallString<64> KindStr; 730 SmallString<64> ValStr; 731 732 while (Record[i] != 0 && i != e) 733 KindStr += Record[i++]; 734 assert(Record[i] == 0 && "Kind string not null terminated"); 735 736 if (HasValue) { 737 // Has a value associated with it. 738 ++i; // Skip the '0' that terminates the "kind" string. 739 while (Record[i] != 0 && i != e) 740 ValStr += Record[i++]; 741 assert(Record[i] == 0 && "Value string not null terminated"); 742 } 743 744 B.addAttribute(KindStr.str(), ValStr.str()); 745 } 746 } 747 748 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 749 break; 750 } 751 } 752 } 753 } 754 755 std::error_code BitcodeReader::ParseTypeTable() { 756 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 757 return Error(BitcodeError::InvalidRecord); 758 759 return ParseTypeTableBody(); 760 } 761 762 std::error_code BitcodeReader::ParseTypeTableBody() { 763 if (!TypeList.empty()) 764 return Error(BitcodeError::InvalidMultipleBlocks); 765 766 SmallVector<uint64_t, 64> Record; 767 unsigned NumRecords = 0; 768 769 SmallString<64> TypeName; 770 771 // Read all the records for this type table. 772 while (1) { 773 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 774 775 switch (Entry.Kind) { 776 case BitstreamEntry::SubBlock: // Handled for us already. 777 case BitstreamEntry::Error: 778 return Error(BitcodeError::MalformedBlock); 779 case BitstreamEntry::EndBlock: 780 if (NumRecords != TypeList.size()) 781 return Error(BitcodeError::MalformedBlock); 782 return std::error_code(); 783 case BitstreamEntry::Record: 784 // The interesting case. 785 break; 786 } 787 788 // Read a record. 789 Record.clear(); 790 Type *ResultTy = nullptr; 791 switch (Stream.readRecord(Entry.ID, Record)) { 792 default: 793 return Error(BitcodeError::InvalidValue); 794 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 795 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 796 // type list. This allows us to reserve space. 797 if (Record.size() < 1) 798 return Error(BitcodeError::InvalidRecord); 799 TypeList.resize(Record[0]); 800 continue; 801 case bitc::TYPE_CODE_VOID: // VOID 802 ResultTy = Type::getVoidTy(Context); 803 break; 804 case bitc::TYPE_CODE_HALF: // HALF 805 ResultTy = Type::getHalfTy(Context); 806 break; 807 case bitc::TYPE_CODE_FLOAT: // FLOAT 808 ResultTy = Type::getFloatTy(Context); 809 break; 810 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 811 ResultTy = Type::getDoubleTy(Context); 812 break; 813 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 814 ResultTy = Type::getX86_FP80Ty(Context); 815 break; 816 case bitc::TYPE_CODE_FP128: // FP128 817 ResultTy = Type::getFP128Ty(Context); 818 break; 819 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 820 ResultTy = Type::getPPC_FP128Ty(Context); 821 break; 822 case bitc::TYPE_CODE_LABEL: // LABEL 823 ResultTy = Type::getLabelTy(Context); 824 break; 825 case bitc::TYPE_CODE_METADATA: // METADATA 826 ResultTy = Type::getMetadataTy(Context); 827 break; 828 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 829 ResultTy = Type::getX86_MMXTy(Context); 830 break; 831 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 832 if (Record.size() < 1) 833 return Error(BitcodeError::InvalidRecord); 834 835 ResultTy = IntegerType::get(Context, Record[0]); 836 break; 837 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 838 // [pointee type, address space] 839 if (Record.size() < 1) 840 return Error(BitcodeError::InvalidRecord); 841 unsigned AddressSpace = 0; 842 if (Record.size() == 2) 843 AddressSpace = Record[1]; 844 ResultTy = getTypeByID(Record[0]); 845 if (!ResultTy) 846 return Error(BitcodeError::InvalidType); 847 ResultTy = PointerType::get(ResultTy, AddressSpace); 848 break; 849 } 850 case bitc::TYPE_CODE_FUNCTION_OLD: { 851 // FIXME: attrid is dead, remove it in LLVM 4.0 852 // FUNCTION: [vararg, attrid, retty, paramty x N] 853 if (Record.size() < 3) 854 return Error(BitcodeError::InvalidRecord); 855 SmallVector<Type*, 8> ArgTys; 856 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 857 if (Type *T = getTypeByID(Record[i])) 858 ArgTys.push_back(T); 859 else 860 break; 861 } 862 863 ResultTy = getTypeByID(Record[2]); 864 if (!ResultTy || ArgTys.size() < Record.size()-3) 865 return Error(BitcodeError::InvalidType); 866 867 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 868 break; 869 } 870 case bitc::TYPE_CODE_FUNCTION: { 871 // FUNCTION: [vararg, retty, paramty x N] 872 if (Record.size() < 2) 873 return Error(BitcodeError::InvalidRecord); 874 SmallVector<Type*, 8> ArgTys; 875 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 876 if (Type *T = getTypeByID(Record[i])) 877 ArgTys.push_back(T); 878 else 879 break; 880 } 881 882 ResultTy = getTypeByID(Record[1]); 883 if (!ResultTy || ArgTys.size() < Record.size()-2) 884 return Error(BitcodeError::InvalidType); 885 886 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 887 break; 888 } 889 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 890 if (Record.size() < 1) 891 return Error(BitcodeError::InvalidRecord); 892 SmallVector<Type*, 8> EltTys; 893 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 894 if (Type *T = getTypeByID(Record[i])) 895 EltTys.push_back(T); 896 else 897 break; 898 } 899 if (EltTys.size() != Record.size()-1) 900 return Error(BitcodeError::InvalidType); 901 ResultTy = StructType::get(Context, EltTys, Record[0]); 902 break; 903 } 904 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 905 if (ConvertToString(Record, 0, TypeName)) 906 return Error(BitcodeError::InvalidRecord); 907 continue; 908 909 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 910 if (Record.size() < 1) 911 return Error(BitcodeError::InvalidRecord); 912 913 if (NumRecords >= TypeList.size()) 914 return Error(BitcodeError::InvalidTYPETable); 915 916 // Check to see if this was forward referenced, if so fill in the temp. 917 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 918 if (Res) { 919 Res->setName(TypeName); 920 TypeList[NumRecords] = nullptr; 921 } else // Otherwise, create a new struct. 922 Res = StructType::create(Context, TypeName); 923 TypeName.clear(); 924 925 SmallVector<Type*, 8> EltTys; 926 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 927 if (Type *T = getTypeByID(Record[i])) 928 EltTys.push_back(T); 929 else 930 break; 931 } 932 if (EltTys.size() != Record.size()-1) 933 return Error(BitcodeError::InvalidRecord); 934 Res->setBody(EltTys, Record[0]); 935 ResultTy = Res; 936 break; 937 } 938 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 939 if (Record.size() != 1) 940 return Error(BitcodeError::InvalidRecord); 941 942 if (NumRecords >= TypeList.size()) 943 return Error(BitcodeError::InvalidTYPETable); 944 945 // Check to see if this was forward referenced, if so fill in the temp. 946 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 947 if (Res) { 948 Res->setName(TypeName); 949 TypeList[NumRecords] = nullptr; 950 } else // Otherwise, create a new struct with no body. 951 Res = StructType::create(Context, TypeName); 952 TypeName.clear(); 953 ResultTy = Res; 954 break; 955 } 956 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 957 if (Record.size() < 2) 958 return Error(BitcodeError::InvalidRecord); 959 if ((ResultTy = getTypeByID(Record[1]))) 960 ResultTy = ArrayType::get(ResultTy, Record[0]); 961 else 962 return Error(BitcodeError::InvalidType); 963 break; 964 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 965 if (Record.size() < 2) 966 return Error(BitcodeError::InvalidRecord); 967 if ((ResultTy = getTypeByID(Record[1]))) 968 ResultTy = VectorType::get(ResultTy, Record[0]); 969 else 970 return Error(BitcodeError::InvalidType); 971 break; 972 } 973 974 if (NumRecords >= TypeList.size()) 975 return Error(BitcodeError::InvalidTYPETable); 976 assert(ResultTy && "Didn't read a type?"); 977 assert(!TypeList[NumRecords] && "Already read type?"); 978 TypeList[NumRecords++] = ResultTy; 979 } 980 } 981 982 std::error_code BitcodeReader::ParseValueSymbolTable() { 983 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 984 return Error(BitcodeError::InvalidRecord); 985 986 SmallVector<uint64_t, 64> Record; 987 988 // Read all the records for this value table. 989 SmallString<128> ValueName; 990 while (1) { 991 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 992 993 switch (Entry.Kind) { 994 case BitstreamEntry::SubBlock: // Handled for us already. 995 case BitstreamEntry::Error: 996 return Error(BitcodeError::MalformedBlock); 997 case BitstreamEntry::EndBlock: 998 return std::error_code(); 999 case BitstreamEntry::Record: 1000 // The interesting case. 1001 break; 1002 } 1003 1004 // Read a record. 1005 Record.clear(); 1006 switch (Stream.readRecord(Entry.ID, Record)) { 1007 default: // Default behavior: unknown type. 1008 break; 1009 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1010 if (ConvertToString(Record, 1, ValueName)) 1011 return Error(BitcodeError::InvalidRecord); 1012 unsigned ValueID = Record[0]; 1013 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1014 return Error(BitcodeError::InvalidRecord); 1015 Value *V = ValueList[ValueID]; 1016 1017 V->setName(StringRef(ValueName.data(), ValueName.size())); 1018 ValueName.clear(); 1019 break; 1020 } 1021 case bitc::VST_CODE_BBENTRY: { 1022 if (ConvertToString(Record, 1, ValueName)) 1023 return Error(BitcodeError::InvalidRecord); 1024 BasicBlock *BB = getBasicBlock(Record[0]); 1025 if (!BB) 1026 return Error(BitcodeError::InvalidRecord); 1027 1028 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1029 ValueName.clear(); 1030 break; 1031 } 1032 } 1033 } 1034 } 1035 1036 std::error_code BitcodeReader::ParseMetadata() { 1037 unsigned NextMDValueNo = MDValueList.size(); 1038 1039 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1040 return Error(BitcodeError::InvalidRecord); 1041 1042 SmallVector<uint64_t, 64> Record; 1043 1044 // Read all the records. 1045 while (1) { 1046 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1047 1048 switch (Entry.Kind) { 1049 case BitstreamEntry::SubBlock: // Handled for us already. 1050 case BitstreamEntry::Error: 1051 return Error(BitcodeError::MalformedBlock); 1052 case BitstreamEntry::EndBlock: 1053 return std::error_code(); 1054 case BitstreamEntry::Record: 1055 // The interesting case. 1056 break; 1057 } 1058 1059 bool IsFunctionLocal = false; 1060 // Read a record. 1061 Record.clear(); 1062 unsigned Code = Stream.readRecord(Entry.ID, Record); 1063 switch (Code) { 1064 default: // Default behavior: ignore. 1065 break; 1066 case bitc::METADATA_NAME: { 1067 // Read name of the named metadata. 1068 SmallString<8> Name(Record.begin(), Record.end()); 1069 Record.clear(); 1070 Code = Stream.ReadCode(); 1071 1072 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1073 unsigned NextBitCode = Stream.readRecord(Code, Record); 1074 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1075 1076 // Read named metadata elements. 1077 unsigned Size = Record.size(); 1078 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1079 for (unsigned i = 0; i != Size; ++i) { 1080 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1081 if (!MD) 1082 return Error(BitcodeError::InvalidRecord); 1083 NMD->addOperand(MD); 1084 } 1085 break; 1086 } 1087 case bitc::METADATA_FN_NODE: 1088 IsFunctionLocal = true; 1089 // fall-through 1090 case bitc::METADATA_NODE: { 1091 if (Record.size() % 2 == 1) 1092 return Error(BitcodeError::InvalidRecord); 1093 1094 unsigned Size = Record.size(); 1095 SmallVector<Value*, 8> Elts; 1096 for (unsigned i = 0; i != Size; i += 2) { 1097 Type *Ty = getTypeByID(Record[i]); 1098 if (!Ty) 1099 return Error(BitcodeError::InvalidRecord); 1100 if (Ty->isMetadataTy()) 1101 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1102 else if (!Ty->isVoidTy()) 1103 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1104 else 1105 Elts.push_back(nullptr); 1106 } 1107 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1108 IsFunctionLocal = false; 1109 MDValueList.AssignValue(V, NextMDValueNo++); 1110 break; 1111 } 1112 case bitc::METADATA_STRING: { 1113 std::string String(Record.begin(), Record.end()); 1114 llvm::UpgradeMDStringConstant(String); 1115 Value *V = MDString::get(Context, String); 1116 MDValueList.AssignValue(V, NextMDValueNo++); 1117 break; 1118 } 1119 case bitc::METADATA_KIND: { 1120 if (Record.size() < 2) 1121 return Error(BitcodeError::InvalidRecord); 1122 1123 unsigned Kind = Record[0]; 1124 SmallString<8> Name(Record.begin()+1, Record.end()); 1125 1126 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1127 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1128 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1129 break; 1130 } 1131 } 1132 } 1133 } 1134 1135 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1136 /// the LSB for dense VBR encoding. 