1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/DiagnosticPrinter.h" 22 #include "llvm/IR/GVMaterializer.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/OperandTraits.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Support/DataStream.h" 31 #include "llvm/Support/ManagedStatic.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/MemoryBuffer.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <deque> 36 using namespace llvm; 37 38 namespace { 39 enum { 40 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 41 }; 42 43 class BitcodeReaderValueList { 44 std::vector<WeakVH> ValuePtrs; 45 46 /// ResolveConstants - As we resolve forward-referenced constants, we add 47 /// information about them to this vector. This allows us to resolve them in 48 /// bulk instead of resolving each reference at a time. See the code in 49 /// ResolveConstantForwardRefs for more information about this. 50 /// 51 /// The key of this vector is the placeholder constant, the value is the slot 52 /// number that holds the resolved value. 53 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 54 ResolveConstantsTy ResolveConstants; 55 LLVMContext &Context; 56 public: 57 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 58 ~BitcodeReaderValueList() { 59 assert(ResolveConstants.empty() && "Constants not resolved?"); 60 } 61 62 // vector compatibility methods 63 unsigned size() const { return ValuePtrs.size(); } 64 void resize(unsigned N) { ValuePtrs.resize(N); } 65 void push_back(Value *V) { 66 ValuePtrs.push_back(V); 67 } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void AssignValue(Value *V, unsigned Idx); 91 92 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 93 /// resolves any forward references. 94 void ResolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMDValueList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MDValuePtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMDValueList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MDValuePtrs.size(); } 111 void resize(unsigned N) { MDValuePtrs.resize(N); } 112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 113 void clear() { MDValuePtrs.clear(); } 114 Metadata *back() const { return MDValuePtrs.back(); } 115 void pop_back() { MDValuePtrs.pop_back(); } 116 bool empty() const { return MDValuePtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MDValuePtrs.size()); 120 return MDValuePtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MDValuePtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void AssignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 DiagnosticHandlerFunction DiagnosticHandler; 136 Module *TheModule; 137 std::unique_ptr<MemoryBuffer> Buffer; 138 std::unique_ptr<BitstreamReader> StreamFile; 139 BitstreamCursor Stream; 140 DataStreamer *LazyStreamer; 141 uint64_t NextUnreadBit; 142 bool SeenValueSymbolTable; 143 144 std::vector<Type*> TypeList; 145 BitcodeReaderValueList ValueList; 146 BitcodeReaderMDValueList MDValueList; 147 std::vector<Comdat *> ComdatList; 148 SmallVector<Instruction *, 64> InstructionList; 149 150 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 151 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 154 155 SmallVector<Instruction*, 64> InstsWithTBAATag; 156 157 /// MAttributes - The set of attributes by index. Index zero in the 158 /// file is for null, and is thus not represented here. As such all indices 159 /// are off by one. 160 std::vector<AttributeSet> MAttributes; 161 162 /// \brief The set of attribute groups. 163 std::map<unsigned, AttributeSet> MAttributeGroups; 164 165 /// FunctionBBs - While parsing a function body, this is a list of the basic 166 /// blocks for the function. 167 std::vector<BasicBlock*> FunctionBBs; 168 169 // When reading the module header, this list is populated with functions that 170 // have bodies later in the file. 171 std::vector<Function*> FunctionsWithBodies; 172 173 // When intrinsic functions are encountered which require upgrading they are 174 // stored here with their replacement function. 175 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 176 UpgradedIntrinsicMap UpgradedIntrinsics; 177 178 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 179 DenseMap<unsigned, unsigned> MDKindMap; 180 181 // Several operations happen after the module header has been read, but 182 // before function bodies are processed. This keeps track of whether 183 // we've done this yet. 184 bool SeenFirstFunctionBody; 185 186 /// DeferredFunctionInfo - When function bodies are initially scanned, this 187 /// map contains info about where to find deferred function body in the 188 /// stream. 189 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 190 191 /// When Metadata block is initially scanned when parsing the module, we may 192 /// choose to defer parsing of the metadata. This vector contains info about 193 /// which Metadata blocks are deferred. 194 std::vector<uint64_t> DeferredMetadataInfo; 195 196 /// These are basic blocks forward-referenced by block addresses. They are 197 /// inserted lazily into functions when they're loaded. The basic block ID is 198 /// its index into the vector. 199 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 200 std::deque<Function *> BasicBlockFwdRefQueue; 201 202 /// UseRelativeIDs - Indicates that we are using a new encoding for 203 /// instruction operands where most operands in the current 204 /// FUNCTION_BLOCK are encoded relative to the instruction number, 205 /// for a more compact encoding. Some instruction operands are not 206 /// relative to the instruction ID: basic block numbers, and types. 207 /// Once the old style function blocks have been phased out, we would 208 /// not need this flag. 209 bool UseRelativeIDs; 210 211 /// True if all functions will be materialized, negating the need to process 212 /// (e.g.) blockaddress forward references. 213 bool WillMaterializeAllForwardRefs; 214 215 /// Functions that have block addresses taken. This is usually empty. 216 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 217 218 /// True if any Metadata block has been materialized. 219 bool IsMetadataMaterialized; 220 221 public: 222 std::error_code Error(BitcodeError E, const Twine &Message); 223 std::error_code Error(BitcodeError E); 224 std::error_code Error(const Twine &Message); 225 226 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 229 DiagnosticHandlerFunction DiagnosticHandler); 230 ~BitcodeReader() { FreeState(); } 231 232 std::error_code materializeForwardReferencedFunctions(); 233 234 void FreeState(); 235 236 void releaseBuffer(); 237 238 bool isDematerializable(const GlobalValue *GV) const override; 239 std::error_code materialize(GlobalValue *GV) override; 240 std::error_code MaterializeModule(Module *M) override; 241 std::vector<StructType *> getIdentifiedStructTypes() const override; 242 void Dematerialize(GlobalValue *GV) override; 243 244 /// @brief Main interface to parsing a bitcode buffer. 245 /// @returns true if an error occurred. 246 std::error_code ParseBitcodeInto(Module *M, 247 bool ShouldLazyLoadMetadata = false); 248 249 /// @brief Cheap mechanism to just extract module triple 250 /// @returns true if an error occurred. 251 ErrorOr<std::string> parseTriple(); 252 253 static uint64_t decodeSignRotatedValue(uint64_t V); 254 255 /// Materialize any deferred Metadata block. 256 std::error_code materializeMetadata() override; 257 258 private: 259 std::vector<StructType *> IdentifiedStructTypes; 260 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 261 StructType *createIdentifiedStructType(LLVMContext &Context); 262 263 Type *getTypeByID(unsigned ID); 264 Value *getFnValueByID(unsigned ID, Type *Ty) { 265 if (Ty && Ty->isMetadataTy()) 266 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 267 return ValueList.getValueFwdRef(ID, Ty); 268 } 269 Metadata *getFnMetadataByID(unsigned ID) { 270 return MDValueList.getValueFwdRef(ID); 271 } 272 BasicBlock *getBasicBlock(unsigned ID) const { 273 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 274 return FunctionBBs[ID]; 275 } 276 AttributeSet getAttributes(unsigned i) const { 277 if (i-1 < MAttributes.size()) 278 return MAttributes[i-1]; 279 return AttributeSet(); 280 } 281 282 /// getValueTypePair - Read a value/type pair out of the specified record from 283 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 284 /// Return true on failure. 285 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 286 unsigned InstNum, Value *&ResVal) { 287 if (Slot == Record.size()) return true; 288 unsigned ValNo = (unsigned)Record[Slot++]; 289 // Adjust the ValNo, if it was encoded relative to the InstNum. 290 if (UseRelativeIDs) 291 ValNo = InstNum - ValNo; 292 if (ValNo < InstNum) { 293 // If this is not a forward reference, just return the value we already 294 // have. 295 ResVal = getFnValueByID(ValNo, nullptr); 296 return ResVal == nullptr; 297 } else if (Slot == Record.size()) { 298 return true; 299 } 300 301 unsigned TypeNo = (unsigned)Record[Slot++]; 302 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 303 return ResVal == nullptr; 304 } 305 306 /// popValue - Read a value out of the specified record from slot 'Slot'. 307 /// Increment Slot past the number of slots used by the value in the record. 308 /// Return true if there is an error. 309 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 310 unsigned InstNum, Type *Ty, Value *&ResVal) { 311 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 312 return true; 313 // All values currently take a single record slot. 314 ++Slot; 315 return false; 316 } 317 318 /// getValue -- Like popValue, but does not increment the Slot number. 319 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 320 unsigned InstNum, Type *Ty, Value *&ResVal) { 321 ResVal = getValue(Record, Slot, InstNum, Ty); 322 return ResVal == nullptr; 323 } 324 325 /// getValue -- Version of getValue that returns ResVal directly, 326 /// or 0 if there is an error. 327 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 328 unsigned InstNum, Type *Ty) { 329 if (Slot == Record.size()) return nullptr; 330 unsigned ValNo = (unsigned)Record[Slot]; 331 // Adjust the ValNo, if it was encoded relative to the InstNum. 332 if (UseRelativeIDs) 333 ValNo = InstNum - ValNo; 334 return getFnValueByID(ValNo, Ty); 335 } 336 337 /// getValueSigned -- Like getValue, but decodes signed VBRs. 338 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 339 unsigned InstNum, Type *Ty) { 340 if (Slot == Record.size()) return nullptr; 341 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 342 // Adjust the ValNo, if it was encoded relative to the InstNum. 343 if (UseRelativeIDs) 344 ValNo = InstNum - ValNo; 345 return getFnValueByID(ValNo, Ty); 346 } 347 348 /// Converts alignment exponent (i.e. power of two (or zero)) to the 349 /// corresponding alignment to use. If alignment is too large, returns 350 /// a corresponding error code. 351 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 352 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 353 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 354 std::error_code ParseAttributeBlock(); 355 std::error_code ParseAttributeGroupBlock(); 356 std::error_code ParseTypeTable(); 357 std::error_code ParseTypeTableBody(); 358 359 std::error_code ParseValueSymbolTable(); 360 std::error_code ParseConstants(); 361 std::error_code RememberAndSkipFunctionBody(); 362 /// Save the positions of the Metadata blocks and skip parsing the blocks. 363 std::error_code rememberAndSkipMetadata(); 364 std::error_code ParseFunctionBody(Function *F); 365 std::error_code GlobalCleanup(); 366 std::error_code ResolveGlobalAndAliasInits(); 367 std::error_code ParseMetadata(); 368 std::error_code ParseMetadataAttachment(); 369 ErrorOr<std::string> parseModuleTriple(); 370 std::error_code ParseUseLists(); 371 std::error_code InitStream(); 372 std::error_code InitStreamFromBuffer(); 373 std::error_code InitLazyStream(); 374 std::error_code FindFunctionInStream( 375 Function *F, 376 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 377 }; 378 } // namespace 379 380 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 381 DiagnosticSeverity Severity, 382 const Twine &Msg) 383 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 384 385 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 386 387 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 388 std::error_code EC, const Twine &Message) { 389 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 390 DiagnosticHandler(DI); 391 return EC; 392 } 393 394 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 395 std::error_code EC) { 396 return Error(DiagnosticHandler, EC, EC.message()); 397 } 398 399 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 400 return ::Error(DiagnosticHandler, make_error_code(E), Message); 401 } 402 403 std::error_code BitcodeReader::Error(const Twine &Message) { 404 return ::Error(DiagnosticHandler, 405 make_error_code(BitcodeError::CorruptedBitcode), Message); 406 } 407 408 std::error_code BitcodeReader::Error(BitcodeError E) { 409 return ::Error(DiagnosticHandler, make_error_code(E)); 410 } 411 412 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 413 LLVMContext &C) { 414 if (F) 415 return F; 416 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 417 } 418 419 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 420 DiagnosticHandlerFunction DiagnosticHandler) 421 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 422 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 423 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 424 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 425 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 426 427 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 428 DiagnosticHandlerFunction DiagnosticHandler) 429 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 430 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 431 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 432 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 433 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 434 435 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 436 if (WillMaterializeAllForwardRefs) 437 return std::error_code(); 438 439 // Prevent recursion. 