1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code MaterializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void Dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 405 return ::Error(DiagnosticHandler, make_error_code(E), Message); 406 } 407 408 std::error_code BitcodeReader::Error(const Twine &Message) { 409 return ::Error(DiagnosticHandler, 410 make_error_code(BitcodeError::CorruptedBitcode), Message); 411 } 412 413 std::error_code BitcodeReader::Error(BitcodeError E) { 414 return ::Error(DiagnosticHandler, make_error_code(E)); 415 } 416 417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 418 LLVMContext &C) { 419 if (F) 420 return F; 421 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 422 } 423 424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 425 DiagnosticHandlerFunction DiagnosticHandler) 426 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 427 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 428 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 429 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 430 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 435 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 436 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 437 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 438 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return Error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::FreeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// ConvertToString - Convert a string from a record into an std::string, return 496 /// true on failure. 497 template<typename StrTy> 498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 GetDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int GetDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 611 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 612 bool IsFP = Ty->isFPOrFPVectorTy(); 613 // BinOps are only valid for int/fp or vector of int/fp types 614 if (!IsFP && !Ty->isIntOrIntVectorTy()) 615 return -1; 616 617 switch (Val) { 618 default: 619 return -1; 620 case bitc::BINOP_ADD: 621 return IsFP ? Instruction::FAdd : Instruction::Add; 622 case bitc::BINOP_SUB: 623 return IsFP ? Instruction::FSub : Instruction::Sub; 624 case bitc::BINOP_MUL: 625 return IsFP ? Instruction::FMul : Instruction::Mul; 626 case bitc::BINOP_UDIV: 627 return IsFP ? -1 : Instruction::UDiv; 628 case bitc::BINOP_SDIV: 629 return IsFP ? Instruction::FDiv : Instruction::SDiv; 630 case bitc::BINOP_UREM: 631 return IsFP ? -1 : Instruction::URem; 632 case bitc::BINOP_SREM: 633 return IsFP ? Instruction::FRem : Instruction::SRem; 634 case bitc::BINOP_SHL: 635 return IsFP ? -1 : Instruction::Shl; 636 case bitc::BINOP_LSHR: 637 return IsFP ? -1 : Instruction::LShr; 638 case bitc::BINOP_ASHR: 639 return IsFP ? -1 : Instruction::AShr; 640 case bitc::BINOP_AND: 641 return IsFP ? -1 : Instruction::And; 642 case bitc::BINOP_OR: 643 return IsFP ? -1 : Instruction::Or; 644 case bitc::BINOP_XOR: 645 return IsFP ? -1 : Instruction::Xor; 646 } 647 } 648 649 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 650 switch (Val) { 651 default: return AtomicRMWInst::BAD_BINOP; 652 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 653 case bitc::RMW_ADD: return AtomicRMWInst::Add; 654 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 655 case bitc::RMW_AND: return AtomicRMWInst::And; 656 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 657 case bitc::RMW_OR: return AtomicRMWInst::Or; 658 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 659 case bitc::RMW_MAX: return AtomicRMWInst::Max; 660 case bitc::RMW_MIN: return AtomicRMWInst::Min; 661 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 662 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 663 } 664 } 665 666 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 667 switch (Val) { 668 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 669 case bitc::ORDERING_UNORDERED: return Unordered; 670 case bitc::ORDERING_MONOTONIC: return Monotonic; 671 case bitc::ORDERING_ACQUIRE: return Acquire; 672 case bitc::ORDERING_RELEASE: return Release; 673 case bitc::ORDERING_ACQREL: return AcquireRelease; 674 default: // Map unknown orderings to sequentially-consistent. 675 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 676 } 677 } 678 679 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 680 switch (Val) { 681 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 682 default: // Map unknown scopes to cross-thread. 683 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 684 } 685 } 686 687 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 688 switch (Val) { 689 default: // Map unknown selection kinds to any. 690 case bitc::COMDAT_SELECTION_KIND_ANY: 691 return Comdat::Any; 692 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 693 return Comdat::ExactMatch; 694 case bitc::COMDAT_SELECTION_KIND_LARGEST: 695 return Comdat::Largest; 696 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 697 return Comdat::NoDuplicates; 698 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 699 return Comdat::SameSize; 700 } 701 } 702 703 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 704 switch (Val) { 705 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 706 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 707 } 708 } 709 710 namespace llvm { 711 namespace { 712 /// @brief A class for maintaining the slot number definition 713 /// as a placeholder for the actual definition for forward constants defs. 714 class ConstantPlaceHolder : public ConstantExpr { 715 void operator=(const ConstantPlaceHolder &) = delete; 716 public: 717 // allocate space for exactly one operand 718 void *operator new(size_t s) { 719 return User::operator new(s, 1); 720 } 721 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 722 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 723 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 724 } 725 726 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 727 static bool classof(const Value *V) { 728 return isa<ConstantExpr>(V) && 729 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 730 } 731 732 733 /// Provide fast operand accessors 734 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 735 }; 736 } 737 738 // FIXME: can we inherit this from ConstantExpr? 739 template <> 740 struct OperandTraits<ConstantPlaceHolder> : 741 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 742 }; 743 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 744 } 745 746 747 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 748 if (Idx == size()) { 749 push_back(V); 750 return; 751 } 752 753 if (Idx >= size()) 754 resize(Idx+1); 755 756 WeakVH &OldV = ValuePtrs[Idx]; 757 if (!OldV) { 758 OldV = V; 759 return; 760 } 761 762 // Handle constants and non-constants (e.g. instrs) differently for 763 // efficiency. 764 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 765 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 766 OldV = V; 767 } else { 768 // If there was a forward reference to this value, replace it. 769 Value *PrevVal = OldV; 770 OldV->replaceAllUsesWith(V); 771 delete PrevVal; 772 } 773 } 774 775 776 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 777 Type *Ty) { 778 if (Idx >= size()) 779 resize(Idx + 1); 780 781 if (Value *V = ValuePtrs[Idx]) { 782 assert(Ty == V->getType() && "Type mismatch in constant table!"); 783 return cast<Constant>(V); 784 } 785 786 // Create and return a placeholder, which will later be RAUW'd. 787 Constant *C = new ConstantPlaceHolder(Ty, Context); 788 ValuePtrs[Idx] = C; 789 return C; 790 } 791 792 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 793 if (Idx >= size()) 794 resize(Idx + 1); 795 796 if (Value *V = ValuePtrs[Idx]) { 797 // If the types don't match, it's invalid. 798 if (Ty && Ty != V->getType()) 799 return nullptr; 800 return V; 801 } 802 803 // No type specified, must be invalid reference. 804 if (!Ty) return nullptr; 805 806 // Create and return a placeholder, which will later be RAUW'd. 807 Value *V = new Argument(Ty); 808 ValuePtrs[Idx] = V; 809 return V; 810 } 811 812 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 813 /// resolves any forward references. The idea behind this is that we sometimes 814 /// get constants (such as large arrays) which reference *many* forward ref 815 /// constants. Replacing each of these causes a lot of thrashing when 816 /// building/reuniquing the constant. Instead of doing this, we look at all the 817 /// uses and rewrite all the place holders at once for any constant that uses 818 /// a placeholder. 819 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 820 // Sort the values by-pointer so that they are efficient to look up with a 821 // binary search. 822 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 823 824 SmallVector<Constant*, 64> NewOps; 825 826 while (!ResolveConstants.empty()) { 827 Value *RealVal = operator[](ResolveConstants.back().second); 828 Constant *Placeholder = ResolveConstants.back().first; 829 ResolveConstants.pop_back(); 830 831 // Loop over all users of the placeholder, updating them to reference the 832 // new value. If they reference more than one placeholder, update them all 833 // at once. 834 while (!Placeholder->use_empty()) { 835 auto UI = Placeholder->user_begin(); 836 User *U = *UI; 837 838 // If the using object isn't uniqued, just update the operands. This 839 // handles instructions and initializers for global variables. 840 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 841 UI.getUse().set(RealVal); 842 continue; 843 } 844 845 // Otherwise, we have a constant that uses the placeholder. Replace that 846 // constant with a new constant that has *all* placeholder uses updated. 847 Constant *UserC = cast<Constant>(U); 848 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 849 I != E; ++I) { 850 Value *NewOp; 851 if (!isa<ConstantPlaceHolder>(*I)) { 852 // Not a placeholder reference. 853 NewOp = *I; 854 } else if (*I == Placeholder) { 855 // Common case is that it just references this one placeholder. 856 NewOp = RealVal; 857 } else { 858 // Otherwise, look up the placeholder in ResolveConstants. 859 ResolveConstantsTy::iterator It = 860 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 861 std::pair<Constant*, unsigned>(cast<Constant>(*I), 862 0)); 863 assert(It != ResolveConstants.end() && It->first == *I); 864 NewOp = operator[](It->second); 865 } 866 867 NewOps.push_back(cast<Constant>(NewOp)); 868 } 869 870 // Make the new constant. 871 Constant *NewC; 872 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 873 NewC = ConstantArray::get(UserCA->getType(), NewOps); 874 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 875 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 876 } else if (isa<ConstantVector>(UserC)) { 877 NewC = ConstantVector::get(NewOps); 878 } else { 879 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 880 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 881 } 882 883 UserC->replaceAllUsesWith(NewC); 884 UserC->destroyConstant(); 885 NewOps.clear(); 886 } 887 888 // Update all ValueHandles, they should be the only users at this point. 889 Placeholder->replaceAllUsesWith(RealVal); 890 delete Placeholder; 891 } 892 } 893 894 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 895 if (Idx == size()) { 896 push_back(MD); 897 return; 898 } 899 900 if (Idx >= size()) 901 resize(Idx+1); 902 903 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 904 if (!OldMD) { 905 OldMD.reset(MD); 906 return; 907 } 908 909 // If there was a forward reference to this value, replace it. 910 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 911 PrevMD->replaceAllUsesWith(MD); 912 --NumFwdRefs; 913 } 914 915 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 916 if (Idx >= size()) 917 resize(Idx + 1); 918 919 if (Metadata *MD = MDValuePtrs[Idx]) 920 return MD; 921 922 // Track forward refs to be resolved later. 923 if (AnyFwdRefs) { 924 MinFwdRef = std::min(MinFwdRef, Idx); 925 MaxFwdRef = std::max(MaxFwdRef, Idx); 926 } else { 927 AnyFwdRefs = true; 928 MinFwdRef = MaxFwdRef = Idx; 929 } 930 ++NumFwdRefs; 931 932 // Create and return a placeholder, which will later be RAUW'd. 933 Metadata *MD = MDNode::getTemporary(Context, None).release(); 934 MDValuePtrs[Idx].reset(MD); 935 return MD; 936 } 937 938 void BitcodeReaderMDValueList::tryToResolveCycles() { 939 if (!AnyFwdRefs) 940 // Nothing to do. 941 return; 942 943 if (NumFwdRefs) 944 // Still forward references... can't resolve cycles. 945 return; 946 947 // Resolve any cycles. 948 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 949 auto &MD = MDValuePtrs[I]; 950 auto *N = dyn_cast_or_null<MDNode>(MD); 951 if (!N) 952 continue; 953 954 assert(!N->isTemporary() && "Unexpected forward reference"); 955 N->resolveCycles(); 956 } 957 958 // Make sure we return early again until there's another forward ref. 959 AnyFwdRefs = false; 960 } 961 962 Type *BitcodeReader::getTypeByID(unsigned ID) { 963 // The type table size is always specified correctly. 964 if (ID >= TypeList.size()) 965 return nullptr; 966 967 if (Type *Ty = TypeList[ID]) 968 return Ty; 969 970 // If we have a forward reference, the only possible case is when it is to a 971 // named struct. Just create a placeholder for now. 972 return TypeList[ID] = createIdentifiedStructType(Context); 973 } 974 975 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 976 StringRef Name) { 977 auto *Ret = StructType::create(Context, Name); 978 IdentifiedStructTypes.push_back(Ret); 979 return Ret; 980 } 981 982 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 983 auto *Ret = StructType::create(Context); 984 IdentifiedStructTypes.push_back(Ret); 985 return Ret; 986 } 987 988 989 //===----------------------------------------------------------------------===// 990 // Functions for parsing blocks from the bitcode file 991 //===----------------------------------------------------------------------===// 992 993 994 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 995 /// been decoded from the given integer. This function must stay in sync with 996 /// 'encodeLLVMAttributesForBitcode'. 997 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 998 uint64_t EncodedAttrs) { 999 // FIXME: Remove in 4.0. 1000 1001 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1002 // the bits above 31 down by 11 bits. 1003 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1004 assert((!Alignment || isPowerOf2_32(Alignment)) && 1005 "Alignment must be a power of two."); 1006 1007 if (Alignment) 1008 B.addAlignmentAttr(Alignment); 1009 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1010 (EncodedAttrs & 0xffff)); 1011 } 1012 1013 std::error_code BitcodeReader::ParseAttributeBlock() { 1014 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1015 return Error("Invalid record"); 1016 1017 if (!MAttributes.empty()) 1018 return Error("Invalid multiple blocks"); 1019 1020 SmallVector<uint64_t, 64> Record; 1021 1022 SmallVector<AttributeSet, 8> Attrs; 1023 1024 // Read all the records. 1025 while (1) { 1026 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1027 1028 switch (Entry.Kind) { 1029 case BitstreamEntry::SubBlock: // Handled for us already. 1030 case BitstreamEntry::Error: 1031 return Error("Malformed block"); 1032 case BitstreamEntry::EndBlock: 1033 return std::error_code(); 1034 case BitstreamEntry::Record: 1035 // The interesting case. 1036 break; 1037 } 1038 1039 // Read a record. 1040 Record.clear(); 1041 switch (Stream.readRecord(Entry.ID, Record)) { 1042 default: // Default behavior: ignore. 1043 break; 1044 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1045 // FIXME: Remove in 4.0. 1046 if (Record.size() & 1) 1047 return Error("Invalid record"); 1048 1049 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1050 AttrBuilder B; 1051 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1052 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1053 } 1054 1055 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1056 Attrs.clear(); 1057 break; 1058 } 1059 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1060 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1061 Attrs.push_back(MAttributeGroups[Record[i]]); 1062 1063 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1064 Attrs.clear(); 1065 break; 1066 } 1067 } 1068 } 1069 } 1070 1071 // Returns Attribute::None on unrecognized codes. 