1137 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1138 if ((V & 1) == 0) 1139 return V >> 1; 1140 if (V != 1) 1141 return -(V >> 1); 1142 // There is no such thing as -0 with integers. "-0" really means MININT. 1143 return 1ULL << 63; 1144 } 1145 1146 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1147 /// values and aliases that we can. 1148 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1152 1153 GlobalInitWorklist.swap(GlobalInits); 1154 AliasInitWorklist.swap(AliasInits); 1155 FunctionPrefixWorklist.swap(FunctionPrefixes); 1156 1157 while (!GlobalInitWorklist.empty()) { 1158 unsigned ValID = GlobalInitWorklist.back().second; 1159 if (ValID >= ValueList.size()) { 1160 // Not ready to resolve this yet, it requires something later in the file. 1161 GlobalInits.push_back(GlobalInitWorklist.back()); 1162 } else { 1163 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1164 GlobalInitWorklist.back().first->setInitializer(C); 1165 else 1166 return Error(BitcodeError::ExpectedConstant); 1167 } 1168 GlobalInitWorklist.pop_back(); 1169 } 1170 1171 while (!AliasInitWorklist.empty()) { 1172 unsigned ValID = AliasInitWorklist.back().second; 1173 if (ValID >= ValueList.size()) { 1174 AliasInits.push_back(AliasInitWorklist.back()); 1175 } else { 1176 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1177 AliasInitWorklist.back().first->setAliasee(C); 1178 else 1179 return Error(BitcodeError::ExpectedConstant); 1180 } 1181 AliasInitWorklist.pop_back(); 1182 } 1183 1184 while (!FunctionPrefixWorklist.empty()) { 1185 unsigned ValID = FunctionPrefixWorklist.back().second; 1186 if (ValID >= ValueList.size()) { 1187 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1188 } else { 1189 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1190 FunctionPrefixWorklist.back().first->setPrefixData(C); 1191 else 1192 return Error(BitcodeError::ExpectedConstant); 1193 } 1194 FunctionPrefixWorklist.pop_back(); 1195 } 1196 1197 return std::error_code(); 1198 } 1199 1200 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1201 SmallVector<uint64_t, 8> Words(Vals.size()); 1202 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1203 BitcodeReader::decodeSignRotatedValue); 1204 1205 return APInt(TypeBits, Words); 1206 } 1207 1208 std::error_code BitcodeReader::ParseConstants() { 1209 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1210 return Error(BitcodeError::InvalidRecord); 1211 1212 SmallVector<uint64_t, 64> Record; 1213 1214 // Read all the records for this value table. 1215 Type *CurTy = Type::getInt32Ty(Context); 1216 unsigned NextCstNo = ValueList.size(); 1217 while (1) { 1218 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1219 1220 switch (Entry.Kind) { 1221 case BitstreamEntry::SubBlock: // Handled for us already. 1222 case BitstreamEntry::Error: 1223 return Error(BitcodeError::MalformedBlock); 1224 case BitstreamEntry::EndBlock: 1225 if (NextCstNo != ValueList.size()) 1226 return Error(BitcodeError::InvalidConstantReference); 1227 1228 // Once all the constants have been read, go through and resolve forward 1229 // references. 1230 ValueList.ResolveConstantForwardRefs(); 1231 return std::error_code(); 1232 case BitstreamEntry::Record: 1233 // The interesting case. 1234 break; 1235 } 1236 1237 // Read a record. 1238 Record.clear(); 1239 Value *V = nullptr; 1240 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1241 switch (BitCode) { 1242 default: // Default behavior: unknown constant 1243 case bitc::CST_CODE_UNDEF: // UNDEF 1244 V = UndefValue::get(CurTy); 1245 break; 1246 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1247 if (Record.empty()) 1248 return Error(BitcodeError::InvalidRecord); 1249 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1250 return Error(BitcodeError::InvalidRecord); 1251 CurTy = TypeList[Record[0]]; 1252 continue; // Skip the ValueList manipulation. 1253 case bitc::CST_CODE_NULL: // NULL 1254 V = Constant::getNullValue(CurTy); 1255 break; 1256 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1257 if (!CurTy->isIntegerTy() || Record.empty()) 1258 return Error(BitcodeError::InvalidRecord); 1259 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1260 break; 1261 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1262 if (!CurTy->isIntegerTy() || Record.empty()) 1263 return Error(BitcodeError::InvalidRecord); 1264 1265 APInt VInt = ReadWideAPInt(Record, 1266 cast<IntegerType>(CurTy)->getBitWidth()); 1267 V = ConstantInt::get(Context, VInt); 1268 1269 break; 1270 } 1271 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1272 if (Record.empty()) 1273 return Error(BitcodeError::InvalidRecord); 1274 if (CurTy->isHalfTy()) 1275 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1276 APInt(16, (uint16_t)Record[0]))); 1277 else if (CurTy->isFloatTy()) 1278 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1279 APInt(32, (uint32_t)Record[0]))); 1280 else if (CurTy->isDoubleTy()) 1281 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1282 APInt(64, Record[0]))); 1283 else if (CurTy->isX86_FP80Ty()) { 1284 // Bits are not stored the same way as a normal i80 APInt, compensate. 1285 uint64_t Rearrange[2]; 1286 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1287 Rearrange[1] = Record[0] >> 48; 1288 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1289 APInt(80, Rearrange))); 1290 } else if (CurTy->isFP128Ty()) 1291 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1292 APInt(128, Record))); 1293 else if (CurTy->isPPC_FP128Ty()) 1294 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1295 APInt(128, Record))); 1296 else 1297 V = UndefValue::get(CurTy); 1298 break; 1299 } 1300 1301 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1302 if (Record.empty()) 1303 return Error(BitcodeError::InvalidRecord); 1304 1305 unsigned Size = Record.size(); 1306 SmallVector<Constant*, 16> Elts; 1307 1308 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1309 for (unsigned i = 0; i != Size; ++i) 1310 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1311 STy->getElementType(i))); 1312 V = ConstantStruct::get(STy, Elts); 1313 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1314 Type *EltTy = ATy->getElementType(); 1315 for (unsigned i = 0; i != Size; ++i) 1316 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1317 V = ConstantArray::get(ATy, Elts); 1318 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1319 Type *EltTy = VTy->getElementType(); 1320 for (unsigned i = 0; i != Size; ++i) 1321 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1322 V = ConstantVector::get(Elts); 1323 } else { 1324 V = UndefValue::get(CurTy); 1325 } 1326 break; 1327 } 1328 case bitc::CST_CODE_STRING: // STRING: [values] 1329 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1330 if (Record.empty()) 1331 return Error(BitcodeError::InvalidRecord); 1332 1333 SmallString<16> Elts(Record.begin(), Record.end()); 1334 V = ConstantDataArray::getString(Context, Elts, 1335 BitCode == bitc::CST_CODE_CSTRING); 1336 break; 1337 } 1338 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1339 if (Record.empty()) 1340 return Error(BitcodeError::InvalidRecord); 1341 1342 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1343 unsigned Size = Record.size(); 1344 1345 if (EltTy->isIntegerTy(8)) { 1346 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1347 if (isa<VectorType>(CurTy)) 1348 V = ConstantDataVector::get(Context, Elts); 1349 else 1350 V = ConstantDataArray::get(Context, Elts); 1351 } else if (EltTy->isIntegerTy(16)) { 1352 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1353 if (isa<VectorType>(CurTy)) 1354 V = ConstantDataVector::get(Context, Elts); 1355 else 1356 V = ConstantDataArray::get(Context, Elts); 1357 } else if (EltTy->isIntegerTy(32)) { 1358 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1359 if (isa<VectorType>(CurTy)) 1360 V = ConstantDataVector::get(Context, Elts); 1361 else 1362 V = ConstantDataArray::get(Context, Elts); 1363 } else if (EltTy->isIntegerTy(64)) { 1364 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1365 if (isa<VectorType>(CurTy)) 1366 V = ConstantDataVector::get(Context, Elts); 1367 else 1368 V = ConstantDataArray::get(Context, Elts); 1369 } else if (EltTy->isFloatTy()) { 1370 SmallVector<float, 16> Elts(Size); 1371 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1372 if (isa<VectorType>(CurTy)) 1373 V = ConstantDataVector::get(Context, Elts); 1374 else 1375 V = ConstantDataArray::get(Context, Elts); 1376 } else if (EltTy->isDoubleTy()) { 1377 SmallVector<double, 16> Elts(Size); 1378 std::transform(Record.begin(), Record.end(), Elts.begin(), 1379 BitsToDouble); 1380 if (isa<VectorType>(CurTy)) 1381 V = ConstantDataVector::get(Context, Elts); 1382 else 1383 V = ConstantDataArray::get(Context, Elts); 1384 } else { 1385 return Error(BitcodeError::InvalidTypeForValue); 1386 } 1387 break; 1388 } 1389 1390 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1391 if (Record.size() < 3) 1392 return Error(BitcodeError::InvalidRecord); 1393 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1394 if (Opc < 0) { 1395 V = UndefValue::get(CurTy); // Unknown binop. 1396 } else { 1397 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1398 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1399 unsigned Flags = 0; 1400 if (Record.size() >= 4) { 1401 if (Opc == Instruction::Add || 1402 Opc == Instruction::Sub || 1403 Opc == Instruction::Mul || 1404 Opc == Instruction::Shl) { 1405 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1406 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1407 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1408 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1409 } else if (Opc == Instruction::SDiv || 1410 Opc == Instruction::UDiv || 1411 Opc == Instruction::LShr || 1412 Opc == Instruction::AShr) { 1413 if (Record[3] & (1 << bitc::PEO_EXACT)) 1414 Flags |= SDivOperator::IsExact; 1415 } 1416 } 1417 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1418 } 1419 break; 1420 } 1421 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1422 if (Record.size() < 3) 1423 return Error(BitcodeError::InvalidRecord); 1424 int Opc = GetDecodedCastOpcode(Record[0]); 1425 if (Opc < 0) { 1426 V = UndefValue::get(CurTy); // Unknown cast. 1427 } else { 1428 Type *OpTy = getTypeByID(Record[1]); 1429 if (!OpTy) 1430 return Error(BitcodeError::InvalidRecord); 1431 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1432 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1433 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1434 } 1435 break; 1436 } 1437 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1438 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1439 if (Record.size() & 1) 1440 return Error(BitcodeError::InvalidRecord); 1441 SmallVector<Constant*, 16> Elts; 1442 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1443 Type *ElTy = getTypeByID(Record[i]); 1444 if (!ElTy) 1445 return Error(BitcodeError::InvalidRecord); 1446 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1447 } 1448 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1449 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1450 BitCode == 1451 bitc::CST_CODE_CE_INBOUNDS_GEP); 1452 break; 1453 } 1454 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1455 if (Record.size() < 3) 1456 return Error(BitcodeError::InvalidRecord); 1457 1458 Type *SelectorTy = Type::getInt1Ty(Context); 1459 1460 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1461 // vector. Otherwise, it must be a single bit. 1462 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1463 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1464 VTy->getNumElements()); 1465 1466 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1467 SelectorTy), 1468 ValueList.getConstantFwdRef(Record[1],CurTy), 