440 WillMaterializeAllForwardRefs = true; 441 442 while (!BasicBlockFwdRefQueue.empty()) { 443 Function *F = BasicBlockFwdRefQueue.front(); 444 BasicBlockFwdRefQueue.pop_front(); 445 assert(F && "Expected valid function"); 446 if (!BasicBlockFwdRefs.count(F)) 447 // Already materialized. 448 continue; 449 450 // Check for a function that isn't materializable to prevent an infinite 451 // loop. When parsing a blockaddress stored in a global variable, there 452 // isn't a trivial way to check if a function will have a body without a 453 // linear search through FunctionsWithBodies, so just check it here. 454 if (!F->isMaterializable()) 455 return Error("Never resolved function from blockaddress"); 456 457 // Try to materialize F. 458 if (std::error_code EC = materialize(F)) 459 return EC; 460 } 461 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 462 463 // Reset state. 464 WillMaterializeAllForwardRefs = false; 465 return std::error_code(); 466 } 467 468 void BitcodeReader::FreeState() { 469 Buffer = nullptr; 470 std::vector<Type*>().swap(TypeList); 471 ValueList.clear(); 472 MDValueList.clear(); 473 std::vector<Comdat *>().swap(ComdatList); 474 475 std::vector<AttributeSet>().swap(MAttributes); 476 std::vector<BasicBlock*>().swap(FunctionBBs); 477 std::vector<Function*>().swap(FunctionsWithBodies); 478 DeferredFunctionInfo.clear(); 479 DeferredMetadataInfo.clear(); 480 MDKindMap.clear(); 481 482 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 483 BasicBlockFwdRefQueue.clear(); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // Helper functions to implement forward reference resolution, etc. 488 //===----------------------------------------------------------------------===// 489 490 /// ConvertToString - Convert a string from a record into an std::string, return 491 /// true on failure. 492 template<typename StrTy> 493 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 494 StrTy &Result) { 495 if (Idx > Record.size()) 496 return true; 497 498 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 499 Result += (char)Record[i]; 500 return false; 501 } 502 503 static bool hasImplicitComdat(size_t Val) { 504 switch (Val) { 505 default: 506 return false; 507 case 1: // Old WeakAnyLinkage 508 case 4: // Old LinkOnceAnyLinkage 509 case 10: // Old WeakODRLinkage 510 case 11: // Old LinkOnceODRLinkage 511 return true; 512 } 513 } 514 515 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 516 switch (Val) { 517 default: // Map unknown/new linkages to external 518 case 0: 519 return GlobalValue::ExternalLinkage; 520 case 2: 521 return GlobalValue::AppendingLinkage; 522 case 3: 523 return GlobalValue::InternalLinkage; 524 case 5: 525 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 526 case 6: 527 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 528 case 7: 529 return GlobalValue::ExternalWeakLinkage; 530 case 8: 531 return GlobalValue::CommonLinkage; 532 case 9: 533 return GlobalValue::PrivateLinkage; 534 case 12: 535 return GlobalValue::AvailableExternallyLinkage; 536 case 13: 537 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 538 case 14: 539 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 540 case 15: 541 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 542 case 1: // Old value with implicit comdat. 543 case 16: 544 return GlobalValue::WeakAnyLinkage; 545 case 10: // Old value with implicit comdat. 546 case 17: 547 return GlobalValue::WeakODRLinkage; 548 case 4: // Old value with implicit comdat. 549 case 18: 550 return GlobalValue::LinkOnceAnyLinkage; 551 case 11: // Old value with implicit comdat. 552 case 19: 553 return GlobalValue::LinkOnceODRLinkage; 554 } 555 } 556 557 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 558 switch (Val) { 559 default: // Map unknown visibilities to default. 560 case 0: return GlobalValue::DefaultVisibility; 561 case 1: return GlobalValue::HiddenVisibility; 562 case 2: return GlobalValue::ProtectedVisibility; 563 } 564 } 565 566 static GlobalValue::DLLStorageClassTypes 567 GetDecodedDLLStorageClass(unsigned Val) { 568 switch (Val) { 569 default: // Map unknown values to default. 570 case 0: return GlobalValue::DefaultStorageClass; 571 case 1: return GlobalValue::DLLImportStorageClass; 572 case 2: return GlobalValue::DLLExportStorageClass; 573 } 574 } 575 576 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 577 switch (Val) { 578 case 0: return GlobalVariable::NotThreadLocal; 579 default: // Map unknown non-zero value to general dynamic. 580 case 1: return GlobalVariable::GeneralDynamicTLSModel; 581 case 2: return GlobalVariable::LocalDynamicTLSModel; 582 case 3: return GlobalVariable::InitialExecTLSModel; 583 case 4: return GlobalVariable::LocalExecTLSModel; 584 } 585 } 586 587 static int GetDecodedCastOpcode(unsigned Val) { 588 switch (Val) { 589 default: return -1; 590 case bitc::CAST_TRUNC : return Instruction::Trunc; 591 case bitc::CAST_ZEXT : return Instruction::ZExt; 592 case bitc::CAST_SEXT : return Instruction::SExt; 593 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 594 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 595 case bitc::CAST_UITOFP : return Instruction::UIToFP; 596 case bitc::CAST_SITOFP : return Instruction::SIToFP; 597 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 598 case bitc::CAST_FPEXT : return Instruction::FPExt; 599 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 600 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 601 case bitc::CAST_BITCAST : return Instruction::BitCast; 602 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 603 } 604 } 605 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 606 switch (Val) { 607 default: return -1; 608 case bitc::BINOP_ADD: 609 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 610 case bitc::BINOP_SUB: 611 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 612 case bitc::BINOP_MUL: 613 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 614 case bitc::BINOP_UDIV: return Instruction::UDiv; 615 case bitc::BINOP_SDIV: 616 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 617 case bitc::BINOP_UREM: return Instruction::URem; 618 case bitc::BINOP_SREM: 619 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 620 case bitc::BINOP_SHL: return Instruction::Shl; 621 case bitc::BINOP_LSHR: return Instruction::LShr; 622 case bitc::BINOP_ASHR: return Instruction::AShr; 623 case bitc::BINOP_AND: return Instruction::And; 624 case bitc::BINOP_OR: return Instruction::Or; 625 case bitc::BINOP_XOR: return Instruction::Xor; 626 } 627 } 628 629 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 630 switch (Val) { 631 default: return AtomicRMWInst::BAD_BINOP; 632 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 633 case bitc::RMW_ADD: return AtomicRMWInst::Add; 634 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 635 case bitc::RMW_AND: return AtomicRMWInst::And; 636 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 637 case bitc::RMW_OR: return AtomicRMWInst::Or; 638 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 639 case bitc::RMW_MAX: return AtomicRMWInst::Max; 640 case bitc::RMW_MIN: return AtomicRMWInst::Min; 641 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 642 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 643 } 644 } 645 646 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 647 switch (Val) { 648 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 649 case bitc::ORDERING_UNORDERED: return Unordered; 650 case bitc::ORDERING_MONOTONIC: return Monotonic; 651 case bitc::ORDERING_ACQUIRE: return Acquire; 652 case bitc::ORDERING_RELEASE: return Release; 653 case bitc::ORDERING_ACQREL: return AcquireRelease; 654 default: // Map unknown orderings to sequentially-consistent. 655 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 656 } 657 } 658 659 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 660 switch (Val) { 661 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 662 default: // Map unknown scopes to cross-thread. 663 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 664 } 665 } 666 667 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 668 switch (Val) { 669 default: // Map unknown selection kinds to any. 670 case bitc::COMDAT_SELECTION_KIND_ANY: 671 return Comdat::Any; 672 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 673 return Comdat::ExactMatch; 674 case bitc::COMDAT_SELECTION_KIND_LARGEST: 675 return Comdat::Largest; 676 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 677 return Comdat::NoDuplicates; 678 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 679 return Comdat::SameSize; 680 } 681 } 682 683 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 684 switch (Val) { 685 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 686 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 687 } 688 } 689 690 namespace llvm { 691 namespace { 692 /// @brief A class for maintaining the slot number definition 693 /// as a placeholder for the actual definition for forward constants defs. 694 class ConstantPlaceHolder : public ConstantExpr { 695 void operator=(const ConstantPlaceHolder &) = delete; 696 public: 697 // allocate space for exactly one operand 698 void *operator new(size_t s) { 699 return User::operator new(s, 1); 700 } 701 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 702 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 703 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 704 } 705 706 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 707 static bool classof(const Value *V) { 708 return isa<ConstantExpr>(V) && 709 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 710 } 711 712 713 /// Provide fast operand accessors 714 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 715 }; 716 } 717 718 // FIXME: can we inherit this from ConstantExpr? 719 template <> 720 struct OperandTraits<ConstantPlaceHolder> : 721 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 722 }; 723 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 724 } 725 726 727 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 728 if (Idx == size()) { 729 push_back(V); 730 return; 731 } 732 733 if (Idx >= size()) 734 resize(Idx+1); 735 736 WeakVH &OldV = ValuePtrs[Idx]; 737 if (!OldV) { 738 OldV = V; 739 return; 740 } 741 742 // Handle constants and non-constants (e.g. instrs) differently for 743 // efficiency. 744 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 745 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 746 OldV = V; 747 } else { 748 // If there was a forward reference to this value, replace it. 749 Value *PrevVal = OldV; 750 OldV->replaceAllUsesWith(V); 751 delete PrevVal; 752 } 753 } 754 755 756 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 757 Type *Ty) { 758 if (Idx >= size()) 759 resize(Idx + 1); 760 761 if (Value *V = ValuePtrs[Idx]) { 762 assert(Ty == V->getType() && "Type mismatch in constant table!"); 763 return cast<Constant>(V); 764 } 765 766 // Create and return a placeholder, which will later be RAUW'd. 767 Constant *C = new ConstantPlaceHolder(Ty, Context); 768 ValuePtrs[Idx] = C; 769 return C; 770 } 771 772 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 773 if (Idx >= size()) 774 resize(Idx + 1); 775 776 if (Value *V = ValuePtrs[Idx]) { 777 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 778 return V; 779 } 780 781 // No type specified, must be invalid reference. 782 if (!Ty) return nullptr; 783 784 // Create and return a placeholder, which will later be RAUW'd. 785 Value *V = new Argument(Ty); 786 ValuePtrs[Idx] = V; 787 return V; 788 } 789 790 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 791 /// resolves any forward references. The idea behind this is that we sometimes 792 /// get constants (such as large arrays) which reference *many* forward ref 793 /// constants. Replacing each of these causes a lot of thrashing when 794 /// building/reuniquing the constant. Instead of doing this, we look at all the 795 /// uses and rewrite all the place holders at once for any constant that uses 796 /// a placeholder. 797 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 798 // Sort the values by-pointer so that they are efficient to look up with a 799 // binary search. 