1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 // Number of module level metadata records specified by the 158 // MODULE_CODE_METADATA_VALUES record. 159 unsigned NumModuleMDs = 0; 160 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 161 bool SeenModuleValuesRecord = false; 162 163 std::vector<Type*> TypeList; 164 BitcodeReaderValueList ValueList; 165 BitcodeReaderMDValueList MDValueList; 166 std::vector<Comdat *> ComdatList; 167 SmallVector<Instruction *, 64> InstructionList; 168 169 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 170 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 171 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 172 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 173 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 174 175 SmallVector<Instruction*, 64> InstsWithTBAATag; 176 177 /// The set of attributes by index. Index zero in the file is for null, and 178 /// is thus not represented here. As such all indices are off by one. 179 std::vector<AttributeSet> MAttributes; 180 181 /// The set of attribute groups. 182 std::map<unsigned, AttributeSet> MAttributeGroups; 183 184 /// While parsing a function body, this is a list of the basic blocks for the 185 /// function. 186 std::vector<BasicBlock*> FunctionBBs; 187 188 // When reading the module header, this list is populated with functions that 189 // have bodies later in the file. 190 std::vector<Function*> FunctionsWithBodies; 191 192 // When intrinsic functions are encountered which require upgrading they are 193 // stored here with their replacement function. 194 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 195 UpgradedIntrinsicMap UpgradedIntrinsics; 196 197 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 198 DenseMap<unsigned, unsigned> MDKindMap; 199 200 // Several operations happen after the module header has been read, but 201 // before function bodies are processed. This keeps track of whether 202 // we've done this yet. 203 bool SeenFirstFunctionBody = false; 204 205 /// When function bodies are initially scanned, this map contains info about 206 /// where to find deferred function body in the stream. 207 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 208 209 /// When Metadata block is initially scanned when parsing the module, we may 210 /// choose to defer parsing of the metadata. This vector contains info about 211 /// which Metadata blocks are deferred. 212 std::vector<uint64_t> DeferredMetadataInfo; 213 214 /// These are basic blocks forward-referenced by block addresses. They are 215 /// inserted lazily into functions when they're loaded. The basic block ID is 216 /// its index into the vector. 217 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 218 std::deque<Function *> BasicBlockFwdRefQueue; 219 220 /// Indicates that we are using a new encoding for instruction operands where 221 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 222 /// instruction number, for a more compact encoding. Some instruction 223 /// operands are not relative to the instruction ID: basic block numbers, and 224 /// types. Once the old style function blocks have been phased out, we would 225 /// not need this flag. 226 bool UseRelativeIDs = false; 227 228 /// True if all functions will be materialized, negating the need to process 229 /// (e.g.) blockaddress forward references. 230 bool WillMaterializeAllForwardRefs = false; 231 232 /// Functions that have block addresses taken. This is usually empty. 233 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 234 235 /// True if any Metadata block has been materialized. 236 bool IsMetadataMaterialized = false; 237 238 bool StripDebugInfo = false; 239 240 /// Functions that need to be matched with subprograms when upgrading old 241 /// metadata. 242 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 243 244 std::vector<std::string> BundleTags; 245 246 public: 247 std::error_code error(BitcodeError E, const Twine &Message); 248 std::error_code error(BitcodeError E); 249 std::error_code error(const Twine &Message); 250 251 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 252 DiagnosticHandlerFunction DiagnosticHandler); 253 BitcodeReader(LLVMContext &Context, 254 DiagnosticHandlerFunction DiagnosticHandler); 255 ~BitcodeReader() override { freeState(); } 256 257 std::error_code materializeForwardReferencedFunctions(); 258 259 void freeState(); 260 261 void releaseBuffer(); 262 263 bool isDematerializable(const GlobalValue *GV) const override; 264 std::error_code materialize(GlobalValue *GV) override; 265 std::error_code materializeModule(Module *M) override; 266 std::vector<StructType *> getIdentifiedStructTypes() const override; 267 void dematerialize(GlobalValue *GV) override; 268 269 /// \brief Main interface to parsing a bitcode buffer. 270 /// \returns true if an error occurred. 271 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 272 Module *M, 273 bool ShouldLazyLoadMetadata = false); 274 275 /// \brief Cheap mechanism to just extract module triple 276 /// \returns true if an error occurred. 277 ErrorOr<std::string> parseTriple(); 278 279 /// Cheap mechanism to just extract the identification block out of bitcode. 280 ErrorOr<std::string> parseIdentificationBlock(); 281 282 static uint64_t decodeSignRotatedValue(uint64_t V); 283 284 /// Materialize any deferred Metadata block. 285 std::error_code materializeMetadata() override; 286 287 void setStripDebugInfo() override; 288 289 private: 290 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 291 // ProducerIdentification data member, and do some basic enforcement on the 292 // "epoch" encoded in the bitcode. 293 std::error_code parseBitcodeVersion(); 294 295 std::vector<StructType *> IdentifiedStructTypes; 296 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 297 StructType *createIdentifiedStructType(LLVMContext &Context); 298 299 Type *getTypeByID(unsigned ID); 300 Value *getFnValueByID(unsigned ID, Type *Ty, 301 OperatorConstraint OC = OC_None) { 302 if (Ty && Ty->isMetadataTy()) 303 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 304 return ValueList.getValueFwdRef(ID, Ty, OC); 305 } 306 Metadata *getFnMetadataByID(unsigned ID) { 307 return MDValueList.getValueFwdRef(ID); 308 } 309 BasicBlock *getBasicBlock(unsigned ID) const { 310 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 311 return FunctionBBs[ID]; 312 } 313 AttributeSet getAttributes(unsigned i) const { 314 if (i-1 < MAttributes.size()) 315 return MAttributes[i-1]; 316 return AttributeSet(); 317 } 318 319 /// Read a value/type pair out of the specified record from slot 'Slot'. 320 /// Increment Slot past the number of slots used in the record. Return true on 321 /// failure. 322 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 323 unsigned InstNum, Value *&ResVal) { 324 if (Slot == Record.size()) return true; 325 unsigned ValNo = (unsigned)Record[Slot++]; 326 // Adjust the ValNo, if it was encoded relative to the InstNum. 327 if (UseRelativeIDs) 328 ValNo = InstNum - ValNo; 329 if (ValNo < InstNum) { 330 // If this is not a forward reference, just return the value we already 331 // have. 332 ResVal = getFnValueByID(ValNo, nullptr); 333 return ResVal == nullptr; 334 } 335 if (Slot == Record.size()) 336 return true; 337 338 unsigned TypeNo = (unsigned)Record[Slot++]; 339 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 340 return ResVal == nullptr; 341 } 342 343 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 344 /// past the number of slots used by the value in the record. Return true if 345 /// there is an error. 346 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal, 348 OperatorConstraint OC = OC_None) { 349 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 350 return true; 351 // All values currently take a single record slot. 352 ++Slot; 353 return false; 354 } 355 356 /// Like popValue, but does not increment the Slot number. 357 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 358 unsigned InstNum, Type *Ty, Value *&ResVal, 359 OperatorConstraint OC = OC_None) { 360 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 361 return ResVal == nullptr; 362 } 363 364 /// Version of getValue that returns ResVal directly, or 0 if there is an 365 /// error. 366 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)Record[Slot]; 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty, OC); 374 } 375 376 /// Like getValue, but decodes signed VBRs. 377 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 378 unsigned InstNum, Type *Ty, 379 OperatorConstraint OC = OC_None) { 380 if (Slot == Record.size()) return nullptr; 381 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 382 // Adjust the ValNo, if it was encoded relative to the InstNum. 383 if (UseRelativeIDs) 384 ValNo = InstNum - ValNo; 385 return getFnValueByID(ValNo, Ty, OC); 386 } 387 388 /// Converts alignment exponent (i.e. power of two (or zero)) to the 389 /// corresponding alignment to use. If alignment is too large, returns 390 /// a corresponding error code. 391 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 392 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 393 std::error_code parseModule(uint64_t ResumeBit, 394 bool ShouldLazyLoadMetadata = false); 395 std::error_code parseAttributeBlock(); 396 std::error_code parseAttributeGroupBlock(); 397 std::error_code parseTypeTable(); 398 std::error_code parseTypeTableBody(); 399 std::error_code parseOperandBundleTags(); 400 401 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 402 unsigned NameIndex, Triple &TT); 403 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 404 std::error_code parseConstants(); 405 std::error_code rememberAndSkipFunctionBodies(); 406 std::error_code rememberAndSkipFunctionBody(); 407 /// Save the positions of the Metadata blocks and skip parsing the blocks. 408 std::error_code rememberAndSkipMetadata(); 409 std::error_code parseFunctionBody(Function *F); 410 std::error_code globalCleanup(); 411 std::error_code resolveGlobalAndAliasInits(); 412 std::error_code parseMetadata(bool ModuleLevel = false); 413 std::error_code parseMetadataKinds(); 414 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 415 std::error_code parseMetadataAttachment(Function &F); 416 ErrorOr<std::string> parseModuleTriple(); 417 std::error_code parseUseLists(); 418 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 419 std::error_code initStreamFromBuffer(); 420 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 421 std::error_code findFunctionInStream( 422 Function *F, 423 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 424 }; 425 426 /// Class to manage reading and parsing function summary index bitcode 427 /// files/sections. 428 class FunctionIndexBitcodeReader { 429 DiagnosticHandlerFunction DiagnosticHandler; 430 431 /// Eventually points to the function index built during parsing. 432 FunctionInfoIndex *TheIndex = nullptr; 433 434 std::unique_ptr<MemoryBuffer> Buffer; 435 std::unique_ptr<BitstreamReader> StreamFile; 436 BitstreamCursor Stream; 437 438 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 439 /// 440 /// If false, the summary section is fully parsed into the index during 441 /// the initial parse. Otherwise, if true, the caller is expected to 442 /// invoke \a readFunctionSummary for each summary needed, and the summary 443 /// section is thus parsed lazily. 444 bool IsLazy = false; 445 446 /// Used to indicate whether caller only wants to check for the presence 447 /// of the function summary bitcode section. All blocks are skipped, 448 /// but the SeenFuncSummary boolean is set. 449 bool CheckFuncSummaryPresenceOnly = false; 450 451 /// Indicates whether we have encountered a function summary section 452 /// yet during parsing, used when checking if file contains function 453 /// summary section. 454 bool SeenFuncSummary = false; 455 456 /// \brief Map populated during function summary section parsing, and 457 /// consumed during ValueSymbolTable parsing. 458 /// 459 /// Used to correlate summary records with VST entries. For the per-module 460 /// index this maps the ValueID to the parsed function summary, and 461 /// for the combined index this maps the summary record's bitcode 462 /// offset to the function summary (since in the combined index the 463 /// VST records do not hold value IDs but rather hold the function 464 /// summary record offset). 465 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 466 467 /// Map populated during module path string table parsing, from the 468 /// module ID to a string reference owned by the index's module 469 /// path string table, used to correlate with combined index function 470 /// summary records. 471 DenseMap<uint64_t, StringRef> ModuleIdMap; 472 473 public: 474 std::error_code error(BitcodeError E, const Twine &Message); 475 std::error_code error(BitcodeError E); 476 std::error_code error(const Twine &Message); 477 478 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 479 DiagnosticHandlerFunction DiagnosticHandler, 480 bool IsLazy = false, 481 bool CheckFuncSummaryPresenceOnly = false); 482 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 483 bool IsLazy = false, 484 bool CheckFuncSummaryPresenceOnly = false); 485 ~FunctionIndexBitcodeReader() { freeState(); } 486 487 void freeState(); 488 489 void releaseBuffer(); 490 491 /// Check if the parser has encountered a function summary section. 492 bool foundFuncSummary() { return SeenFuncSummary; } 493 494 /// \brief Main interface to parsing a bitcode buffer. 495 /// \returns true if an error occurred. 496 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 497 FunctionInfoIndex *I); 498 499 /// \brief Interface for parsing a function summary lazily. 500 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 501 FunctionInfoIndex *I, 502 size_t FunctionSummaryOffset); 503 504 private: 505 std::error_code parseModule(); 506 std::error_code parseValueSymbolTable(); 507 std::error_code parseEntireSummary(); 508 std::error_code parseModuleStringTable(); 509 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 510 std::error_code initStreamFromBuffer(); 511 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 512 }; 513 } // namespace 514 515 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 516 DiagnosticSeverity Severity, 517 const Twine &Msg) 518 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 519 520 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 521 522 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 523 std::error_code EC, const Twine &Message) { 524 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 525 DiagnosticHandler(DI); 526 return EC; 527 } 528 529 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 530 std::error_code EC) { 531 return error(DiagnosticHandler, EC, EC.message()); 532 } 533 534 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 535 const Twine &Message) { 536 return error(DiagnosticHandler, 537 make_error_code(BitcodeError::CorruptedBitcode), Message); 538 } 539 540 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 541 if (!ProducerIdentification.empty()) { 542 return ::error(DiagnosticHandler, make_error_code(E), 543 Message + " (Producer: '" + ProducerIdentification + 544 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 545 } 546 return ::error(DiagnosticHandler, make_error_code(E), Message); 547 } 548 549 std::error_code BitcodeReader::error(const Twine &Message) { 550 if (!ProducerIdentification.empty()) { 551 return ::error(DiagnosticHandler, 552 make_error_code(BitcodeError::CorruptedBitcode), 553 Message + " (Producer: '" + ProducerIdentification + 554 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 555 } 556 return ::error(DiagnosticHandler, 557 make_error_code(BitcodeError::CorruptedBitcode), Message); 558 } 559 560 std::error_code BitcodeReader::error(BitcodeError E) { 561 return ::error(DiagnosticHandler, make_error_code(E)); 562 } 563 564 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 565 LLVMContext &C) { 566 if (F) 567 return F; 568 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 569 } 570 571 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 572 DiagnosticHandlerFunction DiagnosticHandler) 573 : Context(Context), 574 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 575 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 576 577 BitcodeReader::BitcodeReader(LLVMContext &Context, 578 DiagnosticHandlerFunction DiagnosticHandler) 579 : Context(Context), 580 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 581 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 582 583 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 584 if (WillMaterializeAllForwardRefs) 585 return std::error_code(); 586 587 // Prevent recursion. 588 WillMaterializeAllForwardRefs = true; 589 590 while (!BasicBlockFwdRefQueue.empty()) { 591 Function *F = BasicBlockFwdRefQueue.front(); 592 BasicBlockFwdRefQueue.pop_front(); 593 assert(F && "Expected valid function"); 594 if (!BasicBlockFwdRefs.count(F)) 595 // Already materialized. 596 continue; 597 598 // Check for a function that isn't materializable to prevent an infinite 599 // loop. When parsing a blockaddress stored in a global variable, there 600 // isn't a trivial way to check if a function will have a body without a 601 // linear search through FunctionsWithBodies, so just check it here. 602 if (!F->isMaterializable()) 603 return error("Never resolved function from blockaddress"); 604 605 // Try to materialize F. 606 if (std::error_code EC = materialize(F)) 607 return EC; 608 } 609 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 610 611 // Reset state. 612 WillMaterializeAllForwardRefs = false; 613 return std::error_code(); 614 } 615 616 void BitcodeReader::freeState() { 617 Buffer = nullptr; 618 std::vector<Type*>().swap(TypeList); 619 ValueList.clear(); 620 MDValueList.clear(); 621 std::vector<Comdat *>().swap(ComdatList); 622 623 std::vector<AttributeSet>().swap(MAttributes); 624 std::vector<BasicBlock*>().swap(FunctionBBs); 625 std::vector<Function*>().swap(FunctionsWithBodies); 626 DeferredFunctionInfo.clear(); 627 DeferredMetadataInfo.clear(); 628 MDKindMap.clear(); 629 630 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 631 BasicBlockFwdRefQueue.clear(); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // Helper functions to implement forward reference resolution, etc. 636 //===----------------------------------------------------------------------===// 637 638 /// Convert a string from a record into an std::string, return true on failure. 639 template <typename StrTy> 640 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 641 StrTy &Result) { 642 if (Idx > Record.size()) 643 return true; 644 645 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 646 Result += (char)Record[i]; 647 return false; 648 } 649 650 static bool hasImplicitComdat(size_t Val) { 651 switch (Val) { 652 default: 653 return false; 654 case 1: // Old WeakAnyLinkage 655 case 4: // Old LinkOnceAnyLinkage 656 case 10: // Old WeakODRLinkage 657 case 11: // Old LinkOnceODRLinkage 658 return true; 659 } 660 } 661 662 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 663 switch (Val) { 664 default: // Map unknown/new linkages to external 665 case 0: 666 return GlobalValue::ExternalLinkage; 667 case 2: 668 return GlobalValue::AppendingLinkage; 669 case 3: 670 return GlobalValue::InternalLinkage; 671 case 5: 672 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 673 case 6: 674 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 675 case 7: 676 return GlobalValue::ExternalWeakLinkage; 677 case 8: 678 return GlobalValue::CommonLinkage; 679 case 9: 680 return GlobalValue::PrivateLinkage; 681 case 12: 682 return GlobalValue::AvailableExternallyLinkage; 683 case 13: 684 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 685 case 14: 686 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 687 case 15: 688 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 689 case 1: // Old value with implicit comdat. 690 case 16: 691 return GlobalValue::WeakAnyLinkage; 692 case 10: // Old value with implicit comdat. 693 case 17: 694 return GlobalValue::WeakODRLinkage; 695 case 4: // Old value with implicit comdat. 696 case 18: 697 return GlobalValue::LinkOnceAnyLinkage; 698 case 11: // Old value with implicit comdat. 699 case 19: 700 return GlobalValue::LinkOnceODRLinkage; 701 } 702 } 703 704 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 705 switch (Val) { 706 default: // Map unknown visibilities to default. 707 case 0: return GlobalValue::DefaultVisibility; 708 case 1: return GlobalValue::HiddenVisibility; 709 case 2: return GlobalValue::ProtectedVisibility; 710 } 711 } 712 713 static GlobalValue::DLLStorageClassTypes 714 getDecodedDLLStorageClass(unsigned Val) { 715 switch (Val) { 716 default: // Map unknown values to default. 717 case 0: return GlobalValue::DefaultStorageClass; 718 case 1: return GlobalValue::DLLImportStorageClass; 719 case 2: return GlobalValue::DLLExportStorageClass; 720 } 721 } 722 723 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 724 switch (Val) { 725 case 0: return GlobalVariable::NotThreadLocal; 726 default: // Map unknown non-zero value to general dynamic. 727 case 1: return GlobalVariable::GeneralDynamicTLSModel; 728 case 2: return GlobalVariable::LocalDynamicTLSModel; 729 case 3: return GlobalVariable::InitialExecTLSModel; 730 case 4: return GlobalVariable::LocalExecTLSModel; 731 } 732 } 733 734 static int getDecodedCastOpcode(unsigned Val) { 735 switch (Val) { 736 default: return -1; 737 case bitc::CAST_TRUNC : return Instruction::Trunc; 738 case bitc::CAST_ZEXT : return Instruction::ZExt; 739 case bitc::CAST_SEXT : return Instruction::SExt; 740 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 741 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 742 case bitc::CAST_UITOFP : return Instruction::UIToFP; 743 case bitc::CAST_SITOFP : return Instruction::SIToFP; 744 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 745 case bitc::CAST_FPEXT : return Instruction::FPExt; 746 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 747 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 748 case bitc::CAST_BITCAST : return Instruction::BitCast; 749 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 750 } 751 } 752 753 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 754 bool IsFP = Ty->isFPOrFPVectorTy(); 755 // BinOps are only valid for int/fp or vector of int/fp types 756 if (!IsFP && !Ty->isIntOrIntVectorTy()) 757 return -1; 758 759 switch (Val) { 760 default: 761 return -1; 762 case bitc::BINOP_ADD: 763 return IsFP ? Instruction::FAdd : Instruction::Add; 764 case bitc::BINOP_SUB: 765 return IsFP ? Instruction::FSub : Instruction::Sub; 766 case bitc::BINOP_MUL: 767 return IsFP ? Instruction::FMul : Instruction::Mul; 768 case bitc::BINOP_UDIV: 769 return IsFP ? -1 : Instruction::UDiv; 770 case bitc::BINOP_SDIV: 771 return IsFP ? Instruction::FDiv : Instruction::SDiv; 772 case bitc::BINOP_UREM: 773 return IsFP ? -1 : Instruction::URem; 774 case bitc::BINOP_SREM: 775 return IsFP ? Instruction::FRem : Instruction::SRem; 776 case bitc::BINOP_SHL: 777 return IsFP ? -1 : Instruction::Shl; 778 case bitc::BINOP_LSHR: 779 return IsFP ? -1 : Instruction::LShr; 780 case bitc::BINOP_ASHR: 781 return IsFP ? -1 : Instruction::AShr; 782 case bitc::BINOP_AND: 783 return IsFP ? -1 : Instruction::And; 784 case bitc::BINOP_OR: 785 return IsFP ? -1 : Instruction::Or; 786 case bitc::BINOP_XOR: 787 return IsFP ? -1 : Instruction::Xor; 788 } 789 } 790 791 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 792 switch (Val) { 793 default: return AtomicRMWInst::BAD_BINOP; 794 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 795 case bitc::RMW_ADD: return AtomicRMWInst::Add; 796 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 797 case bitc::RMW_AND: return AtomicRMWInst::And; 798 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 799 case bitc::RMW_OR: return AtomicRMWInst::Or; 800 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 801 case bitc::RMW_MAX: return AtomicRMWInst::Max; 802 case bitc::RMW_MIN: return AtomicRMWInst::Min; 803 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 804 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 805 } 806 } 807 808 static AtomicOrdering getDecodedOrdering(unsigned Val) { 809 switch (Val) { 810 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 811 case bitc::ORDERING_UNORDERED: return Unordered; 812 case bitc::ORDERING_MONOTONIC: return Monotonic; 813 case bitc::ORDERING_ACQUIRE: return Acquire; 814 case bitc::ORDERING_RELEASE: return Release; 815 case bitc::ORDERING_ACQREL: return AcquireRelease; 816 default: // Map unknown orderings to sequentially-consistent. 817 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 818 } 819 } 820 821 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 822 switch (Val) { 823 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 824 default: // Map unknown scopes to cross-thread. 