1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DerivedTypes.h" 19 #include "llvm/IR/DiagnosticPrinter.h" 20 #include "llvm/IR/InlineAsm.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/OperandTraits.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/Support/DataStream.h" 27 #include "llvm/Support/ManagedStatic.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 enum { 35 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 36 }; 37 38 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 39 DiagnosticSeverity Severity, 40 const Twine &Msg) 41 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 42 43 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 44 45 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 46 std::error_code EC, const Twine &Message) { 47 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 48 DiagnosticHandler(DI); 49 return EC; 50 } 51 52 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 53 std::error_code EC) { 54 return Error(DiagnosticHandler, EC, EC.message()); 55 } 56 57 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 58 return ::Error(DiagnosticHandler, make_error_code(E), Message); 59 } 60 61 std::error_code BitcodeReader::Error(const Twine &Message) { 62 return ::Error(DiagnosticHandler, 63 make_error_code(BitcodeError::CorruptedBitcode), Message); 64 } 65 66 std::error_code BitcodeReader::Error(BitcodeError E) { 67 return ::Error(DiagnosticHandler, make_error_code(E)); 68 } 69 70 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 71 LLVMContext &C) { 72 if (F) 73 return F; 74 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 75 } 76 77 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 78 DiagnosticHandlerFunction DiagnosticHandler) 79 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 80 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 81 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 82 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 83 WillMaterializeAllForwardRefs(false) {} 84 85 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 86 DiagnosticHandlerFunction DiagnosticHandler) 87 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 88 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 89 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 90 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 91 WillMaterializeAllForwardRefs(false) {} 92 93 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 94 if (WillMaterializeAllForwardRefs) 95 return std::error_code(); 96 97 // Prevent recursion. 98 WillMaterializeAllForwardRefs = true; 99 100 while (!BasicBlockFwdRefQueue.empty()) { 101 Function *F = BasicBlockFwdRefQueue.front(); 102 BasicBlockFwdRefQueue.pop_front(); 103 assert(F && "Expected valid function"); 104 if (!BasicBlockFwdRefs.count(F)) 105 // Already materialized. 106 continue; 107 108 // Check for a function that isn't materializable to prevent an infinite 109 // loop. When parsing a blockaddress stored in a global variable, there 110 // isn't a trivial way to check if a function will have a body without a 111 // linear search through FunctionsWithBodies, so just check it here. 112 if (!F->isMaterializable()) 113 return Error("Never resolved function from blockaddress"); 114 115 // Try to materialize F. 116 if (std::error_code EC = materialize(F)) 117 return EC; 118 } 119 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 120 121 // Reset state. 122 WillMaterializeAllForwardRefs = false; 123 return std::error_code(); 124 } 125 126 void BitcodeReader::FreeState() { 127 Buffer = nullptr; 128 std::vector<Type*>().swap(TypeList); 129 ValueList.clear(); 130 MDValueList.clear(); 131 std::vector<Comdat *>().swap(ComdatList); 132 133 std::vector<AttributeSet>().swap(MAttributes); 134 std::vector<BasicBlock*>().swap(FunctionBBs); 135 std::vector<Function*>().swap(FunctionsWithBodies); 136 DeferredFunctionInfo.clear(); 137 MDKindMap.clear(); 138 139 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 140 BasicBlockFwdRefQueue.clear(); 141 } 142 143 //===----------------------------------------------------------------------===// 144 // Helper functions to implement forward reference resolution, etc. 145 //===----------------------------------------------------------------------===// 146 147 /// ConvertToString - Convert a string from a record into an std::string, return 148 /// true on failure. 149 template<typename StrTy> 150 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 static bool hasImplicitComdat(size_t Val) { 161 switch (Val) { 162 default: 163 return false; 164 case 1: // Old WeakAnyLinkage 165 case 4: // Old LinkOnceAnyLinkage 166 case 10: // Old WeakODRLinkage 167 case 11: // Old LinkOnceODRLinkage 168 return true; 169 } 170 } 171 172 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 173 switch (Val) { 174 default: // Map unknown/new linkages to external 175 case 0: 176 return GlobalValue::ExternalLinkage; 177 case 2: 178 return GlobalValue::AppendingLinkage; 179 case 3: 180 return GlobalValue::InternalLinkage; 181 case 5: 182 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 183 case 6: 184 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 185 case 7: 186 return GlobalValue::ExternalWeakLinkage; 187 case 8: 188 return GlobalValue::CommonLinkage; 189 case 9: 190 return GlobalValue::PrivateLinkage; 191 case 12: 192 return GlobalValue::AvailableExternallyLinkage; 193 case 13: 194 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 195 case 14: 196 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 197 case 15: 198 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 199 case 1: // Old value with implicit comdat. 200 case 16: 201 return GlobalValue::WeakAnyLinkage; 202 case 10: // Old value with implicit comdat. 203 case 17: 204 return GlobalValue::WeakODRLinkage; 205 case 4: // Old value with implicit comdat. 206 case 18: 207 return GlobalValue::LinkOnceAnyLinkage; 208 case 11: // Old value with implicit comdat. 209 case 19: 210 return GlobalValue::LinkOnceODRLinkage; 211 } 212 } 213 214 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 215 switch (Val) { 216 default: // Map unknown visibilities to default. 217 case 0: return GlobalValue::DefaultVisibility; 218 case 1: return GlobalValue::HiddenVisibility; 219 case 2: return GlobalValue::ProtectedVisibility; 220 } 221 } 222 223 static GlobalValue::DLLStorageClassTypes 224 GetDecodedDLLStorageClass(unsigned Val) { 225 switch (Val) { 226 default: // Map unknown values to default. 227 case 0: return GlobalValue::DefaultStorageClass; 228 case 1: return GlobalValue::DLLImportStorageClass; 229 case 2: return GlobalValue::DLLExportStorageClass; 230 } 231 } 232 233 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 234 switch (Val) { 235 case 0: return GlobalVariable::NotThreadLocal; 236 default: // Map unknown non-zero value to general dynamic. 237 case 1: return GlobalVariable::GeneralDynamicTLSModel; 238 case 2: return GlobalVariable::LocalDynamicTLSModel; 239 case 3: return GlobalVariable::InitialExecTLSModel; 240 case 4: return GlobalVariable::LocalExecTLSModel; 241 } 242 } 243 244 static int GetDecodedCastOpcode(unsigned Val) { 245 switch (Val) { 246 default: return -1; 247 case bitc::CAST_TRUNC : return Instruction::Trunc; 248 case bitc::CAST_ZEXT : return Instruction::ZExt; 249 case bitc::CAST_SEXT : return Instruction::SExt; 250 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 251 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 252 case bitc::CAST_UITOFP : return Instruction::UIToFP; 253 case bitc::CAST_SITOFP : return Instruction::SIToFP; 254 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 255 case bitc::CAST_FPEXT : return Instruction::FPExt; 256 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 257 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 258 case bitc::CAST_BITCAST : return Instruction::BitCast; 259 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 260 } 261 } 262 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 263 switch (Val) { 264 default: return -1; 265 case bitc::BINOP_ADD: 266 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 267 case bitc::BINOP_SUB: 268 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 269 case bitc::BINOP_MUL: 270 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 271 case bitc::BINOP_UDIV: return Instruction::UDiv; 272 case bitc::BINOP_SDIV: 273 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 274 case bitc::BINOP_UREM: return Instruction::URem; 275 case bitc::BINOP_SREM: 276 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 277 case bitc::BINOP_SHL: return Instruction::Shl; 278 case bitc::BINOP_LSHR: return Instruction::LShr; 279 case bitc::BINOP_ASHR: return Instruction::AShr; 280 case bitc::BINOP_AND: return Instruction::And; 281 case bitc::BINOP_OR: return Instruction::Or; 282 case bitc::BINOP_XOR: return Instruction::Xor; 283 } 284 } 285 286 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 287 switch (Val) { 288 default: return AtomicRMWInst::BAD_BINOP; 289 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 290 case bitc::RMW_ADD: return AtomicRMWInst::Add; 291 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 292 case bitc::RMW_AND: return AtomicRMWInst::And; 293 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 294 case bitc::RMW_OR: return AtomicRMWInst::Or; 295 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 296 case bitc::RMW_MAX: return AtomicRMWInst::Max; 297 case bitc::RMW_MIN: return AtomicRMWInst::Min; 298 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 299 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 300 } 301 } 302 303 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 304 switch (Val) { 305 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 306 case bitc::ORDERING_UNORDERED: return Unordered; 307 case bitc::ORDERING_MONOTONIC: return Monotonic; 308 case bitc::ORDERING_ACQUIRE: return Acquire; 309 case bitc::ORDERING_RELEASE: return Release; 310 case bitc::ORDERING_ACQREL: return AcquireRelease; 311 default: // Map unknown orderings to sequentially-consistent. 312 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 313 } 314 } 315 316 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 317 switch (Val) { 318 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 319 default: // Map unknown scopes to cross-thread. 320 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 321 } 322 } 323 324 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 325 switch (Val) { 326 default: // Map unknown selection kinds to any. 327 case bitc::COMDAT_SELECTION_KIND_ANY: 328 return Comdat::Any; 329 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 330 return Comdat::ExactMatch; 331 case bitc::COMDAT_SELECTION_KIND_LARGEST: 332 return Comdat::Largest; 333 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 334 return Comdat::NoDuplicates; 335 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 336 return Comdat::SameSize; 337 } 338 } 339 340 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 341 switch (Val) { 342 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 343 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 344 } 345 } 346 347 namespace llvm { 348 namespace { 349 /// @brief A class for maintaining the slot number definition 350 /// as a placeholder for the actual definition for forward constants defs. 351 class ConstantPlaceHolder : public ConstantExpr { 352 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 353 public: 354 // allocate space for exactly one operand 355 void *operator new(size_t s) { 356 return User::operator new(s, 1); 357 } 358 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 359 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 360 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 361 } 362 363 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 364 static bool classof(const Value *V) { 365 return isa<ConstantExpr>(V) && 366 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 367 } 368 369 370 /// Provide fast operand accessors 371 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 372 }; 373 } 374 375 // FIXME: can we inherit this from ConstantExpr? 376 template <> 377 struct OperandTraits<ConstantPlaceHolder> : 378 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 379 }; 380 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 381 } 382 383 384 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 385 if (Idx == size()) { 386 push_back(V); 387 return; 388 } 389 390 if (Idx >= size()) 391 resize(Idx+1); 392 393 WeakVH &OldV = ValuePtrs[Idx]; 394 if (!OldV) { 395 OldV = V; 396 return; 397 } 398 399 // Handle constants and non-constants (e.g. instrs) differently for 400 // efficiency. 401 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 402 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 403 OldV = V; 404 } else { 405 // If there was a forward reference to this value, replace it. 406 Value *PrevVal = OldV; 407 OldV->replaceAllUsesWith(V); 408 delete PrevVal; 409 } 410 } 411 412 413 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 414 Type *Ty) { 415 if (Idx >= size()) 416 resize(Idx + 1); 417 418 if (Value *V = ValuePtrs[Idx]) { 419 assert(Ty == V->getType() && "Type mismatch in constant table!"); 420 return cast<Constant>(V); 421 } 422 423 // Create and return a placeholder, which will later be RAUW'd. 424 Constant *C = new ConstantPlaceHolder(Ty, Context); 425 ValuePtrs[Idx] = C; 426 return C; 427 } 428 429 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 430 if (Idx >= size()) 431 resize(Idx + 1); 432 433 if (Value *V = ValuePtrs[Idx]) { 434 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 435 return V; 436 } 437 438 // No type specified, must be invalid reference. 439 if (!Ty) return nullptr; 440 441 // Create and return a placeholder, which will later be RAUW'd. 442 Value *V = new Argument(Ty); 443 ValuePtrs[Idx] = V; 444 return V; 445 } 446 447 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 448 /// resolves any forward references. The idea behind this is that we sometimes 449 /// get constants (such as large arrays) which reference *many* forward ref 450 /// constants. Replacing each of these causes a lot of thrashing when 451 /// building/reuniquing the constant. Instead of doing this, we look at all the 452 /// uses and rewrite all the place holders at once for any constant that uses 453 /// a placeholder. 454 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 455 // Sort the values by-pointer so that they are efficient to look up with a 456 // binary search. 457 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 458 459 SmallVector<Constant*, 64> NewOps; 460 461 while (!ResolveConstants.empty()) { 462 Value *RealVal = operator[](ResolveConstants.back().second); 463 Constant *Placeholder = ResolveConstants.back().first; 464 ResolveConstants.pop_back(); 465 466 // Loop over all users of the placeholder, updating them to reference the 467 // new value. If they reference more than one placeholder, update them all 468 // at once. 469 while (!Placeholder->use_empty()) { 470 auto UI = Placeholder->user_begin(); 471 User *U = *UI; 472 473 // If the using object isn't uniqued, just update the operands. This 474 // handles instructions and initializers for global variables. 475 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 476 UI.getUse().set(RealVal); 477 continue; 478 } 479 480 // Otherwise, we have a constant that uses the placeholder. Replace that 481 // constant with a new constant that has *all* placeholder uses updated. 482 Constant *UserC = cast<Constant>(U); 483 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 484 I != E; ++I) { 485 Value *NewOp; 486 if (!isa<ConstantPlaceHolder>(*I)) { 487 // Not a placeholder reference. 