800 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 801 802 SmallVector<Constant*, 64> NewOps; 803 804 while (!ResolveConstants.empty()) { 805 Value *RealVal = operator[](ResolveConstants.back().second); 806 Constant *Placeholder = ResolveConstants.back().first; 807 ResolveConstants.pop_back(); 808 809 // Loop over all users of the placeholder, updating them to reference the 810 // new value. If they reference more than one placeholder, update them all 811 // at once. 812 while (!Placeholder->use_empty()) { 813 auto UI = Placeholder->user_begin(); 814 User *U = *UI; 815 816 // If the using object isn't uniqued, just update the operands. This 817 // handles instructions and initializers for global variables. 818 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 819 UI.getUse().set(RealVal); 820 continue; 821 } 822 823 // Otherwise, we have a constant that uses the placeholder. Replace that 824 // constant with a new constant that has *all* placeholder uses updated. 825 Constant *UserC = cast<Constant>(U); 826 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 827 I != E; ++I) { 828 Value *NewOp; 829 if (!isa<ConstantPlaceHolder>(*I)) { 830 // Not a placeholder reference. 831 NewOp = *I; 832 } else if (*I == Placeholder) { 833 // Common case is that it just references this one placeholder. 834 NewOp = RealVal; 835 } else { 836 // Otherwise, look up the placeholder in ResolveConstants. 837 ResolveConstantsTy::iterator It = 838 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 839 std::pair<Constant*, unsigned>(cast<Constant>(*I), 840 0)); 841 assert(It != ResolveConstants.end() && It->first == *I); 842 NewOp = operator[](It->second); 843 } 844 845 NewOps.push_back(cast<Constant>(NewOp)); 846 } 847 848 // Make the new constant. 849 Constant *NewC; 850 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 851 NewC = ConstantArray::get(UserCA->getType(), NewOps); 852 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 853 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 854 } else if (isa<ConstantVector>(UserC)) { 855 NewC = ConstantVector::get(NewOps); 856 } else { 857 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 858 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 859 } 860 861 UserC->replaceAllUsesWith(NewC); 862 UserC->destroyConstant(); 863 NewOps.clear(); 864 } 865 866 // Update all ValueHandles, they should be the only users at this point. 867 Placeholder->replaceAllUsesWith(RealVal); 868 delete Placeholder; 869 } 870 } 871 872 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 873 if (Idx == size()) { 874 push_back(MD); 875 return; 876 } 877 878 if (Idx >= size()) 879 resize(Idx+1); 880 881 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 882 if (!OldMD) { 883 OldMD.reset(MD); 884 return; 885 } 886 887 // If there was a forward reference to this value, replace it. 888 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 889 PrevMD->replaceAllUsesWith(MD); 890 --NumFwdRefs; 891 } 892 893 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 894 if (Idx >= size()) 895 resize(Idx + 1); 896 897 if (Metadata *MD = MDValuePtrs[Idx]) 898 return MD; 899 900 // Track forward refs to be resolved later. 901 if (AnyFwdRefs) { 902 MinFwdRef = std::min(MinFwdRef, Idx); 903 MaxFwdRef = std::max(MaxFwdRef, Idx); 904 } else { 905 AnyFwdRefs = true; 906 MinFwdRef = MaxFwdRef = Idx; 907 } 908 ++NumFwdRefs; 909 910 // Create and return a placeholder, which will later be RAUW'd. 911 Metadata *MD = MDNode::getTemporary(Context, None).release(); 912 MDValuePtrs[Idx].reset(MD); 913 return MD; 914 } 915 916 void BitcodeReaderMDValueList::tryToResolveCycles() { 917 if (!AnyFwdRefs) 918 // Nothing to do. 919 return; 920 921 if (NumFwdRefs) 922 // Still forward references... can't resolve cycles. 923 return; 924 925 // Resolve any cycles. 926 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 927 auto &MD = MDValuePtrs[I]; 928 auto *N = dyn_cast_or_null<MDNode>(MD); 929 if (!N) 930 continue; 931 932 assert(!N->isTemporary() && "Unexpected forward reference"); 933 N->resolveCycles(); 934 } 935 936 // Make sure we return early again until there's another forward ref. 937 AnyFwdRefs = false; 938 } 939 940 Type *BitcodeReader::getTypeByID(unsigned ID) { 941 // The type table size is always specified correctly. 942 if (ID >= TypeList.size()) 943 return nullptr; 944 945 if (Type *Ty = TypeList[ID]) 946 return Ty; 947 948 // If we have a forward reference, the only possible case is when it is to a 949 // named struct. Just create a placeholder for now. 950 return TypeList[ID] = createIdentifiedStructType(Context); 951 } 952 953 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 954 StringRef Name) { 955 auto *Ret = StructType::create(Context, Name); 956 IdentifiedStructTypes.push_back(Ret); 957 return Ret; 958 } 959 960 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 961 auto *Ret = StructType::create(Context); 962 IdentifiedStructTypes.push_back(Ret); 963 return Ret; 964 } 965 966 967 //===----------------------------------------------------------------------===// 968 // Functions for parsing blocks from the bitcode file 969 //===----------------------------------------------------------------------===// 970 971 972 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 973 /// been decoded from the given integer. This function must stay in sync with 974 /// 'encodeLLVMAttributesForBitcode'. 975 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 976 uint64_t EncodedAttrs) { 977 // FIXME: Remove in 4.0. 978 979 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 980 // the bits above 31 down by 11 bits. 981 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 982 assert((!Alignment || isPowerOf2_32(Alignment)) && 983 "Alignment must be a power of two."); 984 985 if (Alignment) 986 B.addAlignmentAttr(Alignment); 987 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 988 (EncodedAttrs & 0xffff)); 989 } 990 991 std::error_code BitcodeReader::ParseAttributeBlock() { 992 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 993 return Error("Invalid record"); 994 995 if (!MAttributes.empty()) 996 return Error("Invalid multiple blocks"); 997 998 SmallVector<uint64_t, 64> Record; 999 1000 SmallVector<AttributeSet, 8> Attrs; 1001 1002 // Read all the records. 1003 while (1) { 1004 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1005 1006 switch (Entry.Kind) { 1007 case BitstreamEntry::SubBlock: // Handled for us already. 1008 case BitstreamEntry::Error: 1009 return Error("Malformed block"); 1010 case BitstreamEntry::EndBlock: 1011 return std::error_code(); 1012 case BitstreamEntry::Record: 1013 // The interesting case. 1014 break; 1015 } 1016 1017 // Read a record. 1018 Record.clear(); 1019 switch (Stream.readRecord(Entry.ID, Record)) { 1020 default: // Default behavior: ignore. 1021 break; 1022 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1023 // FIXME: Remove in 4.0. 1024 if (Record.size() & 1) 1025 return Error("Invalid record"); 1026 1027 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1028 AttrBuilder B; 1029 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1030 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1031 } 1032 1033 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1034 Attrs.clear(); 1035 break; 1036 } 1037 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1038 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1039 Attrs.push_back(MAttributeGroups[Record[i]]); 1040 1041 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1042 Attrs.clear(); 1043 break; 1044 } 1045 } 1046 } 1047 } 1048 1049 // Returns Attribute::None on unrecognized codes. 1050 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1051 switch (Code) { 1052 default: 1053 return Attribute::None; 1054 case bitc::ATTR_KIND_ALIGNMENT: 1055 return Attribute::Alignment; 1056 case bitc::ATTR_KIND_ALWAYS_INLINE: 1057 return Attribute::AlwaysInline; 1058 case bitc::ATTR_KIND_BUILTIN: 1059 return Attribute::Builtin; 1060 case bitc::ATTR_KIND_BY_VAL: 1061 return Attribute::ByVal; 1062 case bitc::ATTR_KIND_IN_ALLOCA: 1063 return Attribute::InAlloca; 1064 case bitc::ATTR_KIND_COLD: 1065 return Attribute::Cold; 1066 case bitc::ATTR_KIND_INLINE_HINT: 1067 return Attribute::InlineHint; 1068 case bitc::ATTR_KIND_IN_REG: 1069 return Attribute::InReg; 1070 case bitc::ATTR_KIND_JUMP_TABLE: 1071 return Attribute::JumpTable; 1072 case bitc::ATTR_KIND_MIN_SIZE: 1073 return Attribute::MinSize; 1074 case bitc::ATTR_KIND_NAKED: 1075 return Attribute::Naked; 1076 case bitc::ATTR_KIND_NEST: 1077 return Attribute::Nest; 1078 case bitc::ATTR_KIND_NO_ALIAS: 1079 return Attribute::NoAlias; 1080 case bitc::ATTR_KIND_NO_BUILTIN: 1081 return Attribute::NoBuiltin; 1082 case bitc::ATTR_KIND_NO_CAPTURE: 1083 return Attribute::NoCapture; 1084 case bitc::ATTR_KIND_NO_DUPLICATE: 1085 return Attribute::NoDuplicate; 1086 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1087 return Attribute::NoImplicitFloat; 1088 case bitc::ATTR_KIND_NO_INLINE: 1089 return Attribute::NoInline; 1090 case bitc::ATTR_KIND_NON_LAZY_BIND: 1091 return Attribute::NonLazyBind; 1092 case bitc::ATTR_KIND_NON_NULL: 1093 return Attribute::NonNull; 1094 case bitc::ATTR_KIND_DEREFERENCEABLE: 1095 return Attribute::Dereferenceable; 1096 case bitc::ATTR_KIND_NO_RED_ZONE: 1097 return Attribute::NoRedZone; 1098 case bitc::ATTR_KIND_NO_RETURN: 1099 return Attribute::NoReturn; 1100 case bitc::ATTR_KIND_NO_UNWIND: 1101 return Attribute::NoUnwind; 1102 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1103 return Attribute::OptimizeForSize; 1104 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1105 return Attribute::OptimizeNone; 1106 case bitc::ATTR_KIND_READ_NONE: 1107 return Attribute::ReadNone; 1108 case bitc::ATTR_KIND_READ_ONLY: 1109 return Attribute::ReadOnly; 1110 case bitc::ATTR_KIND_RETURNED: 1111 return Attribute::Returned; 1112 case bitc::ATTR_KIND_RETURNS_TWICE: 1113 return Attribute::ReturnsTwice; 1114 case bitc::ATTR_KIND_S_EXT: 1115 return Attribute::SExt; 1116 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1117 return Attribute::StackAlignment; 1118 case bitc::ATTR_KIND_STACK_PROTECT: 1119 return Attribute::StackProtect; 1120 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1121 return Attribute::StackProtectReq; 1122 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1123 return Attribute::StackProtectStrong; 1124 case bitc::ATTR_KIND_STRUCT_RET: 1125 return Attribute::StructRet; 1126 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1127 return Attribute::SanitizeAddress; 1128 case bitc::ATTR_KIND_SANITIZE_THREAD: 1129 return Attribute::SanitizeThread; 1130 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1131 return Attribute::SanitizeMemory; 1132 case bitc::ATTR_KIND_UW_TABLE: 1133 return Attribute::UWTable; 1134 case bitc::ATTR_KIND_Z_EXT: 1135 return Attribute::ZExt; 1136 } 1137 } 1138 1139 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1140 unsigned &Alignment) { 1141 // Note: Alignment in bitcode files is incremented by 1, so that zero 1142 // can be used for default alignment. 1143 if (Exponent > Value::MaxAlignmentExponent + 1) 1144 return Error("Invalid alignment value"); 1145 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1146 return std::error_code(); 1147 } 1148 1149 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1150 Attribute::AttrKind *Kind) { 1151 *Kind = GetAttrFromCode(Code); 1152 if (*Kind == Attribute::None) 1153 return Error(BitcodeError::CorruptedBitcode, 1154 "Unknown attribute kind (" + Twine(Code) + ")"); 1155 return std::error_code(); 1156 } 1157 1158 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1159 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1160 return Error("Invalid record"); 1161 1162 if (!MAttributeGroups.empty()) 1163 return Error("Invalid multiple blocks"); 1164 1165 SmallVector<uint64_t, 64> Record; 1166 1167 // Read all the records. 1168 while (1) { 1169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1170 1171 switch (Entry.Kind) { 1172 case BitstreamEntry::SubBlock: // Handled for us already. 1173 case BitstreamEntry::Error: 1174 return Error("Malformed block"); 1175 case BitstreamEntry::EndBlock: 1176 return std::error_code(); 1177 case BitstreamEntry::Record: 1178 // The interesting case. 1179 break; 1180 } 1181 1182 // Read a record. 1183 Record.clear(); 1184 switch (Stream.readRecord(Entry.ID, Record)) { 1185 default: // Default behavior: ignore. 1186 break; 1187 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1188 if (Record.size() < 3) 1189 return Error("Invalid record"); 1190 1191 uint64_t GrpID = Record[0]; 1192 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1193 1194 AttrBuilder B; 1195 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1196 if (Record[i] == 0) { // Enum attribute 1197 Attribute::AttrKind Kind; 1198 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1199 return EC; 1200 1201 B.addAttribute(Kind); 1202 } else if (Record[i] == 1) { // Integer attribute 1203 Attribute::AttrKind Kind; 1204 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1205 return EC; 1206 if (Kind == Attribute::Alignment) 1207 B.addAlignmentAttr(Record[++i]); 1208 else if (Kind == Attribute::StackAlignment) 1209 B.addStackAlignmentAttr(Record[++i]); 1210 else if (Kind == Attribute::Dereferenceable) 1211 B.addDereferenceableAttr(Record[++i]); 1212 } else { // String attribute 1213 assert((Record[i] == 3 || Record[i] == 4) && 1214 "Invalid attribute group entry"); 1215 bool HasValue = (Record[i++] == 4); 1216 SmallString<64> KindStr; 1217 SmallString<64> ValStr; 1218 1219 while (Record[i] != 0 && i != e) 1220 KindStr += Record[i++]; 1221 assert(Record[i] == 0 && "Kind string not null terminated"); 1222 1223 if (HasValue) { 1224 // Has a value associated with it. 1225 ++i; // Skip the '0' that terminates the "kind" string. 