1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Error E = Stream.advance().moveInto(Entry)) 184 return std::move(E); 185 186 switch (Entry.Kind) { 187 default: 188 case BitstreamEntry::Error: 189 return error("Malformed block"); 190 case BitstreamEntry::EndBlock: 191 return ProducerIdentification; 192 case BitstreamEntry::Record: 193 // The interesting case. 194 break; 195 } 196 197 // Read a record. 198 Record.clear(); 199 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 200 if (!MaybeBitCode) 201 return MaybeBitCode.takeError(); 202 switch (MaybeBitCode.get()) { 203 default: // Default behavior: reject 204 return error("Invalid value"); 205 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 206 convertToString(Record, 0, ProducerIdentification); 207 break; 208 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 209 unsigned epoch = (unsigned)Record[0]; 210 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 211 return error( 212 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 213 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 214 } 215 } 216 } 217 } 218 } 219 220 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 221 // We expect a number of well-defined blocks, though we don't necessarily 222 // need to understand them all. 223 while (true) { 224 if (Stream.AtEndOfStream()) 225 return ""; 226 227 BitstreamEntry Entry; 228 if (Error E = Stream.advance().moveInto(Entry)) 229 return std::move(E); 230 231 switch (Entry.Kind) { 232 case BitstreamEntry::EndBlock: 233 case BitstreamEntry::Error: 234 return error("Malformed block"); 235 236 case BitstreamEntry::SubBlock: 237 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 238 return readIdentificationBlock(Stream); 239 240 // Ignore other sub-blocks. 241 if (Error Err = Stream.SkipBlock()) 242 return std::move(Err); 243 continue; 244 case BitstreamEntry::Record: 245 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 246 return std::move(E); 247 continue; 248 } 249 } 250 } 251 252 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 253 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 254 return std::move(Err); 255 256 SmallVector<uint64_t, 64> Record; 257 // Read all the records for this module. 258 259 while (true) { 260 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 261 if (!MaybeEntry) 262 return MaybeEntry.takeError(); 263 BitstreamEntry Entry = MaybeEntry.get(); 264 265 switch (Entry.Kind) { 266 case BitstreamEntry::SubBlock: // Handled for us already. 267 case BitstreamEntry::Error: 268 return error("Malformed block"); 269 case BitstreamEntry::EndBlock: 270 return false; 271 case BitstreamEntry::Record: 272 // The interesting case. 273 break; 274 } 275 276 // Read a record. 277 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 278 if (!MaybeRecord) 279 return MaybeRecord.takeError(); 280 switch (MaybeRecord.get()) { 281 default: 282 break; // Default behavior, ignore unknown content. 283 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 284 std::string S; 285 if (convertToString(Record, 0, S)) 286 return error("Invalid section name record"); 287 // Check for the i386 and other (x86_64, ARM) conventions 288 if (S.find("__DATA,__objc_catlist") != std::string::npos || 289 S.find("__OBJC,__category") != std::string::npos) 290 return true; 291 break; 292 } 293 } 294 Record.clear(); 295 } 296 llvm_unreachable("Exit infinite loop"); 297 } 298 299 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 300 // We expect a number of well-defined blocks, though we don't necessarily 301 // need to understand them all. 302 while (true) { 303 BitstreamEntry Entry; 304 if (Error E = Stream.advance().moveInto(Entry)) 305 return std::move(E); 306 307 switch (Entry.Kind) { 308 case BitstreamEntry::Error: 309 return error("Malformed block"); 310 case BitstreamEntry::EndBlock: 311 return false; 312 313 case BitstreamEntry::SubBlock: 314 if (Entry.ID == bitc::MODULE_BLOCK_ID) 315 return hasObjCCategoryInModule(Stream); 316 317 // Ignore other sub-blocks. 318 if (Error Err = Stream.SkipBlock()) 319 return std::move(Err); 320 continue; 321 322 case BitstreamEntry::Record: 323 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 324 return std::move(E); 325 continue; 326 } 327 } 328 } 329 330 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 331 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 332 return std::move(Err); 333 334 SmallVector<uint64_t, 64> Record; 335 336 std::string Triple; 337 338 // Read all the records for this module. 339 while (true) { 340 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 341 if (!MaybeEntry) 342 return MaybeEntry.takeError(); 343 BitstreamEntry Entry = MaybeEntry.get(); 344 345 switch (Entry.Kind) { 346 case BitstreamEntry::SubBlock: // Handled for us already. 347 case BitstreamEntry::Error: 348 return error("Malformed block"); 349 case BitstreamEntry::EndBlock: 350 return Triple; 351 case BitstreamEntry::Record: 352 // The interesting case. 353 break; 354 } 355 356 // Read a record. 357 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 358 if (!MaybeRecord) 359 return MaybeRecord.takeError(); 360 switch (MaybeRecord.get()) { 361 default: break; // Default behavior, ignore unknown content. 362 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 363 std::string S; 364 if (convertToString(Record, 0, S)) 365 return error("Invalid triple record"); 366 Triple = S; 367 break; 368 } 369 } 370 Record.clear(); 371 } 372 llvm_unreachable("Exit infinite loop"); 373 } 374 375 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 376 // We expect a number of well-defined blocks, though we don't necessarily 377 // need to understand them all. 378 while (true) { 379 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 380 if (!MaybeEntry) 381 return MaybeEntry.takeError(); 382 BitstreamEntry Entry = MaybeEntry.get(); 383 384 switch (Entry.Kind) { 385 case BitstreamEntry::Error: 386 return error("Malformed block"); 387 case BitstreamEntry::EndBlock: 388 return ""; 389 390 case BitstreamEntry::SubBlock: 391 if (Entry.ID == bitc::MODULE_BLOCK_ID) 392 return readModuleTriple(Stream); 393 394 // Ignore other sub-blocks. 395 if (Error Err = Stream.SkipBlock()) 396 return std::move(Err); 397 continue; 398 399 case BitstreamEntry::Record: 400 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 401 continue; 402 else 403 return Skipped.takeError(); 404 } 405 } 406 } 407 408 namespace { 409 410 class BitcodeReaderBase { 411 protected: 412 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 413 : Stream(std::move(Stream)), Strtab(Strtab) { 414 this->Stream.setBlockInfo(&BlockInfo); 415 } 416 417 BitstreamBlockInfo BlockInfo; 418 BitstreamCursor Stream; 419 StringRef Strtab; 420 421 /// In version 2 of the bitcode we store names of global values and comdats in 422 /// a string table rather than in the VST. 423 bool UseStrtab = false; 424 425 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 426 427 /// If this module uses a string table, pop the reference to the string table 428 /// and return the referenced string and the rest of the record. Otherwise 429 /// just return the record itself. 430 std::pair<StringRef, ArrayRef<uint64_t>> 431 readNameFromStrtab(ArrayRef<uint64_t> Record); 432 433 Error readBlockInfo(); 434 435 // Contains an arbitrary and optional string identifying the bitcode producer 436 std::string ProducerIdentification; 437 438 Error error(const Twine &Message); 439 }; 440 441 } // end anonymous namespace 442 443 Error BitcodeReaderBase::error(const Twine &Message) { 444 std::string FullMsg = Message.str(); 445 if (!ProducerIdentification.empty()) 446 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 447 LLVM_VERSION_STRING "')"; 448 return ::error(FullMsg); 449 } 450 451 Expected<unsigned> 452 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 453 if (Record.empty()) 454 return error("Invalid version record"); 455 unsigned ModuleVersion = Record[0]; 456 if (ModuleVersion > 2) 457 return error("Invalid value"); 458 UseStrtab = ModuleVersion >= 2; 459 return ModuleVersion; 460 } 461 462 std::pair<StringRef, ArrayRef<uint64_t>> 463 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 464 if (!UseStrtab) 465 return {"", Record}; 466 // Invalid reference. Let the caller complain about the record being empty. 467 if (Record[0] + Record[1] > Strtab.size()) 468 return {"", {}}; 469 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 470 } 471 472 namespace { 473 474 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 475 LLVMContext &Context; 476 Module *TheModule = nullptr; 477 // Next offset to start scanning for lazy parsing of function bodies. 478 uint64_t NextUnreadBit = 0; 479 // Last function offset found in the VST. 480 uint64_t LastFunctionBlockBit = 0; 481 bool SeenValueSymbolTable = false; 482 uint64_t VSTOffset = 0; 483 484 std::vector<std::string> SectionTable; 485 std::vector<std::string> GCTable; 486 487 std::vector<Type *> TypeList; 488 /// Track type IDs of contained types. Order is the same as the contained 489 /// types of a Type*. This is used during upgrades of typed pointer IR in 490 /// opaque pointer mode. 491 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 492 /// In some cases, we need to create a type ID for a type that was not 493 /// explicitly encoded in the bitcode, or we don't know about at the current 494 /// point. For example, a global may explicitly encode the value type ID, but 495 /// not have a type ID for the pointer to value type, for which we create a 496 /// virtual type ID instead. This map stores the new type ID that was created 497 /// for the given pair of Type and contained type ID. 498 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 499 DenseMap<Function *, unsigned> FunctionTypeIDs; 500 BitcodeReaderValueList ValueList; 501 Optional<MetadataLoader> MDLoader; 502 std::vector<Comdat *> ComdatList; 503 DenseSet<GlobalObject *> ImplicitComdatObjects; 504 SmallVector<Instruction *, 64> InstructionList; 505 506 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 507 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 508 509 struct FunctionOperandInfo { 510 Function *F; 511 unsigned PersonalityFn; 512 unsigned Prefix; 513 unsigned Prologue; 514 }; 515 std::vector<FunctionOperandInfo> FunctionOperands; 516 517 /// The set of attributes by index. Index zero in the file is for null, and 518 /// is thus not represented here. As such all indices are off by one. 519 std::vector<AttributeList> MAttributes; 520 521 /// The set of attribute groups. 522 std::map<unsigned, AttributeList> MAttributeGroups; 523 524 /// While parsing a function body, this is a list of the basic blocks for the 525 /// function. 526 std::vector<BasicBlock*> FunctionBBs; 527 528 // When reading the module header, this list is populated with functions that 529 // have bodies later in the file. 530 std::vector<Function*> FunctionsWithBodies; 531 532 // When intrinsic functions are encountered which require upgrading they are 533 // stored here with their replacement function. 534 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 535 UpdatedIntrinsicMap UpgradedIntrinsics; 536 // Intrinsics which were remangled because of types rename 537 UpdatedIntrinsicMap RemangledIntrinsics; 538 539 // Several operations happen after the module header has been read, but 540 // before function bodies are processed. This keeps track of whether 541 // we've done this yet. 542 bool SeenFirstFunctionBody = false; 543 544 /// When function bodies are initially scanned, this map contains info about 545 /// where to find deferred function body in the stream. 546 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 547 548 /// When Metadata block is initially scanned when parsing the module, we may 549 /// choose to defer parsing of the metadata. This vector contains info about 550 /// which Metadata blocks are deferred. 551 std::vector<uint64_t> DeferredMetadataInfo; 552 553 /// These are basic blocks forward-referenced by block addresses. They are 554 /// inserted lazily into functions when they're loaded. The basic block ID is 555 /// its index into the vector. 556 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 557 std::deque<Function *> BasicBlockFwdRefQueue; 558 559 /// Indicates that we are using a new encoding for instruction operands where 560 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 561 /// instruction number, for a more compact encoding. Some instruction 562 /// operands are not relative to the instruction ID: basic block numbers, and 563 /// types. Once the old style function blocks have been phased out, we would 564 /// not need this flag. 565 bool UseRelativeIDs = false; 566 567 /// True if all functions will be materialized, negating the need to process 568 /// (e.g.) blockaddress forward references. 569 bool WillMaterializeAllForwardRefs = false; 570 571 bool StripDebugInfo = false; 572 TBAAVerifier TBAAVerifyHelper; 573 574 std::vector<std::string> BundleTags; 575 SmallVector<SyncScope::ID, 8> SSIDs; 576 577 public: 578 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 579 StringRef ProducerIdentification, LLVMContext &Context); 580 581 Error materializeForwardReferencedFunctions(); 582 583 Error materialize(GlobalValue *GV) override; 584 Error materializeModule() override; 585 std::vector<StructType *> getIdentifiedStructTypes() const override; 586 587 /// Main interface to parsing a bitcode buffer. 588 /// \returns true if an error occurred. 589 Error parseBitcodeInto( 590 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 591 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 592 593 static uint64_t decodeSignRotatedValue(uint64_t V); 594 595 /// Materialize any deferred Metadata block. 596 Error materializeMetadata() override; 597 598 void setStripDebugInfo() override; 599 600 private: 601 std::vector<StructType *> IdentifiedStructTypes; 602 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 603 StructType *createIdentifiedStructType(LLVMContext &Context); 604 605 static constexpr unsigned InvalidTypeID = ~0u; 606 607 Type *getTypeByID(unsigned ID); 608 Type *getPtrElementTypeByID(unsigned ID); 609 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 610 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 611 612 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) { 613 if (Ty && Ty->isMetadataTy()) 614 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 615 return ValueList.getValueFwdRef(ID, Ty, TyID); 616 } 617 618 Metadata *getFnMetadataByID(unsigned ID) { 619 return MDLoader->getMetadataFwdRefOrLoad(ID); 620 } 621 622 BasicBlock *getBasicBlock(unsigned ID) const { 623 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 624 return FunctionBBs[ID]; 625 } 626 627 AttributeList getAttributes(unsigned i) const { 628 if (i-1 < MAttributes.size()) 629 return MAttributes[i-1]; 630 return AttributeList(); 631 } 632 633 /// Read a value/type pair out of the specified record from slot 'Slot'. 634 /// Increment Slot past the number of slots used in the record. Return true on 635 /// failure. 636 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 637 unsigned InstNum, Value *&ResVal, unsigned &TypeID) { 638 if (Slot == Record.size()) return true; 639 unsigned ValNo = (unsigned)Record[Slot++]; 640 // Adjust the ValNo, if it was encoded relative to the InstNum. 641 if (UseRelativeIDs) 642 ValNo = InstNum - ValNo; 643 if (ValNo < InstNum) { 644 // If this is not a forward reference, just return the value we already 645 // have. 646 TypeID = ValueList.getTypeID(ValNo); 647 ResVal = getFnValueByID(ValNo, nullptr, TypeID); 648 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 649 "Incorrect type ID stored for value"); 650 return ResVal == nullptr; 651 } 652 if (Slot == Record.size()) 653 return true; 654 655 TypeID = (unsigned)Record[Slot++]; 656 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID); 657 return ResVal == nullptr; 658 } 659 660 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 661 /// past the number of slots used by the value in the record. Return true if 662 /// there is an error. 663 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 664 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 665 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal)) 666 return true; 667 // All values currently take a single record slot. 668 ++Slot; 669 return false; 670 } 671 672 /// Like popValue, but does not increment the Slot number. 673 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 674 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 675 ResVal = getValue(Record, Slot, InstNum, Ty, TyID); 676 return ResVal == nullptr; 677 } 678 679 /// Version of getValue that returns ResVal directly, or 0 if there is an 680 /// error. 681 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 682 unsigned InstNum, Type *Ty, unsigned TyID) { 683 if (Slot == Record.size()) return nullptr; 684 unsigned ValNo = (unsigned)Record[Slot]; 685 // Adjust the ValNo, if it was encoded relative to the InstNum. 686 if (UseRelativeIDs) 687 ValNo = InstNum - ValNo; 688 return getFnValueByID(ValNo, Ty, TyID); 689 } 690 691 /// Like getValue, but decodes signed VBRs. 692 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 693 unsigned InstNum, Type *Ty, unsigned TyID) { 694 if (Slot == Record.size()) return nullptr; 695 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 696 // Adjust the ValNo, if it was encoded relative to the InstNum. 697 if (UseRelativeIDs) 698 ValNo = InstNum - ValNo; 699 return getFnValueByID(ValNo, Ty, TyID); 700 } 701 702 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 703 /// corresponding argument's pointee type. Also upgrades intrinsics that now 704 /// require an elementtype attribute. 705 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 706 707 /// Converts alignment exponent (i.e. power of two (or zero)) to the 708 /// corresponding alignment to use. If alignment is too large, returns 709 /// a corresponding error code. 710 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 711 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 712 Error parseModule( 713 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 714 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 715 716 Error parseComdatRecord(ArrayRef<uint64_t> Record); 717 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 718 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 719 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 720 ArrayRef<uint64_t> Record); 721 722 Error parseAttributeBlock(); 723 Error parseAttributeGroupBlock(); 724 Error parseTypeTable(); 725 Error parseTypeTableBody(); 726 Error parseOperandBundleTags(); 727 Error parseSyncScopeNames(); 728 729 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 730 unsigned NameIndex, Triple &TT); 731 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 732 ArrayRef<uint64_t> Record); 733 Error parseValueSymbolTable(uint64_t Offset = 0); 734 Error parseGlobalValueSymbolTable(); 735 Error parseConstants(); 736 Error rememberAndSkipFunctionBodies(); 737 Error rememberAndSkipFunctionBody(); 738 /// Save the positions of the Metadata blocks and skip parsing the blocks. 739 Error rememberAndSkipMetadata(); 740 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 741 Error parseFunctionBody(Function *F); 742 Error globalCleanup(); 743 Error resolveGlobalAndIndirectSymbolInits(); 744 Error parseUseLists(); 745 Error findFunctionInStream( 746 Function *F, 747 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 748 749 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 750 }; 751 752 /// Class to manage reading and parsing function summary index bitcode 753 /// files/sections. 754 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 755 /// The module index built during parsing. 756 ModuleSummaryIndex &TheIndex; 757 758 /// Indicates whether we have encountered a global value summary section 759 /// yet during parsing. 760 bool SeenGlobalValSummary = false; 761 762 /// Indicates whether we have already parsed the VST, used for error checking. 763 bool SeenValueSymbolTable = false; 764 765 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 766 /// Used to enable on-demand parsing of the VST. 767 uint64_t VSTOffset = 0; 768 769 // Map to save ValueId to ValueInfo association that was recorded in the 770 // ValueSymbolTable. It is used after the VST is parsed to convert 771 // call graph edges read from the function summary from referencing 772 // callees by their ValueId to using the ValueInfo instead, which is how 773 // they are recorded in the summary index being built. 774 // We save a GUID which refers to the same global as the ValueInfo, but 775 // ignoring the linkage, i.e. for values other than local linkage they are 776 // identical. 777 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 778 ValueIdToValueInfoMap; 779 780 /// Map populated during module path string table parsing, from the 781 /// module ID to a string reference owned by the index's module 782 /// path string table, used to correlate with combined index 783 /// summary records. 784 DenseMap<uint64_t, StringRef> ModuleIdMap; 785 786 /// Original source file name recorded in a bitcode record. 787 std::string SourceFileName; 788 789 /// The string identifier given to this module by the client, normally the 790 /// path to the bitcode file. 791 StringRef ModulePath; 792 793 /// For per-module summary indexes, the unique numerical identifier given to 794 /// this module by the client. 795 unsigned ModuleId; 796 797 public: 798 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 799 ModuleSummaryIndex &TheIndex, 800 StringRef ModulePath, unsigned ModuleId); 801 802 Error parseModule(); 803 804 private: 805 void setValueGUID(uint64_t ValueID, StringRef ValueName, 806 GlobalValue::LinkageTypes Linkage, 807 StringRef SourceFileName); 808 Error parseValueSymbolTable( 809 uint64_t Offset, 810 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 811 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 812 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 813 bool IsOldProfileFormat, 814 bool HasProfile, 815 bool HasRelBF); 816 Error parseEntireSummary(unsigned ID); 817 Error parseModuleStringTable(); 818 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 819 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 820 TypeIdCompatibleVtableInfo &TypeId); 821 std::vector<FunctionSummary::ParamAccess> 822 parseParamAccesses(ArrayRef<uint64_t> Record); 823 824 std::pair<ValueInfo, GlobalValue::GUID> 825 getValueInfoFromValueId(unsigned ValueId); 826 827 void addThisModule(); 828 ModuleSummaryIndex::ModuleInfo *getThisModule(); 829 }; 830 831 } // end anonymous namespace 832 833 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 834 Error Err) { 835 if (Err) { 836 std::error_code EC; 837 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 838 EC = EIB.convertToErrorCode(); 839 Ctx.emitError(EIB.message()); 840 }); 841 return EC; 842 } 843 return std::error_code(); 844 } 845 846 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 847 StringRef ProducerIdentification, 848 LLVMContext &Context) 849 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 850 ValueList(Context, this->Stream.SizeInBytes()) { 851 this->ProducerIdentification = std::string(ProducerIdentification); 852 } 853 854 Error BitcodeReader::materializeForwardReferencedFunctions() { 855 if (WillMaterializeAllForwardRefs) 856 return Error::success(); 857 858 // Prevent recursion. 859 WillMaterializeAllForwardRefs = true; 860 861 while (!BasicBlockFwdRefQueue.empty()) { 862 Function *F = BasicBlockFwdRefQueue.front(); 863 BasicBlockFwdRefQueue.pop_front(); 864 assert(F && "Expected valid function"); 865 if (!BasicBlockFwdRefs.count(F)) 866 // Already materialized. 867 continue; 868 869 // Check for a function that isn't materializable to prevent an infinite 870 // loop. When parsing a blockaddress stored in a global variable, there 871 // isn't a trivial way to check if a function will have a body without a 872 // linear search through FunctionsWithBodies, so just check it here. 873 if (!F->isMaterializable()) 874 return error("Never resolved function from blockaddress"); 875 876 // Try to materialize F. 877 if (Error Err = materialize(F)) 878 return Err; 879 } 880 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 881 882 // Reset state. 883 WillMaterializeAllForwardRefs = false; 884 return Error::success(); 885 } 886 887 //===----------------------------------------------------------------------===// 888 // Helper functions to implement forward reference resolution, etc. 889 //===----------------------------------------------------------------------===// 890 891 static bool hasImplicitComdat(size_t Val) { 892 switch (Val) { 893 default: 894 return false; 895 case 1: // Old WeakAnyLinkage 896 case 4: // Old LinkOnceAnyLinkage 897 case 10: // Old WeakODRLinkage 898 case 11: // Old LinkOnceODRLinkage 899 return true; 900 } 901 } 902 903 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 904 switch (Val) { 905 default: // Map unknown/new linkages to external 906 case 0: 907 return GlobalValue::ExternalLinkage; 908 case 2: 909 return GlobalValue::AppendingLinkage; 910 case 3: 911 return GlobalValue::InternalLinkage; 912 case 5: 913 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 914 case 6: 915 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 916 case 7: 917 return GlobalValue::ExternalWeakLinkage; 918 case 8: 919 return GlobalValue::CommonLinkage; 920 case 9: 921 return GlobalValue::PrivateLinkage; 922 case 12: 923 return GlobalValue::AvailableExternallyLinkage; 924 case 13: 925 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 926 case 14: 927 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 928 case 15: 929 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 930 case 1: // Old value with implicit comdat. 931 case 16: 932 return GlobalValue::WeakAnyLinkage; 933 case 10: // Old value with implicit comdat. 934 case 17: 935 return GlobalValue::WeakODRLinkage; 936 case 4: // Old value with implicit comdat. 937 case 18: 938 return GlobalValue::LinkOnceAnyLinkage; 939 case 11: // Old value with implicit comdat. 940 case 19: 941 return GlobalValue::LinkOnceODRLinkage; 942 } 943 } 944 945 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 946 FunctionSummary::FFlags Flags; 947 Flags.ReadNone = RawFlags & 0x1; 948 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 949 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 950 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 951 Flags.NoInline = (RawFlags >> 4) & 0x1; 952 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 953 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 954 Flags.MayThrow = (RawFlags >> 7) & 0x1; 955 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 956 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 957 return Flags; 958 } 959 960 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 961 // 962 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 963 // visibility: [8, 10). 964 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 965 uint64_t Version) { 966 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 967 // like getDecodedLinkage() above. Any future change to the linkage enum and 968 // to getDecodedLinkage() will need to be taken into account here as above. 969 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 970 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 971 RawFlags = RawFlags >> 4; 972 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 973 // The Live flag wasn't introduced until version 3. For dead stripping 974 // to work correctly on earlier versions, we must conservatively treat all 975 // values as live. 976 bool Live = (RawFlags & 0x2) || Version < 3; 977 bool Local = (RawFlags & 0x4); 978 bool AutoHide = (RawFlags & 0x8); 979 980 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 981 Live, Local, AutoHide); 982 } 983 984 // Decode the flags for GlobalVariable in the summary 985 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 986 return GlobalVarSummary::GVarFlags( 987 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 988 (RawFlags & 0x4) ? true : false, 989 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 990 } 991 992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 993 switch (Val) { 994 default: // Map unknown visibilities to default. 995 case 0: return GlobalValue::DefaultVisibility; 996 case 1: return GlobalValue::HiddenVisibility; 997 case 2: return GlobalValue::ProtectedVisibility; 998 } 999 } 1000 1001 static GlobalValue::DLLStorageClassTypes 1002 getDecodedDLLStorageClass(unsigned Val) { 1003 switch (Val) { 1004 default: // Map unknown values to default. 1005 case 0: return GlobalValue::DefaultStorageClass; 1006 case 1: return GlobalValue::DLLImportStorageClass; 1007 case 2: return GlobalValue::DLLExportStorageClass; 1008 } 1009 } 1010 1011 static bool getDecodedDSOLocal(unsigned Val) { 1012 switch(Val) { 1013 default: // Map unknown values to preemptable. 1014 case 0: return false; 1015 case 1: return true; 1016 } 1017 } 1018 1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1020 switch (Val) { 1021 case 0: return GlobalVariable::NotThreadLocal; 1022 default: // Map unknown non-zero value to general dynamic. 1023 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1024 case 2: return GlobalVariable::LocalDynamicTLSModel; 1025 case 3: return GlobalVariable::InitialExecTLSModel; 1026 case 4: return GlobalVariable::LocalExecTLSModel; 1027 } 1028 } 1029 1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1031 switch (Val) { 1032 default: // Map unknown to UnnamedAddr::None. 1033 case 0: return GlobalVariable::UnnamedAddr::None; 1034 case 1: return GlobalVariable::UnnamedAddr::Global; 1035 case 2: return GlobalVariable::UnnamedAddr::Local; 1036 } 1037 } 1038 1039 static int getDecodedCastOpcode(unsigned Val) { 1040 switch (Val) { 1041 default: return -1; 1042 case bitc::CAST_TRUNC : return Instruction::Trunc; 1043 case bitc::CAST_ZEXT : return Instruction::ZExt; 1044 case bitc::CAST_SEXT : return Instruction::SExt; 1045 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1046 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1047 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1048 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1049 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1050 case bitc::CAST_FPEXT : return Instruction::FPExt; 1051 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1052 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1053 case bitc::CAST_BITCAST : return Instruction::BitCast; 1054 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1055 } 1056 } 1057 1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1059 bool IsFP = Ty->isFPOrFPVectorTy(); 1060 // UnOps are only valid for int/fp or vector of int/fp types 1061 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1062 return -1; 1063 1064 switch (Val) { 1065 default: 1066 return -1; 1067 case bitc::UNOP_FNEG: 1068 return IsFP ? Instruction::FNeg : -1; 1069 } 1070 } 1071 1072 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1073 bool IsFP = Ty->isFPOrFPVectorTy(); 1074 // BinOps are only valid for int/fp or vector of int/fp types 1075 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1076 return -1; 1077 1078 switch (Val) { 1079 default: 1080 return -1; 1081 case bitc::BINOP_ADD: 1082 return IsFP ? Instruction::FAdd : Instruction::Add; 1083 case bitc::BINOP_SUB: 1084 return IsFP ? Instruction::FSub : Instruction::Sub; 1085 case bitc::BINOP_MUL: 1086 return IsFP ? Instruction::FMul : Instruction::Mul; 1087 case bitc::BINOP_UDIV: 1088 return IsFP ? -1 : Instruction::UDiv; 1089 case bitc::BINOP_SDIV: 1090 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1091 case bitc::BINOP_UREM: 1092 return IsFP ? -1 : Instruction::URem; 1093 case bitc::BINOP_SREM: 1094 return IsFP ? Instruction::FRem : Instruction::SRem; 1095 case bitc::BINOP_SHL: 1096 return IsFP ? -1 : Instruction::Shl; 1097 case bitc::BINOP_LSHR: 1098 return IsFP ? -1 : Instruction::LShr; 1099 case bitc::BINOP_ASHR: 1100 return IsFP ? -1 : Instruction::AShr; 1101 case bitc::BINOP_AND: 1102 return IsFP ? -1 : Instruction::And; 1103 case bitc::BINOP_OR: 1104 return IsFP ? -1 : Instruction::Or; 1105 case bitc::BINOP_XOR: 1106 return IsFP ? -1 : Instruction::Xor; 1107 } 1108 } 1109 1110 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1111 switch (Val) { 1112 default: return AtomicRMWInst::BAD_BINOP; 1113 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1114 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1115 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1116 case bitc::RMW_AND: return AtomicRMWInst::And; 1117 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1118 case bitc::RMW_OR: return AtomicRMWInst::Or; 1119 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1120 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1121 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1122 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1123 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1124 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1125 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1126 } 1127 } 1128 1129 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1130 switch (Val) { 1131 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1132 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1133 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1134 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1135 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1136 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1137 default: // Map unknown orderings to sequentially-consistent. 