488 NewOp = *I; 489 } else if (*I == Placeholder) { 490 // Common case is that it just references this one placeholder. 491 NewOp = RealVal; 492 } else { 493 // Otherwise, look up the placeholder in ResolveConstants. 494 ResolveConstantsTy::iterator It = 495 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 496 std::pair<Constant*, unsigned>(cast<Constant>(*I), 497 0)); 498 assert(It != ResolveConstants.end() && It->first == *I); 499 NewOp = operator[](It->second); 500 } 501 502 NewOps.push_back(cast<Constant>(NewOp)); 503 } 504 505 // Make the new constant. 506 Constant *NewC; 507 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 508 NewC = ConstantArray::get(UserCA->getType(), NewOps); 509 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 510 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 511 } else if (isa<ConstantVector>(UserC)) { 512 NewC = ConstantVector::get(NewOps); 513 } else { 514 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 515 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 516 } 517 518 UserC->replaceAllUsesWith(NewC); 519 UserC->destroyConstant(); 520 NewOps.clear(); 521 } 522 523 // Update all ValueHandles, they should be the only users at this point. 524 Placeholder->replaceAllUsesWith(RealVal); 525 delete Placeholder; 526 } 527 } 528 529 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 530 if (Idx == size()) { 531 push_back(MD); 532 return; 533 } 534 535 if (Idx >= size()) 536 resize(Idx+1); 537 538 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 539 if (!OldMD) { 540 OldMD.reset(MD); 541 return; 542 } 543 544 // If there was a forward reference to this value, replace it. 545 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 546 PrevMD->replaceAllUsesWith(MD); 547 --NumFwdRefs; 548 } 549 550 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 551 if (Idx >= size()) 552 resize(Idx + 1); 553 554 if (Metadata *MD = MDValuePtrs[Idx]) 555 return MD; 556 557 // Create and return a placeholder, which will later be RAUW'd. 558 AnyFwdRefs = true; 559 ++NumFwdRefs; 560 Metadata *MD = MDNode::getTemporary(Context, None).release(); 561 MDValuePtrs[Idx].reset(MD); 562 return MD; 563 } 564 565 void BitcodeReaderMDValueList::tryToResolveCycles() { 566 if (!AnyFwdRefs) 567 // Nothing to do. 568 return; 569 570 if (NumFwdRefs) 571 // Still forward references... can't resolve cycles. 572 return; 573 574 // Resolve any cycles. 575 for (auto &MD : MDValuePtrs) { 576 auto *N = dyn_cast_or_null<MDNode>(MD); 577 if (!N) 578 continue; 579 580 assert(!N->isTemporary() && "Unexpected forward reference"); 581 N->resolveCycles(); 582 } 583 } 584 585 Type *BitcodeReader::getTypeByID(unsigned ID) { 586 // The type table size is always specified correctly. 587 if (ID >= TypeList.size()) 588 return nullptr; 589 590 if (Type *Ty = TypeList[ID]) 591 return Ty; 592 593 // If we have a forward reference, the only possible case is when it is to a 594 // named struct. Just create a placeholder for now. 595 return TypeList[ID] = createIdentifiedStructType(Context); 596 } 597 598 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 599 StringRef Name) { 600 auto *Ret = StructType::create(Context, Name); 601 IdentifiedStructTypes.push_back(Ret); 602 return Ret; 603 } 604 605 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 606 auto *Ret = StructType::create(Context); 607 IdentifiedStructTypes.push_back(Ret); 608 return Ret; 609 } 610 611 612 //===----------------------------------------------------------------------===// 613 // Functions for parsing blocks from the bitcode file 614 //===----------------------------------------------------------------------===// 615 616 617 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 618 /// been decoded from the given integer. This function must stay in sync with 619 /// 'encodeLLVMAttributesForBitcode'. 620 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 621 uint64_t EncodedAttrs) { 622 // FIXME: Remove in 4.0. 623 624 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 625 // the bits above 31 down by 11 bits. 626 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 627 assert((!Alignment || isPowerOf2_32(Alignment)) && 628 "Alignment must be a power of two."); 629 630 if (Alignment) 631 B.addAlignmentAttr(Alignment); 632 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 633 (EncodedAttrs & 0xffff)); 634 } 635 636 std::error_code BitcodeReader::ParseAttributeBlock() { 637 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 638 return Error("Invalid record"); 639 640 if (!MAttributes.empty()) 641 return Error("Invalid multiple blocks"); 642 643 SmallVector<uint64_t, 64> Record; 644 645 SmallVector<AttributeSet, 8> Attrs; 646 647 // Read all the records. 648 while (1) { 649 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 650 651 switch (Entry.Kind) { 652 case BitstreamEntry::SubBlock: // Handled for us already. 653 case BitstreamEntry::Error: 654 return Error("Malformed block"); 655 case BitstreamEntry::EndBlock: 656 return std::error_code(); 657 case BitstreamEntry::Record: 658 // The interesting case. 659 break; 660 } 661 662 // Read a record. 663 Record.clear(); 664 switch (Stream.readRecord(Entry.ID, Record)) { 665 default: // Default behavior: ignore. 666 break; 667 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 668 // FIXME: Remove in 4.0. 669 if (Record.size() & 1) 670 return Error("Invalid record"); 671 672 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 673 AttrBuilder B; 674 decodeLLVMAttributesForBitcode(B, Record[i+1]); 675 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 676 } 677 678 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 679 Attrs.clear(); 680 break; 681 } 682 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 683 for (unsigned i = 0, e = Record.size(); i != e; ++i) 684 Attrs.push_back(MAttributeGroups[Record[i]]); 685 686 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 687 Attrs.clear(); 688 break; 689 } 690 } 691 } 692 } 693 694 // Returns Attribute::None on unrecognized codes. 695 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 696 switch (Code) { 697 default: 698 return Attribute::None; 699 case bitc::ATTR_KIND_ALIGNMENT: 700 return Attribute::Alignment; 701 case bitc::ATTR_KIND_ALWAYS_INLINE: 702 return Attribute::AlwaysInline; 703 case bitc::ATTR_KIND_BUILTIN: 704 return Attribute::Builtin; 705 case bitc::ATTR_KIND_BY_VAL: 706 return Attribute::ByVal; 707 case bitc::ATTR_KIND_IN_ALLOCA: 708 return Attribute::InAlloca; 709 case bitc::ATTR_KIND_COLD: 710 return Attribute::Cold; 711 case bitc::ATTR_KIND_INLINE_HINT: 712 return Attribute::InlineHint; 713 case bitc::ATTR_KIND_IN_REG: 714 return Attribute::InReg; 715 case bitc::ATTR_KIND_JUMP_TABLE: 716 return Attribute::JumpTable; 717 case bitc::ATTR_KIND_MIN_SIZE: 718 return Attribute::MinSize; 719 case bitc::ATTR_KIND_NAKED: 720 return Attribute::Naked; 721 case bitc::ATTR_KIND_NEST: 722 return Attribute::Nest; 723 case bitc::ATTR_KIND_NO_ALIAS: 724 return Attribute::NoAlias; 725 case bitc::ATTR_KIND_NO_BUILTIN: 726 return Attribute::NoBuiltin; 727 case bitc::ATTR_KIND_NO_CAPTURE: 728 return Attribute::NoCapture; 729 case bitc::ATTR_KIND_NO_DUPLICATE: 730 return Attribute::NoDuplicate; 731 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 732 return Attribute::NoImplicitFloat; 733 case bitc::ATTR_KIND_NO_INLINE: 734 return Attribute::NoInline; 735 case bitc::ATTR_KIND_NON_LAZY_BIND: 736 return Attribute::NonLazyBind; 737 case bitc::ATTR_KIND_NON_NULL: 738 return Attribute::NonNull; 739 case bitc::ATTR_KIND_DEREFERENCEABLE: 740 return Attribute::Dereferenceable; 741 case bitc::ATTR_KIND_NO_RED_ZONE: 742 return Attribute::NoRedZone; 743 case bitc::ATTR_KIND_NO_RETURN: 744 return Attribute::NoReturn; 745 case bitc::ATTR_KIND_NO_UNWIND: 746 return Attribute::NoUnwind; 747 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 748 return Attribute::OptimizeForSize; 749 case bitc::ATTR_KIND_OPTIMIZE_NONE: 750 return Attribute::OptimizeNone; 751 case bitc::ATTR_KIND_READ_NONE: 752 return Attribute::ReadNone; 753 case bitc::ATTR_KIND_READ_ONLY: 754 return Attribute::ReadOnly; 755 case bitc::ATTR_KIND_RETURNED: 756 return Attribute::Returned; 757 case bitc::ATTR_KIND_RETURNS_TWICE: 758 return Attribute::ReturnsTwice; 759 case bitc::ATTR_KIND_S_EXT: 760 return Attribute::SExt; 761 case bitc::ATTR_KIND_STACK_ALIGNMENT: 762 return Attribute::StackAlignment; 763 case bitc::ATTR_KIND_STACK_PROTECT: 764 return Attribute::StackProtect; 765 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 766 return Attribute::StackProtectReq; 767 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 768 return Attribute::StackProtectStrong; 769 case bitc::ATTR_KIND_STRUCT_RET: 770 return Attribute::StructRet; 771 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 772 return Attribute::SanitizeAddress; 773 case bitc::ATTR_KIND_SANITIZE_THREAD: 774 return Attribute::SanitizeThread; 775 case bitc::ATTR_KIND_SANITIZE_MEMORY: 776 return Attribute::SanitizeMemory; 777 case bitc::ATTR_KIND_UW_TABLE: 778 return Attribute::UWTable; 779 case bitc::ATTR_KIND_Z_EXT: 780 return Attribute::ZExt; 781 } 782 } 783 784 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 785 Attribute::AttrKind *Kind) { 786 *Kind = GetAttrFromCode(Code); 787 if (*Kind == Attribute::None) 788 return Error(BitcodeError::CorruptedBitcode, 789 "Unknown attribute kind (" + Twine(Code) + ")"); 790 return std::error_code(); 791 } 792 793 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 794 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 795 return Error("Invalid record"); 796 797 if (!MAttributeGroups.empty()) 798 return Error("Invalid multiple blocks"); 799 800 SmallVector<uint64_t, 64> Record; 801 802 // Read all the records. 803 while (1) { 804 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 805 806 switch (Entry.Kind) { 807 case BitstreamEntry::SubBlock: // Handled for us already. 808 case BitstreamEntry::Error: 809 return Error("Malformed block"); 810 case BitstreamEntry::EndBlock: 811 return std::error_code(); 812 case BitstreamEntry::Record: 813 // The interesting case. 814 break; 815 } 816 817 // Read a record. 818 Record.clear(); 819 switch (Stream.readRecord(Entry.ID, Record)) { 820 default: // Default behavior: ignore. 821 break; 822 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 823 if (Record.size() < 3) 824 return Error("Invalid record"); 825 826 uint64_t GrpID = Record[0]; 827 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 828 829 AttrBuilder B; 830 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 831 if (Record[i] == 0) { // Enum attribute 832 Attribute::AttrKind Kind; 833 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 834 return EC; 835 836 B.addAttribute(Kind); 837 } else if (Record[i] == 1) { // Integer attribute 838 Attribute::AttrKind Kind; 839 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 840 return EC; 841 if (Kind == Attribute::Alignment) 842 B.addAlignmentAttr(Record[++i]); 843 else if (Kind == Attribute::StackAlignment) 844 B.addStackAlignmentAttr(Record[++i]); 845 else if (Kind == Attribute::Dereferenceable) 846 B.addDereferenceableAttr(Record[++i]); 847 } else { // String attribute 848 assert((Record[i] == 3 || Record[i] == 4) && 849 "Invalid attribute group entry"); 850 bool HasValue = (Record[i++] == 4); 851 SmallString<64> KindStr; 852 SmallString<64> ValStr; 853 854 while (Record[i] != 0 && i != e) 855 KindStr += Record[i++]; 856 assert(Record[i] == 0 && "Kind string not null terminated"); 857 858 if (HasValue) { 859 // Has a value associated with it. 860 ++i; // Skip the '0' that terminates the "kind" string. 861 while (Record[i] != 0 && i != e) 862 ValStr += Record[i++]; 863 assert(Record[i] == 0 && "Value string not null terminated"); 864 } 865 866 B.addAttribute(KindStr.str(), ValStr.str()); 867 } 868 } 869 870 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 871 break; 872 } 873 } 874 } 875 } 876 877 std::error_code BitcodeReader::ParseTypeTable() { 878 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 879 return Error("Invalid record"); 880 881 return ParseTypeTableBody(); 882 } 883 884 std::error_code BitcodeReader::ParseTypeTableBody() { 885 if (!TypeList.empty()) 886 return Error("Invalid multiple blocks"); 887 888 SmallVector<uint64_t, 64> Record; 889 unsigned NumRecords = 0; 890 891 SmallString<64> TypeName; 892 893 // Read all the records for this type table. 894 while (1) { 895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 896 897 switch (Entry.Kind) { 898 case BitstreamEntry::SubBlock: // Handled for us already. 899 case BitstreamEntry::Error: 900 return Error("Malformed block"); 901 case BitstreamEntry::EndBlock: 902 if (NumRecords != TypeList.size()) 903 return Error("Malformed block"); 904 return std::error_code(); 905 case BitstreamEntry::Record: 906 // The interesting case. 907 break; 908 } 909 910 // Read a record. 911 Record.clear(); 912 Type *ResultTy = nullptr; 913 switch (Stream.readRecord(Entry.ID, Record)) { 914 default: 915 return Error("Invalid value"); 916 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 917 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 918 // type list. This allows us to reserve space. 919 if (Record.size() < 1) 920 return Error("Invalid record"); 921 TypeList.resize(Record[0]); 922 continue; 923 case bitc::TYPE_CODE_VOID: // VOID 924 ResultTy = Type::getVoidTy(Context); 925 break; 926 case bitc::TYPE_CODE_HALF: // HALF 927 ResultTy = Type::getHalfTy(Context); 928 break; 929 case bitc::TYPE_CODE_FLOAT: // FLOAT 930 ResultTy = Type::getFloatTy(Context); 931 break; 932 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 933 ResultTy = Type::getDoubleTy(Context); 934 break; 935 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 936 ResultTy = Type::getX86_FP80Ty(Context); 937 break; 938 case bitc::TYPE_CODE_FP128: // FP128 939 ResultTy = Type::getFP128Ty(Context); 940 break; 941 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 942 ResultTy = Type::getPPC_FP128Ty(Context); 943 break; 944 case bitc::TYPE_CODE_LABEL: // LABEL 945 ResultTy = Type::getLabelTy(Context); 946 break; 947 case bitc::TYPE_CODE_METADATA: // METADATA 948 ResultTy = Type::getMetadataTy(Context); 949 break; 950 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 951 ResultTy = Type::getX86_MMXTy(Context); 952 break; 953 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 954 if (Record.size() < 1) 955 return Error("Invalid record"); 956 957 ResultTy = IntegerType::get(Context, Record[0]); 958 break; 959 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 960 // [pointee type, address space] 961 if (Record.size() < 1) 962 return Error("Invalid record"); 963 unsigned AddressSpace = 0; 964 if (Record.size() == 2) 965 AddressSpace = Record[1]; 966 ResultTy = getTypeByID(Record[0]); 967 if (!ResultTy) 968 return Error("Invalid type"); 969 ResultTy = PointerType::get(ResultTy, AddressSpace); 970 break; 971 } 972 case bitc::TYPE_CODE_FUNCTION_OLD: { 973 // FIXME: attrid is dead, remove it in LLVM 4.0 974 // FUNCTION: [vararg, attrid, retty, paramty x N] 975 if (Record.size() < 3) 976 return Error("Invalid record"); 977 SmallVector<Type*, 8> ArgTys; 978 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 979 if (Type *T = getTypeByID(Record[i])) 980 ArgTys.push_back(T); 981 else 982 break; 983 } 984 985 ResultTy = getTypeByID(Record[2]); 986 if (!ResultTy || ArgTys.size() < Record.size()-3) 987 return Error("Invalid type"); 988 989 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 990 break; 991 } 992 case bitc::TYPE_CODE_FUNCTION: { 993 // FUNCTION: [vararg, retty, paramty x N] 994 if (Record.size() < 2) 995 return Error("Invalid record"); 996 SmallVector<Type*, 8> ArgTys; 997 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 998 if (Type *T = getTypeByID(Record[i])) 999 ArgTys.push_back(T); 1000 else 1001 break; 1002 } 1003 1004 ResultTy = getTypeByID(Record[1]); 1005 if (!ResultTy || ArgTys.size() < Record.size()-2) 1006 return Error("Invalid type"); 1007 1008 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1009 break; 1010 } 1011 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1012 if (Record.size() < 1) 1013 return Error("Invalid record"); 1014 SmallVector<Type*, 8> EltTys; 1015 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1016 if (Type *T = getTypeByID(Record[i])) 1017 EltTys.push_back(T); 1018 else 1019 break; 1020 } 1021 if (EltTys.size() != Record.size()-1) 1022 return Error("Invalid type"); 1023 ResultTy = StructType::get(Context, EltTys, Record[0]); 1024 break; 1025 } 1026 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1027 if (ConvertToString(Record, 0, TypeName)) 1028 return Error("Invalid record"); 1029 continue; 1030 1031 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1032 if (Record.size() < 1) 1033 return Error("Invalid record"); 1034 1035 if (NumRecords >= TypeList.size()) 1036 return Error("Invalid TYPE table"); 1037 1038 // Check to see if this was forward referenced, if so fill in the temp. 1039 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1040 if (Res) { 1041 Res->setName(TypeName); 1042 TypeList[NumRecords] = nullptr; 1043 } else // Otherwise, create a new struct. 