1072 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1073 switch (Code) { 1074 default: 1075 return Attribute::None; 1076 case bitc::ATTR_KIND_ALIGNMENT: 1077 return Attribute::Alignment; 1078 case bitc::ATTR_KIND_ALWAYS_INLINE: 1079 return Attribute::AlwaysInline; 1080 case bitc::ATTR_KIND_BUILTIN: 1081 return Attribute::Builtin; 1082 case bitc::ATTR_KIND_BY_VAL: 1083 return Attribute::ByVal; 1084 case bitc::ATTR_KIND_IN_ALLOCA: 1085 return Attribute::InAlloca; 1086 case bitc::ATTR_KIND_COLD: 1087 return Attribute::Cold; 1088 case bitc::ATTR_KIND_INLINE_HINT: 1089 return Attribute::InlineHint; 1090 case bitc::ATTR_KIND_IN_REG: 1091 return Attribute::InReg; 1092 case bitc::ATTR_KIND_JUMP_TABLE: 1093 return Attribute::JumpTable; 1094 case bitc::ATTR_KIND_MIN_SIZE: 1095 return Attribute::MinSize; 1096 case bitc::ATTR_KIND_NAKED: 1097 return Attribute::Naked; 1098 case bitc::ATTR_KIND_NEST: 1099 return Attribute::Nest; 1100 case bitc::ATTR_KIND_NO_ALIAS: 1101 return Attribute::NoAlias; 1102 case bitc::ATTR_KIND_NO_BUILTIN: 1103 return Attribute::NoBuiltin; 1104 case bitc::ATTR_KIND_NO_CAPTURE: 1105 return Attribute::NoCapture; 1106 case bitc::ATTR_KIND_NO_DUPLICATE: 1107 return Attribute::NoDuplicate; 1108 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1109 return Attribute::NoImplicitFloat; 1110 case bitc::ATTR_KIND_NO_INLINE: 1111 return Attribute::NoInline; 1112 case bitc::ATTR_KIND_NON_LAZY_BIND: 1113 return Attribute::NonLazyBind; 1114 case bitc::ATTR_KIND_NON_NULL: 1115 return Attribute::NonNull; 1116 case bitc::ATTR_KIND_DEREFERENCEABLE: 1117 return Attribute::Dereferenceable; 1118 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1119 return Attribute::DereferenceableOrNull; 1120 case bitc::ATTR_KIND_NO_RED_ZONE: 1121 return Attribute::NoRedZone; 1122 case bitc::ATTR_KIND_NO_RETURN: 1123 return Attribute::NoReturn; 1124 case bitc::ATTR_KIND_NO_UNWIND: 1125 return Attribute::NoUnwind; 1126 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1127 return Attribute::OptimizeForSize; 1128 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1129 return Attribute::OptimizeNone; 1130 case bitc::ATTR_KIND_READ_NONE: 1131 return Attribute::ReadNone; 1132 case bitc::ATTR_KIND_READ_ONLY: 1133 return Attribute::ReadOnly; 1134 case bitc::ATTR_KIND_RETURNED: 1135 return Attribute::Returned; 1136 case bitc::ATTR_KIND_RETURNS_TWICE: 1137 return Attribute::ReturnsTwice; 1138 case bitc::ATTR_KIND_S_EXT: 1139 return Attribute::SExt; 1140 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1141 return Attribute::StackAlignment; 1142 case bitc::ATTR_KIND_STACK_PROTECT: 1143 return Attribute::StackProtect; 1144 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1145 return Attribute::StackProtectReq; 1146 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1147 return Attribute::StackProtectStrong; 1148 case bitc::ATTR_KIND_STRUCT_RET: 1149 return Attribute::StructRet; 1150 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1151 return Attribute::SanitizeAddress; 1152 case bitc::ATTR_KIND_SANITIZE_THREAD: 1153 return Attribute::SanitizeThread; 1154 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1155 return Attribute::SanitizeMemory; 1156 case bitc::ATTR_KIND_UW_TABLE: 1157 return Attribute::UWTable; 1158 case bitc::ATTR_KIND_Z_EXT: 1159 return Attribute::ZExt; 1160 } 1161 } 1162 1163 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1164 unsigned &Alignment) { 1165 // Note: Alignment in bitcode files is incremented by 1, so that zero 1166 // can be used for default alignment. 1167 if (Exponent > Value::MaxAlignmentExponent + 1) 1168 return Error("Invalid alignment value"); 1169 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1170 return std::error_code(); 1171 } 1172 1173 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1174 Attribute::AttrKind *Kind) { 1175 *Kind = GetAttrFromCode(Code); 1176 if (*Kind == Attribute::None) 1177 return Error(BitcodeError::CorruptedBitcode, 1178 "Unknown attribute kind (" + Twine(Code) + ")"); 1179 return std::error_code(); 1180 } 1181 1182 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1183 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1184 return Error("Invalid record"); 1185 1186 if (!MAttributeGroups.empty()) 1187 return Error("Invalid multiple blocks"); 1188 1189 SmallVector<uint64_t, 64> Record; 1190 1191 // Read all the records. 1192 while (1) { 1193 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1194 1195 switch (Entry.Kind) { 1196 case BitstreamEntry::SubBlock: // Handled for us already. 1197 case BitstreamEntry::Error: 1198 return Error("Malformed block"); 1199 case BitstreamEntry::EndBlock: 1200 return std::error_code(); 1201 case BitstreamEntry::Record: 1202 // The interesting case. 1203 break; 1204 } 1205 1206 // Read a record. 1207 Record.clear(); 1208 switch (Stream.readRecord(Entry.ID, Record)) { 1209 default: // Default behavior: ignore. 1210 break; 1211 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1212 if (Record.size() < 3) 1213 return Error("Invalid record"); 1214 1215 uint64_t GrpID = Record[0]; 1216 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1217 1218 AttrBuilder B; 1219 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1220 if (Record[i] == 0) { // Enum attribute 1221 Attribute::AttrKind Kind; 1222 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1223 return EC; 1224 1225 B.addAttribute(Kind); 1226 } else if (Record[i] == 1) { // Integer attribute 1227 Attribute::AttrKind Kind; 1228 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1229 return EC; 1230 if (Kind == Attribute::Alignment) 1231 B.addAlignmentAttr(Record[++i]); 1232 else if (Kind == Attribute::StackAlignment) 1233 B.addStackAlignmentAttr(Record[++i]); 1234 else if (Kind == Attribute::Dereferenceable) 1235 B.addDereferenceableAttr(Record[++i]); 1236 else if (Kind == Attribute::DereferenceableOrNull) 1237 B.addDereferenceableOrNullAttr(Record[++i]); 1238 } else { // String attribute 1239 assert((Record[i] == 3 || Record[i] == 4) && 1240 "Invalid attribute group entry"); 1241 bool HasValue = (Record[i++] == 4); 1242 SmallString<64> KindStr; 1243 SmallString<64> ValStr; 1244 1245 while (Record[i] != 0 && i != e) 1246 KindStr += Record[i++]; 1247 assert(Record[i] == 0 && "Kind string not null terminated"); 1248 1249 if (HasValue) { 1250 // Has a value associated with it. 1251 ++i; // Skip the '0' that terminates the "kind" string. 1252 while (Record[i] != 0 && i != e) 1253 ValStr += Record[i++]; 1254 assert(Record[i] == 0 && "Value string not null terminated"); 1255 } 1256 1257 B.addAttribute(KindStr.str(), ValStr.str()); 1258 } 1259 } 1260 1261 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1262 break; 1263 } 1264 } 1265 } 1266 } 1267 1268 std::error_code BitcodeReader::ParseTypeTable() { 1269 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1270 return Error("Invalid record"); 1271 1272 return ParseTypeTableBody(); 1273 } 1274 1275 std::error_code BitcodeReader::ParseTypeTableBody() { 1276 if (!TypeList.empty()) 1277 return Error("Invalid multiple blocks"); 1278 1279 SmallVector<uint64_t, 64> Record; 1280 unsigned NumRecords = 0; 1281 1282 SmallString<64> TypeName; 1283 1284 // Read all the records for this type table. 1285 while (1) { 1286 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1287 1288 switch (Entry.Kind) { 1289 case BitstreamEntry::SubBlock: // Handled for us already. 1290 case BitstreamEntry::Error: 1291 return Error("Malformed block"); 1292 case BitstreamEntry::EndBlock: 1293 if (NumRecords != TypeList.size()) 1294 return Error("Malformed block"); 1295 return std::error_code(); 1296 case BitstreamEntry::Record: 1297 // The interesting case. 1298 break; 1299 } 1300 1301 // Read a record. 1302 Record.clear(); 1303 Type *ResultTy = nullptr; 1304 switch (Stream.readRecord(Entry.ID, Record)) { 1305 default: 1306 return Error("Invalid value"); 1307 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1308 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1309 // type list. This allows us to reserve space. 1310 if (Record.size() < 1) 1311 return Error("Invalid record"); 1312 TypeList.resize(Record[0]); 1313 continue; 1314 case bitc::TYPE_CODE_VOID: // VOID 1315 ResultTy = Type::getVoidTy(Context); 1316 break; 1317 case bitc::TYPE_CODE_HALF: // HALF 1318 ResultTy = Type::getHalfTy(Context); 1319 break; 1320 case bitc::TYPE_CODE_FLOAT: // FLOAT 1321 ResultTy = Type::getFloatTy(Context); 1322 break; 1323 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1324 ResultTy = Type::getDoubleTy(Context); 1325 break; 1326 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1327 ResultTy = Type::getX86_FP80Ty(Context); 1328 break; 1329 case bitc::TYPE_CODE_FP128: // FP128 1330 ResultTy = Type::getFP128Ty(Context); 1331 break; 1332 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1333 ResultTy = Type::getPPC_FP128Ty(Context); 1334 break; 1335 case bitc::TYPE_CODE_LABEL: // LABEL 1336 ResultTy = Type::getLabelTy(Context); 1337 break; 1338 case bitc::TYPE_CODE_METADATA: // METADATA 1339 ResultTy = Type::getMetadataTy(Context); 1340 break; 1341 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1342 ResultTy = Type::getX86_MMXTy(Context); 1343 break; 1344 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1345 if (Record.size() < 1) 1346 return Error("Invalid record"); 1347 1348 uint64_t NumBits = Record[0]; 1349 if (NumBits < IntegerType::MIN_INT_BITS || 1350 NumBits > IntegerType::MAX_INT_BITS) 1351 return Error("Bitwidth for integer type out of range"); 1352 ResultTy = IntegerType::get(Context, NumBits); 1353 break; 1354 } 1355 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1356 // [pointee type, address space] 1357 if (Record.size() < 1) 1358 return Error("Invalid record"); 1359 unsigned AddressSpace = 0; 1360 if (Record.size() == 2) 1361 AddressSpace = Record[1]; 1362 ResultTy = getTypeByID(Record[0]); 1363 if (!ResultTy || 1364 !PointerType::isValidElementType(ResultTy)) 1365 return Error("Invalid type"); 1366 ResultTy = PointerType::get(ResultTy, AddressSpace); 1367 break; 1368 } 1369 case bitc::TYPE_CODE_FUNCTION_OLD: { 1370 // FIXME: attrid is dead, remove it in LLVM 4.0 1371 // FUNCTION: [vararg, attrid, retty, paramty x N] 1372 if (Record.size() < 3) 1373 return Error("Invalid record"); 1374 SmallVector<Type*, 8> ArgTys; 1375 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1376 if (Type *T = getTypeByID(Record[i])) 1377 ArgTys.push_back(T); 1378 else 1379 break; 1380 } 1381 1382 ResultTy = getTypeByID(Record[2]); 1383 if (!ResultTy || ArgTys.size() < Record.size()-3) 1384 return Error("Invalid type"); 1385 1386 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1387 break; 1388 } 1389 case bitc::TYPE_CODE_FUNCTION: { 1390 // FUNCTION: [vararg, retty, paramty x N] 1391 if (Record.size() < 2) 1392 return Error("Invalid record"); 1393 SmallVector<Type*, 8> ArgTys; 1394 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1395 if (Type *T = getTypeByID(Record[i])) 1396 ArgTys.push_back(T); 1397 else 1398 break; 1399 } 1400 1401 ResultTy = getTypeByID(Record[1]); 1402 if (!ResultTy || ArgTys.size() < Record.size()-2) 1403 return Error("Invalid type"); 1404 1405 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1406 break; 1407 } 1408 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1409 if (Record.size() < 1) 1410 return Error("Invalid record"); 1411 SmallVector<Type*, 8> EltTys; 1412 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1413 if (Type *T = getTypeByID(Record[i])) 1414 EltTys.push_back(T); 1415 else 1416 break; 1417 } 1418 if (EltTys.size() != Record.size()-1) 1419 return Error("Invalid type"); 1420 ResultTy = StructType::get(Context, EltTys, Record[0]); 1421 break; 1422 } 1423 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1424 if (ConvertToString(Record, 0, TypeName)) 1425 return Error("Invalid record"); 1426 continue; 1427 1428 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1429 if (Record.size() < 1) 1430 return Error("Invalid record"); 1431 1432 if (NumRecords >= TypeList.size()) 1433 return Error("Invalid TYPE table"); 1434 1435 // Check to see if this was forward referenced, if so fill in the temp. 1436 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1437 if (Res) { 1438 Res->setName(TypeName); 1439 TypeList[NumRecords] = nullptr; 1440 } else // Otherwise, create a new struct. 1441 Res = createIdentifiedStructType(Context, TypeName); 1442 TypeName.clear(); 1443 1444 SmallVector<Type*, 8> EltTys; 1445 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1446 if (Type *T = getTypeByID(Record[i])) 1447 EltTys.push_back(T); 1448 else 1449 break; 1450 } 1451 if (EltTys.size() != Record.size()-1) 1452 return Error("Invalid record"); 1453 Res->setBody(EltTys, Record[0]); 1454 ResultTy = Res; 1455 break; 1456 } 1457 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1458 if (Record.size() != 1) 1459 return Error("Invalid record"); 1460 1461 if (NumRecords >= TypeList.size()) 1462 return Error("Invalid TYPE table"); 1463 1464 // Check to see if this was forward referenced, if so fill in the temp. 1465 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1466 if (Res) { 1467 Res->setName(TypeName); 1468 TypeList[NumRecords] = nullptr; 1469 } else // Otherwise, create a new struct with no body. 1470 Res = createIdentifiedStructType(Context, TypeName); 1471 TypeName.clear(); 1472 ResultTy = Res; 1473 break; 1474 } 1475 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1476 if (Record.size() < 2) 1477 return Error("Invalid record"); 1478 if ((ResultTy = getTypeByID(Record[1])) && 1479 ArrayType::isValidElementType(ResultTy)) 1480 ResultTy = ArrayType::get(ResultTy, Record[0]); 1481 else 1482 return Error("Invalid type"); 1483 break; 1484 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1485 if (Record.size() < 2) 1486 return Error("Invalid record"); 1487 if ((ResultTy = getTypeByID(Record[1])) && 1488 StructType::isValidElementType(ResultTy)) 1489 ResultTy = VectorType::get(ResultTy, Record[0]); 1490 else 1491 return Error("Invalid type"); 1492 break; 1493 } 1494 1495 if (NumRecords >= TypeList.size()) 1496 return Error("Invalid TYPE table"); 1497 if (TypeList[NumRecords]) 1498 return Error( 1499 "Invalid TYPE table: Only named structs can be forward referenced"); 1500 assert(ResultTy && "Didn't read a type?"); 1501 TypeList[NumRecords++] = ResultTy; 1502 } 1503 } 1504 1505 std::error_code BitcodeReader::ParseValueSymbolTable() { 1506 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1507 return Error("Invalid record"); 1508 1509 SmallVector<uint64_t, 64> Record; 1510 1511 Triple TT(TheModule->getTargetTriple()); 1512 1513 // Read all the records for this value table. 1514 SmallString<128> ValueName; 1515 while (1) { 1516 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1517 1518 switch (Entry.Kind) { 1519 case BitstreamEntry::SubBlock: // Handled for us already. 1520 case BitstreamEntry::Error: 1521 return Error("Malformed block"); 1522 case BitstreamEntry::EndBlock: 1523 return std::error_code(); 1524 case BitstreamEntry::Record: 1525 // The interesting case. 1526 break; 1527 } 1528 1529 // Read a record. 1530 Record.clear(); 1531 switch (Stream.readRecord(Entry.ID, Record)) { 1532 default: // Default behavior: unknown type. 1533 break; 1534 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1535 if (ConvertToString(Record, 1, ValueName)) 1536 return Error("Invalid record"); 1537 unsigned ValueID = Record[0]; 1538 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1539 return Error("Invalid record"); 1540 Value *V = ValueList[ValueID]; 1541 1542 V->setName(StringRef(ValueName.data(), ValueName.size())); 1543 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1544 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1545 if (TT.isOSBinFormatMachO()) 1546 GO->setComdat(nullptr); 1547 else 1548 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1549 } 1550 } 1551 ValueName.clear(); 1552 break; 1553 } 1554 case bitc::VST_CODE_BBENTRY: { 1555 if (ConvertToString(Record, 1, ValueName)) 1556 return Error("Invalid record"); 1557 BasicBlock *BB = getBasicBlock(Record[0]); 1558 if (!BB) 1559 return Error("Invalid record"); 1560 1561 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1562 ValueName.clear(); 1563 break; 1564 } 1565 } 1566 } 1567 } 1568 1569 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1570 1571 std::error_code BitcodeReader::ParseMetadata() { 1572 IsMetadataMaterialized = true; 1573 unsigned NextMDValueNo = MDValueList.size(); 1574 1575 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1576 return Error("Invalid record"); 1577 1578 SmallVector<uint64_t, 64> Record; 1579 1580 auto getMD = 1581 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1582 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1583 if (ID) 1584 return getMD(ID - 1); 1585 return nullptr; 1586 }; 1587 auto getMDString = [&](unsigned ID) -> MDString *{ 1588 // This requires that the ID is not really a forward reference. In 1589 // particular, the MDString must already have been resolved. 1590 return cast_or_null<MDString>(getMDOrNull(ID)); 1591 }; 1592 1593 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1594 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1595 1596 // Read all the records. 1597 while (1) { 1598 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1599 1600 switch (Entry.Kind) { 1601 case BitstreamEntry::SubBlock: // Handled for us already. 1602 case BitstreamEntry::Error: 1603 return Error("Malformed block"); 1604 case BitstreamEntry::EndBlock: 1605 MDValueList.tryToResolveCycles(); 1606 return std::error_code(); 1607 case BitstreamEntry::Record: 1608 // The interesting case. 1609 break; 1610 } 1611 1612 // Read a record. 1613 Record.clear(); 1614 unsigned Code = Stream.readRecord(Entry.ID, Record); 1615 bool IsDistinct = false; 1616 switch (Code) { 1617 default: // Default behavior: ignore. 