1469 ValueList.getConstantFwdRef(Record[2],CurTy)); 1470 break; 1471 } 1472 case bitc::CST_CODE_CE_EXTRACTELT 1473 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1474 if (Record.size() < 3) 1475 return Error(BitcodeError::InvalidRecord); 1476 VectorType *OpTy = 1477 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1478 if (!OpTy) 1479 return Error(BitcodeError::InvalidRecord); 1480 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1481 Constant *Op1 = nullptr; 1482 if (Record.size() == 4) { 1483 Type *IdxTy = getTypeByID(Record[2]); 1484 if (!IdxTy) 1485 return Error(BitcodeError::InvalidRecord); 1486 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1487 } else // TODO: Remove with llvm 4.0 1488 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1489 if (!Op1) 1490 return Error(BitcodeError::InvalidRecord); 1491 V = ConstantExpr::getExtractElement(Op0, Op1); 1492 break; 1493 } 1494 case bitc::CST_CODE_CE_INSERTELT 1495 : { // CE_INSERTELT: [opval, opval, opty, opval] 1496 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1497 if (Record.size() < 3 || !OpTy) 1498 return Error(BitcodeError::InvalidRecord); 1499 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1500 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1501 OpTy->getElementType()); 1502 Constant *Op2 = nullptr; 1503 if (Record.size() == 4) { 1504 Type *IdxTy = getTypeByID(Record[2]); 1505 if (!IdxTy) 1506 return Error(BitcodeError::InvalidRecord); 1507 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1508 } else // TODO: Remove with llvm 4.0 1509 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1510 if (!Op2) 1511 return Error(BitcodeError::InvalidRecord); 1512 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1513 break; 1514 } 1515 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1516 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1517 if (Record.size() < 3 || !OpTy) 1518 return Error(BitcodeError::InvalidRecord); 1519 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1520 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1521 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1522 OpTy->getNumElements()); 1523 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1524 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1525 break; 1526 } 1527 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1528 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1529 VectorType *OpTy = 1530 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1531 if (Record.size() < 4 || !RTy || !OpTy) 1532 return Error(BitcodeError::InvalidRecord); 1533 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1534 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1535 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1536 RTy->getNumElements()); 1537 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1538 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1539 break; 1540 } 1541 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1542 if (Record.size() < 4) 1543 return Error(BitcodeError::InvalidRecord); 1544 Type *OpTy = getTypeByID(Record[0]); 1545 if (!OpTy) 1546 return Error(BitcodeError::InvalidRecord); 1547 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1548 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1549 1550 if (OpTy->isFPOrFPVectorTy()) 1551 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1552 else 1553 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1554 break; 1555 } 1556 // This maintains backward compatibility, pre-asm dialect keywords. 1557 // FIXME: Remove with the 4.0 release. 1558 case bitc::CST_CODE_INLINEASM_OLD: { 1559 if (Record.size() < 2) 1560 return Error(BitcodeError::InvalidRecord); 1561 std::string AsmStr, ConstrStr; 1562 bool HasSideEffects = Record[0] & 1; 1563 bool IsAlignStack = Record[0] >> 1; 1564 unsigned AsmStrSize = Record[1]; 1565 if (2+AsmStrSize >= Record.size()) 1566 return Error(BitcodeError::InvalidRecord); 1567 unsigned ConstStrSize = Record[2+AsmStrSize]; 1568 if (3+AsmStrSize+ConstStrSize > Record.size()) 1569 return Error(BitcodeError::InvalidRecord); 1570 1571 for (unsigned i = 0; i != AsmStrSize; ++i) 1572 AsmStr += (char)Record[2+i]; 1573 for (unsigned i = 0; i != ConstStrSize; ++i) 1574 ConstrStr += (char)Record[3+AsmStrSize+i]; 1575 PointerType *PTy = cast<PointerType>(CurTy); 1576 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1577 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1578 break; 1579 } 1580 // This version adds support for the asm dialect keywords (e.g., 1581 // inteldialect). 1582 case bitc::CST_CODE_INLINEASM: { 1583 if (Record.size() < 2) 1584 return Error(BitcodeError::InvalidRecord); 1585 std::string AsmStr, ConstrStr; 1586 bool HasSideEffects = Record[0] & 1; 1587 bool IsAlignStack = (Record[0] >> 1) & 1; 1588 unsigned AsmDialect = Record[0] >> 2; 1589 unsigned AsmStrSize = Record[1]; 1590 if (2+AsmStrSize >= Record.size()) 1591 return Error(BitcodeError::InvalidRecord); 1592 unsigned ConstStrSize = Record[2+AsmStrSize]; 1593 if (3+AsmStrSize+ConstStrSize > Record.size()) 1594 return Error(BitcodeError::InvalidRecord); 1595 1596 for (unsigned i = 0; i != AsmStrSize; ++i) 1597 AsmStr += (char)Record[2+i]; 1598 for (unsigned i = 0; i != ConstStrSize; ++i) 1599 ConstrStr += (char)Record[3+AsmStrSize+i]; 1600 PointerType *PTy = cast<PointerType>(CurTy); 1601 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1602 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1603 InlineAsm::AsmDialect(AsmDialect)); 1604 break; 1605 } 1606 case bitc::CST_CODE_BLOCKADDRESS:{ 1607 if (Record.size() < 3) 1608 return Error(BitcodeError::InvalidRecord); 1609 Type *FnTy = getTypeByID(Record[0]); 1610 if (!FnTy) 1611 return Error(BitcodeError::InvalidRecord); 1612 Function *Fn = 1613 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1614 if (!Fn) 1615 return Error(BitcodeError::InvalidRecord); 1616 1617 // Don't let Fn get dematerialized. 1618 BlockAddressesTaken.insert(Fn); 1619 1620 // If the function is already parsed we can insert the block address right 1621 // away. 1622 BasicBlock *BB; 1623 unsigned BBID = Record[2]; 1624 if (!BBID) 1625 // Invalid reference to entry block. 1626 return Error(BitcodeError::InvalidID); 1627 if (!Fn->empty()) { 1628 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1629 for (size_t I = 0, E = BBID; I != E; ++I) { 1630 if (BBI == BBE) 1631 return Error(BitcodeError::InvalidID); 1632 ++BBI; 1633 } 1634 BB = BBI; 1635 } else { 1636 // Otherwise insert a placeholder and remember it so it can be inserted 1637 // when the function is parsed. 1638 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1639 if (FwdBBs.empty()) 1640 BasicBlockFwdRefQueue.push_back(Fn); 1641 if (FwdBBs.size() < BBID + 1) 1642 FwdBBs.resize(BBID + 1); 1643 if (!FwdBBs[BBID]) 1644 FwdBBs[BBID] = BasicBlock::Create(Context); 1645 BB = FwdBBs[BBID]; 1646 } 1647 V = BlockAddress::get(Fn, BB); 1648 break; 1649 } 1650 } 1651 1652 ValueList.AssignValue(V, NextCstNo); 1653 ++NextCstNo; 1654 } 1655 } 1656 1657 std::error_code BitcodeReader::ParseUseLists() { 1658 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1659 return Error(BitcodeError::InvalidRecord); 1660 1661 // Read all the records. 1662 SmallVector<uint64_t, 64> Record; 1663 while (1) { 1664 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1665 1666 switch (Entry.Kind) { 1667 case BitstreamEntry::SubBlock: // Handled for us already. 1668 case BitstreamEntry::Error: 1669 return Error(BitcodeError::MalformedBlock); 1670 case BitstreamEntry::EndBlock: 1671 return std::error_code(); 1672 case BitstreamEntry::Record: 1673 // The interesting case. 1674 break; 1675 } 1676 1677 // Read a use list record. 1678 Record.clear(); 1679 bool IsBB = false; 1680 switch (Stream.readRecord(Entry.ID, Record)) { 1681 default: // Default behavior: unknown type. 1682 break; 1683 case bitc::USELIST_CODE_BB: 1684 IsBB = true; 1685 // fallthrough 1686 case bitc::USELIST_CODE_DEFAULT: { 1687 unsigned RecordLength = Record.size(); 1688 if (RecordLength < 3) 1689 // Records should have at least an ID and two indexes. 1690 return Error(BitcodeError::InvalidRecord); 1691 unsigned ID = Record.back(); 1692 Record.pop_back(); 1693 1694 Value *V; 1695 if (IsBB) { 1696 assert(ID < FunctionBBs.size() && "Basic block not found"); 1697 V = FunctionBBs[ID]; 1698 } else 1699 V = ValueList[ID]; 1700 unsigned NumUses = 0; 1701 SmallDenseMap<const Use *, unsigned, 16> Order; 1702 for (const Use &U : V->uses()) { 1703 if (++NumUses > Record.size()) 1704 break; 1705 Order[&U] = Record[NumUses - 1]; 1706 } 1707 if (Order.size() != Record.size() || NumUses > Record.size()) 1708 // Mismatches can happen if the functions are being materialized lazily 1709 // (out-of-order), or a value has been upgraded. 1710 break; 1711 1712 V->sortUseList([&](const Use &L, const Use &R) { 1713 return Order.lookup(&L) < Order.lookup(&R); 1714 }); 1715 break; 1716 } 1717 } 1718 } 1719 } 1720 1721 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1722 /// remember where it is and then skip it. This lets us lazily deserialize the 1723 /// functions. 1724 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1725 // Get the function we are talking about. 1726 if (FunctionsWithBodies.empty()) 1727 return Error(BitcodeError::InsufficientFunctionProtos); 1728 1729 Function *Fn = FunctionsWithBodies.back(); 1730 FunctionsWithBodies.pop_back(); 1731 1732 // Save the current stream state. 1733 uint64_t CurBit = Stream.GetCurrentBitNo(); 1734 DeferredFunctionInfo[Fn] = CurBit; 1735 1736 // Skip over the function block for now. 1737 if (Stream.SkipBlock()) 1738 return Error(BitcodeError::InvalidRecord); 1739 return std::error_code(); 1740 } 1741 1742 std::error_code BitcodeReader::GlobalCleanup() { 1743 // Patch the initializers for globals and aliases up. 1744 ResolveGlobalAndAliasInits(); 1745 if (!GlobalInits.empty() || !AliasInits.empty()) 1746 return Error(BitcodeError::MalformedGlobalInitializerSet); 1747 1748 // Look for intrinsic functions which need to be upgraded at some point 1749 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1750 FI != FE; ++FI) { 1751 Function *NewFn; 1752 if (UpgradeIntrinsicFunction(FI, NewFn)) 1753 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1754 } 1755 1756 // Look for global variables which need to be renamed. 1757 for (Module::global_iterator 1758 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1759 GI != GE;) { 1760 GlobalVariable *GV = GI++; 1761 UpgradeGlobalVariable(GV); 1762 } 1763 1764 // Force deallocation of memory for these vectors to favor the client that 1765 // want lazy deserialization. 1766 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1767 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1768 return std::error_code(); 1769 } 1770 1771 std::error_code BitcodeReader::ParseModule(bool Resume) { 1772 if (Resume) 1773 Stream.JumpToBit(NextUnreadBit); 1774 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1775 return Error(BitcodeError::InvalidRecord); 1776 1777 SmallVector<uint64_t, 64> Record; 1778 std::vector<std::string> SectionTable; 1779 std::vector<std::string> GCTable; 1780 1781 // Read all the records for this module. 1782 while (1) { 1783 BitstreamEntry Entry = Stream.advance(); 1784 1785 switch (Entry.Kind) { 1786 case BitstreamEntry::Error: 1787 return Error(BitcodeError::MalformedBlock); 1788 case BitstreamEntry::EndBlock: 1789 return GlobalCleanup(); 1790 1791 case BitstreamEntry::SubBlock: 1792 switch (Entry.ID) { 1793 default: // Skip unknown content. 