1138 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1139 } 1140 } 1141 1142 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1143 switch (Val) { 1144 default: // Map unknown selection kinds to any. 1145 case bitc::COMDAT_SELECTION_KIND_ANY: 1146 return Comdat::Any; 1147 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1148 return Comdat::ExactMatch; 1149 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1150 return Comdat::Largest; 1151 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1152 return Comdat::NoDeduplicate; 1153 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1154 return Comdat::SameSize; 1155 } 1156 } 1157 1158 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1159 FastMathFlags FMF; 1160 if (0 != (Val & bitc::UnsafeAlgebra)) 1161 FMF.setFast(); 1162 if (0 != (Val & bitc::AllowReassoc)) 1163 FMF.setAllowReassoc(); 1164 if (0 != (Val & bitc::NoNaNs)) 1165 FMF.setNoNaNs(); 1166 if (0 != (Val & bitc::NoInfs)) 1167 FMF.setNoInfs(); 1168 if (0 != (Val & bitc::NoSignedZeros)) 1169 FMF.setNoSignedZeros(); 1170 if (0 != (Val & bitc::AllowReciprocal)) 1171 FMF.setAllowReciprocal(); 1172 if (0 != (Val & bitc::AllowContract)) 1173 FMF.setAllowContract(true); 1174 if (0 != (Val & bitc::ApproxFunc)) 1175 FMF.setApproxFunc(); 1176 return FMF; 1177 } 1178 1179 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1180 switch (Val) { 1181 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1182 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1183 } 1184 } 1185 1186 Type *BitcodeReader::getTypeByID(unsigned ID) { 1187 // The type table size is always specified correctly. 1188 if (ID >= TypeList.size()) 1189 return nullptr; 1190 1191 if (Type *Ty = TypeList[ID]) 1192 return Ty; 1193 1194 // If we have a forward reference, the only possible case is when it is to a 1195 // named struct. Just create a placeholder for now. 1196 return TypeList[ID] = createIdentifiedStructType(Context); 1197 } 1198 1199 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1200 auto It = ContainedTypeIDs.find(ID); 1201 if (It == ContainedTypeIDs.end()) 1202 return InvalidTypeID; 1203 1204 if (Idx >= It->second.size()) 1205 return InvalidTypeID; 1206 1207 return It->second[Idx]; 1208 } 1209 1210 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1211 if (ID >= TypeList.size()) 1212 return nullptr; 1213 1214 Type *Ty = TypeList[ID]; 1215 if (!Ty->isPointerTy()) 1216 return nullptr; 1217 1218 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1219 if (!ElemTy) 1220 return nullptr; 1221 1222 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1223 "Incorrect element type"); 1224 return ElemTy; 1225 } 1226 1227 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1228 ArrayRef<unsigned> ChildTypeIDs) { 1229 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1230 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1231 auto It = VirtualTypeIDs.find(CacheKey); 1232 if (It != VirtualTypeIDs.end()) { 1233 // The cmpxchg return value is the only place we need more than one 1234 // contained type ID, however the second one will always be the same (i1), 1235 // so we don't need to include it in the cache key. This asserts that the 1236 // contained types are indeed as expected and there are no collisions. 1237 assert((ChildTypeIDs.empty() || 1238 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1239 "Incorrect cached contained type IDs"); 1240 return It->second; 1241 } 1242 1243 #ifndef NDEBUG 1244 if (!Ty->isOpaquePointerTy()) { 1245 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1246 "Wrong number of contained types"); 1247 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1248 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1249 "Incorrect contained type ID"); 1250 } 1251 } 1252 #endif 1253 1254 unsigned TypeID = TypeList.size(); 1255 TypeList.push_back(Ty); 1256 if (!ChildTypeIDs.empty()) 1257 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1258 VirtualTypeIDs.insert({CacheKey, TypeID}); 1259 return TypeID; 1260 } 1261 1262 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1263 StringRef Name) { 1264 auto *Ret = StructType::create(Context, Name); 1265 IdentifiedStructTypes.push_back(Ret); 1266 return Ret; 1267 } 1268 1269 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1270 auto *Ret = StructType::create(Context); 1271 IdentifiedStructTypes.push_back(Ret); 1272 return Ret; 1273 } 1274 1275 //===----------------------------------------------------------------------===// 1276 // Functions for parsing blocks from the bitcode file 1277 //===----------------------------------------------------------------------===// 1278 1279 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1280 switch (Val) { 1281 case Attribute::EndAttrKinds: 1282 case Attribute::EmptyKey: 1283 case Attribute::TombstoneKey: 1284 llvm_unreachable("Synthetic enumerators which should never get here"); 1285 1286 case Attribute::None: return 0; 1287 case Attribute::ZExt: return 1 << 0; 1288 case Attribute::SExt: return 1 << 1; 1289 case Attribute::NoReturn: return 1 << 2; 1290 case Attribute::InReg: return 1 << 3; 1291 case Attribute::StructRet: return 1 << 4; 1292 case Attribute::NoUnwind: return 1 << 5; 1293 case Attribute::NoAlias: return 1 << 6; 1294 case Attribute::ByVal: return 1 << 7; 1295 case Attribute::Nest: return 1 << 8; 1296 case Attribute::ReadNone: return 1 << 9; 1297 case Attribute::ReadOnly: return 1 << 10; 1298 case Attribute::NoInline: return 1 << 11; 1299 case Attribute::AlwaysInline: return 1 << 12; 1300 case Attribute::OptimizeForSize: return 1 << 13; 1301 case Attribute::StackProtect: return 1 << 14; 1302 case Attribute::StackProtectReq: return 1 << 15; 1303 case Attribute::Alignment: return 31 << 16; 1304 case Attribute::NoCapture: return 1 << 21; 1305 case Attribute::NoRedZone: return 1 << 22; 1306 case Attribute::NoImplicitFloat: return 1 << 23; 1307 case Attribute::Naked: return 1 << 24; 1308 case Attribute::InlineHint: return 1 << 25; 1309 case Attribute::StackAlignment: return 7 << 26; 1310 case Attribute::ReturnsTwice: return 1 << 29; 1311 case Attribute::UWTable: return 1 << 30; 1312 case Attribute::NonLazyBind: return 1U << 31; 1313 case Attribute::SanitizeAddress: return 1ULL << 32; 1314 case Attribute::MinSize: return 1ULL << 33; 1315 case Attribute::NoDuplicate: return 1ULL << 34; 1316 case Attribute::StackProtectStrong: return 1ULL << 35; 1317 case Attribute::SanitizeThread: return 1ULL << 36; 1318 case Attribute::SanitizeMemory: return 1ULL << 37; 1319 case Attribute::NoBuiltin: return 1ULL << 38; 1320 case Attribute::Returned: return 1ULL << 39; 1321 case Attribute::Cold: return 1ULL << 40; 1322 case Attribute::Builtin: return 1ULL << 41; 1323 case Attribute::OptimizeNone: return 1ULL << 42; 1324 case Attribute::InAlloca: return 1ULL << 43; 1325 case Attribute::NonNull: return 1ULL << 44; 1326 case Attribute::JumpTable: return 1ULL << 45; 1327 case Attribute::Convergent: return 1ULL << 46; 1328 case Attribute::SafeStack: return 1ULL << 47; 1329 case Attribute::NoRecurse: return 1ULL << 48; 1330 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1331 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1332 case Attribute::SwiftSelf: return 1ULL << 51; 1333 case Attribute::SwiftError: return 1ULL << 52; 1334 case Attribute::WriteOnly: return 1ULL << 53; 1335 case Attribute::Speculatable: return 1ULL << 54; 1336 case Attribute::StrictFP: return 1ULL << 55; 1337 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1338 case Attribute::NoCfCheck: return 1ULL << 57; 1339 case Attribute::OptForFuzzing: return 1ULL << 58; 1340 case Attribute::ShadowCallStack: return 1ULL << 59; 1341 case Attribute::SpeculativeLoadHardening: 1342 return 1ULL << 60; 1343 case Attribute::ImmArg: 1344 return 1ULL << 61; 1345 case Attribute::WillReturn: 1346 return 1ULL << 62; 1347 case Attribute::NoFree: 1348 return 1ULL << 63; 1349 default: 1350 // Other attributes are not supported in the raw format, 1351 // as we ran out of space. 1352 return 0; 1353 } 1354 llvm_unreachable("Unsupported attribute type"); 1355 } 1356 1357 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1358 if (!Val) return; 1359 1360 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1361 I = Attribute::AttrKind(I + 1)) { 1362 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1363 if (I == Attribute::Alignment) 1364 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1365 else if (I == Attribute::StackAlignment) 1366 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1367 else if (Attribute::isTypeAttrKind(I)) 1368 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1369 else 1370 B.addAttribute(I); 1371 } 1372 } 1373 } 1374 1375 /// This fills an AttrBuilder object with the LLVM attributes that have 1376 /// been decoded from the given integer. This function must stay in sync with 1377 /// 'encodeLLVMAttributesForBitcode'. 1378 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1379 uint64_t EncodedAttrs) { 1380 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1381 // the bits above 31 down by 11 bits. 1382 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1383 assert((!Alignment || isPowerOf2_32(Alignment)) && 1384 "Alignment must be a power of two."); 1385 1386 if (Alignment) 1387 B.addAlignmentAttr(Alignment); 1388 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1389 (EncodedAttrs & 0xffff)); 1390 } 1391 1392 Error BitcodeReader::parseAttributeBlock() { 1393 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1394 return Err; 1395 1396 if (!MAttributes.empty()) 1397 return error("Invalid multiple blocks"); 1398 1399 SmallVector<uint64_t, 64> Record; 1400 1401 SmallVector<AttributeList, 8> Attrs; 1402 1403 // Read all the records. 1404 while (true) { 1405 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1406 if (!MaybeEntry) 1407 return MaybeEntry.takeError(); 1408 BitstreamEntry Entry = MaybeEntry.get(); 1409 1410 switch (Entry.Kind) { 1411 case BitstreamEntry::SubBlock: // Handled for us already. 1412 case BitstreamEntry::Error: 1413 return error("Malformed block"); 1414 case BitstreamEntry::EndBlock: 1415 return Error::success(); 1416 case BitstreamEntry::Record: 1417 // The interesting case. 1418 break; 1419 } 1420 1421 // Read a record. 1422 Record.clear(); 1423 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1424 if (!MaybeRecord) 1425 return MaybeRecord.takeError(); 1426 switch (MaybeRecord.get()) { 1427 default: // Default behavior: ignore. 1428 break; 1429 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1430 // Deprecated, but still needed to read old bitcode files. 1431 if (Record.size() & 1) 1432 return error("Invalid parameter attribute record"); 1433 1434 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1435 AttrBuilder B(Context); 1436 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1437 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1438 } 1439 1440 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1441 Attrs.clear(); 1442 break; 1443 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1444 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1445 Attrs.push_back(MAttributeGroups[Record[i]]); 1446 1447 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1448 Attrs.clear(); 1449 break; 1450 } 1451 } 1452 } 1453 1454 // Returns Attribute::None on unrecognized codes. 1455 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1456 switch (Code) { 1457 default: 1458 return Attribute::None; 1459 case bitc::ATTR_KIND_ALIGNMENT: 1460 return Attribute::Alignment; 1461 case bitc::ATTR_KIND_ALWAYS_INLINE: 1462 return Attribute::AlwaysInline; 1463 case bitc::ATTR_KIND_ARGMEMONLY: 1464 return Attribute::ArgMemOnly; 1465 case bitc::ATTR_KIND_BUILTIN: 1466 return Attribute::Builtin; 1467 case bitc::ATTR_KIND_BY_VAL: 1468 return Attribute::ByVal; 1469 case bitc::ATTR_KIND_IN_ALLOCA: 1470 return Attribute::InAlloca; 1471 case bitc::ATTR_KIND_COLD: 1472 return Attribute::Cold; 1473 case bitc::ATTR_KIND_CONVERGENT: 1474 return Attribute::Convergent; 1475 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1476 return Attribute::DisableSanitizerInstrumentation; 1477 case bitc::ATTR_KIND_ELEMENTTYPE: 1478 return Attribute::ElementType; 1479 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1480 return Attribute::InaccessibleMemOnly; 1481 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1482 return Attribute::InaccessibleMemOrArgMemOnly; 1483 case bitc::ATTR_KIND_INLINE_HINT: 1484 return Attribute::InlineHint; 1485 case bitc::ATTR_KIND_IN_REG: 1486 return Attribute::InReg; 1487 case bitc::ATTR_KIND_JUMP_TABLE: 1488 return Attribute::JumpTable; 1489 case bitc::ATTR_KIND_MIN_SIZE: 1490 return Attribute::MinSize; 1491 case bitc::ATTR_KIND_NAKED: 1492 return Attribute::Naked; 1493 case bitc::ATTR_KIND_NEST: 1494 return Attribute::Nest; 1495 case bitc::ATTR_KIND_NO_ALIAS: 1496 return Attribute::NoAlias; 1497 case bitc::ATTR_KIND_NO_BUILTIN: 1498 return Attribute::NoBuiltin; 1499 case bitc::ATTR_KIND_NO_CALLBACK: 1500 return Attribute::NoCallback; 1501 case bitc::ATTR_KIND_NO_CAPTURE: 1502 return Attribute::NoCapture; 1503 case bitc::ATTR_KIND_NO_DUPLICATE: 1504 return Attribute::NoDuplicate; 1505 case bitc::ATTR_KIND_NOFREE: 1506 return Attribute::NoFree; 1507 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1508 return Attribute::NoImplicitFloat; 1509 case bitc::ATTR_KIND_NO_INLINE: 1510 return Attribute::NoInline; 1511 case bitc::ATTR_KIND_NO_RECURSE: 1512 return Attribute::NoRecurse; 1513 case bitc::ATTR_KIND_NO_MERGE: 1514 return Attribute::NoMerge; 1515 case bitc::ATTR_KIND_NON_LAZY_BIND: 1516 return Attribute::NonLazyBind; 1517 case bitc::ATTR_KIND_NON_NULL: 1518 return Attribute::NonNull; 1519 case bitc::ATTR_KIND_DEREFERENCEABLE: 1520 return Attribute::Dereferenceable; 1521 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1522 return Attribute::DereferenceableOrNull; 1523 case bitc::ATTR_KIND_ALLOC_ALIGN: 1524 return Attribute::AllocAlign; 1525 case bitc::ATTR_KIND_ALLOC_SIZE: 1526 return Attribute::AllocSize; 1527 case bitc::ATTR_KIND_NO_RED_ZONE: 1528 return Attribute::NoRedZone; 1529 case bitc::ATTR_KIND_NO_RETURN: 1530 return Attribute::NoReturn; 1531 case bitc::ATTR_KIND_NOSYNC: 1532 return Attribute::NoSync; 1533 case bitc::ATTR_KIND_NOCF_CHECK: 1534 return Attribute::NoCfCheck; 1535 case bitc::ATTR_KIND_NO_PROFILE: 1536 return Attribute::NoProfile; 1537 case bitc::ATTR_KIND_NO_UNWIND: 1538 return Attribute::NoUnwind; 1539 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1540 return Attribute::NoSanitizeBounds; 1541 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1542 return Attribute::NoSanitizeCoverage; 1543 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1544 return Attribute::NullPointerIsValid; 1545 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1546 return Attribute::OptForFuzzing; 1547 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1548 return Attribute::OptimizeForSize; 1549 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1550 return Attribute::OptimizeNone; 1551 case bitc::ATTR_KIND_READ_NONE: 1552 return Attribute::ReadNone; 1553 case bitc::ATTR_KIND_READ_ONLY: 1554 return Attribute::ReadOnly; 1555 case bitc::ATTR_KIND_RETURNED: 1556 return Attribute::Returned; 1557 case bitc::ATTR_KIND_RETURNS_TWICE: 1558 return Attribute::ReturnsTwice; 1559 case bitc::ATTR_KIND_S_EXT: 1560 return Attribute::SExt; 1561 case bitc::ATTR_KIND_SPECULATABLE: 1562 return Attribute::Speculatable; 1563 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1564 return Attribute::StackAlignment; 1565 case bitc::ATTR_KIND_STACK_PROTECT: 1566 return Attribute::StackProtect; 1567 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1568 return Attribute::StackProtectReq; 1569 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1570 return Attribute::StackProtectStrong; 1571 case bitc::ATTR_KIND_SAFESTACK: 1572 return Attribute::SafeStack; 1573 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1574 return Attribute::ShadowCallStack; 1575 case bitc::ATTR_KIND_STRICT_FP: 1576 return Attribute::StrictFP; 1577 case bitc::ATTR_KIND_STRUCT_RET: 1578 return Attribute::StructRet; 1579 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1580 return Attribute::SanitizeAddress; 1581 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1582 return Attribute::SanitizeHWAddress; 1583 case bitc::ATTR_KIND_SANITIZE_THREAD: 1584 return Attribute::SanitizeThread; 1585 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1586 return Attribute::SanitizeMemory; 1587 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1588 return Attribute::SpeculativeLoadHardening; 1589 case bitc::ATTR_KIND_SWIFT_ERROR: 1590 return Attribute::SwiftError; 1591 case bitc::ATTR_KIND_SWIFT_SELF: 1592 return Attribute::SwiftSelf; 1593 case bitc::ATTR_KIND_SWIFT_ASYNC: 1594 return Attribute::SwiftAsync; 1595 case bitc::ATTR_KIND_UW_TABLE: 1596 return Attribute::UWTable; 1597 case bitc::ATTR_KIND_VSCALE_RANGE: 1598 return Attribute::VScaleRange; 1599 case bitc::ATTR_KIND_WILLRETURN: 1600 return Attribute::WillReturn; 1601 case bitc::ATTR_KIND_WRITEONLY: 1602 return Attribute::WriteOnly; 1603 case bitc::ATTR_KIND_Z_EXT: 1604 return Attribute::ZExt; 1605 case bitc::ATTR_KIND_IMMARG: 1606 return Attribute::ImmArg; 1607 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1608 return Attribute::SanitizeMemTag; 1609 case bitc::ATTR_KIND_PREALLOCATED: 1610 return Attribute::Preallocated; 1611 case bitc::ATTR_KIND_NOUNDEF: 1612 return Attribute::NoUndef; 1613 case bitc::ATTR_KIND_BYREF: 1614 return Attribute::ByRef; 1615 case bitc::ATTR_KIND_MUSTPROGRESS: 1616 return Attribute::MustProgress; 1617 case bitc::ATTR_KIND_HOT: 1618 return Attribute::Hot; 1619 } 1620 } 1621 1622 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1623 MaybeAlign &Alignment) { 1624 // Note: Alignment in bitcode files is incremented by 1, so that zero 1625 // can be used for default alignment. 1626 if (Exponent > Value::MaxAlignmentExponent + 1) 1627 return error("Invalid alignment value"); 1628 Alignment = decodeMaybeAlign(Exponent); 1629 return Error::success(); 1630 } 1631 1632 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1633 *Kind = getAttrFromCode(Code); 1634 if (*Kind == Attribute::None) 1635 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1636 return Error::success(); 1637 } 1638 1639 Error BitcodeReader::parseAttributeGroupBlock() { 1640 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1641 return Err; 1642 1643 if (!MAttributeGroups.empty()) 1644 return error("Invalid multiple blocks"); 1645 1646 SmallVector<uint64_t, 64> Record; 1647 1648 // Read all the records. 1649 while (true) { 1650 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1651 if (!MaybeEntry) 1652 return MaybeEntry.takeError(); 1653 BitstreamEntry Entry = MaybeEntry.get(); 1654 1655 switch (Entry.Kind) { 1656 case BitstreamEntry::SubBlock: // Handled for us already. 1657 case BitstreamEntry::Error: 1658 return error("Malformed block"); 1659 case BitstreamEntry::EndBlock: 1660 return Error::success(); 1661 case BitstreamEntry::Record: 1662 // The interesting case. 1663 break; 1664 } 1665 1666 // Read a record. 1667 Record.clear(); 1668 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1669 if (!MaybeRecord) 1670 return MaybeRecord.takeError(); 1671 switch (MaybeRecord.get()) { 1672 default: // Default behavior: ignore. 1673 break; 1674 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1675 if (Record.size() < 3) 1676 return error("Invalid grp record"); 1677 1678 uint64_t GrpID = Record[0]; 1679 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1680 1681 AttrBuilder B(Context); 1682 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1683 if (Record[i] == 0) { // Enum attribute 1684 Attribute::AttrKind Kind; 1685 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1686 return Err; 1687 1688 // Upgrade old-style byval attribute to one with a type, even if it's 1689 // nullptr. We will have to insert the real type when we associate 1690 // this AttributeList with a function. 1691 if (Kind == Attribute::ByVal) 1692 B.addByValAttr(nullptr); 1693 else if (Kind == Attribute::StructRet) 1694 B.addStructRetAttr(nullptr); 1695 else if (Kind == Attribute::InAlloca) 1696 B.addInAllocaAttr(nullptr); 1697 else if (Kind == Attribute::UWTable) 1698 B.addUWTableAttr(UWTableKind::Default); 1699 else if (Attribute::isEnumAttrKind(Kind)) 1700 B.addAttribute(Kind); 1701 else 1702 return error("Not an enum attribute"); 1703 } else if (Record[i] == 1) { // Integer attribute 1704 Attribute::AttrKind Kind; 1705 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1706 return Err; 1707 if (!Attribute::isIntAttrKind(Kind)) 1708 return error("Not an int attribute"); 1709 if (Kind == Attribute::Alignment) 1710 B.addAlignmentAttr(Record[++i]); 1711 else if (Kind == Attribute::StackAlignment) 1712 B.addStackAlignmentAttr(Record[++i]); 1713 else if (Kind == Attribute::Dereferenceable) 1714 B.addDereferenceableAttr(Record[++i]); 1715 else if (Kind == Attribute::DereferenceableOrNull) 1716 B.addDereferenceableOrNullAttr(Record[++i]); 1717 else if (Kind == Attribute::AllocSize) 1718 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1719 else if (Kind == Attribute::VScaleRange) 1720 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1721 else if (Kind == Attribute::UWTable) 1722 B.addUWTableAttr(UWTableKind(Record[++i])); 1723 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1724 bool HasValue = (Record[i++] == 4); 1725 SmallString<64> KindStr; 1726 SmallString<64> ValStr; 1727 1728 while (Record[i] != 0 && i != e) 1729 KindStr += Record[i++]; 1730 assert(Record[i] == 0 && "Kind string not null terminated"); 1731 1732 if (HasValue) { 1733 // Has a value associated with it. 1734 ++i; // Skip the '0' that terminates the "kind" string. 1735 while (Record[i] != 0 && i != e) 1736 ValStr += Record[i++]; 1737 assert(Record[i] == 0 && "Value string not null terminated"); 1738 } 1739 1740 B.addAttribute(KindStr.str(), ValStr.str()); 1741 } else if (Record[i] == 5 || Record[i] == 6) { 1742 bool HasType = Record[i] == 6; 1743 Attribute::AttrKind Kind; 1744 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1745 return Err; 1746 if (!Attribute::isTypeAttrKind(Kind)) 1747 return error("Not a type attribute"); 1748 1749 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1750 } else { 1751 return error("Invalid attribute group entry"); 1752 } 1753 } 1754 1755 UpgradeAttributes(B); 1756 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1757 break; 1758 } 1759 } 1760 } 1761 } 1762 1763 Error BitcodeReader::parseTypeTable() { 1764 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1765 return Err; 1766 1767 return parseTypeTableBody(); 1768 } 1769 1770 Error BitcodeReader::parseTypeTableBody() { 1771 if (!TypeList.empty()) 1772 return error("Invalid multiple blocks"); 1773 1774 SmallVector<uint64_t, 64> Record; 1775 unsigned NumRecords = 0; 1776 1777 SmallString<64> TypeName; 1778 1779 // Read all the records for this type table. 1780 while (true) { 1781 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1782 if (!MaybeEntry) 1783 return MaybeEntry.takeError(); 1784 BitstreamEntry Entry = MaybeEntry.get(); 1785 1786 switch (Entry.Kind) { 1787 case BitstreamEntry::SubBlock: // Handled for us already. 1788 case BitstreamEntry::Error: 1789 return error("Malformed block"); 1790 case BitstreamEntry::EndBlock: 1791 if (NumRecords != TypeList.size()) 1792 return error("Malformed block"); 1793 return Error::success(); 1794 case BitstreamEntry::Record: 1795 // The interesting case. 1796 break; 1797 } 1798 1799 // Read a record. 1800 Record.clear(); 1801 Type *ResultTy = nullptr; 1802 SmallVector<unsigned> ContainedIDs; 1803 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1804 if (!MaybeRecord) 1805 return MaybeRecord.takeError(); 1806 switch (MaybeRecord.get()) { 1807 default: 1808 return error("Invalid value"); 1809 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1810 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1811 // type list. This allows us to reserve space. 1812 if (Record.empty()) 1813 return error("Invalid numentry record"); 1814 TypeList.resize(Record[0]); 1815 continue; 1816 case bitc::TYPE_CODE_VOID: // VOID 1817 ResultTy = Type::getVoidTy(Context); 1818 break; 1819 case bitc::TYPE_CODE_HALF: // HALF 1820 ResultTy = Type::getHalfTy(Context); 1821 break; 1822 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1823 ResultTy = Type::getBFloatTy(Context); 1824 break; 1825 case bitc::TYPE_CODE_FLOAT: // FLOAT 1826 ResultTy = Type::getFloatTy(Context); 1827 break; 1828 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1829 ResultTy = Type::getDoubleTy(Context); 1830 break; 1831 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1832 ResultTy = Type::getX86_FP80Ty(Context); 1833 break; 1834 case bitc::TYPE_CODE_FP128: // FP128 1835 ResultTy = Type::getFP128Ty(Context); 1836 break; 1837 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1838 ResultTy = Type::getPPC_FP128Ty(Context); 1839 break; 1840 case bitc::TYPE_CODE_LABEL: // LABEL 1841 ResultTy = Type::getLabelTy(Context); 1842 break; 1843 case bitc::TYPE_CODE_METADATA: // METADATA 1844 ResultTy = Type::getMetadataTy(Context); 1845 break; 1846 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1847 ResultTy = Type::getX86_MMXTy(Context); 1848 break; 1849 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1850 ResultTy = Type::getX86_AMXTy(Context); 1851 break; 1852 case bitc::TYPE_CODE_TOKEN: // TOKEN 1853 ResultTy = Type::getTokenTy(Context); 1854 break; 1855 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1856 if (Record.empty()) 1857 return error("Invalid integer record"); 1858 1859 uint64_t NumBits = Record[0]; 1860 if (NumBits < IntegerType::MIN_INT_BITS || 1861 NumBits > IntegerType::MAX_INT_BITS) 1862 return error("Bitwidth for integer type out of range"); 1863 ResultTy = IntegerType::get(Context, NumBits); 1864 break; 1865 } 1866 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1867 // [pointee type, address space] 1868 if (Record.empty()) 1869 return error("Invalid pointer record"); 1870 unsigned AddressSpace = 0; 1871 if (Record.size() == 2) 1872 AddressSpace = Record[1]; 1873 ResultTy = getTypeByID(Record[0]); 1874 if (!ResultTy || 1875 !PointerType::isValidElementType(ResultTy)) 1876 return error("Invalid type"); 1877 ContainedIDs.push_back(Record[0]); 1878 ResultTy = PointerType::get(ResultTy, AddressSpace); 1879 break; 1880 } 1881 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1882 if (Record.size() != 1) 1883 return error("Invalid opaque pointer record"); 1884 if (Context.supportsTypedPointers()) 1885 return error( 1886 "Opaque pointers are only supported in -opaque-pointers mode"); 1887 unsigned AddressSpace = Record[0]; 1888 ResultTy = PointerType::get(Context, AddressSpace); 1889 break; 1890 } 1891 case bitc::TYPE_CODE_FUNCTION_OLD: { 1892 // Deprecated, but still needed to read old bitcode files. 1893 // FUNCTION: [vararg, attrid, retty, paramty x N] 1894 if (Record.size() < 3) 1895 return error("Invalid function record"); 1896 SmallVector<Type*, 8> ArgTys; 1897 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1898 if (Type *T = getTypeByID(Record[i])) 1899 ArgTys.push_back(T); 1900 else 1901 break; 1902 } 1903 1904 ResultTy = getTypeByID(Record[2]); 1905 if (!ResultTy || ArgTys.size() < Record.size()-3) 1906 return error("Invalid type"); 1907 1908 ContainedIDs.append(Record.begin() + 2, Record.end()); 1909 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1910 break; 1911 } 1912 case bitc::TYPE_CODE_FUNCTION: { 1913 // FUNCTION: [vararg, retty, paramty x N] 1914 if (Record.size() < 2) 1915 return error("Invalid function record"); 1916 SmallVector<Type*, 8> ArgTys; 1917 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1918 if (Type *T = getTypeByID(Record[i])) { 1919 if (!FunctionType::isValidArgumentType(T)) 1920 return error("Invalid function argument type"); 1921 ArgTys.push_back(T); 1922 } 1923 else 1924 break; 1925 } 1926 1927 ResultTy = getTypeByID(Record[1]); 1928 if (!ResultTy || ArgTys.size() < Record.size()-2) 1929 return error("Invalid type"); 1930 1931 ContainedIDs.append(Record.begin() + 1, Record.end()); 1932 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1933 break; 1934 } 1935 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1936 if (Record.empty()) 1937 return error("Invalid anon struct record"); 1938 SmallVector<Type*, 8> EltTys; 1939 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1940 if (Type *T = getTypeByID(Record[i])) 1941 EltTys.push_back(T); 1942 else 1943 break; 1944 } 1945 if (EltTys.size() != Record.size()-1) 1946 return error("Invalid type"); 1947 ContainedIDs.append(Record.begin() + 1, Record.end()); 1948 ResultTy = StructType::get(Context, EltTys, Record[0]); 1949 break; 1950 } 1951 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1952 if (convertToString(Record, 0, TypeName)) 1953 return error("Invalid struct name record"); 1954 continue; 1955 1956 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1957 if (Record.empty()) 1958 return error("Invalid named struct record"); 1959 1960 if (NumRecords >= TypeList.size()) 1961 return error("Invalid TYPE table"); 1962 1963 // Check to see if this was forward referenced, if so fill in the temp. 1964 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1965 if (Res) { 1966 Res->setName(TypeName); 1967 TypeList[NumRecords] = nullptr; 1968 } else // Otherwise, create a new struct. 