825 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 826 } 827 } 828 829 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown selection kinds to any. 832 case bitc::COMDAT_SELECTION_KIND_ANY: 833 return Comdat::Any; 834 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 835 return Comdat::ExactMatch; 836 case bitc::COMDAT_SELECTION_KIND_LARGEST: 837 return Comdat::Largest; 838 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 839 return Comdat::NoDuplicates; 840 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 841 return Comdat::SameSize; 842 } 843 } 844 845 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 846 FastMathFlags FMF; 847 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 848 FMF.setUnsafeAlgebra(); 849 if (0 != (Val & FastMathFlags::NoNaNs)) 850 FMF.setNoNaNs(); 851 if (0 != (Val & FastMathFlags::NoInfs)) 852 FMF.setNoInfs(); 853 if (0 != (Val & FastMathFlags::NoSignedZeros)) 854 FMF.setNoSignedZeros(); 855 if (0 != (Val & FastMathFlags::AllowReciprocal)) 856 FMF.setAllowReciprocal(); 857 return FMF; 858 } 859 860 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 861 switch (Val) { 862 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 863 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 864 } 865 } 866 867 namespace llvm { 868 namespace { 869 /// \brief A class for maintaining the slot number definition 870 /// as a placeholder for the actual definition for forward constants defs. 871 class ConstantPlaceHolder : public ConstantExpr { 872 void operator=(const ConstantPlaceHolder &) = delete; 873 874 public: 875 // allocate space for exactly one operand 876 void *operator new(size_t s) { return User::operator new(s, 1); } 877 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 878 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 879 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 880 } 881 882 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 883 static bool classof(const Value *V) { 884 return isa<ConstantExpr>(V) && 885 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 886 } 887 888 /// Provide fast operand accessors 889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 890 }; 891 } 892 893 // FIXME: can we inherit this from ConstantExpr? 894 template <> 895 struct OperandTraits<ConstantPlaceHolder> : 896 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 897 }; 898 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 899 } 900 901 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 902 if (Idx == size()) { 903 push_back(V); 904 return false; 905 } 906 907 if (Idx >= size()) 908 resize(Idx+1); 909 910 WeakVH &OldV = ValuePtrs[Idx]; 911 if (!OldV) { 912 OldV = V; 913 return false; 914 } 915 916 // Handle constants and non-constants (e.g. instrs) differently for 917 // efficiency. 918 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 919 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 920 OldV = V; 921 } else { 922 // If there was a forward reference to this value, replace it. 923 Value *PrevVal = OldV; 924 // Check operator constraints. We only put cleanuppads or catchpads in 925 // the forward value map if the value is constrained to match. 926 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 927 if (!isa<CatchPadInst>(V)) 928 return true; 929 // Delete the dummy basic block that was created with the sentinel 930 // catchpad. 931 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 932 assert(DummyBlock == CatchPad->getNormalDest()); 933 CatchPad->dropAllReferences(); 934 delete DummyBlock; 935 } else if (isa<CleanupPadInst>(PrevVal)) { 936 if (!isa<CleanupPadInst>(V)) 937 return true; 938 } 939 OldV->replaceAllUsesWith(V); 940 delete PrevVal; 941 } 942 943 return false; 944 } 945 946 947 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 948 Type *Ty) { 949 if (Idx >= size()) 950 resize(Idx + 1); 951 952 if (Value *V = ValuePtrs[Idx]) { 953 if (Ty != V->getType()) 954 report_fatal_error("Type mismatch in constant table!"); 955 return cast<Constant>(V); 956 } 957 958 // Create and return a placeholder, which will later be RAUW'd. 959 Constant *C = new ConstantPlaceHolder(Ty, Context); 960 ValuePtrs[Idx] = C; 961 return C; 962 } 963 964 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 965 OperatorConstraint OC) { 966 // Bail out for a clearly invalid value. This would make us call resize(0) 967 if (Idx == UINT_MAX) 968 return nullptr; 969 970 if (Idx >= size()) 971 resize(Idx + 1); 972 973 if (Value *V = ValuePtrs[Idx]) { 974 // If the types don't match, it's invalid. 975 if (Ty && Ty != V->getType()) 976 return nullptr; 977 if (!OC) 978 return V; 979 // Use dyn_cast to enforce operator constraints 980 switch (OC) { 981 case OC_CatchPad: 982 return dyn_cast<CatchPadInst>(V); 983 case OC_CleanupPad: 984 return dyn_cast<CleanupPadInst>(V); 985 default: 986 llvm_unreachable("Unexpected operator constraint"); 987 } 988 } 989 990 // No type specified, must be invalid reference. 991 if (!Ty) return nullptr; 992 993 // Create and return a placeholder, which will later be RAUW'd. 994 Value *V; 995 switch (OC) { 996 case OC_None: 997 V = new Argument(Ty); 998 break; 999 case OC_CatchPad: { 1000 BasicBlock *BB = BasicBlock::Create(Context); 1001 V = CatchPadInst::Create(BB, BB, {}); 1002 break; 1003 } 1004 default: 1005 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 1006 V = CleanupPadInst::Create(Context, {}); 1007 break; 1008 } 1009 1010 ValuePtrs[Idx] = V; 1011 return V; 1012 } 1013 1014 /// Once all constants are read, this method bulk resolves any forward 1015 /// references. The idea behind this is that we sometimes get constants (such 1016 /// as large arrays) which reference *many* forward ref constants. Replacing 1017 /// each of these causes a lot of thrashing when building/reuniquing the 1018 /// constant. Instead of doing this, we look at all the uses and rewrite all 1019 /// the place holders at once for any constant that uses a placeholder. 1020 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1021 // Sort the values by-pointer so that they are efficient to look up with a 1022 // binary search. 1023 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1024 1025 SmallVector<Constant*, 64> NewOps; 1026 1027 while (!ResolveConstants.empty()) { 1028 Value *RealVal = operator[](ResolveConstants.back().second); 1029 Constant *Placeholder = ResolveConstants.back().first; 1030 ResolveConstants.pop_back(); 1031 1032 // Loop over all users of the placeholder, updating them to reference the 1033 // new value. If they reference more than one placeholder, update them all 1034 // at once. 1035 while (!Placeholder->use_empty()) { 1036 auto UI = Placeholder->user_begin(); 1037 User *U = *UI; 1038 1039 // If the using object isn't uniqued, just update the operands. This 1040 // handles instructions and initializers for global variables. 1041 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1042 UI.getUse().set(RealVal); 1043 continue; 1044 } 1045 1046 // Otherwise, we have a constant that uses the placeholder. Replace that 1047 // constant with a new constant that has *all* placeholder uses updated. 1048 Constant *UserC = cast<Constant>(U); 1049 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1050 I != E; ++I) { 1051 Value *NewOp; 1052 if (!isa<ConstantPlaceHolder>(*I)) { 1053 // Not a placeholder reference. 1054 NewOp = *I; 1055 } else if (*I == Placeholder) { 1056 // Common case is that it just references this one placeholder. 1057 NewOp = RealVal; 1058 } else { 1059 // Otherwise, look up the placeholder in ResolveConstants. 1060 ResolveConstantsTy::iterator It = 1061 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1062 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1063 0)); 1064 assert(It != ResolveConstants.end() && It->first == *I); 1065 NewOp = operator[](It->second); 1066 } 1067 1068 NewOps.push_back(cast<Constant>(NewOp)); 1069 } 1070 1071 // Make the new constant. 1072 Constant *NewC; 1073 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1074 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1075 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1076 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1077 } else if (isa<ConstantVector>(UserC)) { 1078 NewC = ConstantVector::get(NewOps); 1079 } else { 1080 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1081 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1082 } 1083 1084 UserC->replaceAllUsesWith(NewC); 1085 UserC->destroyConstant(); 1086 NewOps.clear(); 1087 } 1088 1089 // Update all ValueHandles, they should be the only users at this point. 1090 Placeholder->replaceAllUsesWith(RealVal); 1091 delete Placeholder; 1092 } 1093 } 1094 1095 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1096 if (Idx == size()) { 1097 push_back(MD); 1098 return; 1099 } 1100 1101 if (Idx >= size()) 1102 resize(Idx+1); 1103 1104 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1105 if (!OldMD) { 1106 OldMD.reset(MD); 1107 return; 1108 } 1109 1110 // If there was a forward reference to this value, replace it. 1111 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1112 PrevMD->replaceAllUsesWith(MD); 1113 --NumFwdRefs; 1114 } 1115 1116 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1117 if (Idx >= size()) 1118 resize(Idx + 1); 1119 1120 if (Metadata *MD = MDValuePtrs[Idx]) 1121 return MD; 1122 1123 // Track forward refs to be resolved later. 1124 if (AnyFwdRefs) { 1125 MinFwdRef = std::min(MinFwdRef, Idx); 1126 MaxFwdRef = std::max(MaxFwdRef, Idx); 1127 } else { 1128 AnyFwdRefs = true; 1129 MinFwdRef = MaxFwdRef = Idx; 1130 } 1131 ++NumFwdRefs; 1132 1133 // Create and return a placeholder, which will later be RAUW'd. 1134 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1135 MDValuePtrs[Idx].reset(MD); 1136 return MD; 1137 } 1138 1139 void BitcodeReaderMDValueList::tryToResolveCycles() { 1140 if (!AnyFwdRefs) 1141 // Nothing to do. 1142 return; 1143 1144 if (NumFwdRefs) 1145 // Still forward references... can't resolve cycles. 1146 return; 1147 1148 // Resolve any cycles. 1149 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1150 auto &MD = MDValuePtrs[I]; 1151 auto *N = dyn_cast_or_null<MDNode>(MD); 1152 if (!N) 1153 continue; 1154 1155 assert(!N->isTemporary() && "Unexpected forward reference"); 1156 N->resolveCycles(); 1157 } 1158 1159 // Make sure we return early again until there's another forward ref. 1160 AnyFwdRefs = false; 1161 } 1162 1163 Type *BitcodeReader::getTypeByID(unsigned ID) { 1164 // The type table size is always specified correctly. 1165 if (ID >= TypeList.size()) 1166 return nullptr; 1167 1168 if (Type *Ty = TypeList[ID]) 1169 return Ty; 1170 1171 // If we have a forward reference, the only possible case is when it is to a 1172 // named struct. Just create a placeholder for now. 1173 return TypeList[ID] = createIdentifiedStructType(Context); 1174 } 1175 1176 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1177 StringRef Name) { 1178 auto *Ret = StructType::create(Context, Name); 1179 IdentifiedStructTypes.push_back(Ret); 1180 return Ret; 1181 } 1182 1183 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1184 auto *Ret = StructType::create(Context); 1185 IdentifiedStructTypes.push_back(Ret); 1186 return Ret; 1187 } 1188 1189 1190 //===----------------------------------------------------------------------===// 1191 // Functions for parsing blocks from the bitcode file 1192 //===----------------------------------------------------------------------===// 1193 1194 1195 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1196 /// been decoded from the given integer. This function must stay in sync with 1197 /// 'encodeLLVMAttributesForBitcode'. 1198 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1199 uint64_t EncodedAttrs) { 1200 // FIXME: Remove in 4.0. 1201 1202 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1203 // the bits above 31 down by 11 bits. 1204 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1205 assert((!Alignment || isPowerOf2_32(Alignment)) && 1206 "Alignment must be a power of two."); 1207 1208 if (Alignment) 1209 B.addAlignmentAttr(Alignment); 1210 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1211 (EncodedAttrs & 0xffff)); 1212 } 1213 1214 std::error_code BitcodeReader::parseAttributeBlock() { 1215 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1216 return error("Invalid record"); 1217 1218 if (!MAttributes.empty()) 1219 return error("Invalid multiple blocks"); 1220 1221 SmallVector<uint64_t, 64> Record; 1222 1223 SmallVector<AttributeSet, 8> Attrs; 1224 1225 // Read all the records. 1226 while (1) { 1227 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1228 1229 switch (Entry.Kind) { 1230 case BitstreamEntry::SubBlock: // Handled for us already. 1231 case BitstreamEntry::Error: 1232 return error("Malformed block"); 1233 case BitstreamEntry::EndBlock: 1234 return std::error_code(); 1235 case BitstreamEntry::Record: 1236 // The interesting case. 1237 break; 1238 } 1239 1240 // Read a record. 1241 Record.clear(); 1242 switch (Stream.readRecord(Entry.ID, Record)) { 1243 default: // Default behavior: ignore. 1244 break; 1245 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1246 // FIXME: Remove in 4.0. 1247 if (Record.size() & 1) 1248 return error("Invalid record"); 1249 1250 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1251 AttrBuilder B; 1252 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1253 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1254 } 1255 1256 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1257 Attrs.clear(); 1258 break; 1259 } 1260 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1261 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1262 Attrs.push_back(MAttributeGroups[Record[i]]); 1263 1264 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1265 Attrs.clear(); 1266 break; 1267 } 1268 } 1269 } 1270 } 1271 1272 // Returns Attribute::None on unrecognized codes. 1273 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1274 switch (Code) { 1275 default: 1276 return Attribute::None; 1277 case bitc::ATTR_KIND_ALIGNMENT: 1278 return Attribute::Alignment; 1279 case bitc::ATTR_KIND_ALWAYS_INLINE: 1280 return Attribute::AlwaysInline; 1281 case bitc::ATTR_KIND_ARGMEMONLY: 1282 return Attribute::ArgMemOnly; 1283 case bitc::ATTR_KIND_BUILTIN: 1284 return Attribute::Builtin; 1285 case bitc::ATTR_KIND_BY_VAL: 1286 return Attribute::ByVal; 1287 case bitc::ATTR_KIND_IN_ALLOCA: 1288 return Attribute::InAlloca; 1289 case bitc::ATTR_KIND_COLD: 1290 return Attribute::Cold; 1291 case bitc::ATTR_KIND_CONVERGENT: 1292 return Attribute::Convergent; 1293 case bitc::ATTR_KIND_INLINE_HINT: 1294 return Attribute::InlineHint; 1295 case bitc::ATTR_KIND_IN_REG: 1296 return Attribute::InReg; 1297 case bitc::ATTR_KIND_JUMP_TABLE: 1298 return Attribute::JumpTable; 1299 case bitc::ATTR_KIND_MIN_SIZE: 1300 return Attribute::MinSize; 1301 case bitc::ATTR_KIND_NAKED: 1302 return Attribute::Naked; 1303 case bitc::ATTR_KIND_NEST: 1304 return Attribute::Nest; 1305 case bitc::ATTR_KIND_NO_ALIAS: 1306 return Attribute::NoAlias; 1307 case bitc::ATTR_KIND_NO_BUILTIN: 1308 return Attribute::NoBuiltin; 1309 case bitc::ATTR_KIND_NO_CAPTURE: 1310 return Attribute::NoCapture; 1311 case bitc::ATTR_KIND_NO_DUPLICATE: 1312 return Attribute::NoDuplicate; 1313 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1314 return Attribute::NoImplicitFloat; 1315 case bitc::ATTR_KIND_NO_INLINE: 1316 return Attribute::NoInline; 1317 case bitc::ATTR_KIND_NO_RECURSE: 1318 return Attribute::NoRecurse; 1319 case bitc::ATTR_KIND_NON_LAZY_BIND: 1320 return Attribute::NonLazyBind; 1321 case bitc::ATTR_KIND_NON_NULL: 1322 return Attribute::NonNull; 1323 case bitc::ATTR_KIND_DEREFERENCEABLE: 1324 return Attribute::Dereferenceable; 1325 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1326 return Attribute::DereferenceableOrNull; 1327 case bitc::ATTR_KIND_NO_RED_ZONE: 1328 return Attribute::NoRedZone; 1329 case bitc::ATTR_KIND_NO_RETURN: 1330 return Attribute::NoReturn; 1331 case bitc::ATTR_KIND_NO_UNWIND: 1332 return Attribute::NoUnwind; 1333 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1334 return Attribute::OptimizeForSize; 1335 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1336 return Attribute::OptimizeNone; 1337 case bitc::ATTR_KIND_READ_NONE: 1338 return Attribute::ReadNone; 1339 case bitc::ATTR_KIND_READ_ONLY: 1340 return Attribute::ReadOnly; 1341 case bitc::ATTR_KIND_RETURNED: 1342 return Attribute::Returned; 1343 case bitc::ATTR_KIND_RETURNS_TWICE: 1344 return Attribute::ReturnsTwice; 1345 case bitc::ATTR_KIND_S_EXT: 1346 return Attribute::SExt; 1347 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1348 return Attribute::StackAlignment; 1349 case bitc::ATTR_KIND_STACK_PROTECT: 1350 return Attribute::StackProtect; 1351 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1352 return Attribute::StackProtectReq; 1353 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1354 return Attribute::StackProtectStrong; 1355 case bitc::ATTR_KIND_SAFESTACK: 1356 return Attribute::SafeStack; 1357 case bitc::ATTR_KIND_STRUCT_RET: 1358 return Attribute::StructRet; 1359 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1360 return Attribute::SanitizeAddress; 1361 case bitc::ATTR_KIND_SANITIZE_THREAD: 1362 return Attribute::SanitizeThread; 1363 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1364 return Attribute::SanitizeMemory; 1365 case bitc::ATTR_KIND_UW_TABLE: 1366 return Attribute::UWTable; 1367 case bitc::ATTR_KIND_Z_EXT: 1368 return Attribute::ZExt; 1369 } 1370 } 1371 1372 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1373 unsigned &Alignment) { 1374 // Note: Alignment in bitcode files is incremented by 1, so that zero 1375 // can be used for default alignment. 1376 if (Exponent > Value::MaxAlignmentExponent + 1) 1377 return error("Invalid alignment value"); 1378 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1379 return std::error_code(); 1380 } 1381 1382 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1383 Attribute::AttrKind *Kind) { 1384 *Kind = getAttrFromCode(Code); 1385 if (*Kind == Attribute::None) 1386 return error(BitcodeError::CorruptedBitcode, 1387 "Unknown attribute kind (" + Twine(Code) + ")"); 1388 return std::error_code(); 1389 } 1390 1391 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1392 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1393 return error("Invalid record"); 1394 1395 if (!MAttributeGroups.empty()) 1396 return error("Invalid multiple blocks"); 1397 1398 SmallVector<uint64_t, 64> Record; 1399 1400 // Read all the records. 1401 while (1) { 1402 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1403 1404 switch (Entry.Kind) { 1405 case BitstreamEntry::SubBlock: // Handled for us already. 1406 case BitstreamEntry::Error: 1407 return error("Malformed block"); 1408 case BitstreamEntry::EndBlock: 1409 return std::error_code(); 1410 case BitstreamEntry::Record: 1411 // The interesting case. 1412 break; 1413 } 1414 1415 // Read a record. 1416 Record.clear(); 1417 switch (Stream.readRecord(Entry.ID, Record)) { 1418 default: // Default behavior: ignore. 1419 break; 1420 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1421 if (Record.size() < 3) 1422 return error("Invalid record"); 1423 1424 uint64_t GrpID = Record[0]; 1425 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1426 1427 AttrBuilder B; 1428 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1429 if (Record[i] == 0) { // Enum attribute 1430 Attribute::AttrKind Kind; 1431 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1432 return EC; 1433 1434 B.addAttribute(Kind); 1435 } else if (Record[i] == 1) { // Integer attribute 1436 Attribute::AttrKind Kind; 1437 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1438 return EC; 1439 if (Kind == Attribute::Alignment) 1440 B.addAlignmentAttr(Record[++i]); 1441 else if (Kind == Attribute::StackAlignment) 1442 B.addStackAlignmentAttr(Record[++i]); 1443 else if (Kind == Attribute::Dereferenceable) 1444 B.addDereferenceableAttr(Record[++i]); 1445 else if (Kind == Attribute::DereferenceableOrNull) 1446 B.addDereferenceableOrNullAttr(Record[++i]); 1447 } else { // String attribute 1448 assert((Record[i] == 3 || Record[i] == 4) && 1449 "Invalid attribute group entry"); 1450 bool HasValue = (Record[i++] == 4); 1451 SmallString<64> KindStr; 1452 SmallString<64> ValStr; 1453 1454 while (Record[i] != 0 && i != e) 1455 KindStr += Record[i++]; 1456 assert(Record[i] == 0 && "Kind string not null terminated"); 1457 1458 if (HasValue) { 1459 // Has a value associated with it. 1460 ++i; // Skip the '0' that terminates the "kind" string. 1461 while (Record[i] != 0 && i != e) 1462 ValStr += Record[i++]; 1463 assert(Record[i] == 0 && "Value string not null terminated"); 1464 } 1465 1466 B.addAttribute(KindStr.str(), ValStr.str()); 1467 } 1468 } 1469 1470 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1471 break; 1472 } 1473 } 1474 } 1475 } 1476 1477 std::error_code BitcodeReader::parseTypeTable() { 1478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1479 return error("Invalid record"); 1480 1481 return parseTypeTableBody(); 1482 } 1483 1484 std::error_code BitcodeReader::parseTypeTableBody() { 1485 if (!TypeList.empty()) 1486 return error("Invalid multiple blocks"); 1487 1488 SmallVector<uint64_t, 64> Record; 1489 unsigned NumRecords = 0; 1490 1491 SmallString<64> TypeName; 1492 1493 // Read all the records for this type table. 1494 while (1) { 1495 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1496 1497 switch (Entry.Kind) { 1498 case BitstreamEntry::SubBlock: // Handled for us already. 1499 case BitstreamEntry::Error: 1500 return error("Malformed block"); 1501 case BitstreamEntry::EndBlock: 1502 if (NumRecords != TypeList.size()) 1503 return error("Malformed block"); 1504 return std::error_code(); 1505 case BitstreamEntry::Record: 1506 // The interesting case. 1507 break; 1508 } 1509 1510 // Read a record. 1511 Record.clear(); 1512 Type *ResultTy = nullptr; 1513 switch (Stream.readRecord(Entry.ID, Record)) { 1514 default: 1515 return error("Invalid value"); 1516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1518 // type list. This allows us to reserve space. 1519 if (Record.size() < 1) 1520 return error("Invalid record"); 1521 TypeList.resize(Record[0]); 1522 continue; 1523 case bitc::TYPE_CODE_VOID: // VOID 1524 ResultTy = Type::getVoidTy(Context); 1525 break; 1526 case bitc::TYPE_CODE_HALF: // HALF 1527 ResultTy = Type::getHalfTy(Context); 1528 break; 1529 case bitc::TYPE_CODE_FLOAT: // FLOAT 1530 ResultTy = Type::getFloatTy(Context); 1531 break; 1532 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1533 ResultTy = Type::getDoubleTy(Context); 1534 break; 1535 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1536 ResultTy = Type::getX86_FP80Ty(Context); 1537 break; 1538 case bitc::TYPE_CODE_FP128: // FP128 1539 ResultTy = Type::getFP128Ty(Context); 1540 break; 1541 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1542 ResultTy = Type::getPPC_FP128Ty(Context); 1543 break; 1544 case bitc::TYPE_CODE_LABEL: // LABEL 1545 ResultTy = Type::getLabelTy(Context); 1546 break; 1547 case bitc::TYPE_CODE_METADATA: // METADATA 1548 ResultTy = Type::getMetadataTy(Context); 1549 break; 1550 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1551 ResultTy = Type::getX86_MMXTy(Context); 1552 break; 1553 case bitc::TYPE_CODE_TOKEN: // TOKEN 1554 ResultTy = Type::getTokenTy(Context); 1555 break; 1556 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1557 if (Record.size() < 1) 1558 return error("Invalid record"); 1559 1560 uint64_t NumBits = Record[0]; 1561 if (NumBits < IntegerType::MIN_INT_BITS || 1562 NumBits > IntegerType::MAX_INT_BITS) 1563 return error("Bitwidth for integer type out of range"); 1564 ResultTy = IntegerType::get(Context, NumBits); 1565 break; 1566 } 1567 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1568 // [pointee type, address space] 1569 if (Record.size() < 1) 1570 return error("Invalid record"); 1571 unsigned AddressSpace = 0; 1572 if (Record.size() == 2) 1573 AddressSpace = Record[1]; 1574 ResultTy = getTypeByID(Record[0]); 1575 if (!ResultTy || 1576 !PointerType::isValidElementType(ResultTy)) 1577 return error("Invalid type"); 1578 ResultTy = PointerType::get(ResultTy, AddressSpace); 1579 break; 1580 } 1581 case bitc::TYPE_CODE_FUNCTION_OLD: { 1582 // FIXME: attrid is dead, remove it in LLVM 4.0 1583 // FUNCTION: [vararg, attrid, retty, paramty x N] 1584 if (Record.size() < 3) 1585 return error("Invalid record"); 1586 SmallVector<Type*, 8> ArgTys; 1587 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1588 if (Type *T = getTypeByID(Record[i])) 1589 ArgTys.push_back(T); 1590 else 1591 break; 1592 } 1593 1594 ResultTy = getTypeByID(Record[2]); 1595 if (!ResultTy || ArgTys.size() < Record.size()-3) 1596 return error("Invalid type"); 1597 1598 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1599 break; 1600 } 1601 case bitc::TYPE_CODE_FUNCTION: { 1602 // FUNCTION: [vararg, retty, paramty x N] 1603 if (Record.size() < 2) 1604 return error("Invalid record"); 1605 SmallVector<Type*, 8> ArgTys; 1606 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1607 if (Type *T = getTypeByID(Record[i])) { 1608 if (!FunctionType::isValidArgumentType(T)) 1609 return error("Invalid function argument type"); 1610 ArgTys.push_back(T); 1611 } 1612 else 1613 break; 1614 } 1615 1616 ResultTy = getTypeByID(Record[1]); 1617 if (!ResultTy || ArgTys.size() < Record.size()-2) 1618 return error("Invalid type"); 1619 1620 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1621 break; 1622 } 1623 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1624 if (Record.size() < 1) 1625 return error("Invalid record"); 1626 SmallVector<Type*, 8> EltTys; 1627 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1628 if (Type *T = getTypeByID(Record[i])) 1629 EltTys.push_back(T); 1630 else 1631 break; 1632 } 1633 if (EltTys.size() != Record.size()-1) 1634 return error("Invalid type"); 1635 ResultTy = StructType::get(Context, EltTys, Record[0]); 1636 break; 1637 } 1638 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1639 if (convertToString(Record, 0, TypeName)) 1640 return error("Invalid record"); 1641 continue; 1642 1643 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1644 if (Record.size() < 1) 1645 return error("Invalid record"); 1646 1647 if (NumRecords >= TypeList.size()) 1648 return error("Invalid TYPE table"); 1649 1650 // Check to see if this was forward referenced, if so fill in the temp. 1651 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1652 if (Res) { 1653 Res->setName(TypeName); 1654 TypeList[NumRecords] = nullptr; 1655 } else // Otherwise, create a new struct. 