1794 if (Stream.SkipBlock()) 1795 return Error(BitcodeError::InvalidRecord); 1796 break; 1797 case bitc::BLOCKINFO_BLOCK_ID: 1798 if (Stream.ReadBlockInfoBlock()) 1799 return Error(BitcodeError::MalformedBlock); 1800 break; 1801 case bitc::PARAMATTR_BLOCK_ID: 1802 if (std::error_code EC = ParseAttributeBlock()) 1803 return EC; 1804 break; 1805 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1806 if (std::error_code EC = ParseAttributeGroupBlock()) 1807 return EC; 1808 break; 1809 case bitc::TYPE_BLOCK_ID_NEW: 1810 if (std::error_code EC = ParseTypeTable()) 1811 return EC; 1812 break; 1813 case bitc::VALUE_SYMTAB_BLOCK_ID: 1814 if (std::error_code EC = ParseValueSymbolTable()) 1815 return EC; 1816 SeenValueSymbolTable = true; 1817 break; 1818 case bitc::CONSTANTS_BLOCK_ID: 1819 if (std::error_code EC = ParseConstants()) 1820 return EC; 1821 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1822 return EC; 1823 break; 1824 case bitc::METADATA_BLOCK_ID: 1825 if (std::error_code EC = ParseMetadata()) 1826 return EC; 1827 break; 1828 case bitc::FUNCTION_BLOCK_ID: 1829 // If this is the first function body we've seen, reverse the 1830 // FunctionsWithBodies list. 1831 if (!SeenFirstFunctionBody) { 1832 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1833 if (std::error_code EC = GlobalCleanup()) 1834 return EC; 1835 SeenFirstFunctionBody = true; 1836 } 1837 1838 if (std::error_code EC = RememberAndSkipFunctionBody()) 1839 return EC; 1840 // For streaming bitcode, suspend parsing when we reach the function 1841 // bodies. Subsequent materialization calls will resume it when 1842 // necessary. For streaming, the function bodies must be at the end of 1843 // the bitcode. If the bitcode file is old, the symbol table will be 1844 // at the end instead and will not have been seen yet. In this case, 1845 // just finish the parse now. 1846 if (LazyStreamer && SeenValueSymbolTable) { 1847 NextUnreadBit = Stream.GetCurrentBitNo(); 1848 return std::error_code(); 1849 } 1850 break; 1851 case bitc::USELIST_BLOCK_ID: 1852 if (std::error_code EC = ParseUseLists()) 1853 return EC; 1854 break; 1855 } 1856 continue; 1857 1858 case BitstreamEntry::Record: 1859 // The interesting case. 1860 break; 1861 } 1862 1863 1864 // Read a record. 1865 switch (Stream.readRecord(Entry.ID, Record)) { 1866 default: break; // Default behavior, ignore unknown content. 1867 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1868 if (Record.size() < 1) 1869 return Error(BitcodeError::InvalidRecord); 1870 // Only version #0 and #1 are supported so far. 1871 unsigned module_version = Record[0]; 1872 switch (module_version) { 1873 default: 1874 return Error(BitcodeError::InvalidValue); 1875 case 0: 1876 UseRelativeIDs = false; 1877 break; 1878 case 1: 1879 UseRelativeIDs = true; 1880 break; 1881 } 1882 break; 1883 } 1884 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1885 std::string S; 1886 if (ConvertToString(Record, 0, S)) 1887 return Error(BitcodeError::InvalidRecord); 1888 TheModule->setTargetTriple(S); 1889 break; 1890 } 1891 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1892 std::string S; 1893 if (ConvertToString(Record, 0, S)) 1894 return Error(BitcodeError::InvalidRecord); 1895 TheModule->setDataLayout(S); 1896 break; 1897 } 1898 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1899 std::string S; 1900 if (ConvertToString(Record, 0, S)) 1901 return Error(BitcodeError::InvalidRecord); 1902 TheModule->setModuleInlineAsm(S); 1903 break; 1904 } 1905 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1906 // FIXME: Remove in 4.0. 1907 std::string S; 1908 if (ConvertToString(Record, 0, S)) 1909 return Error(BitcodeError::InvalidRecord); 1910 // Ignore value. 1911 break; 1912 } 1913 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1914 std::string S; 1915 if (ConvertToString(Record, 0, S)) 1916 return Error(BitcodeError::InvalidRecord); 1917 SectionTable.push_back(S); 1918 break; 1919 } 1920 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1921 std::string S; 1922 if (ConvertToString(Record, 0, S)) 1923 return Error(BitcodeError::InvalidRecord); 1924 GCTable.push_back(S); 1925 break; 1926 } 1927 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 1928 if (Record.size() < 2) 1929 return Error(BitcodeError::InvalidRecord); 1930 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 1931 unsigned ComdatNameSize = Record[1]; 1932 std::string ComdatName; 1933 ComdatName.reserve(ComdatNameSize); 1934 for (unsigned i = 0; i != ComdatNameSize; ++i) 1935 ComdatName += (char)Record[2 + i]; 1936 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 1937 C->setSelectionKind(SK); 1938 ComdatList.push_back(C); 1939 break; 1940 } 1941 // GLOBALVAR: [pointer type, isconst, initid, 1942 // linkage, alignment, section, visibility, threadlocal, 1943 // unnamed_addr, dllstorageclass] 1944 case bitc::MODULE_CODE_GLOBALVAR: { 1945 if (Record.size() < 6) 1946 return Error(BitcodeError::InvalidRecord); 1947 Type *Ty = getTypeByID(Record[0]); 1948 if (!Ty) 1949 return Error(BitcodeError::InvalidRecord); 1950 if (!Ty->isPointerTy()) 1951 return Error(BitcodeError::InvalidTypeForValue); 1952 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1953 Ty = cast<PointerType>(Ty)->getElementType(); 1954 1955 bool isConstant = Record[1]; 1956 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1957 unsigned Alignment = (1 << Record[4]) >> 1; 1958 std::string Section; 1959 if (Record[5]) { 1960 if (Record[5]-1 >= SectionTable.size()) 1961 return Error(BitcodeError::InvalidID); 1962 Section = SectionTable[Record[5]-1]; 1963 } 1964 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1965 // Local linkage must have default visibility. 1966 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1967 // FIXME: Change to an error if non-default in 4.0. 1968 Visibility = GetDecodedVisibility(Record[6]); 1969 1970 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1971 if (Record.size() > 7) 1972 TLM = GetDecodedThreadLocalMode(Record[7]); 1973 1974 bool UnnamedAddr = false; 1975 if (Record.size() > 8) 1976 UnnamedAddr = Record[8]; 1977 1978 bool ExternallyInitialized = false; 1979 if (Record.size() > 9) 1980 ExternallyInitialized = Record[9]; 1981 1982 GlobalVariable *NewGV = 1983 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1984 TLM, AddressSpace, ExternallyInitialized); 1985 NewGV->setAlignment(Alignment); 1986 if (!Section.empty()) 1987 NewGV->setSection(Section); 1988 NewGV->setVisibility(Visibility); 1989 NewGV->setUnnamedAddr(UnnamedAddr); 1990 1991 if (Record.size() > 10) 1992 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1993 else 1994 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1995 1996 ValueList.push_back(NewGV); 1997 1998 // Remember which value to use for the global initializer. 1999 if (unsigned InitID = Record[2]) 2000 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2001 2002 if (Record.size() > 11) 2003 if (unsigned ComdatID = Record[11]) { 2004 assert(ComdatID <= ComdatList.size()); 2005 NewGV->setComdat(ComdatList[ComdatID - 1]); 2006 } 2007 break; 2008 } 2009 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2010 // alignment, section, visibility, gc, unnamed_addr, 2011 // dllstorageclass] 2012 case bitc::MODULE_CODE_FUNCTION: { 2013 if (Record.size() < 8) 2014 return Error(BitcodeError::InvalidRecord); 2015 Type *Ty = getTypeByID(Record[0]); 2016 if (!Ty) 2017 return Error(BitcodeError::InvalidRecord); 2018 if (!Ty->isPointerTy()) 2019 return Error(BitcodeError::InvalidTypeForValue); 2020 FunctionType *FTy = 2021 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2022 if (!FTy) 2023 return Error(BitcodeError::InvalidTypeForValue); 2024 2025 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2026 "", TheModule); 2027 2028 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2029 bool isProto = Record[2]; 2030 Func->setLinkage(GetDecodedLinkage(Record[3])); 2031 Func->setAttributes(getAttributes(Record[4])); 2032 2033 Func->setAlignment((1 << Record[5]) >> 1); 2034 if (Record[6]) { 2035 if (Record[6]-1 >= SectionTable.size()) 2036 return Error(BitcodeError::InvalidID); 2037 Func->setSection(SectionTable[Record[6]-1]); 2038 } 2039 // Local linkage must have default visibility. 2040 if (!Func->hasLocalLinkage()) 2041 // FIXME: Change to an error if non-default in 4.0. 2042 Func->setVisibility(GetDecodedVisibility(Record[7])); 2043 if (Record.size() > 8 && Record[8]) { 2044 if (Record[8]-1 > GCTable.size()) 2045 return Error(BitcodeError::InvalidID); 2046 Func->setGC(GCTable[Record[8]-1].c_str()); 2047 } 2048 bool UnnamedAddr = false; 2049 if (Record.size() > 9) 2050 UnnamedAddr = Record[9]; 2051 Func->setUnnamedAddr(UnnamedAddr); 2052 if (Record.size() > 10 && Record[10] != 0) 2053 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 2054 2055 if (Record.size() > 11) 2056 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2057 else 2058 UpgradeDLLImportExportLinkage(Func, Record[3]); 2059 2060 if (Record.size() > 12) 2061 if (unsigned ComdatID = Record[12]) { 2062 assert(ComdatID <= ComdatList.size()); 2063 Func->setComdat(ComdatList[ComdatID - 1]); 2064 } 2065 2066 ValueList.push_back(Func); 2067 2068 // If this is a function with a body, remember the prototype we are 2069 // creating now, so that we can match up the body with them later. 2070 if (!isProto) { 2071 FunctionsWithBodies.push_back(Func); 2072 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 2073 } 2074 break; 2075 } 2076 // ALIAS: [alias type, aliasee val#, linkage] 2077 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2078 case bitc::MODULE_CODE_ALIAS: { 2079 if (Record.size() < 3) 2080 return Error(BitcodeError::InvalidRecord); 2081 Type *Ty = getTypeByID(Record[0]); 2082 if (!Ty) 2083 return Error(BitcodeError::InvalidRecord); 2084 auto *PTy = dyn_cast<PointerType>(Ty); 2085 if (!PTy) 2086 return Error(BitcodeError::InvalidTypeForValue); 2087 2088 auto *NewGA = 2089 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2090 GetDecodedLinkage(Record[2]), "", TheModule); 2091 // Old bitcode files didn't have visibility field. 2092 // Local linkage must have default visibility. 2093 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2094 // FIXME: Change to an error if non-default in 4.0. 2095 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2096 if (Record.size() > 4) 2097 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2098 else 2099 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2100 if (Record.size() > 5) 2101 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2102 if (Record.size() > 6) 2103 NewGA->setUnnamedAddr(Record[6]); 2104 ValueList.push_back(NewGA); 2105 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2106 break; 2107 } 2108 /// MODULE_CODE_PURGEVALS: [numvals] 2109 case bitc::MODULE_CODE_PURGEVALS: 2110 // Trim down the value list to the specified size. 2111 if (Record.size() < 1 || Record[0] > ValueList.size()) 2112 return Error(BitcodeError::InvalidRecord); 2113 ValueList.shrinkTo(Record[0]); 2114 break; 2115 } 2116 Record.clear(); 2117 } 2118 } 2119 2120 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2121 TheModule = nullptr; 2122 2123 if (std::error_code EC = InitStream()) 2124 return EC; 2125 2126 // Sniff for the signature. 2127 if (Stream.Read(8) != 'B' || 2128 Stream.Read(8) != 'C' || 2129 Stream.Read(4) != 0x0 || 2130 Stream.Read(4) != 0xC || 2131 Stream.Read(4) != 0xE || 2132 Stream.Read(4) != 0xD) 2133 return Error(BitcodeError::InvalidBitcodeSignature); 2134 2135 // We expect a number of well-defined blocks, though we don't necessarily 2136 // need to understand them all. 2137 while (1) { 2138 if (Stream.AtEndOfStream()) 2139 return std::error_code(); 2140 2141 BitstreamEntry Entry = 2142 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2143 2144 switch (Entry.Kind) { 2145 case BitstreamEntry::Error: 2146 return Error(BitcodeError::MalformedBlock); 2147 case BitstreamEntry::EndBlock: 2148 return std::error_code(); 2149 2150 case BitstreamEntry::SubBlock: 2151 switch (Entry.ID) { 2152 case bitc::BLOCKINFO_BLOCK_ID: 2153 if (Stream.ReadBlockInfoBlock()) 2154 return Error(BitcodeError::MalformedBlock); 2155 break; 2156 case bitc::MODULE_BLOCK_ID: 2157 // Reject multiple MODULE_BLOCK's in a single bitstream. 2158 if (TheModule) 2159 return Error(BitcodeError::InvalidMultipleBlocks); 2160 TheModule = M; 2161 if (std::error_code EC = ParseModule(false)) 2162 return EC; 2163 if (LazyStreamer) 2164 return std::error_code(); 2165 break; 2166 default: 2167 if (Stream.SkipBlock()) 2168 return Error(BitcodeError::InvalidRecord); 2169 break; 2170 } 2171 continue; 2172 case BitstreamEntry::Record: 2173 // There should be no records in the top-level of blocks. 