1969 Res = createIdentifiedStructType(Context, TypeName); 1970 TypeName.clear(); 1971 1972 SmallVector<Type*, 8> EltTys; 1973 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1974 if (Type *T = getTypeByID(Record[i])) 1975 EltTys.push_back(T); 1976 else 1977 break; 1978 } 1979 if (EltTys.size() != Record.size()-1) 1980 return error("Invalid named struct record"); 1981 Res->setBody(EltTys, Record[0]); 1982 ContainedIDs.append(Record.begin() + 1, Record.end()); 1983 ResultTy = Res; 1984 break; 1985 } 1986 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1987 if (Record.size() != 1) 1988 return error("Invalid opaque type record"); 1989 1990 if (NumRecords >= TypeList.size()) 1991 return error("Invalid TYPE table"); 1992 1993 // Check to see if this was forward referenced, if so fill in the temp. 1994 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1995 if (Res) { 1996 Res->setName(TypeName); 1997 TypeList[NumRecords] = nullptr; 1998 } else // Otherwise, create a new struct with no body. 1999 Res = createIdentifiedStructType(Context, TypeName); 2000 TypeName.clear(); 2001 ResultTy = Res; 2002 break; 2003 } 2004 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2005 if (Record.size() < 2) 2006 return error("Invalid array type record"); 2007 ResultTy = getTypeByID(Record[1]); 2008 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2009 return error("Invalid type"); 2010 ContainedIDs.push_back(Record[1]); 2011 ResultTy = ArrayType::get(ResultTy, Record[0]); 2012 break; 2013 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2014 // [numelts, eltty, scalable] 2015 if (Record.size() < 2) 2016 return error("Invalid vector type record"); 2017 if (Record[0] == 0) 2018 return error("Invalid vector length"); 2019 ResultTy = getTypeByID(Record[1]); 2020 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2021 return error("Invalid type"); 2022 bool Scalable = Record.size() > 2 ? Record[2] : false; 2023 ContainedIDs.push_back(Record[1]); 2024 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2025 break; 2026 } 2027 2028 if (NumRecords >= TypeList.size()) 2029 return error("Invalid TYPE table"); 2030 if (TypeList[NumRecords]) 2031 return error( 2032 "Invalid TYPE table: Only named structs can be forward referenced"); 2033 assert(ResultTy && "Didn't read a type?"); 2034 TypeList[NumRecords] = ResultTy; 2035 if (!ContainedIDs.empty()) 2036 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2037 ++NumRecords; 2038 } 2039 } 2040 2041 Error BitcodeReader::parseOperandBundleTags() { 2042 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2043 return Err; 2044 2045 if (!BundleTags.empty()) 2046 return error("Invalid multiple blocks"); 2047 2048 SmallVector<uint64_t, 64> Record; 2049 2050 while (true) { 2051 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2052 if (!MaybeEntry) 2053 return MaybeEntry.takeError(); 2054 BitstreamEntry Entry = MaybeEntry.get(); 2055 2056 switch (Entry.Kind) { 2057 case BitstreamEntry::SubBlock: // Handled for us already. 2058 case BitstreamEntry::Error: 2059 return error("Malformed block"); 2060 case BitstreamEntry::EndBlock: 2061 return Error::success(); 2062 case BitstreamEntry::Record: 2063 // The interesting case. 2064 break; 2065 } 2066 2067 // Tags are implicitly mapped to integers by their order. 2068 2069 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2070 if (!MaybeRecord) 2071 return MaybeRecord.takeError(); 2072 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2073 return error("Invalid operand bundle record"); 2074 2075 // OPERAND_BUNDLE_TAG: [strchr x N] 2076 BundleTags.emplace_back(); 2077 if (convertToString(Record, 0, BundleTags.back())) 2078 return error("Invalid operand bundle record"); 2079 Record.clear(); 2080 } 2081 } 2082 2083 Error BitcodeReader::parseSyncScopeNames() { 2084 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2085 return Err; 2086 2087 if (!SSIDs.empty()) 2088 return error("Invalid multiple synchronization scope names blocks"); 2089 2090 SmallVector<uint64_t, 64> Record; 2091 while (true) { 2092 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2093 if (!MaybeEntry) 2094 return MaybeEntry.takeError(); 2095 BitstreamEntry Entry = MaybeEntry.get(); 2096 2097 switch (Entry.Kind) { 2098 case BitstreamEntry::SubBlock: // Handled for us already. 2099 case BitstreamEntry::Error: 2100 return error("Malformed block"); 2101 case BitstreamEntry::EndBlock: 2102 if (SSIDs.empty()) 2103 return error("Invalid empty synchronization scope names block"); 2104 return Error::success(); 2105 case BitstreamEntry::Record: 2106 // The interesting case. 2107 break; 2108 } 2109 2110 // Synchronization scope names are implicitly mapped to synchronization 2111 // scope IDs by their order. 2112 2113 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2114 if (!MaybeRecord) 2115 return MaybeRecord.takeError(); 2116 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2117 return error("Invalid sync scope record"); 2118 2119 SmallString<16> SSN; 2120 if (convertToString(Record, 0, SSN)) 2121 return error("Invalid sync scope record"); 2122 2123 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2124 Record.clear(); 2125 } 2126 } 2127 2128 /// Associate a value with its name from the given index in the provided record. 2129 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2130 unsigned NameIndex, Triple &TT) { 2131 SmallString<128> ValueName; 2132 if (convertToString(Record, NameIndex, ValueName)) 2133 return error("Invalid record"); 2134 unsigned ValueID = Record[0]; 2135 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2136 return error("Invalid record"); 2137 Value *V = ValueList[ValueID]; 2138 2139 StringRef NameStr(ValueName.data(), ValueName.size()); 2140 if (NameStr.find_first_of(0) != StringRef::npos) 2141 return error("Invalid value name"); 2142 V->setName(NameStr); 2143 auto *GO = dyn_cast<GlobalObject>(V); 2144 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2145 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2146 return V; 2147 } 2148 2149 /// Helper to note and return the current location, and jump to the given 2150 /// offset. 2151 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2152 BitstreamCursor &Stream) { 2153 // Save the current parsing location so we can jump back at the end 2154 // of the VST read. 2155 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2156 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2157 return std::move(JumpFailed); 2158 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2159 if (!MaybeEntry) 2160 return MaybeEntry.takeError(); 2161 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2162 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2163 return error("Expected value symbol table subblock"); 2164 return CurrentBit; 2165 } 2166 2167 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2168 Function *F, 2169 ArrayRef<uint64_t> Record) { 2170 // Note that we subtract 1 here because the offset is relative to one word 2171 // before the start of the identification or module block, which was 2172 // historically always the start of the regular bitcode header. 2173 uint64_t FuncWordOffset = Record[1] - 1; 2174 uint64_t FuncBitOffset = FuncWordOffset * 32; 2175 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2176 // Set the LastFunctionBlockBit to point to the last function block. 2177 // Later when parsing is resumed after function materialization, 2178 // we can simply skip that last function block. 2179 if (FuncBitOffset > LastFunctionBlockBit) 2180 LastFunctionBlockBit = FuncBitOffset; 2181 } 2182 2183 /// Read a new-style GlobalValue symbol table. 2184 Error BitcodeReader::parseGlobalValueSymbolTable() { 2185 unsigned FuncBitcodeOffsetDelta = 2186 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2187 2188 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2189 return Err; 2190 2191 SmallVector<uint64_t, 64> Record; 2192 while (true) { 2193 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2194 if (!MaybeEntry) 2195 return MaybeEntry.takeError(); 2196 BitstreamEntry Entry = MaybeEntry.get(); 2197 2198 switch (Entry.Kind) { 2199 case BitstreamEntry::SubBlock: 2200 case BitstreamEntry::Error: 2201 return error("Malformed block"); 2202 case BitstreamEntry::EndBlock: 2203 return Error::success(); 2204 case BitstreamEntry::Record: 2205 break; 2206 } 2207 2208 Record.clear(); 2209 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2210 if (!MaybeRecord) 2211 return MaybeRecord.takeError(); 2212 switch (MaybeRecord.get()) { 2213 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2214 unsigned ValueID = Record[0]; 2215 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2216 return error("Invalid value reference in symbol table"); 2217 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2218 cast<Function>(ValueList[ValueID]), Record); 2219 break; 2220 } 2221 } 2222 } 2223 } 2224 2225 /// Parse the value symbol table at either the current parsing location or 2226 /// at the given bit offset if provided. 2227 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2228 uint64_t CurrentBit; 2229 // Pass in the Offset to distinguish between calling for the module-level 2230 // VST (where we want to jump to the VST offset) and the function-level 2231 // VST (where we don't). 2232 if (Offset > 0) { 2233 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2234 if (!MaybeCurrentBit) 2235 return MaybeCurrentBit.takeError(); 2236 CurrentBit = MaybeCurrentBit.get(); 2237 // If this module uses a string table, read this as a module-level VST. 2238 if (UseStrtab) { 2239 if (Error Err = parseGlobalValueSymbolTable()) 2240 return Err; 2241 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2242 return JumpFailed; 2243 return Error::success(); 2244 } 2245 // Otherwise, the VST will be in a similar format to a function-level VST, 2246 // and will contain symbol names. 2247 } 2248 2249 // Compute the delta between the bitcode indices in the VST (the word offset 2250 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2251 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2252 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2253 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2254 // just before entering the VST subblock because: 1) the EnterSubBlock 2255 // changes the AbbrevID width; 2) the VST block is nested within the same 2256 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2257 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2258 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2259 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2260 unsigned FuncBitcodeOffsetDelta = 2261 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2262 2263 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2264 return Err; 2265 2266 SmallVector<uint64_t, 64> Record; 2267 2268 Triple TT(TheModule->getTargetTriple()); 2269 2270 // Read all the records for this value table. 2271 SmallString<128> ValueName; 2272 2273 while (true) { 2274 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2275 if (!MaybeEntry) 2276 return MaybeEntry.takeError(); 2277 BitstreamEntry Entry = MaybeEntry.get(); 2278 2279 switch (Entry.Kind) { 2280 case BitstreamEntry::SubBlock: // Handled for us already. 2281 case BitstreamEntry::Error: 2282 return error("Malformed block"); 2283 case BitstreamEntry::EndBlock: 2284 if (Offset > 0) 2285 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2286 return JumpFailed; 2287 return Error::success(); 2288 case BitstreamEntry::Record: 2289 // The interesting case. 2290 break; 2291 } 2292 2293 // Read a record. 2294 Record.clear(); 2295 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2296 if (!MaybeRecord) 2297 return MaybeRecord.takeError(); 2298 switch (MaybeRecord.get()) { 2299 default: // Default behavior: unknown type. 2300 break; 2301 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2302 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2303 if (Error Err = ValOrErr.takeError()) 2304 return Err; 2305 ValOrErr.get(); 2306 break; 2307 } 2308 case bitc::VST_CODE_FNENTRY: { 2309 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2310 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2311 if (Error Err = ValOrErr.takeError()) 2312 return Err; 2313 Value *V = ValOrErr.get(); 2314 2315 // Ignore function offsets emitted for aliases of functions in older 2316 // versions of LLVM. 2317 if (auto *F = dyn_cast<Function>(V)) 2318 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2319 break; 2320 } 2321 case bitc::VST_CODE_BBENTRY: { 2322 if (convertToString(Record, 1, ValueName)) 2323 return error("Invalid bbentry record"); 2324 BasicBlock *BB = getBasicBlock(Record[0]); 2325 if (!BB) 2326 return error("Invalid bbentry record"); 2327 2328 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2329 ValueName.clear(); 2330 break; 2331 } 2332 } 2333 } 2334 } 2335 2336 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2337 /// encoding. 2338 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2339 if ((V & 1) == 0) 2340 return V >> 1; 2341 if (V != 1) 2342 return -(V >> 1); 2343 // There is no such thing as -0 with integers. "-0" really means MININT. 2344 return 1ULL << 63; 2345 } 2346 2347 /// Resolve all of the initializers for global values and aliases that we can. 2348 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2349 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2350 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2351 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2352 2353 GlobalInitWorklist.swap(GlobalInits); 2354 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2355 FunctionOperandWorklist.swap(FunctionOperands); 2356 2357 while (!GlobalInitWorklist.empty()) { 2358 unsigned ValID = GlobalInitWorklist.back().second; 2359 if (ValID >= ValueList.size()) { 2360 // Not ready to resolve this yet, it requires something later in the file. 2361 GlobalInits.push_back(GlobalInitWorklist.back()); 2362 } else { 2363 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2364 GlobalInitWorklist.back().first->setInitializer(C); 2365 else 2366 return error("Expected a constant"); 2367 } 2368 GlobalInitWorklist.pop_back(); 2369 } 2370 2371 while (!IndirectSymbolInitWorklist.empty()) { 2372 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2373 if (ValID >= ValueList.size()) { 2374 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2375 } else { 2376 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2377 if (!C) 2378 return error("Expected a constant"); 2379 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2380 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2381 if (C->getType() != GV->getType()) 2382 return error("Alias and aliasee types don't match"); 2383 GA->setAliasee(C); 2384 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2385 Type *ResolverFTy = 2386 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2387 // Transparently fix up the type for compatiblity with older bitcode 2388 GI->setResolver( 2389 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2390 } else { 2391 return error("Expected an alias or an ifunc"); 2392 } 2393 } 2394 IndirectSymbolInitWorklist.pop_back(); 2395 } 2396 2397 while (!FunctionOperandWorklist.empty()) { 2398 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2399 if (Info.PersonalityFn) { 2400 unsigned ValID = Info.PersonalityFn - 1; 2401 if (ValID < ValueList.size()) { 2402 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2403 Info.F->setPersonalityFn(C); 2404 else 2405 return error("Expected a constant"); 2406 Info.PersonalityFn = 0; 2407 } 2408 } 2409 if (Info.Prefix) { 2410 unsigned ValID = Info.Prefix - 1; 2411 if (ValID < ValueList.size()) { 2412 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2413 Info.F->setPrefixData(C); 2414 else 2415 return error("Expected a constant"); 2416 Info.Prefix = 0; 2417 } 2418 } 2419 if (Info.Prologue) { 2420 unsigned ValID = Info.Prologue - 1; 2421 if (ValID < ValueList.size()) { 2422 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2423 Info.F->setPrologueData(C); 2424 else 2425 return error("Expected a constant"); 2426 Info.Prologue = 0; 2427 } 2428 } 2429 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2430 FunctionOperands.push_back(Info); 2431 FunctionOperandWorklist.pop_back(); 2432 } 2433 2434 return Error::success(); 2435 } 2436 2437 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2438 SmallVector<uint64_t, 8> Words(Vals.size()); 2439 transform(Vals, Words.begin(), 2440 BitcodeReader::decodeSignRotatedValue); 2441 2442 return APInt(TypeBits, Words); 2443 } 2444 2445 Error BitcodeReader::parseConstants() { 2446 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2447 return Err; 2448 2449 SmallVector<uint64_t, 64> Record; 2450 2451 // Read all the records for this value table. 2452 Type *CurTy = Type::getInt32Ty(Context); 2453 unsigned Int32TyID = getVirtualTypeID(CurTy); 2454 unsigned CurTyID = Int32TyID; 2455 Type *CurElemTy = nullptr; 2456 unsigned NextCstNo = ValueList.size(); 2457 2458 struct DelayedShufTy { 2459 VectorType *OpTy; 2460 unsigned OpTyID; 2461 VectorType *RTy; 2462 uint64_t Op0Idx; 2463 uint64_t Op1Idx; 2464 uint64_t Op2Idx; 2465 unsigned CstNo; 2466 }; 2467 std::vector<DelayedShufTy> DelayedShuffles; 2468 struct DelayedSelTy { 2469 Type *OpTy; 2470 unsigned OpTyID; 2471 uint64_t Op0Idx; 2472 uint64_t Op1Idx; 2473 uint64_t Op2Idx; 2474 unsigned CstNo; 2475 }; 2476 std::vector<DelayedSelTy> DelayedSelectors; 2477 2478 while (true) { 2479 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2480 if (!MaybeEntry) 2481 return MaybeEntry.takeError(); 2482 BitstreamEntry Entry = MaybeEntry.get(); 2483 2484 switch (Entry.Kind) { 2485 case BitstreamEntry::SubBlock: // Handled for us already. 2486 case BitstreamEntry::Error: 2487 return error("Malformed block"); 2488 case BitstreamEntry::EndBlock: 2489 // Once all the constants have been read, go through and resolve forward 2490 // references. 2491 // 2492 // We have to treat shuffles specially because they don't have three 2493 // operands anymore. We need to convert the shuffle mask into an array, 2494 // and we can't convert a forward reference. 2495 for (auto &DelayedShuffle : DelayedShuffles) { 2496 VectorType *OpTy = DelayedShuffle.OpTy; 2497 unsigned OpTyID = DelayedShuffle.OpTyID; 2498 VectorType *RTy = DelayedShuffle.RTy; 2499 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2500 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2501 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2502 uint64_t CstNo = DelayedShuffle.CstNo; 2503 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID); 2504 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2505 Type *ShufTy = 2506 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2507 Constant *Op2 = ValueList.getConstantFwdRef( 2508 Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID)); 2509 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2510 return error("Invalid shufflevector operands"); 2511 SmallVector<int, 16> Mask; 2512 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2513 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2514 if (Error Err = ValueList.assignValue( 2515 CstNo, V, 2516 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID)))) 2517 return Err; 2518 } 2519 for (auto &DelayedSelector : DelayedSelectors) { 2520 Type *OpTy = DelayedSelector.OpTy; 2521 unsigned OpTyID = DelayedSelector.OpTyID; 2522 Type *SelectorTy = Type::getInt1Ty(Context); 2523 unsigned SelectorTyID = getVirtualTypeID(SelectorTy); 2524 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2525 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2526 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2527 uint64_t CstNo = DelayedSelector.CstNo; 2528 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2529 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID); 2530 // The selector might be an i1 or an <n x i1> 2531 // Get the type from the ValueList before getting a forward ref. 2532 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2533 Value *V = ValueList[Op0Idx]; 2534 assert(V); 2535 if (SelectorTy != V->getType()) { 2536 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2537 SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID); 2538 } 2539 } 2540 Constant *Op0 = 2541 ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID); 2542 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2543 if (Error Err = ValueList.assignValue(CstNo, V, OpTyID)) 2544 return Err; 2545 } 2546 2547 if (NextCstNo != ValueList.size()) 2548 return error("Invalid constant reference"); 2549 2550 ValueList.resolveConstantForwardRefs(); 2551 return Error::success(); 2552 case BitstreamEntry::Record: 2553 // The interesting case. 2554 break; 2555 } 2556 2557 // Read a record. 2558 Record.clear(); 2559 Type *VoidType = Type::getVoidTy(Context); 2560 Value *V = nullptr; 2561 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2562 if (!MaybeBitCode) 2563 return MaybeBitCode.takeError(); 2564 switch (unsigned BitCode = MaybeBitCode.get()) { 2565 default: // Default behavior: unknown constant 2566 case bitc::CST_CODE_UNDEF: // UNDEF 2567 V = UndefValue::get(CurTy); 2568 break; 2569 case bitc::CST_CODE_POISON: // POISON 2570 V = PoisonValue::get(CurTy); 2571 break; 2572 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2573 if (Record.empty()) 2574 return error("Invalid settype record"); 2575 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2576 return error("Invalid settype record"); 2577 if (TypeList[Record[0]] == VoidType) 2578 return error("Invalid constant type"); 2579 CurTyID = Record[0]; 2580 CurTy = TypeList[CurTyID]; 2581 CurElemTy = getPtrElementTypeByID(CurTyID); 2582 continue; // Skip the ValueList manipulation. 2583 case bitc::CST_CODE_NULL: // NULL 2584 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2585 return error("Invalid type for a constant null value"); 2586 V = Constant::getNullValue(CurTy); 2587 break; 2588 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2589 if (!CurTy->isIntegerTy() || Record.empty()) 2590 return error("Invalid integer const record"); 2591 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2592 break; 2593 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2594 if (!CurTy->isIntegerTy() || Record.empty()) 2595 return error("Invalid wide integer const record"); 2596 2597 APInt VInt = 2598 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2599 V = ConstantInt::get(Context, VInt); 2600 2601 break; 2602 } 2603 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2604 if (Record.empty()) 2605 return error("Invalid float const record"); 2606 if (CurTy->isHalfTy()) 2607 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2608 APInt(16, (uint16_t)Record[0]))); 2609 else if (CurTy->isBFloatTy()) 2610 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2611 APInt(16, (uint32_t)Record[0]))); 2612 else if (CurTy->isFloatTy()) 2613 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2614 APInt(32, (uint32_t)Record[0]))); 2615 else if (CurTy->isDoubleTy()) 2616 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2617 APInt(64, Record[0]))); 2618 else if (CurTy->isX86_FP80Ty()) { 2619 // Bits are not stored the same way as a normal i80 APInt, compensate. 2620 uint64_t Rearrange[2]; 2621 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2622 Rearrange[1] = Record[0] >> 48; 2623 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2624 APInt(80, Rearrange))); 2625 } else if (CurTy->isFP128Ty()) 2626 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2627 APInt(128, Record))); 2628 else if (CurTy->isPPC_FP128Ty()) 2629 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2630 APInt(128, Record))); 2631 else 2632 V = UndefValue::get(CurTy); 2633 break; 2634 } 2635 2636 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2637 if (Record.empty()) 2638 return error("Invalid aggregate record"); 2639 2640 unsigned Size = Record.size(); 2641 SmallVector<Constant*, 16> Elts; 2642 2643 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2644 for (unsigned i = 0; i != Size; ++i) 2645 Elts.push_back(ValueList.getConstantFwdRef( 2646 Record[i], STy->getElementType(i), 2647 getContainedTypeID(CurTyID, i))); 2648 V = ConstantStruct::get(STy, Elts); 2649 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2650 Type *EltTy = ATy->getElementType(); 2651 unsigned EltTyID = getContainedTypeID(CurTyID); 2652 for (unsigned i = 0; i != Size; ++i) 2653 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2654 EltTyID)); 2655 V = ConstantArray::get(ATy, Elts); 2656 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2657 Type *EltTy = VTy->getElementType(); 2658 unsigned EltTyID = getContainedTypeID(CurTyID); 2659 for (unsigned i = 0; i != Size; ++i) 2660 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2661 EltTyID)); 2662 V = ConstantVector::get(Elts); 2663 } else { 2664 V = UndefValue::get(CurTy); 2665 } 2666 break; 2667 } 2668 case bitc::CST_CODE_STRING: // STRING: [values] 2669 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2670 if (Record.empty()) 2671 return error("Invalid string record"); 2672 2673 SmallString<16> Elts(Record.begin(), Record.end()); 2674 V = ConstantDataArray::getString(Context, Elts, 2675 BitCode == bitc::CST_CODE_CSTRING); 2676 break; 2677 } 2678 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2679 if (Record.empty()) 2680 return error("Invalid data record"); 2681 2682 Type *EltTy; 2683 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2684 EltTy = Array->getElementType(); 2685 else 2686 EltTy = cast<VectorType>(CurTy)->getElementType(); 2687 if (EltTy->isIntegerTy(8)) { 2688 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2689 if (isa<VectorType>(CurTy)) 2690 V = ConstantDataVector::get(Context, Elts); 2691 else 2692 V = ConstantDataArray::get(Context, Elts); 2693 } else if (EltTy->isIntegerTy(16)) { 2694 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::get(Context, Elts); 2697 else 2698 V = ConstantDataArray::get(Context, Elts); 2699 } else if (EltTy->isIntegerTy(32)) { 2700 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2701 if (isa<VectorType>(CurTy)) 2702 V = ConstantDataVector::get(Context, Elts); 2703 else 2704 V = ConstantDataArray::get(Context, Elts); 2705 } else if (EltTy->isIntegerTy(64)) { 2706 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2707 if (isa<VectorType>(CurTy)) 2708 V = ConstantDataVector::get(Context, Elts); 2709 else 2710 V = ConstantDataArray::get(Context, Elts); 2711 } else if (EltTy->isHalfTy()) { 2712 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2713 if (isa<VectorType>(CurTy)) 2714 V = ConstantDataVector::getFP(EltTy, Elts); 2715 else 2716 V = ConstantDataArray::getFP(EltTy, Elts); 2717 } else if (EltTy->isBFloatTy()) { 2718 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2719 if (isa<VectorType>(CurTy)) 2720 V = ConstantDataVector::getFP(EltTy, Elts); 2721 else 2722 V = ConstantDataArray::getFP(EltTy, Elts); 2723 } else if (EltTy->isFloatTy()) { 2724 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2725 if (isa<VectorType>(CurTy)) 2726 V = ConstantDataVector::getFP(EltTy, Elts); 2727 else 2728 V = ConstantDataArray::getFP(EltTy, Elts); 2729 } else if (EltTy->isDoubleTy()) { 2730 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2731 if (isa<VectorType>(CurTy)) 2732 V = ConstantDataVector::getFP(EltTy, Elts); 2733 else 2734 V = ConstantDataArray::getFP(EltTy, Elts); 2735 } else { 2736 return error("Invalid type for value"); 2737 } 2738 break; 2739 } 2740 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2741 if (Record.size() < 2) 2742 return error("Invalid unary op constexpr record"); 2743 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2744 if (Opc < 0) { 2745 V = UndefValue::get(CurTy); // Unknown unop. 2746 } else { 2747 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2748 unsigned Flags = 0; 2749 V = ConstantExpr::get(Opc, LHS, Flags); 2750 } 2751 break; 2752 } 2753 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2754 if (Record.size() < 3) 2755 return error("Invalid binary op constexpr record"); 2756 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2757 if (Opc < 0) { 2758 V = UndefValue::get(CurTy); // Unknown binop. 2759 } else { 2760 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2761 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID); 2762 unsigned Flags = 0; 2763 if (Record.size() >= 4) { 2764 if (Opc == Instruction::Add || 2765 Opc == Instruction::Sub || 2766 Opc == Instruction::Mul || 2767 Opc == Instruction::Shl) { 2768 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2769 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2770 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2771 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2772 } else if (Opc == Instruction::SDiv || 2773 Opc == Instruction::UDiv || 2774 Opc == Instruction::LShr || 2775 Opc == Instruction::AShr) { 2776 if (Record[3] & (1 << bitc::PEO_EXACT)) 2777 Flags |= SDivOperator::IsExact; 2778 } 2779 } 2780 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2781 } 2782 break; 2783 } 2784 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2785 if (Record.size() < 3) 2786 return error("Invalid cast constexpr record"); 2787 int Opc = getDecodedCastOpcode(Record[0]); 2788 if (Opc < 0) { 2789 V = UndefValue::get(CurTy); // Unknown cast. 2790 } else { 2791 unsigned OpTyID = Record[1]; 2792 Type *OpTy = getTypeByID(OpTyID); 2793 if (!OpTy) 2794 return error("Invalid cast constexpr record"); 2795 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2796 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2797 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2798 } 2799 break; 2800 } 2801 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2802 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2803 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2804 // operands] 2805 if (Record.size() < 2) 2806 return error("Constant GEP record must have at least two elements"); 2807 unsigned OpNum = 0; 2808 Type *PointeeType = nullptr; 2809 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2810 Record.size() % 2) 2811 PointeeType = getTypeByID(Record[OpNum++]); 2812 2813 bool InBounds = false; 2814 Optional<unsigned> InRangeIndex; 2815 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2816 uint64_t Op = Record[OpNum++]; 2817 InBounds = Op & 1; 2818 InRangeIndex = Op >> 1; 2819 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2820 InBounds = true; 2821 2822 SmallVector<Constant*, 16> Elts; 2823 unsigned BaseTypeID = Record[OpNum]; 2824 while (OpNum != Record.size()) { 2825 unsigned ElTyID = Record[OpNum++]; 2826 Type *ElTy = getTypeByID(ElTyID); 2827 if (!ElTy) 2828 return error("Invalid getelementptr constexpr record"); 2829 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy, 2830 ElTyID)); 2831 } 2832 2833 if (Elts.size() < 1) 2834 return error("Invalid gep with no operands"); 2835 2836 Type *BaseType = getTypeByID(BaseTypeID); 2837 if (isa<VectorType>(BaseType)) { 2838 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 2839 BaseType = getTypeByID(BaseTypeID); 2840 } 2841 2842 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 2843 if (!OrigPtrTy) 2844 return error("GEP base operand must be pointer or vector of pointer"); 2845 2846 if (!PointeeType) { 2847 PointeeType = getPtrElementTypeByID(BaseTypeID); 2848 if (!PointeeType) 2849 return error("Missing element type for old-style constant GEP"); 2850 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2851 return error("Explicit gep operator type does not match pointee type " 2852 "of pointer operand"); 2853 2854 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2855 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2856 InBounds, InRangeIndex); 2857 break; 2858 } 2859 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2860 if (Record.size() < 3) 2861 return error("Invalid select constexpr record"); 2862 2863 DelayedSelectors.push_back( 2864 {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo}); 2865 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID); 2866 ++NextCstNo; 2867 continue; 2868 } 2869 case bitc::CST_CODE_CE_EXTRACTELT 2870 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2871 if (Record.size() < 3) 2872 return error("Invalid extractelement constexpr record"); 2873 unsigned OpTyID = Record[0]; 2874 VectorType *OpTy = 2875 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 2876 if (!OpTy) 2877 return error("Invalid extractelement constexpr record"); 2878 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2879 Constant *Op1 = nullptr; 2880 if (Record.size() == 4) { 2881 unsigned IdxTyID = Record[2]; 2882 Type *IdxTy = getTypeByID(IdxTyID); 2883 if (!IdxTy) 2884 return error("Invalid extractelement constexpr record"); 2885 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2886 } else { 2887 // Deprecated, but still needed to read old bitcode files. 