1656 Res = createIdentifiedStructType(Context, TypeName); 1657 TypeName.clear(); 1658 1659 SmallVector<Type*, 8> EltTys; 1660 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1661 if (Type *T = getTypeByID(Record[i])) 1662 EltTys.push_back(T); 1663 else 1664 break; 1665 } 1666 if (EltTys.size() != Record.size()-1) 1667 return error("Invalid record"); 1668 Res->setBody(EltTys, Record[0]); 1669 ResultTy = Res; 1670 break; 1671 } 1672 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1673 if (Record.size() != 1) 1674 return error("Invalid record"); 1675 1676 if (NumRecords >= TypeList.size()) 1677 return error("Invalid TYPE table"); 1678 1679 // Check to see if this was forward referenced, if so fill in the temp. 1680 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1681 if (Res) { 1682 Res->setName(TypeName); 1683 TypeList[NumRecords] = nullptr; 1684 } else // Otherwise, create a new struct with no body. 1685 Res = createIdentifiedStructType(Context, TypeName); 1686 TypeName.clear(); 1687 ResultTy = Res; 1688 break; 1689 } 1690 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1691 if (Record.size() < 2) 1692 return error("Invalid record"); 1693 ResultTy = getTypeByID(Record[1]); 1694 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1695 return error("Invalid type"); 1696 ResultTy = ArrayType::get(ResultTy, Record[0]); 1697 break; 1698 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1699 if (Record.size() < 2) 1700 return error("Invalid record"); 1701 if (Record[0] == 0) 1702 return error("Invalid vector length"); 1703 ResultTy = getTypeByID(Record[1]); 1704 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1705 return error("Invalid type"); 1706 ResultTy = VectorType::get(ResultTy, Record[0]); 1707 break; 1708 } 1709 1710 if (NumRecords >= TypeList.size()) 1711 return error("Invalid TYPE table"); 1712 if (TypeList[NumRecords]) 1713 return error( 1714 "Invalid TYPE table: Only named structs can be forward referenced"); 1715 assert(ResultTy && "Didn't read a type?"); 1716 TypeList[NumRecords++] = ResultTy; 1717 } 1718 } 1719 1720 std::error_code BitcodeReader::parseOperandBundleTags() { 1721 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1722 return error("Invalid record"); 1723 1724 if (!BundleTags.empty()) 1725 return error("Invalid multiple blocks"); 1726 1727 SmallVector<uint64_t, 64> Record; 1728 1729 while (1) { 1730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1731 1732 switch (Entry.Kind) { 1733 case BitstreamEntry::SubBlock: // Handled for us already. 1734 case BitstreamEntry::Error: 1735 return error("Malformed block"); 1736 case BitstreamEntry::EndBlock: 1737 return std::error_code(); 1738 case BitstreamEntry::Record: 1739 // The interesting case. 1740 break; 1741 } 1742 1743 // Tags are implicitly mapped to integers by their order. 1744 1745 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1746 return error("Invalid record"); 1747 1748 // OPERAND_BUNDLE_TAG: [strchr x N] 1749 BundleTags.emplace_back(); 1750 if (convertToString(Record, 0, BundleTags.back())) 1751 return error("Invalid record"); 1752 Record.clear(); 1753 } 1754 } 1755 1756 /// Associate a value with its name from the given index in the provided record. 1757 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1758 unsigned NameIndex, Triple &TT) { 1759 SmallString<128> ValueName; 1760 if (convertToString(Record, NameIndex, ValueName)) 1761 return error("Invalid record"); 1762 unsigned ValueID = Record[0]; 1763 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1764 return error("Invalid record"); 1765 Value *V = ValueList[ValueID]; 1766 1767 StringRef NameStr(ValueName.data(), ValueName.size()); 1768 if (NameStr.find_first_of(0) != StringRef::npos) 1769 return error("Invalid value name"); 1770 V->setName(NameStr); 1771 auto *GO = dyn_cast<GlobalObject>(V); 1772 if (GO) { 1773 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1774 if (TT.isOSBinFormatMachO()) 1775 GO->setComdat(nullptr); 1776 else 1777 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1778 } 1779 } 1780 return V; 1781 } 1782 1783 /// Parse the value symbol table at either the current parsing location or 1784 /// at the given bit offset if provided. 1785 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1786 uint64_t CurrentBit; 1787 // Pass in the Offset to distinguish between calling for the module-level 1788 // VST (where we want to jump to the VST offset) and the function-level 1789 // VST (where we don't). 1790 if (Offset > 0) { 1791 // Save the current parsing location so we can jump back at the end 1792 // of the VST read. 1793 CurrentBit = Stream.GetCurrentBitNo(); 1794 Stream.JumpToBit(Offset * 32); 1795 #ifndef NDEBUG 1796 // Do some checking if we are in debug mode. 1797 BitstreamEntry Entry = Stream.advance(); 1798 assert(Entry.Kind == BitstreamEntry::SubBlock); 1799 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1800 #else 1801 // In NDEBUG mode ignore the output so we don't get an unused variable 1802 // warning. 1803 Stream.advance(); 1804 #endif 1805 } 1806 1807 // Compute the delta between the bitcode indices in the VST (the word offset 1808 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1809 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1810 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1811 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1812 // just before entering the VST subblock because: 1) the EnterSubBlock 1813 // changes the AbbrevID width; 2) the VST block is nested within the same 1814 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1815 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1816 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1817 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1818 unsigned FuncBitcodeOffsetDelta = 1819 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1820 1821 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1822 return error("Invalid record"); 1823 1824 SmallVector<uint64_t, 64> Record; 1825 1826 Triple TT(TheModule->getTargetTriple()); 1827 1828 // Read all the records for this value table. 1829 SmallString<128> ValueName; 1830 while (1) { 1831 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1832 1833 switch (Entry.Kind) { 1834 case BitstreamEntry::SubBlock: // Handled for us already. 1835 case BitstreamEntry::Error: 1836 return error("Malformed block"); 1837 case BitstreamEntry::EndBlock: 1838 if (Offset > 0) 1839 Stream.JumpToBit(CurrentBit); 1840 return std::error_code(); 1841 case BitstreamEntry::Record: 1842 // The interesting case. 1843 break; 1844 } 1845 1846 // Read a record. 1847 Record.clear(); 1848 switch (Stream.readRecord(Entry.ID, Record)) { 1849 default: // Default behavior: unknown type. 1850 break; 1851 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1852 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1853 if (std::error_code EC = ValOrErr.getError()) 1854 return EC; 1855 ValOrErr.get(); 1856 break; 1857 } 1858 case bitc::VST_CODE_FNENTRY: { 1859 // VST_FNENTRY: [valueid, offset, namechar x N] 1860 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1861 if (std::error_code EC = ValOrErr.getError()) 1862 return EC; 1863 Value *V = ValOrErr.get(); 1864 1865 auto *GO = dyn_cast<GlobalObject>(V); 1866 if (!GO) { 1867 // If this is an alias, need to get the actual Function object 1868 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1869 auto *GA = dyn_cast<GlobalAlias>(V); 1870 if (GA) 1871 GO = GA->getBaseObject(); 1872 assert(GO); 1873 } 1874 1875 uint64_t FuncWordOffset = Record[1]; 1876 Function *F = dyn_cast<Function>(GO); 1877 assert(F); 1878 uint64_t FuncBitOffset = FuncWordOffset * 32; 1879 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1880 // Set the LastFunctionBlockBit to point to the last function block. 1881 // Later when parsing is resumed after function materialization, 1882 // we can simply skip that last function block. 1883 if (FuncBitOffset > LastFunctionBlockBit) 1884 LastFunctionBlockBit = FuncBitOffset; 1885 break; 1886 } 1887 case bitc::VST_CODE_BBENTRY: { 1888 if (convertToString(Record, 1, ValueName)) 1889 return error("Invalid record"); 1890 BasicBlock *BB = getBasicBlock(Record[0]); 1891 if (!BB) 1892 return error("Invalid record"); 1893 1894 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1895 ValueName.clear(); 1896 break; 1897 } 1898 } 1899 } 1900 } 1901 1902 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1903 std::error_code 1904 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1905 if (Record.size() < 2) 1906 return error("Invalid record"); 1907 1908 unsigned Kind = Record[0]; 1909 SmallString<8> Name(Record.begin() + 1, Record.end()); 1910 1911 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1912 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1913 return error("Conflicting METADATA_KIND records"); 1914 return std::error_code(); 1915 } 1916 1917 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1918 1919 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1920 /// module level metadata. 1921 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1922 IsMetadataMaterialized = true; 1923 unsigned NextMDValueNo = MDValueList.size(); 1924 if (ModuleLevel && SeenModuleValuesRecord) { 1925 // Now that we are parsing the module level metadata, we want to restart 1926 // the numbering of the MD values, and replace temp MD created earlier 1927 // with their real values. If we saw a METADATA_VALUE record then we 1928 // would have set the MDValueList size to the number specified in that 1929 // record, to support parsing function-level metadata first, and we need 1930 // to reset back to 0 to fill the MDValueList in with the parsed module 1931 // The function-level metadata parsing should have reset the MDValueList 1932 // size back to the value reported by the METADATA_VALUE record, saved in 1933 // NumModuleMDs. 1934 assert(NumModuleMDs == MDValueList.size() && 1935 "Expected MDValueList to only contain module level values"); 1936 NextMDValueNo = 0; 1937 } 1938 1939 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1940 return error("Invalid record"); 1941 1942 SmallVector<uint64_t, 64> Record; 1943 1944 auto getMD = 1945 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1946 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1947 if (ID) 1948 return getMD(ID - 1); 1949 return nullptr; 1950 }; 1951 auto getMDString = [&](unsigned ID) -> MDString *{ 1952 // This requires that the ID is not really a forward reference. In 1953 // particular, the MDString must already have been resolved. 1954 return cast_or_null<MDString>(getMDOrNull(ID)); 1955 }; 1956 1957 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1958 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1959 1960 // Read all the records. 1961 while (1) { 1962 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1963 1964 switch (Entry.Kind) { 1965 case BitstreamEntry::SubBlock: // Handled for us already. 1966 case BitstreamEntry::Error: 1967 return error("Malformed block"); 1968 case BitstreamEntry::EndBlock: 1969 MDValueList.tryToResolveCycles(); 1970 return std::error_code(); 1971 case BitstreamEntry::Record: 1972 // The interesting case. 1973 break; 1974 } 1975 1976 // Read a record. 1977 Record.clear(); 1978 unsigned Code = Stream.readRecord(Entry.ID, Record); 1979 bool IsDistinct = false; 1980 switch (Code) { 1981 default: // Default behavior: ignore. 1982 break; 1983 case bitc::METADATA_NAME: { 1984 // Read name of the named metadata. 1985 SmallString<8> Name(Record.begin(), Record.end()); 1986 Record.clear(); 1987 Code = Stream.ReadCode(); 1988 1989 unsigned NextBitCode = Stream.readRecord(Code, Record); 1990 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1991 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1992 1993 // Read named metadata elements. 1994 unsigned Size = Record.size(); 1995 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1996 for (unsigned i = 0; i != Size; ++i) { 1997 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1998 if (!MD) 1999 return error("Invalid record"); 2000 NMD->addOperand(MD); 2001 } 2002 break; 2003 } 2004 case bitc::METADATA_OLD_FN_NODE: { 2005 // FIXME: Remove in 4.0. 2006 // This is a LocalAsMetadata record, the only type of function-local 2007 // metadata. 2008 if (Record.size() % 2 == 1) 2009 return error("Invalid record"); 2010 2011 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2012 // to be legal, but there's no upgrade path. 2013 auto dropRecord = [&] { 2014 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 2015 }; 2016 if (Record.size() != 2) { 2017 dropRecord(); 2018 break; 2019 } 2020 2021 Type *Ty = getTypeByID(Record[0]); 2022 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2023 dropRecord(); 2024 break; 2025 } 2026 2027 MDValueList.assignValue( 2028 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2029 NextMDValueNo++); 2030 break; 2031 } 2032 case bitc::METADATA_OLD_NODE: { 2033 // FIXME: Remove in 4.0. 2034 if (Record.size() % 2 == 1) 2035 return error("Invalid record"); 2036 2037 unsigned Size = Record.size(); 2038 SmallVector<Metadata *, 8> Elts; 2039 for (unsigned i = 0; i != Size; i += 2) { 2040 Type *Ty = getTypeByID(Record[i]); 2041 if (!Ty) 2042 return error("Invalid record"); 2043 if (Ty->isMetadataTy()) 2044 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 2045 else if (!Ty->isVoidTy()) { 2046 auto *MD = 2047 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2048 assert(isa<ConstantAsMetadata>(MD) && 2049 "Expected non-function-local metadata"); 2050 Elts.push_back(MD); 2051 } else 2052 Elts.push_back(nullptr); 2053 } 2054 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2055 break; 2056 } 2057 case bitc::METADATA_VALUE: { 2058 if (Record.size() != 2) 2059 return error("Invalid record"); 2060 2061 Type *Ty = getTypeByID(Record[0]); 2062 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2063 return error("Invalid record"); 2064 2065 MDValueList.assignValue( 2066 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2067 NextMDValueNo++); 2068 break; 2069 } 2070 case bitc::METADATA_DISTINCT_NODE: 2071 IsDistinct = true; 2072 // fallthrough... 2073 case bitc::METADATA_NODE: { 2074 SmallVector<Metadata *, 8> Elts; 2075 Elts.reserve(Record.size()); 2076 for (unsigned ID : Record) 2077 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2078 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2079 : MDNode::get(Context, Elts), 2080 NextMDValueNo++); 2081 break; 2082 } 2083 case bitc::METADATA_LOCATION: { 2084 if (Record.size() != 5) 2085 return error("Invalid record"); 2086 2087 unsigned Line = Record[1]; 2088 unsigned Column = Record[2]; 2089 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2090 Metadata *InlinedAt = 2091 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2092 MDValueList.assignValue( 2093 GET_OR_DISTINCT(DILocation, Record[0], 2094 (Context, Line, Column, Scope, InlinedAt)), 2095 NextMDValueNo++); 2096 break; 2097 } 2098 case bitc::METADATA_GENERIC_DEBUG: { 2099 if (Record.size() < 4) 2100 return error("Invalid record"); 2101 2102 unsigned Tag = Record[1]; 2103 unsigned Version = Record[2]; 2104 2105 if (Tag >= 1u << 16 || Version != 0) 2106 return error("Invalid record"); 2107 2108 auto *Header = getMDString(Record[3]); 2109 SmallVector<Metadata *, 8> DwarfOps; 2110 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2111 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2112 : nullptr); 2113 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2114 (Context, Tag, Header, DwarfOps)), 2115 NextMDValueNo++); 2116 break; 2117 } 2118 case bitc::METADATA_SUBRANGE: { 2119 if (Record.size() != 3) 2120 return error("Invalid record"); 2121 2122 MDValueList.assignValue( 2123 GET_OR_DISTINCT(DISubrange, Record[0], 2124 (Context, Record[1], unrotateSign(Record[2]))), 2125 NextMDValueNo++); 2126 break; 2127 } 2128 case bitc::METADATA_ENUMERATOR: { 2129 if (Record.size() != 3) 2130 return error("Invalid record"); 2131 2132 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2133 (Context, unrotateSign(Record[1]), 2134 getMDString(Record[2]))), 2135 NextMDValueNo++); 2136 break; 2137 } 2138 case bitc::METADATA_BASIC_TYPE: { 2139 if (Record.size() != 6) 2140 return error("Invalid record"); 2141 2142 MDValueList.assignValue( 2143 GET_OR_DISTINCT(DIBasicType, Record[0], 2144 (Context, Record[1], getMDString(Record[2]), 2145 Record[3], Record[4], Record[5])), 2146 NextMDValueNo++); 2147 break; 2148 } 2149 case bitc::METADATA_DERIVED_TYPE: { 2150 if (Record.size() != 12) 2151 return error("Invalid record"); 2152 2153 MDValueList.assignValue( 2154 GET_OR_DISTINCT(DIDerivedType, Record[0], 2155 (Context, Record[1], getMDString(Record[2]), 2156 getMDOrNull(Record[3]), Record[4], 2157 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2158 Record[7], Record[8], Record[9], Record[10], 2159 getMDOrNull(Record[11]))), 2160 NextMDValueNo++); 2161 break; 2162 } 2163 case bitc::METADATA_COMPOSITE_TYPE: { 2164 if (Record.size() != 16) 2165 return error("Invalid record"); 2166 2167 MDValueList.assignValue( 2168 GET_OR_DISTINCT(DICompositeType, Record[0], 2169 (Context, Record[1], getMDString(Record[2]), 2170 getMDOrNull(Record[3]), Record[4], 2171 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2172 Record[7], Record[8], Record[9], Record[10], 2173 getMDOrNull(Record[11]), Record[12], 2174 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2175 getMDString(Record[15]))), 2176 NextMDValueNo++); 2177 break; 2178 } 2179 case bitc::METADATA_SUBROUTINE_TYPE: { 2180 if (Record.size() != 3) 2181 return error("Invalid record"); 2182 2183 MDValueList.assignValue( 2184 GET_OR_DISTINCT(DISubroutineType, Record[0], 2185 (Context, Record[1], getMDOrNull(Record[2]))), 2186 NextMDValueNo++); 2187 break; 2188 } 2189 2190 case bitc::METADATA_MODULE: { 2191 if (Record.size() != 6) 2192 return error("Invalid record"); 2193 2194 MDValueList.assignValue( 2195 GET_OR_DISTINCT(DIModule, Record[0], 2196 (Context, getMDOrNull(Record[1]), 2197 getMDString(Record[2]), getMDString(Record[3]), 2198 getMDString(Record[4]), getMDString(Record[5]))), 2199 NextMDValueNo++); 2200 break; 2201 } 2202 2203 case bitc::METADATA_FILE: { 2204 if (Record.size() != 3) 2205 return error("Invalid record"); 2206 2207 MDValueList.assignValue( 2208 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2209 getMDString(Record[2]))), 2210 NextMDValueNo++); 2211 break; 2212 } 2213 case bitc::METADATA_COMPILE_UNIT: { 2214 if (Record.size() < 14 || Record.size() > 15) 2215 return error("Invalid record"); 2216 2217 // Ignore Record[1], which indicates whether this compile unit is 2218 // distinct. It's always distinct. 2219 MDValueList.assignValue( 2220 DICompileUnit::getDistinct( 2221 Context, Record[1], getMDOrNull(Record[2]), 2222 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2223 Record[6], getMDString(Record[7]), Record[8], 2224 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2225 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2226 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2227 NextMDValueNo++); 2228 break; 2229 } 2230 case bitc::METADATA_SUBPROGRAM: { 2231 if (Record.size() != 18 && Record.size() != 19) 2232 return error("Invalid record"); 2233 2234 bool HasFn = Record.size() == 19; 2235 DISubprogram *SP = GET_OR_DISTINCT( 2236 DISubprogram, 2237 Record[0] || Record[8], // All definitions should be distinct. 2238 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2239 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2240 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2241 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2242 Record[14], getMDOrNull(Record[15 + HasFn]), 2243 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2244 MDValueList.assignValue(SP, NextMDValueNo++); 2245 2246 // Upgrade sp->function mapping to function->sp mapping. 2247 if (HasFn && Record[15]) { 2248 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2249 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2250 if (F->isMaterializable()) 2251 // Defer until materialized; unmaterialized functions may not have 2252 // metadata. 2253 FunctionsWithSPs[F] = SP; 2254 else if (!F->empty()) 2255 F->setSubprogram(SP); 2256 } 2257 } 2258 break; 2259 } 2260 case bitc::METADATA_LEXICAL_BLOCK: { 2261 if (Record.size() != 5) 2262 return error("Invalid record"); 2263 2264 MDValueList.assignValue( 2265 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2266 (Context, getMDOrNull(Record[1]), 2267 getMDOrNull(Record[2]), Record[3], Record[4])), 2268 NextMDValueNo++); 2269 break; 2270 } 2271 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2272 if (Record.size() != 4) 2273 return error("Invalid record"); 2274 2275 MDValueList.assignValue( 2276 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2277 (Context, getMDOrNull(Record[1]), 2278 getMDOrNull(Record[2]), Record[3])), 2279 NextMDValueNo++); 2280 break; 2281 } 2282 case bitc::METADATA_NAMESPACE: { 2283 if (Record.size() != 5) 2284 return error("Invalid record"); 2285 2286 MDValueList.assignValue( 2287 GET_OR_DISTINCT(DINamespace, Record[0], 2288 (Context, getMDOrNull(Record[1]), 2289 getMDOrNull(Record[2]), getMDString(Record[3]), 2290 Record[4])), 2291 NextMDValueNo++); 2292 break; 2293 } 2294 case bitc::METADATA_TEMPLATE_TYPE: { 2295 if (Record.size() != 3) 2296 return error("Invalid record"); 2297 2298 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2299 Record[0], 2300 (Context, getMDString(Record[1]), 2301 getMDOrNull(Record[2]))), 2302 NextMDValueNo++); 2303 break; 2304 } 2305 case bitc::METADATA_TEMPLATE_VALUE: { 2306 if (Record.size() != 5) 2307 return error("Invalid record"); 2308 2309 MDValueList.assignValue( 2310 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2311 (Context, Record[1], getMDString(Record[2]), 2312 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2313 NextMDValueNo++); 2314 break; 2315 } 2316 case bitc::METADATA_GLOBAL_VAR: { 2317 if (Record.size() != 11) 2318 return error("Invalid record"); 2319 2320 MDValueList.assignValue( 2321 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2322 (Context, getMDOrNull(Record[1]), 2323 getMDString(Record[2]), getMDString(Record[3]), 2324 getMDOrNull(Record[4]), Record[5], 2325 getMDOrNull(Record[6]), Record[7], Record[8], 2326 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2327 NextMDValueNo++); 2328 break; 2329 } 2330 case bitc::METADATA_LOCAL_VAR: { 2331 // 10th field is for the obseleted 'inlinedAt:' field. 2332 if (Record.size() < 8 || Record.size() > 10) 2333 return error("Invalid record"); 2334 2335 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2336 // DW_TAG_arg_variable. 2337 bool HasTag = Record.size() > 8; 2338 MDValueList.assignValue( 2339 GET_OR_DISTINCT(DILocalVariable, Record[0], 2340 (Context, getMDOrNull(Record[1 + HasTag]), 2341 getMDString(Record[2 + HasTag]), 2342 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2343 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2344 Record[7 + HasTag])), 2345 NextMDValueNo++); 2346 break; 2347 } 2348 case bitc::METADATA_EXPRESSION: { 2349 if (Record.size() < 1) 2350 return error("Invalid record"); 2351 2352 MDValueList.assignValue( 2353 GET_OR_DISTINCT(DIExpression, Record[0], 2354 (Context, makeArrayRef(Record).slice(1))), 2355 NextMDValueNo++); 2356 break; 2357 } 2358 case bitc::METADATA_OBJC_PROPERTY: { 2359 if (Record.size() != 8) 2360 return error("Invalid record"); 2361 2362 MDValueList.assignValue( 2363 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2364 (Context, getMDString(Record[1]), 2365 getMDOrNull(Record[2]), Record[3], 2366 getMDString(Record[4]), getMDString(Record[5]), 2367 Record[6], getMDOrNull(Record[7]))), 2368 NextMDValueNo++); 2369 break; 2370 } 2371 case bitc::METADATA_IMPORTED_ENTITY: { 2372 if (Record.size() != 6) 2373 return error("Invalid record"); 2374 2375 MDValueList.assignValue( 2376 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2377 (Context, Record[1], getMDOrNull(Record[2]), 2378 getMDOrNull(Record[3]), Record[4], 2379 getMDString(Record[5]))), 2380 NextMDValueNo++); 2381 break; 2382 } 2383 case bitc::METADATA_STRING: { 2384 std::string String(Record.begin(), Record.end()); 2385 llvm::UpgradeMDStringConstant(String); 2386 Metadata *MD = MDString::get(Context, String); 2387 MDValueList.assignValue(MD, NextMDValueNo++); 2388 break; 2389 } 2390 case bitc::METADATA_KIND: { 2391 // Support older bitcode files that had METADATA_KIND records in a 2392 // block with METADATA_BLOCK_ID. 2393 if (std::error_code EC = parseMetadataKindRecord(Record)) 2394 return EC; 2395 break; 2396 } 2397 } 2398 } 2399 assert((!