2174 2175 // The ranlib in Xcode 4 will align archive members by appending newlines 2176 // to the end of them. If this file size is a multiple of 4 but not 8, we 2177 // have to read and ignore these final 4 bytes :-( 2178 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2179 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2180 Stream.AtEndOfStream()) 2181 return std::error_code(); 2182 2183 return Error(BitcodeError::InvalidRecord); 2184 } 2185 } 2186 } 2187 2188 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2189 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2190 return Error(BitcodeError::InvalidRecord); 2191 2192 SmallVector<uint64_t, 64> Record; 2193 2194 std::string Triple; 2195 // Read all the records for this module. 2196 while (1) { 2197 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2198 2199 switch (Entry.Kind) { 2200 case BitstreamEntry::SubBlock: // Handled for us already. 2201 case BitstreamEntry::Error: 2202 return Error(BitcodeError::MalformedBlock); 2203 case BitstreamEntry::EndBlock: 2204 return Triple; 2205 case BitstreamEntry::Record: 2206 // The interesting case. 2207 break; 2208 } 2209 2210 // Read a record. 2211 switch (Stream.readRecord(Entry.ID, Record)) { 2212 default: break; // Default behavior, ignore unknown content. 2213 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2214 std::string S; 2215 if (ConvertToString(Record, 0, S)) 2216 return Error(BitcodeError::InvalidRecord); 2217 Triple = S; 2218 break; 2219 } 2220 } 2221 Record.clear(); 2222 } 2223 llvm_unreachable("Exit infinite loop"); 2224 } 2225 2226 ErrorOr<std::string> BitcodeReader::parseTriple() { 2227 if (std::error_code EC = InitStream()) 2228 return EC; 2229 2230 // Sniff for the signature. 2231 if (Stream.Read(8) != 'B' || 2232 Stream.Read(8) != 'C' || 2233 Stream.Read(4) != 0x0 || 2234 Stream.Read(4) != 0xC || 2235 Stream.Read(4) != 0xE || 2236 Stream.Read(4) != 0xD) 2237 return Error(BitcodeError::InvalidBitcodeSignature); 2238 2239 // We expect a number of well-defined blocks, though we don't necessarily 2240 // need to understand them all. 2241 while (1) { 2242 BitstreamEntry Entry = Stream.advance(); 2243 2244 switch (Entry.Kind) { 2245 case BitstreamEntry::Error: 2246 return Error(BitcodeError::MalformedBlock); 2247 case BitstreamEntry::EndBlock: 2248 return std::error_code(); 2249 2250 case BitstreamEntry::SubBlock: 2251 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2252 return parseModuleTriple(); 2253 2254 // Ignore other sub-blocks. 2255 if (Stream.SkipBlock()) 2256 return Error(BitcodeError::MalformedBlock); 2257 continue; 2258 2259 case BitstreamEntry::Record: 2260 Stream.skipRecord(Entry.ID); 2261 continue; 2262 } 2263 } 2264 } 2265 2266 /// ParseMetadataAttachment - Parse metadata attachments. 2267 std::error_code BitcodeReader::ParseMetadataAttachment() { 2268 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2269 return Error(BitcodeError::InvalidRecord); 2270 2271 SmallVector<uint64_t, 64> Record; 2272 while (1) { 2273 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2274 2275 switch (Entry.Kind) { 2276 case BitstreamEntry::SubBlock: // Handled for us already. 2277 case BitstreamEntry::Error: 2278 return Error(BitcodeError::MalformedBlock); 2279 case BitstreamEntry::EndBlock: 2280 return std::error_code(); 2281 case BitstreamEntry::Record: 2282 // The interesting case. 2283 break; 2284 } 2285 2286 // Read a metadata attachment record. 2287 Record.clear(); 2288 switch (Stream.readRecord(Entry.ID, Record)) { 2289 default: // Default behavior: ignore. 2290 break; 2291 case bitc::METADATA_ATTACHMENT: { 2292 unsigned RecordLength = Record.size(); 2293 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2294 return Error(BitcodeError::InvalidRecord); 2295 Instruction *Inst = InstructionList[Record[0]]; 2296 for (unsigned i = 1; i != RecordLength; i = i+2) { 2297 unsigned Kind = Record[i]; 2298 DenseMap<unsigned, unsigned>::iterator I = 2299 MDKindMap.find(Kind); 2300 if (I == MDKindMap.end()) 2301 return Error(BitcodeError::InvalidID); 2302 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2303 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2304 if (I->second == LLVMContext::MD_tbaa) 2305 InstsWithTBAATag.push_back(Inst); 2306 } 2307 break; 2308 } 2309 } 2310 } 2311 } 2312 2313 /// ParseFunctionBody - Lazily parse the specified function body block. 2314 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2315 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2316 return Error(BitcodeError::InvalidRecord); 2317 2318 InstructionList.clear(); 2319 unsigned ModuleValueListSize = ValueList.size(); 2320 unsigned ModuleMDValueListSize = MDValueList.size(); 2321 2322 // Add all the function arguments to the value table. 2323 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2324 ValueList.push_back(I); 2325 2326 unsigned NextValueNo = ValueList.size(); 2327 BasicBlock *CurBB = nullptr; 2328 unsigned CurBBNo = 0; 2329 2330 DebugLoc LastLoc; 2331 2332 // Read all the records. 2333 SmallVector<uint64_t, 64> Record; 2334 while (1) { 2335 BitstreamEntry Entry = Stream.advance(); 2336 2337 switch (Entry.Kind) { 2338 case BitstreamEntry::Error: 2339 return Error(BitcodeError::MalformedBlock); 2340 case BitstreamEntry::EndBlock: 2341 goto OutOfRecordLoop; 2342 2343 case BitstreamEntry::SubBlock: 2344 switch (Entry.ID) { 2345 default: // Skip unknown content. 2346 if (Stream.SkipBlock()) 2347 return Error(BitcodeError::InvalidRecord); 2348 break; 2349 case bitc::CONSTANTS_BLOCK_ID: 2350 if (std::error_code EC = ParseConstants()) 2351 return EC; 2352 NextValueNo = ValueList.size(); 2353 break; 2354 case bitc::VALUE_SYMTAB_BLOCK_ID: 2355 if (std::error_code EC = ParseValueSymbolTable()) 2356 return EC; 2357 break; 2358 case bitc::METADATA_ATTACHMENT_ID: 2359 if (std::error_code EC = ParseMetadataAttachment()) 2360 return EC; 2361 break; 2362 case bitc::METADATA_BLOCK_ID: 2363 if (std::error_code EC = ParseMetadata()) 2364 return EC; 2365 break; 2366 case bitc::USELIST_BLOCK_ID: 2367 if (std::error_code EC = ParseUseLists()) 2368 return EC; 2369 break; 2370 } 2371 continue; 2372 2373 case BitstreamEntry::Record: 2374 // The interesting case. 2375 break; 2376 } 2377 2378 // Read a record. 2379 Record.clear(); 2380 Instruction *I = nullptr; 2381 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2382 switch (BitCode) { 2383 default: // Default behavior: reject 2384 return Error(BitcodeError::InvalidValue); 2385 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2386 if (Record.size() < 1 || Record[0] == 0) 2387 return Error(BitcodeError::InvalidRecord); 2388 // Create all the basic blocks for the function. 2389 FunctionBBs.resize(Record[0]); 2390 2391 // See if anything took the address of blocks in this function. 2392 auto BBFRI = BasicBlockFwdRefs.find(F); 2393 if (BBFRI == BasicBlockFwdRefs.end()) { 2394 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2395 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2396 } else { 2397 auto &BBRefs = BBFRI->second; 2398 // Check for invalid basic block references. 2399 if (BBRefs.size() > FunctionBBs.size()) 2400 return Error(BitcodeError::InvalidID); 2401 assert(!BBRefs.empty() && "Unexpected empty array"); 2402 assert(!BBRefs.front() && "Invalid reference to entry block"); 2403 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2404 ++I) 2405 if (I < RE && BBRefs[I]) { 2406 BBRefs[I]->insertInto(F); 2407 FunctionBBs[I] = BBRefs[I]; 2408 } else { 2409 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2410 } 2411 2412 // Erase from the table. 2413 BasicBlockFwdRefs.erase(BBFRI); 2414 } 2415 2416 CurBB = FunctionBBs[0]; 2417 continue; 2418 } 2419 2420 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2421 // This record indicates that the last instruction is at the same 2422 // location as the previous instruction with a location. 2423 I = nullptr; 2424 2425 // Get the last instruction emitted. 2426 if (CurBB && !CurBB->empty()) 2427 I = &CurBB->back(); 2428 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2429 !FunctionBBs[CurBBNo-1]->empty()) 2430 I = &FunctionBBs[CurBBNo-1]->back(); 2431 2432 if (!I) 2433 return Error(BitcodeError::InvalidRecord); 2434 I->setDebugLoc(LastLoc); 2435 I = nullptr; 2436 continue; 2437 2438 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2439 I = nullptr; // Get the last instruction emitted. 2440 if (CurBB && !CurBB->empty()) 2441 I = &CurBB->back(); 2442 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2443 !FunctionBBs[CurBBNo-1]->empty()) 2444 I = &FunctionBBs[CurBBNo-1]->back(); 2445 if (!I || Record.size() < 4) 2446 return Error(BitcodeError::InvalidRecord); 2447 2448 unsigned Line = Record[0], Col = Record[1]; 2449 unsigned ScopeID = Record[2], IAID = Record[3]; 2450 2451 MDNode *Scope = nullptr, *IA = nullptr; 2452 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2453 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2454 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2455 I->setDebugLoc(LastLoc); 2456 I = nullptr; 2457 continue; 2458 } 2459 2460 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2461 unsigned OpNum = 0; 2462 Value *LHS, *RHS; 2463 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2464 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2465 OpNum+1 > Record.size()) 2466 return Error(BitcodeError::InvalidRecord); 2467 2468 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2469 if (Opc == -1) 2470 return Error(BitcodeError::InvalidRecord); 2471 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2472 InstructionList.push_back(I); 2473 if (OpNum < Record.size()) { 2474 if (Opc == Instruction::Add || 2475 Opc == Instruction::Sub || 2476 Opc == Instruction::Mul || 2477 Opc == Instruction::Shl) { 2478 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2479 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2480 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2481 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2482 } else if (Opc == Instruction::SDiv || 2483 Opc == Instruction::UDiv || 2484 Opc == Instruction::LShr || 2485 Opc == Instruction::AShr) { 2486 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2487 cast<BinaryOperator>(I)->setIsExact(true); 2488 } else if (isa<FPMathOperator>(I)) { 2489 FastMathFlags FMF; 2490 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2491 FMF.setUnsafeAlgebra(); 2492 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2493 FMF.setNoNaNs(); 2494 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2495 FMF.setNoInfs(); 2496 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2497 FMF.setNoSignedZeros(); 2498 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2499 FMF.setAllowReciprocal(); 2500 if (FMF.any()) 2501 I->setFastMathFlags(FMF); 2502 } 2503 2504 } 2505 break; 2506 } 2507 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2508 unsigned OpNum = 0; 2509 Value *Op; 2510 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2511 OpNum+2 != Record.size()) 2512 return Error(BitcodeError::InvalidRecord); 2513 2514 Type *ResTy = getTypeByID(Record[OpNum]); 2515 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2516 if (Opc == -1 || !ResTy) 2517 return Error(BitcodeError::InvalidRecord); 2518 Instruction *Temp = nullptr; 2519 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2520 if (Temp) { 2521 InstructionList.push_back(Temp); 2522 CurBB->getInstList().push_back(Temp); 2523 } 2524 } else { 2525 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2526 } 2527 InstructionList.push_back(I); 2528 break; 2529 } 2530 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2531 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2532 unsigned OpNum = 0; 2533 Value *BasePtr; 2534 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2535 return Error(BitcodeError::InvalidRecord); 2536 2537 SmallVector<Value*, 16> GEPIdx; 2538 while (OpNum != Record.size()) { 2539 Value *Op; 2540 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2541 return Error(BitcodeError::InvalidRecord); 2542 GEPIdx.push_back(Op); 2543 } 2544 2545 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2546 InstructionList.push_back(I); 2547 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2548 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2549 break; 2550 } 2551 2552 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2553 // EXTRACTVAL: [opty, opval, n x indices] 2554 unsigned OpNum = 0; 2555 Value *Agg; 2556 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2557 return Error(BitcodeError::InvalidRecord); 2558 2559 SmallVector<unsigned, 4> EXTRACTVALIdx; 2560 for (unsigned RecSize = Record.size(); 2561 OpNum != RecSize; ++OpNum) { 2562 uint64_t Index = Record[OpNum]; 2563 if ((unsigned)Index != Index) 2564 return Error(BitcodeError::InvalidValue); 2565 EXTRACTVALIdx.push_back((unsigned)Index); 2566 } 2567 2568 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2569 InstructionList.push_back(I); 2570 break; 2571 } 2572 2573 case bitc::FUNC_CODE_INST_INSERTVAL: { 2574 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2575 unsigned OpNum = 0; 2576 Value *Agg; 2577 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2578 return Error(BitcodeError::InvalidRecord); 2579 Value *Val; 2580 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2581 return Error(BitcodeError::InvalidRecord); 2582 2583 SmallVector<unsigned, 4> INSERTVALIdx; 2584 for (unsigned RecSize = Record.size(); 2585 OpNum != RecSize; ++OpNum) { 2586 uint64_t Index = Record[OpNum]; 2587 if ((unsigned)Index != Index) 2588 return Error(BitcodeError::InvalidValue); 2589 INSERTVALIdx.push_back((unsigned)Index); 2590 } 2591 2592 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2593 InstructionList.push_back(I); 2594 break; 2595 } 2596 2597 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2598 // obsolete form of select 2599 // handles select i1 ... in old bitcode 2600 unsigned OpNum = 0; 2601 Value *TrueVal, *FalseVal, *Cond; 2602 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2603 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2604 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2605 return Error(BitcodeError::InvalidRecord); 2606 2607 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2608 InstructionList.push_back(I); 2609 break; 2610 } 2611 2612 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2613 // new form of select 2614 // handles select i1 or select [N x i1] 2615 unsigned OpNum = 0; 2616 Value *TrueVal, *FalseVal, *Cond; 2617 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2618 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2619 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2620 return Error(BitcodeError::InvalidRecord); 2621 2622 // select condition can be either i1 or [N x i1] 2623 if (VectorType* vector_type = 2624 dyn_cast<VectorType>(Cond->getType())) { 2625 // expect <n x i1> 2626 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2627 return Error(BitcodeError::InvalidTypeForValue); 2628 } else { 2629 // expect i1 2630 if (Cond->getType() != Type::getInt1Ty(Context)) 2631 return Error(BitcodeError::InvalidTypeForValue); 2632 } 2633 2634 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2635 InstructionList.push_back(I); 2636 break; 2637 } 2638 2639 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2640 unsigned OpNum = 0; 2641 Value *Vec, *Idx; 2642 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2643 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2644 return Error(BitcodeError::InvalidRecord); 2645 I = ExtractElementInst::Create(Vec, Idx); 2646 InstructionList.push_back(I); 2647 break; 2648 } 2649 2650 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2651 unsigned OpNum = 0; 2652 Value *Vec, *Elt, *Idx; 2653 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2654 popValue(Record, OpNum, NextValueNo, 2655 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2656 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2657 return Error(BitcodeError::InvalidRecord); 2658 I = InsertElementInst::Create(Vec, Elt, Idx); 2659 InstructionList.push_back(I); 2660 break; 2661 } 2662 2663 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2664 unsigned OpNum = 0; 2665 Value *Vec1, *Vec2, *Mask; 2666 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2667 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2668 return Error(BitcodeError::InvalidRecord); 2669 2670 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2671 return Error(BitcodeError::InvalidRecord); 2672 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2673 InstructionList.push_back(I); 2674 break; 2675 } 2676 2677 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2678 // Old form of ICmp/FCmp returning bool 2679 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2680 // both legal on vectors but had different behaviour. 2681 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2682 // FCmp/ICmp returning bool or vector of bool 2683 2684 unsigned OpNum = 0; 2685 Value *LHS, *RHS; 2686 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2687 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2688 OpNum+1 != Record.size()) 2689 return Error(BitcodeError::InvalidRecord); 2690 2691 if (LHS->getType()->isFPOrFPVectorTy()) 2692 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2693 else 2694 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2695 InstructionList.push_back(I); 2696 break; 2697 } 2698 2699 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2700 { 2701 unsigned Size = Record.size(); 2702 if (Size == 0) { 2703 I = ReturnInst::Create(Context); 2704 InstructionList.push_back(I); 2705 break; 2706 } 2707 2708 unsigned OpNum = 0; 2709 Value *Op = nullptr; 2710 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2711 return Error(BitcodeError::InvalidRecord); 2712 if (OpNum != Record.size()) 2713 return Error(BitcodeError::InvalidRecord); 2714 2715 I = ReturnInst::Create(Context, Op); 2716 InstructionList.push_back(I); 2717 break; 2718 } 2719 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2720 if (Record.size() != 1 && Record.size() != 3) 2721 return Error(BitcodeError::InvalidRecord); 2722 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2723 if (!TrueDest) 2724 return Error(BitcodeError::InvalidRecord); 2725 2726 if (Record.size() == 1) { 2727 I = BranchInst::Create(TrueDest); 2728 InstructionList.push_back(I); 2729 } 2730 else { 2731 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2732 Value *Cond = getValue(Record, 2, NextValueNo, 2733 Type::getInt1Ty(Context)); 2734 if (!FalseDest || !Cond) 2735 return Error(BitcodeError::InvalidRecord); 2736 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2737 InstructionList.push_back(I); 2738 } 2739 break; 2740 } 2741 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2742 // Check magic 2743 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2744 // "New" SwitchInst format with case ranges. The changes to write this 2745 // format were reverted but we still recognize bitcode that uses it. 2746 // Hopefully someday we will have support for case ranges and can use 2747 // this format again. 2748 2749 Type *OpTy = getTypeByID(Record[1]); 2750 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2751 2752 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2753 BasicBlock *Default = getBasicBlock(Record[3]); 2754 if (!OpTy || !Cond || !Default) 2755 return Error(BitcodeError::InvalidRecord); 2756 2757 unsigned NumCases = Record[4]; 2758 2759 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2760 InstructionList.push_back(SI); 2761 2762 unsigned CurIdx = 5; 2763 for (unsigned i = 0; i != NumCases; ++i) { 2764 SmallVector<ConstantInt*, 1> CaseVals; 2765 unsigned NumItems = Record[CurIdx++]; 2766 for (unsigned ci = 0; ci != NumItems; ++ci) { 2767 bool isSingleNumber = Record[CurIdx++]; 2768 2769 APInt Low; 2770 unsigned ActiveWords = 1; 2771 if (ValueBitWidth > 64) 2772 ActiveWords = Record[CurIdx++]; 2773 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2774 ValueBitWidth); 2775 CurIdx += ActiveWords; 2776 2777 if (!isSingleNumber) { 2778 ActiveWords = 1; 2779 if (ValueBitWidth > 64) 2780 ActiveWords = Record[CurIdx++]; 2781 APInt High = 2782 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2783 ValueBitWidth); 2784 CurIdx += ActiveWords; 2785 2786 // FIXME: It is not clear whether values in the range should be 2787 // compared as signed or unsigned values. The partially 2788 // implemented changes that used this format in the past used 2789 // unsigned comparisons. 2790 for ( ; Low.ule(High); ++Low) 2791 CaseVals.push_back(ConstantInt::get(Context, Low)); 2792 } else 2793 CaseVals.push_back(ConstantInt::get(Context, Low)); 2794 } 2795 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2796 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2797 cve = CaseVals.end(); cvi != cve; ++cvi) 2798 SI->addCase(*cvi, DestBB); 2799 } 2800 I = SI; 2801 break; 2802 } 2803 2804 // Old SwitchInst format without case ranges. 2805 2806 if (Record.size() < 3 || (Record.size() & 1) == 0) 2807 return Error(BitcodeError::InvalidRecord); 2808 Type *OpTy = getTypeByID(Record[0]); 2809 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2810 BasicBlock *Default = getBasicBlock(Record[2]); 2811 if (!OpTy || !Cond || !Default) 2812 return Error(BitcodeError::InvalidRecord); 2813 unsigned NumCases = (Record.size()-3)/2; 2814 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2815 InstructionList.push_back(SI); 2816 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2817 ConstantInt *CaseVal = 2818 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2819 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2820 if (!CaseVal || !DestBB) { 2821 delete SI; 2822 return Error(BitcodeError::InvalidRecord); 2823 } 2824 SI->addCase(CaseVal, DestBB); 2825 } 2826 I = SI; 2827 break; 2828 } 2829 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2830 if (Record.size() < 2) 2831 return Error(BitcodeError::InvalidRecord); 2832 Type *OpTy = getTypeByID(Record[0]); 2833 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2834 if (!OpTy || !Address) 2835 return Error(BitcodeError::InvalidRecord); 2836 unsigned NumDests = Record.size()-2; 2837 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2838 InstructionList.push_back(IBI); 2839 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2840 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2841 IBI->addDestination(DestBB); 2842 } else { 2843 delete IBI; 2844 return Error(BitcodeError::InvalidRecord); 2845 } 2846 } 2847 I = IBI; 2848 break; 2849 } 2850 2851 case bitc::FUNC_CODE_INST_INVOKE: { 2852 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2853 if (Record.size() < 4) 2854 return Error(BitcodeError::InvalidRecord); 2855 AttributeSet PAL = getAttributes(Record[0]); 2856 unsigned CCInfo = Record[1]; 2857 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2858 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2859 2860 unsigned OpNum = 4; 2861 Value *Callee; 2862 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2863 return Error(BitcodeError::InvalidRecord); 2864 2865 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2866 FunctionType *FTy = !CalleeTy ? nullptr : 2867 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2868 2869 // Check that the right number of fixed parameters are here. 2870 if (!FTy || !NormalBB || !UnwindBB || 2871 Record.size() < OpNum+FTy->getNumParams()) 2872 return Error(BitcodeError::InvalidRecord); 2873 2874 SmallVector<Value*, 16> Ops; 2875 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2876 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2877 FTy->getParamType(i))); 2878 if (!Ops.back()) 2879 return Error(BitcodeError::InvalidRecord); 2880 } 2881 2882 if (!FTy->isVarArg()) { 2883 if (Record.size() != OpNum) 2884 return Error(BitcodeError::InvalidRecord); 2885 } else { 2886 // Read type/value pairs for varargs params. 2887 while (OpNum != Record.size()) { 2888 Value *Op; 2889 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2890 return Error(BitcodeError::InvalidRecord); 2891 Ops.push_back(Op); 2892 } 2893 } 2894 2895 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2896 InstructionList.push_back(I); 2897 cast<InvokeInst>(I)->setCallingConv( 2898 static_cast<CallingConv::ID>(CCInfo)); 2899 cast<InvokeInst>(I)->setAttributes(PAL); 2900 break; 2901 } 2902 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2903 unsigned Idx = 0; 2904 Value *Val = nullptr; 2905 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2906 return Error(BitcodeError::InvalidRecord); 2907 I = ResumeInst::Create(Val); 2908 InstructionList.push_back(I); 2909 break; 2910 } 2911 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2912 I = new UnreachableInst(Context); 2913 InstructionList.push_back(I); 2914 break; 2915 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2916 if (Record.size() < 1 || ((Record.size()-1)&1)) 2917 return Error(BitcodeError::InvalidRecord); 2918 Type *Ty = getTypeByID(Record[0]); 2919 if (!Ty) 2920 return Error(BitcodeError::InvalidRecord); 2921 2922 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2923 InstructionList.push_back(PN); 2924 2925 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2926 Value *V; 2927 // With the new function encoding, it is possible that operands have 2928 // negative IDs (for forward references). Use a signed VBR 2929 // representation to keep the encoding small. 