1044 Res = createIdentifiedStructType(Context, TypeName); 1045 TypeName.clear(); 1046 1047 SmallVector<Type*, 8> EltTys; 1048 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1049 if (Type *T = getTypeByID(Record[i])) 1050 EltTys.push_back(T); 1051 else 1052 break; 1053 } 1054 if (EltTys.size() != Record.size()-1) 1055 return Error("Invalid record"); 1056 Res->setBody(EltTys, Record[0]); 1057 ResultTy = Res; 1058 break; 1059 } 1060 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1061 if (Record.size() != 1) 1062 return Error("Invalid record"); 1063 1064 if (NumRecords >= TypeList.size()) 1065 return Error("Invalid TYPE table"); 1066 1067 // Check to see if this was forward referenced, if so fill in the temp. 1068 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1069 if (Res) { 1070 Res->setName(TypeName); 1071 TypeList[NumRecords] = nullptr; 1072 } else // Otherwise, create a new struct with no body. 1073 Res = createIdentifiedStructType(Context, TypeName); 1074 TypeName.clear(); 1075 ResultTy = Res; 1076 break; 1077 } 1078 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1079 if (Record.size() < 2) 1080 return Error("Invalid record"); 1081 if ((ResultTy = getTypeByID(Record[1]))) 1082 ResultTy = ArrayType::get(ResultTy, Record[0]); 1083 else 1084 return Error("Invalid type"); 1085 break; 1086 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1087 if (Record.size() < 2) 1088 return Error("Invalid record"); 1089 if ((ResultTy = getTypeByID(Record[1]))) 1090 ResultTy = VectorType::get(ResultTy, Record[0]); 1091 else 1092 return Error("Invalid type"); 1093 break; 1094 } 1095 1096 if (NumRecords >= TypeList.size()) 1097 return Error("Invalid TYPE table"); 1098 if (TypeList[NumRecords]) 1099 return Error( 1100 "Invalid TYPE table: Only named structs can be forward referenced"); 1101 assert(ResultTy && "Didn't read a type?"); 1102 TypeList[NumRecords++] = ResultTy; 1103 } 1104 } 1105 1106 std::error_code BitcodeReader::ParseValueSymbolTable() { 1107 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1108 return Error("Invalid record"); 1109 1110 SmallVector<uint64_t, 64> Record; 1111 1112 Triple TT(TheModule->getTargetTriple()); 1113 1114 // Read all the records for this value table. 1115 SmallString<128> ValueName; 1116 while (1) { 1117 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1118 1119 switch (Entry.Kind) { 1120 case BitstreamEntry::SubBlock: // Handled for us already. 1121 case BitstreamEntry::Error: 1122 return Error("Malformed block"); 1123 case BitstreamEntry::EndBlock: 1124 return std::error_code(); 1125 case BitstreamEntry::Record: 1126 // The interesting case. 1127 break; 1128 } 1129 1130 // Read a record. 1131 Record.clear(); 1132 switch (Stream.readRecord(Entry.ID, Record)) { 1133 default: // Default behavior: unknown type. 1134 break; 1135 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1136 if (ConvertToString(Record, 1, ValueName)) 1137 return Error("Invalid record"); 1138 unsigned ValueID = Record[0]; 1139 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1140 return Error("Invalid record"); 1141 Value *V = ValueList[ValueID]; 1142 1143 V->setName(StringRef(ValueName.data(), ValueName.size())); 1144 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1145 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1146 if (TT.isOSBinFormatMachO()) 1147 GO->setComdat(nullptr); 1148 else 1149 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1150 } 1151 } 1152 ValueName.clear(); 1153 break; 1154 } 1155 case bitc::VST_CODE_BBENTRY: { 1156 if (ConvertToString(Record, 1, ValueName)) 1157 return Error("Invalid record"); 1158 BasicBlock *BB = getBasicBlock(Record[0]); 1159 if (!BB) 1160 return Error("Invalid record"); 1161 1162 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1163 ValueName.clear(); 1164 break; 1165 } 1166 } 1167 } 1168 } 1169 1170 std::error_code BitcodeReader::ParseMetadata() { 1171 unsigned NextMDValueNo = MDValueList.size(); 1172 1173 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1174 return Error("Invalid record"); 1175 1176 SmallVector<uint64_t, 64> Record; 1177 1178 // Read all the records. 1179 while (1) { 1180 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1181 1182 switch (Entry.Kind) { 1183 case BitstreamEntry::SubBlock: // Handled for us already. 1184 case BitstreamEntry::Error: 1185 return Error("Malformed block"); 1186 case BitstreamEntry::EndBlock: 1187 MDValueList.tryToResolveCycles(); 1188 return std::error_code(); 1189 case BitstreamEntry::Record: 1190 // The interesting case. 1191 break; 1192 } 1193 1194 // Read a record. 1195 Record.clear(); 1196 unsigned Code = Stream.readRecord(Entry.ID, Record); 1197 bool IsDistinct = false; 1198 switch (Code) { 1199 default: // Default behavior: ignore. 1200 break; 1201 case bitc::METADATA_NAME: { 1202 // Read name of the named metadata. 1203 SmallString<8> Name(Record.begin(), Record.end()); 1204 Record.clear(); 1205 Code = Stream.ReadCode(); 1206 1207 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1208 unsigned NextBitCode = Stream.readRecord(Code, Record); 1209 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1210 1211 // Read named metadata elements. 1212 unsigned Size = Record.size(); 1213 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1214 for (unsigned i = 0; i != Size; ++i) { 1215 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1216 if (!MD) 1217 return Error("Invalid record"); 1218 NMD->addOperand(MD); 1219 } 1220 break; 1221 } 1222 case bitc::METADATA_OLD_FN_NODE: { 1223 // FIXME: Remove in 4.0. 1224 // This is a LocalAsMetadata record, the only type of function-local 1225 // metadata. 1226 if (Record.size() % 2 == 1) 1227 return Error("Invalid record"); 1228 1229 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1230 // to be legal, but there's no upgrade path. 1231 auto dropRecord = [&] { 1232 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1233 }; 1234 if (Record.size() != 2) { 1235 dropRecord(); 1236 break; 1237 } 1238 1239 Type *Ty = getTypeByID(Record[0]); 1240 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1241 dropRecord(); 1242 break; 1243 } 1244 1245 MDValueList.AssignValue( 1246 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1247 NextMDValueNo++); 1248 break; 1249 } 1250 case bitc::METADATA_OLD_NODE: { 1251 // FIXME: Remove in 4.0. 1252 if (Record.size() % 2 == 1) 1253 return Error("Invalid record"); 1254 1255 unsigned Size = Record.size(); 1256 SmallVector<Metadata *, 8> Elts; 1257 for (unsigned i = 0; i != Size; i += 2) { 1258 Type *Ty = getTypeByID(Record[i]); 1259 if (!Ty) 1260 return Error("Invalid record"); 1261 if (Ty->isMetadataTy()) 1262 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1263 else if (!Ty->isVoidTy()) { 1264 auto *MD = 1265 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1266 assert(isa<ConstantAsMetadata>(MD) && 1267 "Expected non-function-local metadata"); 1268 Elts.push_back(MD); 1269 } else 1270 Elts.push_back(nullptr); 1271 } 1272 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1273 break; 1274 } 1275 case bitc::METADATA_VALUE: { 1276 if (Record.size() != 2) 1277 return Error("Invalid record"); 1278 1279 Type *Ty = getTypeByID(Record[0]); 1280 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1281 return Error("Invalid record"); 1282 1283 MDValueList.AssignValue( 1284 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1285 NextMDValueNo++); 1286 break; 1287 } 1288 case bitc::METADATA_DISTINCT_NODE: 1289 IsDistinct = true; 1290 // fallthrough... 1291 case bitc::METADATA_NODE: { 1292 SmallVector<Metadata *, 8> Elts; 1293 Elts.reserve(Record.size()); 1294 for (unsigned ID : Record) 1295 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1296 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1297 : MDNode::get(Context, Elts), 1298 NextMDValueNo++); 1299 break; 1300 } 1301 case bitc::METADATA_LOCATION: { 1302 if (Record.size() != 5) 1303 return Error("Invalid record"); 1304 1305 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1306 unsigned Line = Record[1]; 1307 unsigned Column = Record[2]; 1308 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1309 Metadata *InlinedAt = 1310 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1311 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1312 NextMDValueNo++); 1313 break; 1314 } 1315 case bitc::METADATA_STRING: { 1316 std::string String(Record.begin(), Record.end()); 1317 llvm::UpgradeMDStringConstant(String); 1318 Metadata *MD = MDString::get(Context, String); 1319 MDValueList.AssignValue(MD, NextMDValueNo++); 1320 break; 1321 } 1322 case bitc::METADATA_KIND: { 1323 if (Record.size() < 2) 1324 return Error("Invalid record"); 1325 1326 unsigned Kind = Record[0]; 1327 SmallString<8> Name(Record.begin()+1, Record.end()); 1328 1329 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1330 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1331 return Error("Conflicting METADATA_KIND records"); 1332 break; 1333 } 1334 } 1335 } 1336 } 1337 1338 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1339 /// the LSB for dense VBR encoding. 1340 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1341 if ((V & 1) == 0) 1342 return V >> 1; 1343 if (V != 1) 1344 return -(V >> 1); 1345 // There is no such thing as -0 with integers. "-0" really means MININT. 1346 return 1ULL << 63; 1347 } 1348 1349 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1350 /// values and aliases that we can. 1351 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1352 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1353 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1354 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1355 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1356 1357 GlobalInitWorklist.swap(GlobalInits); 1358 AliasInitWorklist.swap(AliasInits); 1359 FunctionPrefixWorklist.swap(FunctionPrefixes); 1360 FunctionPrologueWorklist.swap(FunctionPrologues); 1361 1362 while (!GlobalInitWorklist.empty()) { 1363 unsigned ValID = GlobalInitWorklist.back().second; 1364 if (ValID >= ValueList.size()) { 1365 // Not ready to resolve this yet, it requires something later in the file. 1366 GlobalInits.push_back(GlobalInitWorklist.back()); 1367 } else { 1368 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1369 GlobalInitWorklist.back().first->setInitializer(C); 1370 else 1371 return Error("Expected a constant"); 1372 } 1373 GlobalInitWorklist.pop_back(); 1374 } 1375 1376 while (!AliasInitWorklist.empty()) { 1377 unsigned ValID = AliasInitWorklist.back().second; 1378 if (ValID >= ValueList.size()) { 1379 AliasInits.push_back(AliasInitWorklist.back()); 1380 } else { 1381 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1382 AliasInitWorklist.back().first->setAliasee(C); 1383 else 1384 return Error("Expected a constant"); 1385 } 1386 AliasInitWorklist.pop_back(); 1387 } 1388 1389 while (!FunctionPrefixWorklist.empty()) { 1390 unsigned ValID = FunctionPrefixWorklist.back().second; 1391 if (ValID >= ValueList.size()) { 1392 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1393 } else { 1394 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1395 FunctionPrefixWorklist.back().first->setPrefixData(C); 1396 else 1397 return Error("Expected a constant"); 1398 } 1399 FunctionPrefixWorklist.pop_back(); 1400 } 1401 1402 while (!FunctionPrologueWorklist.empty()) { 1403 unsigned ValID = FunctionPrologueWorklist.back().second; 1404 if (ValID >= ValueList.size()) { 1405 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1406 } else { 1407 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1408 FunctionPrologueWorklist.back().first->setPrologueData(C); 1409 else 1410 return Error("Expected a constant"); 1411 } 1412 FunctionPrologueWorklist.pop_back(); 1413 } 1414 1415 return std::error_code(); 1416 } 1417 1418 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1419 SmallVector<uint64_t, 8> Words(Vals.size()); 1420 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1421 BitcodeReader::decodeSignRotatedValue); 1422 1423 return APInt(TypeBits, Words); 1424 } 1425 1426 std::error_code BitcodeReader::ParseConstants() { 1427 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1428 return Error("Invalid record"); 1429 1430 SmallVector<uint64_t, 64> Record; 1431 1432 // Read all the records for this value table. 1433 Type *CurTy = Type::getInt32Ty(Context); 1434 unsigned NextCstNo = ValueList.size(); 1435 while (1) { 1436 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1437 1438 switch (Entry.Kind) { 1439 case BitstreamEntry::SubBlock: // Handled for us already. 1440 case BitstreamEntry::Error: 1441 return Error("Malformed block"); 1442 case BitstreamEntry::EndBlock: 1443 if (NextCstNo != ValueList.size()) 1444 return Error("Invalid ronstant reference"); 1445 1446 // Once all the constants have been read, go through and resolve forward 1447 // references. 1448 ValueList.ResolveConstantForwardRefs(); 1449 return std::error_code(); 1450 case BitstreamEntry::Record: 1451 // The interesting case. 1452 break; 1453 } 1454 1455 // Read a record. 1456 Record.clear(); 1457 Value *V = nullptr; 1458 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1459 switch (BitCode) { 1460 default: // Default behavior: unknown constant 1461 case bitc::CST_CODE_UNDEF: // UNDEF 1462 V = UndefValue::get(CurTy); 1463 break; 1464 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1465 if (Record.empty()) 1466 return Error("Invalid record"); 1467 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1468 return Error("Invalid record"); 1469 CurTy = TypeList[Record[0]]; 1470 continue; // Skip the ValueList manipulation. 