1618 break; 1619 case bitc::METADATA_NAME: { 1620 // Read name of the named metadata. 1621 SmallString<8> Name(Record.begin(), Record.end()); 1622 Record.clear(); 1623 Code = Stream.ReadCode(); 1624 1625 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1626 unsigned NextBitCode = Stream.readRecord(Code, Record); 1627 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1628 1629 // Read named metadata elements. 1630 unsigned Size = Record.size(); 1631 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1632 for (unsigned i = 0; i != Size; ++i) { 1633 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1634 if (!MD) 1635 return Error("Invalid record"); 1636 NMD->addOperand(MD); 1637 } 1638 break; 1639 } 1640 case bitc::METADATA_OLD_FN_NODE: { 1641 // FIXME: Remove in 4.0. 1642 // This is a LocalAsMetadata record, the only type of function-local 1643 // metadata. 1644 if (Record.size() % 2 == 1) 1645 return Error("Invalid record"); 1646 1647 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1648 // to be legal, but there's no upgrade path. 1649 auto dropRecord = [&] { 1650 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1651 }; 1652 if (Record.size() != 2) { 1653 dropRecord(); 1654 break; 1655 } 1656 1657 Type *Ty = getTypeByID(Record[0]); 1658 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1659 dropRecord(); 1660 break; 1661 } 1662 1663 MDValueList.AssignValue( 1664 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1665 NextMDValueNo++); 1666 break; 1667 } 1668 case bitc::METADATA_OLD_NODE: { 1669 // FIXME: Remove in 4.0. 1670 if (Record.size() % 2 == 1) 1671 return Error("Invalid record"); 1672 1673 unsigned Size = Record.size(); 1674 SmallVector<Metadata *, 8> Elts; 1675 for (unsigned i = 0; i != Size; i += 2) { 1676 Type *Ty = getTypeByID(Record[i]); 1677 if (!Ty) 1678 return Error("Invalid record"); 1679 if (Ty->isMetadataTy()) 1680 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1681 else if (!Ty->isVoidTy()) { 1682 auto *MD = 1683 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1684 assert(isa<ConstantAsMetadata>(MD) && 1685 "Expected non-function-local metadata"); 1686 Elts.push_back(MD); 1687 } else 1688 Elts.push_back(nullptr); 1689 } 1690 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1691 break; 1692 } 1693 case bitc::METADATA_VALUE: { 1694 if (Record.size() != 2) 1695 return Error("Invalid record"); 1696 1697 Type *Ty = getTypeByID(Record[0]); 1698 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1699 return Error("Invalid record"); 1700 1701 MDValueList.AssignValue( 1702 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1703 NextMDValueNo++); 1704 break; 1705 } 1706 case bitc::METADATA_DISTINCT_NODE: 1707 IsDistinct = true; 1708 // fallthrough... 1709 case bitc::METADATA_NODE: { 1710 SmallVector<Metadata *, 8> Elts; 1711 Elts.reserve(Record.size()); 1712 for (unsigned ID : Record) 1713 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1714 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1715 : MDNode::get(Context, Elts), 1716 NextMDValueNo++); 1717 break; 1718 } 1719 case bitc::METADATA_LOCATION: { 1720 if (Record.size() != 5) 1721 return Error("Invalid record"); 1722 1723 unsigned Line = Record[1]; 1724 unsigned Column = Record[2]; 1725 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1726 Metadata *InlinedAt = 1727 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1728 MDValueList.AssignValue( 1729 GET_OR_DISTINCT(MDLocation, Record[0], 1730 (Context, Line, Column, Scope, InlinedAt)), 1731 NextMDValueNo++); 1732 break; 1733 } 1734 case bitc::METADATA_GENERIC_DEBUG: { 1735 if (Record.size() < 4) 1736 return Error("Invalid record"); 1737 1738 unsigned Tag = Record[1]; 1739 unsigned Version = Record[2]; 1740 1741 if (Tag >= 1u << 16 || Version != 0) 1742 return Error("Invalid record"); 1743 1744 auto *Header = getMDString(Record[3]); 1745 SmallVector<Metadata *, 8> DwarfOps; 1746 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1747 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1748 : nullptr); 1749 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1750 (Context, Tag, Header, DwarfOps)), 1751 NextMDValueNo++); 1752 break; 1753 } 1754 case bitc::METADATA_SUBRANGE: { 1755 if (Record.size() != 3) 1756 return Error("Invalid record"); 1757 1758 MDValueList.AssignValue( 1759 GET_OR_DISTINCT(MDSubrange, Record[0], 1760 (Context, Record[1], unrotateSign(Record[2]))), 1761 NextMDValueNo++); 1762 break; 1763 } 1764 case bitc::METADATA_ENUMERATOR: { 1765 if (Record.size() != 3) 1766 return Error("Invalid record"); 1767 1768 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1769 (Context, unrotateSign(Record[1]), 1770 getMDString(Record[2]))), 1771 NextMDValueNo++); 1772 break; 1773 } 1774 case bitc::METADATA_BASIC_TYPE: { 1775 if (Record.size() != 6) 1776 return Error("Invalid record"); 1777 1778 MDValueList.AssignValue( 1779 GET_OR_DISTINCT(MDBasicType, Record[0], 1780 (Context, Record[1], getMDString(Record[2]), 1781 Record[3], Record[4], Record[5])), 1782 NextMDValueNo++); 1783 break; 1784 } 1785 case bitc::METADATA_DERIVED_TYPE: { 1786 if (Record.size() != 12) 1787 return Error("Invalid record"); 1788 1789 MDValueList.AssignValue( 1790 GET_OR_DISTINCT(MDDerivedType, Record[0], 1791 (Context, Record[1], getMDString(Record[2]), 1792 getMDOrNull(Record[3]), Record[4], 1793 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1794 Record[7], Record[8], Record[9], Record[10], 1795 getMDOrNull(Record[11]))), 1796 NextMDValueNo++); 1797 break; 1798 } 1799 case bitc::METADATA_COMPOSITE_TYPE: { 1800 if (Record.size() != 16) 1801 return Error("Invalid record"); 1802 1803 MDValueList.AssignValue( 1804 GET_OR_DISTINCT(MDCompositeType, Record[0], 1805 (Context, Record[1], getMDString(Record[2]), 1806 getMDOrNull(Record[3]), Record[4], 1807 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1808 Record[7], Record[8], Record[9], Record[10], 1809 getMDOrNull(Record[11]), Record[12], 1810 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1811 getMDString(Record[15]))), 1812 NextMDValueNo++); 1813 break; 1814 } 1815 case bitc::METADATA_SUBROUTINE_TYPE: { 1816 if (Record.size() != 3) 1817 return Error("Invalid record"); 1818 1819 MDValueList.AssignValue( 1820 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1821 (Context, Record[1], getMDOrNull(Record[2]))), 1822 NextMDValueNo++); 1823 break; 1824 } 1825 case bitc::METADATA_FILE: { 1826 if (Record.size() != 3) 1827 return Error("Invalid record"); 1828 1829 MDValueList.AssignValue( 1830 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1831 getMDString(Record[2]))), 1832 NextMDValueNo++); 1833 break; 1834 } 1835 case bitc::METADATA_COMPILE_UNIT: { 1836 if (Record.size() != 14) 1837 return Error("Invalid record"); 1838 1839 MDValueList.AssignValue( 1840 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1841 (Context, Record[1], getMDOrNull(Record[2]), 1842 getMDString(Record[3]), Record[4], 1843 getMDString(Record[5]), Record[6], 1844 getMDString(Record[7]), Record[8], 1845 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1846 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1847 getMDOrNull(Record[13]))), 1848 NextMDValueNo++); 1849 break; 1850 } 1851 case bitc::METADATA_SUBPROGRAM: { 1852 if (Record.size() != 19) 1853 return Error("Invalid record"); 1854 1855 MDValueList.AssignValue( 1856 GET_OR_DISTINCT( 1857 MDSubprogram, Record[0], 1858 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1859 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1860 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1861 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1862 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1863 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1864 NextMDValueNo++); 1865 break; 1866 } 1867 case bitc::METADATA_LEXICAL_BLOCK: { 1868 if (Record.size() != 5) 1869 return Error("Invalid record"); 1870 1871 MDValueList.AssignValue( 1872 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1873 (Context, getMDOrNull(Record[1]), 1874 getMDOrNull(Record[2]), Record[3], Record[4])), 1875 NextMDValueNo++); 1876 break; 1877 } 1878 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1879 if (Record.size() != 4) 1880 return Error("Invalid record"); 1881 1882 MDValueList.AssignValue( 1883 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1884 (Context, getMDOrNull(Record[1]), 1885 getMDOrNull(Record[2]), Record[3])), 1886 NextMDValueNo++); 1887 break; 1888 } 1889 case bitc::METADATA_NAMESPACE: { 1890 if (Record.size() != 5) 1891 return Error("Invalid record"); 1892 1893 MDValueList.AssignValue( 1894 GET_OR_DISTINCT(MDNamespace, Record[0], 1895 (Context, getMDOrNull(Record[1]), 1896 getMDOrNull(Record[2]), getMDString(Record[3]), 1897 Record[4])), 1898 NextMDValueNo++); 1899 break; 1900 } 1901 case bitc::METADATA_TEMPLATE_TYPE: { 1902 if (Record.size() != 3) 1903 return Error("Invalid record"); 1904 1905 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1906 Record[0], 1907 (Context, getMDString(Record[1]), 1908 getMDOrNull(Record[2]))), 1909 NextMDValueNo++); 1910 break; 1911 } 1912 case bitc::METADATA_TEMPLATE_VALUE: { 1913 if (Record.size() != 5) 1914 return Error("Invalid record"); 1915 1916 MDValueList.AssignValue( 1917 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1918 (Context, Record[1], getMDString(Record[2]), 1919 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1920 NextMDValueNo++); 1921 break; 1922 } 1923 case bitc::METADATA_GLOBAL_VAR: { 1924 if (Record.size() != 11) 1925 return Error("Invalid record"); 1926 1927 MDValueList.AssignValue( 1928 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1929 (Context, getMDOrNull(Record[1]), 1930 getMDString(Record[2]), getMDString(Record[3]), 1931 getMDOrNull(Record[4]), Record[5], 1932 getMDOrNull(Record[6]), Record[7], Record[8], 1933 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1934 NextMDValueNo++); 1935 break; 1936 } 1937 case bitc::METADATA_LOCAL_VAR: { 1938 // 10th field is for the obseleted 'inlinedAt:' field. 1939 if (Record.size() != 9 && Record.size() != 10) 1940 return Error("Invalid record"); 1941 1942 MDValueList.AssignValue( 1943 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1944 (Context, Record[1], getMDOrNull(Record[2]), 1945 getMDString(Record[3]), getMDOrNull(Record[4]), 1946 Record[5], getMDOrNull(Record[6]), Record[7], 1947 Record[8])), 1948 NextMDValueNo++); 1949 break; 1950 } 1951 case bitc::METADATA_EXPRESSION: { 1952 if (Record.size() < 1) 1953 return Error("Invalid record"); 1954 1955 MDValueList.AssignValue( 1956 GET_OR_DISTINCT(MDExpression, Record[0], 1957 (Context, makeArrayRef(Record).slice(1))), 1958 NextMDValueNo++); 1959 break; 1960 } 1961 case bitc::METADATA_OBJC_PROPERTY: { 1962 if (Record.size() != 8) 1963 return Error("Invalid record"); 1964 1965 MDValueList.AssignValue( 1966 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1967 (Context, getMDString(Record[1]), 1968 getMDOrNull(Record[2]), Record[3], 1969 getMDString(Record[4]), getMDString(Record[5]), 1970 Record[6], getMDOrNull(Record[7]))), 1971 NextMDValueNo++); 1972 break; 1973 } 1974 case bitc::METADATA_IMPORTED_ENTITY: { 1975 if (Record.size() != 6) 1976 return Error("Invalid record"); 1977 1978 MDValueList.AssignValue( 1979 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1980 (Context, Record[1], getMDOrNull(Record[2]), 1981 getMDOrNull(Record[3]), Record[4], 1982 getMDString(Record[5]))), 1983 NextMDValueNo++); 1984 break; 1985 } 1986 case bitc::METADATA_STRING: { 1987 std::string String(Record.begin(), Record.end()); 1988 llvm::UpgradeMDStringConstant(String); 1989 Metadata *MD = MDString::get(Context, String); 1990 MDValueList.AssignValue(MD, NextMDValueNo++); 1991 break; 1992 } 1993 case bitc::METADATA_KIND: { 1994 if (Record.size() < 2) 1995 return Error("Invalid record"); 1996 1997 unsigned Kind = Record[0]; 1998 SmallString<8> Name(Record.begin()+1, Record.end()); 1999 2000 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2001 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2002 return Error("Conflicting METADATA_KIND records"); 2003 break; 2004 } 2005 } 2006 } 2007 #undef GET_OR_DISTINCT 2008 } 2009 2010 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2011 /// the LSB for dense VBR encoding. 2012 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2013 if ((V & 1) == 0) 2014 return V >> 1; 2015 if (V != 1) 2016 return -(V >> 1); 2017 // There is no such thing as -0 with integers. "-0" really means MININT. 2018 return 1ULL << 63; 2019 } 2020 2021 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2022 /// values and aliases that we can. 2023 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2024 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2025 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2026 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2027 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2028 2029 GlobalInitWorklist.swap(GlobalInits); 2030 AliasInitWorklist.swap(AliasInits); 2031 FunctionPrefixWorklist.swap(FunctionPrefixes); 2032 FunctionPrologueWorklist.swap(FunctionPrologues); 2033 2034 while (!GlobalInitWorklist.empty()) { 2035 unsigned ValID = GlobalInitWorklist.back().second; 2036 if (ValID >= ValueList.size()) { 2037 // Not ready to resolve this yet, it requires something later in the file. 2038 GlobalInits.push_back(GlobalInitWorklist.back()); 2039 } else { 2040 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2041 GlobalInitWorklist.back().first->setInitializer(C); 2042 else 2043 return Error("Expected a constant"); 2044 } 2045 GlobalInitWorklist.pop_back(); 2046 } 2047 2048 while (!AliasInitWorklist.empty()) { 2049 unsigned ValID = AliasInitWorklist.back().second; 2050 if (ValID >= ValueList.size()) { 2051 AliasInits.push_back(AliasInitWorklist.back()); 2052 } else { 2053 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2054 AliasInitWorklist.back().first->setAliasee(C); 2055 else 2056 return Error("Expected a constant"); 2057 } 2058 AliasInitWorklist.pop_back(); 2059 } 2060 2061 while (!FunctionPrefixWorklist.empty()) { 2062 unsigned ValID = FunctionPrefixWorklist.back().second; 2063 if (ValID >= ValueList.size()) { 2064 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2065 } else { 2066 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2067 FunctionPrefixWorklist.back().first->setPrefixData(C); 2068 else 2069 return Error("Expected a constant"); 2070 } 2071 FunctionPrefixWorklist.pop_back(); 2072 } 2073 2074 while (!FunctionPrologueWorklist.empty()) { 2075 unsigned ValID = FunctionPrologueWorklist.back().second; 2076 if (ValID >= ValueList.size()) { 2077 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2078 } else { 2079 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2080 FunctionPrologueWorklist.back().first->setPrologueData(C); 2081 else 2082 return Error("Expected a constant"); 2083 } 2084 FunctionPrologueWorklist.pop_back(); 2085 } 2086 2087 return std::error_code(); 2088 } 2089 2090 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2091 SmallVector<uint64_t, 8> Words(Vals.size()); 2092 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2093 BitcodeReader::decodeSignRotatedValue); 2094 2095 return APInt(TypeBits, Words); 2096 } 2097 2098 std::error_code BitcodeReader::ParseConstants() { 2099 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2100 return Error("Invalid record"); 2101 2102 SmallVector<uint64_t, 64> Record; 2103 2104 // Read all the records for this value table. 2105 Type *CurTy = Type::getInt32Ty(Context); 2106 unsigned NextCstNo = ValueList.size(); 2107 while (1) { 2108 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2109 2110 switch (Entry.Kind) { 2111 case BitstreamEntry::SubBlock: // Handled for us already. 2112 case BitstreamEntry::Error: 2113 return Error("Malformed block"); 2114 case BitstreamEntry::EndBlock: 2115 if (NextCstNo != ValueList.size()) 2116 return Error("Invalid ronstant reference"); 2117 2118 // Once all the constants have been read, go through and resolve forward 2119 // references. 2120 ValueList.ResolveConstantForwardRefs(); 2121 return std::error_code(); 2122 case BitstreamEntry::Record: 2123 // The interesting case. 2124 break; 2125 } 2126 2127 // Read a record. 2128 Record.clear(); 2129 Value *V = nullptr; 2130 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2131 switch (BitCode) { 2132 default: // Default behavior: unknown constant 2133 case bitc::CST_CODE_UNDEF: // UNDEF 2134 V = UndefValue::get(CurTy); 2135 break; 2136 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2137 if (Record.empty()) 2138 return Error("Invalid record"); 2139 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2140 return Error("Invalid record"); 2141 CurTy = TypeList[Record[0]]; 2142 continue; // Skip the ValueList manipulation. 