2930 if (UseRelativeIDs) 2931 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2932 else 2933 V = getValue(Record, 1+i, NextValueNo, Ty); 2934 BasicBlock *BB = getBasicBlock(Record[2+i]); 2935 if (!V || !BB) 2936 return Error(BitcodeError::InvalidRecord); 2937 PN->addIncoming(V, BB); 2938 } 2939 I = PN; 2940 break; 2941 } 2942 2943 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2944 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2945 unsigned Idx = 0; 2946 if (Record.size() < 4) 2947 return Error(BitcodeError::InvalidRecord); 2948 Type *Ty = getTypeByID(Record[Idx++]); 2949 if (!Ty) 2950 return Error(BitcodeError::InvalidRecord); 2951 Value *PersFn = nullptr; 2952 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2953 return Error(BitcodeError::InvalidRecord); 2954 2955 bool IsCleanup = !!Record[Idx++]; 2956 unsigned NumClauses = Record[Idx++]; 2957 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2958 LP->setCleanup(IsCleanup); 2959 for (unsigned J = 0; J != NumClauses; ++J) { 2960 LandingPadInst::ClauseType CT = 2961 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2962 Value *Val; 2963 2964 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2965 delete LP; 2966 return Error(BitcodeError::InvalidRecord); 2967 } 2968 2969 assert((CT != LandingPadInst::Catch || 2970 !isa<ArrayType>(Val->getType())) && 2971 "Catch clause has a invalid type!"); 2972 assert((CT != LandingPadInst::Filter || 2973 isa<ArrayType>(Val->getType())) && 2974 "Filter clause has invalid type!"); 2975 LP->addClause(cast<Constant>(Val)); 2976 } 2977 2978 I = LP; 2979 InstructionList.push_back(I); 2980 break; 2981 } 2982 2983 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2984 if (Record.size() != 4) 2985 return Error(BitcodeError::InvalidRecord); 2986 PointerType *Ty = 2987 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2988 Type *OpTy = getTypeByID(Record[1]); 2989 Value *Size = getFnValueByID(Record[2], OpTy); 2990 unsigned AlignRecord = Record[3]; 2991 bool InAlloca = AlignRecord & (1 << 5); 2992 unsigned Align = AlignRecord & ((1 << 5) - 1); 2993 if (!Ty || !Size) 2994 return Error(BitcodeError::InvalidRecord); 2995 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2996 AI->setUsedWithInAlloca(InAlloca); 2997 I = AI; 2998 InstructionList.push_back(I); 2999 break; 3000 } 3001 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3002 unsigned OpNum = 0; 3003 Value *Op; 3004 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3005 OpNum+2 != Record.size()) 3006 return Error(BitcodeError::InvalidRecord); 3007 3008 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3009 InstructionList.push_back(I); 3010 break; 3011 } 3012 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3013 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3014 unsigned OpNum = 0; 3015 Value *Op; 3016 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3017 OpNum+4 != Record.size()) 3018 return Error(BitcodeError::InvalidRecord); 3019 3020 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3021 if (Ordering == NotAtomic || Ordering == Release || 3022 Ordering == AcquireRelease) 3023 return Error(BitcodeError::InvalidRecord); 3024 if (Ordering != NotAtomic && Record[OpNum] == 0) 3025 return Error(BitcodeError::InvalidRecord); 3026 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3027 3028 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3029 Ordering, SynchScope); 3030 InstructionList.push_back(I); 3031 break; 3032 } 3033 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3034 unsigned OpNum = 0; 3035 Value *Val, *Ptr; 3036 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3037 popValue(Record, OpNum, NextValueNo, 3038 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3039 OpNum+2 != Record.size()) 3040 return Error(BitcodeError::InvalidRecord); 3041 3042 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3043 InstructionList.push_back(I); 3044 break; 3045 } 3046 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3047 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3048 unsigned OpNum = 0; 3049 Value *Val, *Ptr; 3050 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3051 popValue(Record, OpNum, NextValueNo, 3052 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3053 OpNum+4 != Record.size()) 3054 return Error(BitcodeError::InvalidRecord); 3055 3056 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3057 if (Ordering == NotAtomic || Ordering == Acquire || 3058 Ordering == AcquireRelease) 3059 return Error(BitcodeError::InvalidRecord); 3060 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3061 if (Ordering != NotAtomic && Record[OpNum] == 0) 3062 return Error(BitcodeError::InvalidRecord); 3063 3064 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3065 Ordering, SynchScope); 3066 InstructionList.push_back(I); 3067 break; 3068 } 3069 case bitc::FUNC_CODE_INST_CMPXCHG: { 3070 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3071 // failureordering?, isweak?] 3072 unsigned OpNum = 0; 3073 Value *Ptr, *Cmp, *New; 3074 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3075 popValue(Record, OpNum, NextValueNo, 3076 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3077 popValue(Record, OpNum, NextValueNo, 3078 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3079 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3080 return Error(BitcodeError::InvalidRecord); 3081 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3082 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3083 return Error(BitcodeError::InvalidRecord); 3084 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3085 3086 AtomicOrdering FailureOrdering; 3087 if (Record.size() < 7) 3088 FailureOrdering = 3089 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3090 else 3091 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3092 3093 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3094 SynchScope); 3095 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3096 3097 if (Record.size() < 8) { 3098 // Before weak cmpxchgs existed, the instruction simply returned the 3099 // value loaded from memory, so bitcode files from that era will be 3100 // expecting the first component of a modern cmpxchg. 3101 CurBB->getInstList().push_back(I); 3102 I = ExtractValueInst::Create(I, 0); 3103 } else { 3104 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3105 } 3106 3107 InstructionList.push_back(I); 3108 break; 3109 } 3110 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3111 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3112 unsigned OpNum = 0; 3113 Value *Ptr, *Val; 3114 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3115 popValue(Record, OpNum, NextValueNo, 3116 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3117 OpNum+4 != Record.size()) 3118 return Error(BitcodeError::InvalidRecord); 3119 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3120 if (Operation < AtomicRMWInst::FIRST_BINOP || 3121 Operation > AtomicRMWInst::LAST_BINOP) 3122 return Error(BitcodeError::InvalidRecord); 3123 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3124 if (Ordering == NotAtomic || Ordering == Unordered) 3125 return Error(BitcodeError::InvalidRecord); 3126 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3127 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3128 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3129 InstructionList.push_back(I); 3130 break; 3131 } 3132 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3133 if (2 != Record.size()) 3134 return Error(BitcodeError::InvalidRecord); 3135 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3136 if (Ordering == NotAtomic || Ordering == Unordered || 3137 Ordering == Monotonic) 3138 return Error(BitcodeError::InvalidRecord); 3139 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3140 I = new FenceInst(Context, Ordering, SynchScope); 3141 InstructionList.push_back(I); 3142 break; 3143 } 3144 case bitc::FUNC_CODE_INST_CALL: { 3145 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3146 if (Record.size() < 3) 3147 return Error(BitcodeError::InvalidRecord); 3148 3149 AttributeSet PAL = getAttributes(Record[0]); 3150 unsigned CCInfo = Record[1]; 3151 3152 unsigned OpNum = 2; 3153 Value *Callee; 3154 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3155 return Error(BitcodeError::InvalidRecord); 3156 3157 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3158 FunctionType *FTy = nullptr; 3159 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3160 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3161 return Error(BitcodeError::InvalidRecord); 3162 3163 SmallVector<Value*, 16> Args; 3164 // Read the fixed params. 3165 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3166 if (FTy->getParamType(i)->isLabelTy()) 3167 Args.push_back(getBasicBlock(Record[OpNum])); 3168 else 3169 Args.push_back(getValue(Record, OpNum, NextValueNo, 3170 FTy->getParamType(i))); 3171 if (!Args.back()) 3172 return Error(BitcodeError::InvalidRecord); 3173 } 3174 3175 // Read type/value pairs for varargs params. 3176 if (!FTy->isVarArg()) { 3177 if (OpNum != Record.size()) 3178 return Error(BitcodeError::InvalidRecord); 3179 } else { 3180 while (OpNum != Record.size()) { 3181 Value *Op; 3182 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3183 return Error(BitcodeError::InvalidRecord); 3184 Args.push_back(Op); 3185 } 3186 } 3187 3188 I = CallInst::Create(Callee, Args); 3189 InstructionList.push_back(I); 3190 cast<CallInst>(I)->setCallingConv( 3191 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3192 CallInst::TailCallKind TCK = CallInst::TCK_None; 3193 if (CCInfo & 1) 3194 TCK = CallInst::TCK_Tail; 3195 if (CCInfo & (1 << 14)) 3196 TCK = CallInst::TCK_MustTail; 3197 cast<CallInst>(I)->setTailCallKind(TCK); 3198 cast<CallInst>(I)->setAttributes(PAL); 3199 break; 3200 } 3201 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3202 if (Record.size() < 3) 3203 return Error(BitcodeError::InvalidRecord); 3204 Type *OpTy = getTypeByID(Record[0]); 3205 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3206 Type *ResTy = getTypeByID(Record[2]); 3207 if (!OpTy || !Op || !ResTy) 3208 return Error(BitcodeError::InvalidRecord); 3209 I = new VAArgInst(Op, ResTy); 3210 InstructionList.push_back(I); 3211 break; 3212 } 3213 } 3214 3215 // Add instruction to end of current BB. If there is no current BB, reject 3216 // this file. 3217 if (!CurBB) { 3218 delete I; 3219 return Error(BitcodeError::InvalidInstructionWithNoBB); 3220 } 3221 CurBB->getInstList().push_back(I); 3222 3223 // If this was a terminator instruction, move to the next block. 3224 if (isa<TerminatorInst>(I)) { 3225 ++CurBBNo; 3226 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3227 } 3228 3229 // Non-void values get registered in the value table for future use. 3230 if (I && !I->getType()->isVoidTy()) 3231 ValueList.AssignValue(I, NextValueNo++); 3232 } 3233 3234 OutOfRecordLoop: 3235 3236 // Check the function list for unresolved values. 3237 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3238 if (!A->getParent()) { 3239 // We found at least one unresolved value. Nuke them all to avoid leaks. 3240 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3241 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3242 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3243 delete A; 3244 } 3245 } 3246 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3247 } 3248 } 3249 3250 // FIXME: Check for unresolved forward-declared metadata references 3251 // and clean up leaks. 3252 3253 // Trim the value list down to the size it was before we parsed this function. 