1471 case bitc::CST_CODE_NULL: // NULL 1472 V = Constant::getNullValue(CurTy); 1473 break; 1474 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1475 if (!CurTy->isIntegerTy() || Record.empty()) 1476 return Error("Invalid record"); 1477 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1478 break; 1479 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1480 if (!CurTy->isIntegerTy() || Record.empty()) 1481 return Error("Invalid record"); 1482 1483 APInt VInt = ReadWideAPInt(Record, 1484 cast<IntegerType>(CurTy)->getBitWidth()); 1485 V = ConstantInt::get(Context, VInt); 1486 1487 break; 1488 } 1489 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1490 if (Record.empty()) 1491 return Error("Invalid record"); 1492 if (CurTy->isHalfTy()) 1493 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1494 APInt(16, (uint16_t)Record[0]))); 1495 else if (CurTy->isFloatTy()) 1496 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1497 APInt(32, (uint32_t)Record[0]))); 1498 else if (CurTy->isDoubleTy()) 1499 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1500 APInt(64, Record[0]))); 1501 else if (CurTy->isX86_FP80Ty()) { 1502 // Bits are not stored the same way as a normal i80 APInt, compensate. 1503 uint64_t Rearrange[2]; 1504 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1505 Rearrange[1] = Record[0] >> 48; 1506 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1507 APInt(80, Rearrange))); 1508 } else if (CurTy->isFP128Ty()) 1509 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1510 APInt(128, Record))); 1511 else if (CurTy->isPPC_FP128Ty()) 1512 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1513 APInt(128, Record))); 1514 else 1515 V = UndefValue::get(CurTy); 1516 break; 1517 } 1518 1519 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1520 if (Record.empty()) 1521 return Error("Invalid record"); 1522 1523 unsigned Size = Record.size(); 1524 SmallVector<Constant*, 16> Elts; 1525 1526 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1527 for (unsigned i = 0; i != Size; ++i) 1528 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1529 STy->getElementType(i))); 1530 V = ConstantStruct::get(STy, Elts); 1531 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1532 Type *EltTy = ATy->getElementType(); 1533 for (unsigned i = 0; i != Size; ++i) 1534 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1535 V = ConstantArray::get(ATy, Elts); 1536 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1537 Type *EltTy = VTy->getElementType(); 1538 for (unsigned i = 0; i != Size; ++i) 1539 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1540 V = ConstantVector::get(Elts); 1541 } else { 1542 V = UndefValue::get(CurTy); 1543 } 1544 break; 1545 } 1546 case bitc::CST_CODE_STRING: // STRING: [values] 1547 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1548 if (Record.empty()) 1549 return Error("Invalid record"); 1550 1551 SmallString<16> Elts(Record.begin(), Record.end()); 1552 V = ConstantDataArray::getString(Context, Elts, 1553 BitCode == bitc::CST_CODE_CSTRING); 1554 break; 1555 } 1556 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1557 if (Record.empty()) 1558 return Error("Invalid record"); 1559 1560 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1561 unsigned Size = Record.size(); 1562 1563 if (EltTy->isIntegerTy(8)) { 1564 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1565 if (isa<VectorType>(CurTy)) 1566 V = ConstantDataVector::get(Context, Elts); 1567 else 1568 V = ConstantDataArray::get(Context, Elts); 1569 } else if (EltTy->isIntegerTy(16)) { 1570 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1571 if (isa<VectorType>(CurTy)) 1572 V = ConstantDataVector::get(Context, Elts); 1573 else 1574 V = ConstantDataArray::get(Context, Elts); 1575 } else if (EltTy->isIntegerTy(32)) { 1576 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1577 if (isa<VectorType>(CurTy)) 1578 V = ConstantDataVector::get(Context, Elts); 1579 else 1580 V = ConstantDataArray::get(Context, Elts); 1581 } else if (EltTy->isIntegerTy(64)) { 1582 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1583 if (isa<VectorType>(CurTy)) 1584 V = ConstantDataVector::get(Context, Elts); 1585 else 1586 V = ConstantDataArray::get(Context, Elts); 1587 } else if (EltTy->isFloatTy()) { 1588 SmallVector<float, 16> Elts(Size); 1589 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1590 if (isa<VectorType>(CurTy)) 1591 V = ConstantDataVector::get(Context, Elts); 1592 else 1593 V = ConstantDataArray::get(Context, Elts); 1594 } else if (EltTy->isDoubleTy()) { 1595 SmallVector<double, 16> Elts(Size); 1596 std::transform(Record.begin(), Record.end(), Elts.begin(), 1597 BitsToDouble); 1598 if (isa<VectorType>(CurTy)) 1599 V = ConstantDataVector::get(Context, Elts); 1600 else 1601 V = ConstantDataArray::get(Context, Elts); 1602 } else { 1603 return Error("Invalid type for value"); 1604 } 1605 break; 1606 } 1607 1608 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1609 if (Record.size() < 3) 1610 return Error("Invalid record"); 1611 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1612 if (Opc < 0) { 1613 V = UndefValue::get(CurTy); // Unknown binop. 1614 } else { 1615 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1616 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1617 unsigned Flags = 0; 1618 if (Record.size() >= 4) { 1619 if (Opc == Instruction::Add || 1620 Opc == Instruction::Sub || 1621 Opc == Instruction::Mul || 1622 Opc == Instruction::Shl) { 1623 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1624 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1625 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1626 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1627 } else if (Opc == Instruction::SDiv || 1628 Opc == Instruction::UDiv || 1629 Opc == Instruction::LShr || 1630 Opc == Instruction::AShr) { 1631 if (Record[3] & (1 << bitc::PEO_EXACT)) 1632 Flags |= SDivOperator::IsExact; 1633 } 1634 } 1635 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1636 } 1637 break; 1638 } 1639 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1640 if (Record.size() < 3) 1641 return Error("Invalid record"); 1642 int Opc = GetDecodedCastOpcode(Record[0]); 1643 if (Opc < 0) { 1644 V = UndefValue::get(CurTy); // Unknown cast. 1645 } else { 1646 Type *OpTy = getTypeByID(Record[1]); 1647 if (!OpTy) 1648 return Error("Invalid record"); 1649 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1650 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1651 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1652 } 1653 break; 1654 } 1655 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1656 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1657 if (Record.size() & 1) 1658 return Error("Invalid record"); 1659 SmallVector<Constant*, 16> Elts; 1660 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1661 Type *ElTy = getTypeByID(Record[i]); 1662 if (!ElTy) 1663 return Error("Invalid record"); 1664 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1665 } 1666 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1667 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1668 BitCode == 1669 bitc::CST_CODE_CE_INBOUNDS_GEP); 1670 break; 1671 } 1672 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1673 if (Record.size() < 3) 1674 return Error("Invalid record"); 1675 1676 Type *SelectorTy = Type::getInt1Ty(Context); 1677 1678 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1679 // vector. Otherwise, it must be a single bit. 1680 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1681 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1682 VTy->getNumElements()); 1683 1684 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1685 SelectorTy), 1686 ValueList.getConstantFwdRef(Record[1],CurTy), 1687 ValueList.getConstantFwdRef(Record[2],CurTy)); 1688 break; 1689 } 1690 case bitc::CST_CODE_CE_EXTRACTELT 1691 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1692 if (Record.size() < 3) 1693 return Error("Invalid record"); 1694 VectorType *OpTy = 1695 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1696 if (!OpTy) 1697 return Error("Invalid record"); 1698 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1699 Constant *Op1 = nullptr; 1700 if (Record.size() == 4) { 1701 Type *IdxTy = getTypeByID(Record[2]); 1702 if (!IdxTy) 1703 return Error("Invalid record"); 1704 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1705 } else // TODO: Remove with llvm 4.0 1706 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1707 if (!Op1) 1708 return Error("Invalid record"); 1709 V = ConstantExpr::getExtractElement(Op0, Op1); 1710 break; 1711 } 1712 case bitc::CST_CODE_CE_INSERTELT 1713 : { // CE_INSERTELT: [opval, opval, opty, opval] 1714 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1715 if (Record.size() < 3 || !OpTy) 1716 return Error("Invalid record"); 1717 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1718 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1719 OpTy->getElementType()); 1720 Constant *Op2 = nullptr; 1721 if (Record.size() == 4) { 1722 Type *IdxTy = getTypeByID(Record[2]); 1723 if (!IdxTy) 1724 return Error("Invalid record"); 1725 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1726 } else // TODO: Remove with llvm 4.0 1727 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1728 if (!Op2) 1729 return Error("Invalid record"); 1730 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1731 break; 1732 } 1733 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1734 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1735 if (Record.size() < 3 || !OpTy) 1736 return Error("Invalid record"); 1737 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1738 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1739 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1740 OpTy->getNumElements()); 1741 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1742 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1743 break; 1744 } 1745 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1746 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1747 VectorType *OpTy = 1748 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1749 if (Record.size() < 4 || !RTy || !OpTy) 1750 return Error("Invalid record"); 1751 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1752 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1753 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1754 RTy->getNumElements()); 1755 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1756 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1757 break; 1758 } 1759 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1760 if (Record.size() < 4) 1761 return Error("Invalid record"); 1762 Type *OpTy = getTypeByID(Record[0]); 1763 if (!OpTy) 1764 return Error("Invalid record"); 1765 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1766 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1767 1768 if (OpTy->isFPOrFPVectorTy()) 1769 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1770 else 1771 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1772 break; 1773 } 1774 // This maintains backward compatibility, pre-asm dialect keywords. 1775 // FIXME: Remove with the 4.0 release. 1776 case bitc::CST_CODE_INLINEASM_OLD: { 1777 if (Record.size() < 2) 1778 return Error("Invalid record"); 1779 std::string AsmStr, ConstrStr; 1780 bool HasSideEffects = Record[0] & 1; 1781 bool IsAlignStack = Record[0] >> 1; 1782 unsigned AsmStrSize = Record[1]; 1783 if (2+AsmStrSize >= Record.size()) 1784 return Error("Invalid record"); 1785 unsigned ConstStrSize = Record[2+AsmStrSize]; 1786 if (3+AsmStrSize+ConstStrSize > Record.size()) 1787 return Error("Invalid record"); 1788 1789 for (unsigned i = 0; i != AsmStrSize; ++i) 1790 AsmStr += (char)Record[2+i]; 1791 for (unsigned i = 0; i != ConstStrSize; ++i) 1792 ConstrStr += (char)Record[3+AsmStrSize+i]; 1793 PointerType *PTy = cast<PointerType>(CurTy); 1794 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1795 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1796 break; 1797 } 1798 // This version adds support for the asm dialect keywords (e.g., 1799 // inteldialect). 1800 case bitc::CST_CODE_INLINEASM: { 1801 if (Record.size() < 2) 1802 return Error("Invalid record"); 1803 std::string AsmStr, ConstrStr; 1804 bool HasSideEffects = Record[0] & 1; 1805 bool IsAlignStack = (Record[0] >> 1) & 1; 1806 unsigned AsmDialect = Record[0] >> 2; 1807 unsigned AsmStrSize = Record[1]; 1808 if (2+AsmStrSize >= Record.size()) 1809 return Error("Invalid record"); 1810 unsigned ConstStrSize = Record[2+AsmStrSize]; 1811 if (3+AsmStrSize+ConstStrSize > Record.size()) 1812 return Error("Invalid record"); 1813 1814 for (unsigned i = 0; i != AsmStrSize; ++i) 1815 AsmStr += (char)Record[2+i]; 1816 for (unsigned i = 0; i != ConstStrSize; ++i) 1817 ConstrStr += (char)Record[3+AsmStrSize+i]; 1818 PointerType *PTy = cast<PointerType>(CurTy); 1819 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1820 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1821 InlineAsm::AsmDialect(AsmDialect)); 1822 break; 1823 } 1824 case bitc::CST_CODE_BLOCKADDRESS:{ 1825 if (Record.size() < 3) 1826 return Error("Invalid record"); 1827 Type *FnTy = getTypeByID(Record[0]); 1828 if (!FnTy) 1829 return Error("Invalid record"); 1830 Function *Fn = 1831 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1832 if (!Fn) 1833 return Error("Invalid record"); 1834 1835 // Don't let Fn get dematerialized. 1836 BlockAddressesTaken.insert(Fn); 1837 1838 // If the function is already parsed we can insert the block address right 1839 // away. 1840 BasicBlock *BB; 1841 unsigned BBID = Record[2]; 1842 if (!BBID) 1843 // Invalid reference to entry block. 1844 return Error("Invalid ID"); 1845 if (!Fn->empty()) { 1846 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1847 for (size_t I = 0, E = BBID; I != E; ++I) { 1848 if (BBI == BBE) 1849 return Error("Invalid ID"); 1850 ++BBI; 1851 } 1852 BB = BBI; 1853 } else { 1854 // Otherwise insert a placeholder and remember it so it can be inserted 1855 // when the function is parsed. 1856 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1857 if (FwdBBs.empty()) 1858 BasicBlockFwdRefQueue.push_back(Fn); 1859 if (FwdBBs.size() < BBID + 1) 1860 FwdBBs.resize(BBID + 1); 1861 if (!FwdBBs[BBID]) 1862 FwdBBs[BBID] = BasicBlock::Create(Context); 1863 BB = FwdBBs[BBID]; 1864 } 1865 V = BlockAddress::get(Fn, BB); 1866 break; 1867 } 1868 } 1869 1870 ValueList.AssignValue(V, NextCstNo); 1871 ++NextCstNo; 1872 } 1873 } 1874 1875 std::error_code BitcodeReader::ParseUseLists() { 1876 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1877 return Error("Invalid record"); 1878 1879 // Read all the records. 1880 SmallVector<uint64_t, 64> Record; 1881 while (1) { 1882 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1883 1884 switch (Entry.Kind) { 1885 case BitstreamEntry::SubBlock: // Handled for us already. 1886 case BitstreamEntry::Error: 1887 return Error("Malformed block"); 1888 case BitstreamEntry::EndBlock: 1889 return std::error_code(); 1890 case BitstreamEntry::Record: 1891 // The interesting case. 1892 break; 1893 } 1894 1895 // Read a use list record. 1896 Record.clear(); 1897 bool IsBB = false; 1898 switch (Stream.readRecord(Entry.ID, Record)) { 1899 default: // Default behavior: unknown type. 1900 break; 1901 case bitc::USELIST_CODE_BB: 1902 IsBB = true; 1903 // fallthrough 1904 case bitc::USELIST_CODE_DEFAULT: { 1905 unsigned RecordLength = Record.size(); 1906 if (RecordLength < 3) 1907 // Records should have at least an ID and two indexes. 1908 return Error("Invalid record"); 1909 unsigned ID = Record.back(); 1910 Record.pop_back(); 1911 1912 Value *V; 1913 if (IsBB) { 1914 assert(ID < FunctionBBs.size() && "Basic block not found"); 1915 V = FunctionBBs[ID]; 1916 } else 1917 V = ValueList[ID]; 1918 unsigned NumUses = 0; 1919 SmallDenseMap<const Use *, unsigned, 16> Order; 1920 for (const Use &U : V->uses()) { 1921 if (++NumUses > Record.size()) 1922 break; 1923 Order[&U] = Record[NumUses - 1]; 1924 } 1925 if (Order.size() != Record.size() || NumUses > Record.size()) 1926 // Mismatches can happen if the functions are being materialized lazily 1927 // (out-of-order), or a value has been upgraded. 