(ModuleLevel && SeenModuleValuesRecord) || 2400 NumModuleMDs == MDValueList.size()) && 2401 "Inconsistent bitcode: METADATA_VALUES mismatch"); 2402 #undef GET_OR_DISTINCT 2403 } 2404 2405 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2406 std::error_code BitcodeReader::parseMetadataKinds() { 2407 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2408 return error("Invalid record"); 2409 2410 SmallVector<uint64_t, 64> Record; 2411 2412 // Read all the records. 2413 while (1) { 2414 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2415 2416 switch (Entry.Kind) { 2417 case BitstreamEntry::SubBlock: // Handled for us already. 2418 case BitstreamEntry::Error: 2419 return error("Malformed block"); 2420 case BitstreamEntry::EndBlock: 2421 return std::error_code(); 2422 case BitstreamEntry::Record: 2423 // The interesting case. 2424 break; 2425 } 2426 2427 // Read a record. 2428 Record.clear(); 2429 unsigned Code = Stream.readRecord(Entry.ID, Record); 2430 switch (Code) { 2431 default: // Default behavior: ignore. 2432 break; 2433 case bitc::METADATA_KIND: { 2434 if (std::error_code EC = parseMetadataKindRecord(Record)) 2435 return EC; 2436 break; 2437 } 2438 } 2439 } 2440 } 2441 2442 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2443 /// encoding. 2444 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2445 if ((V & 1) == 0) 2446 return V >> 1; 2447 if (V != 1) 2448 return -(V >> 1); 2449 // There is no such thing as -0 with integers. "-0" really means MININT. 2450 return 1ULL << 63; 2451 } 2452 2453 /// Resolve all of the initializers for global values and aliases that we can. 2454 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2455 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2456 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2457 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2458 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2459 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2460 2461 GlobalInitWorklist.swap(GlobalInits); 2462 AliasInitWorklist.swap(AliasInits); 2463 FunctionPrefixWorklist.swap(FunctionPrefixes); 2464 FunctionPrologueWorklist.swap(FunctionPrologues); 2465 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2466 2467 while (!GlobalInitWorklist.empty()) { 2468 unsigned ValID = GlobalInitWorklist.back().second; 2469 if (ValID >= ValueList.size()) { 2470 // Not ready to resolve this yet, it requires something later in the file. 2471 GlobalInits.push_back(GlobalInitWorklist.back()); 2472 } else { 2473 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2474 GlobalInitWorklist.back().first->setInitializer(C); 2475 else 2476 return error("Expected a constant"); 2477 } 2478 GlobalInitWorklist.pop_back(); 2479 } 2480 2481 while (!AliasInitWorklist.empty()) { 2482 unsigned ValID = AliasInitWorklist.back().second; 2483 if (ValID >= ValueList.size()) { 2484 AliasInits.push_back(AliasInitWorklist.back()); 2485 } else { 2486 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2487 if (!C) 2488 return error("Expected a constant"); 2489 GlobalAlias *Alias = AliasInitWorklist.back().first; 2490 if (C->getType() != Alias->getType()) 2491 return error("Alias and aliasee types don't match"); 2492 Alias->setAliasee(C); 2493 } 2494 AliasInitWorklist.pop_back(); 2495 } 2496 2497 while (!FunctionPrefixWorklist.empty()) { 2498 unsigned ValID = FunctionPrefixWorklist.back().second; 2499 if (ValID >= ValueList.size()) { 2500 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2501 } else { 2502 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2503 FunctionPrefixWorklist.back().first->setPrefixData(C); 2504 else 2505 return error("Expected a constant"); 2506 } 2507 FunctionPrefixWorklist.pop_back(); 2508 } 2509 2510 while (!FunctionPrologueWorklist.empty()) { 2511 unsigned ValID = FunctionPrologueWorklist.back().second; 2512 if (ValID >= ValueList.size()) { 2513 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2514 } else { 2515 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2516 FunctionPrologueWorklist.back().first->setPrologueData(C); 2517 else 2518 return error("Expected a constant"); 2519 } 2520 FunctionPrologueWorklist.pop_back(); 2521 } 2522 2523 while (!FunctionPersonalityFnWorklist.empty()) { 2524 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2525 if (ValID >= ValueList.size()) { 2526 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2527 } else { 2528 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2529 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2530 else 2531 return error("Expected a constant"); 2532 } 2533 FunctionPersonalityFnWorklist.pop_back(); 2534 } 2535 2536 return std::error_code(); 2537 } 2538 2539 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2540 SmallVector<uint64_t, 8> Words(Vals.size()); 2541 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2542 BitcodeReader::decodeSignRotatedValue); 2543 2544 return APInt(TypeBits, Words); 2545 } 2546 2547 std::error_code BitcodeReader::parseConstants() { 2548 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2549 return error("Invalid record"); 2550 2551 SmallVector<uint64_t, 64> Record; 2552 2553 // Read all the records for this value table. 2554 Type *CurTy = Type::getInt32Ty(Context); 2555 unsigned NextCstNo = ValueList.size(); 2556 while (1) { 2557 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2558 2559 switch (Entry.Kind) { 2560 case BitstreamEntry::SubBlock: // Handled for us already. 2561 case BitstreamEntry::Error: 2562 return error("Malformed block"); 2563 case BitstreamEntry::EndBlock: 2564 if (NextCstNo != ValueList.size()) 2565 return error("Invalid ronstant reference"); 2566 2567 // Once all the constants have been read, go through and resolve forward 2568 // references. 2569 ValueList.resolveConstantForwardRefs(); 2570 return std::error_code(); 2571 case BitstreamEntry::Record: 2572 // The interesting case. 2573 break; 2574 } 2575 2576 // Read a record. 2577 Record.clear(); 2578 Value *V = nullptr; 2579 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2580 switch (BitCode) { 2581 default: // Default behavior: unknown constant 2582 case bitc::CST_CODE_UNDEF: // UNDEF 2583 V = UndefValue::get(CurTy); 2584 break; 2585 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2586 if (Record.empty()) 2587 return error("Invalid record"); 2588 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2589 return error("Invalid record"); 2590 CurTy = TypeList[Record[0]]; 2591 continue; // Skip the ValueList manipulation. 2592 case bitc::CST_CODE_NULL: // NULL 2593 V = Constant::getNullValue(CurTy); 2594 break; 2595 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2596 if (!CurTy->isIntegerTy() || Record.empty()) 2597 return error("Invalid record"); 2598 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2599 break; 2600 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2601 if (!CurTy->isIntegerTy() || Record.empty()) 2602 return error("Invalid record"); 2603 2604 APInt VInt = 2605 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2606 V = ConstantInt::get(Context, VInt); 2607 2608 break; 2609 } 2610 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2611 if (Record.empty()) 2612 return error("Invalid record"); 2613 if (CurTy->isHalfTy()) 2614 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2615 APInt(16, (uint16_t)Record[0]))); 2616 else if (CurTy->isFloatTy()) 2617 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2618 APInt(32, (uint32_t)Record[0]))); 2619 else if (CurTy->isDoubleTy()) 2620 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2621 APInt(64, Record[0]))); 2622 else if (CurTy->isX86_FP80Ty()) { 2623 // Bits are not stored the same way as a normal i80 APInt, compensate. 2624 uint64_t Rearrange[2]; 2625 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2626 Rearrange[1] = Record[0] >> 48; 2627 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2628 APInt(80, Rearrange))); 2629 } else if (CurTy->isFP128Ty()) 2630 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2631 APInt(128, Record))); 2632 else if (CurTy->isPPC_FP128Ty()) 2633 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2634 APInt(128, Record))); 2635 else 2636 V = UndefValue::get(CurTy); 2637 break; 2638 } 2639 2640 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2641 if (Record.empty()) 2642 return error("Invalid record"); 2643 2644 unsigned Size = Record.size(); 2645 SmallVector<Constant*, 16> Elts; 2646 2647 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2648 for (unsigned i = 0; i != Size; ++i) 2649 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2650 STy->getElementType(i))); 2651 V = ConstantStruct::get(STy, Elts); 2652 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2653 Type *EltTy = ATy->getElementType(); 2654 for (unsigned i = 0; i != Size; ++i) 2655 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2656 V = ConstantArray::get(ATy, Elts); 2657 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2658 Type *EltTy = VTy->getElementType(); 2659 for (unsigned i = 0; i != Size; ++i) 2660 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2661 V = ConstantVector::get(Elts); 2662 } else { 2663 V = UndefValue::get(CurTy); 2664 } 2665 break; 2666 } 2667 case bitc::CST_CODE_STRING: // STRING: [values] 2668 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2669 if (Record.empty()) 2670 return error("Invalid record"); 2671 2672 SmallString<16> Elts(Record.begin(), Record.end()); 2673 V = ConstantDataArray::getString(Context, Elts, 2674 BitCode == bitc::CST_CODE_CSTRING); 2675 break; 2676 } 2677 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2678 if (Record.empty()) 2679 return error("Invalid record"); 2680 2681 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2682 unsigned Size = Record.size(); 2683 2684 if (EltTy->isIntegerTy(8)) { 2685 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2686 if (isa<VectorType>(CurTy)) 2687 V = ConstantDataVector::get(Context, Elts); 2688 else 2689 V = ConstantDataArray::get(Context, Elts); 2690 } else if (EltTy->isIntegerTy(16)) { 2691 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2692 if (isa<VectorType>(CurTy)) 2693 V = ConstantDataVector::get(Context, Elts); 2694 else 2695 V = ConstantDataArray::get(Context, Elts); 2696 } else if (EltTy->isIntegerTy(32)) { 2697 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2698 if (isa<VectorType>(CurTy)) 2699 V = ConstantDataVector::get(Context, Elts); 2700 else 2701 V = ConstantDataArray::get(Context, Elts); 2702 } else if (EltTy->isIntegerTy(64)) { 2703 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2704 if (isa<VectorType>(CurTy)) 2705 V = ConstantDataVector::get(Context, Elts); 2706 else 2707 V = ConstantDataArray::get(Context, Elts); 2708 } else if (EltTy->isFloatTy()) { 2709 SmallVector<float, 16> Elts(Size); 2710 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2711 if (isa<VectorType>(CurTy)) 2712 V = ConstantDataVector::get(Context, Elts); 2713 else 2714 V = ConstantDataArray::get(Context, Elts); 2715 } else if (EltTy->isDoubleTy()) { 2716 SmallVector<double, 16> Elts(Size); 2717 std::transform(Record.begin(), Record.end(), Elts.begin(), 2718 BitsToDouble); 2719 if (isa<VectorType>(CurTy)) 2720 V = ConstantDataVector::get(Context, Elts); 2721 else 2722 V = ConstantDataArray::get(Context, Elts); 2723 } else { 2724 return error("Invalid type for value"); 2725 } 2726 break; 2727 } 2728 2729 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2730 if (Record.size() < 3) 2731 return error("Invalid record"); 2732 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2733 if (Opc < 0) { 2734 V = UndefValue::get(CurTy); // Unknown binop. 2735 } else { 2736 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2737 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2738 unsigned Flags = 0; 2739 if (Record.size() >= 4) { 2740 if (Opc == Instruction::Add || 2741 Opc == Instruction::Sub || 2742 Opc == Instruction::Mul || 2743 Opc == Instruction::Shl) { 2744 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2745 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2746 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2747 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2748 } else if (Opc == Instruction::SDiv || 2749 Opc == Instruction::UDiv || 2750 Opc == Instruction::LShr || 2751 Opc == Instruction::AShr) { 2752 if (Record[3] & (1 << bitc::PEO_EXACT)) 2753 Flags |= SDivOperator::IsExact; 2754 } 2755 } 2756 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2757 } 2758 break; 2759 } 2760 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2761 if (Record.size() < 3) 2762 return error("Invalid record"); 2763 int Opc = getDecodedCastOpcode(Record[0]); 2764 if (Opc < 0) { 2765 V = UndefValue::get(CurTy); // Unknown cast. 2766 } else { 2767 Type *OpTy = getTypeByID(Record[1]); 2768 if (!OpTy) 2769 return error("Invalid record"); 2770 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2771 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2772 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2773 } 2774 break; 2775 } 2776 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2777 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2778 unsigned OpNum = 0; 2779 Type *PointeeType = nullptr; 2780 if (Record.size() % 2) 2781 PointeeType = getTypeByID(Record[OpNum++]); 2782 SmallVector<Constant*, 16> Elts; 2783 while (OpNum != Record.size()) { 2784 Type *ElTy = getTypeByID(Record[OpNum++]); 2785 if (!ElTy) 2786 return error("Invalid record"); 2787 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2788 } 2789 2790 if (PointeeType && 2791 PointeeType != 2792 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2793 ->getElementType()) 2794 return error("Explicit gep operator type does not match pointee type " 2795 "of pointer operand"); 2796 2797 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2798 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2799 BitCode == 2800 bitc::CST_CODE_CE_INBOUNDS_GEP); 2801 break; 2802 } 2803 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2804 if (Record.size() < 3) 2805 return error("Invalid record"); 2806 2807 Type *SelectorTy = Type::getInt1Ty(Context); 2808 2809 // The selector might be an i1 or an <n x i1> 2810 // Get the type from the ValueList before getting a forward ref. 2811 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2812 if (Value *V = ValueList[Record[0]]) 2813 if (SelectorTy != V->getType()) 2814 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2815 2816 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2817 SelectorTy), 2818 ValueList.getConstantFwdRef(Record[1],CurTy), 2819 ValueList.getConstantFwdRef(Record[2],CurTy)); 2820 break; 2821 } 2822 case bitc::CST_CODE_CE_EXTRACTELT 2823 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2824 if (Record.size() < 3) 2825 return error("Invalid record"); 2826 VectorType *OpTy = 2827 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2828 if (!OpTy) 2829 return error("Invalid record"); 2830 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2831 Constant *Op1 = nullptr; 2832 if (Record.size() == 4) { 2833 Type *IdxTy = getTypeByID(Record[2]); 2834 if (!IdxTy) 2835 return error("Invalid record"); 2836 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2837 } else // TODO: Remove with llvm 4.0 2838 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2839 if (!Op1) 2840 return error("Invalid record"); 2841 V = ConstantExpr::getExtractElement(Op0, Op1); 2842 break; 2843 } 2844 case bitc::CST_CODE_CE_INSERTELT 2845 : { // CE_INSERTELT: [opval, opval, opty, opval] 2846 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2847 if (Record.size() < 3 || !OpTy) 2848 return error("Invalid record"); 2849 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2850 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2851 OpTy->getElementType()); 2852 Constant *Op2 = nullptr; 2853 if (Record.size() == 4) { 2854 Type *IdxTy = getTypeByID(Record[2]); 2855 if (!IdxTy) 2856 return error("Invalid record"); 2857 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2858 } else // TODO: Remove with llvm 4.0 2859 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2860 if (!Op2) 2861 return error("Invalid record"); 2862 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2863 break; 2864 } 2865 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2866 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2867 if (Record.size() < 3 || !OpTy) 2868 return error("Invalid record"); 2869 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2870 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2871 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2872 OpTy->getNumElements()); 2873 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2874 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2875 break; 2876 } 2877 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2878 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2879 VectorType *OpTy = 2880 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2881 if (Record.size() < 4 || !RTy || !OpTy) 2882 return error("Invalid record"); 2883 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2884 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2885 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2886 RTy->getNumElements()); 2887 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2888 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2889 break; 2890 } 2891 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2892 if (Record.size() < 4) 2893 return error("Invalid record"); 2894 Type *OpTy = getTypeByID(Record[0]); 2895 if (!OpTy) 2896 return error("Invalid record"); 2897 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2898 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2899 2900 if (OpTy->isFPOrFPVectorTy()) 2901 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2902 else 2903 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2904 break; 2905 } 2906 // This maintains backward compatibility, pre-asm dialect keywords. 2907 // FIXME: Remove with the 4.0 release. 2908 case bitc::CST_CODE_INLINEASM_OLD: { 2909 if (Record.size() < 2) 2910 return error("Invalid record"); 2911 std::string AsmStr, ConstrStr; 2912 bool HasSideEffects = Record[0] & 1; 2913 bool IsAlignStack = Record[0] >> 1; 2914 unsigned AsmStrSize = Record[1]; 2915 if (2+AsmStrSize >= Record.size()) 2916 return error("Invalid record"); 2917 unsigned ConstStrSize = Record[2+AsmStrSize]; 2918 if (3+AsmStrSize+ConstStrSize > Record.size()) 2919 return error("Invalid record"); 2920 2921 for (unsigned i = 0; i != AsmStrSize; ++i) 2922 AsmStr += (char)Record[2+i]; 2923 for (unsigned i = 0; i != ConstStrSize; ++i) 2924 ConstrStr += (char)Record[3+AsmStrSize+i]; 2925 PointerType *PTy = cast<PointerType>(CurTy); 2926 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2927 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2928 break; 2929 } 2930 // This version adds support for the asm dialect keywords (e.g., 2931 // inteldialect). 2932 case bitc::CST_CODE_INLINEASM: { 2933 if (Record.size() < 2) 2934 return error("Invalid record"); 2935 std::string AsmStr, ConstrStr; 2936 bool HasSideEffects = Record[0] & 1; 2937 bool IsAlignStack = (Record[0] >> 1) & 1; 2938 unsigned AsmDialect = Record[0] >> 2; 2939 unsigned AsmStrSize = Record[1]; 2940 if (2+AsmStrSize >= Record.size()) 2941 return error("Invalid record"); 2942 unsigned ConstStrSize = Record[2+AsmStrSize]; 2943 if (3+AsmStrSize+ConstStrSize > Record.size()) 2944 return error("Invalid record"); 2945 2946 for (unsigned i = 0; i != AsmStrSize; ++i) 2947 AsmStr += (char)Record[2+i]; 2948 for (unsigned i = 0; i != ConstStrSize; ++i) 2949 ConstrStr += (char)Record[3+AsmStrSize+i]; 2950 PointerType *PTy = cast<PointerType>(CurTy); 2951 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2952 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2953 InlineAsm::AsmDialect(AsmDialect)); 2954 break; 2955 } 2956 case bitc::CST_CODE_BLOCKADDRESS:{ 2957 if (Record.size() < 3) 2958 return error("Invalid record"); 2959 Type *FnTy = getTypeByID(Record[0]); 2960 if (!FnTy) 2961 return error("Invalid record"); 2962 Function *Fn = 2963 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2964 if (!Fn) 2965 return error("Invalid record"); 2966 2967 // Don't let Fn get dematerialized. 2968 BlockAddressesTaken.insert(Fn); 2969 2970 // If the function is already parsed we can insert the block address right 2971 // away. 2972 BasicBlock *BB; 2973 unsigned BBID = Record[2]; 2974 if (!BBID) 2975 // Invalid reference to entry block. 2976 return error("Invalid ID"); 2977 if (!Fn->empty()) { 2978 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2979 for (size_t I = 0, E = BBID; I != E; ++I) { 2980 if (BBI == BBE) 2981 return error("Invalid ID"); 2982 ++BBI; 2983 } 2984 BB = &*BBI; 2985 } else { 2986 // Otherwise insert a placeholder and remember it so it can be inserted 2987 // when the function is parsed. 2988 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2989 if (FwdBBs.empty()) 2990 BasicBlockFwdRefQueue.push_back(Fn); 2991 if (FwdBBs.size() < BBID + 1) 2992 FwdBBs.resize(BBID + 1); 2993 if (!FwdBBs[BBID]) 2994 FwdBBs[BBID] = BasicBlock::Create(Context); 2995 BB = FwdBBs[BBID]; 2996 } 2997 V = BlockAddress::get(Fn, BB); 2998 break; 2999 } 3000 } 3001 3002 if (ValueList.assignValue(V, NextCstNo)) 3003 return error("Invalid forward reference"); 3004 ++NextCstNo; 3005 } 3006 } 3007 3008 std::error_code BitcodeReader::parseUseLists() { 3009 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3010 return error("Invalid record"); 3011 3012 // Read all the records. 3013 SmallVector<uint64_t, 64> Record; 3014 while (1) { 3015 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3016 3017 switch (Entry.Kind) { 3018 case BitstreamEntry::SubBlock: // Handled for us already. 3019 case BitstreamEntry::Error: 3020 return error("Malformed block"); 3021 case BitstreamEntry::EndBlock: 3022 return std::error_code(); 3023 case BitstreamEntry::Record: 3024 // The interesting case. 3025 break; 3026 } 3027 3028 // Read a use list record. 3029 Record.clear(); 3030 bool IsBB = false; 3031 switch (Stream.readRecord(Entry.ID, Record)) { 3032 default: // Default behavior: unknown type. 3033 break; 3034 case bitc::USELIST_CODE_BB: 3035 IsBB = true; 3036 // fallthrough 3037 case bitc::USELIST_CODE_DEFAULT: { 3038 unsigned RecordLength = Record.size(); 3039 if (RecordLength < 3) 3040 // Records should have at least an ID and two indexes. 3041 return error("Invalid record"); 3042 unsigned ID = Record.back(); 3043 Record.pop_back(); 3044 3045 Value *V; 3046 if (IsBB) { 3047 assert(ID < FunctionBBs.size() && "Basic block not found"); 3048 V = FunctionBBs[ID]; 3049 } else 3050 V = ValueList[ID]; 3051 unsigned NumUses = 0; 3052 SmallDenseMap<const Use *, unsigned, 16> Order; 3053 for (const Use &U : V->uses()) { 3054 if (++NumUses > Record.size()) 3055 break; 3056 Order[&U] = Record[NumUses - 1]; 3057 } 3058 if (Order.size() != Record.size() || NumUses > Record.size()) 3059 // Mismatches can happen if the functions are being materialized lazily 3060 // (out-of-order), or a value has been upgraded. 3061 break; 3062 3063 V->sortUseList([&](const Use &L, const Use &R) { 3064 return Order.lookup(&L) < Order.lookup(&R); 3065 }); 3066 break; 3067 } 3068 } 3069 } 3070 } 3071 3072 /// When we see the block for metadata, remember where it is and then skip it. 3073 /// This lets us lazily deserialize the metadata. 3074 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3075 // Save the current stream state. 3076 uint64_t CurBit = Stream.GetCurrentBitNo(); 3077 DeferredMetadataInfo.push_back(CurBit); 3078 3079 // Skip over the block for now. 3080 if (Stream.SkipBlock()) 3081 return error("Invalid record"); 3082 return std::error_code(); 3083 } 3084 3085 std::error_code BitcodeReader::materializeMetadata() { 3086 for (uint64_t BitPos : DeferredMetadataInfo) { 3087 // Move the bit stream to the saved position. 3088 Stream.JumpToBit(BitPos); 3089 if (std::error_code EC = parseMetadata(true)) 3090 return EC; 3091 } 3092 DeferredMetadataInfo.clear(); 3093 return std::error_code(); 3094 } 3095 3096 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3097 3098 /// When we see the block for a function body, remember where it is and then 3099 /// skip it. This lets us lazily deserialize the functions. 3100 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3101 // Get the function we are talking about. 3102 if (FunctionsWithBodies.empty()) 3103 return error("Insufficient function protos"); 3104 3105 Function *Fn = FunctionsWithBodies.back(); 3106 FunctionsWithBodies.pop_back(); 3107 3108 // Save the current stream state. 