2888 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2889 Int32TyID); 2890 } 2891 if (!Op1) 2892 return error("Invalid extractelement constexpr record"); 2893 V = ConstantExpr::getExtractElement(Op0, Op1); 2894 break; 2895 } 2896 case bitc::CST_CODE_CE_INSERTELT 2897 : { // CE_INSERTELT: [opval, opval, opty, opval] 2898 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2899 if (Record.size() < 3 || !OpTy) 2900 return error("Invalid insertelement constexpr record"); 2901 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID); 2902 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2903 OpTy->getElementType(), 2904 getContainedTypeID(CurTyID)); 2905 Constant *Op2 = nullptr; 2906 if (Record.size() == 4) { 2907 unsigned IdxTyID = Record[2]; 2908 Type *IdxTy = getTypeByID(IdxTyID); 2909 if (!IdxTy) 2910 return error("Invalid insertelement constexpr record"); 2911 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2912 } else { 2913 // Deprecated, but still needed to read old bitcode files. 2914 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2915 Int32TyID); 2916 } 2917 if (!Op2) 2918 return error("Invalid insertelement constexpr record"); 2919 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2920 break; 2921 } 2922 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2923 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2924 if (Record.size() < 3 || !OpTy) 2925 return error("Invalid shufflevector constexpr record"); 2926 DelayedShuffles.push_back( 2927 {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2928 ++NextCstNo; 2929 continue; 2930 } 2931 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2932 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2933 VectorType *OpTy = 2934 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2935 if (Record.size() < 4 || !RTy || !OpTy) 2936 return error("Invalid shufflevector constexpr record"); 2937 DelayedShuffles.push_back( 2938 {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2939 ++NextCstNo; 2940 continue; 2941 } 2942 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2943 if (Record.size() < 4) 2944 return error("Invalid cmp constexpt record"); 2945 unsigned OpTyID = Record[0]; 2946 Type *OpTy = getTypeByID(OpTyID); 2947 if (!OpTy) 2948 return error("Invalid cmp constexpr record"); 2949 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2950 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2951 2952 if (OpTy->isFPOrFPVectorTy()) 2953 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2954 else 2955 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2956 break; 2957 } 2958 // This maintains backward compatibility, pre-asm dialect keywords. 2959 // Deprecated, but still needed to read old bitcode files. 2960 case bitc::CST_CODE_INLINEASM_OLD: { 2961 if (Record.size() < 2) 2962 return error("Invalid inlineasm record"); 2963 std::string AsmStr, ConstrStr; 2964 bool HasSideEffects = Record[0] & 1; 2965 bool IsAlignStack = Record[0] >> 1; 2966 unsigned AsmStrSize = Record[1]; 2967 if (2+AsmStrSize >= Record.size()) 2968 return error("Invalid inlineasm record"); 2969 unsigned ConstStrSize = Record[2+AsmStrSize]; 2970 if (3+AsmStrSize+ConstStrSize > Record.size()) 2971 return error("Invalid inlineasm record"); 2972 2973 for (unsigned i = 0; i != AsmStrSize; ++i) 2974 AsmStr += (char)Record[2+i]; 2975 for (unsigned i = 0; i != ConstStrSize; ++i) 2976 ConstrStr += (char)Record[3+AsmStrSize+i]; 2977 UpgradeInlineAsmString(&AsmStr); 2978 if (!CurElemTy) 2979 return error("Missing element type for old-style inlineasm"); 2980 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2981 HasSideEffects, IsAlignStack); 2982 break; 2983 } 2984 // This version adds support for the asm dialect keywords (e.g., 2985 // inteldialect). 2986 case bitc::CST_CODE_INLINEASM_OLD2: { 2987 if (Record.size() < 2) 2988 return error("Invalid inlineasm record"); 2989 std::string AsmStr, ConstrStr; 2990 bool HasSideEffects = Record[0] & 1; 2991 bool IsAlignStack = (Record[0] >> 1) & 1; 2992 unsigned AsmDialect = Record[0] >> 2; 2993 unsigned AsmStrSize = Record[1]; 2994 if (2+AsmStrSize >= Record.size()) 2995 return error("Invalid inlineasm record"); 2996 unsigned ConstStrSize = Record[2+AsmStrSize]; 2997 if (3+AsmStrSize+ConstStrSize > Record.size()) 2998 return error("Invalid inlineasm record"); 2999 3000 for (unsigned i = 0; i != AsmStrSize; ++i) 3001 AsmStr += (char)Record[2+i]; 3002 for (unsigned i = 0; i != ConstStrSize; ++i) 3003 ConstrStr += (char)Record[3+AsmStrSize+i]; 3004 UpgradeInlineAsmString(&AsmStr); 3005 if (!CurElemTy) 3006 return error("Missing element type for old-style inlineasm"); 3007 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3008 HasSideEffects, IsAlignStack, 3009 InlineAsm::AsmDialect(AsmDialect)); 3010 break; 3011 } 3012 // This version adds support for the unwind keyword. 3013 case bitc::CST_CODE_INLINEASM_OLD3: { 3014 if (Record.size() < 2) 3015 return error("Invalid inlineasm record"); 3016 unsigned OpNum = 0; 3017 std::string AsmStr, ConstrStr; 3018 bool HasSideEffects = Record[OpNum] & 1; 3019 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3020 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3021 bool CanThrow = (Record[OpNum] >> 3) & 1; 3022 ++OpNum; 3023 unsigned AsmStrSize = Record[OpNum]; 3024 ++OpNum; 3025 if (OpNum + AsmStrSize >= Record.size()) 3026 return error("Invalid inlineasm record"); 3027 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3028 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3029 return error("Invalid inlineasm record"); 3030 3031 for (unsigned i = 0; i != AsmStrSize; ++i) 3032 AsmStr += (char)Record[OpNum + i]; 3033 ++OpNum; 3034 for (unsigned i = 0; i != ConstStrSize; ++i) 3035 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3036 UpgradeInlineAsmString(&AsmStr); 3037 if (!CurElemTy) 3038 return error("Missing element type for old-style inlineasm"); 3039 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3040 HasSideEffects, IsAlignStack, 3041 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3042 break; 3043 } 3044 // This version adds explicit function type. 3045 case bitc::CST_CODE_INLINEASM: { 3046 if (Record.size() < 3) 3047 return error("Invalid inlineasm record"); 3048 unsigned OpNum = 0; 3049 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3050 ++OpNum; 3051 if (!FnTy) 3052 return error("Invalid inlineasm record"); 3053 std::string AsmStr, ConstrStr; 3054 bool HasSideEffects = Record[OpNum] & 1; 3055 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3056 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3057 bool CanThrow = (Record[OpNum] >> 3) & 1; 3058 ++OpNum; 3059 unsigned AsmStrSize = Record[OpNum]; 3060 ++OpNum; 3061 if (OpNum + AsmStrSize >= Record.size()) 3062 return error("Invalid inlineasm record"); 3063 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3064 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3065 return error("Invalid inlineasm record"); 3066 3067 for (unsigned i = 0; i != AsmStrSize; ++i) 3068 AsmStr += (char)Record[OpNum + i]; 3069 ++OpNum; 3070 for (unsigned i = 0; i != ConstStrSize; ++i) 3071 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3072 UpgradeInlineAsmString(&AsmStr); 3073 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3074 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3075 break; 3076 } 3077 case bitc::CST_CODE_BLOCKADDRESS:{ 3078 if (Record.size() < 3) 3079 return error("Invalid blockaddress record"); 3080 unsigned FnTyID = Record[0]; 3081 Type *FnTy = getTypeByID(FnTyID); 3082 if (!FnTy) 3083 return error("Invalid blockaddress record"); 3084 Function *Fn = dyn_cast_or_null<Function>( 3085 ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID)); 3086 if (!Fn) 3087 return error("Invalid blockaddress record"); 3088 3089 // If the function is already parsed we can insert the block address right 3090 // away. 3091 BasicBlock *BB; 3092 unsigned BBID = Record[2]; 3093 if (!BBID) 3094 // Invalid reference to entry block. 3095 return error("Invalid ID"); 3096 if (!Fn->empty()) { 3097 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3098 for (size_t I = 0, E = BBID; I != E; ++I) { 3099 if (BBI == BBE) 3100 return error("Invalid ID"); 3101 ++BBI; 3102 } 3103 BB = &*BBI; 3104 } else { 3105 // Otherwise insert a placeholder and remember it so it can be inserted 3106 // when the function is parsed. 3107 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3108 if (FwdBBs.empty()) 3109 BasicBlockFwdRefQueue.push_back(Fn); 3110 if (FwdBBs.size() < BBID + 1) 3111 FwdBBs.resize(BBID + 1); 3112 if (!FwdBBs[BBID]) 3113 FwdBBs[BBID] = BasicBlock::Create(Context); 3114 BB = FwdBBs[BBID]; 3115 } 3116 V = BlockAddress::get(Fn, BB); 3117 break; 3118 } 3119 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3120 if (Record.size() < 2) 3121 return error("Invalid dso_local record"); 3122 unsigned GVTyID = Record[0]; 3123 Type *GVTy = getTypeByID(GVTyID); 3124 if (!GVTy) 3125 return error("Invalid dso_local record"); 3126 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3127 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3128 if (!GV) 3129 return error("Invalid dso_local record"); 3130 3131 V = DSOLocalEquivalent::get(GV); 3132 break; 3133 } 3134 case bitc::CST_CODE_NO_CFI_VALUE: { 3135 if (Record.size() < 2) 3136 return error("Invalid no_cfi record"); 3137 unsigned GVTyID = Record[0]; 3138 Type *GVTy = getTypeByID(GVTyID); 3139 if (!GVTy) 3140 return error("Invalid no_cfi record"); 3141 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3142 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3143 if (!GV) 3144 return error("Invalid no_cfi record"); 3145 V = NoCFIValue::get(GV); 3146 break; 3147 } 3148 } 3149 3150 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3151 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3152 return Err; 3153 ++NextCstNo; 3154 } 3155 } 3156 3157 Error BitcodeReader::parseUseLists() { 3158 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3159 return Err; 3160 3161 // Read all the records. 3162 SmallVector<uint64_t, 64> Record; 3163 3164 while (true) { 3165 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3166 if (!MaybeEntry) 3167 return MaybeEntry.takeError(); 3168 BitstreamEntry Entry = MaybeEntry.get(); 3169 3170 switch (Entry.Kind) { 3171 case BitstreamEntry::SubBlock: // Handled for us already. 3172 case BitstreamEntry::Error: 3173 return error("Malformed block"); 3174 case BitstreamEntry::EndBlock: 3175 return Error::success(); 3176 case BitstreamEntry::Record: 3177 // The interesting case. 3178 break; 3179 } 3180 3181 // Read a use list record. 3182 Record.clear(); 3183 bool IsBB = false; 3184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3185 if (!MaybeRecord) 3186 return MaybeRecord.takeError(); 3187 switch (MaybeRecord.get()) { 3188 default: // Default behavior: unknown type. 3189 break; 3190 case bitc::USELIST_CODE_BB: 3191 IsBB = true; 3192 LLVM_FALLTHROUGH; 3193 case bitc::USELIST_CODE_DEFAULT: { 3194 unsigned RecordLength = Record.size(); 3195 if (RecordLength < 3) 3196 // Records should have at least an ID and two indexes. 3197 return error("Invalid record"); 3198 unsigned ID = Record.pop_back_val(); 3199 3200 Value *V; 3201 if (IsBB) { 3202 assert(ID < FunctionBBs.size() && "Basic block not found"); 3203 V = FunctionBBs[ID]; 3204 } else 3205 V = ValueList[ID]; 3206 unsigned NumUses = 0; 3207 SmallDenseMap<const Use *, unsigned, 16> Order; 3208 for (const Use &U : V->materialized_uses()) { 3209 if (++NumUses > Record.size()) 3210 break; 3211 Order[&U] = Record[NumUses - 1]; 3212 } 3213 if (Order.size() != Record.size() || NumUses > Record.size()) 3214 // Mismatches can happen if the functions are being materialized lazily 3215 // (out-of-order), or a value has been upgraded. 3216 break; 3217 3218 V->sortUseList([&](const Use &L, const Use &R) { 3219 return Order.lookup(&L) < Order.lookup(&R); 3220 }); 3221 break; 3222 } 3223 } 3224 } 3225 } 3226 3227 /// When we see the block for metadata, remember where it is and then skip it. 3228 /// This lets us lazily deserialize the metadata. 3229 Error BitcodeReader::rememberAndSkipMetadata() { 3230 // Save the current stream state. 3231 uint64_t CurBit = Stream.GetCurrentBitNo(); 3232 DeferredMetadataInfo.push_back(CurBit); 3233 3234 // Skip over the block for now. 3235 if (Error Err = Stream.SkipBlock()) 3236 return Err; 3237 return Error::success(); 3238 } 3239 3240 Error BitcodeReader::materializeMetadata() { 3241 for (uint64_t BitPos : DeferredMetadataInfo) { 3242 // Move the bit stream to the saved position. 3243 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3244 return JumpFailed; 3245 if (Error Err = MDLoader->parseModuleMetadata()) 3246 return Err; 3247 } 3248 3249 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3250 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3251 // multiple times. 3252 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3253 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3254 NamedMDNode *LinkerOpts = 3255 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3256 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3257 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3258 } 3259 } 3260 3261 DeferredMetadataInfo.clear(); 3262 return Error::success(); 3263 } 3264 3265 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3266 3267 /// When we see the block for a function body, remember where it is and then 3268 /// skip it. This lets us lazily deserialize the functions. 3269 Error BitcodeReader::rememberAndSkipFunctionBody() { 3270 // Get the function we are talking about. 3271 if (FunctionsWithBodies.empty()) 3272 return error("Insufficient function protos"); 3273 3274 Function *Fn = FunctionsWithBodies.back(); 3275 FunctionsWithBodies.pop_back(); 3276 3277 // Save the current stream state. 3278 uint64_t CurBit = Stream.GetCurrentBitNo(); 3279 assert( 3280 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3281 "Mismatch between VST and scanned function offsets"); 3282 DeferredFunctionInfo[Fn] = CurBit; 3283 3284 // Skip over the function block for now. 3285 if (Error Err = Stream.SkipBlock()) 3286 return Err; 3287 return Error::success(); 3288 } 3289 3290 Error BitcodeReader::globalCleanup() { 3291 // Patch the initializers for globals and aliases up. 3292 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3293 return Err; 3294 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3295 return error("Malformed global initializer set"); 3296 3297 // Look for intrinsic functions which need to be upgraded at some point 3298 // and functions that need to have their function attributes upgraded. 3299 for (Function &F : *TheModule) { 3300 MDLoader->upgradeDebugIntrinsics(F); 3301 Function *NewFn; 3302 if (UpgradeIntrinsicFunction(&F, NewFn)) 3303 UpgradedIntrinsics[&F] = NewFn; 3304 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3305 // Some types could be renamed during loading if several modules are 3306 // loaded in the same LLVMContext (LTO scenario). In this case we should 3307 // remangle intrinsics names as well. 3308 RemangledIntrinsics[&F] = Remangled.getValue(); 3309 // Look for functions that rely on old function attribute behavior. 3310 UpgradeFunctionAttributes(F); 3311 } 3312 3313 // Look for global variables which need to be renamed. 3314 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3315 for (GlobalVariable &GV : TheModule->globals()) 3316 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3317 UpgradedVariables.emplace_back(&GV, Upgraded); 3318 for (auto &Pair : UpgradedVariables) { 3319 Pair.first->eraseFromParent(); 3320 TheModule->getGlobalList().push_back(Pair.second); 3321 } 3322 3323 // Force deallocation of memory for these vectors to favor the client that 3324 // want lazy deserialization. 3325 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3326 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3327 return Error::success(); 3328 } 3329 3330 /// Support for lazy parsing of function bodies. This is required if we 3331 /// either have an old bitcode file without a VST forward declaration record, 3332 /// or if we have an anonymous function being materialized, since anonymous 3333 /// functions do not have a name and are therefore not in the VST. 3334 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3335 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3336 return JumpFailed; 3337 3338 if (Stream.AtEndOfStream()) 3339 return error("Could not find function in stream"); 3340 3341 if (!SeenFirstFunctionBody) 3342 return error("Trying to materialize functions before seeing function blocks"); 3343 3344 // An old bitcode file with the symbol table at the end would have 3345 // finished the parse greedily. 3346 assert(SeenValueSymbolTable); 3347 3348 SmallVector<uint64_t, 64> Record; 3349 3350 while (true) { 3351 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3352 if (!MaybeEntry) 3353 return MaybeEntry.takeError(); 3354 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3355 3356 switch (Entry.Kind) { 3357 default: 3358 return error("Expect SubBlock"); 3359 case BitstreamEntry::SubBlock: 3360 switch (Entry.ID) { 3361 default: 3362 return error("Expect function block"); 3363 case bitc::FUNCTION_BLOCK_ID: 3364 if (Error Err = rememberAndSkipFunctionBody()) 3365 return Err; 3366 NextUnreadBit = Stream.GetCurrentBitNo(); 3367 return Error::success(); 3368 } 3369 } 3370 } 3371 } 3372 3373 Error BitcodeReaderBase::readBlockInfo() { 3374 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3375 Stream.ReadBlockInfoBlock(); 3376 if (!MaybeNewBlockInfo) 3377 return MaybeNewBlockInfo.takeError(); 3378 Optional<BitstreamBlockInfo> NewBlockInfo = 3379 std::move(MaybeNewBlockInfo.get()); 3380 if (!NewBlockInfo) 3381 return error("Malformed block"); 3382 BlockInfo = std::move(*NewBlockInfo); 3383 return Error::success(); 3384 } 3385 3386 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3387 // v1: [selection_kind, name] 3388 // v2: [strtab_offset, strtab_size, selection_kind] 3389 StringRef Name; 3390 std::tie(Name, Record) = readNameFromStrtab(Record); 3391 3392 if (Record.empty()) 3393 return error("Invalid record"); 3394 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3395 std::string OldFormatName; 3396 if (!UseStrtab) { 3397 if (Record.size() < 2) 3398 return error("Invalid record"); 3399 unsigned ComdatNameSize = Record[1]; 3400 if (ComdatNameSize > Record.size() - 2) 3401 return error("Comdat name size too large"); 3402 OldFormatName.reserve(ComdatNameSize); 3403 for (unsigned i = 0; i != ComdatNameSize; ++i) 3404 OldFormatName += (char)Record[2 + i]; 3405 Name = OldFormatName; 3406 } 3407 Comdat *C = TheModule->getOrInsertComdat(Name); 3408 C->setSelectionKind(SK); 3409 ComdatList.push_back(C); 3410 return Error::success(); 3411 } 3412 3413 static void inferDSOLocal(GlobalValue *GV) { 3414 // infer dso_local from linkage and visibility if it is not encoded. 3415 if (GV->hasLocalLinkage() || 3416 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3417 GV->setDSOLocal(true); 3418 } 3419 3420 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3421 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3422 // visibility, threadlocal, unnamed_addr, externally_initialized, 3423 // dllstorageclass, comdat, attributes, preemption specifier, 3424 // partition strtab offset, partition strtab size] (name in VST) 3425 // v2: [strtab_offset, strtab_size, v1] 3426 StringRef Name; 3427 std::tie(Name, Record) = readNameFromStrtab(Record); 3428 3429 if (Record.size() < 6) 3430 return error("Invalid record"); 3431 unsigned TyID = Record[0]; 3432 Type *Ty = getTypeByID(TyID); 3433 if (!Ty) 3434 return error("Invalid record"); 3435 bool isConstant = Record[1] & 1; 3436 bool explicitType = Record[1] & 2; 3437 unsigned AddressSpace; 3438 if (explicitType) { 3439 AddressSpace = Record[1] >> 2; 3440 } else { 3441 if (!Ty->isPointerTy()) 3442 return error("Invalid type for value"); 3443 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3444 TyID = getContainedTypeID(TyID); 3445 Ty = getTypeByID(TyID); 3446 if (!Ty) 3447 return error("Missing element type for old-style global"); 3448 } 3449 3450 uint64_t RawLinkage = Record[3]; 3451 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3452 MaybeAlign Alignment; 3453 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3454 return Err; 3455 std::string Section; 3456 if (Record[5]) { 3457 if (Record[5] - 1 >= SectionTable.size()) 3458 return error("Invalid ID"); 3459 Section = SectionTable[Record[5] - 1]; 3460 } 3461 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3462 // Local linkage must have default visibility. 3463 // auto-upgrade `hidden` and `protected` for old bitcode. 3464 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3465 Visibility = getDecodedVisibility(Record[6]); 3466 3467 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3468 if (Record.size() > 7) 3469 TLM = getDecodedThreadLocalMode(Record[7]); 3470 3471 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3472 if (Record.size() > 8) 3473 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3474 3475 bool ExternallyInitialized = false; 3476 if (Record.size() > 9) 3477 ExternallyInitialized = Record[9]; 3478 3479 GlobalVariable *NewGV = 3480 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3481 nullptr, TLM, AddressSpace, ExternallyInitialized); 3482 NewGV->setAlignment(Alignment); 3483 if (!Section.empty()) 3484 NewGV->setSection(Section); 3485 NewGV->setVisibility(Visibility); 3486 NewGV->setUnnamedAddr(UnnamedAddr); 3487 3488 if (Record.size() > 10) 3489 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3490 else 3491 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3492 3493 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3494 3495 // Remember which value to use for the global initializer. 3496 if (unsigned InitID = Record[2]) 3497 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3498 3499 if (Record.size() > 11) { 3500 if (unsigned ComdatID = Record[11]) { 3501 if (ComdatID > ComdatList.size()) 3502 return error("Invalid global variable comdat ID"); 3503 NewGV->setComdat(ComdatList[ComdatID - 1]); 3504 } 3505 } else if (hasImplicitComdat(RawLinkage)) { 3506 ImplicitComdatObjects.insert(NewGV); 3507 } 3508 3509 if (Record.size() > 12) { 3510 auto AS = getAttributes(Record[12]).getFnAttrs(); 3511 NewGV->setAttributes(AS); 3512 } 3513 3514 if (Record.size() > 13) { 3515 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3516 } 3517 inferDSOLocal(NewGV); 3518 3519 // Check whether we have enough values to read a partition name. 3520 if (Record.size() > 15) 3521 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3522 3523 return Error::success(); 3524 } 3525 3526 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3527 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3528 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3529 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3530 // v2: [strtab_offset, strtab_size, v1] 3531 StringRef Name; 3532 std::tie(Name, Record) = readNameFromStrtab(Record); 3533 3534 if (Record.size() < 8) 3535 return error("Invalid record"); 3536 unsigned FTyID = Record[0]; 3537 Type *FTy = getTypeByID(FTyID); 3538 if (!FTy) 3539 return error("Invalid record"); 3540 if (isa<PointerType>(FTy)) { 3541 FTyID = getContainedTypeID(FTyID, 0); 3542 FTy = getTypeByID(FTyID); 3543 if (!FTy) 3544 return error("Missing element type for old-style function"); 3545 } 3546 3547 if (!isa<FunctionType>(FTy)) 3548 return error("Invalid type for value"); 3549 auto CC = static_cast<CallingConv::ID>(Record[1]); 3550 if (CC & ~CallingConv::MaxID) 3551 return error("Invalid calling convention ID"); 3552 3553 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3554 if (Record.size() > 16) 3555 AddrSpace = Record[16]; 3556 3557 Function *Func = 3558 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3559 AddrSpace, Name, TheModule); 3560 3561 assert(Func->getFunctionType() == FTy && 3562 "Incorrect fully specified type provided for function"); 3563 FunctionTypeIDs[Func] = FTyID; 3564 3565 Func->setCallingConv(CC); 3566 bool isProto = Record[2]; 3567 uint64_t RawLinkage = Record[3]; 3568 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3569 Func->setAttributes(getAttributes(Record[4])); 3570 3571 // Upgrade any old-style byval or sret without a type by propagating the 3572 // argument's pointee type. There should be no opaque pointers where the byval 3573 // type is implicit. 3574 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3575 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3576 Attribute::InAlloca}) { 3577 if (!Func->hasParamAttribute(i, Kind)) 3578 continue; 3579 3580 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3581 continue; 3582 3583 Func->removeParamAttr(i, Kind); 3584 3585 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3586 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3587 if (!PtrEltTy) 3588 return error("Missing param element type for attribute upgrade"); 3589 3590 Attribute NewAttr; 3591 switch (Kind) { 3592 case Attribute::ByVal: 3593 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3594 break; 3595 case Attribute::StructRet: 3596 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3597 break; 3598 case Attribute::InAlloca: 3599 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3600 break; 3601 default: 3602 llvm_unreachable("not an upgraded type attribute"); 3603 } 3604 3605 Func->addParamAttr(i, NewAttr); 3606 } 3607 } 3608 3609 if (Func->getCallingConv() == CallingConv::X86_INTR && 3610 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 3611 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 3612 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 3613 if (!ByValTy) 3614 return error("Missing param element type for x86_intrcc upgrade"); 3615 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 3616 Func->addParamAttr(0, NewAttr); 3617 } 3618 3619 MaybeAlign Alignment; 3620 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3621 return Err; 3622 Func->setAlignment(Alignment); 3623 if (Record[6]) { 3624 if (Record[6] - 1 >= SectionTable.size()) 3625 return error("Invalid ID"); 3626 Func->setSection(SectionTable[Record[6] - 1]); 3627 } 3628 // Local linkage must have default visibility. 3629 // auto-upgrade `hidden` and `protected` for old bitcode. 3630 if (!Func->hasLocalLinkage()) 3631 Func->setVisibility(getDecodedVisibility(Record[7])); 3632 if (Record.size() > 8 && Record[8]) { 3633 if (Record[8] - 1 >= GCTable.size()) 3634 return error("Invalid ID"); 3635 Func->setGC(GCTable[Record[8] - 1]); 3636 } 3637 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3638 if (Record.size() > 9) 3639 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3640 Func->setUnnamedAddr(UnnamedAddr); 3641 3642 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3643 if (Record.size() > 10) 3644 OperandInfo.Prologue = Record[10]; 3645 3646 if (Record.size() > 11) 3647 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3648 else 3649 upgradeDLLImportExportLinkage(Func, RawLinkage); 3650 3651 if (Record.size() > 12) { 3652 if (unsigned ComdatID = Record[12]) { 3653 if (ComdatID > ComdatList.size()) 3654 return error("Invalid function comdat ID"); 3655 Func->setComdat(ComdatList[ComdatID - 1]); 3656 } 3657 } else if (hasImplicitComdat(RawLinkage)) { 3658 ImplicitComdatObjects.insert(Func); 3659 } 3660 3661 if (Record.size() > 13) 3662 OperandInfo.Prefix = Record[13]; 3663 3664 if (Record.size() > 14) 3665 OperandInfo.PersonalityFn = Record[14]; 3666 3667 if (Record.size() > 15) { 3668 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3669 } 3670 inferDSOLocal(Func); 3671 3672 // Record[16] is the address space number. 3673 3674 // Check whether we have enough values to read a partition name. Also make 3675 // sure Strtab has enough values. 3676 if (Record.size() > 18 && Strtab.data() && 3677 Record[17] + Record[18] <= Strtab.size()) { 3678 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3679 } 3680 3681 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 3682 3683 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3684 FunctionOperands.push_back(OperandInfo); 3685 3686 // If this is a function with a body, remember the prototype we are 3687 // creating now, so that we can match up the body with them later. 3688 if (!isProto) { 3689 Func->setIsMaterializable(true); 3690 FunctionsWithBodies.push_back(Func); 3691 DeferredFunctionInfo[Func] = 0; 3692 } 3693 return Error::success(); 3694 } 3695 3696 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3697 unsigned BitCode, ArrayRef<uint64_t> Record) { 3698 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3699 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3700 // dllstorageclass, threadlocal, unnamed_addr, 3701 // preemption specifier] (name in VST) 3702 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3703 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3704 // preemption specifier] (name in VST) 3705 // v2: [strtab_offset, strtab_size, v1] 3706 StringRef Name; 3707 std::tie(Name, Record) = readNameFromStrtab(Record); 3708 3709 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3710 if (Record.size() < (3 + (unsigned)NewRecord)) 3711 return error("Invalid record"); 3712 unsigned OpNum = 0; 3713 unsigned TypeID = Record[OpNum++]; 3714 Type *Ty = getTypeByID(TypeID); 3715 if (!Ty) 3716 return error("Invalid record"); 3717 3718 unsigned AddrSpace; 3719 if (!NewRecord) { 3720 auto *PTy = dyn_cast<PointerType>(Ty); 3721 if (!PTy) 3722 return error("Invalid type for value"); 3723 AddrSpace = PTy->getAddressSpace(); 3724 TypeID = getContainedTypeID(TypeID); 3725 Ty = getTypeByID(TypeID); 3726 if (!Ty) 3727 return error("Missing element type for old-style indirect symbol"); 3728 } else { 3729 AddrSpace = Record[OpNum++]; 3730 } 3731 3732 auto Val = Record[OpNum++]; 3733 auto Linkage = Record[OpNum++]; 3734 GlobalValue *NewGA; 3735 if (BitCode == bitc::MODULE_CODE_ALIAS || 3736 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3737 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3738 TheModule); 3739 else 3740 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3741 nullptr, TheModule); 3742 3743 // Local linkage must have default visibility. 3744 // auto-upgrade `hidden` and `protected` for old bitcode. 3745 if (OpNum != Record.size()) { 3746 auto VisInd = OpNum++; 3747 if (!NewGA->hasLocalLinkage()) 3748 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3749 } 3750 if (BitCode == bitc::MODULE_CODE_ALIAS || 3751 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3752 if (OpNum != Record.size()) 3753 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3754 else 3755 upgradeDLLImportExportLinkage(NewGA, Linkage); 3756 if (OpNum != Record.size()) 3757 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3758 if (OpNum != Record.size()) 3759 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3760 } 3761 if (OpNum != Record.size()) 3762 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3763 inferDSOLocal(NewGA); 3764 3765 // Check whether we have enough values to read a partition name. 3766 if (OpNum + 1 < Record.size()) { 3767 NewGA->setPartition( 3768 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3769 OpNum += 2; 3770 } 3771 3772 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 3773 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3774 return Error::success(); 3775 } 3776 3777 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3778 bool ShouldLazyLoadMetadata, 3779 DataLayoutCallbackTy DataLayoutCallback) { 3780 if (ResumeBit) { 3781 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3782 return JumpFailed; 3783 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3784 return Err; 3785 3786 SmallVector<uint64_t, 64> Record; 3787 3788 // Parts of bitcode parsing depend on the datalayout. Make sure we 3789 // finalize the datalayout before we run any of that code. 3790 bool ResolvedDataLayout = false; 3791 auto ResolveDataLayout = [&] { 3792 if (ResolvedDataLayout) 3793 return; 3794 3795 // datalayout and triple can't be parsed after this point. 