1928 break; 1929 1930 V->sortUseList([&](const Use &L, const Use &R) { 1931 return Order.lookup(&L) < Order.lookup(&R); 1932 }); 1933 break; 1934 } 1935 } 1936 } 1937 } 1938 1939 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1940 /// remember where it is and then skip it. This lets us lazily deserialize the 1941 /// functions. 1942 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1943 // Get the function we are talking about. 1944 if (FunctionsWithBodies.empty()) 1945 return Error("Insufficient function protos"); 1946 1947 Function *Fn = FunctionsWithBodies.back(); 1948 FunctionsWithBodies.pop_back(); 1949 1950 // Save the current stream state. 1951 uint64_t CurBit = Stream.GetCurrentBitNo(); 1952 DeferredFunctionInfo[Fn] = CurBit; 1953 1954 // Skip over the function block for now. 1955 if (Stream.SkipBlock()) 1956 return Error("Invalid record"); 1957 return std::error_code(); 1958 } 1959 1960 std::error_code BitcodeReader::GlobalCleanup() { 1961 // Patch the initializers for globals and aliases up. 1962 ResolveGlobalAndAliasInits(); 1963 if (!GlobalInits.empty() || !AliasInits.empty()) 1964 return Error("Malformed global initializer set"); 1965 1966 // Look for intrinsic functions which need to be upgraded at some point 1967 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1968 FI != FE; ++FI) { 1969 Function *NewFn; 1970 if (UpgradeIntrinsicFunction(FI, NewFn)) 1971 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1972 } 1973 1974 // Look for global variables which need to be renamed. 1975 for (Module::global_iterator 1976 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1977 GI != GE;) { 1978 GlobalVariable *GV = GI++; 1979 UpgradeGlobalVariable(GV); 1980 } 1981 1982 // Force deallocation of memory for these vectors to favor the client that 1983 // want lazy deserialization. 1984 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1985 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1986 return std::error_code(); 1987 } 1988 1989 std::error_code BitcodeReader::ParseModule(bool Resume) { 1990 if (Resume) 1991 Stream.JumpToBit(NextUnreadBit); 1992 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1993 return Error("Invalid record"); 1994 1995 SmallVector<uint64_t, 64> Record; 1996 std::vector<std::string> SectionTable; 1997 std::vector<std::string> GCTable; 1998 1999 // Read all the records for this module. 2000 while (1) { 2001 BitstreamEntry Entry = Stream.advance(); 2002 2003 switch (Entry.Kind) { 2004 case BitstreamEntry::Error: 2005 return Error("Malformed block"); 2006 case BitstreamEntry::EndBlock: 2007 return GlobalCleanup(); 2008 2009 case BitstreamEntry::SubBlock: 2010 switch (Entry.ID) { 2011 default: // Skip unknown content. 2012 if (Stream.SkipBlock()) 2013 return Error("Invalid record"); 2014 break; 2015 case bitc::BLOCKINFO_BLOCK_ID: 2016 if (Stream.ReadBlockInfoBlock()) 2017 return Error("Malformed block"); 2018 break; 2019 case bitc::PARAMATTR_BLOCK_ID: 2020 if (std::error_code EC = ParseAttributeBlock()) 2021 return EC; 2022 break; 2023 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2024 if (std::error_code EC = ParseAttributeGroupBlock()) 2025 return EC; 2026 break; 2027 case bitc::TYPE_BLOCK_ID_NEW: 2028 if (std::error_code EC = ParseTypeTable()) 2029 return EC; 2030 break; 2031 case bitc::VALUE_SYMTAB_BLOCK_ID: 2032 if (std::error_code EC = ParseValueSymbolTable()) 2033 return EC; 2034 SeenValueSymbolTable = true; 2035 break; 2036 case bitc::CONSTANTS_BLOCK_ID: 2037 if (std::error_code EC = ParseConstants()) 2038 return EC; 2039 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2040 return EC; 2041 break; 2042 case bitc::METADATA_BLOCK_ID: 2043 if (std::error_code EC = ParseMetadata()) 2044 return EC; 2045 break; 2046 case bitc::FUNCTION_BLOCK_ID: 2047 // If this is the first function body we've seen, reverse the 2048 // FunctionsWithBodies list. 2049 if (!SeenFirstFunctionBody) { 2050 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2051 if (std::error_code EC = GlobalCleanup()) 2052 return EC; 2053 SeenFirstFunctionBody = true; 2054 } 2055 2056 if (std::error_code EC = RememberAndSkipFunctionBody()) 2057 return EC; 2058 // For streaming bitcode, suspend parsing when we reach the function 2059 // bodies. Subsequent materialization calls will resume it when 2060 // necessary. For streaming, the function bodies must be at the end of 2061 // the bitcode. If the bitcode file is old, the symbol table will be 2062 // at the end instead and will not have been seen yet. In this case, 2063 // just finish the parse now. 2064 if (LazyStreamer && SeenValueSymbolTable) { 2065 NextUnreadBit = Stream.GetCurrentBitNo(); 2066 return std::error_code(); 2067 } 2068 break; 2069 case bitc::USELIST_BLOCK_ID: 2070 if (std::error_code EC = ParseUseLists()) 2071 return EC; 2072 break; 2073 } 2074 continue; 2075 2076 case BitstreamEntry::Record: 2077 // The interesting case. 2078 break; 2079 } 2080 2081 2082 // Read a record. 2083 switch (Stream.readRecord(Entry.ID, Record)) { 2084 default: break; // Default behavior, ignore unknown content. 2085 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2086 if (Record.size() < 1) 2087 return Error("Invalid record"); 2088 // Only version #0 and #1 are supported so far. 2089 unsigned module_version = Record[0]; 2090 switch (module_version) { 2091 default: 2092 return Error("Invalid value"); 2093 case 0: 2094 UseRelativeIDs = false; 2095 break; 2096 case 1: 2097 UseRelativeIDs = true; 2098 break; 2099 } 2100 break; 2101 } 2102 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2103 std::string S; 2104 if (ConvertToString(Record, 0, S)) 2105 return Error("Invalid record"); 2106 TheModule->setTargetTriple(S); 2107 break; 2108 } 2109 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2110 std::string S; 2111 if (ConvertToString(Record, 0, S)) 2112 return Error("Invalid record"); 2113 TheModule->setDataLayout(S); 2114 break; 2115 } 2116 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2117 std::string S; 2118 if (ConvertToString(Record, 0, S)) 2119 return Error("Invalid record"); 2120 TheModule->setModuleInlineAsm(S); 2121 break; 2122 } 2123 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2124 // FIXME: Remove in 4.0. 2125 std::string S; 2126 if (ConvertToString(Record, 0, S)) 2127 return Error("Invalid record"); 2128 // Ignore value. 2129 break; 2130 } 2131 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2132 std::string S; 2133 if (ConvertToString(Record, 0, S)) 2134 return Error("Invalid record"); 2135 SectionTable.push_back(S); 2136 break; 2137 } 2138 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2139 std::string S; 2140 if (ConvertToString(Record, 0, S)) 2141 return Error("Invalid record"); 2142 GCTable.push_back(S); 2143 break; 2144 } 2145 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2146 if (Record.size() < 2) 2147 return Error("Invalid record"); 2148 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2149 unsigned ComdatNameSize = Record[1]; 2150 std::string ComdatName; 2151 ComdatName.reserve(ComdatNameSize); 2152 for (unsigned i = 0; i != ComdatNameSize; ++i) 2153 ComdatName += (char)Record[2 + i]; 2154 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2155 C->setSelectionKind(SK); 2156 ComdatList.push_back(C); 2157 break; 2158 } 2159 // GLOBALVAR: [pointer type, isconst, initid, 2160 // linkage, alignment, section, visibility, threadlocal, 2161 // unnamed_addr, dllstorageclass] 2162 case bitc::MODULE_CODE_GLOBALVAR: { 2163 if (Record.size() < 6) 2164 return Error("Invalid record"); 2165 Type *Ty = getTypeByID(Record[0]); 2166 if (!Ty) 2167 return Error("Invalid record"); 2168 if (!Ty->isPointerTy()) 2169 return Error("Invalid type for value"); 2170 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2171 Ty = cast<PointerType>(Ty)->getElementType(); 2172 2173 bool isConstant = Record[1]; 2174 uint64_t RawLinkage = Record[3]; 2175 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2176 unsigned Alignment = (1 << Record[4]) >> 1; 2177 std::string Section; 2178 if (Record[5]) { 2179 if (Record[5]-1 >= SectionTable.size()) 2180 return Error("Invalid ID"); 2181 Section = SectionTable[Record[5]-1]; 2182 } 2183 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2184 // Local linkage must have default visibility. 2185 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2186 // FIXME: Change to an error if non-default in 4.0. 2187 Visibility = GetDecodedVisibility(Record[6]); 2188 2189 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2190 if (Record.size() > 7) 2191 TLM = GetDecodedThreadLocalMode(Record[7]); 2192 2193 bool UnnamedAddr = false; 2194 if (Record.size() > 8) 2195 UnnamedAddr = Record[8]; 2196 2197 bool ExternallyInitialized = false; 2198 if (Record.size() > 9) 2199 ExternallyInitialized = Record[9]; 2200 2201 GlobalVariable *NewGV = 2202 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2203 TLM, AddressSpace, ExternallyInitialized); 2204 NewGV->setAlignment(Alignment); 2205 if (!Section.empty()) 2206 NewGV->setSection(Section); 2207 NewGV->setVisibility(Visibility); 2208 NewGV->setUnnamedAddr(UnnamedAddr); 2209 2210 if (Record.size() > 10) 2211 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2212 else 2213 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2214 2215 ValueList.push_back(NewGV); 2216 2217 // Remember which value to use for the global initializer. 2218 if (unsigned InitID = Record[2]) 2219 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2220 2221 if (Record.size() > 11) { 2222 if (unsigned ComdatID = Record[11]) { 2223 assert(ComdatID <= ComdatList.size()); 2224 NewGV->setComdat(ComdatList[ComdatID - 1]); 2225 } 2226 } else if (hasImplicitComdat(RawLinkage)) { 2227 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2228 } 2229 break; 2230 } 2231 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2232 // alignment, section, visibility, gc, unnamed_addr, 2233 // prologuedata, dllstorageclass, comdat, prefixdata] 2234 case bitc::MODULE_CODE_FUNCTION: { 2235 if (Record.size() < 8) 2236 return Error("Invalid record"); 2237 Type *Ty = getTypeByID(Record[0]); 2238 if (!Ty) 2239 return Error("Invalid record"); 2240 if (!Ty->isPointerTy()) 2241 return Error("Invalid type for value"); 2242 FunctionType *FTy = 2243 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2244 if (!FTy) 2245 return Error("Invalid type for value"); 2246 2247 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2248 "", TheModule); 2249 2250 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2251 bool isProto = Record[2]; 2252 uint64_t RawLinkage = Record[3]; 2253 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2254 Func->setAttributes(getAttributes(Record[4])); 2255 2256 Func->setAlignment((1 << Record[5]) >> 1); 2257 if (Record[6]) { 2258 if (Record[6]-1 >= SectionTable.size()) 2259 return Error("Invalid ID"); 2260 Func->setSection(SectionTable[Record[6]-1]); 2261 } 2262 // Local linkage must have default visibility. 2263 if (!Func->hasLocalLinkage()) 2264 // FIXME: Change to an error if non-default in 4.0. 2265 Func->setVisibility(GetDecodedVisibility(Record[7])); 2266 if (Record.size() > 8 && Record[8]) { 2267 if (Record[8]-1 > GCTable.size()) 2268 return Error("Invalid ID"); 2269 Func->setGC(GCTable[Record[8]-1].c_str()); 2270 } 2271 bool UnnamedAddr = false; 2272 if (Record.size() > 9) 2273 UnnamedAddr = Record[9]; 2274 Func->setUnnamedAddr(UnnamedAddr); 2275 if (Record.size() > 10 && Record[10] != 0) 2276 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2277 2278 if (Record.size() > 11) 2279 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2280 else 2281 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2282 2283 if (Record.size() > 12) { 2284 if (unsigned ComdatID = Record[12]) { 2285 assert(ComdatID <= ComdatList.size()); 2286 Func->setComdat(ComdatList[ComdatID - 1]); 2287 } 2288 } else if (hasImplicitComdat(RawLinkage)) { 2289 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2290 } 2291 2292 if (Record.size() > 13 && Record[13] != 0) 2293 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2294 2295 ValueList.push_back(Func); 2296 2297 // If this is a function with a body, remember the prototype we are 2298 // creating now, so that we can match up the body with them later. 2299 if (!isProto) { 2300 Func->setIsMaterializable(true); 2301 FunctionsWithBodies.push_back(Func); 2302 if (LazyStreamer) 2303 DeferredFunctionInfo[Func] = 0; 2304 } 2305 break; 2306 } 2307 // ALIAS: [alias type, aliasee val#, linkage] 2308 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2309 case bitc::MODULE_CODE_ALIAS: { 2310 if (Record.size() < 3) 2311 return Error("Invalid record"); 2312 Type *Ty = getTypeByID(Record[0]); 2313 if (!Ty) 2314 return Error("Invalid record"); 2315 auto *PTy = dyn_cast<PointerType>(Ty); 2316 if (!PTy) 2317 return Error("Invalid type for value"); 2318 2319 auto *NewGA = 2320 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2321 getDecodedLinkage(Record[2]), "", TheModule); 2322 // Old bitcode files didn't have visibility field. 2323 // Local linkage must have default visibility. 2324 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2325 // FIXME: Change to an error if non-default in 4.0. 2326 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2327 if (Record.size() > 4) 2328 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2329 else 2330 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2331 if (Record.size() > 5) 2332 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2333 if (Record.size() > 6) 2334 NewGA->setUnnamedAddr(Record[6]); 2335 ValueList.push_back(NewGA); 2336 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2337 break; 2338 } 2339 /// MODULE_CODE_PURGEVALS: [numvals] 2340 case bitc::MODULE_CODE_PURGEVALS: 2341 // Trim down the value list to the specified size. 2342 if (Record.size() < 1 || Record[0] > ValueList.size()) 2343 return Error("Invalid record"); 2344 ValueList.shrinkTo(Record[0]); 2345 break; 2346 } 2347 Record.clear(); 2348 } 2349 } 2350 2351 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2352 TheModule = nullptr; 2353 2354 if (std::error_code EC = InitStream()) 2355 return EC; 2356 2357 // Sniff for the signature. 2358 if (Stream.Read(8) != 'B' || 2359 Stream.Read(8) != 'C' || 2360 Stream.Read(4) != 0x0 || 2361 Stream.Read(4) != 0xC || 2362 Stream.Read(4) != 0xE || 2363 Stream.Read(4) != 0xD) 2364 return Error("Invalid bitcode signature"); 2365 2366 // We expect a number of well-defined blocks, though we don't necessarily 2367 // need to understand them all. 2368 while (1) { 2369 if (Stream.AtEndOfStream()) 2370 return std::error_code(); 2371 2372 BitstreamEntry Entry = 2373 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2374 2375 switch (Entry.Kind) { 2376 case BitstreamEntry::Error: 2377 return Error("Malformed block"); 2378 case BitstreamEntry::EndBlock: 2379 return std::error_code(); 2380 2381 case BitstreamEntry::SubBlock: 2382 switch (Entry.ID) { 2383 case bitc::BLOCKINFO_BLOCK_ID: 2384 if (Stream.ReadBlockInfoBlock()) 2385 return Error("Malformed block"); 2386 break; 2387 case bitc::MODULE_BLOCK_ID: 2388 // Reject multiple MODULE_BLOCK's in a single bitstream. 2389 if (TheModule) 2390 return Error("Invalid multiple blocks"); 2391 TheModule = M; 2392 if (std::error_code EC = ParseModule(false)) 2393 return EC; 2394 if (LazyStreamer) 2395 return std::error_code(); 2396 break; 2397 default: 2398 if (Stream.SkipBlock()) 2399 return Error("Invalid record"); 2400 break; 2401 } 2402 continue; 2403 case BitstreamEntry::Record: 2404 // There should be no records in the top-level of blocks. 