3109 uint64_t CurBit = Stream.GetCurrentBitNo(); 3110 assert( 3111 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3112 "Mismatch between VST and scanned function offsets"); 3113 DeferredFunctionInfo[Fn] = CurBit; 3114 3115 // Skip over the function block for now. 3116 if (Stream.SkipBlock()) 3117 return error("Invalid record"); 3118 return std::error_code(); 3119 } 3120 3121 std::error_code BitcodeReader::globalCleanup() { 3122 // Patch the initializers for globals and aliases up. 3123 resolveGlobalAndAliasInits(); 3124 if (!GlobalInits.empty() || !AliasInits.empty()) 3125 return error("Malformed global initializer set"); 3126 3127 // Look for intrinsic functions which need to be upgraded at some point 3128 for (Function &F : *TheModule) { 3129 Function *NewFn; 3130 if (UpgradeIntrinsicFunction(&F, NewFn)) 3131 UpgradedIntrinsics[&F] = NewFn; 3132 } 3133 3134 // Look for global variables which need to be renamed. 3135 for (GlobalVariable &GV : TheModule->globals()) 3136 UpgradeGlobalVariable(&GV); 3137 3138 // Force deallocation of memory for these vectors to favor the client that 3139 // want lazy deserialization. 3140 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3141 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3142 return std::error_code(); 3143 } 3144 3145 /// Support for lazy parsing of function bodies. This is required if we 3146 /// either have an old bitcode file without a VST forward declaration record, 3147 /// or if we have an anonymous function being materialized, since anonymous 3148 /// functions do not have a name and are therefore not in the VST. 3149 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3150 Stream.JumpToBit(NextUnreadBit); 3151 3152 if (Stream.AtEndOfStream()) 3153 return error("Could not find function in stream"); 3154 3155 if (!SeenFirstFunctionBody) 3156 return error("Trying to materialize functions before seeing function blocks"); 3157 3158 // An old bitcode file with the symbol table at the end would have 3159 // finished the parse greedily. 3160 assert(SeenValueSymbolTable); 3161 3162 SmallVector<uint64_t, 64> Record; 3163 3164 while (1) { 3165 BitstreamEntry Entry = Stream.advance(); 3166 switch (Entry.Kind) { 3167 default: 3168 return error("Expect SubBlock"); 3169 case BitstreamEntry::SubBlock: 3170 switch (Entry.ID) { 3171 default: 3172 return error("Expect function block"); 3173 case bitc::FUNCTION_BLOCK_ID: 3174 if (std::error_code EC = rememberAndSkipFunctionBody()) 3175 return EC; 3176 NextUnreadBit = Stream.GetCurrentBitNo(); 3177 return std::error_code(); 3178 } 3179 } 3180 } 3181 } 3182 3183 std::error_code BitcodeReader::parseBitcodeVersion() { 3184 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3185 return error("Invalid record"); 3186 3187 // Read all the records. 3188 SmallVector<uint64_t, 64> Record; 3189 while (1) { 3190 BitstreamEntry Entry = Stream.advance(); 3191 3192 switch (Entry.Kind) { 3193 default: 3194 case BitstreamEntry::Error: 3195 return error("Malformed block"); 3196 case BitstreamEntry::EndBlock: 3197 return std::error_code(); 3198 case BitstreamEntry::Record: 3199 // The interesting case. 3200 break; 3201 } 3202 3203 // Read a record. 3204 Record.clear(); 3205 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3206 switch (BitCode) { 3207 default: // Default behavior: reject 3208 return error("Invalid value"); 3209 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3210 // N] 3211 convertToString(Record, 0, ProducerIdentification); 3212 break; 3213 } 3214 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3215 unsigned epoch = (unsigned)Record[0]; 3216 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3217 return error( 3218 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3219 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3220 } 3221 } 3222 } 3223 } 3224 } 3225 3226 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3227 bool ShouldLazyLoadMetadata) { 3228 if (ResumeBit) 3229 Stream.JumpToBit(ResumeBit); 3230 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3231 return error("Invalid record"); 3232 3233 SmallVector<uint64_t, 64> Record; 3234 std::vector<std::string> SectionTable; 3235 std::vector<std::string> GCTable; 3236 3237 // Read all the records for this module. 3238 while (1) { 3239 BitstreamEntry Entry = Stream.advance(); 3240 3241 switch (Entry.Kind) { 3242 case BitstreamEntry::Error: 3243 return error("Malformed block"); 3244 case BitstreamEntry::EndBlock: 3245 return globalCleanup(); 3246 3247 case BitstreamEntry::SubBlock: 3248 switch (Entry.ID) { 3249 default: // Skip unknown content. 3250 if (Stream.SkipBlock()) 3251 return error("Invalid record"); 3252 break; 3253 case bitc::BLOCKINFO_BLOCK_ID: 3254 if (Stream.ReadBlockInfoBlock()) 3255 return error("Malformed block"); 3256 break; 3257 case bitc::PARAMATTR_BLOCK_ID: 3258 if (std::error_code EC = parseAttributeBlock()) 3259 return EC; 3260 break; 3261 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3262 if (std::error_code EC = parseAttributeGroupBlock()) 3263 return EC; 3264 break; 3265 case bitc::TYPE_BLOCK_ID_NEW: 3266 if (std::error_code EC = parseTypeTable()) 3267 return EC; 3268 break; 3269 case bitc::VALUE_SYMTAB_BLOCK_ID: 3270 if (!SeenValueSymbolTable) { 3271 // Either this is an old form VST without function index and an 3272 // associated VST forward declaration record (which would have caused 3273 // the VST to be jumped to and parsed before it was encountered 3274 // normally in the stream), or there were no function blocks to 3275 // trigger an earlier parsing of the VST. 3276 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3277 if (std::error_code EC = parseValueSymbolTable()) 3278 return EC; 3279 SeenValueSymbolTable = true; 3280 } else { 3281 // We must have had a VST forward declaration record, which caused 3282 // the parser to jump to and parse the VST earlier. 3283 assert(VSTOffset > 0); 3284 if (Stream.SkipBlock()) 3285 return error("Invalid record"); 3286 } 3287 break; 3288 case bitc::CONSTANTS_BLOCK_ID: 3289 if (std::error_code EC = parseConstants()) 3290 return EC; 3291 if (std::error_code EC = resolveGlobalAndAliasInits()) 3292 return EC; 3293 break; 3294 case bitc::METADATA_BLOCK_ID: 3295 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3296 if (std::error_code EC = rememberAndSkipMetadata()) 3297 return EC; 3298 break; 3299 } 3300 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3301 if (std::error_code EC = parseMetadata(true)) 3302 return EC; 3303 break; 3304 case bitc::METADATA_KIND_BLOCK_ID: 3305 if (std::error_code EC = parseMetadataKinds()) 3306 return EC; 3307 break; 3308 case bitc::FUNCTION_BLOCK_ID: 3309 // If this is the first function body we've seen, reverse the 3310 // FunctionsWithBodies list. 3311 if (!SeenFirstFunctionBody) { 3312 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3313 if (std::error_code EC = globalCleanup()) 3314 return EC; 3315 SeenFirstFunctionBody = true; 3316 } 3317 3318 if (VSTOffset > 0) { 3319 // If we have a VST forward declaration record, make sure we 3320 // parse the VST now if we haven't already. It is needed to 3321 // set up the DeferredFunctionInfo vector for lazy reading. 3322 if (!SeenValueSymbolTable) { 3323 if (std::error_code EC = 3324 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3325 return EC; 3326 SeenValueSymbolTable = true; 3327 // Fall through so that we record the NextUnreadBit below. 3328 // This is necessary in case we have an anonymous function that 3329 // is later materialized. Since it will not have a VST entry we 3330 // need to fall back to the lazy parse to find its offset. 3331 } else { 3332 // If we have a VST forward declaration record, but have already 3333 // parsed the VST (just above, when the first function body was 3334 // encountered here), then we are resuming the parse after 3335 // materializing functions. The ResumeBit points to the 3336 // start of the last function block recorded in the 3337 // DeferredFunctionInfo map. Skip it. 3338 if (Stream.SkipBlock()) 3339 return error("Invalid record"); 3340 continue; 3341 } 3342 } 3343 3344 // Support older bitcode files that did not have the function 3345 // index in the VST, nor a VST forward declaration record, as 3346 // well as anonymous functions that do not have VST entries. 3347 // Build the DeferredFunctionInfo vector on the fly. 3348 if (std::error_code EC = rememberAndSkipFunctionBody()) 3349 return EC; 3350 3351 // Suspend parsing when we reach the function bodies. Subsequent 3352 // materialization calls will resume it when necessary. If the bitcode 3353 // file is old, the symbol table will be at the end instead and will not 3354 // have been seen yet. In this case, just finish the parse now. 3355 if (SeenValueSymbolTable) { 3356 NextUnreadBit = Stream.GetCurrentBitNo(); 3357 return std::error_code(); 3358 } 3359 break; 3360 case bitc::USELIST_BLOCK_ID: 3361 if (std::error_code EC = parseUseLists()) 3362 return EC; 3363 break; 3364 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3365 if (std::error_code EC = parseOperandBundleTags()) 3366 return EC; 3367 break; 3368 } 3369 continue; 3370 3371 case BitstreamEntry::Record: 3372 // The interesting case. 3373 break; 3374 } 3375 3376 3377 // Read a record. 3378 auto BitCode = Stream.readRecord(Entry.ID, Record); 3379 switch (BitCode) { 3380 default: break; // Default behavior, ignore unknown content. 3381 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3382 if (Record.size() < 1) 3383 return error("Invalid record"); 3384 // Only version #0 and #1 are supported so far. 3385 unsigned module_version = Record[0]; 3386 switch (module_version) { 3387 default: 3388 return error("Invalid value"); 3389 case 0: 3390 UseRelativeIDs = false; 3391 break; 3392 case 1: 3393 UseRelativeIDs = true; 3394 break; 3395 } 3396 break; 3397 } 3398 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3399 std::string S; 3400 if (convertToString(Record, 0, S)) 3401 return error("Invalid record"); 3402 TheModule->setTargetTriple(S); 3403 break; 3404 } 3405 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3406 std::string S; 3407 if (convertToString(Record, 0, S)) 3408 return error("Invalid record"); 3409 TheModule->setDataLayout(S); 3410 break; 3411 } 3412 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3413 std::string S; 3414 if (convertToString(Record, 0, S)) 3415 return error("Invalid record"); 3416 TheModule->setModuleInlineAsm(S); 3417 break; 3418 } 3419 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3420 // FIXME: Remove in 4.0. 3421 std::string S; 3422 if (convertToString(Record, 0, S)) 3423 return error("Invalid record"); 3424 // Ignore value. 3425 break; 3426 } 3427 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3428 std::string S; 3429 if (convertToString(Record, 0, S)) 3430 return error("Invalid record"); 3431 SectionTable.push_back(S); 3432 break; 3433 } 3434 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3435 std::string S; 3436 if (convertToString(Record, 0, S)) 3437 return error("Invalid record"); 3438 GCTable.push_back(S); 3439 break; 3440 } 3441 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3442 if (Record.size() < 2) 3443 return error("Invalid record"); 3444 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3445 unsigned ComdatNameSize = Record[1]; 3446 std::string ComdatName; 3447 ComdatName.reserve(ComdatNameSize); 3448 for (unsigned i = 0; i != ComdatNameSize; ++i) 3449 ComdatName += (char)Record[2 + i]; 3450 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3451 C->setSelectionKind(SK); 3452 ComdatList.push_back(C); 3453 break; 3454 } 3455 // GLOBALVAR: [pointer type, isconst, initid, 3456 // linkage, alignment, section, visibility, threadlocal, 3457 // unnamed_addr, externally_initialized, dllstorageclass, 3458 // comdat] 3459 case bitc::MODULE_CODE_GLOBALVAR: { 3460 if (Record.size() < 6) 3461 return error("Invalid record"); 3462 Type *Ty = getTypeByID(Record[0]); 3463 if (!Ty) 3464 return error("Invalid record"); 3465 bool isConstant = Record[1] & 1; 3466 bool explicitType = Record[1] & 2; 3467 unsigned AddressSpace; 3468 if (explicitType) { 3469 AddressSpace = Record[1] >> 2; 3470 } else { 3471 if (!Ty->isPointerTy()) 3472 return error("Invalid type for value"); 3473 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3474 Ty = cast<PointerType>(Ty)->getElementType(); 3475 } 3476 3477 uint64_t RawLinkage = Record[3]; 3478 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3479 unsigned Alignment; 3480 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3481 return EC; 3482 std::string Section; 3483 if (Record[5]) { 3484 if (Record[5]-1 >= SectionTable.size()) 3485 return error("Invalid ID"); 3486 Section = SectionTable[Record[5]-1]; 3487 } 3488 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3489 // Local linkage must have default visibility. 3490 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3491 // FIXME: Change to an error if non-default in 4.0. 3492 Visibility = getDecodedVisibility(Record[6]); 3493 3494 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3495 if (Record.size() > 7) 3496 TLM = getDecodedThreadLocalMode(Record[7]); 3497 3498 bool UnnamedAddr = false; 3499 if (Record.size() > 8) 3500 UnnamedAddr = Record[8]; 3501 3502 bool ExternallyInitialized = false; 3503 if (Record.size() > 9) 3504 ExternallyInitialized = Record[9]; 3505 3506 GlobalVariable *NewGV = 3507 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3508 TLM, AddressSpace, ExternallyInitialized); 3509 NewGV->setAlignment(Alignment); 3510 if (!Section.empty()) 3511 NewGV->setSection(Section); 3512 NewGV->setVisibility(Visibility); 3513 NewGV->setUnnamedAddr(UnnamedAddr); 3514 3515 if (Record.size() > 10) 3516 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3517 else 3518 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3519 3520 ValueList.push_back(NewGV); 3521 3522 // Remember which value to use for the global initializer. 3523 if (unsigned InitID = Record[2]) 3524 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3525 3526 if (Record.size() > 11) { 3527 if (unsigned ComdatID = Record[11]) { 3528 if (ComdatID > ComdatList.size()) 3529 return error("Invalid global variable comdat ID"); 3530 NewGV->setComdat(ComdatList[ComdatID - 1]); 3531 } 3532 } else if (hasImplicitComdat(RawLinkage)) { 3533 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3534 } 3535 break; 3536 } 3537 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3538 // alignment, section, visibility, gc, unnamed_addr, 3539 // prologuedata, dllstorageclass, comdat, prefixdata] 3540 case bitc::MODULE_CODE_FUNCTION: { 3541 if (Record.size() < 8) 3542 return error("Invalid record"); 3543 Type *Ty = getTypeByID(Record[0]); 3544 if (!Ty) 3545 return error("Invalid record"); 3546 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3547 Ty = PTy->getElementType(); 3548 auto *FTy = dyn_cast<FunctionType>(Ty); 3549 if (!FTy) 3550 return error("Invalid type for value"); 3551 auto CC = static_cast<CallingConv::ID>(Record[1]); 3552 if (CC & ~CallingConv::MaxID) 3553 return error("Invalid calling convention ID"); 3554 3555 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3556 "", TheModule); 3557 3558 Func->setCallingConv(CC); 3559 bool isProto = Record[2]; 3560 uint64_t RawLinkage = Record[3]; 3561 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3562 Func->setAttributes(getAttributes(Record[4])); 3563 3564 unsigned Alignment; 3565 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3566 return EC; 3567 Func->setAlignment(Alignment); 3568 if (Record[6]) { 3569 if (Record[6]-1 >= SectionTable.size()) 3570 return error("Invalid ID"); 3571 Func->setSection(SectionTable[Record[6]-1]); 3572 } 3573 // Local linkage must have default visibility. 3574 if (!Func->hasLocalLinkage()) 3575 // FIXME: Change to an error if non-default in 4.0. 3576 Func->setVisibility(getDecodedVisibility(Record[7])); 3577 if (Record.size() > 8 && Record[8]) { 3578 if (Record[8]-1 >= GCTable.size()) 3579 return error("Invalid ID"); 3580 Func->setGC(GCTable[Record[8]-1].c_str()); 3581 } 3582 bool UnnamedAddr = false; 3583 if (Record.size() > 9) 3584 UnnamedAddr = Record[9]; 3585 Func->setUnnamedAddr(UnnamedAddr); 3586 if (Record.size() > 10 && Record[10] != 0) 3587 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3588 3589 if (Record.size() > 11) 3590 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3591 else 3592 upgradeDLLImportExportLinkage(Func, RawLinkage); 3593 3594 if (Record.size() > 12) { 3595 if (unsigned ComdatID = Record[12]) { 3596 if (ComdatID > ComdatList.size()) 3597 return error("Invalid function comdat ID"); 3598 Func->setComdat(ComdatList[ComdatID - 1]); 3599 } 3600 } else if (hasImplicitComdat(RawLinkage)) { 3601 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3602 } 3603 3604 if (Record.size() > 13 && Record[13] != 0) 3605 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3606 3607 if (Record.size() > 14 && Record[14] != 0) 3608 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3609 3610 ValueList.push_back(Func); 3611 3612 // If this is a function with a body, remember the prototype we are 3613 // creating now, so that we can match up the body with them later. 3614 if (!isProto) { 3615 Func->setIsMaterializable(true); 3616 FunctionsWithBodies.push_back(Func); 3617 DeferredFunctionInfo[Func] = 0; 3618 } 3619 break; 3620 } 3621 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3622 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3623 case bitc::MODULE_CODE_ALIAS: 3624 case bitc::MODULE_CODE_ALIAS_OLD: { 3625 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3626 if (Record.size() < (3 + (unsigned)NewRecord)) 3627 return error("Invalid record"); 3628 unsigned OpNum = 0; 3629 Type *Ty = getTypeByID(Record[OpNum++]); 3630 if (!Ty) 3631 return error("Invalid record"); 3632 3633 unsigned AddrSpace; 3634 if (!NewRecord) { 3635 auto *PTy = dyn_cast<PointerType>(Ty); 3636 if (!PTy) 3637 return error("Invalid type for value"); 3638 Ty = PTy->getElementType(); 3639 AddrSpace = PTy->getAddressSpace(); 3640 } else { 3641 AddrSpace = Record[OpNum++]; 3642 } 3643 3644 auto Val = Record[OpNum++]; 3645 auto Linkage = Record[OpNum++]; 3646 auto *NewGA = GlobalAlias::create( 3647 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3648 // Old bitcode files didn't have visibility field. 3649 // Local linkage must have default visibility. 3650 if (OpNum != Record.size()) { 3651 auto VisInd = OpNum++; 3652 if (!NewGA->hasLocalLinkage()) 3653 // FIXME: Change to an error if non-default in 4.0. 3654 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3655 } 3656 if (OpNum != Record.size()) 3657 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3658 else 3659 upgradeDLLImportExportLinkage(NewGA, Linkage); 3660 if (OpNum != Record.size()) 3661 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3662 if (OpNum != Record.size()) 3663 NewGA->setUnnamedAddr(Record[OpNum++]); 3664 ValueList.push_back(NewGA); 3665 AliasInits.push_back(std::make_pair(NewGA, Val)); 3666 break; 3667 } 3668 /// MODULE_CODE_PURGEVALS: [numvals] 3669 case bitc::MODULE_CODE_PURGEVALS: 3670 // Trim down the value list to the specified size. 3671 if (Record.size() < 1 || Record[0] > ValueList.size()) 3672 return error("Invalid record"); 3673 ValueList.shrinkTo(Record[0]); 3674 break; 3675 /// MODULE_CODE_VSTOFFSET: [offset] 3676 case bitc::MODULE_CODE_VSTOFFSET: 3677 if (Record.size() < 1) 3678 return error("Invalid record"); 3679 VSTOffset = Record[0]; 3680 break; 3681 /// MODULE_CODE_METADATA_VALUES: [numvals] 3682 case bitc::MODULE_CODE_METADATA_VALUES: 3683 if (Record.size() < 1) 3684 return error("Invalid record"); 3685 assert(!IsMetadataMaterialized); 3686 // This record contains the number of metadata values in the module-level 3687 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3688 // a postpass, where we will parse function-level metadata first. 3689 // This is needed because the ids of metadata are assigned implicitly 3690 // based on their ordering in the bitcode, with the function-level 3691 // metadata ids starting after the module-level metadata ids. Otherwise, 3692 // we would have to parse the module-level metadata block to prime the 3693 // MDValueList when we are lazy loading metadata during function 3694 // importing. Initialize the MDValueList size here based on the 3695 // record value, regardless of whether we are doing lazy metadata 3696 // loading, so that we have consistent handling and assertion 3697 // checking in parseMetadata for module-level metadata. 3698 NumModuleMDs = Record[0]; 3699 SeenModuleValuesRecord = true; 3700 assert(MDValueList.size() == 0); 3701 MDValueList.resize(NumModuleMDs); 3702 break; 3703 } 3704 Record.clear(); 3705 } 3706 } 3707 3708 /// Helper to read the header common to all bitcode files. 3709 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3710 // Sniff for the signature. 3711 if (Stream.Read(8) != 'B' || 3712 Stream.Read(8) != 'C' || 3713 Stream.Read(4) != 0x0 || 3714 Stream.Read(4) != 0xC || 3715 Stream.Read(4) != 0xE || 3716 Stream.Read(4) != 0xD) 3717 return false; 3718 return true; 3719 } 3720 3721 std::error_code 3722 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3723 Module *M, bool ShouldLazyLoadMetadata) { 3724 TheModule = M; 3725 3726 if (std::error_code EC = initStream(std::move(Streamer))) 3727 return EC; 3728 3729 // Sniff for the signature. 3730 if (!hasValidBitcodeHeader(Stream)) 3731 return error("Invalid bitcode signature"); 3732 3733 // We expect a number of well-defined blocks, though we don't necessarily 3734 // need to understand them all. 3735 while (1) { 3736 if (Stream.AtEndOfStream()) { 3737 // We didn't really read a proper Module. 3738 return error("Malformed IR file"); 3739 } 3740 3741 BitstreamEntry Entry = 3742 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3743 3744 if (Entry.Kind != BitstreamEntry::SubBlock) 3745 return error("Malformed block"); 3746 3747 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3748 parseBitcodeVersion(); 3749 continue; 3750 } 3751 3752 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3753 return parseModule(0, ShouldLazyLoadMetadata); 3754 3755 if (Stream.SkipBlock()) 3756 return error("Invalid record"); 3757 } 3758 } 3759 3760 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3761 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3762 return error("Invalid record"); 3763 3764 SmallVector<uint64_t, 64> Record; 3765 3766 std::string Triple; 3767 // Read all the records for this module. 3768 while (1) { 3769 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3770 3771 switch (Entry.Kind) { 3772 case BitstreamEntry::SubBlock: // Handled for us already. 3773 case BitstreamEntry::Error: 3774 return error("Malformed block"); 3775 case BitstreamEntry::EndBlock: 3776 return Triple; 3777 case BitstreamEntry::Record: 3778 // The interesting case. 3779 break; 3780 } 3781 3782 // Read a record. 3783 switch (Stream.readRecord(Entry.ID, Record)) { 3784 default: break; // Default behavior, ignore unknown content. 3785 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3786 std::string S; 3787 if (convertToString(Record, 0, S)) 3788 return error("Invalid record"); 3789 Triple = S; 3790 break; 3791 } 3792 } 3793 Record.clear(); 3794 } 3795 llvm_unreachable("Exit infinite loop"); 3796 } 3797 3798 ErrorOr<std::string> BitcodeReader::parseTriple() { 3799 if (std::error_code EC = initStream(nullptr)) 3800 return EC; 3801 3802 // Sniff for the signature. 3803 if (!hasValidBitcodeHeader(Stream)) 3804 return error("Invalid bitcode signature"); 3805 3806 // We expect a number of well-defined blocks, though we don't necessarily 3807 // need to understand them all. 3808 while (1) { 3809 BitstreamEntry Entry = Stream.advance(); 3810 3811 switch (Entry.Kind) { 3812 case BitstreamEntry::Error: 3813 return error("Malformed block"); 3814 case BitstreamEntry::EndBlock: 3815 return std::error_code(); 3816 3817 case BitstreamEntry::SubBlock: 3818 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3819 return parseModuleTriple(); 3820 3821 // Ignore other sub-blocks. 3822 if (Stream.SkipBlock()) 3823 return error("Malformed block"); 3824 continue; 3825 3826 case BitstreamEntry::Record: 3827 Stream.skipRecord(Entry.ID); 3828 continue; 3829 } 3830 } 3831 } 3832 3833 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3834 if (std::error_code EC = initStream(nullptr)) 3835 return EC; 3836 3837 // Sniff for the signature. 3838 if (!hasValidBitcodeHeader(Stream)) 3839 return error("Invalid bitcode signature"); 3840 3841 // We expect a number of well-defined blocks, though we don't necessarily 3842 // need to understand them all. 3843 while (1) { 3844 BitstreamEntry Entry = Stream.advance(); 3845 switch (Entry.Kind) { 3846 case BitstreamEntry::Error: 3847 return error("Malformed block"); 3848 case BitstreamEntry::EndBlock: 3849 return std::error_code(); 3850 3851 case BitstreamEntry::SubBlock: 3852 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3853 if (std::error_code EC = parseBitcodeVersion()) 3854 return EC; 3855 return ProducerIdentification; 3856 } 3857 // Ignore other sub-blocks. 3858 if (Stream.SkipBlock()) 3859 return error("Malformed block"); 3860 continue; 3861 case BitstreamEntry::Record: 3862 Stream.skipRecord(Entry.ID); 3863 continue; 3864 } 3865 } 3866 } 3867 3868 /// Parse metadata attachments. 