3796 ResolvedDataLayout = true; 3797 3798 // Upgrade data layout string. 3799 std::string DL = llvm::UpgradeDataLayoutString( 3800 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3801 TheModule->setDataLayout(DL); 3802 3803 if (auto LayoutOverride = 3804 DataLayoutCallback(TheModule->getTargetTriple())) 3805 TheModule->setDataLayout(*LayoutOverride); 3806 }; 3807 3808 // Read all the records for this module. 3809 while (true) { 3810 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3811 if (!MaybeEntry) 3812 return MaybeEntry.takeError(); 3813 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3814 3815 switch (Entry.Kind) { 3816 case BitstreamEntry::Error: 3817 return error("Malformed block"); 3818 case BitstreamEntry::EndBlock: 3819 ResolveDataLayout(); 3820 return globalCleanup(); 3821 3822 case BitstreamEntry::SubBlock: 3823 switch (Entry.ID) { 3824 default: // Skip unknown content. 3825 if (Error Err = Stream.SkipBlock()) 3826 return Err; 3827 break; 3828 case bitc::BLOCKINFO_BLOCK_ID: 3829 if (Error Err = readBlockInfo()) 3830 return Err; 3831 break; 3832 case bitc::PARAMATTR_BLOCK_ID: 3833 if (Error Err = parseAttributeBlock()) 3834 return Err; 3835 break; 3836 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3837 if (Error Err = parseAttributeGroupBlock()) 3838 return Err; 3839 break; 3840 case bitc::TYPE_BLOCK_ID_NEW: 3841 if (Error Err = parseTypeTable()) 3842 return Err; 3843 break; 3844 case bitc::VALUE_SYMTAB_BLOCK_ID: 3845 if (!SeenValueSymbolTable) { 3846 // Either this is an old form VST without function index and an 3847 // associated VST forward declaration record (which would have caused 3848 // the VST to be jumped to and parsed before it was encountered 3849 // normally in the stream), or there were no function blocks to 3850 // trigger an earlier parsing of the VST. 3851 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3852 if (Error Err = parseValueSymbolTable()) 3853 return Err; 3854 SeenValueSymbolTable = true; 3855 } else { 3856 // We must have had a VST forward declaration record, which caused 3857 // the parser to jump to and parse the VST earlier. 3858 assert(VSTOffset > 0); 3859 if (Error Err = Stream.SkipBlock()) 3860 return Err; 3861 } 3862 break; 3863 case bitc::CONSTANTS_BLOCK_ID: 3864 if (Error Err = parseConstants()) 3865 return Err; 3866 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3867 return Err; 3868 break; 3869 case bitc::METADATA_BLOCK_ID: 3870 if (ShouldLazyLoadMetadata) { 3871 if (Error Err = rememberAndSkipMetadata()) 3872 return Err; 3873 break; 3874 } 3875 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3876 if (Error Err = MDLoader->parseModuleMetadata()) 3877 return Err; 3878 break; 3879 case bitc::METADATA_KIND_BLOCK_ID: 3880 if (Error Err = MDLoader->parseMetadataKinds()) 3881 return Err; 3882 break; 3883 case bitc::FUNCTION_BLOCK_ID: 3884 ResolveDataLayout(); 3885 3886 // If this is the first function body we've seen, reverse the 3887 // FunctionsWithBodies list. 3888 if (!SeenFirstFunctionBody) { 3889 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3890 if (Error Err = globalCleanup()) 3891 return Err; 3892 SeenFirstFunctionBody = true; 3893 } 3894 3895 if (VSTOffset > 0) { 3896 // If we have a VST forward declaration record, make sure we 3897 // parse the VST now if we haven't already. It is needed to 3898 // set up the DeferredFunctionInfo vector for lazy reading. 3899 if (!SeenValueSymbolTable) { 3900 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3901 return Err; 3902 SeenValueSymbolTable = true; 3903 // Fall through so that we record the NextUnreadBit below. 3904 // This is necessary in case we have an anonymous function that 3905 // is later materialized. Since it will not have a VST entry we 3906 // need to fall back to the lazy parse to find its offset. 3907 } else { 3908 // If we have a VST forward declaration record, but have already 3909 // parsed the VST (just above, when the first function body was 3910 // encountered here), then we are resuming the parse after 3911 // materializing functions. The ResumeBit points to the 3912 // start of the last function block recorded in the 3913 // DeferredFunctionInfo map. Skip it. 3914 if (Error Err = Stream.SkipBlock()) 3915 return Err; 3916 continue; 3917 } 3918 } 3919 3920 // Support older bitcode files that did not have the function 3921 // index in the VST, nor a VST forward declaration record, as 3922 // well as anonymous functions that do not have VST entries. 3923 // Build the DeferredFunctionInfo vector on the fly. 3924 if (Error Err = rememberAndSkipFunctionBody()) 3925 return Err; 3926 3927 // Suspend parsing when we reach the function bodies. Subsequent 3928 // materialization calls will resume it when necessary. If the bitcode 3929 // file is old, the symbol table will be at the end instead and will not 3930 // have been seen yet. In this case, just finish the parse now. 3931 if (SeenValueSymbolTable) { 3932 NextUnreadBit = Stream.GetCurrentBitNo(); 3933 // After the VST has been parsed, we need to make sure intrinsic name 3934 // are auto-upgraded. 3935 return globalCleanup(); 3936 } 3937 break; 3938 case bitc::USELIST_BLOCK_ID: 3939 if (Error Err = parseUseLists()) 3940 return Err; 3941 break; 3942 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3943 if (Error Err = parseOperandBundleTags()) 3944 return Err; 3945 break; 3946 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3947 if (Error Err = parseSyncScopeNames()) 3948 return Err; 3949 break; 3950 } 3951 continue; 3952 3953 case BitstreamEntry::Record: 3954 // The interesting case. 3955 break; 3956 } 3957 3958 // Read a record. 3959 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3960 if (!MaybeBitCode) 3961 return MaybeBitCode.takeError(); 3962 switch (unsigned BitCode = MaybeBitCode.get()) { 3963 default: break; // Default behavior, ignore unknown content. 3964 case bitc::MODULE_CODE_VERSION: { 3965 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3966 if (!VersionOrErr) 3967 return VersionOrErr.takeError(); 3968 UseRelativeIDs = *VersionOrErr >= 1; 3969 break; 3970 } 3971 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3972 if (ResolvedDataLayout) 3973 return error("target triple too late in module"); 3974 std::string S; 3975 if (convertToString(Record, 0, S)) 3976 return error("Invalid record"); 3977 TheModule->setTargetTriple(S); 3978 break; 3979 } 3980 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3981 if (ResolvedDataLayout) 3982 return error("datalayout too late in module"); 3983 std::string S; 3984 if (convertToString(Record, 0, S)) 3985 return error("Invalid record"); 3986 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3987 if (!MaybeDL) 3988 return MaybeDL.takeError(); 3989 TheModule->setDataLayout(MaybeDL.get()); 3990 break; 3991 } 3992 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3993 std::string S; 3994 if (convertToString(Record, 0, S)) 3995 return error("Invalid record"); 3996 TheModule->setModuleInlineAsm(S); 3997 break; 3998 } 3999 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4000 // Deprecated, but still needed to read old bitcode files. 4001 std::string S; 4002 if (convertToString(Record, 0, S)) 4003 return error("Invalid record"); 4004 // Ignore value. 4005 break; 4006 } 4007 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4008 std::string S; 4009 if (convertToString(Record, 0, S)) 4010 return error("Invalid record"); 4011 SectionTable.push_back(S); 4012 break; 4013 } 4014 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4015 std::string S; 4016 if (convertToString(Record, 0, S)) 4017 return error("Invalid record"); 4018 GCTable.push_back(S); 4019 break; 4020 } 4021 case bitc::MODULE_CODE_COMDAT: 4022 if (Error Err = parseComdatRecord(Record)) 4023 return Err; 4024 break; 4025 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4026 // written by ThinLinkBitcodeWriter. See 4027 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4028 // record 4029 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4030 case bitc::MODULE_CODE_GLOBALVAR: 4031 if (Error Err = parseGlobalVarRecord(Record)) 4032 return Err; 4033 break; 4034 case bitc::MODULE_CODE_FUNCTION: 4035 ResolveDataLayout(); 4036 if (Error Err = parseFunctionRecord(Record)) 4037 return Err; 4038 break; 4039 case bitc::MODULE_CODE_IFUNC: 4040 case bitc::MODULE_CODE_ALIAS: 4041 case bitc::MODULE_CODE_ALIAS_OLD: 4042 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4043 return Err; 4044 break; 4045 /// MODULE_CODE_VSTOFFSET: [offset] 4046 case bitc::MODULE_CODE_VSTOFFSET: 4047 if (Record.empty()) 4048 return error("Invalid record"); 4049 // Note that we subtract 1 here because the offset is relative to one word 4050 // before the start of the identification or module block, which was 4051 // historically always the start of the regular bitcode header. 4052 VSTOffset = Record[0] - 1; 4053 break; 4054 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4055 case bitc::MODULE_CODE_SOURCE_FILENAME: 4056 SmallString<128> ValueName; 4057 if (convertToString(Record, 0, ValueName)) 4058 return error("Invalid record"); 4059 TheModule->setSourceFileName(ValueName); 4060 break; 4061 } 4062 Record.clear(); 4063 } 4064 } 4065 4066 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4067 bool IsImporting, 4068 DataLayoutCallbackTy DataLayoutCallback) { 4069 TheModule = M; 4070 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4071 [&](unsigned ID) { return getTypeByID(ID); }); 4072 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4073 } 4074 4075 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4076 if (!isa<PointerType>(PtrType)) 4077 return error("Load/Store operand is not a pointer type"); 4078 4079 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4080 return error("Explicit load/store type does not match pointee " 4081 "type of pointer operand"); 4082 if (!PointerType::isLoadableOrStorableType(ValType)) 4083 return error("Cannot load/store from pointer"); 4084 return Error::success(); 4085 } 4086 4087 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4088 ArrayRef<unsigned> ArgTyIDs) { 4089 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4090 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4091 Attribute::InAlloca}) { 4092 if (!CB->paramHasAttr(i, Kind) || 4093 CB->getParamAttr(i, Kind).getValueAsType()) 4094 continue; 4095 4096 CB->removeParamAttr(i, Kind); 4097 4098 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4099 if (!PtrEltTy) 4100 return error("Missing element type for typed attribute upgrade"); 4101 4102 Attribute NewAttr; 4103 switch (Kind) { 4104 case Attribute::ByVal: 4105 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4106 break; 4107 case Attribute::StructRet: 4108 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4109 break; 4110 case Attribute::InAlloca: 4111 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4112 break; 4113 default: 4114 llvm_unreachable("not an upgraded type attribute"); 4115 } 4116 4117 CB->addParamAttr(i, NewAttr); 4118 } 4119 } 4120 4121 if (CB->isInlineAsm()) { 4122 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4123 unsigned ArgNo = 0; 4124 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4125 if (!CI.hasArg()) 4126 continue; 4127 4128 if (CI.isIndirect && !CB->getParamElementType(ArgNo)) { 4129 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4130 if (!ElemTy) 4131 return error("Missing element type for inline asm upgrade"); 4132 CB->addParamAttr( 4133 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 4134 } 4135 4136 ArgNo++; 4137 } 4138 } 4139 4140 switch (CB->getIntrinsicID()) { 4141 case Intrinsic::preserve_array_access_index: 4142 case Intrinsic::preserve_struct_access_index: 4143 if (!CB->getParamElementType(0)) { 4144 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[0]); 4145 if (!ElTy) 4146 return error("Missing element type for elementtype upgrade"); 4147 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4148 CB->addParamAttr(0, NewAttr); 4149 } 4150 break; 4151 default: 4152 break; 4153 } 4154 4155 return Error::success(); 4156 } 4157 4158 /// Lazily parse the specified function body block. 4159 Error BitcodeReader::parseFunctionBody(Function *F) { 4160 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4161 return Err; 4162 4163 // Unexpected unresolved metadata when parsing function. 4164 if (MDLoader->hasFwdRefs()) 4165 return error("Invalid function metadata: incoming forward references"); 4166 4167 InstructionList.clear(); 4168 unsigned ModuleValueListSize = ValueList.size(); 4169 unsigned ModuleMDLoaderSize = MDLoader->size(); 4170 4171 // Add all the function arguments to the value table. 4172 unsigned ArgNo = 0; 4173 unsigned FTyID = FunctionTypeIDs[F]; 4174 for (Argument &I : F->args()) { 4175 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4176 assert(I.getType() == getTypeByID(ArgTyID) && 4177 "Incorrect fully specified type for Function Argument"); 4178 ValueList.push_back(&I, ArgTyID); 4179 ++ArgNo; 4180 } 4181 unsigned NextValueNo = ValueList.size(); 4182 BasicBlock *CurBB = nullptr; 4183 unsigned CurBBNo = 0; 4184 4185 DebugLoc LastLoc; 4186 auto getLastInstruction = [&]() -> Instruction * { 4187 if (CurBB && !CurBB->empty()) 4188 return &CurBB->back(); 4189 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4190 !FunctionBBs[CurBBNo - 1]->empty()) 4191 return &FunctionBBs[CurBBNo - 1]->back(); 4192 return nullptr; 4193 }; 4194 4195 std::vector<OperandBundleDef> OperandBundles; 4196 4197 // Read all the records. 4198 SmallVector<uint64_t, 64> Record; 4199 4200 while (true) { 4201 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4202 if (!MaybeEntry) 4203 return MaybeEntry.takeError(); 4204 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4205 4206 switch (Entry.Kind) { 4207 case BitstreamEntry::Error: 4208 return error("Malformed block"); 4209 case BitstreamEntry::EndBlock: 4210 goto OutOfRecordLoop; 4211 4212 case BitstreamEntry::SubBlock: 4213 switch (Entry.ID) { 4214 default: // Skip unknown content. 4215 if (Error Err = Stream.SkipBlock()) 4216 return Err; 4217 break; 4218 case bitc::CONSTANTS_BLOCK_ID: 4219 if (Error Err = parseConstants()) 4220 return Err; 4221 NextValueNo = ValueList.size(); 4222 break; 4223 case bitc::VALUE_SYMTAB_BLOCK_ID: 4224 if (Error Err = parseValueSymbolTable()) 4225 return Err; 4226 break; 4227 case bitc::METADATA_ATTACHMENT_ID: 4228 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4229 return Err; 4230 break; 4231 case bitc::METADATA_BLOCK_ID: 4232 assert(DeferredMetadataInfo.empty() && 4233 "Must read all module-level metadata before function-level"); 4234 if (Error Err = MDLoader->parseFunctionMetadata()) 4235 return Err; 4236 break; 4237 case bitc::USELIST_BLOCK_ID: 4238 if (Error Err = parseUseLists()) 4239 return Err; 4240 break; 4241 } 4242 continue; 4243 4244 case BitstreamEntry::Record: 4245 // The interesting case. 4246 break; 4247 } 4248 4249 // Read a record. 4250 Record.clear(); 4251 Instruction *I = nullptr; 4252 unsigned ResTypeID = InvalidTypeID; 4253 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4254 if (!MaybeBitCode) 4255 return MaybeBitCode.takeError(); 4256 switch (unsigned BitCode = MaybeBitCode.get()) { 4257 default: // Default behavior: reject 4258 return error("Invalid value"); 4259 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4260 if (Record.empty() || Record[0] == 0) 4261 return error("Invalid record"); 4262 // Create all the basic blocks for the function. 4263 FunctionBBs.resize(Record[0]); 4264 4265 // See if anything took the address of blocks in this function. 4266 auto BBFRI = BasicBlockFwdRefs.find(F); 4267 if (BBFRI == BasicBlockFwdRefs.end()) { 4268 for (BasicBlock *&BB : FunctionBBs) 4269 BB = BasicBlock::Create(Context, "", F); 4270 } else { 4271 auto &BBRefs = BBFRI->second; 4272 // Check for invalid basic block references. 4273 if (BBRefs.size() > FunctionBBs.size()) 4274 return error("Invalid ID"); 4275 assert(!BBRefs.empty() && "Unexpected empty array"); 4276 assert(!BBRefs.front() && "Invalid reference to entry block"); 4277 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4278 ++I) 4279 if (I < RE && BBRefs[I]) { 4280 BBRefs[I]->insertInto(F); 4281 FunctionBBs[I] = BBRefs[I]; 4282 } else { 4283 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4284 } 4285 4286 // Erase from the table. 4287 BasicBlockFwdRefs.erase(BBFRI); 4288 } 4289 4290 CurBB = FunctionBBs[0]; 4291 continue; 4292 } 4293 4294 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4295 // This record indicates that the last instruction is at the same 4296 // location as the previous instruction with a location. 4297 I = getLastInstruction(); 4298 4299 if (!I) 4300 return error("Invalid record"); 4301 I->setDebugLoc(LastLoc); 4302 I = nullptr; 4303 continue; 4304 4305 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4306 I = getLastInstruction(); 4307 if (!I || Record.size() < 4) 4308 return error("Invalid record"); 4309 4310 unsigned Line = Record[0], Col = Record[1]; 4311 unsigned ScopeID = Record[2], IAID = Record[3]; 4312 bool isImplicitCode = Record.size() == 5 && Record[4]; 4313 4314 MDNode *Scope = nullptr, *IA = nullptr; 4315 if (ScopeID) { 4316 Scope = dyn_cast_or_null<MDNode>( 4317 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4318 if (!Scope) 4319 return error("Invalid record"); 4320 } 4321 if (IAID) { 4322 IA = dyn_cast_or_null<MDNode>( 4323 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4324 if (!IA) 4325 return error("Invalid record"); 4326 } 4327 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4328 isImplicitCode); 4329 I->setDebugLoc(LastLoc); 4330 I = nullptr; 4331 continue; 4332 } 4333 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4334 unsigned OpNum = 0; 4335 Value *LHS; 4336 unsigned TypeID; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4338 OpNum+1 > Record.size()) 4339 return error("Invalid record"); 4340 4341 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4342 if (Opc == -1) 4343 return error("Invalid record"); 4344 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4345 ResTypeID = TypeID; 4346 InstructionList.push_back(I); 4347 if (OpNum < Record.size()) { 4348 if (isa<FPMathOperator>(I)) { 4349 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4350 if (FMF.any()) 4351 I->setFastMathFlags(FMF); 4352 } 4353 } 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4357 unsigned OpNum = 0; 4358 Value *LHS, *RHS; 4359 unsigned TypeID; 4360 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4361 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) || 4362 OpNum+1 > Record.size()) 4363 return error("Invalid record"); 4364 4365 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4366 if (Opc == -1) 4367 return error("Invalid record"); 4368 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4369 ResTypeID = TypeID; 4370 InstructionList.push_back(I); 4371 if (OpNum < Record.size()) { 4372 if (Opc == Instruction::Add || 4373 Opc == Instruction::Sub || 4374 Opc == Instruction::Mul || 4375 Opc == Instruction::Shl) { 4376 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4377 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4378 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4379 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4380 } else if (Opc == Instruction::SDiv || 4381 Opc == Instruction::UDiv || 4382 Opc == Instruction::LShr || 4383 Opc == Instruction::AShr) { 4384 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4385 cast<BinaryOperator>(I)->setIsExact(true); 4386 } else if (isa<FPMathOperator>(I)) { 4387 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4388 if (FMF.any()) 4389 I->setFastMathFlags(FMF); 4390 } 4391 4392 } 4393 break; 4394 } 4395 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4396 unsigned OpNum = 0; 4397 Value *Op; 4398 unsigned OpTypeID; 4399 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 4400 OpNum+2 != Record.size()) 4401 return error("Invalid record"); 4402 4403 ResTypeID = Record[OpNum]; 4404 Type *ResTy = getTypeByID(ResTypeID); 4405 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4406 if (Opc == -1 || !ResTy) 4407 return error("Invalid record"); 4408 Instruction *Temp = nullptr; 4409 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4410 if (Temp) { 4411 InstructionList.push_back(Temp); 4412 assert(CurBB && "No current BB?"); 4413 CurBB->getInstList().push_back(Temp); 4414 } 4415 } else { 4416 auto CastOp = (Instruction::CastOps)Opc; 4417 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4418 return error("Invalid cast"); 4419 I = CastInst::Create(CastOp, Op, ResTy); 4420 } 4421 InstructionList.push_back(I); 4422 break; 4423 } 4424 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4425 case bitc::FUNC_CODE_INST_GEP_OLD: 4426 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4427 unsigned OpNum = 0; 4428 4429 unsigned TyID; 4430 Type *Ty; 4431 bool InBounds; 4432 4433 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4434 InBounds = Record[OpNum++]; 4435 TyID = Record[OpNum++]; 4436 Ty = getTypeByID(TyID); 4437 } else { 4438 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4439 TyID = InvalidTypeID; 4440 Ty = nullptr; 4441 } 4442 4443 Value *BasePtr; 4444 unsigned BasePtrTypeID; 4445 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID)) 4446 return error("Invalid record"); 4447 4448 if (!Ty) { 4449 TyID = getContainedTypeID(BasePtrTypeID); 4450 if (BasePtr->getType()->isVectorTy()) 4451 TyID = getContainedTypeID(TyID); 4452 Ty = getTypeByID(TyID); 4453 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4454 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4455 return error( 4456 "Explicit gep type does not match pointee type of pointer operand"); 4457 } 4458 4459 SmallVector<Value*, 16> GEPIdx; 4460 while (OpNum != Record.size()) { 4461 Value *Op; 4462 unsigned OpTypeID; 4463 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4464 return error("Invalid record"); 4465 GEPIdx.push_back(Op); 4466 } 4467 4468 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4469 4470 ResTypeID = TyID; 4471 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4472 auto GTI = std::next(gep_type_begin(I)); 4473 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4474 unsigned SubType = 0; 4475 if (GTI.isStruct()) { 4476 ConstantInt *IdxC = 4477 Idx->getType()->isVectorTy() 4478 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4479 : cast<ConstantInt>(Idx); 4480 SubType = IdxC->getZExtValue(); 4481 } 4482 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4483 ++GTI; 4484 } 4485 } 4486 4487 // At this point ResTypeID is the result element type. We need a pointer 4488 // or vector of pointer to it. 4489 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4490 if (I->getType()->isVectorTy()) 4491 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4492 4493 InstructionList.push_back(I); 4494 if (InBounds) 4495 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4496 break; 4497 } 4498 4499 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4500 // EXTRACTVAL: [opty, opval, n x indices] 4501 unsigned OpNum = 0; 4502 Value *Agg; 4503 unsigned AggTypeID; 4504 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4505 return error("Invalid record"); 4506 Type *Ty = Agg->getType(); 4507 4508 unsigned RecSize = Record.size(); 4509 if (OpNum == RecSize) 4510 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4511 4512 SmallVector<unsigned, 4> EXTRACTVALIdx; 4513 ResTypeID = AggTypeID; 4514 for (; OpNum != RecSize; ++OpNum) { 4515 bool IsArray = Ty->isArrayTy(); 4516 bool IsStruct = Ty->isStructTy(); 4517 uint64_t Index = Record[OpNum]; 4518 4519 if (!IsStruct && !IsArray) 4520 return error("EXTRACTVAL: Invalid type"); 4521 if ((unsigned)Index != Index) 4522 return error("Invalid value"); 4523 if (IsStruct && Index >= Ty->getStructNumElements()) 4524 return error("EXTRACTVAL: Invalid struct index"); 4525 if (IsArray && Index >= Ty->getArrayNumElements()) 4526 return error("EXTRACTVAL: Invalid array index"); 4527 EXTRACTVALIdx.push_back((unsigned)Index); 4528 4529 if (IsStruct) { 4530 Ty = Ty->getStructElementType(Index); 4531 ResTypeID = getContainedTypeID(ResTypeID, Index); 4532 } else { 4533 Ty = Ty->getArrayElementType(); 4534 ResTypeID = getContainedTypeID(ResTypeID); 4535 } 4536 } 4537 4538 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4539 InstructionList.push_back(I); 4540 break; 4541 } 4542 4543 case bitc::FUNC_CODE_INST_INSERTVAL: { 4544 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4545 unsigned OpNum = 0; 4546 Value *Agg; 4547 unsigned AggTypeID; 4548 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4549 return error("Invalid record"); 4550 Value *Val; 4551 unsigned ValTypeID; 4552 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 4553 return error("Invalid record"); 4554 4555 unsigned RecSize = Record.size(); 4556 if (OpNum == RecSize) 4557 return error("INSERTVAL: Invalid instruction with 0 indices"); 4558 4559 SmallVector<unsigned, 4> INSERTVALIdx; 4560 Type *CurTy = Agg->getType(); 4561 for (; OpNum != RecSize; ++OpNum) { 4562 bool IsArray = CurTy->isArrayTy(); 4563 bool IsStruct = CurTy->isStructTy(); 4564 uint64_t Index = Record[OpNum]; 4565 4566 if (!IsStruct && !IsArray) 4567 return error("INSERTVAL: Invalid type"); 4568 if ((unsigned)Index != Index) 4569 return error("Invalid value"); 4570 if (IsStruct && Index >= CurTy->getStructNumElements()) 4571 return error("INSERTVAL: Invalid struct index"); 4572 if (IsArray && Index >= CurTy->getArrayNumElements()) 4573 return error("INSERTVAL: Invalid array index"); 4574 4575 INSERTVALIdx.push_back((unsigned)Index); 4576 if (IsStruct) 4577 CurTy = CurTy->getStructElementType(Index); 4578 else 4579 CurTy = CurTy->getArrayElementType(); 4580 } 4581 4582 if (CurTy != Val->getType()) 4583 return error("Inserted value type doesn't match aggregate type"); 4584 4585 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4586 ResTypeID = AggTypeID; 4587 InstructionList.push_back(I); 4588 break; 4589 } 4590 4591 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4592 // obsolete form of select 4593 // handles select i1 ... in old bitcode 4594 unsigned OpNum = 0; 4595 Value *TrueVal, *FalseVal, *Cond; 4596 unsigned TypeID; 4597 Type *CondType = Type::getInt1Ty(Context); 4598 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) || 4599 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4600 FalseVal) || 4601 popValue(Record, OpNum, NextValueNo, CondType, 4602 getVirtualTypeID(CondType), Cond)) 4603 return error("Invalid record"); 4604 4605 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4606 ResTypeID = TypeID; 4607 InstructionList.push_back(I); 4608 break; 4609 } 4610 4611 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4612 // new form of select 4613 // handles select i1 or select [N x i1] 4614 unsigned OpNum = 0; 4615 Value *TrueVal, *FalseVal, *Cond; 4616 unsigned ValTypeID, CondTypeID; 4617 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) || 4618 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4619 FalseVal) || 4620 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID)) 4621 return error("Invalid record"); 4622 4623 // select condition can be either i1 or [N x i1] 4624 if (VectorType* vector_type = 4625 dyn_cast<VectorType>(Cond->getType())) { 4626 // expect <n x i1> 4627 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4628 return error("Invalid type for value"); 4629 } else { 4630 // expect i1 4631 if (Cond->getType() != Type::getInt1Ty(Context)) 4632 return error("Invalid type for value"); 4633 } 4634 4635 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4636 ResTypeID = ValTypeID; 4637 InstructionList.push_back(I); 4638 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4639 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4640 if (FMF.any()) 4641 I->setFastMathFlags(FMF); 4642 } 4643 break; 4644 } 4645 4646 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4647 unsigned OpNum = 0; 4648 Value *Vec, *Idx; 4649 unsigned VecTypeID, IdxTypeID; 4650 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) || 4651 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4652 return error("Invalid record"); 4653 if (!Vec->getType()->isVectorTy()) 4654 return error("Invalid type for value"); 4655 I = ExtractElementInst::Create(Vec, Idx); 4656 ResTypeID = getContainedTypeID(VecTypeID); 4657 InstructionList.push_back(I); 4658 break; 4659 } 4660 4661 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4662 unsigned OpNum = 0; 4663 Value *Vec, *Elt, *Idx; 4664 unsigned VecTypeID, IdxTypeID; 4665 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID)) 4666 return error("Invalid record"); 4667 if (!Vec->getType()->isVectorTy()) 4668 return error("Invalid type for value"); 4669 if (popValue(Record, OpNum, NextValueNo, 4670 cast<VectorType>(Vec->getType())->getElementType(), 4671 getContainedTypeID(VecTypeID), Elt) || 4672 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4673 return error("Invalid record"); 4674 I = InsertElementInst::Create(Vec, Elt, Idx); 4675 ResTypeID = VecTypeID; 4676 InstructionList.push_back(I); 4677 break; 4678 } 4679 4680 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4681 unsigned OpNum = 0; 4682 Value *Vec1, *Vec2, *Mask; 4683 unsigned Vec1TypeID; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) || 4685 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 4686 Vec2)) 4687 return error("Invalid record"); 4688 4689 unsigned MaskTypeID; 4690 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID)) 4691 return error("Invalid record"); 4692 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4693 return error("Invalid type for value"); 4694 4695 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4696 ResTypeID = 4697 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 4698 InstructionList.push_back(I); 4699 break; 4700 } 4701 4702 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4703 // Old form of ICmp/FCmp returning bool 4704 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4705 // both legal on vectors but had different behaviour. 