2405 2406 // The ranlib in Xcode 4 will align archive members by appending newlines 2407 // to the end of them. If this file size is a multiple of 4 but not 8, we 2408 // have to read and ignore these final 4 bytes :-( 2409 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2410 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2411 Stream.AtEndOfStream()) 2412 return std::error_code(); 2413 2414 return Error("Invalid record"); 2415 } 2416 } 2417 } 2418 2419 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2420 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2421 return Error("Invalid record"); 2422 2423 SmallVector<uint64_t, 64> Record; 2424 2425 std::string Triple; 2426 // Read all the records for this module. 2427 while (1) { 2428 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2429 2430 switch (Entry.Kind) { 2431 case BitstreamEntry::SubBlock: // Handled for us already. 2432 case BitstreamEntry::Error: 2433 return Error("Malformed block"); 2434 case BitstreamEntry::EndBlock: 2435 return Triple; 2436 case BitstreamEntry::Record: 2437 // The interesting case. 2438 break; 2439 } 2440 2441 // Read a record. 2442 switch (Stream.readRecord(Entry.ID, Record)) { 2443 default: break; // Default behavior, ignore unknown content. 2444 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2445 std::string S; 2446 if (ConvertToString(Record, 0, S)) 2447 return Error("Invalid record"); 2448 Triple = S; 2449 break; 2450 } 2451 } 2452 Record.clear(); 2453 } 2454 llvm_unreachable("Exit infinite loop"); 2455 } 2456 2457 ErrorOr<std::string> BitcodeReader::parseTriple() { 2458 if (std::error_code EC = InitStream()) 2459 return EC; 2460 2461 // Sniff for the signature. 2462 if (Stream.Read(8) != 'B' || 2463 Stream.Read(8) != 'C' || 2464 Stream.Read(4) != 0x0 || 2465 Stream.Read(4) != 0xC || 2466 Stream.Read(4) != 0xE || 2467 Stream.Read(4) != 0xD) 2468 return Error("Invalid bitcode signature"); 2469 2470 // We expect a number of well-defined blocks, though we don't necessarily 2471 // need to understand them all. 2472 while (1) { 2473 BitstreamEntry Entry = Stream.advance(); 2474 2475 switch (Entry.Kind) { 2476 case BitstreamEntry::Error: 2477 return Error("Malformed block"); 2478 case BitstreamEntry::EndBlock: 2479 return std::error_code(); 2480 2481 case BitstreamEntry::SubBlock: 2482 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2483 return parseModuleTriple(); 2484 2485 // Ignore other sub-blocks. 2486 if (Stream.SkipBlock()) 2487 return Error("Malformed block"); 2488 continue; 2489 2490 case BitstreamEntry::Record: 2491 Stream.skipRecord(Entry.ID); 2492 continue; 2493 } 2494 } 2495 } 2496 2497 /// ParseMetadataAttachment - Parse metadata attachments. 2498 std::error_code BitcodeReader::ParseMetadataAttachment() { 2499 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2500 return Error("Invalid record"); 2501 2502 SmallVector<uint64_t, 64> Record; 2503 while (1) { 2504 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2505 2506 switch (Entry.Kind) { 2507 case BitstreamEntry::SubBlock: // Handled for us already. 2508 case BitstreamEntry::Error: 2509 return Error("Malformed block"); 2510 case BitstreamEntry::EndBlock: 2511 return std::error_code(); 2512 case BitstreamEntry::Record: 2513 // The interesting case. 2514 break; 2515 } 2516 2517 // Read a metadata attachment record. 2518 Record.clear(); 2519 switch (Stream.readRecord(Entry.ID, Record)) { 2520 default: // Default behavior: ignore. 2521 break; 2522 case bitc::METADATA_ATTACHMENT: { 2523 unsigned RecordLength = Record.size(); 2524 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2525 return Error("Invalid record"); 2526 Instruction *Inst = InstructionList[Record[0]]; 2527 for (unsigned i = 1; i != RecordLength; i = i+2) { 2528 unsigned Kind = Record[i]; 2529 DenseMap<unsigned, unsigned>::iterator I = 2530 MDKindMap.find(Kind); 2531 if (I == MDKindMap.end()) 2532 return Error("Invalid ID"); 2533 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2534 if (isa<LocalAsMetadata>(Node)) 2535 // Drop the attachment. This used to be legal, but there's no 2536 // upgrade path. 2537 break; 2538 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2539 if (I->second == LLVMContext::MD_tbaa) 2540 InstsWithTBAATag.push_back(Inst); 2541 } 2542 break; 2543 } 2544 } 2545 } 2546 } 2547 2548 /// ParseFunctionBody - Lazily parse the specified function body block. 2549 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2550 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2551 return Error("Invalid record"); 2552 2553 InstructionList.clear(); 2554 unsigned ModuleValueListSize = ValueList.size(); 2555 unsigned ModuleMDValueListSize = MDValueList.size(); 2556 2557 // Add all the function arguments to the value table. 2558 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2559 ValueList.push_back(I); 2560 2561 unsigned NextValueNo = ValueList.size(); 2562 BasicBlock *CurBB = nullptr; 2563 unsigned CurBBNo = 0; 2564 2565 DebugLoc LastLoc; 2566 auto getLastInstruction = [&]() -> Instruction * { 2567 if (CurBB && !CurBB->empty()) 2568 return &CurBB->back(); 2569 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2570 !FunctionBBs[CurBBNo - 1]->empty()) 2571 return &FunctionBBs[CurBBNo - 1]->back(); 2572 return nullptr; 2573 }; 2574 2575 // Read all the records. 2576 SmallVector<uint64_t, 64> Record; 2577 while (1) { 2578 BitstreamEntry Entry = Stream.advance(); 2579 2580 switch (Entry.Kind) { 2581 case BitstreamEntry::Error: 2582 return Error("Malformed block"); 2583 case BitstreamEntry::EndBlock: 2584 goto OutOfRecordLoop; 2585 2586 case BitstreamEntry::SubBlock: 2587 switch (Entry.ID) { 2588 default: // Skip unknown content. 2589 if (Stream.SkipBlock()) 2590 return Error("Invalid record"); 2591 break; 2592 case bitc::CONSTANTS_BLOCK_ID: 2593 if (std::error_code EC = ParseConstants()) 2594 return EC; 2595 NextValueNo = ValueList.size(); 2596 break; 2597 case bitc::VALUE_SYMTAB_BLOCK_ID: 2598 if (std::error_code EC = ParseValueSymbolTable()) 2599 return EC; 2600 break; 2601 case bitc::METADATA_ATTACHMENT_ID: 2602 if (std::error_code EC = ParseMetadataAttachment()) 2603 return EC; 2604 break; 2605 case bitc::METADATA_BLOCK_ID: 2606 if (std::error_code EC = ParseMetadata()) 2607 return EC; 2608 break; 2609 case bitc::USELIST_BLOCK_ID: 2610 if (std::error_code EC = ParseUseLists()) 2611 return EC; 2612 break; 2613 } 2614 continue; 2615 2616 case BitstreamEntry::Record: 2617 // The interesting case. 2618 break; 2619 } 2620 2621 // Read a record. 2622 Record.clear(); 2623 Instruction *I = nullptr; 2624 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2625 switch (BitCode) { 2626 default: // Default behavior: reject 2627 return Error("Invalid value"); 2628 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2629 if (Record.size() < 1 || Record[0] == 0) 2630 return Error("Invalid record"); 2631 // Create all the basic blocks for the function. 2632 FunctionBBs.resize(Record[0]); 2633 2634 // See if anything took the address of blocks in this function. 2635 auto BBFRI = BasicBlockFwdRefs.find(F); 2636 if (BBFRI == BasicBlockFwdRefs.end()) { 2637 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2638 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2639 } else { 2640 auto &BBRefs = BBFRI->second; 2641 // Check for invalid basic block references. 2642 if (BBRefs.size() > FunctionBBs.size()) 2643 return Error("Invalid ID"); 2644 assert(!BBRefs.empty() && "Unexpected empty array"); 2645 assert(!BBRefs.front() && "Invalid reference to entry block"); 2646 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2647 ++I) 2648 if (I < RE && BBRefs[I]) { 2649 BBRefs[I]->insertInto(F); 2650 FunctionBBs[I] = BBRefs[I]; 2651 } else { 2652 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2653 } 2654 2655 // Erase from the table. 2656 BasicBlockFwdRefs.erase(BBFRI); 2657 } 2658 2659 CurBB = FunctionBBs[0]; 2660 continue; 2661 } 2662 2663 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2664 // This record indicates that the last instruction is at the same 2665 // location as the previous instruction with a location. 2666 I = getLastInstruction(); 2667 2668 if (!I) 2669 return Error("Invalid record"); 2670 I->setDebugLoc(LastLoc); 2671 I = nullptr; 2672 continue; 2673 2674 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2675 I = getLastInstruction(); 2676 if (!I || Record.size() < 4) 2677 return Error("Invalid record"); 2678 2679 unsigned Line = Record[0], Col = Record[1]; 2680 unsigned ScopeID = Record[2], IAID = Record[3]; 2681 2682 MDNode *Scope = nullptr, *IA = nullptr; 2683 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2684 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2685 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2686 I->setDebugLoc(LastLoc); 2687 I = nullptr; 2688 continue; 2689 } 2690 2691 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2692 unsigned OpNum = 0; 2693 Value *LHS, *RHS; 2694 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2695 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2696 OpNum+1 > Record.size()) 2697 return Error("Invalid record"); 2698 2699 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2700 if (Opc == -1) 2701 return Error("Invalid record"); 2702 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2703 InstructionList.push_back(I); 2704 if (OpNum < Record.size()) { 2705 if (Opc == Instruction::Add || 2706 Opc == Instruction::Sub || 2707 Opc == Instruction::Mul || 2708 Opc == Instruction::Shl) { 2709 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2710 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2711 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2712 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2713 } else if (Opc == Instruction::SDiv || 2714 Opc == Instruction::UDiv || 2715 Opc == Instruction::LShr || 2716 Opc == Instruction::AShr) { 2717 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2718 cast<BinaryOperator>(I)->setIsExact(true); 2719 } else if (isa<FPMathOperator>(I)) { 2720 FastMathFlags FMF; 2721 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2722 FMF.setUnsafeAlgebra(); 2723 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2724 FMF.setNoNaNs(); 2725 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2726 FMF.setNoInfs(); 2727 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2728 FMF.setNoSignedZeros(); 2729 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2730 FMF.setAllowReciprocal(); 2731 if (FMF.any()) 2732 I->setFastMathFlags(FMF); 2733 } 2734 2735 } 2736 break; 2737 } 2738 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2739 unsigned OpNum = 0; 2740 Value *Op; 2741 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2742 OpNum+2 != Record.size()) 2743 return Error("Invalid record"); 2744 2745 Type *ResTy = getTypeByID(Record[OpNum]); 2746 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2747 if (Opc == -1 || !ResTy) 2748 return Error("Invalid record"); 2749 Instruction *Temp = nullptr; 2750 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2751 if (Temp) { 2752 InstructionList.push_back(Temp); 2753 CurBB->getInstList().push_back(Temp); 2754 } 2755 } else { 2756 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2757 } 2758 InstructionList.push_back(I); 2759 break; 2760 } 2761 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2762 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2763 unsigned OpNum = 0; 2764 Value *BasePtr; 2765 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2766 return Error("Invalid record"); 2767 2768 SmallVector<Value*, 16> GEPIdx; 2769 while (OpNum != Record.size()) { 2770 Value *Op; 2771 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2772 return Error("Invalid record"); 2773 GEPIdx.push_back(Op); 2774 } 2775 2776 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2777 InstructionList.push_back(I); 2778 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2779 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2780 break; 2781 } 2782 2783 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2784 // EXTRACTVAL: [opty, opval, n x indices] 2785 unsigned OpNum = 0; 2786 Value *Agg; 2787 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2788 return Error("Invalid record"); 2789 2790 SmallVector<unsigned, 4> EXTRACTVALIdx; 2791 for (unsigned RecSize = Record.size(); 2792 OpNum != RecSize; ++OpNum) { 2793 uint64_t Index = Record[OpNum]; 2794 if ((unsigned)Index != Index) 2795 return Error("Invalid value"); 2796 EXTRACTVALIdx.push_back((unsigned)Index); 2797 } 2798 2799 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2800 InstructionList.push_back(I); 2801 break; 2802 } 2803 2804 case bitc::FUNC_CODE_INST_INSERTVAL: { 2805 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2806 unsigned OpNum = 0; 2807 Value *Agg; 2808 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2809 return Error("Invalid record"); 2810 Value *Val; 2811 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2812 return Error("Invalid record"); 2813 2814 SmallVector<unsigned, 4> INSERTVALIdx; 2815 for (unsigned RecSize = Record.size(); 2816 OpNum != RecSize; ++OpNum) { 2817 uint64_t Index = Record[OpNum]; 2818 if ((unsigned)Index != Index) 2819 return Error("Invalid value"); 2820 INSERTVALIdx.push_back((unsigned)Index); 2821 } 2822 2823 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2824 InstructionList.push_back(I); 2825 break; 2826 } 2827 2828 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2829 // obsolete form of select 2830 // handles select i1 ... in old bitcode 2831 unsigned OpNum = 0; 2832 Value *TrueVal, *FalseVal, *Cond; 2833 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2834 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2835 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2836 return Error("Invalid record"); 2837 2838 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2839 InstructionList.push_back(I); 2840 break; 2841 } 2842 2843 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2844 // new form of select 2845 // handles select i1 or select [N x i1] 2846 unsigned OpNum = 0; 2847 Value *TrueVal, *FalseVal, *Cond; 2848 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2849 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2850 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2851 return Error("Invalid record"); 2852 2853 // select condition can be either i1 or [N x i1] 2854 if (VectorType* vector_type = 2855 dyn_cast<VectorType>(Cond->getType())) { 2856 // expect <n x i1> 2857 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2858 return Error("Invalid type for value"); 2859 } else { 2860 // expect i1 2861 if (Cond->getType() != Type::getInt1Ty(Context)) 2862 return Error("Invalid type for value"); 2863 } 2864 2865 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2866 InstructionList.push_back(I); 2867 break; 2868 } 2869 2870 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2871 unsigned OpNum = 0; 2872 Value *Vec, *Idx; 2873 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2874 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2875 return Error("Invalid record"); 2876 I = ExtractElementInst::Create(Vec, Idx); 2877 InstructionList.push_back(I); 2878 break; 2879 } 2880 2881 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2882 unsigned OpNum = 0; 2883 Value *Vec, *Elt, *Idx; 2884 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2885 popValue(Record, OpNum, NextValueNo, 2886 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2887 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2888 return Error("Invalid record"); 2889 I = InsertElementInst::Create(Vec, Elt, Idx); 2890 InstructionList.push_back(I); 2891 break; 2892 } 2893 2894 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2895 unsigned OpNum = 0; 2896 Value *Vec1, *Vec2, *Mask; 2897 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2898 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2899 return Error("Invalid record"); 2900 2901 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2902 return Error("Invalid record"); 2903 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2904 InstructionList.push_back(I); 2905 break; 2906 } 2907 2908 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2909 // Old form of ICmp/FCmp returning bool 2910 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2911 // both legal on vectors but had different behaviour. 