1226 while (Record[i] != 0 && i != e) 1227 ValStr += Record[i++]; 1228 assert(Record[i] == 0 && "Value string not null terminated"); 1229 } 1230 1231 B.addAttribute(KindStr.str(), ValStr.str()); 1232 } 1233 } 1234 1235 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1236 break; 1237 } 1238 } 1239 } 1240 } 1241 1242 std::error_code BitcodeReader::ParseTypeTable() { 1243 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1244 return Error("Invalid record"); 1245 1246 return ParseTypeTableBody(); 1247 } 1248 1249 std::error_code BitcodeReader::ParseTypeTableBody() { 1250 if (!TypeList.empty()) 1251 return Error("Invalid multiple blocks"); 1252 1253 SmallVector<uint64_t, 64> Record; 1254 unsigned NumRecords = 0; 1255 1256 SmallString<64> TypeName; 1257 1258 // Read all the records for this type table. 1259 while (1) { 1260 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1261 1262 switch (Entry.Kind) { 1263 case BitstreamEntry::SubBlock: // Handled for us already. 1264 case BitstreamEntry::Error: 1265 return Error("Malformed block"); 1266 case BitstreamEntry::EndBlock: 1267 if (NumRecords != TypeList.size()) 1268 return Error("Malformed block"); 1269 return std::error_code(); 1270 case BitstreamEntry::Record: 1271 // The interesting case. 1272 break; 1273 } 1274 1275 // Read a record. 1276 Record.clear(); 1277 Type *ResultTy = nullptr; 1278 switch (Stream.readRecord(Entry.ID, Record)) { 1279 default: 1280 return Error("Invalid value"); 1281 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1282 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1283 // type list. This allows us to reserve space. 1284 if (Record.size() < 1) 1285 return Error("Invalid record"); 1286 TypeList.resize(Record[0]); 1287 continue; 1288 case bitc::TYPE_CODE_VOID: // VOID 1289 ResultTy = Type::getVoidTy(Context); 1290 break; 1291 case bitc::TYPE_CODE_HALF: // HALF 1292 ResultTy = Type::getHalfTy(Context); 1293 break; 1294 case bitc::TYPE_CODE_FLOAT: // FLOAT 1295 ResultTy = Type::getFloatTy(Context); 1296 break; 1297 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1298 ResultTy = Type::getDoubleTy(Context); 1299 break; 1300 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1301 ResultTy = Type::getX86_FP80Ty(Context); 1302 break; 1303 case bitc::TYPE_CODE_FP128: // FP128 1304 ResultTy = Type::getFP128Ty(Context); 1305 break; 1306 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1307 ResultTy = Type::getPPC_FP128Ty(Context); 1308 break; 1309 case bitc::TYPE_CODE_LABEL: // LABEL 1310 ResultTy = Type::getLabelTy(Context); 1311 break; 1312 case bitc::TYPE_CODE_METADATA: // METADATA 1313 ResultTy = Type::getMetadataTy(Context); 1314 break; 1315 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1316 ResultTy = Type::getX86_MMXTy(Context); 1317 break; 1318 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1319 if (Record.size() < 1) 1320 return Error("Invalid record"); 1321 1322 uint64_t NumBits = Record[0]; 1323 if (NumBits < IntegerType::MIN_INT_BITS || 1324 NumBits > IntegerType::MAX_INT_BITS) 1325 return Error("Bitwidth for integer type out of range"); 1326 ResultTy = IntegerType::get(Context, NumBits); 1327 break; 1328 } 1329 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1330 // [pointee type, address space] 1331 if (Record.size() < 1) 1332 return Error("Invalid record"); 1333 unsigned AddressSpace = 0; 1334 if (Record.size() == 2) 1335 AddressSpace = Record[1]; 1336 ResultTy = getTypeByID(Record[0]); 1337 if (!ResultTy) 1338 return Error("Invalid type"); 1339 ResultTy = PointerType::get(ResultTy, AddressSpace); 1340 break; 1341 } 1342 case bitc::TYPE_CODE_FUNCTION_OLD: { 1343 // FIXME: attrid is dead, remove it in LLVM 4.0 1344 // FUNCTION: [vararg, attrid, retty, paramty x N] 1345 if (Record.size() < 3) 1346 return Error("Invalid record"); 1347 SmallVector<Type*, 8> ArgTys; 1348 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1349 if (Type *T = getTypeByID(Record[i])) 1350 ArgTys.push_back(T); 1351 else 1352 break; 1353 } 1354 1355 ResultTy = getTypeByID(Record[2]); 1356 if (!ResultTy || ArgTys.size() < Record.size()-3) 1357 return Error("Invalid type"); 1358 1359 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1360 break; 1361 } 1362 case bitc::TYPE_CODE_FUNCTION: { 1363 // FUNCTION: [vararg, retty, paramty x N] 1364 if (Record.size() < 2) 1365 return Error("Invalid record"); 1366 SmallVector<Type*, 8> ArgTys; 1367 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1368 if (Type *T = getTypeByID(Record[i])) 1369 ArgTys.push_back(T); 1370 else 1371 break; 1372 } 1373 1374 ResultTy = getTypeByID(Record[1]); 1375 if (!ResultTy || ArgTys.size() < Record.size()-2) 1376 return Error("Invalid type"); 1377 1378 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1379 break; 1380 } 1381 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1382 if (Record.size() < 1) 1383 return Error("Invalid record"); 1384 SmallVector<Type*, 8> EltTys; 1385 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1386 if (Type *T = getTypeByID(Record[i])) 1387 EltTys.push_back(T); 1388 else 1389 break; 1390 } 1391 if (EltTys.size() != Record.size()-1) 1392 return Error("Invalid type"); 1393 ResultTy = StructType::get(Context, EltTys, Record[0]); 1394 break; 1395 } 1396 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1397 if (ConvertToString(Record, 0, TypeName)) 1398 return Error("Invalid record"); 1399 continue; 1400 1401 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1402 if (Record.size() < 1) 1403 return Error("Invalid record"); 1404 1405 if (NumRecords >= TypeList.size()) 1406 return Error("Invalid TYPE table"); 1407 1408 // Check to see if this was forward referenced, if so fill in the temp. 1409 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1410 if (Res) { 1411 Res->setName(TypeName); 1412 TypeList[NumRecords] = nullptr; 1413 } else // Otherwise, create a new struct. 1414 Res = createIdentifiedStructType(Context, TypeName); 1415 TypeName.clear(); 1416 1417 SmallVector<Type*, 8> EltTys; 1418 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1419 if (Type *T = getTypeByID(Record[i])) 1420 EltTys.push_back(T); 1421 else 1422 break; 1423 } 1424 if (EltTys.size() != Record.size()-1) 1425 return Error("Invalid record"); 1426 Res->setBody(EltTys, Record[0]); 1427 ResultTy = Res; 1428 break; 1429 } 1430 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1431 if (Record.size() != 1) 1432 return Error("Invalid record"); 1433 1434 if (NumRecords >= TypeList.size()) 1435 return Error("Invalid TYPE table"); 1436 1437 // Check to see if this was forward referenced, if so fill in the temp. 1438 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1439 if (Res) { 1440 Res->setName(TypeName); 1441 TypeList[NumRecords] = nullptr; 1442 } else // Otherwise, create a new struct with no body. 1443 Res = createIdentifiedStructType(Context, TypeName); 1444 TypeName.clear(); 1445 ResultTy = Res; 1446 break; 1447 } 1448 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1449 if (Record.size() < 2) 1450 return Error("Invalid record"); 1451 if ((ResultTy = getTypeByID(Record[1]))) 1452 ResultTy = ArrayType::get(ResultTy, Record[0]); 1453 else 1454 return Error("Invalid type"); 1455 break; 1456 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1457 if (Record.size() < 2) 1458 return Error("Invalid record"); 1459 if ((ResultTy = getTypeByID(Record[1]))) 1460 ResultTy = VectorType::get(ResultTy, Record[0]); 1461 else 1462 return Error("Invalid type"); 1463 break; 1464 } 1465 1466 if (NumRecords >= TypeList.size()) 1467 return Error("Invalid TYPE table"); 1468 if (TypeList[NumRecords]) 1469 return Error( 1470 "Invalid TYPE table: Only named structs can be forward referenced"); 1471 assert(ResultTy && "Didn't read a type?"); 1472 TypeList[NumRecords++] = ResultTy; 1473 } 1474 } 1475 1476 std::error_code BitcodeReader::ParseValueSymbolTable() { 1477 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1478 return Error("Invalid record"); 1479 1480 SmallVector<uint64_t, 64> Record; 1481 1482 Triple TT(TheModule->getTargetTriple()); 1483 1484 // Read all the records for this value table. 1485 SmallString<128> ValueName; 1486 while (1) { 1487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1488 1489 switch (Entry.Kind) { 1490 case BitstreamEntry::SubBlock: // Handled for us already. 1491 case BitstreamEntry::Error: 1492 return Error("Malformed block"); 1493 case BitstreamEntry::EndBlock: 1494 return std::error_code(); 1495 case BitstreamEntry::Record: 1496 // The interesting case. 1497 break; 1498 } 1499 1500 // Read a record. 1501 Record.clear(); 1502 switch (Stream.readRecord(Entry.ID, Record)) { 1503 default: // Default behavior: unknown type. 1504 break; 1505 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1506 if (ConvertToString(Record, 1, ValueName)) 1507 return Error("Invalid record"); 1508 unsigned ValueID = Record[0]; 1509 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1510 return Error("Invalid record"); 1511 Value *V = ValueList[ValueID]; 1512 1513 V->setName(StringRef(ValueName.data(), ValueName.size())); 1514 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1515 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1516 if (TT.isOSBinFormatMachO()) 1517 GO->setComdat(nullptr); 1518 else 1519 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1520 } 1521 } 1522 ValueName.clear(); 1523 break; 1524 } 1525 case bitc::VST_CODE_BBENTRY: { 1526 if (ConvertToString(Record, 1, ValueName)) 1527 return Error("Invalid record"); 1528 BasicBlock *BB = getBasicBlock(Record[0]); 1529 if (!BB) 1530 return Error("Invalid record"); 1531 1532 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1533 ValueName.clear(); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 1540 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1541 1542 std::error_code BitcodeReader::ParseMetadata() { 1543 IsMetadataMaterialized = true; 1544 unsigned NextMDValueNo = MDValueList.size(); 1545 1546 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1547 return Error("Invalid record"); 1548 1549 SmallVector<uint64_t, 64> Record; 1550 1551 auto getMD = 1552 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1553 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1554 if (ID) 1555 return getMD(ID - 1); 1556 return nullptr; 1557 }; 1558 auto getMDString = [&](unsigned ID) -> MDString *{ 1559 // This requires that the ID is not really a forward reference. In 1560 // particular, the MDString must already have been resolved. 1561 return cast_or_null<MDString>(getMDOrNull(ID)); 1562 }; 1563 1564 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1565 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1566 1567 // Read all the records. 1568 while (1) { 1569 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1570 1571 switch (Entry.Kind) { 1572 case BitstreamEntry::SubBlock: // Handled for us already. 1573 case BitstreamEntry::Error: 1574 return Error("Malformed block"); 1575 case BitstreamEntry::EndBlock: 1576 MDValueList.tryToResolveCycles(); 1577 return std::error_code(); 1578 case BitstreamEntry::Record: 1579 // The interesting case. 1580 break; 1581 } 1582 1583 // Read a record. 1584 Record.clear(); 1585 unsigned Code = Stream.readRecord(Entry.ID, Record); 1586 bool IsDistinct = false; 1587 switch (Code) { 1588 default: // Default behavior: ignore. 1589 break; 1590 case bitc::METADATA_NAME: { 1591 // Read name of the named metadata. 1592 SmallString<8> Name(Record.begin(), Record.end()); 1593 Record.clear(); 1594 Code = Stream.ReadCode(); 1595 1596 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1597 unsigned NextBitCode = Stream.readRecord(Code, Record); 1598 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1599 1600 // Read named metadata elements. 1601 unsigned Size = Record.size(); 1602 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1603 for (unsigned i = 0; i != Size; ++i) { 1604 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1605 if (!MD) 1606 return Error("Invalid record"); 1607 NMD->addOperand(MD); 1608 } 1609 break; 1610 } 1611 case bitc::METADATA_OLD_FN_NODE: { 1612 // FIXME: Remove in 4.0. 1613 // This is a LocalAsMetadata record, the only type of function-local 1614 // metadata. 1615 if (Record.size() % 2 == 1) 1616 return Error("Invalid record"); 1617 1618 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1619 // to be legal, but there's no upgrade path. 1620 auto dropRecord = [&] { 1621 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1622 }; 1623 if (Record.size() != 2) { 1624 dropRecord(); 1625 break; 1626 } 1627 1628 Type *Ty = getTypeByID(Record[0]); 1629 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1630 dropRecord(); 1631 break; 1632 } 1633 1634 MDValueList.AssignValue( 1635 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1636 NextMDValueNo++); 1637 break; 1638 } 1639 case bitc::METADATA_OLD_NODE: { 1640 // FIXME: Remove in 4.0. 