3869 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3870 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3871 return error("Invalid record"); 3872 3873 SmallVector<uint64_t, 64> Record; 3874 while (1) { 3875 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3876 3877 switch (Entry.Kind) { 3878 case BitstreamEntry::SubBlock: // Handled for us already. 3879 case BitstreamEntry::Error: 3880 return error("Malformed block"); 3881 case BitstreamEntry::EndBlock: 3882 return std::error_code(); 3883 case BitstreamEntry::Record: 3884 // The interesting case. 3885 break; 3886 } 3887 3888 // Read a metadata attachment record. 3889 Record.clear(); 3890 switch (Stream.readRecord(Entry.ID, Record)) { 3891 default: // Default behavior: ignore. 3892 break; 3893 case bitc::METADATA_ATTACHMENT: { 3894 unsigned RecordLength = Record.size(); 3895 if (Record.empty()) 3896 return error("Invalid record"); 3897 if (RecordLength % 2 == 0) { 3898 // A function attachment. 3899 for (unsigned I = 0; I != RecordLength; I += 2) { 3900 auto K = MDKindMap.find(Record[I]); 3901 if (K == MDKindMap.end()) 3902 return error("Invalid ID"); 3903 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3904 F.setMetadata(K->second, cast<MDNode>(MD)); 3905 } 3906 continue; 3907 } 3908 3909 // An instruction attachment. 3910 Instruction *Inst = InstructionList[Record[0]]; 3911 for (unsigned i = 1; i != RecordLength; i = i+2) { 3912 unsigned Kind = Record[i]; 3913 DenseMap<unsigned, unsigned>::iterator I = 3914 MDKindMap.find(Kind); 3915 if (I == MDKindMap.end()) 3916 return error("Invalid ID"); 3917 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3918 if (isa<LocalAsMetadata>(Node)) 3919 // Drop the attachment. This used to be legal, but there's no 3920 // upgrade path. 3921 break; 3922 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3923 if (I->second == LLVMContext::MD_tbaa) 3924 InstsWithTBAATag.push_back(Inst); 3925 } 3926 break; 3927 } 3928 } 3929 } 3930 } 3931 3932 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3933 Type *ValType, Type *PtrType) { 3934 if (!isa<PointerType>(PtrType)) 3935 return error(DH, "Load/Store operand is not a pointer type"); 3936 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3937 3938 if (ValType && ValType != ElemType) 3939 return error(DH, "Explicit load/store type does not match pointee type of " 3940 "pointer operand"); 3941 if (!PointerType::isLoadableOrStorableType(ElemType)) 3942 return error(DH, "Cannot load/store from pointer"); 3943 return std::error_code(); 3944 } 3945 3946 /// Lazily parse the specified function body block. 3947 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3948 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3949 return error("Invalid record"); 3950 3951 InstructionList.clear(); 3952 unsigned ModuleValueListSize = ValueList.size(); 3953 unsigned ModuleMDValueListSize = MDValueList.size(); 3954 3955 // Add all the function arguments to the value table. 3956 for (Argument &I : F->args()) 3957 ValueList.push_back(&I); 3958 3959 unsigned NextValueNo = ValueList.size(); 3960 BasicBlock *CurBB = nullptr; 3961 unsigned CurBBNo = 0; 3962 3963 DebugLoc LastLoc; 3964 auto getLastInstruction = [&]() -> Instruction * { 3965 if (CurBB && !CurBB->empty()) 3966 return &CurBB->back(); 3967 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3968 !FunctionBBs[CurBBNo - 1]->empty()) 3969 return &FunctionBBs[CurBBNo - 1]->back(); 3970 return nullptr; 3971 }; 3972 3973 std::vector<OperandBundleDef> OperandBundles; 3974 3975 // Read all the records. 3976 SmallVector<uint64_t, 64> Record; 3977 while (1) { 3978 BitstreamEntry Entry = Stream.advance(); 3979 3980 switch (Entry.Kind) { 3981 case BitstreamEntry::Error: 3982 return error("Malformed block"); 3983 case BitstreamEntry::EndBlock: 3984 goto OutOfRecordLoop; 3985 3986 case BitstreamEntry::SubBlock: 3987 switch (Entry.ID) { 3988 default: // Skip unknown content. 3989 if (Stream.SkipBlock()) 3990 return error("Invalid record"); 3991 break; 3992 case bitc::CONSTANTS_BLOCK_ID: 3993 if (std::error_code EC = parseConstants()) 3994 return EC; 3995 NextValueNo = ValueList.size(); 3996 break; 3997 case bitc::VALUE_SYMTAB_BLOCK_ID: 3998 if (std::error_code EC = parseValueSymbolTable()) 3999 return EC; 4000 break; 4001 case bitc::METADATA_ATTACHMENT_ID: 4002 if (std::error_code EC = parseMetadataAttachment(*F)) 4003 return EC; 4004 break; 4005 case bitc::METADATA_BLOCK_ID: 4006 if (std::error_code EC = parseMetadata()) 4007 return EC; 4008 break; 4009 case bitc::USELIST_BLOCK_ID: 4010 if (std::error_code EC = parseUseLists()) 4011 return EC; 4012 break; 4013 } 4014 continue; 4015 4016 case BitstreamEntry::Record: 4017 // The interesting case. 4018 break; 4019 } 4020 4021 // Read a record. 4022 Record.clear(); 4023 Instruction *I = nullptr; 4024 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4025 switch (BitCode) { 4026 default: // Default behavior: reject 4027 return error("Invalid value"); 4028 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4029 if (Record.size() < 1 || Record[0] == 0) 4030 return error("Invalid record"); 4031 // Create all the basic blocks for the function. 4032 FunctionBBs.resize(Record[0]); 4033 4034 // See if anything took the address of blocks in this function. 4035 auto BBFRI = BasicBlockFwdRefs.find(F); 4036 if (BBFRI == BasicBlockFwdRefs.end()) { 4037 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4038 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4039 } else { 4040 auto &BBRefs = BBFRI->second; 4041 // Check for invalid basic block references. 4042 if (BBRefs.size() > FunctionBBs.size()) 4043 return error("Invalid ID"); 4044 assert(!BBRefs.empty() && "Unexpected empty array"); 4045 assert(!BBRefs.front() && "Invalid reference to entry block"); 4046 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4047 ++I) 4048 if (I < RE && BBRefs[I]) { 4049 BBRefs[I]->insertInto(F); 4050 FunctionBBs[I] = BBRefs[I]; 4051 } else { 4052 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4053 } 4054 4055 // Erase from the table. 4056 BasicBlockFwdRefs.erase(BBFRI); 4057 } 4058 4059 CurBB = FunctionBBs[0]; 4060 continue; 4061 } 4062 4063 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4064 // This record indicates that the last instruction is at the same 4065 // location as the previous instruction with a location. 4066 I = getLastInstruction(); 4067 4068 if (!I) 4069 return error("Invalid record"); 4070 I->setDebugLoc(LastLoc); 4071 I = nullptr; 4072 continue; 4073 4074 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4075 I = getLastInstruction(); 4076 if (!I || Record.size() < 4) 4077 return error("Invalid record"); 4078 4079 unsigned Line = Record[0], Col = Record[1]; 4080 unsigned ScopeID = Record[2], IAID = Record[3]; 4081 4082 MDNode *Scope = nullptr, *IA = nullptr; 4083 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4084 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4085 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4086 I->setDebugLoc(LastLoc); 4087 I = nullptr; 4088 continue; 4089 } 4090 4091 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4092 unsigned OpNum = 0; 4093 Value *LHS, *RHS; 4094 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4095 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4096 OpNum+1 > Record.size()) 4097 return error("Invalid record"); 4098 4099 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4100 if (Opc == -1) 4101 return error("Invalid record"); 4102 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4103 InstructionList.push_back(I); 4104 if (OpNum < Record.size()) { 4105 if (Opc == Instruction::Add || 4106 Opc == Instruction::Sub || 4107 Opc == Instruction::Mul || 4108 Opc == Instruction::Shl) { 4109 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4110 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4111 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4112 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4113 } else if (Opc == Instruction::SDiv || 4114 Opc == Instruction::UDiv || 4115 Opc == Instruction::LShr || 4116 Opc == Instruction::AShr) { 4117 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4118 cast<BinaryOperator>(I)->setIsExact(true); 4119 } else if (isa<FPMathOperator>(I)) { 4120 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4121 if (FMF.any()) 4122 I->setFastMathFlags(FMF); 4123 } 4124 4125 } 4126 break; 4127 } 4128 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4129 unsigned OpNum = 0; 4130 Value *Op; 4131 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4132 OpNum+2 != Record.size()) 4133 return error("Invalid record"); 4134 4135 Type *ResTy = getTypeByID(Record[OpNum]); 4136 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4137 if (Opc == -1 || !ResTy) 4138 return error("Invalid record"); 4139 Instruction *Temp = nullptr; 4140 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4141 if (Temp) { 4142 InstructionList.push_back(Temp); 4143 CurBB->getInstList().push_back(Temp); 4144 } 4145 } else { 4146 auto CastOp = (Instruction::CastOps)Opc; 4147 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4148 return error("Invalid cast"); 4149 I = CastInst::Create(CastOp, Op, ResTy); 4150 } 4151 InstructionList.push_back(I); 4152 break; 4153 } 4154 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4155 case bitc::FUNC_CODE_INST_GEP_OLD: 4156 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4157 unsigned OpNum = 0; 4158 4159 Type *Ty; 4160 bool InBounds; 4161 4162 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4163 InBounds = Record[OpNum++]; 4164 Ty = getTypeByID(Record[OpNum++]); 4165 } else { 4166 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4167 Ty = nullptr; 4168 } 4169 4170 Value *BasePtr; 4171 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4172 return error("Invalid record"); 4173 4174 if (!Ty) 4175 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4176 ->getElementType(); 4177 else if (Ty != 4178 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4179 ->getElementType()) 4180 return error( 4181 "Explicit gep type does not match pointee type of pointer operand"); 4182 4183 SmallVector<Value*, 16> GEPIdx; 4184 while (OpNum != Record.size()) { 4185 Value *Op; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4187 return error("Invalid record"); 4188 GEPIdx.push_back(Op); 4189 } 4190 4191 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4192 4193 InstructionList.push_back(I); 4194 if (InBounds) 4195 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4196 break; 4197 } 4198 4199 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4200 // EXTRACTVAL: [opty, opval, n x indices] 4201 unsigned OpNum = 0; 4202 Value *Agg; 4203 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4204 return error("Invalid record"); 4205 4206 unsigned RecSize = Record.size(); 4207 if (OpNum == RecSize) 4208 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4209 4210 SmallVector<unsigned, 4> EXTRACTVALIdx; 4211 Type *CurTy = Agg->getType(); 4212 for (; OpNum != RecSize; ++OpNum) { 4213 bool IsArray = CurTy->isArrayTy(); 4214 bool IsStruct = CurTy->isStructTy(); 4215 uint64_t Index = Record[OpNum]; 4216 4217 if (!IsStruct && !IsArray) 4218 return error("EXTRACTVAL: Invalid type"); 4219 if ((unsigned)Index != Index) 4220 return error("Invalid value"); 4221 if (IsStruct && Index >= CurTy->subtypes().size()) 4222 return error("EXTRACTVAL: Invalid struct index"); 4223 if (IsArray && Index >= CurTy->getArrayNumElements()) 4224 return error("EXTRACTVAL: Invalid array index"); 4225 EXTRACTVALIdx.push_back((unsigned)Index); 4226 4227 if (IsStruct) 4228 CurTy = CurTy->subtypes()[Index]; 4229 else 4230 CurTy = CurTy->subtypes()[0]; 4231 } 4232 4233 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4234 InstructionList.push_back(I); 4235 break; 4236 } 4237 4238 case bitc::FUNC_CODE_INST_INSERTVAL: { 4239 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4240 unsigned OpNum = 0; 4241 Value *Agg; 4242 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4243 return error("Invalid record"); 4244 Value *Val; 4245 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4246 return error("Invalid record"); 4247 4248 unsigned RecSize = Record.size(); 4249 if (OpNum == RecSize) 4250 return error("INSERTVAL: Invalid instruction with 0 indices"); 4251 4252 SmallVector<unsigned, 4> INSERTVALIdx; 4253 Type *CurTy = Agg->getType(); 4254 for (; OpNum != RecSize; ++OpNum) { 4255 bool IsArray = CurTy->isArrayTy(); 4256 bool IsStruct = CurTy->isStructTy(); 4257 uint64_t Index = Record[OpNum]; 4258 4259 if (!IsStruct && !IsArray) 4260 return error("INSERTVAL: Invalid type"); 4261 if ((unsigned)Index != Index) 4262 return error("Invalid value"); 4263 if (IsStruct && Index >= CurTy->subtypes().size()) 4264 return error("INSERTVAL: Invalid struct index"); 4265 if (IsArray && Index >= CurTy->getArrayNumElements()) 4266 return error("INSERTVAL: Invalid array index"); 4267 4268 INSERTVALIdx.push_back((unsigned)Index); 4269 if (IsStruct) 4270 CurTy = CurTy->subtypes()[Index]; 4271 else 4272 CurTy = CurTy->subtypes()[0]; 4273 } 4274 4275 if (CurTy != Val->getType()) 4276 return error("Inserted value type doesn't match aggregate type"); 4277 4278 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4279 InstructionList.push_back(I); 4280 break; 4281 } 4282 4283 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4284 // obsolete form of select 4285 // handles select i1 ... in old bitcode 4286 unsigned OpNum = 0; 4287 Value *TrueVal, *FalseVal, *Cond; 4288 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4289 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4290 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4291 return error("Invalid record"); 4292 4293 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4294 InstructionList.push_back(I); 4295 break; 4296 } 4297 4298 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4299 // new form of select 4300 // handles select i1 or select [N x i1] 4301 unsigned OpNum = 0; 4302 Value *TrueVal, *FalseVal, *Cond; 4303 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4304 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4305 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4306 return error("Invalid record"); 4307 4308 // select condition can be either i1 or [N x i1] 4309 if (VectorType* vector_type = 4310 dyn_cast<VectorType>(Cond->getType())) { 4311 // expect <n x i1> 4312 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4313 return error("Invalid type for value"); 4314 } else { 4315 // expect i1 4316 if (Cond->getType() != Type::getInt1Ty(Context)) 4317 return error("Invalid type for value"); 4318 } 4319 4320 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 4325 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4326 unsigned OpNum = 0; 4327 Value *Vec, *Idx; 4328 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4329 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4330 return error("Invalid record"); 4331 if (!Vec->getType()->isVectorTy()) 4332 return error("Invalid type for value"); 4333 I = ExtractElementInst::Create(Vec, Idx); 4334 InstructionList.push_back(I); 4335 break; 4336 } 4337 4338 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4339 unsigned OpNum = 0; 4340 Value *Vec, *Elt, *Idx; 4341 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4342 return error("Invalid record"); 4343 if (!Vec->getType()->isVectorTy()) 4344 return error("Invalid type for value"); 4345 if (popValue(Record, OpNum, NextValueNo, 4346 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4347 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4348 return error("Invalid record"); 4349 I = InsertElementInst::Create(Vec, Elt, Idx); 4350 InstructionList.push_back(I); 4351 break; 4352 } 4353 4354 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4355 unsigned OpNum = 0; 4356 Value *Vec1, *Vec2, *Mask; 4357 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4358 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4359 return error("Invalid record"); 4360 4361 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4362 return error("Invalid record"); 4363 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4364 return error("Invalid type for value"); 4365 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4366 InstructionList.push_back(I); 4367 break; 4368 } 4369 4370 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4371 // Old form of ICmp/FCmp returning bool 4372 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4373 // both legal on vectors but had different behaviour. 4374 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4375 // FCmp/ICmp returning bool or vector of bool 4376 4377 unsigned OpNum = 0; 4378 Value *LHS, *RHS; 4379 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4380 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4381 return error("Invalid record"); 4382 4383 unsigned PredVal = Record[OpNum]; 4384 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4385 FastMathFlags FMF; 4386 if (IsFP && Record.size() > OpNum+1) 4387 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4388 4389 if (OpNum+1 != Record.size()) 4390 return error("Invalid record"); 4391 4392 if (LHS->getType()->isFPOrFPVectorTy()) 4393 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4394 else 4395 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4396 4397 if (FMF.any()) 4398 I->setFastMathFlags(FMF); 4399 InstructionList.push_back(I); 4400 break; 4401 } 4402 4403 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4404 { 4405 unsigned Size = Record.size(); 4406 if (Size == 0) { 4407 I = ReturnInst::Create(Context); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 4412 unsigned OpNum = 0; 4413 Value *Op = nullptr; 4414 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4415 return error("Invalid record"); 4416 if (OpNum != Record.size()) 4417 return error("Invalid record"); 4418 4419 I = ReturnInst::Create(Context, Op); 4420 InstructionList.push_back(I); 4421 break; 4422 } 4423 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4424 if (Record.size() != 1 && Record.size() != 3) 4425 return error("Invalid record"); 4426 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4427 if (!TrueDest) 4428 return error("Invalid record"); 4429 4430 if (Record.size() == 1) { 4431 I = BranchInst::Create(TrueDest); 4432 InstructionList.push_back(I); 4433 } 4434 else { 4435 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4436 Value *Cond = getValue(Record, 2, NextValueNo, 4437 Type::getInt1Ty(Context)); 4438 if (!FalseDest || !Cond) 4439 return error("Invalid record"); 4440 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4441 InstructionList.push_back(I); 4442 } 4443 break; 4444 } 4445 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4446 if (Record.size() != 1 && Record.size() != 2) 4447 return error("Invalid record"); 4448 unsigned Idx = 0; 4449 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4450 Type::getTokenTy(Context), OC_CleanupPad); 4451 if (!CleanupPad) 4452 return error("Invalid record"); 4453 BasicBlock *UnwindDest = nullptr; 4454 if (Record.size() == 2) { 4455 UnwindDest = getBasicBlock(Record[Idx++]); 4456 if (!UnwindDest) 4457 return error("Invalid record"); 4458 } 4459 4460 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4461 UnwindDest); 4462 InstructionList.push_back(I); 4463 break; 4464 } 4465 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4466 if (Record.size() != 2) 4467 return error("Invalid record"); 4468 unsigned Idx = 0; 4469 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4470 Type::getTokenTy(Context), OC_CatchPad); 4471 if (!CatchPad) 4472 return error("Invalid record"); 4473 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4474 if (!BB) 4475 return error("Invalid record"); 4476 4477 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4478 InstructionList.push_back(I); 4479 break; 4480 } 4481 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4482 if (Record.size() < 3) 4483 return error("Invalid record"); 4484 unsigned Idx = 0; 4485 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4486 if (!NormalBB) 4487 return error("Invalid record"); 4488 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4489 if (!UnwindBB) 4490 return error("Invalid record"); 4491 unsigned NumArgOperands = Record[Idx++]; 4492 SmallVector<Value *, 2> Args; 4493 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4494 Value *Val; 4495 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4496 return error("Invalid record"); 4497 Args.push_back(Val); 4498 } 4499 if (Record.size() != Idx) 4500 return error("Invalid record"); 4501 4502 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4503 InstructionList.push_back(I); 4504 break; 4505 } 4506 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4507 if (Record.size() < 1) 4508 return error("Invalid record"); 4509 unsigned Idx = 0; 4510 bool HasUnwindDest = !!Record[Idx++]; 4511 BasicBlock *UnwindDest = nullptr; 4512 if (HasUnwindDest) { 4513 if (Idx == Record.size()) 4514 return error("Invalid record"); 4515 UnwindDest = getBasicBlock(Record[Idx++]); 4516 if (!UnwindDest) 4517 return error("Invalid record"); 4518 } 4519 unsigned NumArgOperands = Record[Idx++]; 4520 SmallVector<Value *, 2> Args; 4521 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4522 Value *Val; 4523 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4524 return error("Invalid record"); 4525 Args.push_back(Val); 4526 } 4527 if (Record.size() != Idx) 4528 return error("Invalid record"); 4529 4530 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4531 InstructionList.push_back(I); 4532 break; 4533 } 4534 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4535 if (Record.size() < 1) 4536 return error("Invalid record"); 4537 unsigned Idx = 0; 4538 unsigned NumArgOperands = Record[Idx++]; 4539 SmallVector<Value *, 2> Args; 4540 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4541 Value *Val; 4542 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4543 return error("Invalid record"); 4544 Args.push_back(Val); 4545 } 4546 if (Record.size() != Idx) 4547 return error("Invalid record"); 4548 4549 I = CleanupPadInst::Create(Context, Args); 4550 InstructionList.push_back(I); 4551 break; 4552 } 4553 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4554 if (Record.size() > 1) 4555 return error("Invalid record"); 4556 BasicBlock *BB = nullptr; 4557 if (Record.size() == 1) { 4558 BB = getBasicBlock(Record[0]); 4559 if (!BB) 4560 return error("Invalid record"); 4561 } 4562 I = CatchEndPadInst::Create(Context, BB); 4563 InstructionList.push_back(I); 4564 break; 4565 } 4566 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4567 if (Record.size() != 1 && Record.size() != 2) 4568 return error("Invalid record"); 4569 unsigned Idx = 0; 4570 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4571 Type::getTokenTy(Context), OC_CleanupPad); 4572 if (!CleanupPad) 4573 return error("Invalid record"); 4574 4575 BasicBlock *BB = nullptr; 4576 if (Record.size() == 2) { 4577 BB = getBasicBlock(Record[Idx++]); 4578 if (!BB) 4579 return error("Invalid record"); 4580 } 4581 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4582 InstructionList.push_back(I); 4583 break; 4584 } 4585 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4586 // Check magic 4587 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4588 // "New" SwitchInst format with case ranges. The changes to write this 4589 // format were reverted but we still recognize bitcode that uses it. 4590 // Hopefully someday we will have support for case ranges and can use 4591 // this format again. 4592 4593 Type *OpTy = getTypeByID(Record[1]); 4594 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4595 4596 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4597 BasicBlock *Default = getBasicBlock(Record[3]); 4598 if (!OpTy || !Cond || !Default) 4599 return error("Invalid record"); 4600 4601 unsigned NumCases = Record[4]; 4602 4603 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4604 InstructionList.push_back(SI); 4605 4606 unsigned CurIdx = 5; 4607 for (unsigned i = 0; i != NumCases; ++i) { 4608 SmallVector<ConstantInt*, 1> CaseVals; 4609 unsigned NumItems = Record[CurIdx++]; 4610 for (unsigned ci = 0; ci != NumItems; ++ci) { 4611 bool isSingleNumber = Record[CurIdx++]; 4612 4613 APInt Low; 4614 unsigned ActiveWords = 1; 4615 if (ValueBitWidth > 64) 4616 ActiveWords = Record[CurIdx++]; 4617 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4618 ValueBitWidth); 4619 CurIdx += ActiveWords; 4620 4621 if (!isSingleNumber) { 4622 ActiveWords = 1; 4623 if (ValueBitWidth > 64) 4624 ActiveWords = Record[CurIdx++]; 4625 APInt High = readWideAPInt( 4626 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4627 CurIdx += ActiveWords; 4628 4629 // FIXME: It is not clear whether values in the range should be 4630 // compared as signed or unsigned values. The partially 4631 // implemented changes that used this format in the past used 4632 // unsigned comparisons. 4633 for ( ; Low.ule(High); ++Low) 4634 CaseVals.push_back(ConstantInt::get(Context, Low)); 4635 } else 4636 CaseVals.push_back(ConstantInt::get(Context, Low)); 4637 } 4638 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4639 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4640 cve = CaseVals.end(); cvi != cve; ++cvi) 4641 SI->addCase(*cvi, DestBB); 4642 } 4643 I = SI; 4644 break; 4645 } 4646 4647 // Old SwitchInst format without case ranges. 