2912 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2913 // FCmp/ICmp returning bool or vector of bool 2914 2915 unsigned OpNum = 0; 2916 Value *LHS, *RHS; 2917 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2918 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2919 OpNum+1 != Record.size()) 2920 return Error("Invalid record"); 2921 2922 if (LHS->getType()->isFPOrFPVectorTy()) 2923 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2924 else 2925 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2926 InstructionList.push_back(I); 2927 break; 2928 } 2929 2930 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2931 { 2932 unsigned Size = Record.size(); 2933 if (Size == 0) { 2934 I = ReturnInst::Create(Context); 2935 InstructionList.push_back(I); 2936 break; 2937 } 2938 2939 unsigned OpNum = 0; 2940 Value *Op = nullptr; 2941 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2942 return Error("Invalid record"); 2943 if (OpNum != Record.size()) 2944 return Error("Invalid record"); 2945 2946 I = ReturnInst::Create(Context, Op); 2947 InstructionList.push_back(I); 2948 break; 2949 } 2950 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2951 if (Record.size() != 1 && Record.size() != 3) 2952 return Error("Invalid record"); 2953 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2954 if (!TrueDest) 2955 return Error("Invalid record"); 2956 2957 if (Record.size() == 1) { 2958 I = BranchInst::Create(TrueDest); 2959 InstructionList.push_back(I); 2960 } 2961 else { 2962 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2963 Value *Cond = getValue(Record, 2, NextValueNo, 2964 Type::getInt1Ty(Context)); 2965 if (!FalseDest || !Cond) 2966 return Error("Invalid record"); 2967 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2968 InstructionList.push_back(I); 2969 } 2970 break; 2971 } 2972 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2973 // Check magic 2974 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2975 // "New" SwitchInst format with case ranges. The changes to write this 2976 // format were reverted but we still recognize bitcode that uses it. 2977 // Hopefully someday we will have support for case ranges and can use 2978 // this format again. 2979 2980 Type *OpTy = getTypeByID(Record[1]); 2981 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2982 2983 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2984 BasicBlock *Default = getBasicBlock(Record[3]); 2985 if (!OpTy || !Cond || !Default) 2986 return Error("Invalid record"); 2987 2988 unsigned NumCases = Record[4]; 2989 2990 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2991 InstructionList.push_back(SI); 2992 2993 unsigned CurIdx = 5; 2994 for (unsigned i = 0; i != NumCases; ++i) { 2995 SmallVector<ConstantInt*, 1> CaseVals; 2996 unsigned NumItems = Record[CurIdx++]; 2997 for (unsigned ci = 0; ci != NumItems; ++ci) { 2998 bool isSingleNumber = Record[CurIdx++]; 2999 3000 APInt Low; 3001 unsigned ActiveWords = 1; 3002 if (ValueBitWidth > 64) 3003 ActiveWords = Record[CurIdx++]; 3004 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3005 ValueBitWidth); 3006 CurIdx += ActiveWords; 3007 3008 if (!isSingleNumber) { 3009 ActiveWords = 1; 3010 if (ValueBitWidth > 64) 3011 ActiveWords = Record[CurIdx++]; 3012 APInt High = 3013 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3014 ValueBitWidth); 3015 CurIdx += ActiveWords; 3016 3017 // FIXME: It is not clear whether values in the range should be 3018 // compared as signed or unsigned values. The partially 3019 // implemented changes that used this format in the past used 3020 // unsigned comparisons. 3021 for ( ; Low.ule(High); ++Low) 3022 CaseVals.push_back(ConstantInt::get(Context, Low)); 3023 } else 3024 CaseVals.push_back(ConstantInt::get(Context, Low)); 3025 } 3026 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3027 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3028 cve = CaseVals.end(); cvi != cve; ++cvi) 3029 SI->addCase(*cvi, DestBB); 3030 } 3031 I = SI; 3032 break; 3033 } 3034 3035 // Old SwitchInst format without case ranges. 3036 3037 if (Record.size() < 3 || (Record.size() & 1) == 0) 3038 return Error("Invalid record"); 3039 Type *OpTy = getTypeByID(Record[0]); 3040 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3041 BasicBlock *Default = getBasicBlock(Record[2]); 3042 if (!OpTy || !Cond || !Default) 3043 return Error("Invalid record"); 3044 unsigned NumCases = (Record.size()-3)/2; 3045 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3046 InstructionList.push_back(SI); 3047 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3048 ConstantInt *CaseVal = 3049 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3050 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3051 if (!CaseVal || !DestBB) { 3052 delete SI; 3053 return Error("Invalid record"); 3054 } 3055 SI->addCase(CaseVal, DestBB); 3056 } 3057 I = SI; 3058 break; 3059 } 3060 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3061 if (Record.size() < 2) 3062 return Error("Invalid record"); 3063 Type *OpTy = getTypeByID(Record[0]); 3064 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3065 if (!OpTy || !Address) 3066 return Error("Invalid record"); 3067 unsigned NumDests = Record.size()-2; 3068 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3069 InstructionList.push_back(IBI); 3070 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3071 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3072 IBI->addDestination(DestBB); 3073 } else { 3074 delete IBI; 3075 return Error("Invalid record"); 3076 } 3077 } 3078 I = IBI; 3079 break; 3080 } 3081 3082 case bitc::FUNC_CODE_INST_INVOKE: { 3083 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3084 if (Record.size() < 4) 3085 return Error("Invalid record"); 3086 AttributeSet PAL = getAttributes(Record[0]); 3087 unsigned CCInfo = Record[1]; 3088 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3089 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3090 3091 unsigned OpNum = 4; 3092 Value *Callee; 3093 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3094 return Error("Invalid record"); 3095 3096 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3097 FunctionType *FTy = !CalleeTy ? nullptr : 3098 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3099 3100 // Check that the right number of fixed parameters are here. 3101 if (!FTy || !NormalBB || !UnwindBB || 3102 Record.size() < OpNum+FTy->getNumParams()) 3103 return Error("Invalid record"); 3104 3105 SmallVector<Value*, 16> Ops; 3106 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3107 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3108 FTy->getParamType(i))); 3109 if (!Ops.back()) 3110 return Error("Invalid record"); 3111 } 3112 3113 if (!FTy->isVarArg()) { 3114 if (Record.size() != OpNum) 3115 return Error("Invalid record"); 3116 } else { 3117 // Read type/value pairs for varargs params. 3118 while (OpNum != Record.size()) { 3119 Value *Op; 3120 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3121 return Error("Invalid record"); 3122 Ops.push_back(Op); 3123 } 3124 } 3125 3126 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3127 InstructionList.push_back(I); 3128 cast<InvokeInst>(I)->setCallingConv( 3129 static_cast<CallingConv::ID>(CCInfo)); 3130 cast<InvokeInst>(I)->setAttributes(PAL); 3131 break; 3132 } 3133 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3134 unsigned Idx = 0; 3135 Value *Val = nullptr; 3136 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3137 return Error("Invalid record"); 3138 I = ResumeInst::Create(Val); 3139 InstructionList.push_back(I); 3140 break; 3141 } 3142 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3143 I = new UnreachableInst(Context); 3144 InstructionList.push_back(I); 3145 break; 3146 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3147 if (Record.size() < 1 || ((Record.size()-1)&1)) 3148 return Error("Invalid record"); 3149 Type *Ty = getTypeByID(Record[0]); 3150 if (!Ty) 3151 return Error("Invalid record"); 3152 3153 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3154 InstructionList.push_back(PN); 3155 3156 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3157 Value *V; 3158 // With the new function encoding, it is possible that operands have 3159 // negative IDs (for forward references). Use a signed VBR 3160 // representation to keep the encoding small. 3161 if (UseRelativeIDs) 3162 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3163 else 3164 V = getValue(Record, 1+i, NextValueNo, Ty); 3165 BasicBlock *BB = getBasicBlock(Record[2+i]); 3166 if (!V || !BB) 3167 return Error("Invalid record"); 3168 PN->addIncoming(V, BB); 3169 } 3170 I = PN; 3171 break; 3172 } 3173 3174 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3175 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3176 unsigned Idx = 0; 3177 if (Record.size() < 4) 3178 return Error("Invalid record"); 3179 Type *Ty = getTypeByID(Record[Idx++]); 3180 if (!Ty) 3181 return Error("Invalid record"); 3182 Value *PersFn = nullptr; 3183 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3184 return Error("Invalid record"); 3185 3186 bool IsCleanup = !!Record[Idx++]; 3187 unsigned NumClauses = Record[Idx++]; 3188 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3189 LP->setCleanup(IsCleanup); 3190 for (unsigned J = 0; J != NumClauses; ++J) { 3191 LandingPadInst::ClauseType CT = 3192 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3193 Value *Val; 3194 3195 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3196 delete LP; 3197 return Error("Invalid record"); 3198 } 3199 3200 assert((CT != LandingPadInst::Catch || 3201 !isa<ArrayType>(Val->getType())) && 3202 "Catch clause has a invalid type!"); 3203 assert((CT != LandingPadInst::Filter || 3204 isa<ArrayType>(Val->getType())) && 3205 "Filter clause has invalid type!"); 3206 LP->addClause(cast<Constant>(Val)); 3207 } 3208 3209 I = LP; 3210 InstructionList.push_back(I); 3211 break; 3212 } 3213 3214 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3215 if (Record.size() != 4) 3216 return Error("Invalid record"); 3217 PointerType *Ty = 3218 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3219 Type *OpTy = getTypeByID(Record[1]); 3220 Value *Size = getFnValueByID(Record[2], OpTy); 3221 unsigned AlignRecord = Record[3]; 3222 bool InAlloca = AlignRecord & (1 << 5); 3223 unsigned Align = AlignRecord & ((1 << 5) - 1); 3224 if (!Ty || !Size) 3225 return Error("Invalid record"); 3226 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3227 AI->setUsedWithInAlloca(InAlloca); 3228 I = AI; 3229 InstructionList.push_back(I); 3230 break; 3231 } 3232 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3233 unsigned OpNum = 0; 3234 Value *Op; 3235 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3236 OpNum+2 != Record.size()) 3237 return Error("Invalid record"); 3238 3239 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3240 InstructionList.push_back(I); 3241 break; 3242 } 3243 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3244 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3245 unsigned OpNum = 0; 3246 Value *Op; 3247 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3248 OpNum+4 != Record.size()) 3249 return Error("Invalid record"); 3250 3251 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3252 if (Ordering == NotAtomic || Ordering == Release || 3253 Ordering == AcquireRelease) 3254 return Error("Invalid record"); 3255 if (Ordering != NotAtomic && Record[OpNum] == 0) 3256 return Error("Invalid record"); 3257 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3258 3259 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3260 Ordering, SynchScope); 3261 InstructionList.push_back(I); 3262 break; 3263 } 3264 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3265 unsigned OpNum = 0; 3266 Value *Val, *Ptr; 3267 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3268 popValue(Record, OpNum, NextValueNo, 3269 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3270 OpNum+2 != Record.size()) 3271 return Error("Invalid record"); 3272 3273 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3274 InstructionList.push_back(I); 3275 break; 3276 } 3277 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3278 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3279 unsigned OpNum = 0; 3280 Value *Val, *Ptr; 3281 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3282 popValue(Record, OpNum, NextValueNo, 3283 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3284 OpNum+4 != Record.size()) 3285 return Error("Invalid record"); 3286 3287 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3288 if (Ordering == NotAtomic || Ordering == Acquire || 3289 Ordering == AcquireRelease) 3290 return Error("Invalid record"); 3291 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3292 if (Ordering != NotAtomic && Record[OpNum] == 0) 3293 return Error("Invalid record"); 3294 3295 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3296 Ordering, SynchScope); 3297 InstructionList.push_back(I); 3298 break; 3299 } 3300 case bitc::FUNC_CODE_INST_CMPXCHG: { 3301 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3302 // failureordering?, isweak?] 3303 unsigned OpNum = 0; 3304 Value *Ptr, *Cmp, *New; 3305 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3306 popValue(Record, OpNum, NextValueNo, 3307 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3308 popValue(Record, OpNum, NextValueNo, 3309 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3310 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3311 return Error("Invalid record"); 3312 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3313 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3314 return Error("Invalid record"); 3315 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3316 3317 AtomicOrdering FailureOrdering; 3318 if (Record.size() < 7) 3319 FailureOrdering = 3320 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3321 else 3322 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3323 3324 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3325 SynchScope); 3326 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3327 3328 if (Record.size() < 8) { 3329 // Before weak cmpxchgs existed, the instruction simply returned the 3330 // value loaded from memory, so bitcode files from that era will be 3331 // expecting the first component of a modern cmpxchg. 