1641 if (Record.size() % 2 == 1) 1642 return Error("Invalid record"); 1643 1644 unsigned Size = Record.size(); 1645 SmallVector<Metadata *, 8> Elts; 1646 for (unsigned i = 0; i != Size; i += 2) { 1647 Type *Ty = getTypeByID(Record[i]); 1648 if (!Ty) 1649 return Error("Invalid record"); 1650 if (Ty->isMetadataTy()) 1651 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1652 else if (!Ty->isVoidTy()) { 1653 auto *MD = 1654 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1655 assert(isa<ConstantAsMetadata>(MD) && 1656 "Expected non-function-local metadata"); 1657 Elts.push_back(MD); 1658 } else 1659 Elts.push_back(nullptr); 1660 } 1661 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1662 break; 1663 } 1664 case bitc::METADATA_VALUE: { 1665 if (Record.size() != 2) 1666 return Error("Invalid record"); 1667 1668 Type *Ty = getTypeByID(Record[0]); 1669 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1670 return Error("Invalid record"); 1671 1672 MDValueList.AssignValue( 1673 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1674 NextMDValueNo++); 1675 break; 1676 } 1677 case bitc::METADATA_DISTINCT_NODE: 1678 IsDistinct = true; 1679 // fallthrough... 1680 case bitc::METADATA_NODE: { 1681 SmallVector<Metadata *, 8> Elts; 1682 Elts.reserve(Record.size()); 1683 for (unsigned ID : Record) 1684 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1685 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1686 : MDNode::get(Context, Elts), 1687 NextMDValueNo++); 1688 break; 1689 } 1690 case bitc::METADATA_LOCATION: { 1691 if (Record.size() != 5) 1692 return Error("Invalid record"); 1693 1694 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1695 unsigned Line = Record[1]; 1696 unsigned Column = Record[2]; 1697 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1698 Metadata *InlinedAt = 1699 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1700 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1701 NextMDValueNo++); 1702 break; 1703 } 1704 case bitc::METADATA_GENERIC_DEBUG: { 1705 if (Record.size() < 4) 1706 return Error("Invalid record"); 1707 1708 unsigned Tag = Record[1]; 1709 unsigned Version = Record[2]; 1710 1711 if (Tag >= 1u << 16 || Version != 0) 1712 return Error("Invalid record"); 1713 1714 auto *Header = getMDString(Record[3]); 1715 SmallVector<Metadata *, 8> DwarfOps; 1716 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1717 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1718 : nullptr); 1719 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1720 (Context, Tag, Header, DwarfOps)), 1721 NextMDValueNo++); 1722 break; 1723 } 1724 case bitc::METADATA_SUBRANGE: { 1725 if (Record.size() != 3) 1726 return Error("Invalid record"); 1727 1728 MDValueList.AssignValue( 1729 GET_OR_DISTINCT(MDSubrange, Record[0], 1730 (Context, Record[1], unrotateSign(Record[2]))), 1731 NextMDValueNo++); 1732 break; 1733 } 1734 case bitc::METADATA_ENUMERATOR: { 1735 if (Record.size() != 3) 1736 return Error("Invalid record"); 1737 1738 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1739 (Context, unrotateSign(Record[1]), 1740 getMDString(Record[2]))), 1741 NextMDValueNo++); 1742 break; 1743 } 1744 case bitc::METADATA_BASIC_TYPE: { 1745 if (Record.size() != 6) 1746 return Error("Invalid record"); 1747 1748 MDValueList.AssignValue( 1749 GET_OR_DISTINCT(MDBasicType, Record[0], 1750 (Context, Record[1], getMDString(Record[2]), 1751 Record[3], Record[4], Record[5])), 1752 NextMDValueNo++); 1753 break; 1754 } 1755 case bitc::METADATA_DERIVED_TYPE: { 1756 if (Record.size() != 12) 1757 return Error("Invalid record"); 1758 1759 MDValueList.AssignValue( 1760 GET_OR_DISTINCT(MDDerivedType, Record[0], 1761 (Context, Record[1], getMDString(Record[2]), 1762 getMDOrNull(Record[3]), Record[4], 1763 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1764 Record[7], Record[8], Record[9], Record[10], 1765 getMDOrNull(Record[11]))), 1766 NextMDValueNo++); 1767 break; 1768 } 1769 case bitc::METADATA_COMPOSITE_TYPE: { 1770 if (Record.size() != 16) 1771 return Error("Invalid record"); 1772 1773 MDValueList.AssignValue( 1774 GET_OR_DISTINCT(MDCompositeType, Record[0], 1775 (Context, Record[1], getMDString(Record[2]), 1776 getMDOrNull(Record[3]), Record[4], 1777 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1778 Record[7], Record[8], Record[9], Record[10], 1779 getMDOrNull(Record[11]), Record[12], 1780 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1781 getMDString(Record[15]))), 1782 NextMDValueNo++); 1783 break; 1784 } 1785 case bitc::METADATA_SUBROUTINE_TYPE: { 1786 if (Record.size() != 3) 1787 return Error("Invalid record"); 1788 1789 MDValueList.AssignValue( 1790 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1791 (Context, Record[1], getMDOrNull(Record[2]))), 1792 NextMDValueNo++); 1793 break; 1794 } 1795 case bitc::METADATA_FILE: { 1796 if (Record.size() != 3) 1797 return Error("Invalid record"); 1798 1799 MDValueList.AssignValue( 1800 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1801 getMDString(Record[2]))), 1802 NextMDValueNo++); 1803 break; 1804 } 1805 case bitc::METADATA_COMPILE_UNIT: { 1806 if (Record.size() != 14) 1807 return Error("Invalid record"); 1808 1809 MDValueList.AssignValue( 1810 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1811 (Context, Record[1], getMDOrNull(Record[2]), 1812 getMDString(Record[3]), Record[4], 1813 getMDString(Record[5]), Record[6], 1814 getMDString(Record[7]), Record[8], 1815 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1816 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1817 getMDOrNull(Record[13]))), 1818 NextMDValueNo++); 1819 break; 1820 } 1821 case bitc::METADATA_SUBPROGRAM: { 1822 if (Record.size() != 19) 1823 return Error("Invalid record"); 1824 1825 MDValueList.AssignValue( 1826 GET_OR_DISTINCT( 1827 MDSubprogram, Record[0], 1828 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1829 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1830 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1831 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1832 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1833 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1834 NextMDValueNo++); 1835 break; 1836 } 1837 case bitc::METADATA_LEXICAL_BLOCK: { 1838 if (Record.size() != 5) 1839 return Error("Invalid record"); 1840 1841 MDValueList.AssignValue( 1842 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1843 (Context, getMDOrNull(Record[1]), 1844 getMDOrNull(Record[2]), Record[3], Record[4])), 1845 NextMDValueNo++); 1846 break; 1847 } 1848 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1849 if (Record.size() != 4) 1850 return Error("Invalid record"); 1851 1852 MDValueList.AssignValue( 1853 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1854 (Context, getMDOrNull(Record[1]), 1855 getMDOrNull(Record[2]), Record[3])), 1856 NextMDValueNo++); 1857 break; 1858 } 1859 case bitc::METADATA_NAMESPACE: { 1860 if (Record.size() != 5) 1861 return Error("Invalid record"); 1862 1863 MDValueList.AssignValue( 1864 GET_OR_DISTINCT(MDNamespace, Record[0], 1865 (Context, getMDOrNull(Record[1]), 1866 getMDOrNull(Record[2]), getMDString(Record[3]), 1867 Record[4])), 1868 NextMDValueNo++); 1869 break; 1870 } 1871 case bitc::METADATA_TEMPLATE_TYPE: { 1872 if (Record.size() != 3) 1873 return Error("Invalid record"); 1874 1875 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1876 Record[0], 1877 (Context, getMDString(Record[1]), 1878 getMDOrNull(Record[2]))), 1879 NextMDValueNo++); 1880 break; 1881 } 1882 case bitc::METADATA_TEMPLATE_VALUE: { 1883 if (Record.size() != 5) 1884 return Error("Invalid record"); 1885 1886 MDValueList.AssignValue( 1887 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1888 (Context, Record[1], getMDString(Record[2]), 1889 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1890 NextMDValueNo++); 1891 break; 1892 } 1893 case bitc::METADATA_GLOBAL_VAR: { 1894 if (Record.size() != 11) 1895 return Error("Invalid record"); 1896 1897 MDValueList.AssignValue( 1898 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1899 (Context, getMDOrNull(Record[1]), 1900 getMDString(Record[2]), getMDString(Record[3]), 1901 getMDOrNull(Record[4]), Record[5], 1902 getMDOrNull(Record[6]), Record[7], Record[8], 1903 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1904 NextMDValueNo++); 1905 break; 1906 } 1907 case bitc::METADATA_LOCAL_VAR: { 1908 if (Record.size() != 10) 1909 return Error("Invalid record"); 1910 1911 MDValueList.AssignValue( 1912 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1913 (Context, Record[1], getMDOrNull(Record[2]), 1914 getMDString(Record[3]), getMDOrNull(Record[4]), 1915 Record[5], getMDOrNull(Record[6]), Record[7], 1916 Record[8], getMDOrNull(Record[9]))), 1917 NextMDValueNo++); 1918 break; 1919 } 1920 case bitc::METADATA_EXPRESSION: { 1921 if (Record.size() < 1) 1922 return Error("Invalid record"); 1923 1924 MDValueList.AssignValue( 1925 GET_OR_DISTINCT(MDExpression, Record[0], 1926 (Context, makeArrayRef(Record).slice(1))), 1927 NextMDValueNo++); 1928 break; 1929 } 1930 case bitc::METADATA_OBJC_PROPERTY: { 1931 if (Record.size() != 8) 1932 return Error("Invalid record"); 1933 1934 MDValueList.AssignValue( 1935 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1936 (Context, getMDString(Record[1]), 1937 getMDOrNull(Record[2]), Record[3], 1938 getMDString(Record[4]), getMDString(Record[5]), 1939 Record[6], getMDOrNull(Record[7]))), 1940 NextMDValueNo++); 1941 break; 1942 } 1943 case bitc::METADATA_IMPORTED_ENTITY: { 1944 if (Record.size() != 6) 1945 return Error("Invalid record"); 1946 1947 MDValueList.AssignValue( 1948 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1949 (Context, Record[1], getMDOrNull(Record[2]), 1950 getMDOrNull(Record[3]), Record[4], 1951 getMDString(Record[5]))), 1952 NextMDValueNo++); 1953 break; 1954 } 1955 case bitc::METADATA_STRING: { 1956 std::string String(Record.begin(), Record.end()); 1957 llvm::UpgradeMDStringConstant(String); 1958 Metadata *MD = MDString::get(Context, String); 1959 MDValueList.AssignValue(MD, NextMDValueNo++); 1960 break; 1961 } 1962 case bitc::METADATA_KIND: { 1963 if (Record.size() < 2) 1964 return Error("Invalid record"); 1965 1966 unsigned Kind = Record[0]; 1967 SmallString<8> Name(Record.begin()+1, Record.end()); 1968 1969 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1970 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1971 return Error("Conflicting METADATA_KIND records"); 1972 break; 1973 } 1974 } 1975 } 1976 #undef GET_OR_DISTINCT 1977 } 1978 1979 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1980 /// the LSB for dense VBR encoding. 1981 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1982 if ((V & 1) == 0) 1983 return V >> 1; 1984 if (V != 1) 1985 return -(V >> 1); 1986 // There is no such thing as -0 with integers. "-0" really means MININT. 1987 return 1ULL << 63; 1988 } 1989 1990 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1991 /// values and aliases that we can. 1992 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1993 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1994 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1995 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1996 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1997 1998 GlobalInitWorklist.swap(GlobalInits); 1999 AliasInitWorklist.swap(AliasInits); 2000 FunctionPrefixWorklist.swap(FunctionPrefixes); 2001 FunctionPrologueWorklist.swap(FunctionPrologues); 2002 2003 while (!GlobalInitWorklist.empty()) { 2004 unsigned ValID = GlobalInitWorklist.back().second; 2005 if (ValID >= ValueList.size()) { 2006 // Not ready to resolve this yet, it requires something later in the file. 2007 GlobalInits.push_back(GlobalInitWorklist.back()); 2008 } else { 2009 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2010 GlobalInitWorklist.back().first->setInitializer(C); 2011 else 2012 return Error("Expected a constant"); 2013 } 2014 GlobalInitWorklist.pop_back(); 2015 } 2016 2017 while (!AliasInitWorklist.empty()) { 2018 unsigned ValID = AliasInitWorklist.back().second; 2019 if (ValID >= ValueList.size()) { 2020 AliasInits.push_back(AliasInitWorklist.back()); 2021 } else { 2022 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2023 AliasInitWorklist.back().first->setAliasee(C); 2024 else 2025 return Error("Expected a constant"); 2026 } 2027 AliasInitWorklist.pop_back(); 2028 } 2029 2030 while (!FunctionPrefixWorklist.empty()) { 2031 unsigned ValID = FunctionPrefixWorklist.back().second; 2032 if (ValID >= ValueList.size()) { 2033 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2034 } else { 2035 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2036 FunctionPrefixWorklist.back().first->setPrefixData(C); 2037 else 2038 return Error("Expected a constant"); 2039 } 2040 FunctionPrefixWorklist.pop_back(); 2041 } 2042 2043 while (!FunctionPrologueWorklist.empty()) { 2044 unsigned ValID = FunctionPrologueWorklist.back().second; 2045 if (ValID >= ValueList.size()) { 2046 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2047 } else { 2048 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2049 FunctionPrologueWorklist.back().first->setPrologueData(C); 2050 else 2051 return Error("Expected a constant"); 2052 } 2053 FunctionPrologueWorklist.pop_back(); 2054 } 2055 2056 return std::error_code(); 2057 } 2058 2059 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2060 SmallVector<uint64_t, 8> Words(Vals.size()); 2061 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2062 BitcodeReader::decodeSignRotatedValue); 2063 2064 return APInt(TypeBits, Words); 2065 } 2066 2067 std::error_code BitcodeReader::ParseConstants() { 2068 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2069 return Error("Invalid record"); 2070 2071 SmallVector<uint64_t, 64> Record; 2072 2073 // Read all the records for this value table. 