4706 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4707 // FCmp/ICmp returning bool or vector of bool 4708 4709 unsigned OpNum = 0; 4710 Value *LHS, *RHS; 4711 unsigned LHSTypeID; 4712 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) || 4713 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS)) 4714 return error("Invalid record"); 4715 4716 if (OpNum >= Record.size()) 4717 return error( 4718 "Invalid record: operand number exceeded available operands"); 4719 4720 unsigned PredVal = Record[OpNum]; 4721 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4722 FastMathFlags FMF; 4723 if (IsFP && Record.size() > OpNum+1) 4724 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4725 4726 if (OpNum+1 != Record.size()) 4727 return error("Invalid record"); 4728 4729 if (LHS->getType()->isFPOrFPVectorTy()) 4730 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4731 else 4732 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4733 4734 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 4735 if (LHS->getType()->isVectorTy()) 4736 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4737 4738 if (FMF.any()) 4739 I->setFastMathFlags(FMF); 4740 InstructionList.push_back(I); 4741 break; 4742 } 4743 4744 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4745 { 4746 unsigned Size = Record.size(); 4747 if (Size == 0) { 4748 I = ReturnInst::Create(Context); 4749 InstructionList.push_back(I); 4750 break; 4751 } 4752 4753 unsigned OpNum = 0; 4754 Value *Op = nullptr; 4755 unsigned OpTypeID; 4756 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4757 return error("Invalid record"); 4758 if (OpNum != Record.size()) 4759 return error("Invalid record"); 4760 4761 I = ReturnInst::Create(Context, Op); 4762 InstructionList.push_back(I); 4763 break; 4764 } 4765 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4766 if (Record.size() != 1 && Record.size() != 3) 4767 return error("Invalid record"); 4768 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4769 if (!TrueDest) 4770 return error("Invalid record"); 4771 4772 if (Record.size() == 1) { 4773 I = BranchInst::Create(TrueDest); 4774 InstructionList.push_back(I); 4775 } 4776 else { 4777 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4778 Type *CondType = Type::getInt1Ty(Context); 4779 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 4780 getVirtualTypeID(CondType)); 4781 if (!FalseDest || !Cond) 4782 return error("Invalid record"); 4783 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4784 InstructionList.push_back(I); 4785 } 4786 break; 4787 } 4788 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4789 if (Record.size() != 1 && Record.size() != 2) 4790 return error("Invalid record"); 4791 unsigned Idx = 0; 4792 Type *TokenTy = Type::getTokenTy(Context); 4793 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4794 getVirtualTypeID(TokenTy)); 4795 if (!CleanupPad) 4796 return error("Invalid record"); 4797 BasicBlock *UnwindDest = nullptr; 4798 if (Record.size() == 2) { 4799 UnwindDest = getBasicBlock(Record[Idx++]); 4800 if (!UnwindDest) 4801 return error("Invalid record"); 4802 } 4803 4804 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4805 InstructionList.push_back(I); 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4809 if (Record.size() != 2) 4810 return error("Invalid record"); 4811 unsigned Idx = 0; 4812 Type *TokenTy = Type::getTokenTy(Context); 4813 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4814 getVirtualTypeID(TokenTy)); 4815 if (!CatchPad) 4816 return error("Invalid record"); 4817 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4818 if (!BB) 4819 return error("Invalid record"); 4820 4821 I = CatchReturnInst::Create(CatchPad, BB); 4822 InstructionList.push_back(I); 4823 break; 4824 } 4825 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4826 // We must have, at minimum, the outer scope and the number of arguments. 4827 if (Record.size() < 2) 4828 return error("Invalid record"); 4829 4830 unsigned Idx = 0; 4831 4832 Type *TokenTy = Type::getTokenTy(Context); 4833 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4834 getVirtualTypeID(TokenTy)); 4835 4836 unsigned NumHandlers = Record[Idx++]; 4837 4838 SmallVector<BasicBlock *, 2> Handlers; 4839 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4840 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4841 if (!BB) 4842 return error("Invalid record"); 4843 Handlers.push_back(BB); 4844 } 4845 4846 BasicBlock *UnwindDest = nullptr; 4847 if (Idx + 1 == Record.size()) { 4848 UnwindDest = getBasicBlock(Record[Idx++]); 4849 if (!UnwindDest) 4850 return error("Invalid record"); 4851 } 4852 4853 if (Record.size() != Idx) 4854 return error("Invalid record"); 4855 4856 auto *CatchSwitch = 4857 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4858 for (BasicBlock *Handler : Handlers) 4859 CatchSwitch->addHandler(Handler); 4860 I = CatchSwitch; 4861 ResTypeID = getVirtualTypeID(I->getType()); 4862 InstructionList.push_back(I); 4863 break; 4864 } 4865 case bitc::FUNC_CODE_INST_CATCHPAD: 4866 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4867 // We must have, at minimum, the outer scope and the number of arguments. 4868 if (Record.size() < 2) 4869 return error("Invalid record"); 4870 4871 unsigned Idx = 0; 4872 4873 Type *TokenTy = Type::getTokenTy(Context); 4874 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4875 getVirtualTypeID(TokenTy)); 4876 4877 unsigned NumArgOperands = Record[Idx++]; 4878 4879 SmallVector<Value *, 2> Args; 4880 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4881 Value *Val; 4882 unsigned ValTypeID; 4883 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4884 return error("Invalid record"); 4885 Args.push_back(Val); 4886 } 4887 4888 if (Record.size() != Idx) 4889 return error("Invalid record"); 4890 4891 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4892 I = CleanupPadInst::Create(ParentPad, Args); 4893 else 4894 I = CatchPadInst::Create(ParentPad, Args); 4895 ResTypeID = getVirtualTypeID(I->getType()); 4896 InstructionList.push_back(I); 4897 break; 4898 } 4899 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4900 // Check magic 4901 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4902 // "New" SwitchInst format with case ranges. The changes to write this 4903 // format were reverted but we still recognize bitcode that uses it. 4904 // Hopefully someday we will have support for case ranges and can use 4905 // this format again. 4906 4907 unsigned OpTyID = Record[1]; 4908 Type *OpTy = getTypeByID(OpTyID); 4909 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4910 4911 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID); 4912 BasicBlock *Default = getBasicBlock(Record[3]); 4913 if (!OpTy || !Cond || !Default) 4914 return error("Invalid record"); 4915 4916 unsigned NumCases = Record[4]; 4917 4918 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4919 InstructionList.push_back(SI); 4920 4921 unsigned CurIdx = 5; 4922 for (unsigned i = 0; i != NumCases; ++i) { 4923 SmallVector<ConstantInt*, 1> CaseVals; 4924 unsigned NumItems = Record[CurIdx++]; 4925 for (unsigned ci = 0; ci != NumItems; ++ci) { 4926 bool isSingleNumber = Record[CurIdx++]; 4927 4928 APInt Low; 4929 unsigned ActiveWords = 1; 4930 if (ValueBitWidth > 64) 4931 ActiveWords = Record[CurIdx++]; 4932 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4933 ValueBitWidth); 4934 CurIdx += ActiveWords; 4935 4936 if (!isSingleNumber) { 4937 ActiveWords = 1; 4938 if (ValueBitWidth > 64) 4939 ActiveWords = Record[CurIdx++]; 4940 APInt High = readWideAPInt( 4941 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4942 CurIdx += ActiveWords; 4943 4944 // FIXME: It is not clear whether values in the range should be 4945 // compared as signed or unsigned values. The partially 4946 // implemented changes that used this format in the past used 4947 // unsigned comparisons. 4948 for ( ; Low.ule(High); ++Low) 4949 CaseVals.push_back(ConstantInt::get(Context, Low)); 4950 } else 4951 CaseVals.push_back(ConstantInt::get(Context, Low)); 4952 } 4953 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4954 for (ConstantInt *Cst : CaseVals) 4955 SI->addCase(Cst, DestBB); 4956 } 4957 I = SI; 4958 break; 4959 } 4960 4961 // Old SwitchInst format without case ranges. 4962 4963 if (Record.size() < 3 || (Record.size() & 1) == 0) 4964 return error("Invalid record"); 4965 unsigned OpTyID = Record[0]; 4966 Type *OpTy = getTypeByID(OpTyID); 4967 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4968 BasicBlock *Default = getBasicBlock(Record[2]); 4969 if (!OpTy || !Cond || !Default) 4970 return error("Invalid record"); 4971 unsigned NumCases = (Record.size()-3)/2; 4972 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4973 InstructionList.push_back(SI); 4974 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4975 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 4976 getFnValueByID(Record[3+i*2], OpTy, OpTyID)); 4977 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4978 if (!CaseVal || !DestBB) { 4979 delete SI; 4980 return error("Invalid record"); 4981 } 4982 SI->addCase(CaseVal, DestBB); 4983 } 4984 I = SI; 4985 break; 4986 } 4987 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4988 if (Record.size() < 2) 4989 return error("Invalid record"); 4990 unsigned OpTyID = Record[0]; 4991 Type *OpTy = getTypeByID(OpTyID); 4992 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4993 if (!OpTy || !Address) 4994 return error("Invalid record"); 4995 unsigned NumDests = Record.size()-2; 4996 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4997 InstructionList.push_back(IBI); 4998 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4999 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5000 IBI->addDestination(DestBB); 5001 } else { 5002 delete IBI; 5003 return error("Invalid record"); 5004 } 5005 } 5006 I = IBI; 5007 break; 5008 } 5009 5010 case bitc::FUNC_CODE_INST_INVOKE: { 5011 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5012 if (Record.size() < 4) 5013 return error("Invalid record"); 5014 unsigned OpNum = 0; 5015 AttributeList PAL = getAttributes(Record[OpNum++]); 5016 unsigned CCInfo = Record[OpNum++]; 5017 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5018 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5019 5020 unsigned FTyID = InvalidTypeID; 5021 FunctionType *FTy = nullptr; 5022 if ((CCInfo >> 13) & 1) { 5023 FTyID = Record[OpNum++]; 5024 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5025 if (!FTy) 5026 return error("Explicit invoke type is not a function type"); 5027 } 5028 5029 Value *Callee; 5030 unsigned CalleeTypeID; 5031 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5032 return error("Invalid record"); 5033 5034 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5035 if (!CalleeTy) 5036 return error("Callee is not a pointer"); 5037 if (!FTy) { 5038 FTyID = getContainedTypeID(CalleeTypeID); 5039 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5040 if (!FTy) 5041 return error("Callee is not of pointer to function type"); 5042 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5043 return error("Explicit invoke type does not match pointee type of " 5044 "callee operand"); 5045 if (Record.size() < FTy->getNumParams() + OpNum) 5046 return error("Insufficient operands to call"); 5047 5048 SmallVector<Value*, 16> Ops; 5049 SmallVector<unsigned, 16> ArgTyIDs; 5050 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5051 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5052 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5053 ArgTyID)); 5054 ArgTyIDs.push_back(ArgTyID); 5055 if (!Ops.back()) 5056 return error("Invalid record"); 5057 } 5058 5059 if (!FTy->isVarArg()) { 5060 if (Record.size() != OpNum) 5061 return error("Invalid record"); 5062 } else { 5063 // Read type/value pairs for varargs params. 5064 while (OpNum != Record.size()) { 5065 Value *Op; 5066 unsigned OpTypeID; 5067 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5068 return error("Invalid record"); 5069 Ops.push_back(Op); 5070 ArgTyIDs.push_back(OpTypeID); 5071 } 5072 } 5073 5074 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5075 OperandBundles); 5076 ResTypeID = getContainedTypeID(FTyID); 5077 OperandBundles.clear(); 5078 InstructionList.push_back(I); 5079 cast<InvokeInst>(I)->setCallingConv( 5080 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5081 cast<InvokeInst>(I)->setAttributes(PAL); 5082 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5083 I->deleteValue(); 5084 return Err; 5085 } 5086 5087 break; 5088 } 5089 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5090 unsigned Idx = 0; 5091 Value *Val = nullptr; 5092 unsigned ValTypeID; 5093 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 5094 return error("Invalid record"); 5095 I = ResumeInst::Create(Val); 5096 InstructionList.push_back(I); 5097 break; 5098 } 5099 case bitc::FUNC_CODE_INST_CALLBR: { 5100 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5101 unsigned OpNum = 0; 5102 AttributeList PAL = getAttributes(Record[OpNum++]); 5103 unsigned CCInfo = Record[OpNum++]; 5104 5105 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5106 unsigned NumIndirectDests = Record[OpNum++]; 5107 SmallVector<BasicBlock *, 16> IndirectDests; 5108 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5109 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5110 5111 unsigned FTyID = InvalidTypeID; 5112 FunctionType *FTy = nullptr; 5113 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5114 FTyID = Record[OpNum++]; 5115 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5116 if (!FTy) 5117 return error("Explicit call type is not a function type"); 5118 } 5119 5120 Value *Callee; 5121 unsigned CalleeTypeID; 5122 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5123 return error("Invalid record"); 5124 5125 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5126 if (!OpTy) 5127 return error("Callee is not a pointer type"); 5128 if (!FTy) { 5129 FTyID = getContainedTypeID(CalleeTypeID); 5130 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5131 if (!FTy) 5132 return error("Callee is not of pointer to function type"); 5133 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5134 return error("Explicit call type does not match pointee type of " 5135 "callee operand"); 5136 if (Record.size() < FTy->getNumParams() + OpNum) 5137 return error("Insufficient operands to call"); 5138 5139 SmallVector<Value*, 16> Args; 5140 SmallVector<unsigned, 16> ArgTyIDs; 5141 // Read the fixed params. 5142 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5143 Value *Arg; 5144 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5145 if (FTy->getParamType(i)->isLabelTy()) 5146 Arg = getBasicBlock(Record[OpNum]); 5147 else 5148 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5149 ArgTyID); 5150 if (!Arg) 5151 return error("Invalid record"); 5152 Args.push_back(Arg); 5153 ArgTyIDs.push_back(ArgTyID); 5154 } 5155 5156 // Read type/value pairs for varargs params. 5157 if (!FTy->isVarArg()) { 5158 if (OpNum != Record.size()) 5159 return error("Invalid record"); 5160 } else { 5161 while (OpNum != Record.size()) { 5162 Value *Op; 5163 unsigned OpTypeID; 5164 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5165 return error("Invalid record"); 5166 Args.push_back(Op); 5167 ArgTyIDs.push_back(OpTypeID); 5168 } 5169 } 5170 5171 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5172 OperandBundles); 5173 ResTypeID = getContainedTypeID(FTyID); 5174 OperandBundles.clear(); 5175 InstructionList.push_back(I); 5176 cast<CallBrInst>(I)->setCallingConv( 5177 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5178 cast<CallBrInst>(I)->setAttributes(PAL); 5179 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5180 I->deleteValue(); 5181 return Err; 5182 } 5183 break; 5184 } 5185 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5186 I = new UnreachableInst(Context); 5187 InstructionList.push_back(I); 5188 break; 5189 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5190 if (Record.empty()) 5191 return error("Invalid phi record"); 5192 // The first record specifies the type. 5193 unsigned TyID = Record[0]; 5194 Type *Ty = getTypeByID(TyID); 5195 if (!Ty) 5196 return error("Invalid phi record"); 5197 5198 // Phi arguments are pairs of records of [value, basic block]. 5199 // There is an optional final record for fast-math-flags if this phi has a 5200 // floating-point type. 5201 size_t NumArgs = (Record.size() - 1) / 2; 5202 PHINode *PN = PHINode::Create(Ty, NumArgs); 5203 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5204 PN->deleteValue(); 5205 return error("Invalid phi record"); 5206 } 5207 InstructionList.push_back(PN); 5208 5209 for (unsigned i = 0; i != NumArgs; i++) { 5210 Value *V; 5211 // With the new function encoding, it is possible that operands have 5212 // negative IDs (for forward references). Use a signed VBR 5213 // representation to keep the encoding small. 5214 if (UseRelativeIDs) 5215 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5216 else 5217 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5218 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5219 if (!V || !BB) { 5220 PN->deleteValue(); 5221 return error("Invalid phi record"); 5222 } 5223 PN->addIncoming(V, BB); 5224 } 5225 I = PN; 5226 ResTypeID = TyID; 5227 5228 // If there are an even number of records, the final record must be FMF. 5229 if (Record.size() % 2 == 0) { 5230 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5231 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5232 if (FMF.any()) 5233 I->setFastMathFlags(FMF); 5234 } 5235 5236 break; 5237 } 5238 5239 case bitc::FUNC_CODE_INST_LANDINGPAD: 5240 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5241 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5242 unsigned Idx = 0; 5243 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5244 if (Record.size() < 3) 5245 return error("Invalid record"); 5246 } else { 5247 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5248 if (Record.size() < 4) 5249 return error("Invalid record"); 5250 } 5251 ResTypeID = Record[Idx++]; 5252 Type *Ty = getTypeByID(ResTypeID); 5253 if (!Ty) 5254 return error("Invalid record"); 5255 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5256 Value *PersFn = nullptr; 5257 unsigned PersFnTypeID; 5258 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID)) 5259 return error("Invalid record"); 5260 5261 if (!F->hasPersonalityFn()) 5262 F->setPersonalityFn(cast<Constant>(PersFn)); 5263 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5264 return error("Personality function mismatch"); 5265 } 5266 5267 bool IsCleanup = !!Record[Idx++]; 5268 unsigned NumClauses = Record[Idx++]; 5269 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5270 LP->setCleanup(IsCleanup); 5271 for (unsigned J = 0; J != NumClauses; ++J) { 5272 LandingPadInst::ClauseType CT = 5273 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5274 Value *Val; 5275 unsigned ValTypeID; 5276 5277 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) { 5278 delete LP; 5279 return error("Invalid record"); 5280 } 5281 5282 assert((CT != LandingPadInst::Catch || 5283 !isa<ArrayType>(Val->getType())) && 5284 "Catch clause has a invalid type!"); 5285 assert((CT != LandingPadInst::Filter || 5286 isa<ArrayType>(Val->getType())) && 5287 "Filter clause has invalid type!"); 5288 LP->addClause(cast<Constant>(Val)); 5289 } 5290 5291 I = LP; 5292 InstructionList.push_back(I); 5293 break; 5294 } 5295 5296 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5297 if (Record.size() != 4) 5298 return error("Invalid record"); 5299 using APV = AllocaPackedValues; 5300 const uint64_t Rec = Record[3]; 5301 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5302 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5303 unsigned TyID = Record[0]; 5304 Type *Ty = getTypeByID(TyID); 5305 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5306 TyID = getContainedTypeID(TyID); 5307 Ty = getTypeByID(TyID); 5308 if (!Ty) 5309 return error("Missing element type for old-style alloca"); 5310 } 5311 unsigned OpTyID = Record[1]; 5312 Type *OpTy = getTypeByID(OpTyID); 5313 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID); 5314 MaybeAlign Align; 5315 uint64_t AlignExp = 5316 Bitfield::get<APV::AlignLower>(Rec) | 5317 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5318 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5319 return Err; 5320 } 5321 if (!Ty || !Size) 5322 return error("Invalid record"); 5323 5324 // FIXME: Make this an optional field. 5325 const DataLayout &DL = TheModule->getDataLayout(); 5326 unsigned AS = DL.getAllocaAddrSpace(); 5327 5328 SmallPtrSet<Type *, 4> Visited; 5329 if (!Align && !Ty->isSized(&Visited)) 5330 return error("alloca of unsized type"); 5331 if (!Align) 5332 Align = DL.getPrefTypeAlign(Ty); 5333 5334 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5335 AI->setUsedWithInAlloca(InAlloca); 5336 AI->setSwiftError(SwiftError); 5337 I = AI; 5338 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5339 InstructionList.push_back(I); 5340 break; 5341 } 5342 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5343 unsigned OpNum = 0; 5344 Value *Op; 5345 unsigned OpTypeID; 5346 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5347 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5348 return error("Invalid record"); 5349 5350 if (!isa<PointerType>(Op->getType())) 5351 return error("Load operand is not a pointer type"); 5352 5353 Type *Ty = nullptr; 5354 if (OpNum + 3 == Record.size()) { 5355 ResTypeID = Record[OpNum++]; 5356 Ty = getTypeByID(ResTypeID); 5357 } else { 5358 ResTypeID = getContainedTypeID(OpTypeID); 5359 Ty = getTypeByID(ResTypeID); 5360 if (!Ty) 5361 return error("Missing element type for old-style load"); 5362 } 5363 5364 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5365 return Err; 5366 5367 MaybeAlign Align; 5368 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5369 return Err; 5370 SmallPtrSet<Type *, 4> Visited; 5371 if (!Align && !Ty->isSized(&Visited)) 5372 return error("load of unsized type"); 5373 if (!Align) 5374 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5375 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5376 InstructionList.push_back(I); 5377 break; 5378 } 5379 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5380 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5381 unsigned OpNum = 0; 5382 Value *Op; 5383 unsigned OpTypeID; 5384 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5385 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5386 return error("Invalid record"); 5387 5388 if (!isa<PointerType>(Op->getType())) 5389 return error("Load operand is not a pointer type"); 5390 5391 Type *Ty = nullptr; 5392 if (OpNum + 5 == Record.size()) { 5393 ResTypeID = Record[OpNum++]; 5394 Ty = getTypeByID(ResTypeID); 5395 } else { 5396 ResTypeID = getContainedTypeID(OpTypeID); 5397 Ty = getTypeByID(ResTypeID); 5398 if (!Ty) 5399 return error("Missing element type for old style atomic load"); 5400 } 5401 5402 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5403 return Err; 5404 5405 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5406 if (Ordering == AtomicOrdering::NotAtomic || 5407 Ordering == AtomicOrdering::Release || 5408 Ordering == AtomicOrdering::AcquireRelease) 5409 return error("Invalid record"); 5410 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5411 return error("Invalid record"); 5412 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5413 5414 MaybeAlign Align; 5415 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5416 return Err; 5417 if (!Align) 5418 return error("Alignment missing from atomic load"); 5419 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5420 InstructionList.push_back(I); 5421 break; 5422 } 5423 case bitc::FUNC_CODE_INST_STORE: 5424 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5425 unsigned OpNum = 0; 5426 Value *Val, *Ptr; 5427 unsigned PtrTypeID, ValTypeID; 5428 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5429 return error("Invalid record"); 5430 5431 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 5432 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5433 return error("Invalid record"); 5434 } else { 5435 ValTypeID = getContainedTypeID(PtrTypeID); 5436 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5437 ValTypeID, Val)) 5438 return error("Invalid record"); 5439 } 5440 5441 if (OpNum + 2 != Record.size()) 5442 return error("Invalid record"); 5443 5444 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5445 return Err; 5446 MaybeAlign Align; 5447 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5448 return Err; 5449 SmallPtrSet<Type *, 4> Visited; 5450 if (!Align && !Val->getType()->isSized(&Visited)) 5451 return error("store of unsized type"); 5452 if (!Align) 5453 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5454 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5455 InstructionList.push_back(I); 5456 break; 5457 } 5458 case bitc::FUNC_CODE_INST_STOREATOMIC: 5459 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5460 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5461 unsigned OpNum = 0; 5462 Value *Val, *Ptr; 5463 unsigned PtrTypeID, ValTypeID; 5464 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5465 !isa<PointerType>(Ptr->getType())) 5466 return error("Invalid record"); 5467 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 5468 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5469 return error("Invalid record"); 5470 } else { 5471 ValTypeID = getContainedTypeID(PtrTypeID); 5472 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5473 ValTypeID, Val)) 5474 return error("Invalid record"); 5475 } 5476 5477 if (OpNum + 4 != Record.size()) 5478 return error("Invalid record"); 5479 5480 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5481 return Err; 5482 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5483 if (Ordering == AtomicOrdering::NotAtomic || 5484 Ordering == AtomicOrdering::Acquire || 5485 Ordering == AtomicOrdering::AcquireRelease) 5486 return error("Invalid record"); 5487 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5488 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5489 return error("Invalid record"); 5490 5491 MaybeAlign Align; 5492 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5493 return Err; 5494 if (!Align) 5495 return error("Alignment missing from atomic store"); 5496 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5497 InstructionList.push_back(I); 5498 break; 5499 } 5500 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5501 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5502 // failure_ordering?, weak?] 5503 const size_t NumRecords = Record.size(); 5504 unsigned OpNum = 0; 5505 Value *Ptr = nullptr; 5506 unsigned PtrTypeID; 5507 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5508 return error("Invalid record"); 5509 5510 if (!isa<PointerType>(Ptr->getType())) 5511 return error("Cmpxchg operand is not a pointer type"); 5512 5513 Value *Cmp = nullptr; 5514 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5515 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 5516 CmpTypeID, Cmp)) 5517 return error("Invalid record"); 5518 5519 Value *New = nullptr; 5520 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5521 New) || 5522 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5523 return error("Invalid record"); 5524 5525 const AtomicOrdering SuccessOrdering = 5526 getDecodedOrdering(Record[OpNum + 1]); 5527 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5528 SuccessOrdering == AtomicOrdering::Unordered) 5529 return error("Invalid record"); 5530 5531 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5532 5533 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5534 return Err; 5535 5536 const AtomicOrdering FailureOrdering = 5537 NumRecords < 7 5538 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5539 : getDecodedOrdering(Record[OpNum + 3]); 5540 5541 if (FailureOrdering == AtomicOrdering::NotAtomic || 5542 FailureOrdering == AtomicOrdering::Unordered) 5543 return error("Invalid record"); 5544 5545 const Align Alignment( 5546 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5547 5548 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5549 FailureOrdering, SSID); 5550 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5551 5552 if (NumRecords < 8) { 5553 // Before weak cmpxchgs existed, the instruction simply returned the 5554 // value loaded from memory, so bitcode files from that era will be 5555 // expecting the first component of a modern cmpxchg. 5556 CurBB->getInstList().push_back(I); 5557 I = ExtractValueInst::Create(I, 0); 5558 ResTypeID = CmpTypeID; 5559 } else { 5560 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5561 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5562 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5563 } 5564 5565 InstructionList.push_back(I); 5566 break; 5567 } 5568 case bitc::FUNC_CODE_INST_CMPXCHG: { 5569 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5570 // failure_ordering, weak, align?] 5571 const size_t NumRecords = Record.size(); 5572 unsigned OpNum = 0; 5573 Value *Ptr = nullptr; 5574 unsigned PtrTypeID; 5575 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5576 return error("Invalid record"); 5577 5578 if (!isa<PointerType>(Ptr->getType())) 5579 return error("Cmpxchg operand is not a pointer type"); 5580 5581 Value *Cmp = nullptr; 5582 unsigned CmpTypeID; 5583 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID)) 5584 return error("Invalid record"); 5585 5586 Value *Val = nullptr; 5587 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val)) 5588 return error("Invalid record"); 5589 5590 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5591 return error("Invalid record"); 5592 5593 const bool IsVol = Record[OpNum]; 5594 5595 const AtomicOrdering SuccessOrdering = 5596 getDecodedOrdering(Record[OpNum + 1]); 5597 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5598 return error("Invalid cmpxchg success ordering"); 5599 5600 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5601 5602 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5603 return Err; 5604 5605 const AtomicOrdering FailureOrdering = 5606 getDecodedOrdering(Record[OpNum + 3]); 5607 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5608 return error("Invalid cmpxchg failure ordering"); 5609 5610 const bool IsWeak = Record[OpNum + 4]; 5611 5612 MaybeAlign Alignment; 5613 5614 if (NumRecords == (OpNum + 6)) { 5615 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5616 return Err; 5617 } 5618 if (!Alignment) 5619 Alignment = 5620 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5621 5622 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5623 FailureOrdering, SSID); 5624 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5625 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5626 5627 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5628 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5629 5630 InstructionList.push_back(I); 5631 break; 5632 } 5633 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5634 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5635 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5636 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5637 const size_t NumRecords = Record.size(); 5638 unsigned OpNum = 0; 5639 5640 Value *Ptr = nullptr; 5641 unsigned PtrTypeID; 5642 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5643 return error("Invalid record"); 5644 5645 if (!isa<PointerType>(Ptr->getType())) 5646 return error("Invalid record"); 5647 5648 Value *Val = nullptr; 5649 unsigned ValTypeID = InvalidTypeID; 5650 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5651 ValTypeID = getContainedTypeID(PtrTypeID); 5652 if (popValue(Record, OpNum, NextValueNo, 5653 getTypeByID(ValTypeID), ValTypeID, Val)) 5654 return error("Invalid record"); 5655 } else { 5656 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5657 return error("Invalid record"); 5658 } 5659 5660 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5661 return error("Invalid record"); 5662 5663 const AtomicRMWInst::BinOp Operation = 5664 getDecodedRMWOperation(Record[OpNum]); 5665 if (Operation < AtomicRMWInst::FIRST_BINOP || 5666 Operation > AtomicRMWInst::LAST_BINOP) 5667 return error("Invalid record"); 5668 5669 const bool IsVol = Record[OpNum + 1]; 5670 5671 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5672 if (Ordering == AtomicOrdering::NotAtomic || 5673 Ordering == AtomicOrdering::Unordered) 5674 return error("Invalid record"); 5675 5676 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5677 5678 MaybeAlign Alignment; 5679 5680 if (NumRecords == (OpNum + 5)) { 5681 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5682 return Err; 5683 } 5684 5685 if (!Alignment) 5686 Alignment = 5687 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5688 5689 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5690 ResTypeID = ValTypeID; 5691 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5692 5693 InstructionList.push_back(I); 5694 break; 5695 } 5696 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5697 if (2 != Record.size()) 5698 return error("Invalid record"); 5699 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5700 if (Ordering == AtomicOrdering::NotAtomic || 5701 Ordering == AtomicOrdering::Unordered || 5702 Ordering == AtomicOrdering::Monotonic) 5703 return error("Invalid record"); 5704 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5705 I = new FenceInst(Context, Ordering, SSID); 5706 InstructionList.push_back(I); 5707 break; 5708 } 5709 case bitc::FUNC_CODE_INST_CALL: { 5710 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5711 if (Record.size() < 3) 5712 return error("Invalid record"); 5713 5714 unsigned OpNum = 0; 5715 AttributeList PAL = getAttributes(Record[OpNum++]); 5716 unsigned CCInfo = Record[OpNum++]; 5717 5718 FastMathFlags FMF; 5719 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5720 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5721 if (!FMF.any()) 5722 return error("Fast math flags indicator set for call with no FMF"); 5723 } 5724 5725 unsigned FTyID = InvalidTypeID; 5726 FunctionType *FTy = nullptr; 5727 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5728 FTyID = Record[OpNum++]; 5729 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5730 if (!FTy) 5731 return error("Explicit call type is not a function type"); 5732 } 5733 5734 Value *Callee; 5735 unsigned CalleeTypeID; 5736 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5737 return error("Invalid record"); 5738 5739 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5740 if (!OpTy) 5741 return error("Callee is not a pointer type"); 5742 if (!FTy) { 5743 FTyID = getContainedTypeID(CalleeTypeID); 5744 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5745 if (!FTy) 5746 return error("Callee is not of pointer to function type"); 5747 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5748 return error("Explicit call type does not match pointee type of " 5749 "callee operand"); 5750 if (Record.size() < FTy->getNumParams() + OpNum) 5751 return error("Insufficient operands to call"); 5752 5753 SmallVector<Value*, 16> Args; 5754 SmallVector<unsigned, 16> ArgTyIDs; 5755 // Read the fixed params. 