4648 4649 if (Record.size() < 3 || (Record.size() & 1) == 0) 4650 return error("Invalid record"); 4651 Type *OpTy = getTypeByID(Record[0]); 4652 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4653 BasicBlock *Default = getBasicBlock(Record[2]); 4654 if (!OpTy || !Cond || !Default) 4655 return error("Invalid record"); 4656 unsigned NumCases = (Record.size()-3)/2; 4657 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4658 InstructionList.push_back(SI); 4659 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4660 ConstantInt *CaseVal = 4661 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4662 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4663 if (!CaseVal || !DestBB) { 4664 delete SI; 4665 return error("Invalid record"); 4666 } 4667 SI->addCase(CaseVal, DestBB); 4668 } 4669 I = SI; 4670 break; 4671 } 4672 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4673 if (Record.size() < 2) 4674 return error("Invalid record"); 4675 Type *OpTy = getTypeByID(Record[0]); 4676 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4677 if (!OpTy || !Address) 4678 return error("Invalid record"); 4679 unsigned NumDests = Record.size()-2; 4680 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4681 InstructionList.push_back(IBI); 4682 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4683 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4684 IBI->addDestination(DestBB); 4685 } else { 4686 delete IBI; 4687 return error("Invalid record"); 4688 } 4689 } 4690 I = IBI; 4691 break; 4692 } 4693 4694 case bitc::FUNC_CODE_INST_INVOKE: { 4695 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4696 if (Record.size() < 4) 4697 return error("Invalid record"); 4698 unsigned OpNum = 0; 4699 AttributeSet PAL = getAttributes(Record[OpNum++]); 4700 unsigned CCInfo = Record[OpNum++]; 4701 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4702 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4703 4704 FunctionType *FTy = nullptr; 4705 if (CCInfo >> 13 & 1 && 4706 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4707 return error("Explicit invoke type is not a function type"); 4708 4709 Value *Callee; 4710 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4711 return error("Invalid record"); 4712 4713 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4714 if (!CalleeTy) 4715 return error("Callee is not a pointer"); 4716 if (!FTy) { 4717 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4718 if (!FTy) 4719 return error("Callee is not of pointer to function type"); 4720 } else if (CalleeTy->getElementType() != FTy) 4721 return error("Explicit invoke type does not match pointee type of " 4722 "callee operand"); 4723 if (Record.size() < FTy->getNumParams() + OpNum) 4724 return error("Insufficient operands to call"); 4725 4726 SmallVector<Value*, 16> Ops; 4727 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4728 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4729 FTy->getParamType(i))); 4730 if (!Ops.back()) 4731 return error("Invalid record"); 4732 } 4733 4734 if (!FTy->isVarArg()) { 4735 if (Record.size() != OpNum) 4736 return error("Invalid record"); 4737 } else { 4738 // Read type/value pairs for varargs params. 4739 while (OpNum != Record.size()) { 4740 Value *Op; 4741 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4742 return error("Invalid record"); 4743 Ops.push_back(Op); 4744 } 4745 } 4746 4747 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4748 OperandBundles.clear(); 4749 InstructionList.push_back(I); 4750 cast<InvokeInst>(I)->setCallingConv( 4751 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4752 cast<InvokeInst>(I)->setAttributes(PAL); 4753 break; 4754 } 4755 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4756 unsigned Idx = 0; 4757 Value *Val = nullptr; 4758 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4759 return error("Invalid record"); 4760 I = ResumeInst::Create(Val); 4761 InstructionList.push_back(I); 4762 break; 4763 } 4764 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4765 I = new UnreachableInst(Context); 4766 InstructionList.push_back(I); 4767 break; 4768 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4769 if (Record.size() < 1 || ((Record.size()-1)&1)) 4770 return error("Invalid record"); 4771 Type *Ty = getTypeByID(Record[0]); 4772 if (!Ty) 4773 return error("Invalid record"); 4774 4775 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4776 InstructionList.push_back(PN); 4777 4778 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4779 Value *V; 4780 // With the new function encoding, it is possible that operands have 4781 // negative IDs (for forward references). Use a signed VBR 4782 // representation to keep the encoding small. 4783 if (UseRelativeIDs) 4784 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4785 else 4786 V = getValue(Record, 1+i, NextValueNo, Ty); 4787 BasicBlock *BB = getBasicBlock(Record[2+i]); 4788 if (!V || !BB) 4789 return error("Invalid record"); 4790 PN->addIncoming(V, BB); 4791 } 4792 I = PN; 4793 break; 4794 } 4795 4796 case bitc::FUNC_CODE_INST_LANDINGPAD: 4797 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4798 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4799 unsigned Idx = 0; 4800 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4801 if (Record.size() < 3) 4802 return error("Invalid record"); 4803 } else { 4804 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4805 if (Record.size() < 4) 4806 return error("Invalid record"); 4807 } 4808 Type *Ty = getTypeByID(Record[Idx++]); 4809 if (!Ty) 4810 return error("Invalid record"); 4811 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4812 Value *PersFn = nullptr; 4813 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4814 return error("Invalid record"); 4815 4816 if (!F->hasPersonalityFn()) 4817 F->setPersonalityFn(cast<Constant>(PersFn)); 4818 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4819 return error("Personality function mismatch"); 4820 } 4821 4822 bool IsCleanup = !!Record[Idx++]; 4823 unsigned NumClauses = Record[Idx++]; 4824 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4825 LP->setCleanup(IsCleanup); 4826 for (unsigned J = 0; J != NumClauses; ++J) { 4827 LandingPadInst::ClauseType CT = 4828 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4829 Value *Val; 4830 4831 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4832 delete LP; 4833 return error("Invalid record"); 4834 } 4835 4836 assert((CT != LandingPadInst::Catch || 4837 !isa<ArrayType>(Val->getType())) && 4838 "Catch clause has a invalid type!"); 4839 assert((CT != LandingPadInst::Filter || 4840 isa<ArrayType>(Val->getType())) && 4841 "Filter clause has invalid type!"); 4842 LP->addClause(cast<Constant>(Val)); 4843 } 4844 4845 I = LP; 4846 InstructionList.push_back(I); 4847 break; 4848 } 4849 4850 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4851 if (Record.size() != 4) 4852 return error("Invalid record"); 4853 uint64_t AlignRecord = Record[3]; 4854 const uint64_t InAllocaMask = uint64_t(1) << 5; 4855 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4856 // Reserve bit 7 for SwiftError flag. 4857 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4858 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4859 bool InAlloca = AlignRecord & InAllocaMask; 4860 Type *Ty = getTypeByID(Record[0]); 4861 if ((AlignRecord & ExplicitTypeMask) == 0) { 4862 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4863 if (!PTy) 4864 return error("Old-style alloca with a non-pointer type"); 4865 Ty = PTy->getElementType(); 4866 } 4867 Type *OpTy = getTypeByID(Record[1]); 4868 Value *Size = getFnValueByID(Record[2], OpTy); 4869 unsigned Align; 4870 if (std::error_code EC = 4871 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4872 return EC; 4873 } 4874 if (!Ty || !Size) 4875 return error("Invalid record"); 4876 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4877 AI->setUsedWithInAlloca(InAlloca); 4878 I = AI; 4879 InstructionList.push_back(I); 4880 break; 4881 } 4882 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4883 unsigned OpNum = 0; 4884 Value *Op; 4885 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4886 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4887 return error("Invalid record"); 4888 4889 Type *Ty = nullptr; 4890 if (OpNum + 3 == Record.size()) 4891 Ty = getTypeByID(Record[OpNum++]); 4892 if (std::error_code EC = 4893 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4894 return EC; 4895 if (!Ty) 4896 Ty = cast<PointerType>(Op->getType())->getElementType(); 4897 4898 unsigned Align; 4899 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4900 return EC; 4901 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4902 4903 InstructionList.push_back(I); 4904 break; 4905 } 4906 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4907 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4908 unsigned OpNum = 0; 4909 Value *Op; 4910 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4911 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4912 return error("Invalid record"); 4913 4914 Type *Ty = nullptr; 4915 if (OpNum + 5 == Record.size()) 4916 Ty = getTypeByID(Record[OpNum++]); 4917 if (std::error_code EC = 4918 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4919 return EC; 4920 if (!Ty) 4921 Ty = cast<PointerType>(Op->getType())->getElementType(); 4922 4923 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4924 if (Ordering == NotAtomic || Ordering == Release || 4925 Ordering == AcquireRelease) 4926 return error("Invalid record"); 4927 if (Ordering != NotAtomic && Record[OpNum] == 0) 4928 return error("Invalid record"); 4929 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4930 4931 unsigned Align; 4932 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4933 return EC; 4934 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4935 4936 InstructionList.push_back(I); 4937 break; 4938 } 4939 case bitc::FUNC_CODE_INST_STORE: 4940 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4941 unsigned OpNum = 0; 4942 Value *Val, *Ptr; 4943 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4944 (BitCode == bitc::FUNC_CODE_INST_STORE 4945 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4946 : popValue(Record, OpNum, NextValueNo, 4947 cast<PointerType>(Ptr->getType())->getElementType(), 4948 Val)) || 4949 OpNum + 2 != Record.size()) 4950 return error("Invalid record"); 4951 4952 if (std::error_code EC = typeCheckLoadStoreInst( 4953 DiagnosticHandler, Val->getType(), Ptr->getType())) 4954 return EC; 4955 unsigned Align; 4956 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4957 return EC; 4958 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4959 InstructionList.push_back(I); 4960 break; 4961 } 4962 case bitc::FUNC_CODE_INST_STOREATOMIC: 4963 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4964 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4965 unsigned OpNum = 0; 4966 Value *Val, *Ptr; 4967 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4968 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4969 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4970 : popValue(Record, OpNum, NextValueNo, 4971 cast<PointerType>(Ptr->getType())->getElementType(), 4972 Val)) || 4973 OpNum + 4 != Record.size()) 4974 return error("Invalid record"); 4975 4976 if (std::error_code EC = typeCheckLoadStoreInst( 4977 DiagnosticHandler, Val->getType(), Ptr->getType())) 4978 return EC; 4979 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4980 if (Ordering == NotAtomic || Ordering == Acquire || 4981 Ordering == AcquireRelease) 4982 return error("Invalid record"); 4983 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4984 if (Ordering != NotAtomic && Record[OpNum] == 0) 4985 return error("Invalid record"); 4986 4987 unsigned Align; 4988 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4989 return EC; 4990 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4991 InstructionList.push_back(I); 4992 break; 4993 } 4994 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4995 case bitc::FUNC_CODE_INST_CMPXCHG: { 4996 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4997 // failureordering?, isweak?] 4998 unsigned OpNum = 0; 4999 Value *Ptr, *Cmp, *New; 5000 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5001 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5002 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5003 : popValue(Record, OpNum, NextValueNo, 5004 cast<PointerType>(Ptr->getType())->getElementType(), 5005 Cmp)) || 5006 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5007 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5008 return error("Invalid record"); 5009 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5010 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5011 return error("Invalid record"); 5012 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5013 5014 if (std::error_code EC = typeCheckLoadStoreInst( 5015 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 5016 return EC; 5017 AtomicOrdering FailureOrdering; 5018 if (Record.size() < 7) 5019 FailureOrdering = 5020 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5021 else 5022 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5023 5024 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5025 SynchScope); 5026 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5027 5028 if (Record.size() < 8) { 5029 // Before weak cmpxchgs existed, the instruction simply returned the 5030 // value loaded from memory, so bitcode files from that era will be 5031 // expecting the first component of a modern cmpxchg. 5032 CurBB->getInstList().push_back(I); 5033 I = ExtractValueInst::Create(I, 0); 5034 } else { 5035 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5036 } 5037 5038 InstructionList.push_back(I); 5039 break; 5040 } 5041 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5042 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5043 unsigned OpNum = 0; 5044 Value *Ptr, *Val; 5045 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5046 popValue(Record, OpNum, NextValueNo, 5047 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5048 OpNum+4 != Record.size()) 5049 return error("Invalid record"); 5050 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5051 if (Operation < AtomicRMWInst::FIRST_BINOP || 5052 Operation > AtomicRMWInst::LAST_BINOP) 5053 return error("Invalid record"); 5054 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5055 if (Ordering == NotAtomic || Ordering == Unordered) 5056 return error("Invalid record"); 5057 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5058 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5059 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5060 InstructionList.push_back(I); 5061 break; 5062 } 5063 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5064 if (2 != Record.size()) 5065 return error("Invalid record"); 5066 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5067 if (Ordering == NotAtomic || Ordering == Unordered || 5068 Ordering == Monotonic) 5069 return error("Invalid record"); 5070 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5071 I = new FenceInst(Context, Ordering, SynchScope); 5072 InstructionList.push_back(I); 5073 break; 5074 } 5075 case bitc::FUNC_CODE_INST_CALL: { 5076 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 5077 if (Record.size() < 3) 5078 return error("Invalid record"); 5079 5080 unsigned OpNum = 0; 5081 AttributeSet PAL = getAttributes(Record[OpNum++]); 5082 unsigned CCInfo = Record[OpNum++]; 5083 5084 FunctionType *FTy = nullptr; 5085 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5086 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5087 return error("Explicit call type is not a function type"); 5088 5089 Value *Callee; 5090 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5091 return error("Invalid record"); 5092 5093 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5094 if (!OpTy) 5095 return error("Callee is not a pointer type"); 5096 if (!FTy) { 5097 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5098 if (!FTy) 5099 return error("Callee is not of pointer to function type"); 5100 } else if (OpTy->getElementType() != FTy) 5101 return error("Explicit call type does not match pointee type of " 5102 "callee operand"); 5103 if (Record.size() < FTy->getNumParams() + OpNum) 5104 return error("Insufficient operands to call"); 5105 5106 SmallVector<Value*, 16> Args; 5107 // Read the fixed params. 5108 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5109 if (FTy->getParamType(i)->isLabelTy()) 5110 Args.push_back(getBasicBlock(Record[OpNum])); 5111 else 5112 Args.push_back(getValue(Record, OpNum, NextValueNo, 5113 FTy->getParamType(i))); 5114 if (!Args.back()) 5115 return error("Invalid record"); 5116 } 5117 5118 // Read type/value pairs for varargs params. 5119 if (!FTy->isVarArg()) { 5120 if (OpNum != Record.size()) 5121 return error("Invalid record"); 5122 } else { 5123 while (OpNum != Record.size()) { 5124 Value *Op; 5125 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5126 return error("Invalid record"); 5127 Args.push_back(Op); 5128 } 5129 } 5130 5131 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5132 OperandBundles.clear(); 5133 InstructionList.push_back(I); 5134 cast<CallInst>(I)->setCallingConv( 5135 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5136 CallInst::TailCallKind TCK = CallInst::TCK_None; 5137 if (CCInfo & 1 << bitc::CALL_TAIL) 5138 TCK = CallInst::TCK_Tail; 5139 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5140 TCK = CallInst::TCK_MustTail; 5141 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5142 TCK = CallInst::TCK_NoTail; 5143 cast<CallInst>(I)->setTailCallKind(TCK); 5144 cast<CallInst>(I)->setAttributes(PAL); 5145 break; 5146 } 5147 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5148 if (Record.size() < 3) 5149 return error("Invalid record"); 5150 Type *OpTy = getTypeByID(Record[0]); 5151 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5152 Type *ResTy = getTypeByID(Record[2]); 5153 if (!OpTy || !Op || !ResTy) 5154 return error("Invalid record"); 5155 I = new VAArgInst(Op, ResTy); 5156 InstructionList.push_back(I); 5157 break; 5158 } 5159 5160 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5161 // A call or an invoke can be optionally prefixed with some variable 5162 // number of operand bundle blocks. These blocks are read into 5163 // OperandBundles and consumed at the next call or invoke instruction. 5164 5165 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5166 return error("Invalid record"); 5167 5168 std::vector<Value *> Inputs; 5169 5170 unsigned OpNum = 1; 5171 while (OpNum != Record.size()) { 5172 Value *Op; 5173 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5174 return error("Invalid record"); 5175 Inputs.push_back(Op); 5176 } 5177 5178 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5179 continue; 5180 } 5181 } 5182 5183 // Add instruction to end of current BB. If there is no current BB, reject 5184 // this file. 5185 if (!CurBB) { 5186 delete I; 5187 return error("Invalid instruction with no BB"); 5188 } 5189 if (!OperandBundles.empty()) { 5190 delete I; 5191 return error("Operand bundles found with no consumer"); 5192 } 5193 CurBB->getInstList().push_back(I); 5194 5195 // If this was a terminator instruction, move to the next block. 5196 if (isa<TerminatorInst>(I)) { 5197 ++CurBBNo; 5198 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5199 } 5200 5201 // Non-void values get registered in the value table for future use. 5202 if (I && !I->getType()->isVoidTy()) 5203 if (ValueList.assignValue(I, NextValueNo++)) 5204 return error("Invalid forward reference"); 5205 } 5206 5207 OutOfRecordLoop: 5208 5209 if (!OperandBundles.empty()) 5210 return error("Operand bundles found with no consumer"); 5211 5212 // Check the function list for unresolved values. 5213 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5214 if (!A->getParent()) { 5215 // We found at least one unresolved value. Nuke them all to avoid leaks. 5216 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5217 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5218 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5219 delete A; 5220 } 5221 } 5222 return error("Never resolved value found in function"); 5223 } 5224 } 5225 5226 // FIXME: Check for unresolved forward-declared metadata references 5227 // and clean up leaks. 5228 5229 // Trim the value list down to the size it was before we parsed this function. 5230 ValueList.shrinkTo(ModuleValueListSize); 5231 MDValueList.shrinkTo(ModuleMDValueListSize); 5232 std::vector<BasicBlock*>().swap(FunctionBBs); 5233 return std::error_code(); 5234 } 5235 5236 /// Find the function body in the bitcode stream 5237 std::error_code BitcodeReader::findFunctionInStream( 5238 Function *F, 5239 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5240 while (DeferredFunctionInfoIterator->second == 0) { 5241 // This is the fallback handling for the old format bitcode that 5242 // didn't contain the function index in the VST, or when we have 5243 // an anonymous function which would not have a VST entry. 5244 // Assert that we have one of those two cases. 5245 assert(VSTOffset == 0 || !F->hasName()); 5246 // Parse the next body in the stream and set its position in the 5247 // DeferredFunctionInfo map. 5248 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5249 return EC; 5250 } 5251 return std::error_code(); 5252 } 5253 5254 //===----------------------------------------------------------------------===// 5255 // GVMaterializer implementation 5256 //===----------------------------------------------------------------------===// 5257 5258 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5259 5260 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5261 // In older bitcode we must materialize the metadata before parsing 5262 // any functions, in order to set up the MDValueList properly. 5263 if (!SeenModuleValuesRecord) { 5264 if (std::error_code EC = materializeMetadata()) 5265 return EC; 5266 } 5267 5268 Function *F = dyn_cast<Function>(GV); 5269 // If it's not a function or is already material, ignore the request. 5270 if (!F || !F->isMaterializable()) 5271 return std::error_code(); 5272 5273 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5274 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5275 // If its position is recorded as 0, its body is somewhere in the stream 5276 // but we haven't seen it yet. 5277 if (DFII->second == 0) 5278 if (std::error_code EC = findFunctionInStream(F, DFII)) 5279 return EC; 5280 5281 // Move the bit stream to the saved position of the deferred function body. 5282 Stream.JumpToBit(DFII->second); 5283 5284 if (std::error_code EC = parseFunctionBody(F)) 5285 return EC; 5286 F->setIsMaterializable(false); 5287 5288 if (StripDebugInfo) 5289 stripDebugInfo(*F); 5290 5291 // Upgrade any old intrinsic calls in the function. 5292 for (auto &I : UpgradedIntrinsics) { 5293 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5294 User *U = *UI; 5295 ++UI; 5296 if (CallInst *CI = dyn_cast<CallInst>(U)) 5297 UpgradeIntrinsicCall(CI, I.second); 5298 } 5299 } 5300 5301 // Finish fn->subprogram upgrade for materialized functions. 5302 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5303 F->setSubprogram(SP); 5304 5305 // Bring in any functions that this function forward-referenced via 5306 // blockaddresses. 5307 return materializeForwardReferencedFunctions(); 5308 } 5309 5310 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5311 const Function *F = dyn_cast<Function>(GV); 5312 if (!F || F->isDeclaration()) 5313 return false; 5314 5315 // Dematerializing F would leave dangling references that wouldn't be 5316 // reconnected on re-materialization. 5317 if (BlockAddressesTaken.count(F)) 5318 return false; 5319 5320 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5321 } 5322 5323 void BitcodeReader::dematerialize(GlobalValue *GV) { 5324 Function *F = dyn_cast<Function>(GV); 5325 // If this function isn't dematerializable, this is a noop. 5326 if (!F || !isDematerializable(F)) 5327 return; 5328 5329 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5330 5331 // Just forget the function body, we can remat it later. 5332 F->dropAllReferences(); 5333 F->setIsMaterializable(true); 5334 } 5335 5336 std::error_code BitcodeReader::materializeModule(Module *M) { 5337 assert(M == TheModule && 5338 "Can only Materialize the Module this BitcodeReader is attached to."); 5339 5340 if (std::error_code EC = materializeMetadata()) 5341 return EC; 5342 5343 // Promise to materialize all forward references. 5344 WillMaterializeAllForwardRefs = true; 5345 5346 // Iterate over the module, deserializing any functions that are still on 5347 // disk. 5348 for (Function &F : *TheModule) { 5349 if (std::error_code EC = materialize(&F)) 5350 return EC; 5351 } 5352 // At this point, if there are any function bodies, parse the rest of 5353 // the bits in the module past the last function block we have recorded 5354 // through either lazy scanning or the VST. 5355 if (LastFunctionBlockBit || NextUnreadBit) 5356 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5357 : NextUnreadBit); 5358 5359 // Check that all block address forward references got resolved (as we 5360 // promised above). 