2074 Type *CurTy = Type::getInt32Ty(Context); 2075 unsigned NextCstNo = ValueList.size(); 2076 while (1) { 2077 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2078 2079 switch (Entry.Kind) { 2080 case BitstreamEntry::SubBlock: // Handled for us already. 2081 case BitstreamEntry::Error: 2082 return Error("Malformed block"); 2083 case BitstreamEntry::EndBlock: 2084 if (NextCstNo != ValueList.size()) 2085 return Error("Invalid ronstant reference"); 2086 2087 // Once all the constants have been read, go through and resolve forward 2088 // references. 2089 ValueList.ResolveConstantForwardRefs(); 2090 return std::error_code(); 2091 case BitstreamEntry::Record: 2092 // The interesting case. 2093 break; 2094 } 2095 2096 // Read a record. 2097 Record.clear(); 2098 Value *V = nullptr; 2099 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2100 switch (BitCode) { 2101 default: // Default behavior: unknown constant 2102 case bitc::CST_CODE_UNDEF: // UNDEF 2103 V = UndefValue::get(CurTy); 2104 break; 2105 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2106 if (Record.empty()) 2107 return Error("Invalid record"); 2108 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2109 return Error("Invalid record"); 2110 CurTy = TypeList[Record[0]]; 2111 continue; // Skip the ValueList manipulation. 2112 case bitc::CST_CODE_NULL: // NULL 2113 V = Constant::getNullValue(CurTy); 2114 break; 2115 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2116 if (!CurTy->isIntegerTy() || Record.empty()) 2117 return Error("Invalid record"); 2118 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2119 break; 2120 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2121 if (!CurTy->isIntegerTy() || Record.empty()) 2122 return Error("Invalid record"); 2123 2124 APInt VInt = ReadWideAPInt(Record, 2125 cast<IntegerType>(CurTy)->getBitWidth()); 2126 V = ConstantInt::get(Context, VInt); 2127 2128 break; 2129 } 2130 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2131 if (Record.empty()) 2132 return Error("Invalid record"); 2133 if (CurTy->isHalfTy()) 2134 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2135 APInt(16, (uint16_t)Record[0]))); 2136 else if (CurTy->isFloatTy()) 2137 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2138 APInt(32, (uint32_t)Record[0]))); 2139 else if (CurTy->isDoubleTy()) 2140 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2141 APInt(64, Record[0]))); 2142 else if (CurTy->isX86_FP80Ty()) { 2143 // Bits are not stored the same way as a normal i80 APInt, compensate. 2144 uint64_t Rearrange[2]; 2145 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2146 Rearrange[1] = Record[0] >> 48; 2147 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2148 APInt(80, Rearrange))); 2149 } else if (CurTy->isFP128Ty()) 2150 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2151 APInt(128, Record))); 2152 else if (CurTy->isPPC_FP128Ty()) 2153 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2154 APInt(128, Record))); 2155 else 2156 V = UndefValue::get(CurTy); 2157 break; 2158 } 2159 2160 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2161 if (Record.empty()) 2162 return Error("Invalid record"); 2163 2164 unsigned Size = Record.size(); 2165 SmallVector<Constant*, 16> Elts; 2166 2167 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2168 for (unsigned i = 0; i != Size; ++i) 2169 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2170 STy->getElementType(i))); 2171 V = ConstantStruct::get(STy, Elts); 2172 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2173 Type *EltTy = ATy->getElementType(); 2174 for (unsigned i = 0; i != Size; ++i) 2175 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2176 V = ConstantArray::get(ATy, Elts); 2177 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2178 Type *EltTy = VTy->getElementType(); 2179 for (unsigned i = 0; i != Size; ++i) 2180 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2181 V = ConstantVector::get(Elts); 2182 } else { 2183 V = UndefValue::get(CurTy); 2184 } 2185 break; 2186 } 2187 case bitc::CST_CODE_STRING: // STRING: [values] 2188 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2189 if (Record.empty()) 2190 return Error("Invalid record"); 2191 2192 SmallString<16> Elts(Record.begin(), Record.end()); 2193 V = ConstantDataArray::getString(Context, Elts, 2194 BitCode == bitc::CST_CODE_CSTRING); 2195 break; 2196 } 2197 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2198 if (Record.empty()) 2199 return Error("Invalid record"); 2200 2201 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2202 unsigned Size = Record.size(); 2203 2204 if (EltTy->isIntegerTy(8)) { 2205 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2206 if (isa<VectorType>(CurTy)) 2207 V = ConstantDataVector::get(Context, Elts); 2208 else 2209 V = ConstantDataArray::get(Context, Elts); 2210 } else if (EltTy->isIntegerTy(16)) { 2211 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2212 if (isa<VectorType>(CurTy)) 2213 V = ConstantDataVector::get(Context, Elts); 2214 else 2215 V = ConstantDataArray::get(Context, Elts); 2216 } else if (EltTy->isIntegerTy(32)) { 2217 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2218 if (isa<VectorType>(CurTy)) 2219 V = ConstantDataVector::get(Context, Elts); 2220 else 2221 V = ConstantDataArray::get(Context, Elts); 2222 } else if (EltTy->isIntegerTy(64)) { 2223 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2224 if (isa<VectorType>(CurTy)) 2225 V = ConstantDataVector::get(Context, Elts); 2226 else 2227 V = ConstantDataArray::get(Context, Elts); 2228 } else if (EltTy->isFloatTy()) { 2229 SmallVector<float, 16> Elts(Size); 2230 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2231 if (isa<VectorType>(CurTy)) 2232 V = ConstantDataVector::get(Context, Elts); 2233 else 2234 V = ConstantDataArray::get(Context, Elts); 2235 } else if (EltTy->isDoubleTy()) { 2236 SmallVector<double, 16> Elts(Size); 2237 std::transform(Record.begin(), Record.end(), Elts.begin(), 2238 BitsToDouble); 2239 if (isa<VectorType>(CurTy)) 2240 V = ConstantDataVector::get(Context, Elts); 2241 else 2242 V = ConstantDataArray::get(Context, Elts); 2243 } else { 2244 return Error("Invalid type for value"); 2245 } 2246 break; 2247 } 2248 2249 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2250 if (Record.size() < 3) 2251 return Error("Invalid record"); 2252 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2253 if (Opc < 0) { 2254 V = UndefValue::get(CurTy); // Unknown binop. 2255 } else { 2256 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2257 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2258 unsigned Flags = 0; 2259 if (Record.size() >= 4) { 2260 if (Opc == Instruction::Add || 2261 Opc == Instruction::Sub || 2262 Opc == Instruction::Mul || 2263 Opc == Instruction::Shl) { 2264 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2265 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2266 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2267 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2268 } else if (Opc == Instruction::SDiv || 2269 Opc == Instruction::UDiv || 2270 Opc == Instruction::LShr || 2271 Opc == Instruction::AShr) { 2272 if (Record[3] & (1 << bitc::PEO_EXACT)) 2273 Flags |= SDivOperator::IsExact; 2274 } 2275 } 2276 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2277 } 2278 break; 2279 } 2280 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2281 if (Record.size() < 3) 2282 return Error("Invalid record"); 2283 int Opc = GetDecodedCastOpcode(Record[0]); 2284 if (Opc < 0) { 2285 V = UndefValue::get(CurTy); // Unknown cast. 2286 } else { 2287 Type *OpTy = getTypeByID(Record[1]); 2288 if (!OpTy) 2289 return Error("Invalid record"); 2290 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2291 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2292 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2293 } 2294 break; 2295 } 2296 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2297 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2298 unsigned OpNum = 0; 2299 Type *PointeeType = nullptr; 2300 if (Record.size() % 2) 2301 PointeeType = getTypeByID(Record[OpNum++]); 2302 SmallVector<Constant*, 16> Elts; 2303 while (OpNum != Record.size()) { 2304 Type *ElTy = getTypeByID(Record[OpNum++]); 2305 if (!ElTy) 2306 return Error("Invalid record"); 2307 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2308 } 2309 2310 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2311 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2312 BitCode == 2313 bitc::CST_CODE_CE_INBOUNDS_GEP); 2314 if (PointeeType && 2315 PointeeType != cast<GEPOperator>(V)->getSourceElementType()) 2316 return Error("Explicit gep operator type does not match pointee type " 2317 "of pointer operand"); 2318 break; 2319 } 2320 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2321 if (Record.size() < 3) 2322 return Error("Invalid record"); 2323 2324 Type *SelectorTy = Type::getInt1Ty(Context); 2325 2326 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2327 // vector. Otherwise, it must be a single bit. 2328 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2329 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2330 VTy->getNumElements()); 2331 2332 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2333 SelectorTy), 2334 ValueList.getConstantFwdRef(Record[1],CurTy), 2335 ValueList.getConstantFwdRef(Record[2],CurTy)); 2336 break; 2337 } 2338 case bitc::CST_CODE_CE_EXTRACTELT 2339 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2340 if (Record.size() < 3) 2341 return Error("Invalid record"); 2342 VectorType *OpTy = 2343 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2344 if (!OpTy) 2345 return Error("Invalid record"); 2346 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2347 Constant *Op1 = nullptr; 2348 if (Record.size() == 4) { 2349 Type *IdxTy = getTypeByID(Record[2]); 2350 if (!IdxTy) 2351 return Error("Invalid record"); 2352 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2353 } else // TODO: Remove with llvm 4.0 2354 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2355 if (!Op1) 2356 return Error("Invalid record"); 2357 V = ConstantExpr::getExtractElement(Op0, Op1); 2358 break; 2359 } 2360 case bitc::CST_CODE_CE_INSERTELT 2361 : { // CE_INSERTELT: [opval, opval, opty, opval] 2362 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2363 if (Record.size() < 3 || !OpTy) 2364 return Error("Invalid record"); 2365 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2366 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2367 OpTy->getElementType()); 2368 Constant *Op2 = nullptr; 2369 if (Record.size() == 4) { 2370 Type *IdxTy = getTypeByID(Record[2]); 2371 if (!IdxTy) 2372 return Error("Invalid record"); 2373 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2374 } else // TODO: Remove with llvm 4.0 2375 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2376 if (!Op2) 2377 return Error("Invalid record"); 2378 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2379 break; 2380 } 2381 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2382 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2383 if (Record.size() < 3 || !OpTy) 2384 return Error("Invalid record"); 2385 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2386 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2387 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2388 OpTy->getNumElements()); 2389 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2390 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2391 break; 2392 } 2393 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2394 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2395 VectorType *OpTy = 2396 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2397 if (Record.size() < 4 || !RTy || !OpTy) 2398 return Error("Invalid record"); 2399 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2400 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2401 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2402 RTy->getNumElements()); 2403 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2404 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2405 break; 2406 } 2407 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2408 if (Record.size() < 4) 2409 return Error("Invalid record"); 2410 Type *OpTy = getTypeByID(Record[0]); 2411 if (!OpTy) 2412 return Error("Invalid record"); 2413 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2414 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2415 2416 if (OpTy->isFPOrFPVectorTy()) 2417 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2418 else 2419 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2420 break; 2421 } 2422 // This maintains backward compatibility, pre-asm dialect keywords. 2423 // FIXME: Remove with the 4.0 release. 2424 case bitc::CST_CODE_INLINEASM_OLD: { 2425 if (Record.size() < 2) 2426 return Error("Invalid record"); 2427 std::string AsmStr, ConstrStr; 2428 bool HasSideEffects = Record[0] & 1; 2429 bool IsAlignStack = Record[0] >> 1; 2430 unsigned AsmStrSize = Record[1]; 2431 if (2+AsmStrSize >= Record.size()) 2432 return Error("Invalid record"); 2433 unsigned ConstStrSize = Record[2+AsmStrSize]; 2434 if (3+AsmStrSize+ConstStrSize > Record.size()) 2435 return Error("Invalid record"); 2436 2437 for (unsigned i = 0; i != AsmStrSize; ++i) 2438 AsmStr += (char)Record[2+i]; 2439 for (unsigned i = 0; i != ConstStrSize; ++i) 2440 ConstrStr += (char)Record[3+AsmStrSize+i]; 2441 PointerType *PTy = cast<PointerType>(CurTy); 2442 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2443 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2444 break; 2445 } 2446 // This version adds support for the asm dialect keywords (e.g., 2447 // inteldialect). 