5756 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5757 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5758 if (FTy->getParamType(i)->isLabelTy()) 5759 Args.push_back(getBasicBlock(Record[OpNum])); 5760 else 5761 Args.push_back(getValue(Record, OpNum, NextValueNo, 5762 FTy->getParamType(i), ArgTyID)); 5763 ArgTyIDs.push_back(ArgTyID); 5764 if (!Args.back()) 5765 return error("Invalid record"); 5766 } 5767 5768 // Read type/value pairs for varargs params. 5769 if (!FTy->isVarArg()) { 5770 if (OpNum != Record.size()) 5771 return error("Invalid record"); 5772 } else { 5773 while (OpNum != Record.size()) { 5774 Value *Op; 5775 unsigned OpTypeID; 5776 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5777 return error("Invalid record"); 5778 Args.push_back(Op); 5779 ArgTyIDs.push_back(OpTypeID); 5780 } 5781 } 5782 5783 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5784 ResTypeID = getContainedTypeID(FTyID); 5785 OperandBundles.clear(); 5786 InstructionList.push_back(I); 5787 cast<CallInst>(I)->setCallingConv( 5788 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5789 CallInst::TailCallKind TCK = CallInst::TCK_None; 5790 if (CCInfo & 1 << bitc::CALL_TAIL) 5791 TCK = CallInst::TCK_Tail; 5792 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5793 TCK = CallInst::TCK_MustTail; 5794 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5795 TCK = CallInst::TCK_NoTail; 5796 cast<CallInst>(I)->setTailCallKind(TCK); 5797 cast<CallInst>(I)->setAttributes(PAL); 5798 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5799 I->deleteValue(); 5800 return Err; 5801 } 5802 if (FMF.any()) { 5803 if (!isa<FPMathOperator>(I)) 5804 return error("Fast-math-flags specified for call without " 5805 "floating-point scalar or vector return type"); 5806 I->setFastMathFlags(FMF); 5807 } 5808 break; 5809 } 5810 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5811 if (Record.size() < 3) 5812 return error("Invalid record"); 5813 unsigned OpTyID = Record[0]; 5814 Type *OpTy = getTypeByID(OpTyID); 5815 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5816 ResTypeID = Record[2]; 5817 Type *ResTy = getTypeByID(ResTypeID); 5818 if (!OpTy || !Op || !ResTy) 5819 return error("Invalid record"); 5820 I = new VAArgInst(Op, ResTy); 5821 InstructionList.push_back(I); 5822 break; 5823 } 5824 5825 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5826 // A call or an invoke can be optionally prefixed with some variable 5827 // number of operand bundle blocks. These blocks are read into 5828 // OperandBundles and consumed at the next call or invoke instruction. 5829 5830 if (Record.empty() || Record[0] >= BundleTags.size()) 5831 return error("Invalid record"); 5832 5833 std::vector<Value *> Inputs; 5834 5835 unsigned OpNum = 1; 5836 while (OpNum != Record.size()) { 5837 Value *Op; 5838 unsigned OpTypeID; 5839 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5840 return error("Invalid record"); 5841 Inputs.push_back(Op); 5842 } 5843 5844 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5845 continue; 5846 } 5847 5848 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5849 unsigned OpNum = 0; 5850 Value *Op = nullptr; 5851 unsigned OpTypeID; 5852 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5853 return error("Invalid record"); 5854 if (OpNum != Record.size()) 5855 return error("Invalid record"); 5856 5857 I = new FreezeInst(Op); 5858 ResTypeID = OpTypeID; 5859 InstructionList.push_back(I); 5860 break; 5861 } 5862 } 5863 5864 // Add instruction to end of current BB. If there is no current BB, reject 5865 // this file. 5866 if (!CurBB) { 5867 I->deleteValue(); 5868 return error("Invalid instruction with no BB"); 5869 } 5870 if (!OperandBundles.empty()) { 5871 I->deleteValue(); 5872 return error("Operand bundles found with no consumer"); 5873 } 5874 CurBB->getInstList().push_back(I); 5875 5876 // If this was a terminator instruction, move to the next block. 5877 if (I->isTerminator()) { 5878 ++CurBBNo; 5879 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5880 } 5881 5882 // Non-void values get registered in the value table for future use. 5883 if (!I->getType()->isVoidTy()) { 5884 assert(I->getType() == getTypeByID(ResTypeID) && 5885 "Incorrect result type ID"); 5886 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 5887 return Err; 5888 } 5889 } 5890 5891 OutOfRecordLoop: 5892 5893 if (!OperandBundles.empty()) 5894 return error("Operand bundles found with no consumer"); 5895 5896 // Check the function list for unresolved values. 5897 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5898 if (!A->getParent()) { 5899 // We found at least one unresolved value. Nuke them all to avoid leaks. 5900 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5901 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5902 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5903 delete A; 5904 } 5905 } 5906 return error("Never resolved value found in function"); 5907 } 5908 } 5909 5910 // Unexpected unresolved metadata about to be dropped. 5911 if (MDLoader->hasFwdRefs()) 5912 return error("Invalid function metadata: outgoing forward refs"); 5913 5914 // Trim the value list down to the size it was before we parsed this function. 5915 ValueList.shrinkTo(ModuleValueListSize); 5916 MDLoader->shrinkTo(ModuleMDLoaderSize); 5917 std::vector<BasicBlock*>().swap(FunctionBBs); 5918 return Error::success(); 5919 } 5920 5921 /// Find the function body in the bitcode stream 5922 Error BitcodeReader::findFunctionInStream( 5923 Function *F, 5924 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5925 while (DeferredFunctionInfoIterator->second == 0) { 5926 // This is the fallback handling for the old format bitcode that 5927 // didn't contain the function index in the VST, or when we have 5928 // an anonymous function which would not have a VST entry. 5929 // Assert that we have one of those two cases. 5930 assert(VSTOffset == 0 || !F->hasName()); 5931 // Parse the next body in the stream and set its position in the 5932 // DeferredFunctionInfo map. 5933 if (Error Err = rememberAndSkipFunctionBodies()) 5934 return Err; 5935 } 5936 return Error::success(); 5937 } 5938 5939 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5940 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5941 return SyncScope::ID(Val); 5942 if (Val >= SSIDs.size()) 5943 return SyncScope::System; // Map unknown synchronization scopes to system. 5944 return SSIDs[Val]; 5945 } 5946 5947 //===----------------------------------------------------------------------===// 5948 // GVMaterializer implementation 5949 //===----------------------------------------------------------------------===// 5950 5951 Error BitcodeReader::materialize(GlobalValue *GV) { 5952 Function *F = dyn_cast<Function>(GV); 5953 // If it's not a function or is already material, ignore the request. 5954 if (!F || !F->isMaterializable()) 5955 return Error::success(); 5956 5957 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5958 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5959 // If its position is recorded as 0, its body is somewhere in the stream 5960 // but we haven't seen it yet. 5961 if (DFII->second == 0) 5962 if (Error Err = findFunctionInStream(F, DFII)) 5963 return Err; 5964 5965 // Materialize metadata before parsing any function bodies. 5966 if (Error Err = materializeMetadata()) 5967 return Err; 5968 5969 // Move the bit stream to the saved position of the deferred function body. 5970 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5971 return JumpFailed; 5972 if (Error Err = parseFunctionBody(F)) 5973 return Err; 5974 F->setIsMaterializable(false); 5975 5976 if (StripDebugInfo) 5977 stripDebugInfo(*F); 5978 5979 // Upgrade any old intrinsic calls in the function. 5980 for (auto &I : UpgradedIntrinsics) { 5981 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5982 if (CallInst *CI = dyn_cast<CallInst>(U)) 5983 UpgradeIntrinsicCall(CI, I.second); 5984 } 5985 5986 // Update calls to the remangled intrinsics 5987 for (auto &I : RemangledIntrinsics) 5988 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5989 // Don't expect any other users than call sites 5990 cast<CallBase>(U)->setCalledFunction(I.second); 5991 5992 // Finish fn->subprogram upgrade for materialized functions. 5993 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5994 F->setSubprogram(SP); 5995 5996 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5997 if (!MDLoader->isStrippingTBAA()) { 5998 for (auto &I : instructions(F)) { 5999 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6000 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6001 continue; 6002 MDLoader->setStripTBAA(true); 6003 stripTBAA(F->getParent()); 6004 } 6005 } 6006 6007 for (auto &I : instructions(F)) { 6008 // "Upgrade" older incorrect branch weights by dropping them. 6009 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6010 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6011 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6012 StringRef ProfName = MDS->getString(); 6013 // Check consistency of !prof branch_weights metadata. 6014 if (!ProfName.equals("branch_weights")) 6015 continue; 6016 unsigned ExpectedNumOperands = 0; 6017 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6018 ExpectedNumOperands = BI->getNumSuccessors(); 6019 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6020 ExpectedNumOperands = SI->getNumSuccessors(); 6021 else if (isa<CallInst>(&I)) 6022 ExpectedNumOperands = 1; 6023 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6024 ExpectedNumOperands = IBI->getNumDestinations(); 6025 else if (isa<SelectInst>(&I)) 6026 ExpectedNumOperands = 2; 6027 else 6028 continue; // ignore and continue. 6029 6030 // If branch weight doesn't match, just strip branch weight. 6031 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6032 I.setMetadata(LLVMContext::MD_prof, nullptr); 6033 } 6034 } 6035 6036 // Remove incompatible attributes on function calls. 6037 if (auto *CI = dyn_cast<CallBase>(&I)) { 6038 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6039 CI->getFunctionType()->getReturnType())); 6040 6041 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6042 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6043 CI->getArgOperand(ArgNo)->getType())); 6044 } 6045 } 6046 6047 // Look for functions that rely on old function attribute behavior. 6048 UpgradeFunctionAttributes(*F); 6049 6050 // Bring in any functions that this function forward-referenced via 6051 // blockaddresses. 6052 return materializeForwardReferencedFunctions(); 6053 } 6054 6055 Error BitcodeReader::materializeModule() { 6056 if (Error Err = materializeMetadata()) 6057 return Err; 6058 6059 // Promise to materialize all forward references. 6060 WillMaterializeAllForwardRefs = true; 6061 6062 // Iterate over the module, deserializing any functions that are still on 6063 // disk. 6064 for (Function &F : *TheModule) { 6065 if (Error Err = materialize(&F)) 6066 return Err; 6067 } 6068 // At this point, if there are any function bodies, parse the rest of 6069 // the bits in the module past the last function block we have recorded 6070 // through either lazy scanning or the VST. 6071 if (LastFunctionBlockBit || NextUnreadBit) 6072 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6073 ? LastFunctionBlockBit 6074 : NextUnreadBit)) 6075 return Err; 6076 6077 // Check that all block address forward references got resolved (as we 6078 // promised above). 6079 if (!BasicBlockFwdRefs.empty()) 6080 return error("Never resolved function from blockaddress"); 6081 6082 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6083 // delete the old functions to clean up. We can't do this unless the entire 6084 // module is materialized because there could always be another function body 6085 // with calls to the old function. 6086 for (auto &I : UpgradedIntrinsics) { 6087 for (auto *U : I.first->users()) { 6088 if (CallInst *CI = dyn_cast<CallInst>(U)) 6089 UpgradeIntrinsicCall(CI, I.second); 6090 } 6091 if (!I.first->use_empty()) 6092 I.first->replaceAllUsesWith(I.second); 6093 I.first->eraseFromParent(); 6094 } 6095 UpgradedIntrinsics.clear(); 6096 // Do the same for remangled intrinsics 6097 for (auto &I : RemangledIntrinsics) { 6098 I.first->replaceAllUsesWith(I.second); 6099 I.first->eraseFromParent(); 6100 } 6101 RemangledIntrinsics.clear(); 6102 6103 UpgradeDebugInfo(*TheModule); 6104 6105 UpgradeModuleFlags(*TheModule); 6106 6107 UpgradeARCRuntime(*TheModule); 6108 6109 return Error::success(); 6110 } 6111 6112 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6113 return IdentifiedStructTypes; 6114 } 6115 6116 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6117 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6118 StringRef ModulePath, unsigned ModuleId) 6119 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6120 ModulePath(ModulePath), ModuleId(ModuleId) {} 6121 6122 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6123 TheIndex.addModule(ModulePath, ModuleId); 6124 } 6125 6126 ModuleSummaryIndex::ModuleInfo * 6127 ModuleSummaryIndexBitcodeReader::getThisModule() { 6128 return TheIndex.getModule(ModulePath); 6129 } 6130 6131 std::pair<ValueInfo, GlobalValue::GUID> 6132 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6133 auto VGI = ValueIdToValueInfoMap[ValueId]; 6134 assert(VGI.first); 6135 return VGI; 6136 } 6137 6138 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6139 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6140 StringRef SourceFileName) { 6141 std::string GlobalId = 6142 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6143 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6144 auto OriginalNameID = ValueGUID; 6145 if (GlobalValue::isLocalLinkage(Linkage)) 6146 OriginalNameID = GlobalValue::getGUID(ValueName); 6147 if (PrintSummaryGUIDs) 6148 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6149 << ValueName << "\n"; 6150 6151 // UseStrtab is false for legacy summary formats and value names are 6152 // created on stack. In that case we save the name in a string saver in 6153 // the index so that the value name can be recorded. 6154 ValueIdToValueInfoMap[ValueID] = std::make_pair( 6155 TheIndex.getOrInsertValueInfo( 6156 ValueGUID, 6157 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6158 OriginalNameID); 6159 } 6160 6161 // Specialized value symbol table parser used when reading module index 6162 // blocks where we don't actually create global values. The parsed information 6163 // is saved in the bitcode reader for use when later parsing summaries. 6164 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6165 uint64_t Offset, 6166 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6167 // With a strtab the VST is not required to parse the summary. 6168 if (UseStrtab) 6169 return Error::success(); 6170 6171 assert(Offset > 0 && "Expected non-zero VST offset"); 6172 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6173 if (!MaybeCurrentBit) 6174 return MaybeCurrentBit.takeError(); 6175 uint64_t CurrentBit = MaybeCurrentBit.get(); 6176 6177 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6178 return Err; 6179 6180 SmallVector<uint64_t, 64> Record; 6181 6182 // Read all the records for this value table. 6183 SmallString<128> ValueName; 6184 6185 while (true) { 6186 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6187 if (!MaybeEntry) 6188 return MaybeEntry.takeError(); 6189 BitstreamEntry Entry = MaybeEntry.get(); 6190 6191 switch (Entry.Kind) { 6192 case BitstreamEntry::SubBlock: // Handled for us already. 6193 case BitstreamEntry::Error: 6194 return error("Malformed block"); 6195 case BitstreamEntry::EndBlock: 6196 // Done parsing VST, jump back to wherever we came from. 6197 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6198 return JumpFailed; 6199 return Error::success(); 6200 case BitstreamEntry::Record: 6201 // The interesting case. 6202 break; 6203 } 6204 6205 // Read a record. 6206 Record.clear(); 6207 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6208 if (!MaybeRecord) 6209 return MaybeRecord.takeError(); 6210 switch (MaybeRecord.get()) { 6211 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6212 break; 6213 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6214 if (convertToString(Record, 1, ValueName)) 6215 return error("Invalid record"); 6216 unsigned ValueID = Record[0]; 6217 assert(!SourceFileName.empty()); 6218 auto VLI = ValueIdToLinkageMap.find(ValueID); 6219 assert(VLI != ValueIdToLinkageMap.end() && 6220 "No linkage found for VST entry?"); 6221 auto Linkage = VLI->second; 6222 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6223 ValueName.clear(); 6224 break; 6225 } 6226 case bitc::VST_CODE_FNENTRY: { 6227 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6228 if (convertToString(Record, 2, ValueName)) 6229 return error("Invalid record"); 6230 unsigned ValueID = Record[0]; 6231 assert(!SourceFileName.empty()); 6232 auto VLI = ValueIdToLinkageMap.find(ValueID); 6233 assert(VLI != ValueIdToLinkageMap.end() && 6234 "No linkage found for VST entry?"); 6235 auto Linkage = VLI->second; 6236 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6237 ValueName.clear(); 6238 break; 6239 } 6240 case bitc::VST_CODE_COMBINED_ENTRY: { 6241 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6242 unsigned ValueID = Record[0]; 6243 GlobalValue::GUID RefGUID = Record[1]; 6244 // The "original name", which is the second value of the pair will be 6245 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6246 ValueIdToValueInfoMap[ValueID] = 6247 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6248 break; 6249 } 6250 } 6251 } 6252 } 6253 6254 // Parse just the blocks needed for building the index out of the module. 6255 // At the end of this routine the module Index is populated with a map 6256 // from global value id to GlobalValueSummary objects. 6257 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6259 return Err; 6260 6261 SmallVector<uint64_t, 64> Record; 6262 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6263 unsigned ValueId = 0; 6264 6265 // Read the index for this module. 6266 while (true) { 6267 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6268 if (!MaybeEntry) 6269 return MaybeEntry.takeError(); 6270 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6271 6272 switch (Entry.Kind) { 6273 case BitstreamEntry::Error: 6274 return error("Malformed block"); 6275 case BitstreamEntry::EndBlock: 6276 return Error::success(); 6277 6278 case BitstreamEntry::SubBlock: 6279 switch (Entry.ID) { 6280 default: // Skip unknown content. 6281 if (Error Err = Stream.SkipBlock()) 6282 return Err; 6283 break; 6284 case bitc::BLOCKINFO_BLOCK_ID: 6285 // Need to parse these to get abbrev ids (e.g. for VST) 6286 if (Error Err = readBlockInfo()) 6287 return Err; 6288 break; 6289 case bitc::VALUE_SYMTAB_BLOCK_ID: 6290 // Should have been parsed earlier via VSTOffset, unless there 6291 // is no summary section. 6292 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6293 !SeenGlobalValSummary) && 6294 "Expected early VST parse via VSTOffset record"); 6295 if (Error Err = Stream.SkipBlock()) 6296 return Err; 6297 break; 6298 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6299 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6300 // Add the module if it is a per-module index (has a source file name). 6301 if (!SourceFileName.empty()) 6302 addThisModule(); 6303 assert(!SeenValueSymbolTable && 6304 "Already read VST when parsing summary block?"); 6305 // We might not have a VST if there were no values in the 6306 // summary. An empty summary block generated when we are 6307 // performing ThinLTO compiles so we don't later invoke 6308 // the regular LTO process on them. 6309 if (VSTOffset > 0) { 6310 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6311 return Err; 6312 SeenValueSymbolTable = true; 6313 } 6314 SeenGlobalValSummary = true; 6315 if (Error Err = parseEntireSummary(Entry.ID)) 6316 return Err; 6317 break; 6318 case bitc::MODULE_STRTAB_BLOCK_ID: 6319 if (Error Err = parseModuleStringTable()) 6320 return Err; 6321 break; 6322 } 6323 continue; 6324 6325 case BitstreamEntry::Record: { 6326 Record.clear(); 6327 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6328 if (!MaybeBitCode) 6329 return MaybeBitCode.takeError(); 6330 switch (MaybeBitCode.get()) { 6331 default: 6332 break; // Default behavior, ignore unknown content. 6333 case bitc::MODULE_CODE_VERSION: { 6334 if (Error Err = parseVersionRecord(Record).takeError()) 6335 return Err; 6336 break; 6337 } 6338 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6339 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6340 SmallString<128> ValueName; 6341 if (convertToString(Record, 0, ValueName)) 6342 return error("Invalid record"); 6343 SourceFileName = ValueName.c_str(); 6344 break; 6345 } 6346 /// MODULE_CODE_HASH: [5*i32] 6347 case bitc::MODULE_CODE_HASH: { 6348 if (Record.size() != 5) 6349 return error("Invalid hash length " + Twine(Record.size()).str()); 6350 auto &Hash = getThisModule()->second.second; 6351 int Pos = 0; 6352 for (auto &Val : Record) { 6353 assert(!(Val >> 32) && "Unexpected high bits set"); 6354 Hash[Pos++] = Val; 6355 } 6356 break; 6357 } 6358 /// MODULE_CODE_VSTOFFSET: [offset] 6359 case bitc::MODULE_CODE_VSTOFFSET: 6360 if (Record.empty()) 6361 return error("Invalid record"); 6362 // Note that we subtract 1 here because the offset is relative to one 6363 // word before the start of the identification or module block, which 6364 // was historically always the start of the regular bitcode header. 6365 VSTOffset = Record[0] - 1; 6366 break; 6367 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6368 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6369 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6370 // v2: [strtab offset, strtab size, v1] 6371 case bitc::MODULE_CODE_GLOBALVAR: 6372 case bitc::MODULE_CODE_FUNCTION: 6373 case bitc::MODULE_CODE_ALIAS: { 6374 StringRef Name; 6375 ArrayRef<uint64_t> GVRecord; 6376 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6377 if (GVRecord.size() <= 3) 6378 return error("Invalid record"); 6379 uint64_t RawLinkage = GVRecord[3]; 6380 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6381 if (!UseStrtab) { 6382 ValueIdToLinkageMap[ValueId++] = Linkage; 6383 break; 6384 } 6385 6386 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6387 break; 6388 } 6389 } 6390 } 6391 continue; 6392 } 6393 } 6394 } 6395 6396 std::vector<ValueInfo> 6397 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6398 std::vector<ValueInfo> Ret; 6399 Ret.reserve(Record.size()); 6400 for (uint64_t RefValueId : Record) 6401 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6402 return Ret; 6403 } 6404 6405 std::vector<FunctionSummary::EdgeTy> 6406 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6407 bool IsOldProfileFormat, 6408 bool HasProfile, bool HasRelBF) { 6409 std::vector<FunctionSummary::EdgeTy> Ret; 6410 Ret.reserve(Record.size()); 6411 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6412 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6413 uint64_t RelBF = 0; 6414 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6415 if (IsOldProfileFormat) { 6416 I += 1; // Skip old callsitecount field 6417 if (HasProfile) 6418 I += 1; // Skip old profilecount field 6419 } else if (HasProfile) 6420 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6421 else if (HasRelBF) 6422 RelBF = Record[++I]; 6423 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6424 } 6425 return Ret; 6426 } 6427 6428 static void 6429 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6430 WholeProgramDevirtResolution &Wpd) { 6431 uint64_t ArgNum = Record[Slot++]; 6432 WholeProgramDevirtResolution::ByArg &B = 6433 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6434 Slot += ArgNum; 6435 6436 B.TheKind = 6437 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6438 B.Info = Record[Slot++]; 6439 B.Byte = Record[Slot++]; 6440 B.Bit = Record[Slot++]; 6441 } 6442 6443 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6444 StringRef Strtab, size_t &Slot, 6445 TypeIdSummary &TypeId) { 6446 uint64_t Id = Record[Slot++]; 6447 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6448 6449 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6450 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6451 static_cast<size_t>(Record[Slot + 1])}; 6452 Slot += 2; 6453 6454 uint64_t ResByArgNum = Record[Slot++]; 6455 for (uint64_t I = 0; I != ResByArgNum; ++I) 6456 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6457 } 6458 6459 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6460 StringRef Strtab, 6461 ModuleSummaryIndex &TheIndex) { 6462 size_t Slot = 0; 6463 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6464 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6465 Slot += 2; 6466 6467 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6468 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6469 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6470 TypeId.TTRes.SizeM1 = Record[Slot++]; 6471 TypeId.TTRes.BitMask = Record[Slot++]; 6472 TypeId.TTRes.InlineBits = Record[Slot++]; 6473 6474 while (Slot < Record.size()) 6475 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6476 } 6477 6478 std::vector<FunctionSummary::ParamAccess> 6479 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6480 auto ReadRange = [&]() { 6481 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6482 BitcodeReader::decodeSignRotatedValue(Record.front())); 6483 Record = Record.drop_front(); 6484 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6485 BitcodeReader::decodeSignRotatedValue(Record.front())); 6486 Record = Record.drop_front(); 6487 ConstantRange Range{Lower, Upper}; 6488 assert(!Range.isFullSet()); 6489 assert(!Range.isUpperSignWrapped()); 6490 return Range; 6491 }; 6492 6493 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6494 while (!Record.empty()) { 6495 PendingParamAccesses.emplace_back(); 6496 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6497 ParamAccess.ParamNo = Record.front(); 6498 Record = Record.drop_front(); 6499 ParamAccess.Use = ReadRange(); 6500 ParamAccess.Calls.resize(Record.front()); 6501 Record = Record.drop_front(); 6502 for (auto &Call : ParamAccess.Calls) { 6503 Call.ParamNo = Record.front(); 6504 Record = Record.drop_front(); 6505 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6506 Record = Record.drop_front(); 6507 Call.Offsets = ReadRange(); 6508 } 6509 } 6510 return PendingParamAccesses; 6511 } 6512 6513 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6514 ArrayRef<uint64_t> Record, size_t &Slot, 6515 TypeIdCompatibleVtableInfo &TypeId) { 6516 uint64_t Offset = Record[Slot++]; 6517 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6518 TypeId.push_back({Offset, Callee}); 6519 } 6520 6521 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6522 ArrayRef<uint64_t> Record) { 6523 size_t Slot = 0; 6524 TypeIdCompatibleVtableInfo &TypeId = 6525 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6526 {Strtab.data() + Record[Slot], 6527 static_cast<size_t>(Record[Slot + 1])}); 6528 Slot += 2; 6529 6530 while (Slot < Record.size()) 6531 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6532 } 6533 6534 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6535 unsigned WOCnt) { 6536 // Readonly and writeonly refs are in the end of the refs list. 6537 assert(ROCnt + WOCnt <= Refs.size()); 6538 unsigned FirstWORef = Refs.size() - WOCnt; 6539 unsigned RefNo = FirstWORef - ROCnt; 6540 for (; RefNo < FirstWORef; ++RefNo) 6541 Refs[RefNo].setReadOnly(); 6542 for (; RefNo < Refs.size(); ++RefNo) 6543 Refs[RefNo].setWriteOnly(); 6544 } 6545 6546 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6547 // objects in the index. 6548 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6549 if (Error Err = Stream.EnterSubBlock(ID)) 6550 return Err; 6551 SmallVector<uint64_t, 64> Record; 6552 6553 // Parse version 6554 { 6555 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6556 if (!MaybeEntry) 6557 return MaybeEntry.takeError(); 6558 BitstreamEntry Entry = MaybeEntry.get(); 6559 6560 if (Entry.Kind != BitstreamEntry::Record) 6561 return error("Invalid Summary Block: record for version expected"); 6562 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6563 if (!MaybeRecord) 6564 return MaybeRecord.takeError(); 6565 if (MaybeRecord.get() != bitc::FS_VERSION) 6566 return error("Invalid Summary Block: version expected"); 6567 } 6568 const uint64_t Version = Record[0]; 6569 const bool IsOldProfileFormat = Version == 1; 6570 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6571 return error("Invalid summary version " + Twine(Version) + 6572 ". Version should be in the range [1-" + 6573 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6574 "]."); 6575 Record.clear(); 6576 6577 // Keep around the last seen summary to be used when we see an optional 6578 // "OriginalName" attachement. 6579 GlobalValueSummary *LastSeenSummary = nullptr; 6580 GlobalValue::GUID LastSeenGUID = 0; 6581 6582 // We can expect to see any number of type ID information records before 6583 // each function summary records; these variables store the information 6584 // collected so far so that it can be used to create the summary object. 6585 std::vector<GlobalValue::GUID> PendingTypeTests; 6586 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6587 PendingTypeCheckedLoadVCalls; 6588 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6589 PendingTypeCheckedLoadConstVCalls; 6590 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6591 6592 while (true) { 6593 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6594 if (!MaybeEntry) 6595 return MaybeEntry.takeError(); 6596 BitstreamEntry Entry = MaybeEntry.get(); 6597 6598 switch (Entry.Kind) { 6599 case BitstreamEntry::SubBlock: // Handled for us already. 