2143 case bitc::CST_CODE_NULL: // NULL 2144 V = Constant::getNullValue(CurTy); 2145 break; 2146 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2147 if (!CurTy->isIntegerTy() || Record.empty()) 2148 return Error("Invalid record"); 2149 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2150 break; 2151 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2152 if (!CurTy->isIntegerTy() || Record.empty()) 2153 return Error("Invalid record"); 2154 2155 APInt VInt = ReadWideAPInt(Record, 2156 cast<IntegerType>(CurTy)->getBitWidth()); 2157 V = ConstantInt::get(Context, VInt); 2158 2159 break; 2160 } 2161 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2162 if (Record.empty()) 2163 return Error("Invalid record"); 2164 if (CurTy->isHalfTy()) 2165 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2166 APInt(16, (uint16_t)Record[0]))); 2167 else if (CurTy->isFloatTy()) 2168 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2169 APInt(32, (uint32_t)Record[0]))); 2170 else if (CurTy->isDoubleTy()) 2171 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2172 APInt(64, Record[0]))); 2173 else if (CurTy->isX86_FP80Ty()) { 2174 // Bits are not stored the same way as a normal i80 APInt, compensate. 2175 uint64_t Rearrange[2]; 2176 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2177 Rearrange[1] = Record[0] >> 48; 2178 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2179 APInt(80, Rearrange))); 2180 } else if (CurTy->isFP128Ty()) 2181 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2182 APInt(128, Record))); 2183 else if (CurTy->isPPC_FP128Ty()) 2184 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2185 APInt(128, Record))); 2186 else 2187 V = UndefValue::get(CurTy); 2188 break; 2189 } 2190 2191 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2192 if (Record.empty()) 2193 return Error("Invalid record"); 2194 2195 unsigned Size = Record.size(); 2196 SmallVector<Constant*, 16> Elts; 2197 2198 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2199 for (unsigned i = 0; i != Size; ++i) 2200 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2201 STy->getElementType(i))); 2202 V = ConstantStruct::get(STy, Elts); 2203 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2204 Type *EltTy = ATy->getElementType(); 2205 for (unsigned i = 0; i != Size; ++i) 2206 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2207 V = ConstantArray::get(ATy, Elts); 2208 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2209 Type *EltTy = VTy->getElementType(); 2210 for (unsigned i = 0; i != Size; ++i) 2211 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2212 V = ConstantVector::get(Elts); 2213 } else { 2214 V = UndefValue::get(CurTy); 2215 } 2216 break; 2217 } 2218 case bitc::CST_CODE_STRING: // STRING: [values] 2219 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2220 if (Record.empty()) 2221 return Error("Invalid record"); 2222 2223 SmallString<16> Elts(Record.begin(), Record.end()); 2224 V = ConstantDataArray::getString(Context, Elts, 2225 BitCode == bitc::CST_CODE_CSTRING); 2226 break; 2227 } 2228 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2229 if (Record.empty()) 2230 return Error("Invalid record"); 2231 2232 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2233 unsigned Size = Record.size(); 2234 2235 if (EltTy->isIntegerTy(8)) { 2236 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2237 if (isa<VectorType>(CurTy)) 2238 V = ConstantDataVector::get(Context, Elts); 2239 else 2240 V = ConstantDataArray::get(Context, Elts); 2241 } else if (EltTy->isIntegerTy(16)) { 2242 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2243 if (isa<VectorType>(CurTy)) 2244 V = ConstantDataVector::get(Context, Elts); 2245 else 2246 V = ConstantDataArray::get(Context, Elts); 2247 } else if (EltTy->isIntegerTy(32)) { 2248 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2249 if (isa<VectorType>(CurTy)) 2250 V = ConstantDataVector::get(Context, Elts); 2251 else 2252 V = ConstantDataArray::get(Context, Elts); 2253 } else if (EltTy->isIntegerTy(64)) { 2254 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::get(Context, Elts); 2257 else 2258 V = ConstantDataArray::get(Context, Elts); 2259 } else if (EltTy->isFloatTy()) { 2260 SmallVector<float, 16> Elts(Size); 2261 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2262 if (isa<VectorType>(CurTy)) 2263 V = ConstantDataVector::get(Context, Elts); 2264 else 2265 V = ConstantDataArray::get(Context, Elts); 2266 } else if (EltTy->isDoubleTy()) { 2267 SmallVector<double, 16> Elts(Size); 2268 std::transform(Record.begin(), Record.end(), Elts.begin(), 2269 BitsToDouble); 2270 if (isa<VectorType>(CurTy)) 2271 V = ConstantDataVector::get(Context, Elts); 2272 else 2273 V = ConstantDataArray::get(Context, Elts); 2274 } else { 2275 return Error("Invalid type for value"); 2276 } 2277 break; 2278 } 2279 2280 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2281 if (Record.size() < 3) 2282 return Error("Invalid record"); 2283 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2284 if (Opc < 0) { 2285 V = UndefValue::get(CurTy); // Unknown binop. 2286 } else { 2287 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2288 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2289 unsigned Flags = 0; 2290 if (Record.size() >= 4) { 2291 if (Opc == Instruction::Add || 2292 Opc == Instruction::Sub || 2293 Opc == Instruction::Mul || 2294 Opc == Instruction::Shl) { 2295 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2296 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2297 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2298 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2299 } else if (Opc == Instruction::SDiv || 2300 Opc == Instruction::UDiv || 2301 Opc == Instruction::LShr || 2302 Opc == Instruction::AShr) { 2303 if (Record[3] & (1 << bitc::PEO_EXACT)) 2304 Flags |= SDivOperator::IsExact; 2305 } 2306 } 2307 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2308 } 2309 break; 2310 } 2311 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2312 if (Record.size() < 3) 2313 return Error("Invalid record"); 2314 int Opc = GetDecodedCastOpcode(Record[0]); 2315 if (Opc < 0) { 2316 V = UndefValue::get(CurTy); // Unknown cast. 2317 } else { 2318 Type *OpTy = getTypeByID(Record[1]); 2319 if (!OpTy) 2320 return Error("Invalid record"); 2321 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2322 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2323 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2324 } 2325 break; 2326 } 2327 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2328 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2329 unsigned OpNum = 0; 2330 Type *PointeeType = nullptr; 2331 if (Record.size() % 2) 2332 PointeeType = getTypeByID(Record[OpNum++]); 2333 SmallVector<Constant*, 16> Elts; 2334 while (OpNum != Record.size()) { 2335 Type *ElTy = getTypeByID(Record[OpNum++]); 2336 if (!ElTy) 2337 return Error("Invalid record"); 2338 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2339 } 2340 2341 if (PointeeType && 2342 PointeeType != 2343 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2344 ->getElementType()) 2345 return Error("Explicit gep operator type does not match pointee type " 2346 "of pointer operand"); 2347 2348 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2349 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2350 BitCode == 2351 bitc::CST_CODE_CE_INBOUNDS_GEP); 2352 break; 2353 } 2354 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2355 if (Record.size() < 3) 2356 return Error("Invalid record"); 2357 2358 Type *SelectorTy = Type::getInt1Ty(Context); 2359 2360 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2361 // vector. Otherwise, it must be a single bit. 2362 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2363 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2364 VTy->getNumElements()); 2365 2366 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2367 SelectorTy), 2368 ValueList.getConstantFwdRef(Record[1],CurTy), 2369 ValueList.getConstantFwdRef(Record[2],CurTy)); 2370 break; 2371 } 2372 case bitc::CST_CODE_CE_EXTRACTELT 2373 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2374 if (Record.size() < 3) 2375 return Error("Invalid record"); 2376 VectorType *OpTy = 2377 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2378 if (!OpTy) 2379 return Error("Invalid record"); 2380 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2381 Constant *Op1 = nullptr; 2382 if (Record.size() == 4) { 2383 Type *IdxTy = getTypeByID(Record[2]); 2384 if (!IdxTy) 2385 return Error("Invalid record"); 2386 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2387 } else // TODO: Remove with llvm 4.0 2388 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2389 if (!Op1) 2390 return Error("Invalid record"); 2391 V = ConstantExpr::getExtractElement(Op0, Op1); 2392 break; 2393 } 2394 case bitc::CST_CODE_CE_INSERTELT 2395 : { // CE_INSERTELT: [opval, opval, opty, opval] 2396 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2397 if (Record.size() < 3 || !OpTy) 2398 return Error("Invalid record"); 2399 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2400 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2401 OpTy->getElementType()); 2402 Constant *Op2 = nullptr; 2403 if (Record.size() == 4) { 2404 Type *IdxTy = getTypeByID(Record[2]); 2405 if (!IdxTy) 2406 return Error("Invalid record"); 2407 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2408 } else // TODO: Remove with llvm 4.0 2409 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2410 if (!Op2) 2411 return Error("Invalid record"); 2412 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2413 break; 2414 } 2415 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2416 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2417 if (Record.size() < 3 || !OpTy) 2418 return Error("Invalid record"); 2419 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2420 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2421 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2422 OpTy->getNumElements()); 2423 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2424 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2425 break; 2426 } 2427 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2428 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2429 VectorType *OpTy = 2430 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2431 if (Record.size() < 4 || !RTy || !OpTy) 2432 return Error("Invalid record"); 2433 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2434 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2435 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2436 RTy->getNumElements()); 2437 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2438 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2439 break; 2440 } 2441 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2442 if (Record.size() < 4) 2443 return Error("Invalid record"); 2444 Type *OpTy = getTypeByID(Record[0]); 2445 if (!OpTy) 2446 return Error("Invalid record"); 2447 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2448 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2449 2450 if (OpTy->isFPOrFPVectorTy()) 2451 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2452 else 2453 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2454 break; 2455 } 2456 // This maintains backward compatibility, pre-asm dialect keywords. 2457 // FIXME: Remove with the 4.0 release. 2458 case bitc::CST_CODE_INLINEASM_OLD: { 2459 if (Record.size() < 2) 2460 return Error("Invalid record"); 2461 std::string AsmStr, ConstrStr; 2462 bool HasSideEffects = Record[0] & 1; 2463 bool IsAlignStack = Record[0] >> 1; 2464 unsigned AsmStrSize = Record[1]; 2465 if (2+AsmStrSize >= Record.size()) 2466 return Error("Invalid record"); 2467 unsigned ConstStrSize = Record[2+AsmStrSize]; 2468 if (3+AsmStrSize+ConstStrSize > Record.size()) 2469 return Error("Invalid record"); 2470 2471 for (unsigned i = 0; i != AsmStrSize; ++i) 2472 AsmStr += (char)Record[2+i]; 2473 for (unsigned i = 0; i != ConstStrSize; ++i) 2474 ConstrStr += (char)Record[3+AsmStrSize+i]; 2475 PointerType *PTy = cast<PointerType>(CurTy); 2476 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2477 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2478 break; 2479 } 2480 // This version adds support for the asm dialect keywords (e.g., 2481 // inteldialect). 2482 case bitc::CST_CODE_INLINEASM: { 2483 if (Record.size() < 2) 2484 return Error("Invalid record"); 2485 std::string AsmStr, ConstrStr; 2486 bool HasSideEffects = Record[0] & 1; 2487 bool IsAlignStack = (Record[0] >> 1) & 1; 2488 unsigned AsmDialect = Record[0] >> 2; 2489 unsigned AsmStrSize = Record[1]; 2490 if (2+AsmStrSize >= Record.size()) 2491 return Error("Invalid record"); 2492 unsigned ConstStrSize = Record[2+AsmStrSize]; 2493 if (3+AsmStrSize+ConstStrSize > Record.size()) 2494 return Error("Invalid record"); 2495 2496 for (unsigned i = 0; i != AsmStrSize; ++i) 2497 AsmStr += (char)Record[2+i]; 2498 for (unsigned i = 0; i != ConstStrSize; ++i) 2499 ConstrStr += (char)Record[3+AsmStrSize+i]; 2500 PointerType *PTy = cast<PointerType>(CurTy); 2501 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2502 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2503 InlineAsm::AsmDialect(AsmDialect)); 2504 break; 2505 } 2506 case bitc::CST_CODE_BLOCKADDRESS:{ 2507 if (Record.size() < 3) 2508 return Error("Invalid record"); 2509 Type *FnTy = getTypeByID(Record[0]); 2510 if (!FnTy) 2511 return Error("Invalid record"); 2512 Function *Fn = 2513 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2514 if (!Fn) 2515 return Error("Invalid record"); 2516 2517 // Don't let Fn get dematerialized. 2518 BlockAddressesTaken.insert(Fn); 2519 2520 // If the function is already parsed we can insert the block address right 2521 // away. 2522 BasicBlock *BB; 2523 unsigned BBID = Record[2]; 2524 if (!BBID) 2525 // Invalid reference to entry block. 2526 return Error("Invalid ID"); 2527 if (!Fn->empty()) { 2528 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2529 for (size_t I = 0, E = BBID; I != E; ++I) { 2530 if (BBI == BBE) 2531 return Error("Invalid ID"); 2532 ++BBI; 2533 } 2534 BB = BBI; 2535 } else { 2536 // Otherwise insert a placeholder and remember it so it can be inserted 2537 // when the function is parsed. 2538 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2539 if (FwdBBs.empty()) 2540 BasicBlockFwdRefQueue.push_back(Fn); 2541 if (FwdBBs.size() < BBID + 1) 2542 FwdBBs.resize(BBID + 1); 2543 if (!FwdBBs[BBID]) 2544 FwdBBs[BBID] = BasicBlock::Create(Context); 2545 BB = FwdBBs[BBID]; 2546 } 2547 V = BlockAddress::get(Fn, BB); 2548 break; 2549 } 2550 } 2551 2552 ValueList.AssignValue(V, NextCstNo); 2553 ++NextCstNo; 2554 } 2555 } 2556 2557 std::error_code BitcodeReader::ParseUseLists() { 2558 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2559 return Error("Invalid record"); 2560 2561 // Read all the records. 2562 SmallVector<uint64_t, 64> Record; 2563 while (1) { 2564 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2565 2566 switch (Entry.Kind) { 2567 case BitstreamEntry::SubBlock: // Handled for us already. 2568 case BitstreamEntry::Error: 2569 return Error("Malformed block"); 2570 case BitstreamEntry::EndBlock: 2571 return std::error_code(); 2572 case BitstreamEntry::Record: 2573 // The interesting case. 2574 break; 2575 } 2576 2577 // Read a use list record. 2578 Record.clear(); 2579 bool IsBB = false; 2580 switch (Stream.readRecord(Entry.ID, Record)) { 2581 default: // Default behavior: unknown type. 2582 break; 2583 case bitc::USELIST_CODE_BB: 2584 IsBB = true; 2585 // fallthrough 2586 case bitc::USELIST_CODE_DEFAULT: { 2587 unsigned RecordLength = Record.size(); 2588 if (RecordLength < 3) 2589 // Records should have at least an ID and two indexes. 2590 return Error("Invalid record"); 2591 unsigned ID = Record.back(); 2592 Record.pop_back(); 2593 2594 Value *V; 2595 if (IsBB) { 2596 assert(ID < FunctionBBs.size() && "Basic block not found"); 2597 V = FunctionBBs[ID]; 2598 } else 2599 V = ValueList[ID]; 2600 unsigned NumUses = 0; 2601 SmallDenseMap<const Use *, unsigned, 16> Order; 2602 for (const Use &U : V->uses()) { 2603 if (++NumUses > Record.size()) 2604 break; 2605 Order[&U] = Record[NumUses - 1]; 2606 } 2607 if (Order.size() != Record.size() || NumUses > Record.size()) 2608 // Mismatches can happen if the functions are being materialized lazily 2609 // (out-of-order), or a value has been upgraded. 2610 break; 2611 2612 V->sortUseList([&](const Use &L, const Use &R) { 2613 return Order.lookup(&L) < Order.lookup(&R); 2614 }); 2615 break; 2616 } 2617 } 2618 } 2619 } 2620 2621 /// When we see the block for metadata, remember where it is and then skip it. 2622 /// This lets us lazily deserialize the metadata. 2623 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2624 // Save the current stream state. 2625 uint64_t CurBit = Stream.GetCurrentBitNo(); 2626 DeferredMetadataInfo.push_back(CurBit); 2627 2628 // Skip over the block for now. 2629 if (Stream.SkipBlock()) 2630 return Error("Invalid record"); 2631 return std::error_code(); 2632 } 2633 2634 std::error_code BitcodeReader::materializeMetadata() { 2635 for (uint64_t BitPos : DeferredMetadataInfo) { 2636 // Move the bit stream to the saved position. 2637 Stream.JumpToBit(BitPos); 2638 if (std::error_code EC = ParseMetadata()) 2639 return EC; 2640 } 2641 DeferredMetadataInfo.clear(); 2642 return std::error_code(); 2643 } 2644 2645 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2646 2647 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2648 /// remember where it is and then skip it. This lets us lazily deserialize the 2649 /// functions. 