2448 case bitc::CST_CODE_INLINEASM: { 2449 if (Record.size() < 2) 2450 return Error("Invalid record"); 2451 std::string AsmStr, ConstrStr; 2452 bool HasSideEffects = Record[0] & 1; 2453 bool IsAlignStack = (Record[0] >> 1) & 1; 2454 unsigned AsmDialect = Record[0] >> 2; 2455 unsigned AsmStrSize = Record[1]; 2456 if (2+AsmStrSize >= Record.size()) 2457 return Error("Invalid record"); 2458 unsigned ConstStrSize = Record[2+AsmStrSize]; 2459 if (3+AsmStrSize+ConstStrSize > Record.size()) 2460 return Error("Invalid record"); 2461 2462 for (unsigned i = 0; i != AsmStrSize; ++i) 2463 AsmStr += (char)Record[2+i]; 2464 for (unsigned i = 0; i != ConstStrSize; ++i) 2465 ConstrStr += (char)Record[3+AsmStrSize+i]; 2466 PointerType *PTy = cast<PointerType>(CurTy); 2467 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2468 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2469 InlineAsm::AsmDialect(AsmDialect)); 2470 break; 2471 } 2472 case bitc::CST_CODE_BLOCKADDRESS:{ 2473 if (Record.size() < 3) 2474 return Error("Invalid record"); 2475 Type *FnTy = getTypeByID(Record[0]); 2476 if (!FnTy) 2477 return Error("Invalid record"); 2478 Function *Fn = 2479 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2480 if (!Fn) 2481 return Error("Invalid record"); 2482 2483 // Don't let Fn get dematerialized. 2484 BlockAddressesTaken.insert(Fn); 2485 2486 // If the function is already parsed we can insert the block address right 2487 // away. 2488 BasicBlock *BB; 2489 unsigned BBID = Record[2]; 2490 if (!BBID) 2491 // Invalid reference to entry block. 2492 return Error("Invalid ID"); 2493 if (!Fn->empty()) { 2494 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2495 for (size_t I = 0, E = BBID; I != E; ++I) { 2496 if (BBI == BBE) 2497 return Error("Invalid ID"); 2498 ++BBI; 2499 } 2500 BB = BBI; 2501 } else { 2502 // Otherwise insert a placeholder and remember it so it can be inserted 2503 // when the function is parsed. 2504 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2505 if (FwdBBs.empty()) 2506 BasicBlockFwdRefQueue.push_back(Fn); 2507 if (FwdBBs.size() < BBID + 1) 2508 FwdBBs.resize(BBID + 1); 2509 if (!FwdBBs[BBID]) 2510 FwdBBs[BBID] = BasicBlock::Create(Context); 2511 BB = FwdBBs[BBID]; 2512 } 2513 V = BlockAddress::get(Fn, BB); 2514 break; 2515 } 2516 } 2517 2518 ValueList.AssignValue(V, NextCstNo); 2519 ++NextCstNo; 2520 } 2521 } 2522 2523 std::error_code BitcodeReader::ParseUseLists() { 2524 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2525 return Error("Invalid record"); 2526 2527 // Read all the records. 2528 SmallVector<uint64_t, 64> Record; 2529 while (1) { 2530 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2531 2532 switch (Entry.Kind) { 2533 case BitstreamEntry::SubBlock: // Handled for us already. 2534 case BitstreamEntry::Error: 2535 return Error("Malformed block"); 2536 case BitstreamEntry::EndBlock: 2537 return std::error_code(); 2538 case BitstreamEntry::Record: 2539 // The interesting case. 2540 break; 2541 } 2542 2543 // Read a use list record. 2544 Record.clear(); 2545 bool IsBB = false; 2546 switch (Stream.readRecord(Entry.ID, Record)) { 2547 default: // Default behavior: unknown type. 2548 break; 2549 case bitc::USELIST_CODE_BB: 2550 IsBB = true; 2551 // fallthrough 2552 case bitc::USELIST_CODE_DEFAULT: { 2553 unsigned RecordLength = Record.size(); 2554 if (RecordLength < 3) 2555 // Records should have at least an ID and two indexes. 2556 return Error("Invalid record"); 2557 unsigned ID = Record.back(); 2558 Record.pop_back(); 2559 2560 Value *V; 2561 if (IsBB) { 2562 assert(ID < FunctionBBs.size() && "Basic block not found"); 2563 V = FunctionBBs[ID]; 2564 } else 2565 V = ValueList[ID]; 2566 unsigned NumUses = 0; 2567 SmallDenseMap<const Use *, unsigned, 16> Order; 2568 for (const Use &U : V->uses()) { 2569 if (++NumUses > Record.size()) 2570 break; 2571 Order[&U] = Record[NumUses - 1]; 2572 } 2573 if (Order.size() != Record.size() || NumUses > Record.size()) 2574 // Mismatches can happen if the functions are being materialized lazily 2575 // (out-of-order), or a value has been upgraded. 2576 break; 2577 2578 V->sortUseList([&](const Use &L, const Use &R) { 2579 return Order.lookup(&L) < Order.lookup(&R); 2580 }); 2581 break; 2582 } 2583 } 2584 } 2585 } 2586 2587 /// When we see the block for metadata, remember where it is and then skip it. 2588 /// This lets us lazily deserialize the metadata. 2589 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2590 // Save the current stream state. 2591 uint64_t CurBit = Stream.GetCurrentBitNo(); 2592 DeferredMetadataInfo.push_back(CurBit); 2593 2594 // Skip over the block for now. 2595 if (Stream.SkipBlock()) 2596 return Error("Invalid record"); 2597 return std::error_code(); 2598 } 2599 2600 std::error_code BitcodeReader::materializeMetadata() { 2601 for (uint64_t BitPos : DeferredMetadataInfo) { 2602 // Move the bit stream to the saved position. 2603 Stream.JumpToBit(BitPos); 2604 if (std::error_code EC = ParseMetadata()) 2605 return EC; 2606 } 2607 DeferredMetadataInfo.clear(); 2608 return std::error_code(); 2609 } 2610 2611 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2612 /// remember where it is and then skip it. This lets us lazily deserialize the 2613 /// functions. 2614 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2615 // Get the function we are talking about. 2616 if (FunctionsWithBodies.empty()) 2617 return Error("Insufficient function protos"); 2618 2619 Function *Fn = FunctionsWithBodies.back(); 2620 FunctionsWithBodies.pop_back(); 2621 2622 // Save the current stream state. 2623 uint64_t CurBit = Stream.GetCurrentBitNo(); 2624 DeferredFunctionInfo[Fn] = CurBit; 2625 2626 // Skip over the function block for now. 2627 if (Stream.SkipBlock()) 2628 return Error("Invalid record"); 2629 return std::error_code(); 2630 } 2631 2632 std::error_code BitcodeReader::GlobalCleanup() { 2633 // Patch the initializers for globals and aliases up. 2634 ResolveGlobalAndAliasInits(); 2635 if (!GlobalInits.empty() || !AliasInits.empty()) 2636 return Error("Malformed global initializer set"); 2637 2638 // Look for intrinsic functions which need to be upgraded at some point 2639 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2640 FI != FE; ++FI) { 2641 Function *NewFn; 2642 if (UpgradeIntrinsicFunction(FI, NewFn)) 2643 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2644 } 2645 2646 // Look for global variables which need to be renamed. 2647 for (Module::global_iterator 2648 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2649 GI != GE;) { 2650 GlobalVariable *GV = GI++; 2651 UpgradeGlobalVariable(GV); 2652 } 2653 2654 // Force deallocation of memory for these vectors to favor the client that 2655 // want lazy deserialization. 2656 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2657 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2658 return std::error_code(); 2659 } 2660 2661 std::error_code BitcodeReader::ParseModule(bool Resume, 2662 bool ShouldLazyLoadMetadata) { 2663 if (Resume) 2664 Stream.JumpToBit(NextUnreadBit); 2665 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2666 return Error("Invalid record"); 2667 2668 SmallVector<uint64_t, 64> Record; 2669 std::vector<std::string> SectionTable; 2670 std::vector<std::string> GCTable; 2671 2672 // Read all the records for this module. 2673 while (1) { 2674 BitstreamEntry Entry = Stream.advance(); 2675 2676 switch (Entry.Kind) { 2677 case BitstreamEntry::Error: 2678 return Error("Malformed block"); 2679 case BitstreamEntry::EndBlock: 2680 return GlobalCleanup(); 2681 2682 case BitstreamEntry::SubBlock: 2683 switch (Entry.ID) { 2684 default: // Skip unknown content. 2685 if (Stream.SkipBlock()) 2686 return Error("Invalid record"); 2687 break; 2688 case bitc::BLOCKINFO_BLOCK_ID: 2689 if (Stream.ReadBlockInfoBlock()) 2690 return Error("Malformed block"); 2691 break; 2692 case bitc::PARAMATTR_BLOCK_ID: 2693 if (std::error_code EC = ParseAttributeBlock()) 2694 return EC; 2695 break; 2696 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2697 if (std::error_code EC = ParseAttributeGroupBlock()) 2698 return EC; 2699 break; 2700 case bitc::TYPE_BLOCK_ID_NEW: 2701 if (std::error_code EC = ParseTypeTable()) 2702 return EC; 2703 break; 2704 case bitc::VALUE_SYMTAB_BLOCK_ID: 2705 if (std::error_code EC = ParseValueSymbolTable()) 2706 return EC; 2707 SeenValueSymbolTable = true; 2708 break; 2709 case bitc::CONSTANTS_BLOCK_ID: 2710 if (std::error_code EC = ParseConstants()) 2711 return EC; 2712 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2713 return EC; 2714 break; 2715 case bitc::METADATA_BLOCK_ID: 2716 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2717 if (std::error_code EC = rememberAndSkipMetadata()) 2718 return EC; 2719 break; 2720 } 2721 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2722 if (std::error_code EC = ParseMetadata()) 2723 return EC; 2724 break; 2725 case bitc::FUNCTION_BLOCK_ID: 2726 // If this is the first function body we've seen, reverse the 2727 // FunctionsWithBodies list. 2728 if (!SeenFirstFunctionBody) { 2729 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2730 if (std::error_code EC = GlobalCleanup()) 2731 return EC; 2732 SeenFirstFunctionBody = true; 2733 } 2734 2735 if (std::error_code EC = RememberAndSkipFunctionBody()) 2736 return EC; 2737 // For streaming bitcode, suspend parsing when we reach the function 2738 // bodies. Subsequent materialization calls will resume it when 2739 // necessary. For streaming, the function bodies must be at the end of 2740 // the bitcode. If the bitcode file is old, the symbol table will be 2741 // at the end instead and will not have been seen yet. In this case, 2742 // just finish the parse now. 2743 if (LazyStreamer && SeenValueSymbolTable) { 2744 NextUnreadBit = Stream.GetCurrentBitNo(); 2745 return std::error_code(); 2746 } 2747 break; 2748 case bitc::USELIST_BLOCK_ID: 2749 if (std::error_code EC = ParseUseLists()) 2750 return EC; 2751 break; 2752 } 2753 continue; 2754 2755 case BitstreamEntry::Record: 2756 // The interesting case. 2757 break; 2758 } 2759 2760 2761 // Read a record. 2762 switch (Stream.readRecord(Entry.ID, Record)) { 2763 default: break; // Default behavior, ignore unknown content. 2764 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2765 if (Record.size() < 1) 2766 return Error("Invalid record"); 2767 // Only version #0 and #1 are supported so far. 2768 unsigned module_version = Record[0]; 2769 switch (module_version) { 2770 default: 2771 return Error("Invalid value"); 2772 case 0: 2773 UseRelativeIDs = false; 2774 break; 2775 case 1: 2776 UseRelativeIDs = true; 2777 break; 2778 } 2779 break; 2780 } 2781 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2782 std::string S; 2783 if (ConvertToString(Record, 0, S)) 2784 return Error("Invalid record"); 2785 TheModule->setTargetTriple(S); 2786 break; 2787 } 2788 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2789 std::string S; 2790 if (ConvertToString(Record, 0, S)) 2791 return Error("Invalid record"); 2792 TheModule->setDataLayout(S); 2793 break; 2794 } 2795 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2796 std::string S; 2797 if (ConvertToString(Record, 0, S)) 2798 return Error("Invalid record"); 2799 TheModule->setModuleInlineAsm(S); 2800 break; 2801 } 2802 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2803 // FIXME: Remove in 4.0. 2804 std::string S; 2805 if (ConvertToString(Record, 0, S)) 2806 return Error("Invalid record"); 2807 // Ignore value. 2808 break; 2809 } 2810 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2811 std::string S; 2812 if (ConvertToString(Record, 0, S)) 2813 return Error("Invalid record"); 2814 SectionTable.push_back(S); 2815 break; 2816 } 2817 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2818 std::string S; 2819 if (ConvertToString(Record, 0, S)) 2820 return Error("Invalid record"); 2821 GCTable.push_back(S); 2822 break; 2823 } 2824 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2825 if (Record.size() < 2) 2826 return Error("Invalid record"); 2827 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2828 unsigned ComdatNameSize = Record[1]; 2829 std::string ComdatName; 2830 ComdatName.reserve(ComdatNameSize); 2831 for (unsigned i = 0; i != ComdatNameSize; ++i) 2832 ComdatName += (char)Record[2 + i]; 2833 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2834 C->setSelectionKind(SK); 2835 ComdatList.push_back(C); 2836 break; 2837 } 2838 // GLOBALVAR: [pointer type, isconst, initid, 2839 // linkage, alignment, section, visibility, threadlocal, 2840 // unnamed_addr, externally_initialized, dllstorageclass, 2841 // comdat] 2842 case bitc::MODULE_CODE_GLOBALVAR: { 2843 if (Record.size() < 6) 2844 return Error("Invalid record"); 2845 Type *Ty = getTypeByID(Record[0]); 2846 if (!Ty) 2847 return Error("Invalid record"); 2848 if (!Ty->isPointerTy()) 2849 return Error("Invalid type for value"); 2850 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2851 Ty = cast<PointerType>(Ty)->getElementType(); 2852 2853 bool isConstant = Record[1]; 2854 uint64_t RawLinkage = Record[3]; 2855 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2856 unsigned Alignment; 2857 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2858 return EC; 2859 std::string Section; 2860 if (Record[5]) { 2861 if (Record[5]-1 >= SectionTable.size()) 2862 return Error("Invalid ID"); 2863 Section = SectionTable[Record[5]-1]; 2864 } 2865 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2866 // Local linkage must have default visibility. 