3332 CurBB->getInstList().push_back(I); 3333 I = ExtractValueInst::Create(I, 0); 3334 } else { 3335 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3336 } 3337 3338 InstructionList.push_back(I); 3339 break; 3340 } 3341 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3342 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3343 unsigned OpNum = 0; 3344 Value *Ptr, *Val; 3345 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3346 popValue(Record, OpNum, NextValueNo, 3347 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3348 OpNum+4 != Record.size()) 3349 return Error("Invalid record"); 3350 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3351 if (Operation < AtomicRMWInst::FIRST_BINOP || 3352 Operation > AtomicRMWInst::LAST_BINOP) 3353 return Error("Invalid record"); 3354 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3355 if (Ordering == NotAtomic || Ordering == Unordered) 3356 return Error("Invalid record"); 3357 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3358 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3359 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3360 InstructionList.push_back(I); 3361 break; 3362 } 3363 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3364 if (2 != Record.size()) 3365 return Error("Invalid record"); 3366 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3367 if (Ordering == NotAtomic || Ordering == Unordered || 3368 Ordering == Monotonic) 3369 return Error("Invalid record"); 3370 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3371 I = new FenceInst(Context, Ordering, SynchScope); 3372 InstructionList.push_back(I); 3373 break; 3374 } 3375 case bitc::FUNC_CODE_INST_CALL: { 3376 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3377 if (Record.size() < 3) 3378 return Error("Invalid record"); 3379 3380 AttributeSet PAL = getAttributes(Record[0]); 3381 unsigned CCInfo = Record[1]; 3382 3383 unsigned OpNum = 2; 3384 Value *Callee; 3385 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3386 return Error("Invalid record"); 3387 3388 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3389 FunctionType *FTy = nullptr; 3390 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3391 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3392 return Error("Invalid record"); 3393 3394 SmallVector<Value*, 16> Args; 3395 // Read the fixed params. 3396 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3397 if (FTy->getParamType(i)->isLabelTy()) 3398 Args.push_back(getBasicBlock(Record[OpNum])); 3399 else 3400 Args.push_back(getValue(Record, OpNum, NextValueNo, 3401 FTy->getParamType(i))); 3402 if (!Args.back()) 3403 return Error("Invalid record"); 3404 } 3405 3406 // Read type/value pairs for varargs params. 3407 if (!FTy->isVarArg()) { 3408 if (OpNum != Record.size()) 3409 return Error("Invalid record"); 3410 } else { 3411 while (OpNum != Record.size()) { 3412 Value *Op; 3413 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3414 return Error("Invalid record"); 3415 Args.push_back(Op); 3416 } 3417 } 3418 3419 I = CallInst::Create(Callee, Args); 3420 InstructionList.push_back(I); 3421 cast<CallInst>(I)->setCallingConv( 3422 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3423 CallInst::TailCallKind TCK = CallInst::TCK_None; 3424 if (CCInfo & 1) 3425 TCK = CallInst::TCK_Tail; 3426 if (CCInfo & (1 << 14)) 3427 TCK = CallInst::TCK_MustTail; 3428 cast<CallInst>(I)->setTailCallKind(TCK); 3429 cast<CallInst>(I)->setAttributes(PAL); 3430 break; 3431 } 3432 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3433 if (Record.size() < 3) 3434 return Error("Invalid record"); 3435 Type *OpTy = getTypeByID(Record[0]); 3436 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3437 Type *ResTy = getTypeByID(Record[2]); 3438 if (!OpTy || !Op || !ResTy) 3439 return Error("Invalid record"); 3440 I = new VAArgInst(Op, ResTy); 3441 InstructionList.push_back(I); 3442 break; 3443 } 3444 } 3445 3446 // Add instruction to end of current BB. If there is no current BB, reject 3447 // this file. 3448 if (!CurBB) { 3449 delete I; 3450 return Error("Invalid instruction with no BB"); 3451 } 3452 CurBB->getInstList().push_back(I); 3453 3454 // If this was a terminator instruction, move to the next block. 3455 if (isa<TerminatorInst>(I)) { 3456 ++CurBBNo; 3457 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3458 } 3459 3460 // Non-void values get registered in the value table for future use. 3461 if (I && !I->getType()->isVoidTy()) 3462 ValueList.AssignValue(I, NextValueNo++); 3463 } 3464 3465 OutOfRecordLoop: 3466 3467 // Check the function list for unresolved values. 3468 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3469 if (!A->getParent()) { 3470 // We found at least one unresolved value. Nuke them all to avoid leaks. 3471 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3472 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3473 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3474 delete A; 3475 } 3476 } 3477 return Error("Never resolved value found in function"); 3478 } 3479 } 3480 3481 // FIXME: Check for unresolved forward-declared metadata references 3482 // and clean up leaks. 3483 3484 // Trim the value list down to the size it was before we parsed this function. 3485 ValueList.shrinkTo(ModuleValueListSize); 3486 MDValueList.shrinkTo(ModuleMDValueListSize); 3487 std::vector<BasicBlock*>().swap(FunctionBBs); 3488 return std::error_code(); 3489 } 3490 3491 /// Find the function body in the bitcode stream 3492 std::error_code BitcodeReader::FindFunctionInStream( 3493 Function *F, 3494 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3495 while (DeferredFunctionInfoIterator->second == 0) { 3496 if (Stream.AtEndOfStream()) 3497 return Error("Could not find function in stream"); 3498 // ParseModule will parse the next body in the stream and set its 3499 // position in the DeferredFunctionInfo map. 3500 if (std::error_code EC = ParseModule(true)) 3501 return EC; 3502 } 3503 return std::error_code(); 3504 } 3505 3506 //===----------------------------------------------------------------------===// 3507 // GVMaterializer implementation 3508 //===----------------------------------------------------------------------===// 3509 3510 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3511 3512 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3513 Function *F = dyn_cast<Function>(GV); 3514 // If it's not a function or is already material, ignore the request. 3515 if (!F || !F->isMaterializable()) 3516 return std::error_code(); 3517 3518 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3519 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3520 // If its position is recorded as 0, its body is somewhere in the stream 3521 // but we haven't seen it yet. 3522 if (DFII->second == 0 && LazyStreamer) 3523 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3524 return EC; 3525 3526 // Move the bit stream to the saved position of the deferred function body. 3527 Stream.JumpToBit(DFII->second); 3528 3529 if (std::error_code EC = ParseFunctionBody(F)) 3530 return EC; 3531 F->setIsMaterializable(false); 3532 3533 // Upgrade any old intrinsic calls in the function. 3534 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3535 E = UpgradedIntrinsics.end(); I != E; ++I) { 3536 if (I->first != I->second) { 3537 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3538 UI != UE;) { 3539 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3540 UpgradeIntrinsicCall(CI, I->second); 3541 } 3542 } 3543 } 3544 3545 // Bring in any functions that this function forward-referenced via 3546 // blockaddresses. 3547 return materializeForwardReferencedFunctions(); 3548 } 3549 3550 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3551 const Function *F = dyn_cast<Function>(GV); 3552 if (!F || F->isDeclaration()) 3553 return false; 3554 3555 // Dematerializing F would leave dangling references that wouldn't be 3556 // reconnected on re-materialization. 3557 if (BlockAddressesTaken.count(F)) 3558 return false; 3559 3560 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3561 } 3562 3563 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3564 Function *F = dyn_cast<Function>(GV); 3565 // If this function isn't dematerializable, this is a noop. 3566 if (!F || !isDematerializable(F)) 3567 return; 3568 3569 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3570 3571 // Just forget the function body, we can remat it later. 3572 F->dropAllReferences(); 3573 F->setIsMaterializable(true); 3574 } 3575 3576 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3577 assert(M == TheModule && 3578 "Can only Materialize the Module this BitcodeReader is attached to."); 3579 3580 // Promise to materialize all forward references. 3581 WillMaterializeAllForwardRefs = true; 3582 3583 // Iterate over the module, deserializing any functions that are still on 3584 // disk. 3585 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3586 F != E; ++F) { 3587 if (std::error_code EC = materialize(F)) 3588 return EC; 3589 } 3590 // At this point, if there are any function bodies, the current bit is 3591 // pointing to the END_BLOCK record after them. Now make sure the rest 3592 // of the bits in the module have been read. 3593 if (NextUnreadBit) 3594 ParseModule(true); 3595 3596 // Check that all block address forward references got resolved (as we 3597 // promised above). 3598 if (!BasicBlockFwdRefs.empty()) 3599 return Error("Never resolved function from blockaddress"); 3600 3601 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3602 // delete the old functions to clean up. We can't do this unless the entire 3603 // module is materialized because there could always be another function body 3604 // with calls to the old function. 3605 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3606 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3607 if (I->first != I->second) { 3608 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3609 UI != UE;) { 3610 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3611 UpgradeIntrinsicCall(CI, I->second); 3612 } 3613 if (!I->first->use_empty()) 3614 I->first->replaceAllUsesWith(I->second); 3615 I->first->eraseFromParent(); 3616 } 3617 } 3618 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3619 3620 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3621 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3622 3623 UpgradeDebugInfo(*M); 3624 return std::error_code(); 3625 } 3626 3627 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3628 return IdentifiedStructTypes; 3629 } 3630 3631 std::error_code BitcodeReader::InitStream() { 3632 if (LazyStreamer) 3633 return InitLazyStream(); 3634 return InitStreamFromBuffer(); 3635 } 3636 3637 std::error_code BitcodeReader::InitStreamFromBuffer() { 3638 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3639 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3640 3641 if (Buffer->getBufferSize() & 3) 3642 return Error("Invalid bitcode signature"); 3643 3644 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3645 // The magic number is 0x0B17C0DE stored in little endian. 3646 if (isBitcodeWrapper(BufPtr, BufEnd)) 3647 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3648 return Error("Invalid bitcode wrapper header"); 3649 3650 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3651 Stream.init(&*StreamFile); 3652 3653 return std::error_code(); 3654 } 3655 3656 std::error_code BitcodeReader::InitLazyStream() { 3657 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3658 // see it. 3659 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3660 StreamingMemoryObject &Bytes = *OwnedBytes; 3661 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3662 Stream.init(&*StreamFile); 3663 3664 unsigned char buf[16]; 3665 if (Bytes.readBytes(buf, 16, 0) != 16) 3666 return Error("Invalid bitcode signature"); 3667 3668 if (!isBitcode(buf, buf + 16)) 3669 return Error("Invalid bitcode signature"); 3670 3671 if (isBitcodeWrapper(buf, buf + 4)) { 3672 const unsigned char *bitcodeStart = buf; 3673 const unsigned char *bitcodeEnd = buf + 16; 3674 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3675 Bytes.dropLeadingBytes(bitcodeStart - buf); 3676 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3677 } 3678 return std::error_code(); 3679 } 3680 3681 namespace { 3682 class BitcodeErrorCategoryType : public std::error_category { 3683 const char *name() const LLVM_NOEXCEPT override { 3684 return "llvm.bitcode"; 3685 } 3686 std::string message(int IE) const override { 3687 BitcodeError E = static_cast<BitcodeError>(IE); 3688 switch (E) { 3689 case BitcodeError::InvalidBitcodeSignature: 3690 return "Invalid bitcode signature"; 3691 case BitcodeError::CorruptedBitcode: 3692 return "Corrupted bitcode"; 3693 } 3694 llvm_unreachable("Unknown error type!"); 3695 } 3696 }; 3697 } 3698 3699 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3700 3701 const std::error_category &llvm::BitcodeErrorCategory() { 3702 return *ErrorCategory; 3703 } 3704 3705 //===----------------------------------------------------------------------===// 3706 // External interface 3707 //===----------------------------------------------------------------------===// 3708 3709 /// \brief Get a lazy one-at-time loading module from bitcode. 3710 /// 3711 /// This isn't always used in a lazy context. In particular, it's also used by 3712 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3713 /// in forward-referenced functions from block address references. 3714 /// 3715 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3716 /// materialize everything -- in particular, if this isn't truly lazy. 3717 static ErrorOr<Module *> 3718 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3719 LLVMContext &Context, bool WillMaterializeAll, 3720 DiagnosticHandlerFunction DiagnosticHandler) { 3721 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3722 BitcodeReader *R = 3723 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3724 M->setMaterializer(R); 3725 3726 auto cleanupOnError = [&](std::error_code EC) { 3727 R->releaseBuffer(); // Never take ownership on error. 3728 delete M; // Also deletes R. 3729 return EC; 3730 }; 3731 3732 if (std::error_code EC = R->ParseBitcodeInto(M)) 3733 return cleanupOnError(EC); 3734 3735 if (!WillMaterializeAll) 3736 // Resolve forward references from blockaddresses. 3737 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3738 return cleanupOnError(EC); 3739 3740 Buffer.release(); // The BitcodeReader owns it now. 3741 return M; 3742 } 3743 3744 ErrorOr<Module *> 3745 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3746 LLVMContext &Context, 3747 DiagnosticHandlerFunction DiagnosticHandler) { 3748 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3749 DiagnosticHandler); 3750 } 3751 3752 ErrorOr<std::unique_ptr<Module>> 3753 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3754 LLVMContext &Context, 3755 DiagnosticHandlerFunction DiagnosticHandler) { 3756 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3757 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3758 M->setMaterializer(R); 3759 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3760 return EC; 3761 return std::move(M); 3762 } 3763 3764 ErrorOr<Module *> 3765 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3766 DiagnosticHandlerFunction DiagnosticHandler) { 3767 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3768 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3769 std::move(Buf), Context, true, DiagnosticHandler); 3770 if (!ModuleOrErr) 3771 return ModuleOrErr; 3772 Module *M = ModuleOrErr.get(); 3773 // Read in the entire module, and destroy the BitcodeReader. 3774 if (std::error_code EC = M->materializeAllPermanently()) { 3775 delete M; 3776 return EC; 3777 } 3778 3779 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3780 // written. We must defer until the Module has been fully materialized. 3781 3782 return M; 3783 } 3784 3785 std::string 3786 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3787 DiagnosticHandlerFunction DiagnosticHandler) { 3788 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3789 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3790 DiagnosticHandler); 3791 ErrorOr<std::string> Triple = R->parseTriple(); 3792 if (Triple.getError()) 3793 return ""; 3794 return Triple.get(); 3795 } 3796