2650 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2651 // Get the function we are talking about. 2652 if (FunctionsWithBodies.empty()) 2653 return Error("Insufficient function protos"); 2654 2655 Function *Fn = FunctionsWithBodies.back(); 2656 FunctionsWithBodies.pop_back(); 2657 2658 // Save the current stream state. 2659 uint64_t CurBit = Stream.GetCurrentBitNo(); 2660 DeferredFunctionInfo[Fn] = CurBit; 2661 2662 // Skip over the function block for now. 2663 if (Stream.SkipBlock()) 2664 return Error("Invalid record"); 2665 return std::error_code(); 2666 } 2667 2668 std::error_code BitcodeReader::GlobalCleanup() { 2669 // Patch the initializers for globals and aliases up. 2670 ResolveGlobalAndAliasInits(); 2671 if (!GlobalInits.empty() || !AliasInits.empty()) 2672 return Error("Malformed global initializer set"); 2673 2674 // Look for intrinsic functions which need to be upgraded at some point 2675 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2676 FI != FE; ++FI) { 2677 Function *NewFn; 2678 if (UpgradeIntrinsicFunction(FI, NewFn)) 2679 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2680 } 2681 2682 // Look for global variables which need to be renamed. 2683 for (Module::global_iterator 2684 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2685 GI != GE;) { 2686 GlobalVariable *GV = GI++; 2687 UpgradeGlobalVariable(GV); 2688 } 2689 2690 // Force deallocation of memory for these vectors to favor the client that 2691 // want lazy deserialization. 2692 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2693 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2694 return std::error_code(); 2695 } 2696 2697 std::error_code BitcodeReader::ParseModule(bool Resume, 2698 bool ShouldLazyLoadMetadata) { 2699 if (Resume) 2700 Stream.JumpToBit(NextUnreadBit); 2701 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2702 return Error("Invalid record"); 2703 2704 SmallVector<uint64_t, 64> Record; 2705 std::vector<std::string> SectionTable; 2706 std::vector<std::string> GCTable; 2707 2708 // Read all the records for this module. 2709 while (1) { 2710 BitstreamEntry Entry = Stream.advance(); 2711 2712 switch (Entry.Kind) { 2713 case BitstreamEntry::Error: 2714 return Error("Malformed block"); 2715 case BitstreamEntry::EndBlock: 2716 return GlobalCleanup(); 2717 2718 case BitstreamEntry::SubBlock: 2719 switch (Entry.ID) { 2720 default: // Skip unknown content. 2721 if (Stream.SkipBlock()) 2722 return Error("Invalid record"); 2723 break; 2724 case bitc::BLOCKINFO_BLOCK_ID: 2725 if (Stream.ReadBlockInfoBlock()) 2726 return Error("Malformed block"); 2727 break; 2728 case bitc::PARAMATTR_BLOCK_ID: 2729 if (std::error_code EC = ParseAttributeBlock()) 2730 return EC; 2731 break; 2732 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2733 if (std::error_code EC = ParseAttributeGroupBlock()) 2734 return EC; 2735 break; 2736 case bitc::TYPE_BLOCK_ID_NEW: 2737 if (std::error_code EC = ParseTypeTable()) 2738 return EC; 2739 break; 2740 case bitc::VALUE_SYMTAB_BLOCK_ID: 2741 if (std::error_code EC = ParseValueSymbolTable()) 2742 return EC; 2743 SeenValueSymbolTable = true; 2744 break; 2745 case bitc::CONSTANTS_BLOCK_ID: 2746 if (std::error_code EC = ParseConstants()) 2747 return EC; 2748 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2749 return EC; 2750 break; 2751 case bitc::METADATA_BLOCK_ID: 2752 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2753 if (std::error_code EC = rememberAndSkipMetadata()) 2754 return EC; 2755 break; 2756 } 2757 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2758 if (std::error_code EC = ParseMetadata()) 2759 return EC; 2760 break; 2761 case bitc::FUNCTION_BLOCK_ID: 2762 // If this is the first function body we've seen, reverse the 2763 // FunctionsWithBodies list. 2764 if (!SeenFirstFunctionBody) { 2765 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2766 if (std::error_code EC = GlobalCleanup()) 2767 return EC; 2768 SeenFirstFunctionBody = true; 2769 } 2770 2771 if (std::error_code EC = RememberAndSkipFunctionBody()) 2772 return EC; 2773 // For streaming bitcode, suspend parsing when we reach the function 2774 // bodies. Subsequent materialization calls will resume it when 2775 // necessary. For streaming, the function bodies must be at the end of 2776 // the bitcode. If the bitcode file is old, the symbol table will be 2777 // at the end instead and will not have been seen yet. In this case, 2778 // just finish the parse now. 2779 if (LazyStreamer && SeenValueSymbolTable) { 2780 NextUnreadBit = Stream.GetCurrentBitNo(); 2781 return std::error_code(); 2782 } 2783 break; 2784 case bitc::USELIST_BLOCK_ID: 2785 if (std::error_code EC = ParseUseLists()) 2786 return EC; 2787 break; 2788 } 2789 continue; 2790 2791 case BitstreamEntry::Record: 2792 // The interesting case. 2793 break; 2794 } 2795 2796 2797 // Read a record. 2798 switch (Stream.readRecord(Entry.ID, Record)) { 2799 default: break; // Default behavior, ignore unknown content. 2800 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2801 if (Record.size() < 1) 2802 return Error("Invalid record"); 2803 // Only version #0 and #1 are supported so far. 2804 unsigned module_version = Record[0]; 2805 switch (module_version) { 2806 default: 2807 return Error("Invalid value"); 2808 case 0: 2809 UseRelativeIDs = false; 2810 break; 2811 case 1: 2812 UseRelativeIDs = true; 2813 break; 2814 } 2815 break; 2816 } 2817 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2818 std::string S; 2819 if (ConvertToString(Record, 0, S)) 2820 return Error("Invalid record"); 2821 TheModule->setTargetTriple(S); 2822 break; 2823 } 2824 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2825 std::string S; 2826 if (ConvertToString(Record, 0, S)) 2827 return Error("Invalid record"); 2828 TheModule->setDataLayout(S); 2829 break; 2830 } 2831 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2832 std::string S; 2833 if (ConvertToString(Record, 0, S)) 2834 return Error("Invalid record"); 2835 TheModule->setModuleInlineAsm(S); 2836 break; 2837 } 2838 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2839 // FIXME: Remove in 4.0. 2840 std::string S; 2841 if (ConvertToString(Record, 0, S)) 2842 return Error("Invalid record"); 2843 // Ignore value. 2844 break; 2845 } 2846 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2847 std::string S; 2848 if (ConvertToString(Record, 0, S)) 2849 return Error("Invalid record"); 2850 SectionTable.push_back(S); 2851 break; 2852 } 2853 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2854 std::string S; 2855 if (ConvertToString(Record, 0, S)) 2856 return Error("Invalid record"); 2857 GCTable.push_back(S); 2858 break; 2859 } 2860 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2861 if (Record.size() < 2) 2862 return Error("Invalid record"); 2863 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2864 unsigned ComdatNameSize = Record[1]; 2865 std::string ComdatName; 2866 ComdatName.reserve(ComdatNameSize); 2867 for (unsigned i = 0; i != ComdatNameSize; ++i) 2868 ComdatName += (char)Record[2 + i]; 2869 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2870 C->setSelectionKind(SK); 2871 ComdatList.push_back(C); 2872 break; 2873 } 2874 // GLOBALVAR: [pointer type, isconst, initid, 2875 // linkage, alignment, section, visibility, threadlocal, 2876 // unnamed_addr, externally_initialized, dllstorageclass, 2877 // comdat] 2878 case bitc::MODULE_CODE_GLOBALVAR: { 2879 if (Record.size() < 6) 2880 return Error("Invalid record"); 2881 Type *Ty = getTypeByID(Record[0]); 2882 if (!Ty) 2883 return Error("Invalid record"); 2884 bool isConstant = Record[1] & 1; 2885 bool explicitType = Record[1] & 2; 2886 unsigned AddressSpace; 2887 if (explicitType) { 2888 AddressSpace = Record[1] >> 2; 2889 } else { 2890 if (!Ty->isPointerTy()) 2891 return Error("Invalid type for value"); 2892 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2893 Ty = cast<PointerType>(Ty)->getElementType(); 2894 } 2895 2896 uint64_t RawLinkage = Record[3]; 2897 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2898 unsigned Alignment; 2899 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2900 return EC; 2901 std::string Section; 2902 if (Record[5]) { 2903 if (Record[5]-1 >= SectionTable.size()) 2904 return Error("Invalid ID"); 2905 Section = SectionTable[Record[5]-1]; 2906 } 2907 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2908 // Local linkage must have default visibility. 2909 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2910 // FIXME: Change to an error if non-default in 4.0. 2911 Visibility = GetDecodedVisibility(Record[6]); 2912 2913 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2914 if (Record.size() > 7) 2915 TLM = GetDecodedThreadLocalMode(Record[7]); 2916 2917 bool UnnamedAddr = false; 2918 if (Record.size() > 8) 2919 UnnamedAddr = Record[8]; 2920 2921 bool ExternallyInitialized = false; 2922 if (Record.size() > 9) 2923 ExternallyInitialized = Record[9]; 2924 2925 GlobalVariable *NewGV = 2926 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2927 TLM, AddressSpace, ExternallyInitialized); 2928 NewGV->setAlignment(Alignment); 2929 if (!Section.empty()) 2930 NewGV->setSection(Section); 2931 NewGV->setVisibility(Visibility); 2932 NewGV->setUnnamedAddr(UnnamedAddr); 2933 2934 if (Record.size() > 10) 2935 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2936 else 2937 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2938 2939 ValueList.push_back(NewGV); 2940 2941 // Remember which value to use for the global initializer. 2942 if (unsigned InitID = Record[2]) 2943 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2944 2945 if (Record.size() > 11) { 2946 if (unsigned ComdatID = Record[11]) { 2947 assert(ComdatID <= ComdatList.size()); 2948 NewGV->setComdat(ComdatList[ComdatID - 1]); 2949 } 2950 } else if (hasImplicitComdat(RawLinkage)) { 2951 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2952 } 2953 break; 2954 } 2955 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2956 // alignment, section, visibility, gc, unnamed_addr, 2957 // prologuedata, dllstorageclass, comdat, prefixdata] 2958 case bitc::MODULE_CODE_FUNCTION: { 2959 if (Record.size() < 8) 2960 return Error("Invalid record"); 2961 Type *Ty = getTypeByID(Record[0]); 2962 if (!Ty) 2963 return Error("Invalid record"); 2964 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2965 Ty = PTy->getElementType(); 2966 auto *FTy = dyn_cast<FunctionType>(Ty); 2967 if (!FTy) 2968 return Error("Invalid type for value"); 2969 2970 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2971 "", TheModule); 2972 2973 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2974 bool isProto = Record[2]; 2975 uint64_t RawLinkage = Record[3]; 2976 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2977 Func->setAttributes(getAttributes(Record[4])); 2978 2979 unsigned Alignment; 2980 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2981 return EC; 2982 Func->setAlignment(Alignment); 2983 if (Record[6]) { 2984 if (Record[6]-1 >= SectionTable.size()) 2985 return Error("Invalid ID"); 2986 Func->setSection(SectionTable[Record[6]-1]); 2987 } 2988 // Local linkage must have default visibility. 2989 if (!Func->hasLocalLinkage()) 2990 // FIXME: Change to an error if non-default in 4.0. 2991 Func->setVisibility(GetDecodedVisibility(Record[7])); 2992 if (Record.size() > 8 && Record[8]) { 2993 if (Record[8]-1 > GCTable.size()) 2994 return Error("Invalid ID"); 2995 Func->setGC(GCTable[Record[8]-1].c_str()); 2996 } 2997 bool UnnamedAddr = false; 2998 if (Record.size() > 9) 2999 UnnamedAddr = Record[9]; 3000 Func->setUnnamedAddr(UnnamedAddr); 3001 if (Record.size() > 10 && Record[10] != 0) 3002 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3003 3004 if (Record.size() > 11) 3005 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3006 else 3007 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3008 3009 if (Record.size() > 12) { 3010 if (unsigned ComdatID = Record[12]) { 3011 assert(ComdatID <= ComdatList.size()); 3012 Func->setComdat(ComdatList[ComdatID - 1]); 3013 } 3014 } else if (hasImplicitComdat(RawLinkage)) { 3015 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3016 } 3017 3018 if (Record.size() > 13 && Record[13] != 0) 3019 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3020 3021 ValueList.push_back(Func); 3022 3023 // If this is a function with a body, remember the prototype we are 3024 // creating now, so that we can match up the body with them later. 3025 if (!isProto) { 3026 Func->setIsMaterializable(true); 3027 FunctionsWithBodies.push_back(Func); 3028 if (LazyStreamer) 3029 DeferredFunctionInfo[Func] = 0; 3030 } 3031 break; 3032 } 3033 // ALIAS: [alias type, aliasee val#, linkage] 3034 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3035 case bitc::MODULE_CODE_ALIAS: { 3036 if (Record.size() < 3) 3037 return Error("Invalid record"); 3038 Type *Ty = getTypeByID(Record[0]); 3039 if (!Ty) 3040 return Error("Invalid record"); 3041 auto *PTy = dyn_cast<PointerType>(Ty); 3042 if (!PTy) 3043 return Error("Invalid type for value"); 3044 3045 auto *NewGA = 3046 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3047 getDecodedLinkage(Record[2]), "", TheModule); 3048 // Old bitcode files didn't have visibility field. 3049 // Local linkage must have default visibility. 3050 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3051 // FIXME: Change to an error if non-default in 4.0. 3052 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3053 if (Record.size() > 4) 3054 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3055 else 3056 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3057 if (Record.size() > 5) 3058 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3059 if (Record.size() > 6) 3060 NewGA->setUnnamedAddr(Record[6]); 3061 ValueList.push_back(NewGA); 3062 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3063 break; 3064 } 3065 /// MODULE_CODE_PURGEVALS: [numvals] 3066 case bitc::MODULE_CODE_PURGEVALS: 3067 // Trim down the value list to the specified size. 3068 if (Record.size() < 1 || Record[0] > ValueList.size()) 3069 return Error("Invalid record"); 3070 ValueList.shrinkTo(Record[0]); 3071 break; 3072 } 3073 Record.clear(); 3074 } 3075 } 3076 3077 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3078 bool ShouldLazyLoadMetadata) { 3079 TheModule = nullptr; 3080 3081 if (std::error_code EC = InitStream()) 3082 return EC; 3083 3084 // Sniff for the signature. 3085 if (Stream.Read(8) != 'B' || 3086 Stream.Read(8) != 'C' || 3087 Stream.Read(4) != 0x0 || 3088 Stream.Read(4) != 0xC || 3089 Stream.Read(4) != 0xE || 3090 Stream.Read(4) != 0xD) 3091 return Error("Invalid bitcode signature"); 3092 3093 // We expect a number of well-defined blocks, though we don't necessarily 3094 // need to understand them all. 3095 while (1) { 3096 if (Stream.AtEndOfStream()) { 3097 if (TheModule) 3098 return std::error_code(); 3099 // We didn't really read a proper Module. 3100 return Error("Malformed IR file"); 3101 } 3102 3103 BitstreamEntry Entry = 3104 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3105 3106 switch (Entry.Kind) { 3107 case BitstreamEntry::Error: 3108 return Error("Malformed block"); 3109 case BitstreamEntry::EndBlock: 3110 return std::error_code(); 3111 3112 case BitstreamEntry::SubBlock: 3113 switch (Entry.ID) { 3114 case bitc::BLOCKINFO_BLOCK_ID: 3115 if (Stream.ReadBlockInfoBlock()) 3116 return Error("Malformed block"); 3117 break; 3118 case bitc::MODULE_BLOCK_ID: 3119 // Reject multiple MODULE_BLOCK's in a single bitstream. 3120 if (TheModule) 3121 return Error("Invalid multiple blocks"); 3122 TheModule = M; 3123 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3124 return EC; 3125 if (LazyStreamer) 3126 return std::error_code(); 3127 break; 3128 default: 3129 if (Stream.SkipBlock()) 3130 return Error("Invalid record"); 3131 break; 3132 } 3133 continue; 3134 case BitstreamEntry::Record: 3135 // There should be no records in the top-level of blocks. 3136 3137 // The ranlib in Xcode 4 will align archive members by appending newlines 3138 // to the end of them. If this file size is a multiple of 4 but not 8, we 3139 // have to read and ignore these final 4 bytes :-( 3140 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3141 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3142 Stream.AtEndOfStream()) 3143 return std::error_code(); 3144 3145 return Error("Invalid record"); 3146 } 3147 } 3148 } 3149 3150 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3151 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3152 return Error("Invalid record"); 3153 3154 SmallVector<uint64_t, 64> Record; 3155 3156 std::string Triple; 3157 // Read all the records for this module. 3158 while (1) { 3159 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3160 3161 switch (Entry.Kind) { 3162 case BitstreamEntry::SubBlock: // Handled for us already. 3163 case BitstreamEntry::Error: 3164 return Error("Malformed block"); 3165 case BitstreamEntry::EndBlock: 3166 return Triple; 3167 case BitstreamEntry::Record: 3168 // The interesting case. 3169 break; 3170 } 3171 3172 // Read a record. 