5361 if (!BasicBlockFwdRefs.empty()) 5362 return error("Never resolved function from blockaddress"); 5363 5364 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5365 // delete the old functions to clean up. We can't do this unless the entire 5366 // module is materialized because there could always be another function body 5367 // with calls to the old function. 5368 for (auto &I : UpgradedIntrinsics) { 5369 for (auto *U : I.first->users()) { 5370 if (CallInst *CI = dyn_cast<CallInst>(U)) 5371 UpgradeIntrinsicCall(CI, I.second); 5372 } 5373 if (!I.first->use_empty()) 5374 I.first->replaceAllUsesWith(I.second); 5375 I.first->eraseFromParent(); 5376 } 5377 UpgradedIntrinsics.clear(); 5378 5379 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5380 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5381 5382 UpgradeDebugInfo(*M); 5383 return std::error_code(); 5384 } 5385 5386 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5387 return IdentifiedStructTypes; 5388 } 5389 5390 std::error_code 5391 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5392 if (Streamer) 5393 return initLazyStream(std::move(Streamer)); 5394 return initStreamFromBuffer(); 5395 } 5396 5397 std::error_code BitcodeReader::initStreamFromBuffer() { 5398 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5399 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5400 5401 if (Buffer->getBufferSize() & 3) 5402 return error("Invalid bitcode signature"); 5403 5404 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5405 // The magic number is 0x0B17C0DE stored in little endian. 5406 if (isBitcodeWrapper(BufPtr, BufEnd)) 5407 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5408 return error("Invalid bitcode wrapper header"); 5409 5410 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5411 Stream.init(&*StreamFile); 5412 5413 return std::error_code(); 5414 } 5415 5416 std::error_code 5417 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5418 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5419 // see it. 5420 auto OwnedBytes = 5421 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5422 StreamingMemoryObject &Bytes = *OwnedBytes; 5423 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5424 Stream.init(&*StreamFile); 5425 5426 unsigned char buf[16]; 5427 if (Bytes.readBytes(buf, 16, 0) != 16) 5428 return error("Invalid bitcode signature"); 5429 5430 if (!isBitcode(buf, buf + 16)) 5431 return error("Invalid bitcode signature"); 5432 5433 if (isBitcodeWrapper(buf, buf + 4)) { 5434 const unsigned char *bitcodeStart = buf; 5435 const unsigned char *bitcodeEnd = buf + 16; 5436 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5437 Bytes.dropLeadingBytes(bitcodeStart - buf); 5438 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5439 } 5440 return std::error_code(); 5441 } 5442 5443 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5444 const Twine &Message) { 5445 return ::error(DiagnosticHandler, make_error_code(E), Message); 5446 } 5447 5448 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5449 return ::error(DiagnosticHandler, 5450 make_error_code(BitcodeError::CorruptedBitcode), Message); 5451 } 5452 5453 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5454 return ::error(DiagnosticHandler, make_error_code(E)); 5455 } 5456 5457 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5458 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5459 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5460 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5461 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5462 5463 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5464 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5465 bool CheckFuncSummaryPresenceOnly) 5466 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5467 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5468 5469 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5470 5471 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5472 5473 // Specialized value symbol table parser used when reading function index 5474 // blocks where we don't actually create global values. 5475 // At the end of this routine the function index is populated with a map 5476 // from function name to FunctionInfo. The function info contains 5477 // the function block's bitcode offset as well as the offset into the 5478 // function summary section. 5479 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5480 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5481 return error("Invalid record"); 5482 5483 SmallVector<uint64_t, 64> Record; 5484 5485 // Read all the records for this value table. 5486 SmallString<128> ValueName; 5487 while (1) { 5488 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5489 5490 switch (Entry.Kind) { 5491 case BitstreamEntry::SubBlock: // Handled for us already. 5492 case BitstreamEntry::Error: 5493 return error("Malformed block"); 5494 case BitstreamEntry::EndBlock: 5495 return std::error_code(); 5496 case BitstreamEntry::Record: 5497 // The interesting case. 5498 break; 5499 } 5500 5501 // Read a record. 5502 Record.clear(); 5503 switch (Stream.readRecord(Entry.ID, Record)) { 5504 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5505 break; 5506 case bitc::VST_CODE_FNENTRY: { 5507 // VST_FNENTRY: [valueid, offset, namechar x N] 5508 if (convertToString(Record, 2, ValueName)) 5509 return error("Invalid record"); 5510 unsigned ValueID = Record[0]; 5511 uint64_t FuncOffset = Record[1]; 5512 std::unique_ptr<FunctionInfo> FuncInfo = 5513 llvm::make_unique<FunctionInfo>(FuncOffset); 5514 if (foundFuncSummary() && !IsLazy) { 5515 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5516 SummaryMap.find(ValueID); 5517 assert(SMI != SummaryMap.end() && "Summary info not found"); 5518 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5519 } 5520 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5521 5522 ValueName.clear(); 5523 break; 5524 } 5525 case bitc::VST_CODE_COMBINED_FNENTRY: { 5526 // VST_FNENTRY: [offset, namechar x N] 5527 if (convertToString(Record, 1, ValueName)) 5528 return error("Invalid record"); 5529 uint64_t FuncSummaryOffset = Record[0]; 5530 std::unique_ptr<FunctionInfo> FuncInfo = 5531 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5532 if (foundFuncSummary() && !IsLazy) { 5533 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5534 SummaryMap.find(FuncSummaryOffset); 5535 assert(SMI != SummaryMap.end() && "Summary info not found"); 5536 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5537 } 5538 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5539 5540 ValueName.clear(); 5541 break; 5542 } 5543 } 5544 } 5545 } 5546 5547 // Parse just the blocks needed for function index building out of the module. 5548 // At the end of this routine the function Index is populated with a map 5549 // from function name to FunctionInfo. The function info contains 5550 // either the parsed function summary information (when parsing summaries 5551 // eagerly), or just to the function summary record's offset 5552 // if parsing lazily (IsLazy). 5553 std::error_code FunctionIndexBitcodeReader::parseModule() { 5554 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5555 return error("Invalid record"); 5556 5557 // Read the function index for this module. 5558 while (1) { 5559 BitstreamEntry Entry = Stream.advance(); 5560 5561 switch (Entry.Kind) { 5562 case BitstreamEntry::Error: 5563 return error("Malformed block"); 5564 case BitstreamEntry::EndBlock: 5565 return std::error_code(); 5566 5567 case BitstreamEntry::SubBlock: 5568 if (CheckFuncSummaryPresenceOnly) { 5569 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5570 SeenFuncSummary = true; 5571 if (Stream.SkipBlock()) 5572 return error("Invalid record"); 5573 // No need to parse the rest since we found the summary. 5574 return std::error_code(); 5575 } 5576 switch (Entry.ID) { 5577 default: // Skip unknown content. 5578 if (Stream.SkipBlock()) 5579 return error("Invalid record"); 5580 break; 5581 case bitc::BLOCKINFO_BLOCK_ID: 5582 // Need to parse these to get abbrev ids (e.g. for VST) 5583 if (Stream.ReadBlockInfoBlock()) 5584 return error("Malformed block"); 5585 break; 5586 case bitc::VALUE_SYMTAB_BLOCK_ID: 5587 if (std::error_code EC = parseValueSymbolTable()) 5588 return EC; 5589 break; 5590 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5591 SeenFuncSummary = true; 5592 if (IsLazy) { 5593 // Lazy parsing of summary info, skip it. 5594 if (Stream.SkipBlock()) 5595 return error("Invalid record"); 5596 } else if (std::error_code EC = parseEntireSummary()) 5597 return EC; 5598 break; 5599 case bitc::MODULE_STRTAB_BLOCK_ID: 5600 if (std::error_code EC = parseModuleStringTable()) 5601 return EC; 5602 break; 5603 } 5604 continue; 5605 5606 case BitstreamEntry::Record: 5607 Stream.skipRecord(Entry.ID); 5608 continue; 5609 } 5610 } 5611 } 5612 5613 // Eagerly parse the entire function summary block (i.e. for all functions 5614 // in the index). This populates the FunctionSummary objects in 5615 // the index. 5616 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5617 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5618 return error("Invalid record"); 5619 5620 SmallVector<uint64_t, 64> Record; 5621 5622 while (1) { 5623 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5624 5625 switch (Entry.Kind) { 5626 case BitstreamEntry::SubBlock: // Handled for us already. 5627 case BitstreamEntry::Error: 5628 return error("Malformed block"); 5629 case BitstreamEntry::EndBlock: 5630 return std::error_code(); 5631 case BitstreamEntry::Record: 5632 // The interesting case. 5633 break; 5634 } 5635 5636 // Read a record. The record format depends on whether this 5637 // is a per-module index or a combined index file. In the per-module 5638 // case the records contain the associated value's ID for correlation 5639 // with VST entries. In the combined index the correlation is done 5640 // via the bitcode offset of the summary records (which were saved 5641 // in the combined index VST entries). The records also contain 5642 // information used for ThinLTO renaming and importing. 5643 Record.clear(); 5644 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5645 switch (Stream.readRecord(Entry.ID, Record)) { 5646 default: // Default behavior: ignore. 5647 break; 5648 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5649 case bitc::FS_CODE_PERMODULE_ENTRY: { 5650 unsigned ValueID = Record[0]; 5651 bool IsLocal = Record[1]; 5652 unsigned InstCount = Record[2]; 5653 std::unique_ptr<FunctionSummary> FS = 5654 llvm::make_unique<FunctionSummary>(InstCount); 5655 FS->setLocalFunction(IsLocal); 5656 // The module path string ref set in the summary must be owned by the 5657 // index's module string table. Since we don't have a module path 5658 // string table section in the per-module index, we create a single 5659 // module path string table entry with an empty (0) ID to take 5660 // ownership. 5661 FS->setModulePath( 5662 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5663 SummaryMap[ValueID] = std::move(FS); 5664 } 5665 // FS_COMBINED_ENTRY: [modid, instcount] 5666 case bitc::FS_CODE_COMBINED_ENTRY: { 5667 uint64_t ModuleId = Record[0]; 5668 unsigned InstCount = Record[1]; 5669 std::unique_ptr<FunctionSummary> FS = 5670 llvm::make_unique<FunctionSummary>(InstCount); 5671 FS->setModulePath(ModuleIdMap[ModuleId]); 5672 SummaryMap[CurRecordBit] = std::move(FS); 5673 } 5674 } 5675 } 5676 llvm_unreachable("Exit infinite loop"); 5677 } 5678 5679 // Parse the module string table block into the Index. 5680 // This populates the ModulePathStringTable map in the index. 5681 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5682 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5683 return error("Invalid record"); 5684 5685 SmallVector<uint64_t, 64> Record; 5686 5687 SmallString<128> ModulePath; 5688 while (1) { 5689 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5690 5691 switch (Entry.Kind) { 5692 case BitstreamEntry::SubBlock: // Handled for us already. 5693 case BitstreamEntry::Error: 5694 return error("Malformed block"); 5695 case BitstreamEntry::EndBlock: 5696 return std::error_code(); 5697 case BitstreamEntry::Record: 5698 // The interesting case. 5699 break; 5700 } 5701 5702 Record.clear(); 5703 switch (Stream.readRecord(Entry.ID, Record)) { 5704 default: // Default behavior: ignore. 5705 break; 5706 case bitc::MST_CODE_ENTRY: { 5707 // MST_ENTRY: [modid, namechar x N] 5708 if (convertToString(Record, 1, ModulePath)) 5709 return error("Invalid record"); 5710 uint64_t ModuleId = Record[0]; 5711 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5712 ModuleIdMap[ModuleId] = ModulePathInMap; 5713 ModulePath.clear(); 5714 break; 5715 } 5716 } 5717 } 5718 llvm_unreachable("Exit infinite loop"); 5719 } 5720 5721 // Parse the function info index from the bitcode streamer into the given index. 5722 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5723 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5724 TheIndex = I; 5725 5726 if (std::error_code EC = initStream(std::move(Streamer))) 5727 return EC; 5728 5729 // Sniff for the signature. 5730 if (!hasValidBitcodeHeader(Stream)) 5731 return error("Invalid bitcode signature"); 5732 5733 // We expect a number of well-defined blocks, though we don't necessarily 5734 // need to understand them all. 5735 while (1) { 5736 if (Stream.AtEndOfStream()) { 5737 // We didn't really read a proper Module block. 5738 return error("Malformed block"); 5739 } 5740 5741 BitstreamEntry Entry = 5742 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5743 5744 if (Entry.Kind != BitstreamEntry::SubBlock) 5745 return error("Malformed block"); 5746 5747 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5748 // building the function summary index. 5749 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5750 return parseModule(); 5751 5752 if (Stream.SkipBlock()) 5753 return error("Invalid record"); 5754 } 5755 } 5756 5757 // Parse the function information at the given offset in the buffer into 5758 // the index. Used to support lazy parsing of function summaries from the 5759 // combined index during importing. 5760 // TODO: This function is not yet complete as it won't have a consumer 5761 // until ThinLTO function importing is added. 5762 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5763 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5764 size_t FunctionSummaryOffset) { 5765 TheIndex = I; 5766 5767 if (std::error_code EC = initStream(std::move(Streamer))) 5768 return EC; 5769 5770 // Sniff for the signature. 5771 if (!hasValidBitcodeHeader(Stream)) 5772 return error("Invalid bitcode signature"); 5773 5774 Stream.JumpToBit(FunctionSummaryOffset); 5775 5776 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5777 5778 switch (Entry.Kind) { 5779 default: 5780 return error("Malformed block"); 5781 case BitstreamEntry::Record: 5782 // The expected case. 5783 break; 5784 } 5785 5786 // TODO: Read a record. This interface will be completed when ThinLTO 5787 // importing is added so that it can be tested. 5788 SmallVector<uint64_t, 64> Record; 5789 switch (Stream.readRecord(Entry.ID, Record)) { 5790 case bitc::FS_CODE_COMBINED_ENTRY: 5791 default: 5792 return error("Invalid record"); 5793 } 5794 5795 return std::error_code(); 5796 } 5797 5798 std::error_code 5799 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5800 if (Streamer) 5801 return initLazyStream(std::move(Streamer)); 5802 return initStreamFromBuffer(); 5803 } 5804 5805 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5806 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5807 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5808 5809 if (Buffer->getBufferSize() & 3) 5810 return error("Invalid bitcode signature"); 5811 5812 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5813 // The magic number is 0x0B17C0DE stored in little endian. 5814 if (isBitcodeWrapper(BufPtr, BufEnd)) 5815 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5816 return error("Invalid bitcode wrapper header"); 5817 5818 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5819 Stream.init(&*StreamFile); 5820 5821 return std::error_code(); 5822 } 5823 5824 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5825 std::unique_ptr<DataStreamer> Streamer) { 5826 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5827 // see it. 5828 auto OwnedBytes = 5829 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5830 StreamingMemoryObject &Bytes = *OwnedBytes; 5831 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5832 Stream.init(&*StreamFile); 5833 5834 unsigned char buf[16]; 5835 if (Bytes.readBytes(buf, 16, 0) != 16) 5836 return error("Invalid bitcode signature"); 5837 5838 if (!isBitcode(buf, buf + 16)) 5839 return error("Invalid bitcode signature"); 5840 5841 if (isBitcodeWrapper(buf, buf + 4)) { 5842 const unsigned char *bitcodeStart = buf; 5843 const unsigned char *bitcodeEnd = buf + 16; 5844 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5845 Bytes.dropLeadingBytes(bitcodeStart - buf); 5846 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5847 } 5848 return std::error_code(); 5849 } 5850 5851 namespace { 5852 class BitcodeErrorCategoryType : public std::error_category { 5853 const char *name() const LLVM_NOEXCEPT override { 5854 return "llvm.bitcode"; 5855 } 5856 std::string message(int IE) const override { 5857 BitcodeError E = static_cast<BitcodeError>(IE); 5858 switch (E) { 5859 case BitcodeError::InvalidBitcodeSignature: 5860 return "Invalid bitcode signature"; 5861 case BitcodeError::CorruptedBitcode: 5862 return "Corrupted bitcode"; 5863 } 5864 llvm_unreachable("Unknown error type!"); 5865 } 5866 }; 5867 } 5868 5869 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5870 5871 const std::error_category &llvm::BitcodeErrorCategory() { 5872 return *ErrorCategory; 5873 } 5874 5875 //===----------------------------------------------------------------------===// 5876 // External interface 5877 //===----------------------------------------------------------------------===// 5878 5879 static ErrorOr<std::unique_ptr<Module>> 5880 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5881 BitcodeReader *R, LLVMContext &Context, 5882 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5883 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5884 M->setMaterializer(R); 5885 5886 auto cleanupOnError = [&](std::error_code EC) { 5887 R->releaseBuffer(); // Never take ownership on error. 5888 return EC; 5889 }; 5890 5891 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5892 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5893 ShouldLazyLoadMetadata)) 5894 return cleanupOnError(EC); 5895 5896 if (MaterializeAll) { 5897 // Read in the entire module, and destroy the BitcodeReader. 5898 if (std::error_code EC = M->materializeAllPermanently()) 5899 return cleanupOnError(EC); 5900 } else { 5901 // Resolve forward references from blockaddresses. 5902 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5903 return cleanupOnError(EC); 5904 } 5905 return std::move(M); 5906 } 5907 5908 /// \brief Get a lazy one-at-time loading module from bitcode. 5909 /// 5910 /// This isn't always used in a lazy context. In particular, it's also used by 5911 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5912 /// in forward-referenced functions from block address references. 5913 /// 5914 /// \param[in] MaterializeAll Set to \c true if we should materialize 5915 /// everything. 5916 static ErrorOr<std::unique_ptr<Module>> 5917 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5918 LLVMContext &Context, bool MaterializeAll, 5919 DiagnosticHandlerFunction DiagnosticHandler, 5920 bool ShouldLazyLoadMetadata = false) { 5921 BitcodeReader *R = 5922 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5923 5924 ErrorOr<std::unique_ptr<Module>> Ret = 5925 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5926 MaterializeAll, ShouldLazyLoadMetadata); 5927 if (!Ret) 5928 return Ret; 5929 5930 Buffer.release(); // The BitcodeReader owns it now. 5931 return Ret; 5932 } 5933 5934 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5935 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5936 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5937 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5938 DiagnosticHandler, ShouldLazyLoadMetadata); 5939 } 5940 5941 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5942 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5943 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5944 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5945 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5946 5947 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5948 false); 5949 } 5950 5951 ErrorOr<std::unique_ptr<Module>> 5952 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5953 DiagnosticHandlerFunction DiagnosticHandler) { 5954 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5955 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5956 DiagnosticHandler); 5957 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5958 // written. We must defer until the Module has been fully materialized. 5959 } 5960 5961 std::string 5962 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5963 DiagnosticHandlerFunction DiagnosticHandler) { 5964 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5965 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5966 DiagnosticHandler); 5967 ErrorOr<std::string> Triple = R->parseTriple(); 5968 if (Triple.getError()) 5969 return ""; 5970 return Triple.get(); 5971 } 5972 5973 std::string 5974 llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context, 5975 DiagnosticHandlerFunction DiagnosticHandler) { 5976 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5977 BitcodeReader R(Buf.release(), Context, DiagnosticHandler); 5978 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5979 if (ProducerString.getError()) 5980 return ""; 5981 return ProducerString.get(); 5982 } 5983 5984 // Parse the specified bitcode buffer, returning the function info index. 5985 // If IsLazy is false, parse the entire function summary into 5986 // the index. Otherwise skip the function summary section, and only create 5987 // an index object with a map from function name to function summary offset. 5988 // The index is used to perform lazy function summary reading later. 5989 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5990 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5991 DiagnosticHandlerFunction DiagnosticHandler, 5992 const Module *ExportingModule, bool IsLazy) { 5993 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5994 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5995 5996 std::unique_ptr<FunctionInfoIndex> Index = 5997 llvm::make_unique<FunctionInfoIndex>(ExportingModule); 5998 5999 auto cleanupOnError = [&](std::error_code EC) { 6000 R.releaseBuffer(); // Never take ownership on error. 6001 return EC; 6002 }; 6003 6004 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6005 return cleanupOnError(EC); 6006 6007 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6008 return std::move(Index); 6009 } 6010 6011 // Check if the given bitcode buffer contains a function summary block. 6012 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 6013 DiagnosticHandlerFunction DiagnosticHandler) { 6014 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6015 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6016 6017 auto cleanupOnError = [&](std::error_code EC) { 6018 R.releaseBuffer(); // Never take ownership on error. 6019 return false; 6020 }; 6021 6022 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6023 return cleanupOnError(EC); 6024 6025 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6026 return R.foundFuncSummary(); 6027 } 6028 6029 // This method supports lazy reading of function summary data from the combined 6030 // index during ThinLTO function importing. When reading the combined index 6031 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 6032 // Then this method is called for each function considered for importing, 6033 // to parse the summary information for the given function name into 6034 // the index. 6035 std::error_code llvm::readFunctionSummary( 6036 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6037 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 6038 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6039 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6040 6041 auto cleanupOnError = [&](std::error_code EC) { 6042 R.releaseBuffer(); // Never take ownership on error. 6043 return EC; 6044 }; 6045 6046 // Lookup the given function name in the FunctionMap, which may 6047 // contain a list of function infos in the case of a COMDAT. Walk through 6048 // and parse each function summary info at the function summary offset 6049 // recorded when parsing the value symbol table. 6050 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 6051 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6052 if (std::error_code EC = 6053 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6054 return cleanupOnError(EC); 6055 } 6056 6057 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6058 return std::error_code(); 6059 } 6060