3254 ValueList.shrinkTo(ModuleValueListSize); 3255 MDValueList.shrinkTo(ModuleMDValueListSize); 3256 std::vector<BasicBlock*>().swap(FunctionBBs); 3257 return std::error_code(); 3258 } 3259 3260 /// Find the function body in the bitcode stream 3261 std::error_code BitcodeReader::FindFunctionInStream( 3262 Function *F, 3263 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3264 while (DeferredFunctionInfoIterator->second == 0) { 3265 if (Stream.AtEndOfStream()) 3266 return Error(BitcodeError::CouldNotFindFunctionInStream); 3267 // ParseModule will parse the next body in the stream and set its 3268 // position in the DeferredFunctionInfo map. 3269 if (std::error_code EC = ParseModule(true)) 3270 return EC; 3271 } 3272 return std::error_code(); 3273 } 3274 3275 //===----------------------------------------------------------------------===// 3276 // GVMaterializer implementation 3277 //===----------------------------------------------------------------------===// 3278 3279 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3280 3281 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3282 if (const Function *F = dyn_cast<Function>(GV)) { 3283 return F->isDeclaration() && 3284 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3285 } 3286 return false; 3287 } 3288 3289 std::error_code BitcodeReader::Materialize(GlobalValue *GV) { 3290 Function *F = dyn_cast<Function>(GV); 3291 // If it's not a function or is already material, ignore the request. 3292 if (!F || !F->isMaterializable()) 3293 return std::error_code(); 3294 3295 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3296 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3297 // If its position is recorded as 0, its body is somewhere in the stream 3298 // but we haven't seen it yet. 3299 if (DFII->second == 0 && LazyStreamer) 3300 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3301 return EC; 3302 3303 // Move the bit stream to the saved position of the deferred function body. 3304 Stream.JumpToBit(DFII->second); 3305 3306 if (std::error_code EC = ParseFunctionBody(F)) 3307 return EC; 3308 3309 // Upgrade any old intrinsic calls in the function. 3310 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3311 E = UpgradedIntrinsics.end(); I != E; ++I) { 3312 if (I->first != I->second) { 3313 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3314 UI != UE;) { 3315 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3316 UpgradeIntrinsicCall(CI, I->second); 3317 } 3318 } 3319 } 3320 3321 // Bring in any functions that this function forward-referenced via 3322 // blockaddresses. 3323 return materializeForwardReferencedFunctions(); 3324 } 3325 3326 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3327 const Function *F = dyn_cast<Function>(GV); 3328 if (!F || F->isDeclaration()) 3329 return false; 3330 3331 // Dematerializing F would leave dangling references that wouldn't be 3332 // reconnected on re-materialization. 3333 if (BlockAddressesTaken.count(F)) 3334 return false; 3335 3336 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3337 } 3338 3339 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3340 Function *F = dyn_cast<Function>(GV); 3341 // If this function isn't dematerializable, this is a noop. 3342 if (!F || !isDematerializable(F)) 3343 return; 3344 3345 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3346 3347 // Just forget the function body, we can remat it later. 3348 F->deleteBody(); 3349 } 3350 3351 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3352 assert(M == TheModule && 3353 "Can only Materialize the Module this BitcodeReader is attached to."); 3354 3355 // Promise to materialize all forward references. 3356 WillMaterializeAllForwardRefs = true; 3357 3358 // Iterate over the module, deserializing any functions that are still on 3359 // disk. 3360 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3361 F != E; ++F) { 3362 if (F->isMaterializable()) { 3363 if (std::error_code EC = Materialize(F)) 3364 return EC; 3365 } 3366 } 3367 // At this point, if there are any function bodies, the current bit is 3368 // pointing to the END_BLOCK record after them. Now make sure the rest 3369 // of the bits in the module have been read. 3370 if (NextUnreadBit) 3371 ParseModule(true); 3372 3373 // Check that all block address forward references got resolved (as we 3374 // promised above). 3375 if (!BasicBlockFwdRefs.empty()) 3376 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3377 3378 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3379 // delete the old functions to clean up. We can't do this unless the entire 3380 // module is materialized because there could always be another function body 3381 // with calls to the old function. 3382 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3383 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3384 if (I->first != I->second) { 3385 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3386 UI != UE;) { 3387 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3388 UpgradeIntrinsicCall(CI, I->second); 3389 } 3390 if (!I->first->use_empty()) 3391 I->first->replaceAllUsesWith(I->second); 3392 I->first->eraseFromParent(); 3393 } 3394 } 3395 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3396 3397 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3398 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3399 3400 UpgradeDebugInfo(*M); 3401 return std::error_code(); 3402 } 3403 3404 std::error_code BitcodeReader::InitStream() { 3405 if (LazyStreamer) 3406 return InitLazyStream(); 3407 return InitStreamFromBuffer(); 3408 } 3409 3410 std::error_code BitcodeReader::InitStreamFromBuffer() { 3411 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3412 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3413 3414 if (Buffer->getBufferSize() & 3) 3415 return Error(BitcodeError::InvalidBitcodeSignature); 3416 3417 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3418 // The magic number is 0x0B17C0DE stored in little endian. 3419 if (isBitcodeWrapper(BufPtr, BufEnd)) 3420 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3421 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3422 3423 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3424 Stream.init(*StreamFile); 3425 3426 return std::error_code(); 3427 } 3428 3429 std::error_code BitcodeReader::InitLazyStream() { 3430 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3431 // see it. 3432 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3433 StreamFile.reset(new BitstreamReader(Bytes)); 3434 Stream.init(*StreamFile); 3435 3436 unsigned char buf[16]; 3437 if (Bytes->readBytes(0, 16, buf) == -1) 3438 return Error(BitcodeError::InvalidBitcodeSignature); 3439 3440 if (!isBitcode(buf, buf + 16)) 3441 return Error(BitcodeError::InvalidBitcodeSignature); 3442 3443 if (isBitcodeWrapper(buf, buf + 4)) { 3444 const unsigned char *bitcodeStart = buf; 3445 const unsigned char *bitcodeEnd = buf + 16; 3446 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3447 Bytes->dropLeadingBytes(bitcodeStart - buf); 3448 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3449 } 3450 return std::error_code(); 3451 } 3452 3453 namespace { 3454 class BitcodeErrorCategoryType : public std::error_category { 3455 const char *name() const LLVM_NOEXCEPT override { 3456 return "llvm.bitcode"; 3457 } 3458 std::string message(int IE) const override { 3459 BitcodeError E = static_cast<BitcodeError>(IE); 3460 switch (E) { 3461 case BitcodeError::ConflictingMETADATA_KINDRecords: 3462 return "Conflicting METADATA_KIND records"; 3463 case BitcodeError::CouldNotFindFunctionInStream: 3464 return "Could not find function in stream"; 3465 case BitcodeError::ExpectedConstant: 3466 return "Expected a constant"; 3467 case BitcodeError::InsufficientFunctionProtos: 3468 return "Insufficient function protos"; 3469 case BitcodeError::InvalidBitcodeSignature: 3470 return "Invalid bitcode signature"; 3471 case BitcodeError::InvalidBitcodeWrapperHeader: 3472 return "Invalid bitcode wrapper header"; 3473 case BitcodeError::InvalidConstantReference: 3474 return "Invalid ronstant reference"; 3475 case BitcodeError::InvalidID: 3476 return "Invalid ID"; 3477 case BitcodeError::InvalidInstructionWithNoBB: 3478 return "Invalid instruction with no BB"; 3479 case BitcodeError::InvalidRecord: 3480 return "Invalid record"; 3481 case BitcodeError::InvalidTypeForValue: 3482 return "Invalid type for value"; 3483 case BitcodeError::InvalidTYPETable: 3484 return "Invalid TYPE table"; 3485 case BitcodeError::InvalidType: 3486 return "Invalid type"; 3487 case BitcodeError::MalformedBlock: 3488 return "Malformed block"; 3489 case BitcodeError::MalformedGlobalInitializerSet: 3490 return "Malformed global initializer set"; 3491 case BitcodeError::InvalidMultipleBlocks: 3492 return "Invalid multiple blocks"; 3493 case BitcodeError::NeverResolvedValueFoundInFunction: 3494 return "Never resolved value found in function"; 3495 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3496 return "Never resolved function from blockaddress"; 3497 case BitcodeError::InvalidValue: 3498 return "Invalid value"; 3499 } 3500 llvm_unreachable("Unknown error type!"); 3501 } 3502 }; 3503 } 3504 3505 const std::error_category &llvm::BitcodeErrorCategory() { 3506 static BitcodeErrorCategoryType O; 3507 return O; 3508 } 3509 3510 //===----------------------------------------------------------------------===// 3511 // External interface 3512 //===----------------------------------------------------------------------===// 3513 3514 /// \brief Get a lazy one-at-time loading module from bitcode. 3515 /// 3516 /// This isn't always used in a lazy context. In particular, it's also used by 3517 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3518 /// in forward-referenced functions from block address references. 3519 /// 3520 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3521 /// materialize everything -- in particular, if this isn't truly lazy. 3522 static ErrorOr<Module *> getLazyBitcodeModuleImpl(MemoryBuffer *Buffer, 3523 LLVMContext &Context, 3524 bool WillMaterializeAll) { 3525 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3526 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3527 M->setMaterializer(R); 3528 3529 auto cleanupOnError = [&](std::error_code EC) { 3530 R->releaseBuffer(); // Never take ownership on error. 3531 delete M; // Also deletes R. 3532 return EC; 3533 }; 3534 3535 if (std::error_code EC = R->ParseBitcodeInto(M)) 3536 return cleanupOnError(EC); 3537 3538 if (!WillMaterializeAll) 3539 // Resolve forward references from blockaddresses. 3540 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3541 return cleanupOnError(EC); 3542 3543 return M; 3544 } 3545 3546 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3547 LLVMContext &Context) { 3548 return getLazyBitcodeModuleImpl(Buffer, Context, false); 3549 } 3550 3551 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3552 DataStreamer *streamer, 3553 LLVMContext &Context, 3554 std::string *ErrMsg) { 3555 Module *M = new Module(name, Context); 3556 BitcodeReader *R = new BitcodeReader(streamer, Context); 3557 M->setMaterializer(R); 3558 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3559 if (ErrMsg) 3560 *ErrMsg = EC.message(); 3561 delete M; // Also deletes R. 3562 return nullptr; 3563 } 3564 return M; 3565 } 3566 3567 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 3568 LLVMContext &Context) { 3569 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3570 ErrorOr<Module *> ModuleOrErr = 3571 getLazyBitcodeModuleImpl(Buf.get(), Context, true); 3572 if (!ModuleOrErr) 3573 return ModuleOrErr; 3574 Buf.release(); // The BitcodeReader owns it now. 3575 Module *M = ModuleOrErr.get(); 3576 // Read in the entire module, and destroy the BitcodeReader. 3577 if (std::error_code EC = M->materializeAllPermanently()) { 3578 delete M; 3579 return EC; 3580 } 3581 3582 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3583 // written. We must defer until the Module has been fully materialized. 3584 3585 return M; 3586 } 3587 3588 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 3589 LLVMContext &Context) { 3590 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3591 auto R = llvm::make_unique<BitcodeReader>(Buf.get(), Context); 3592 ErrorOr<std::string> Triple = R->parseTriple(); 3593 if (Triple.getError()) 3594 return ""; 3595 return Triple.get(); 3596 } 3597