3173 switch (Stream.readRecord(Entry.ID, Record)) { 3174 default: break; // Default behavior, ignore unknown content. 3175 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3176 std::string S; 3177 if (ConvertToString(Record, 0, S)) 3178 return Error("Invalid record"); 3179 Triple = S; 3180 break; 3181 } 3182 } 3183 Record.clear(); 3184 } 3185 llvm_unreachable("Exit infinite loop"); 3186 } 3187 3188 ErrorOr<std::string> BitcodeReader::parseTriple() { 3189 if (std::error_code EC = InitStream()) 3190 return EC; 3191 3192 // Sniff for the signature. 3193 if (Stream.Read(8) != 'B' || 3194 Stream.Read(8) != 'C' || 3195 Stream.Read(4) != 0x0 || 3196 Stream.Read(4) != 0xC || 3197 Stream.Read(4) != 0xE || 3198 Stream.Read(4) != 0xD) 3199 return Error("Invalid bitcode signature"); 3200 3201 // We expect a number of well-defined blocks, though we don't necessarily 3202 // need to understand them all. 3203 while (1) { 3204 BitstreamEntry Entry = Stream.advance(); 3205 3206 switch (Entry.Kind) { 3207 case BitstreamEntry::Error: 3208 return Error("Malformed block"); 3209 case BitstreamEntry::EndBlock: 3210 return std::error_code(); 3211 3212 case BitstreamEntry::SubBlock: 3213 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3214 return parseModuleTriple(); 3215 3216 // Ignore other sub-blocks. 3217 if (Stream.SkipBlock()) 3218 return Error("Malformed block"); 3219 continue; 3220 3221 case BitstreamEntry::Record: 3222 Stream.skipRecord(Entry.ID); 3223 continue; 3224 } 3225 } 3226 } 3227 3228 /// ParseMetadataAttachment - Parse metadata attachments. 3229 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3230 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3231 return Error("Invalid record"); 3232 3233 SmallVector<uint64_t, 64> Record; 3234 while (1) { 3235 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3236 3237 switch (Entry.Kind) { 3238 case BitstreamEntry::SubBlock: // Handled for us already. 3239 case BitstreamEntry::Error: 3240 return Error("Malformed block"); 3241 case BitstreamEntry::EndBlock: 3242 return std::error_code(); 3243 case BitstreamEntry::Record: 3244 // The interesting case. 3245 break; 3246 } 3247 3248 // Read a metadata attachment record. 3249 Record.clear(); 3250 switch (Stream.readRecord(Entry.ID, Record)) { 3251 default: // Default behavior: ignore. 3252 break; 3253 case bitc::METADATA_ATTACHMENT: { 3254 unsigned RecordLength = Record.size(); 3255 if (Record.empty()) 3256 return Error("Invalid record"); 3257 if (RecordLength % 2 == 0) { 3258 // A function attachment. 3259 for (unsigned I = 0; I != RecordLength; I += 2) { 3260 auto K = MDKindMap.find(Record[I]); 3261 if (K == MDKindMap.end()) 3262 return Error("Invalid ID"); 3263 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3264 F.setMetadata(K->second, cast<MDNode>(MD)); 3265 } 3266 continue; 3267 } 3268 3269 // An instruction attachment. 3270 Instruction *Inst = InstructionList[Record[0]]; 3271 for (unsigned i = 1; i != RecordLength; i = i+2) { 3272 unsigned Kind = Record[i]; 3273 DenseMap<unsigned, unsigned>::iterator I = 3274 MDKindMap.find(Kind); 3275 if (I == MDKindMap.end()) 3276 return Error("Invalid ID"); 3277 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3278 if (isa<LocalAsMetadata>(Node)) 3279 // Drop the attachment. This used to be legal, but there's no 3280 // upgrade path. 3281 break; 3282 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3283 if (I->second == LLVMContext::MD_tbaa) 3284 InstsWithTBAATag.push_back(Inst); 3285 } 3286 break; 3287 } 3288 } 3289 } 3290 } 3291 3292 /// ParseFunctionBody - Lazily parse the specified function body block. 3293 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3294 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3295 return Error("Invalid record"); 3296 3297 InstructionList.clear(); 3298 unsigned ModuleValueListSize = ValueList.size(); 3299 unsigned ModuleMDValueListSize = MDValueList.size(); 3300 3301 // Add all the function arguments to the value table. 3302 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3303 ValueList.push_back(I); 3304 3305 unsigned NextValueNo = ValueList.size(); 3306 BasicBlock *CurBB = nullptr; 3307 unsigned CurBBNo = 0; 3308 3309 DebugLoc LastLoc; 3310 auto getLastInstruction = [&]() -> Instruction * { 3311 if (CurBB && !CurBB->empty()) 3312 return &CurBB->back(); 3313 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3314 !FunctionBBs[CurBBNo - 1]->empty()) 3315 return &FunctionBBs[CurBBNo - 1]->back(); 3316 return nullptr; 3317 }; 3318 3319 // Read all the records. 3320 SmallVector<uint64_t, 64> Record; 3321 while (1) { 3322 BitstreamEntry Entry = Stream.advance(); 3323 3324 switch (Entry.Kind) { 3325 case BitstreamEntry::Error: 3326 return Error("Malformed block"); 3327 case BitstreamEntry::EndBlock: 3328 goto OutOfRecordLoop; 3329 3330 case BitstreamEntry::SubBlock: 3331 switch (Entry.ID) { 3332 default: // Skip unknown content. 3333 if (Stream.SkipBlock()) 3334 return Error("Invalid record"); 3335 break; 3336 case bitc::CONSTANTS_BLOCK_ID: 3337 if (std::error_code EC = ParseConstants()) 3338 return EC; 3339 NextValueNo = ValueList.size(); 3340 break; 3341 case bitc::VALUE_SYMTAB_BLOCK_ID: 3342 if (std::error_code EC = ParseValueSymbolTable()) 3343 return EC; 3344 break; 3345 case bitc::METADATA_ATTACHMENT_ID: 3346 if (std::error_code EC = ParseMetadataAttachment(*F)) 3347 return EC; 3348 break; 3349 case bitc::METADATA_BLOCK_ID: 3350 if (std::error_code EC = ParseMetadata()) 3351 return EC; 3352 break; 3353 case bitc::USELIST_BLOCK_ID: 3354 if (std::error_code EC = ParseUseLists()) 3355 return EC; 3356 break; 3357 } 3358 continue; 3359 3360 case BitstreamEntry::Record: 3361 // The interesting case. 3362 break; 3363 } 3364 3365 // Read a record. 3366 Record.clear(); 3367 Instruction *I = nullptr; 3368 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3369 switch (BitCode) { 3370 default: // Default behavior: reject 3371 return Error("Invalid value"); 3372 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3373 if (Record.size() < 1 || Record[0] == 0) 3374 return Error("Invalid record"); 3375 // Create all the basic blocks for the function. 3376 FunctionBBs.resize(Record[0]); 3377 3378 // See if anything took the address of blocks in this function. 3379 auto BBFRI = BasicBlockFwdRefs.find(F); 3380 if (BBFRI == BasicBlockFwdRefs.end()) { 3381 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3382 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3383 } else { 3384 auto &BBRefs = BBFRI->second; 3385 // Check for invalid basic block references. 3386 if (BBRefs.size() > FunctionBBs.size()) 3387 return Error("Invalid ID"); 3388 assert(!BBRefs.empty() && "Unexpected empty array"); 3389 assert(!BBRefs.front() && "Invalid reference to entry block"); 3390 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3391 ++I) 3392 if (I < RE && BBRefs[I]) { 3393 BBRefs[I]->insertInto(F); 3394 FunctionBBs[I] = BBRefs[I]; 3395 } else { 3396 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3397 } 3398 3399 // Erase from the table. 3400 BasicBlockFwdRefs.erase(BBFRI); 3401 } 3402 3403 CurBB = FunctionBBs[0]; 3404 continue; 3405 } 3406 3407 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3408 // This record indicates that the last instruction is at the same 3409 // location as the previous instruction with a location. 3410 I = getLastInstruction(); 3411 3412 if (!I) 3413 return Error("Invalid record"); 3414 I->setDebugLoc(LastLoc); 3415 I = nullptr; 3416 continue; 3417 3418 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3419 I = getLastInstruction(); 3420 if (!I || Record.size() < 4) 3421 return Error("Invalid record"); 3422 3423 unsigned Line = Record[0], Col = Record[1]; 3424 unsigned ScopeID = Record[2], IAID = Record[3]; 3425 3426 MDNode *Scope = nullptr, *IA = nullptr; 3427 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3428 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3429 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3430 I->setDebugLoc(LastLoc); 3431 I = nullptr; 3432 continue; 3433 } 3434 3435 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3436 unsigned OpNum = 0; 3437 Value *LHS, *RHS; 3438 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3439 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3440 OpNum+1 > Record.size()) 3441 return Error("Invalid record"); 3442 3443 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3444 if (Opc == -1) 3445 return Error("Invalid record"); 3446 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3447 InstructionList.push_back(I); 3448 if (OpNum < Record.size()) { 3449 if (Opc == Instruction::Add || 3450 Opc == Instruction::Sub || 3451 Opc == Instruction::Mul || 3452 Opc == Instruction::Shl) { 3453 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3454 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3455 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3456 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3457 } else if (Opc == Instruction::SDiv || 3458 Opc == Instruction::UDiv || 3459 Opc == Instruction::LShr || 3460 Opc == Instruction::AShr) { 3461 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3462 cast<BinaryOperator>(I)->setIsExact(true); 3463 } else if (isa<FPMathOperator>(I)) { 3464 FastMathFlags FMF; 3465 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3466 FMF.setUnsafeAlgebra(); 3467 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3468 FMF.setNoNaNs(); 3469 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3470 FMF.setNoInfs(); 3471 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3472 FMF.setNoSignedZeros(); 3473 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3474 FMF.setAllowReciprocal(); 3475 if (FMF.any()) 3476 I->setFastMathFlags(FMF); 3477 } 3478 3479 } 3480 break; 3481 } 3482 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3483 unsigned OpNum = 0; 3484 Value *Op; 3485 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3486 OpNum+2 != Record.size()) 3487 return Error("Invalid record"); 3488 3489 Type *ResTy = getTypeByID(Record[OpNum]); 3490 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3491 if (Opc == -1 || !ResTy) 3492 return Error("Invalid record"); 3493 Instruction *Temp = nullptr; 3494 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3495 if (Temp) { 3496 InstructionList.push_back(Temp); 3497 CurBB->getInstList().push_back(Temp); 3498 } 3499 } else { 3500 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3501 } 3502 InstructionList.push_back(I); 3503 break; 3504 } 3505 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3506 case bitc::FUNC_CODE_INST_GEP_OLD: 3507 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3508 unsigned OpNum = 0; 3509 3510 Type *Ty; 3511 bool InBounds; 3512 3513 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3514 InBounds = Record[OpNum++]; 3515 Ty = getTypeByID(Record[OpNum++]); 3516 } else { 3517 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3518 Ty = nullptr; 3519 } 3520 3521 Value *BasePtr; 3522 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3523 return Error("Invalid record"); 3524 3525 if (Ty && 3526 Ty != 3527 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3528 ->getElementType()) 3529 return Error( 3530 "Explicit gep type does not match pointee type of pointer operand"); 3531 3532 SmallVector<Value*, 16> GEPIdx; 3533 while (OpNum != Record.size()) { 3534 Value *Op; 3535 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3536 return Error("Invalid record"); 3537 GEPIdx.push_back(Op); 3538 } 3539 3540 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3541 3542 InstructionList.push_back(I); 3543 if (InBounds) 3544 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3545 break; 3546 } 3547 3548 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3549 // EXTRACTVAL: [opty, opval, n x indices] 3550 unsigned OpNum = 0; 3551 Value *Agg; 3552 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3553 return Error("Invalid record"); 3554 3555 SmallVector<unsigned, 4> EXTRACTVALIdx; 3556 Type *CurTy = Agg->getType(); 3557 for (unsigned RecSize = Record.size(); 3558 OpNum != RecSize; ++OpNum) { 3559 bool IsArray = CurTy->isArrayTy(); 3560 bool IsStruct = CurTy->isStructTy(); 3561 uint64_t Index = Record[OpNum]; 3562 3563 if (!IsStruct && !IsArray) 3564 return Error("EXTRACTVAL: Invalid type"); 3565 if ((unsigned)Index != Index) 3566 return Error("Invalid value"); 3567 if (IsStruct && Index >= CurTy->subtypes().size()) 3568 return Error("EXTRACTVAL: Invalid struct index"); 3569 if (IsArray && Index >= CurTy->getArrayNumElements()) 3570 return Error("EXTRACTVAL: Invalid array index"); 3571 EXTRACTVALIdx.push_back((unsigned)Index); 3572 3573 if (IsStruct) 3574 CurTy = CurTy->subtypes()[Index]; 3575 else 3576 CurTy = CurTy->subtypes()[0]; 3577 } 3578 3579 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3580 InstructionList.push_back(I); 3581 break; 3582 } 3583 3584 case bitc::FUNC_CODE_INST_INSERTVAL: { 3585 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3586 unsigned OpNum = 0; 3587 Value *Agg; 3588 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3589 return Error("Invalid record"); 3590 Value *Val; 3591 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3592 return Error("Invalid record"); 3593 3594 SmallVector<unsigned, 4> INSERTVALIdx; 3595 Type *CurTy = Agg->getType(); 3596 for (unsigned RecSize = Record.size(); 3597 OpNum != RecSize; ++OpNum) { 3598 bool IsArray = CurTy->isArrayTy(); 3599 bool IsStruct = CurTy->isStructTy(); 3600 uint64_t Index = Record[OpNum]; 3601 3602 if (!IsStruct && !IsArray) 3603 return Error("INSERTVAL: Invalid type"); 3604 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3605 return Error("Invalid type"); 3606 if ((unsigned)Index != Index) 3607 return Error("Invalid value"); 3608 if (IsStruct && Index >= CurTy->subtypes().size()) 3609 return Error("INSERTVAL: Invalid struct index"); 3610 if (IsArray && Index >= CurTy->getArrayNumElements()) 3611 return Error("INSERTVAL: Invalid array index"); 3612 3613 INSERTVALIdx.push_back((unsigned)Index); 3614 if (IsStruct) 3615 CurTy = CurTy->subtypes()[Index]; 3616 else 3617 CurTy = CurTy->subtypes()[0]; 3618 } 3619 3620 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3621 InstructionList.push_back(I); 3622 break; 3623 } 3624 3625 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3626 // obsolete form of select 3627 // handles select i1 ... in old bitcode 3628 unsigned OpNum = 0; 3629 Value *TrueVal, *FalseVal, *Cond; 3630 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3631 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3632 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3633 return Error("Invalid record"); 3634 3635 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3636 InstructionList.push_back(I); 3637 break; 3638 } 3639 3640 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3641 // new form of select 3642 // handles select i1 or select [N x i1] 3643 unsigned OpNum = 0; 3644 Value *TrueVal, *FalseVal, *Cond; 3645 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3646 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3647 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3648 return Error("Invalid record"); 3649 3650 // select condition can be either i1 or [N x i1] 3651 if (VectorType* vector_type = 3652 dyn_cast<VectorType>(Cond->getType())) { 3653 // expect <n x i1> 3654 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3655 return Error("Invalid type for value"); 3656 } else { 3657 // expect i1 3658 if (Cond->getType() != Type::getInt1Ty(Context)) 3659 return Error("Invalid type for value"); 3660 } 3661 3662 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3663 InstructionList.push_back(I); 3664 break; 3665 } 3666 3667 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3668 unsigned OpNum = 0; 3669 Value *Vec, *Idx; 3670 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3671 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3672 return Error("Invalid record"); 3673 if (!Vec->getType()->isVectorTy()) 3674 return Error("Invalid type for value"); 3675 I = ExtractElementInst::Create(Vec, Idx); 3676 InstructionList.push_back(I); 3677 break; 3678 } 3679 3680 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3681 unsigned OpNum = 0; 3682 Value *Vec, *Elt, *Idx; 3683 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3684 return Error("Invalid record"); 3685 if (!Vec->getType()->isVectorTy()) 3686 return Error("Invalid type for value"); 3687 if (popValue(Record, OpNum, NextValueNo, 3688 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3689 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3690 return Error("Invalid record"); 3691 I = InsertElementInst::Create(Vec, Elt, Idx); 3692 InstructionList.push_back(I); 3693 break; 3694 } 3695 3696 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3697 unsigned OpNum = 0; 3698 Value *Vec1, *Vec2, *Mask; 3699 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3700 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3701 return Error("Invalid record"); 3702 3703 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3704 return Error("Invalid record"); 3705 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3706 return Error("Invalid type for value"); 3707 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3708 InstructionList.push_back(I); 3709 break; 3710 } 3711 3712 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3713 // Old form of ICmp/FCmp returning bool 3714 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3715 // both legal on vectors but had different behaviour. 