6600 case BitstreamEntry::Error: 6601 return error("Malformed block"); 6602 case BitstreamEntry::EndBlock: 6603 return Error::success(); 6604 case BitstreamEntry::Record: 6605 // The interesting case. 6606 break; 6607 } 6608 6609 // Read a record. The record format depends on whether this 6610 // is a per-module index or a combined index file. In the per-module 6611 // case the records contain the associated value's ID for correlation 6612 // with VST entries. In the combined index the correlation is done 6613 // via the bitcode offset of the summary records (which were saved 6614 // in the combined index VST entries). The records also contain 6615 // information used for ThinLTO renaming and importing. 6616 Record.clear(); 6617 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6618 if (!MaybeBitCode) 6619 return MaybeBitCode.takeError(); 6620 switch (unsigned BitCode = MaybeBitCode.get()) { 6621 default: // Default behavior: ignore. 6622 break; 6623 case bitc::FS_FLAGS: { // [flags] 6624 TheIndex.setFlags(Record[0]); 6625 break; 6626 } 6627 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6628 uint64_t ValueID = Record[0]; 6629 GlobalValue::GUID RefGUID = Record[1]; 6630 ValueIdToValueInfoMap[ValueID] = 6631 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6632 break; 6633 } 6634 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6635 // numrefs x valueid, n x (valueid)] 6636 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6637 // numrefs x valueid, 6638 // n x (valueid, hotness)] 6639 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6640 // numrefs x valueid, 6641 // n x (valueid, relblockfreq)] 6642 case bitc::FS_PERMODULE: 6643 case bitc::FS_PERMODULE_RELBF: 6644 case bitc::FS_PERMODULE_PROFILE: { 6645 unsigned ValueID = Record[0]; 6646 uint64_t RawFlags = Record[1]; 6647 unsigned InstCount = Record[2]; 6648 uint64_t RawFunFlags = 0; 6649 unsigned NumRefs = Record[3]; 6650 unsigned NumRORefs = 0, NumWORefs = 0; 6651 int RefListStartIndex = 4; 6652 if (Version >= 4) { 6653 RawFunFlags = Record[3]; 6654 NumRefs = Record[4]; 6655 RefListStartIndex = 5; 6656 if (Version >= 5) { 6657 NumRORefs = Record[5]; 6658 RefListStartIndex = 6; 6659 if (Version >= 7) { 6660 NumWORefs = Record[6]; 6661 RefListStartIndex = 7; 6662 } 6663 } 6664 } 6665 6666 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6667 // The module path string ref set in the summary must be owned by the 6668 // index's module string table. Since we don't have a module path 6669 // string table section in the per-module index, we create a single 6670 // module path string table entry with an empty (0) ID to take 6671 // ownership. 6672 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6673 assert(Record.size() >= RefListStartIndex + NumRefs && 6674 "Record size inconsistent with number of references"); 6675 std::vector<ValueInfo> Refs = makeRefList( 6676 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6677 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6678 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6679 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6680 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6681 IsOldProfileFormat, HasProfile, HasRelBF); 6682 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6683 auto FS = std::make_unique<FunctionSummary>( 6684 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6685 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6686 std::move(PendingTypeTestAssumeVCalls), 6687 std::move(PendingTypeCheckedLoadVCalls), 6688 std::move(PendingTypeTestAssumeConstVCalls), 6689 std::move(PendingTypeCheckedLoadConstVCalls), 6690 std::move(PendingParamAccesses)); 6691 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6692 FS->setModulePath(getThisModule()->first()); 6693 FS->setOriginalName(VIAndOriginalGUID.second); 6694 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6695 break; 6696 } 6697 // FS_ALIAS: [valueid, flags, valueid] 6698 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6699 // they expect all aliasee summaries to be available. 6700 case bitc::FS_ALIAS: { 6701 unsigned ValueID = Record[0]; 6702 uint64_t RawFlags = Record[1]; 6703 unsigned AliaseeID = Record[2]; 6704 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6705 auto AS = std::make_unique<AliasSummary>(Flags); 6706 // The module path string ref set in the summary must be owned by the 6707 // index's module string table. Since we don't have a module path 6708 // string table section in the per-module index, we create a single 6709 // module path string table entry with an empty (0) ID to take 6710 // ownership. 6711 AS->setModulePath(getThisModule()->first()); 6712 6713 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6714 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6715 if (!AliaseeInModule) 6716 return error("Alias expects aliasee summary to be parsed"); 6717 AS->setAliasee(AliaseeVI, AliaseeInModule); 6718 6719 auto GUID = getValueInfoFromValueId(ValueID); 6720 AS->setOriginalName(GUID.second); 6721 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6722 break; 6723 } 6724 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6725 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6726 unsigned ValueID = Record[0]; 6727 uint64_t RawFlags = Record[1]; 6728 unsigned RefArrayStart = 2; 6729 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6730 /* WriteOnly */ false, 6731 /* Constant */ false, 6732 GlobalObject::VCallVisibilityPublic); 6733 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6734 if (Version >= 5) { 6735 GVF = getDecodedGVarFlags(Record[2]); 6736 RefArrayStart = 3; 6737 } 6738 std::vector<ValueInfo> Refs = 6739 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6740 auto FS = 6741 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6742 FS->setModulePath(getThisModule()->first()); 6743 auto GUID = getValueInfoFromValueId(ValueID); 6744 FS->setOriginalName(GUID.second); 6745 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6746 break; 6747 } 6748 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6749 // numrefs, numrefs x valueid, 6750 // n x (valueid, offset)] 6751 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6752 unsigned ValueID = Record[0]; 6753 uint64_t RawFlags = Record[1]; 6754 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6755 unsigned NumRefs = Record[3]; 6756 unsigned RefListStartIndex = 4; 6757 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6758 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6759 std::vector<ValueInfo> Refs = makeRefList( 6760 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6761 VTableFuncList VTableFuncs; 6762 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6763 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6764 uint64_t Offset = Record[++I]; 6765 VTableFuncs.push_back({Callee, Offset}); 6766 } 6767 auto VS = 6768 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6769 VS->setModulePath(getThisModule()->first()); 6770 VS->setVTableFuncs(VTableFuncs); 6771 auto GUID = getValueInfoFromValueId(ValueID); 6772 VS->setOriginalName(GUID.second); 6773 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6774 break; 6775 } 6776 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6777 // numrefs x valueid, n x (valueid)] 6778 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6779 // numrefs x valueid, n x (valueid, hotness)] 6780 case bitc::FS_COMBINED: 6781 case bitc::FS_COMBINED_PROFILE: { 6782 unsigned ValueID = Record[0]; 6783 uint64_t ModuleId = Record[1]; 6784 uint64_t RawFlags = Record[2]; 6785 unsigned InstCount = Record[3]; 6786 uint64_t RawFunFlags = 0; 6787 uint64_t EntryCount = 0; 6788 unsigned NumRefs = Record[4]; 6789 unsigned NumRORefs = 0, NumWORefs = 0; 6790 int RefListStartIndex = 5; 6791 6792 if (Version >= 4) { 6793 RawFunFlags = Record[4]; 6794 RefListStartIndex = 6; 6795 size_t NumRefsIndex = 5; 6796 if (Version >= 5) { 6797 unsigned NumRORefsOffset = 1; 6798 RefListStartIndex = 7; 6799 if (Version >= 6) { 6800 NumRefsIndex = 6; 6801 EntryCount = Record[5]; 6802 RefListStartIndex = 8; 6803 if (Version >= 7) { 6804 RefListStartIndex = 9; 6805 NumWORefs = Record[8]; 6806 NumRORefsOffset = 2; 6807 } 6808 } 6809 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6810 } 6811 NumRefs = Record[NumRefsIndex]; 6812 } 6813 6814 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6815 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6816 assert(Record.size() >= RefListStartIndex + NumRefs && 6817 "Record size inconsistent with number of references"); 6818 std::vector<ValueInfo> Refs = makeRefList( 6819 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6820 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6821 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6822 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6823 IsOldProfileFormat, HasProfile, false); 6824 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6825 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6826 auto FS = std::make_unique<FunctionSummary>( 6827 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6828 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6829 std::move(PendingTypeTestAssumeVCalls), 6830 std::move(PendingTypeCheckedLoadVCalls), 6831 std::move(PendingTypeTestAssumeConstVCalls), 6832 std::move(PendingTypeCheckedLoadConstVCalls), 6833 std::move(PendingParamAccesses)); 6834 LastSeenSummary = FS.get(); 6835 LastSeenGUID = VI.getGUID(); 6836 FS->setModulePath(ModuleIdMap[ModuleId]); 6837 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6838 break; 6839 } 6840 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6841 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6842 // they expect all aliasee summaries to be available. 6843 case bitc::FS_COMBINED_ALIAS: { 6844 unsigned ValueID = Record[0]; 6845 uint64_t ModuleId = Record[1]; 6846 uint64_t RawFlags = Record[2]; 6847 unsigned AliaseeValueId = Record[3]; 6848 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6849 auto AS = std::make_unique<AliasSummary>(Flags); 6850 LastSeenSummary = AS.get(); 6851 AS->setModulePath(ModuleIdMap[ModuleId]); 6852 6853 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6854 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6855 AS->setAliasee(AliaseeVI, AliaseeInModule); 6856 6857 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6858 LastSeenGUID = VI.getGUID(); 6859 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6860 break; 6861 } 6862 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6863 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6864 unsigned ValueID = Record[0]; 6865 uint64_t ModuleId = Record[1]; 6866 uint64_t RawFlags = Record[2]; 6867 unsigned RefArrayStart = 3; 6868 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6869 /* WriteOnly */ false, 6870 /* Constant */ false, 6871 GlobalObject::VCallVisibilityPublic); 6872 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6873 if (Version >= 5) { 6874 GVF = getDecodedGVarFlags(Record[3]); 6875 RefArrayStart = 4; 6876 } 6877 std::vector<ValueInfo> Refs = 6878 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6879 auto FS = 6880 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6881 LastSeenSummary = FS.get(); 6882 FS->setModulePath(ModuleIdMap[ModuleId]); 6883 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6884 LastSeenGUID = VI.getGUID(); 6885 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6886 break; 6887 } 6888 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6889 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6890 uint64_t OriginalName = Record[0]; 6891 if (!LastSeenSummary) 6892 return error("Name attachment that does not follow a combined record"); 6893 LastSeenSummary->setOriginalName(OriginalName); 6894 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6895 // Reset the LastSeenSummary 6896 LastSeenSummary = nullptr; 6897 LastSeenGUID = 0; 6898 break; 6899 } 6900 case bitc::FS_TYPE_TESTS: 6901 assert(PendingTypeTests.empty()); 6902 llvm::append_range(PendingTypeTests, Record); 6903 break; 6904 6905 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6906 assert(PendingTypeTestAssumeVCalls.empty()); 6907 for (unsigned I = 0; I != Record.size(); I += 2) 6908 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6909 break; 6910 6911 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6912 assert(PendingTypeCheckedLoadVCalls.empty()); 6913 for (unsigned I = 0; I != Record.size(); I += 2) 6914 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6915 break; 6916 6917 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6918 PendingTypeTestAssumeConstVCalls.push_back( 6919 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6920 break; 6921 6922 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6923 PendingTypeCheckedLoadConstVCalls.push_back( 6924 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6925 break; 6926 6927 case bitc::FS_CFI_FUNCTION_DEFS: { 6928 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6929 for (unsigned I = 0; I != Record.size(); I += 2) 6930 CfiFunctionDefs.insert( 6931 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6932 break; 6933 } 6934 6935 case bitc::FS_CFI_FUNCTION_DECLS: { 6936 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6937 for (unsigned I = 0; I != Record.size(); I += 2) 6938 CfiFunctionDecls.insert( 6939 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6940 break; 6941 } 6942 6943 case bitc::FS_TYPE_ID: 6944 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6945 break; 6946 6947 case bitc::FS_TYPE_ID_METADATA: 6948 parseTypeIdCompatibleVtableSummaryRecord(Record); 6949 break; 6950 6951 case bitc::FS_BLOCK_COUNT: 6952 TheIndex.addBlockCount(Record[0]); 6953 break; 6954 6955 case bitc::FS_PARAM_ACCESS: { 6956 PendingParamAccesses = parseParamAccesses(Record); 6957 break; 6958 } 6959 } 6960 } 6961 llvm_unreachable("Exit infinite loop"); 6962 } 6963 6964 // Parse the module string table block into the Index. 6965 // This populates the ModulePathStringTable map in the index. 6966 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6967 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6968 return Err; 6969 6970 SmallVector<uint64_t, 64> Record; 6971 6972 SmallString<128> ModulePath; 6973 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6974 6975 while (true) { 6976 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6977 if (!MaybeEntry) 6978 return MaybeEntry.takeError(); 6979 BitstreamEntry Entry = MaybeEntry.get(); 6980 6981 switch (Entry.Kind) { 6982 case BitstreamEntry::SubBlock: // Handled for us already. 6983 case BitstreamEntry::Error: 6984 return error("Malformed block"); 6985 case BitstreamEntry::EndBlock: 6986 return Error::success(); 6987 case BitstreamEntry::Record: 6988 // The interesting case. 6989 break; 6990 } 6991 6992 Record.clear(); 6993 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6994 if (!MaybeRecord) 6995 return MaybeRecord.takeError(); 6996 switch (MaybeRecord.get()) { 6997 default: // Default behavior: ignore. 6998 break; 6999 case bitc::MST_CODE_ENTRY: { 7000 // MST_ENTRY: [modid, namechar x N] 7001 uint64_t ModuleId = Record[0]; 7002 7003 if (convertToString(Record, 1, ModulePath)) 7004 return error("Invalid record"); 7005 7006 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7007 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7008 7009 ModulePath.clear(); 7010 break; 7011 } 7012 /// MST_CODE_HASH: [5*i32] 7013 case bitc::MST_CODE_HASH: { 7014 if (Record.size() != 5) 7015 return error("Invalid hash length " + Twine(Record.size()).str()); 7016 if (!LastSeenModule) 7017 return error("Invalid hash that does not follow a module path"); 7018 int Pos = 0; 7019 for (auto &Val : Record) { 7020 assert(!(Val >> 32) && "Unexpected high bits set"); 7021 LastSeenModule->second.second[Pos++] = Val; 7022 } 7023 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7024 LastSeenModule = nullptr; 7025 break; 7026 } 7027 } 7028 } 7029 llvm_unreachable("Exit infinite loop"); 7030 } 7031 7032 namespace { 7033 7034 // FIXME: This class is only here to support the transition to llvm::Error. It 7035 // will be removed once this transition is complete. Clients should prefer to 7036 // deal with the Error value directly, rather than converting to error_code. 7037 class BitcodeErrorCategoryType : public std::error_category { 7038 const char *name() const noexcept override { 7039 return "llvm.bitcode"; 7040 } 7041 7042 std::string message(int IE) const override { 7043 BitcodeError E = static_cast<BitcodeError>(IE); 7044 switch (E) { 7045 case BitcodeError::CorruptedBitcode: 7046 return "Corrupted bitcode"; 7047 } 7048 llvm_unreachable("Unknown error type!"); 7049 } 7050 }; 7051 7052 } // end anonymous namespace 7053 7054 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 7055 7056 const std::error_category &llvm::BitcodeErrorCategory() { 7057 return *ErrorCategory; 7058 } 7059 7060 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7061 unsigned Block, unsigned RecordID) { 7062 if (Error Err = Stream.EnterSubBlock(Block)) 7063 return std::move(Err); 7064 7065 StringRef Strtab; 7066 while (true) { 7067 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7068 if (!MaybeEntry) 7069 return MaybeEntry.takeError(); 7070 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7071 7072 switch (Entry.Kind) { 7073 case BitstreamEntry::EndBlock: 7074 return Strtab; 7075 7076 case BitstreamEntry::Error: 7077 return error("Malformed block"); 7078 7079 case BitstreamEntry::SubBlock: 7080 if (Error Err = Stream.SkipBlock()) 7081 return std::move(Err); 7082 break; 7083 7084 case BitstreamEntry::Record: 7085 StringRef Blob; 7086 SmallVector<uint64_t, 1> Record; 7087 Expected<unsigned> MaybeRecord = 7088 Stream.readRecord(Entry.ID, Record, &Blob); 7089 if (!MaybeRecord) 7090 return MaybeRecord.takeError(); 7091 if (MaybeRecord.get() == RecordID) 7092 Strtab = Blob; 7093 break; 7094 } 7095 } 7096 } 7097 7098 //===----------------------------------------------------------------------===// 7099 // External interface 7100 //===----------------------------------------------------------------------===// 7101 7102 Expected<std::vector<BitcodeModule>> 7103 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7104 auto FOrErr = getBitcodeFileContents(Buffer); 7105 if (!FOrErr) 7106 return FOrErr.takeError(); 7107 return std::move(FOrErr->Mods); 7108 } 7109 7110 Expected<BitcodeFileContents> 7111 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7112 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7113 if (!StreamOrErr) 7114 return StreamOrErr.takeError(); 7115 BitstreamCursor &Stream = *StreamOrErr; 7116 7117 BitcodeFileContents F; 7118 while (true) { 7119 uint64_t BCBegin = Stream.getCurrentByteNo(); 7120 7121 // We may be consuming bitcode from a client that leaves garbage at the end 7122 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7123 // the end that there cannot possibly be another module, stop looking. 7124 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7125 return F; 7126 7127 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7128 if (!MaybeEntry) 7129 return MaybeEntry.takeError(); 7130 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7131 7132 switch (Entry.Kind) { 7133 case BitstreamEntry::EndBlock: 7134 case BitstreamEntry::Error: 7135 return error("Malformed block"); 7136 7137 case BitstreamEntry::SubBlock: { 7138 uint64_t IdentificationBit = -1ull; 7139 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7140 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7141 if (Error Err = Stream.SkipBlock()) 7142 return std::move(Err); 7143 7144 { 7145 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7146 if (!MaybeEntry) 7147 return MaybeEntry.takeError(); 7148 Entry = MaybeEntry.get(); 7149 } 7150 7151 if (Entry.Kind != BitstreamEntry::SubBlock || 7152 Entry.ID != bitc::MODULE_BLOCK_ID) 7153 return error("Malformed block"); 7154 } 7155 7156 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7157 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7158 if (Error Err = Stream.SkipBlock()) 7159 return std::move(Err); 7160 7161 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7162 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7163 Buffer.getBufferIdentifier(), IdentificationBit, 7164 ModuleBit}); 7165 continue; 7166 } 7167 7168 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7169 Expected<StringRef> Strtab = 7170 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7171 if (!Strtab) 7172 return Strtab.takeError(); 7173 // This string table is used by every preceding bitcode module that does 7174 // not have its own string table. A bitcode file may have multiple 7175 // string tables if it was created by binary concatenation, for example 7176 // with "llvm-cat -b". 7177 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7178 if (!I.Strtab.empty()) 7179 break; 7180 I.Strtab = *Strtab; 7181 } 7182 // Similarly, the string table is used by every preceding symbol table; 7183 // normally there will be just one unless the bitcode file was created 7184 // by binary concatenation. 7185 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7186 F.StrtabForSymtab = *Strtab; 7187 continue; 7188 } 7189 7190 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7191 Expected<StringRef> SymtabOrErr = 7192 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7193 if (!SymtabOrErr) 7194 return SymtabOrErr.takeError(); 7195 7196 // We can expect the bitcode file to have multiple symbol tables if it 7197 // was created by binary concatenation. In that case we silently 7198 // ignore any subsequent symbol tables, which is fine because this is a 7199 // low level function. The client is expected to notice that the number 7200 // of modules in the symbol table does not match the number of modules 7201 // in the input file and regenerate the symbol table. 7202 if (F.Symtab.empty()) 7203 F.Symtab = *SymtabOrErr; 7204 continue; 7205 } 7206 7207 if (Error Err = Stream.SkipBlock()) 7208 return std::move(Err); 7209 continue; 7210 } 7211 case BitstreamEntry::Record: 7212 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7213 return std::move(E); 7214 continue; 7215 } 7216 } 7217 } 7218 7219 /// Get a lazy one-at-time loading module from bitcode. 7220 /// 7221 /// This isn't always used in a lazy context. In particular, it's also used by 7222 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7223 /// in forward-referenced functions from block address references. 7224 /// 7225 /// \param[in] MaterializeAll Set to \c true if we should materialize 7226 /// everything. 7227 Expected<std::unique_ptr<Module>> 7228 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7229 bool ShouldLazyLoadMetadata, bool IsImporting, 7230 DataLayoutCallbackTy DataLayoutCallback) { 7231 BitstreamCursor Stream(Buffer); 7232 7233 std::string ProducerIdentification; 7234 if (IdentificationBit != -1ull) { 7235 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7236 return std::move(JumpFailed); 7237 if (Error E = 7238 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7239 return std::move(E); 7240 } 7241 7242 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7243 return std::move(JumpFailed); 7244 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7245 Context); 7246 7247 std::unique_ptr<Module> M = 7248 std::make_unique<Module>(ModuleIdentifier, Context); 7249 M->setMaterializer(R); 7250 7251 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7252 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7253 IsImporting, DataLayoutCallback)) 7254 return std::move(Err); 7255 7256 if (MaterializeAll) { 7257 // Read in the entire module, and destroy the BitcodeReader. 7258 if (Error Err = M->materializeAll()) 7259 return std::move(Err); 7260 } else { 7261 // Resolve forward references from blockaddresses. 7262 if (Error Err = R->materializeForwardReferencedFunctions()) 7263 return std::move(Err); 7264 } 7265 return std::move(M); 7266 } 7267 7268 Expected<std::unique_ptr<Module>> 7269 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7270 bool IsImporting) { 7271 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7272 [](StringRef) { return None; }); 7273 } 7274 7275 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7276 // We don't use ModuleIdentifier here because the client may need to control the 7277 // module path used in the combined summary (e.g. when reading summaries for 7278 // regular LTO modules). 7279 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7280 StringRef ModulePath, uint64_t ModuleId) { 7281 BitstreamCursor Stream(Buffer); 7282 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7283 return JumpFailed; 7284 7285 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7286 ModulePath, ModuleId); 7287 return R.parseModule(); 7288 } 7289 7290 // Parse the specified bitcode buffer, returning the function info index. 7291 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7292 BitstreamCursor Stream(Buffer); 7293 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7294 return std::move(JumpFailed); 7295 7296 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7297 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7298 ModuleIdentifier, 0); 7299 7300 if (Error Err = R.parseModule()) 7301 return std::move(Err); 7302 7303 return std::move(Index); 7304 } 7305 7306 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7307 unsigned ID) { 7308 if (Error Err = Stream.EnterSubBlock(ID)) 7309 return std::move(Err); 7310 SmallVector<uint64_t, 64> Record; 7311 7312 while (true) { 7313 BitstreamEntry Entry; 7314 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7315 return std::move(E); 7316 7317 switch (Entry.Kind) { 7318 case BitstreamEntry::SubBlock: // Handled for us already. 7319 case BitstreamEntry::Error: 7320 return error("Malformed block"); 7321 case BitstreamEntry::EndBlock: 7322 // If no flags record found, conservatively return true to mimic 7323 // behavior before this flag was added. 7324 return true; 7325 case BitstreamEntry::Record: 7326 // The interesting case. 7327 break; 7328 } 7329 7330 // Look for the FS_FLAGS record. 7331 Record.clear(); 7332 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7333 if (!MaybeBitCode) 7334 return MaybeBitCode.takeError(); 7335 switch (MaybeBitCode.get()) { 7336 default: // Default behavior: ignore. 7337 break; 7338 case bitc::FS_FLAGS: { // [flags] 7339 uint64_t Flags = Record[0]; 7340 // Scan flags. 7341 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7342 7343 return Flags & 0x8; 7344 } 7345 } 7346 } 7347 llvm_unreachable("Exit infinite loop"); 7348 } 7349 7350 // Check if the given bitcode buffer contains a global value summary block. 7351 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7352 BitstreamCursor Stream(Buffer); 7353 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7354 return std::move(JumpFailed); 7355 7356 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7357 return std::move(Err); 7358 7359 while (true) { 7360 llvm::BitstreamEntry Entry; 7361 if (Error E = Stream.advance().moveInto(Entry)) 7362 return std::move(E); 7363 7364 switch (Entry.Kind) { 7365 case BitstreamEntry::Error: 7366 return error("Malformed block"); 7367 case BitstreamEntry::EndBlock: 7368 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7369 /*EnableSplitLTOUnit=*/false}; 7370 7371 case BitstreamEntry::SubBlock: 7372 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7373 Expected<bool> EnableSplitLTOUnit = 7374 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7375 if (!EnableSplitLTOUnit) 7376 return EnableSplitLTOUnit.takeError(); 7377 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7378 *EnableSplitLTOUnit}; 7379 } 7380 7381 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7382 Expected<bool> EnableSplitLTOUnit = 7383 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7384 if (!EnableSplitLTOUnit) 7385 return EnableSplitLTOUnit.takeError(); 7386 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7387 *EnableSplitLTOUnit}; 7388 } 7389 7390 // Ignore other sub-blocks. 7391 if (Error Err = Stream.SkipBlock()) 7392 return std::move(Err); 7393 continue; 7394 7395 case BitstreamEntry::Record: 7396 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7397 continue; 7398 else 7399 return StreamFailed.takeError(); 7400 } 7401 } 7402 } 7403 7404 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7405 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7406 if (!MsOrErr) 7407 return MsOrErr.takeError(); 7408 7409 if (MsOrErr->size() != 1) 7410 return error("Expected a single module"); 7411 7412 return (*MsOrErr)[0]; 7413 } 7414 7415 Expected<std::unique_ptr<Module>> 7416 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7417 bool ShouldLazyLoadMetadata, bool IsImporting) { 7418 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7419 if (!BM) 7420 return BM.takeError(); 7421 7422 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7423 } 7424 7425 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7426 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7427 bool ShouldLazyLoadMetadata, bool IsImporting) { 7428 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7429 IsImporting); 7430 if (MOrErr) 7431 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7432 return MOrErr; 7433 } 7434 7435 Expected<std::unique_ptr<Module>> 7436 BitcodeModule::parseModule(LLVMContext &Context, 7437 DataLayoutCallbackTy DataLayoutCallback) { 7438 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7439 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7440 // written. We must defer until the Module has been fully materialized. 7441 } 7442 7443 Expected<std::unique_ptr<Module>> 7444 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7445 DataLayoutCallbackTy DataLayoutCallback) { 7446 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7447 if (!BM) 7448 return BM.takeError(); 7449 7450 return BM->parseModule(Context, DataLayoutCallback); 7451 } 7452 7453 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7454 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7455 if (!StreamOrErr) 7456 return StreamOrErr.takeError(); 7457 7458 return readTriple(*StreamOrErr); 7459 } 7460 7461 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7462 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7463 if (!StreamOrErr) 7464 return StreamOrErr.takeError(); 7465 7466 return hasObjCCategory(*StreamOrErr); 7467 } 7468 7469 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7470 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7471 if (!StreamOrErr) 7472 return StreamOrErr.takeError(); 7473 7474 return readIdentificationCode(*StreamOrErr); 7475 } 7476 7477 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7478 ModuleSummaryIndex &CombinedIndex, 7479 uint64_t ModuleId) { 7480 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7481 if (!BM) 7482 return BM.takeError(); 7483 7484 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7485 } 7486 7487 Expected<std::unique_ptr<ModuleSummaryIndex>> 7488 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7489 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7490 if (!BM) 7491 return BM.takeError(); 7492 7493 return BM->getSummary(); 7494 } 7495 7496 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7497 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7498 if (!BM) 7499 return BM.takeError(); 7500 7501 return BM->getLTOInfo(); 7502 } 7503 7504 Expected<std::unique_ptr<ModuleSummaryIndex>> 7505 llvm::getModuleSummaryIndexForFile(StringRef Path, 7506 bool IgnoreEmptyThinLTOIndexFile) { 7507 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7508 MemoryBuffer::getFileOrSTDIN(Path); 7509 if (!FileOrErr) 7510 return errorCodeToError(FileOrErr.getError()); 7511 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7512 return nullptr; 7513 return getModuleSummaryIndex(**FileOrErr); 7514 } 7515