3716 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3717 // FCmp/ICmp returning bool or vector of bool 3718 3719 unsigned OpNum = 0; 3720 Value *LHS, *RHS; 3721 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3722 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3723 OpNum+1 != Record.size()) 3724 return Error("Invalid record"); 3725 3726 if (LHS->getType()->isFPOrFPVectorTy()) 3727 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3728 else 3729 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3730 InstructionList.push_back(I); 3731 break; 3732 } 3733 3734 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3735 { 3736 unsigned Size = Record.size(); 3737 if (Size == 0) { 3738 I = ReturnInst::Create(Context); 3739 InstructionList.push_back(I); 3740 break; 3741 } 3742 3743 unsigned OpNum = 0; 3744 Value *Op = nullptr; 3745 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3746 return Error("Invalid record"); 3747 if (OpNum != Record.size()) 3748 return Error("Invalid record"); 3749 3750 I = ReturnInst::Create(Context, Op); 3751 InstructionList.push_back(I); 3752 break; 3753 } 3754 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3755 if (Record.size() != 1 && Record.size() != 3) 3756 return Error("Invalid record"); 3757 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3758 if (!TrueDest) 3759 return Error("Invalid record"); 3760 3761 if (Record.size() == 1) { 3762 I = BranchInst::Create(TrueDest); 3763 InstructionList.push_back(I); 3764 } 3765 else { 3766 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3767 Value *Cond = getValue(Record, 2, NextValueNo, 3768 Type::getInt1Ty(Context)); 3769 if (!FalseDest || !Cond) 3770 return Error("Invalid record"); 3771 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3772 InstructionList.push_back(I); 3773 } 3774 break; 3775 } 3776 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3777 // Check magic 3778 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3779 // "New" SwitchInst format with case ranges. The changes to write this 3780 // format were reverted but we still recognize bitcode that uses it. 3781 // Hopefully someday we will have support for case ranges and can use 3782 // this format again. 3783 3784 Type *OpTy = getTypeByID(Record[1]); 3785 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3786 3787 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3788 BasicBlock *Default = getBasicBlock(Record[3]); 3789 if (!OpTy || !Cond || !Default) 3790 return Error("Invalid record"); 3791 3792 unsigned NumCases = Record[4]; 3793 3794 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3795 InstructionList.push_back(SI); 3796 3797 unsigned CurIdx = 5; 3798 for (unsigned i = 0; i != NumCases; ++i) { 3799 SmallVector<ConstantInt*, 1> CaseVals; 3800 unsigned NumItems = Record[CurIdx++]; 3801 for (unsigned ci = 0; ci != NumItems; ++ci) { 3802 bool isSingleNumber = Record[CurIdx++]; 3803 3804 APInt Low; 3805 unsigned ActiveWords = 1; 3806 if (ValueBitWidth > 64) 3807 ActiveWords = Record[CurIdx++]; 3808 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3809 ValueBitWidth); 3810 CurIdx += ActiveWords; 3811 3812 if (!isSingleNumber) { 3813 ActiveWords = 1; 3814 if (ValueBitWidth > 64) 3815 ActiveWords = Record[CurIdx++]; 3816 APInt High = 3817 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3818 ValueBitWidth); 3819 CurIdx += ActiveWords; 3820 3821 // FIXME: It is not clear whether values in the range should be 3822 // compared as signed or unsigned values. The partially 3823 // implemented changes that used this format in the past used 3824 // unsigned comparisons. 3825 for ( ; Low.ule(High); ++Low) 3826 CaseVals.push_back(ConstantInt::get(Context, Low)); 3827 } else 3828 CaseVals.push_back(ConstantInt::get(Context, Low)); 3829 } 3830 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3831 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3832 cve = CaseVals.end(); cvi != cve; ++cvi) 3833 SI->addCase(*cvi, DestBB); 3834 } 3835 I = SI; 3836 break; 3837 } 3838 3839 // Old SwitchInst format without case ranges. 3840 3841 if (Record.size() < 3 || (Record.size() & 1) == 0) 3842 return Error("Invalid record"); 3843 Type *OpTy = getTypeByID(Record[0]); 3844 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3845 BasicBlock *Default = getBasicBlock(Record[2]); 3846 if (!OpTy || !Cond || !Default) 3847 return Error("Invalid record"); 3848 unsigned NumCases = (Record.size()-3)/2; 3849 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3850 InstructionList.push_back(SI); 3851 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3852 ConstantInt *CaseVal = 3853 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3854 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3855 if (!CaseVal || !DestBB) { 3856 delete SI; 3857 return Error("Invalid record"); 3858 } 3859 SI->addCase(CaseVal, DestBB); 3860 } 3861 I = SI; 3862 break; 3863 } 3864 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3865 if (Record.size() < 2) 3866 return Error("Invalid record"); 3867 Type *OpTy = getTypeByID(Record[0]); 3868 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3869 if (!OpTy || !Address) 3870 return Error("Invalid record"); 3871 unsigned NumDests = Record.size()-2; 3872 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3873 InstructionList.push_back(IBI); 3874 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3875 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3876 IBI->addDestination(DestBB); 3877 } else { 3878 delete IBI; 3879 return Error("Invalid record"); 3880 } 3881 } 3882 I = IBI; 3883 break; 3884 } 3885 3886 case bitc::FUNC_CODE_INST_INVOKE: { 3887 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3888 if (Record.size() < 4) 3889 return Error("Invalid record"); 3890 unsigned OpNum = 0; 3891 AttributeSet PAL = getAttributes(Record[OpNum++]); 3892 unsigned CCInfo = Record[OpNum++]; 3893 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3894 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3895 3896 FunctionType *FTy = nullptr; 3897 if (CCInfo >> 13 & 1 && 3898 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3899 return Error("Explicit invoke type is not a function type"); 3900 3901 Value *Callee; 3902 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3903 return Error("Invalid record"); 3904 3905 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3906 if (!CalleeTy) 3907 return Error("Callee is not a pointer"); 3908 if (!FTy) { 3909 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3910 if (!FTy) 3911 return Error("Callee is not of pointer to function type"); 3912 } else if (CalleeTy->getElementType() != FTy) 3913 return Error("Explicit invoke type does not match pointee type of " 3914 "callee operand"); 3915 if (Record.size() < FTy->getNumParams() + OpNum) 3916 return Error("Insufficient operands to call"); 3917 3918 SmallVector<Value*, 16> Ops; 3919 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3920 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3921 FTy->getParamType(i))); 3922 if (!Ops.back()) 3923 return Error("Invalid record"); 3924 } 3925 3926 if (!FTy->isVarArg()) { 3927 if (Record.size() != OpNum) 3928 return Error("Invalid record"); 3929 } else { 3930 // Read type/value pairs for varargs params. 3931 while (OpNum != Record.size()) { 3932 Value *Op; 3933 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3934 return Error("Invalid record"); 3935 Ops.push_back(Op); 3936 } 3937 } 3938 3939 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3940 InstructionList.push_back(I); 3941 cast<InvokeInst>(I) 3942 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3943 cast<InvokeInst>(I)->setAttributes(PAL); 3944 break; 3945 } 3946 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3947 unsigned Idx = 0; 3948 Value *Val = nullptr; 3949 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3950 return Error("Invalid record"); 3951 I = ResumeInst::Create(Val); 3952 InstructionList.push_back(I); 3953 break; 3954 } 3955 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3956 I = new UnreachableInst(Context); 3957 InstructionList.push_back(I); 3958 break; 3959 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3960 if (Record.size() < 1 || ((Record.size()-1)&1)) 3961 return Error("Invalid record"); 3962 Type *Ty = getTypeByID(Record[0]); 3963 if (!Ty) 3964 return Error("Invalid record"); 3965 3966 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3967 InstructionList.push_back(PN); 3968 3969 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3970 Value *V; 3971 // With the new function encoding, it is possible that operands have 3972 // negative IDs (for forward references). Use a signed VBR 3973 // representation to keep the encoding small. 3974 if (UseRelativeIDs) 3975 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3976 else 3977 V = getValue(Record, 1+i, NextValueNo, Ty); 3978 BasicBlock *BB = getBasicBlock(Record[2+i]); 3979 if (!V || !BB) 3980 return Error("Invalid record"); 3981 PN->addIncoming(V, BB); 3982 } 3983 I = PN; 3984 break; 3985 } 3986 3987 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3988 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3989 unsigned Idx = 0; 3990 if (Record.size() < 4) 3991 return Error("Invalid record"); 3992 Type *Ty = getTypeByID(Record[Idx++]); 3993 if (!Ty) 3994 return Error("Invalid record"); 3995 Value *PersFn = nullptr; 3996 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3997 return Error("Invalid record"); 3998 3999 bool IsCleanup = !!Record[Idx++]; 4000 unsigned NumClauses = Record[Idx++]; 4001 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4002 LP->setCleanup(IsCleanup); 4003 for (unsigned J = 0; J != NumClauses; ++J) { 4004 LandingPadInst::ClauseType CT = 4005 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4006 Value *Val; 4007 4008 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4009 delete LP; 4010 return Error("Invalid record"); 4011 } 4012 4013 assert((CT != LandingPadInst::Catch || 4014 !isa<ArrayType>(Val->getType())) && 4015 "Catch clause has a invalid type!"); 4016 assert((CT != LandingPadInst::Filter || 4017 isa<ArrayType>(Val->getType())) && 4018 "Filter clause has invalid type!"); 4019 LP->addClause(cast<Constant>(Val)); 4020 } 4021 4022 I = LP; 4023 InstructionList.push_back(I); 4024 break; 4025 } 4026 4027 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4028 if (Record.size() != 4) 4029 return Error("Invalid record"); 4030 uint64_t AlignRecord = Record[3]; 4031 const uint64_t InAllocaMask = uint64_t(1) << 5; 4032 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4033 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4034 bool InAlloca = AlignRecord & InAllocaMask; 4035 Type *Ty = getTypeByID(Record[0]); 4036 if ((AlignRecord & ExplicitTypeMask) == 0) { 4037 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4038 if (!PTy) 4039 return Error("Old-style alloca with a non-pointer type"); 4040 Ty = PTy->getElementType(); 4041 } 4042 Type *OpTy = getTypeByID(Record[1]); 4043 Value *Size = getFnValueByID(Record[2], OpTy); 4044 unsigned Align; 4045 if (std::error_code EC = 4046 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4047 return EC; 4048 } 4049 if (!Ty || !Size) 4050 return Error("Invalid record"); 4051 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4052 AI->setUsedWithInAlloca(InAlloca); 4053 I = AI; 4054 InstructionList.push_back(I); 4055 break; 4056 } 4057 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4058 unsigned OpNum = 0; 4059 Value *Op; 4060 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4061 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4062 return Error("Invalid record"); 4063 4064 Type *Ty = nullptr; 4065 if (OpNum + 3 == Record.size()) 4066 Ty = getTypeByID(Record[OpNum++]); 4067 if (!Ty) 4068 Ty = cast<PointerType>(Op->getType())->getElementType(); 4069 else if (Ty != cast<PointerType>(Op->getType())->getElementType()) 4070 return Error("Explicit load type does not match pointee type of " 4071 "pointer operand"); 4072 4073 unsigned Align; 4074 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4075 return EC; 4076 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4077 4078 InstructionList.push_back(I); 4079 break; 4080 } 4081 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4082 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4083 unsigned OpNum = 0; 4084 Value *Op; 4085 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4086 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4087 return Error("Invalid record"); 4088 4089 Type *Ty = nullptr; 4090 if (OpNum + 5 == Record.size()) 4091 Ty = getTypeByID(Record[OpNum++]); 4092 4093 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4094 if (Ordering == NotAtomic || Ordering == Release || 4095 Ordering == AcquireRelease) 4096 return Error("Invalid record"); 4097 if (Ordering != NotAtomic && Record[OpNum] == 0) 4098 return Error("Invalid record"); 4099 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4100 4101 unsigned Align; 4102 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4103 return EC; 4104 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4105 4106 (void)Ty; 4107 assert((!Ty || Ty == I->getType()) && 4108 "Explicit type doesn't match pointee type of the first operand"); 4109 4110 InstructionList.push_back(I); 4111 break; 4112 } 4113 case bitc::FUNC_CODE_INST_STORE: 4114 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4115 unsigned OpNum = 0; 4116 Value *Val, *Ptr; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4118 (BitCode == bitc::FUNC_CODE_INST_STORE 4119 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4120 : popValue(Record, OpNum, NextValueNo, 4121 cast<PointerType>(Ptr->getType())->getElementType(), 4122 Val)) || 4123 OpNum + 2 != Record.size()) 4124 return Error("Invalid record"); 4125 unsigned Align; 4126 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4127 return EC; 4128 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4129 InstructionList.push_back(I); 4130 break; 4131 } 4132 case bitc::FUNC_CODE_INST_STOREATOMIC: 4133 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4134 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4135 unsigned OpNum = 0; 4136 Value *Val, *Ptr; 4137 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4138 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4139 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4140 : popValue(Record, OpNum, NextValueNo, 4141 cast<PointerType>(Ptr->getType())->getElementType(), 4142 Val)) || 4143 OpNum + 4 != Record.size()) 4144 return Error("Invalid record"); 4145 4146 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4147 if (Ordering == NotAtomic || Ordering == Acquire || 4148 Ordering == AcquireRelease) 4149 return Error("Invalid record"); 4150 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4151 if (Ordering != NotAtomic && Record[OpNum] == 0) 4152 return Error("Invalid record"); 4153 4154 unsigned Align; 4155 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4156 return EC; 4157 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4158 InstructionList.push_back(I); 4159 break; 4160 } 4161 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4162 case bitc::FUNC_CODE_INST_CMPXCHG: { 4163 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4164 // failureordering?, isweak?] 4165 unsigned OpNum = 0; 4166 Value *Ptr, *Cmp, *New; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4168 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4169 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4170 : popValue(Record, OpNum, NextValueNo, 4171 cast<PointerType>(Ptr->getType())->getElementType(), 4172 Cmp)) || 4173 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4174 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4175 return Error("Invalid record"); 4176 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4177 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4178 return Error("Invalid record"); 4179 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4180 4181 AtomicOrdering FailureOrdering; 4182 if (Record.size() < 7) 4183 FailureOrdering = 4184 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4185 else 4186 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4187 4188 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4189 SynchScope); 4190 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4191 4192 if (Record.size() < 8) { 4193 // Before weak cmpxchgs existed, the instruction simply returned the 4194 // value loaded from memory, so bitcode files from that era will be 4195 // expecting the first component of a modern cmpxchg. 4196 CurBB->getInstList().push_back(I); 4197 I = ExtractValueInst::Create(I, 0); 4198 } else { 4199 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4200 } 4201 4202 InstructionList.push_back(I); 4203 break; 4204 } 4205 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4206 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4207 unsigned OpNum = 0; 4208 Value *Ptr, *Val; 4209 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4210 popValue(Record, OpNum, NextValueNo, 4211 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4212 OpNum+4 != Record.size()) 4213 return Error("Invalid record"); 4214 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4215 if (Operation < AtomicRMWInst::FIRST_BINOP || 4216 Operation > AtomicRMWInst::LAST_BINOP) 4217 return Error("Invalid record"); 4218 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4219 if (Ordering == NotAtomic || Ordering == Unordered) 4220 return Error("Invalid record"); 4221 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4222 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4223 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4224 InstructionList.push_back(I); 4225 break; 4226 } 4227 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4228 if (2 != Record.size()) 4229 return Error("Invalid record"); 4230 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4231 if (Ordering == NotAtomic || Ordering == Unordered || 4232 Ordering == Monotonic) 4233 return Error("Invalid record"); 4234 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4235 I = new FenceInst(Context, Ordering, SynchScope); 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 case bitc::FUNC_CODE_INST_CALL: { 4240 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4241 if (Record.size() < 3) 4242 return Error("Invalid record"); 4243 4244 unsigned OpNum = 0; 4245 AttributeSet PAL = getAttributes(Record[OpNum++]); 4246 unsigned CCInfo = Record[OpNum++]; 4247 4248 FunctionType *FTy = nullptr; 4249 if (CCInfo >> 15 & 1 && 4250 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4251 return Error("Explicit call type is not a function type"); 4252 4253 Value *Callee; 4254 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4255 return Error("Invalid record"); 4256 4257 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4258 if (!OpTy) 4259 return Error("Callee is not a pointer type"); 4260 if (!FTy) { 4261 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4262 if (!FTy) 4263 return Error("Callee is not of pointer to function type"); 4264 } else if (OpTy->getElementType() != FTy) 4265 return Error("Explicit call type does not match pointee type of " 4266 "callee operand"); 4267 if (Record.size() < FTy->getNumParams() + OpNum) 4268 return Error("Insufficient operands to call"); 4269 4270 SmallVector<Value*, 16> Args; 4271 // Read the fixed params. 4272 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4273 if (FTy->getParamType(i)->isLabelTy()) 4274 Args.push_back(getBasicBlock(Record[OpNum])); 4275 else 4276 Args.push_back(getValue(Record, OpNum, NextValueNo, 4277 FTy->getParamType(i))); 4278 if (!Args.back()) 4279 return Error("Invalid record"); 4280 } 4281 4282 // Read type/value pairs for varargs params. 4283 if (!FTy->isVarArg()) { 4284 if (OpNum != Record.size()) 4285 return Error("Invalid record"); 4286 } else { 4287 while (OpNum != Record.size()) { 4288 Value *Op; 4289 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4290 return Error("Invalid record"); 4291 Args.push_back(Op); 4292 } 4293 } 4294 4295 I = CallInst::Create(FTy, Callee, Args); 4296 InstructionList.push_back(I); 4297 cast<CallInst>(I)->setCallingConv( 4298 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4299 CallInst::TailCallKind TCK = CallInst::TCK_None; 4300 if (CCInfo & 1) 4301 TCK = CallInst::TCK_Tail; 4302 if (CCInfo & (1 << 14)) 4303 TCK = CallInst::TCK_MustTail; 4304 cast<CallInst>(I)->setTailCallKind(TCK); 4305 cast<CallInst>(I)->setAttributes(PAL); 4306 break; 4307 } 4308 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4309 if (Record.size() < 3) 4310 return Error("Invalid record"); 4311 Type *OpTy = getTypeByID(Record[0]); 4312 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4313 Type *ResTy = getTypeByID(Record[2]); 4314 if (!OpTy || !Op || !ResTy) 4315 return Error("Invalid record"); 4316 I = new VAArgInst(Op, ResTy); 4317 InstructionList.push_back(I); 4318 break; 4319 } 4320 } 4321 4322 // Add instruction to end of current BB. If there is no current BB, reject 4323 // this file. 4324 if (!CurBB) { 4325 delete I; 4326 return Error("Invalid instruction with no BB"); 4327 } 4328 CurBB->getInstList().push_back(I); 4329 4330 // If this was a terminator instruction, move to the next block. 4331 if (isa<TerminatorInst>(I)) { 4332 ++CurBBNo; 4333 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4334 } 4335 4336 // Non-void values get registered in the value table for future use. 4337 if (I && !I->getType()->isVoidTy()) 4338 ValueList.AssignValue(I, NextValueNo++); 4339 } 4340 4341 OutOfRecordLoop: 4342 4343 // Check the function list for unresolved values. 4344 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4345 if (!A->getParent()) { 4346 // We found at least one unresolved value. Nuke them all to avoid leaks. 4347 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4348 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4349 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4350 delete A; 4351 } 4352 } 4353 return Error("Never resolved value found in function"); 4354 } 4355 } 4356 4357 // FIXME: Check for unresolved forward-declared metadata references 4358 // and clean up leaks. 4359 4360 // Trim the value list down to the size it was before we parsed this function. 4361 ValueList.shrinkTo(ModuleValueListSize); 4362 MDValueList.shrinkTo(ModuleMDValueListSize); 4363 std::vector<BasicBlock*>().swap(FunctionBBs); 4364 return std::error_code(); 4365 } 4366 4367 /// Find the function body in the bitcode stream 4368 std::error_code BitcodeReader::FindFunctionInStream( 4369 Function *F, 4370 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4371 while (DeferredFunctionInfoIterator->second == 0) { 4372 if (Stream.AtEndOfStream()) 4373 return Error("Could not find function in stream"); 4374 // ParseModule will parse the next body in the stream and set its 4375 // position in the DeferredFunctionInfo map. 4376 if (std::error_code EC = ParseModule(true)) 4377 return EC; 4378 } 4379 return std::error_code(); 4380 } 4381 4382 //===----------------------------------------------------------------------===// 4383 // GVMaterializer implementation 4384 //===----------------------------------------------------------------------===// 4385 4386 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4387 4388 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4389 if (std::error_code EC = materializeMetadata()) 4390 return EC; 4391 4392 Function *F = dyn_cast<Function>(GV); 4393 // If it's not a function or is already material, ignore the request. 4394 if (!F || !F->isMaterializable()) 4395 return std::error_code(); 4396 4397 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4398 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4399 // If its position is recorded as 0, its body is somewhere in the stream 4400 // but we haven't seen it yet. 4401 if (DFII->second == 0 && LazyStreamer) 4402 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4403 return EC; 4404 4405 // Move the bit stream to the saved position of the deferred function body. 4406 Stream.JumpToBit(DFII->second); 4407 4408 if (std::error_code EC = ParseFunctionBody(F)) 4409 return EC; 4410 F->setIsMaterializable(false); 4411 4412 if (StripDebugInfo) 4413 stripDebugInfo(*F); 4414 4415 // Upgrade any old intrinsic calls in the function. 4416 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4417 E = UpgradedIntrinsics.end(); I != E; ++I) { 4418 if (I->first != I->second) { 4419 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4420 UI != UE;) { 4421 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4422 UpgradeIntrinsicCall(CI, I->second); 4423 } 4424 } 4425 } 4426 4427 // Bring in any functions that this function forward-referenced via 4428 // blockaddresses. 4429 return materializeForwardReferencedFunctions(); 4430 } 4431 4432 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4433 const Function *F = dyn_cast<Function>(GV); 4434 if (!F || F->isDeclaration()) 4435 return false; 4436 4437 // Dematerializing F would leave dangling references that wouldn't be 4438 // reconnected on re-materialization. 4439 if (BlockAddressesTaken.count(F)) 4440 return false; 4441 4442 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4443 } 4444 4445 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4446 Function *F = dyn_cast<Function>(GV); 4447 // If this function isn't dematerializable, this is a noop. 4448 if (!F || !isDematerializable(F)) 4449 return; 4450 4451 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4452 4453 // Just forget the function body, we can remat it later. 4454 F->dropAllReferences(); 4455 F->setIsMaterializable(true); 4456 } 4457 4458 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4459 assert(M == TheModule && 4460 "Can only Materialize the Module this BitcodeReader is attached to."); 4461 4462 if (std::error_code EC = materializeMetadata()) 4463 return EC; 4464 4465 // Promise to materialize all forward references. 4466 WillMaterializeAllForwardRefs = true; 4467 4468 // Iterate over the module, deserializing any functions that are still on 4469 // disk. 4470 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4471 F != E; ++F) { 4472 if (std::error_code EC = materialize(F)) 4473 return EC; 4474 } 4475 // At this point, if there are any function bodies, the current bit is 4476 // pointing to the END_BLOCK record after them. Now make sure the rest 4477 // of the bits in the module have been read. 4478 if (NextUnreadBit) 4479 ParseModule(true); 4480 4481 // Check that all block address forward references got resolved (as we 4482 // promised above). 4483 if (!BasicBlockFwdRefs.empty()) 4484 return Error("Never resolved function from blockaddress"); 4485 4486 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4487 // delete the old functions to clean up. We can't do this unless the entire 4488 // module is materialized because there could always be another function body 4489 // with calls to the old function. 4490 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4491 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4492 if (I->first != I->second) { 4493 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4494 UI != UE;) { 4495 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4496 UpgradeIntrinsicCall(CI, I->second); 4497 } 4498 if (!I->first->use_empty()) 4499 I->first->replaceAllUsesWith(I->second); 4500 I->first->eraseFromParent(); 4501 } 4502 } 4503 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4504 4505 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4506 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4507 4508 UpgradeDebugInfo(*M); 4509 return std::error_code(); 4510 } 4511 4512 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4513 return IdentifiedStructTypes; 4514 } 4515 4516 std::error_code BitcodeReader::InitStream() { 4517 if (LazyStreamer) 4518 return InitLazyStream(); 4519 return InitStreamFromBuffer(); 4520 } 4521 4522 std::error_code BitcodeReader::InitStreamFromBuffer() { 4523 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4524 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4525 4526 if (Buffer->getBufferSize() & 3) 4527 return Error("Invalid bitcode signature"); 4528 4529 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4530 // The magic number is 0x0B17C0DE stored in little endian. 4531 if (isBitcodeWrapper(BufPtr, BufEnd)) 4532 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4533 return Error("Invalid bitcode wrapper header"); 4534 4535 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4536 Stream.init(&*StreamFile); 4537 4538 return std::error_code(); 4539 } 4540 4541 std::error_code BitcodeReader::InitLazyStream() { 4542 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4543 // see it. 4544 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4545 StreamingMemoryObject &Bytes = *OwnedBytes; 4546 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4547 Stream.init(&*StreamFile); 4548 4549 unsigned char buf[16]; 4550 if (Bytes.readBytes(buf, 16, 0) != 16) 4551 return Error("Invalid bitcode signature"); 4552 4553 if (!isBitcode(buf, buf + 16)) 4554 return Error("Invalid bitcode signature"); 4555 4556 if (isBitcodeWrapper(buf, buf + 4)) { 4557 const unsigned char *bitcodeStart = buf; 4558 const unsigned char *bitcodeEnd = buf + 16; 4559 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4560 Bytes.dropLeadingBytes(bitcodeStart - buf); 4561 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4562 } 4563 return std::error_code(); 4564 } 4565 4566 namespace { 4567 class BitcodeErrorCategoryType : public std::error_category { 4568 const char *name() const LLVM_NOEXCEPT override { 4569 return "llvm.bitcode"; 4570 } 4571 std::string message(int IE) const override { 4572 BitcodeError E = static_cast<BitcodeError>(IE); 4573 switch (E) { 4574 case BitcodeError::InvalidBitcodeSignature: 4575 return "Invalid bitcode signature"; 4576 case BitcodeError::CorruptedBitcode: 4577 return "Corrupted bitcode"; 4578 } 4579 llvm_unreachable("Unknown error type!"); 4580 } 4581 }; 4582 } 4583 4584 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4585 4586 const std::error_category &llvm::BitcodeErrorCategory() { 4587 return *ErrorCategory; 4588 } 4589 4590 //===----------------------------------------------------------------------===// 4591 // External interface 4592 //===----------------------------------------------------------------------===// 4593 4594 /// \brief Get a lazy one-at-time loading module from bitcode. 4595 /// 4596 /// This isn't always used in a lazy context. In particular, it's also used by 4597 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4598 /// in forward-referenced functions from block address references. 4599 /// 4600 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4601 /// materialize everything -- in particular, if this isn't truly lazy. 4602 static ErrorOr<Module *> 4603 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4604 LLVMContext &Context, bool WillMaterializeAll, 4605 DiagnosticHandlerFunction DiagnosticHandler, 4606 bool ShouldLazyLoadMetadata = false) { 4607 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4608 BitcodeReader *R = 4609 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4610 M->setMaterializer(R); 4611 4612 auto cleanupOnError = [&](std::error_code EC) { 4613 R->releaseBuffer(); // Never take ownership on error. 4614 delete M; // Also deletes R. 4615 return EC; 4616 }; 4617 4618 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4619 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4620 return cleanupOnError(EC); 4621 4622 if (!WillMaterializeAll) 4623 // Resolve forward references from blockaddresses. 4624 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4625 return cleanupOnError(EC); 4626 4627 Buffer.release(); // The BitcodeReader owns it now. 4628 return M; 4629 } 4630 4631 ErrorOr<Module *> 4632 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4633 LLVMContext &Context, 4634 DiagnosticHandlerFunction DiagnosticHandler, 4635 bool ShouldLazyLoadMetadata) { 4636 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4637 DiagnosticHandler, ShouldLazyLoadMetadata); 4638 } 4639 4640 ErrorOr<std::unique_ptr<Module>> 4641 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4642 LLVMContext &Context, 4643 DiagnosticHandlerFunction DiagnosticHandler) { 4644 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4645 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4646 M->setMaterializer(R); 4647 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4648 return EC; 4649 return std::move(M); 4650 } 4651 4652 ErrorOr<Module *> 4653 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4654 DiagnosticHandlerFunction DiagnosticHandler) { 4655 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4656 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4657 std::move(Buf), Context, true, DiagnosticHandler); 4658 if (!ModuleOrErr) 4659 return ModuleOrErr; 4660 Module *M = ModuleOrErr.get(); 4661 // Read in the entire module, and destroy the BitcodeReader. 4662 if (std::error_code EC = M->materializeAllPermanently()) { 4663 delete M; 4664 return EC; 4665 } 4666 4667 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4668 // written. We must defer until the Module has been fully materialized. 4669 4670 return M; 4671 } 4672 4673 std::string 4674 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4675 DiagnosticHandlerFunction DiagnosticHandler) { 4676 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4677 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4678 DiagnosticHandler); 4679 ErrorOr<std::string> Triple = R->parseTriple(); 4680 if (Triple.getError()) 4681 return ""; 4682 return Triple.get(); 4683 } 4684