2867 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2868 // FIXME: Change to an error if non-default in 4.0. 2869 Visibility = GetDecodedVisibility(Record[6]); 2870 2871 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2872 if (Record.size() > 7) 2873 TLM = GetDecodedThreadLocalMode(Record[7]); 2874 2875 bool UnnamedAddr = false; 2876 if (Record.size() > 8) 2877 UnnamedAddr = Record[8]; 2878 2879 bool ExternallyInitialized = false; 2880 if (Record.size() > 9) 2881 ExternallyInitialized = Record[9]; 2882 2883 GlobalVariable *NewGV = 2884 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2885 TLM, AddressSpace, ExternallyInitialized); 2886 NewGV->setAlignment(Alignment); 2887 if (!Section.empty()) 2888 NewGV->setSection(Section); 2889 NewGV->setVisibility(Visibility); 2890 NewGV->setUnnamedAddr(UnnamedAddr); 2891 2892 if (Record.size() > 10) 2893 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2894 else 2895 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2896 2897 ValueList.push_back(NewGV); 2898 2899 // Remember which value to use for the global initializer. 2900 if (unsigned InitID = Record[2]) 2901 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2902 2903 if (Record.size() > 11) { 2904 if (unsigned ComdatID = Record[11]) { 2905 assert(ComdatID <= ComdatList.size()); 2906 NewGV->setComdat(ComdatList[ComdatID - 1]); 2907 } 2908 } else if (hasImplicitComdat(RawLinkage)) { 2909 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2910 } 2911 break; 2912 } 2913 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2914 // alignment, section, visibility, gc, unnamed_addr, 2915 // prologuedata, dllstorageclass, comdat, prefixdata] 2916 case bitc::MODULE_CODE_FUNCTION: { 2917 if (Record.size() < 8) 2918 return Error("Invalid record"); 2919 Type *Ty = getTypeByID(Record[0]); 2920 if (!Ty) 2921 return Error("Invalid record"); 2922 if (!Ty->isPointerTy()) 2923 return Error("Invalid type for value"); 2924 FunctionType *FTy = 2925 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2926 if (!FTy) 2927 return Error("Invalid type for value"); 2928 2929 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2930 "", TheModule); 2931 2932 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2933 bool isProto = Record[2]; 2934 uint64_t RawLinkage = Record[3]; 2935 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2936 Func->setAttributes(getAttributes(Record[4])); 2937 2938 unsigned Alignment; 2939 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2940 return EC; 2941 Func->setAlignment(Alignment); 2942 if (Record[6]) { 2943 if (Record[6]-1 >= SectionTable.size()) 2944 return Error("Invalid ID"); 2945 Func->setSection(SectionTable[Record[6]-1]); 2946 } 2947 // Local linkage must have default visibility. 2948 if (!Func->hasLocalLinkage()) 2949 // FIXME: Change to an error if non-default in 4.0. 2950 Func->setVisibility(GetDecodedVisibility(Record[7])); 2951 if (Record.size() > 8 && Record[8]) { 2952 if (Record[8]-1 > GCTable.size()) 2953 return Error("Invalid ID"); 2954 Func->setGC(GCTable[Record[8]-1].c_str()); 2955 } 2956 bool UnnamedAddr = false; 2957 if (Record.size() > 9) 2958 UnnamedAddr = Record[9]; 2959 Func->setUnnamedAddr(UnnamedAddr); 2960 if (Record.size() > 10 && Record[10] != 0) 2961 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2962 2963 if (Record.size() > 11) 2964 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2965 else 2966 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2967 2968 if (Record.size() > 12) { 2969 if (unsigned ComdatID = Record[12]) { 2970 assert(ComdatID <= ComdatList.size()); 2971 Func->setComdat(ComdatList[ComdatID - 1]); 2972 } 2973 } else if (hasImplicitComdat(RawLinkage)) { 2974 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2975 } 2976 2977 if (Record.size() > 13 && Record[13] != 0) 2978 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2979 2980 ValueList.push_back(Func); 2981 2982 // If this is a function with a body, remember the prototype we are 2983 // creating now, so that we can match up the body with them later. 2984 if (!isProto) { 2985 Func->setIsMaterializable(true); 2986 FunctionsWithBodies.push_back(Func); 2987 if (LazyStreamer) 2988 DeferredFunctionInfo[Func] = 0; 2989 } 2990 break; 2991 } 2992 // ALIAS: [alias type, aliasee val#, linkage] 2993 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2994 case bitc::MODULE_CODE_ALIAS: { 2995 if (Record.size() < 3) 2996 return Error("Invalid record"); 2997 Type *Ty = getTypeByID(Record[0]); 2998 if (!Ty) 2999 return Error("Invalid record"); 3000 auto *PTy = dyn_cast<PointerType>(Ty); 3001 if (!PTy) 3002 return Error("Invalid type for value"); 3003 3004 auto *NewGA = 3005 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3006 getDecodedLinkage(Record[2]), "", TheModule); 3007 // Old bitcode files didn't have visibility field. 3008 // Local linkage must have default visibility. 3009 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3010 // FIXME: Change to an error if non-default in 4.0. 3011 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3012 if (Record.size() > 4) 3013 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3014 else 3015 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3016 if (Record.size() > 5) 3017 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3018 if (Record.size() > 6) 3019 NewGA->setUnnamedAddr(Record[6]); 3020 ValueList.push_back(NewGA); 3021 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3022 break; 3023 } 3024 /// MODULE_CODE_PURGEVALS: [numvals] 3025 case bitc::MODULE_CODE_PURGEVALS: 3026 // Trim down the value list to the specified size. 3027 if (Record.size() < 1 || Record[0] > ValueList.size()) 3028 return Error("Invalid record"); 3029 ValueList.shrinkTo(Record[0]); 3030 break; 3031 } 3032 Record.clear(); 3033 } 3034 } 3035 3036 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3037 bool ShouldLazyLoadMetadata) { 3038 TheModule = nullptr; 3039 3040 if (std::error_code EC = InitStream()) 3041 return EC; 3042 3043 // Sniff for the signature. 3044 if (Stream.Read(8) != 'B' || 3045 Stream.Read(8) != 'C' || 3046 Stream.Read(4) != 0x0 || 3047 Stream.Read(4) != 0xC || 3048 Stream.Read(4) != 0xE || 3049 Stream.Read(4) != 0xD) 3050 return Error("Invalid bitcode signature"); 3051 3052 // We expect a number of well-defined blocks, though we don't necessarily 3053 // need to understand them all. 3054 while (1) { 3055 if (Stream.AtEndOfStream()) 3056 return std::error_code(); 3057 3058 BitstreamEntry Entry = 3059 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3060 3061 switch (Entry.Kind) { 3062 case BitstreamEntry::Error: 3063 return Error("Malformed block"); 3064 case BitstreamEntry::EndBlock: 3065 return std::error_code(); 3066 3067 case BitstreamEntry::SubBlock: 3068 switch (Entry.ID) { 3069 case bitc::BLOCKINFO_BLOCK_ID: 3070 if (Stream.ReadBlockInfoBlock()) 3071 return Error("Malformed block"); 3072 break; 3073 case bitc::MODULE_BLOCK_ID: 3074 // Reject multiple MODULE_BLOCK's in a single bitstream. 3075 if (TheModule) 3076 return Error("Invalid multiple blocks"); 3077 TheModule = M; 3078 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3079 return EC; 3080 if (LazyStreamer) 3081 return std::error_code(); 3082 break; 3083 default: 3084 if (Stream.SkipBlock()) 3085 return Error("Invalid record"); 3086 break; 3087 } 3088 continue; 3089 case BitstreamEntry::Record: 3090 // There should be no records in the top-level of blocks. 3091 3092 // The ranlib in Xcode 4 will align archive members by appending newlines 3093 // to the end of them. If this file size is a multiple of 4 but not 8, we 3094 // have to read and ignore these final 4 bytes :-( 3095 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3096 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3097 Stream.AtEndOfStream()) 3098 return std::error_code(); 3099 3100 return Error("Invalid record"); 3101 } 3102 } 3103 } 3104 3105 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3106 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3107 return Error("Invalid record"); 3108 3109 SmallVector<uint64_t, 64> Record; 3110 3111 std::string Triple; 3112 // Read all the records for this module. 3113 while (1) { 3114 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3115 3116 switch (Entry.Kind) { 3117 case BitstreamEntry::SubBlock: // Handled for us already. 3118 case BitstreamEntry::Error: 3119 return Error("Malformed block"); 3120 case BitstreamEntry::EndBlock: 3121 return Triple; 3122 case BitstreamEntry::Record: 3123 // The interesting case. 3124 break; 3125 } 3126 3127 // Read a record. 3128 switch (Stream.readRecord(Entry.ID, Record)) { 3129 default: break; // Default behavior, ignore unknown content. 3130 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3131 std::string S; 3132 if (ConvertToString(Record, 0, S)) 3133 return Error("Invalid record"); 3134 Triple = S; 3135 break; 3136 } 3137 } 3138 Record.clear(); 3139 } 3140 llvm_unreachable("Exit infinite loop"); 3141 } 3142 3143 ErrorOr<std::string> BitcodeReader::parseTriple() { 3144 if (std::error_code EC = InitStream()) 3145 return EC; 3146 3147 // Sniff for the signature. 3148 if (Stream.Read(8) != 'B' || 3149 Stream.Read(8) != 'C' || 3150 Stream.Read(4) != 0x0 || 3151 Stream.Read(4) != 0xC || 3152 Stream.Read(4) != 0xE || 3153 Stream.Read(4) != 0xD) 3154 return Error("Invalid bitcode signature"); 3155 3156 // We expect a number of well-defined blocks, though we don't necessarily 3157 // need to understand them all. 3158 while (1) { 3159 BitstreamEntry Entry = Stream.advance(); 3160 3161 switch (Entry.Kind) { 3162 case BitstreamEntry::Error: 3163 return Error("Malformed block"); 3164 case BitstreamEntry::EndBlock: 3165 return std::error_code(); 3166 3167 case BitstreamEntry::SubBlock: 3168 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3169 return parseModuleTriple(); 3170 3171 // Ignore other sub-blocks. 3172 if (Stream.SkipBlock()) 3173 return Error("Malformed block"); 3174 continue; 3175 3176 case BitstreamEntry::Record: 3177 Stream.skipRecord(Entry.ID); 3178 continue; 3179 } 3180 } 3181 } 3182 3183 /// ParseMetadataAttachment - Parse metadata attachments. 3184 std::error_code BitcodeReader::ParseMetadataAttachment() { 3185 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3186 return Error("Invalid record"); 3187 3188 SmallVector<uint64_t, 64> Record; 3189 while (1) { 3190 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3191 3192 switch (Entry.Kind) { 3193 case BitstreamEntry::SubBlock: // Handled for us already. 3194 case BitstreamEntry::Error: 3195 return Error("Malformed block"); 3196 case BitstreamEntry::EndBlock: 3197 return std::error_code(); 3198 case BitstreamEntry::Record: 3199 // The interesting case. 3200 break; 3201 } 3202 3203 // Read a metadata attachment record. 3204 Record.clear(); 3205 switch (Stream.readRecord(Entry.ID, Record)) { 3206 default: // Default behavior: ignore. 3207 break; 3208 case bitc::METADATA_ATTACHMENT: { 3209 unsigned RecordLength = Record.size(); 3210 if (Record.empty() || (RecordLength - 1) % 2 == 1) 3211 return Error("Invalid record"); 3212 Instruction *Inst = InstructionList[Record[0]]; 3213 for (unsigned i = 1; i != RecordLength; i = i+2) { 3214 unsigned Kind = Record[i]; 3215 DenseMap<unsigned, unsigned>::iterator I = 3216 MDKindMap.find(Kind); 3217 if (I == MDKindMap.end()) 3218 return Error("Invalid ID"); 3219 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3220 if (isa<LocalAsMetadata>(Node)) 3221 // Drop the attachment. This used to be legal, but there's no 3222 // upgrade path. 3223 break; 3224 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3225 if (I->second == LLVMContext::MD_tbaa) 3226 InstsWithTBAATag.push_back(Inst); 3227 } 3228 break; 3229 } 3230 } 3231 } 3232 } 3233 3234 /// ParseFunctionBody - Lazily parse the specified function body block. 3235 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3236 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3237 return Error("Invalid record"); 3238 3239 InstructionList.clear(); 3240 unsigned ModuleValueListSize = ValueList.size(); 3241 unsigned ModuleMDValueListSize = MDValueList.size(); 3242 3243 // Add all the function arguments to the value table. 3244 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3245 ValueList.push_back(I); 3246 3247 unsigned NextValueNo = ValueList.size(); 3248 BasicBlock *CurBB = nullptr; 3249 unsigned CurBBNo = 0; 3250 3251 DebugLoc LastLoc; 3252 auto getLastInstruction = [&]() -> Instruction * { 3253 if (CurBB && !CurBB->empty()) 3254 return &CurBB->back(); 3255 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3256 !FunctionBBs[CurBBNo - 1]->empty()) 3257 return &FunctionBBs[CurBBNo - 1]->back(); 3258 return nullptr; 3259 }; 3260 3261 // Read all the records. 3262 SmallVector<uint64_t, 64> Record; 3263 while (1) { 3264 BitstreamEntry Entry = Stream.advance(); 3265 3266 switch (Entry.Kind) { 3267 case BitstreamEntry::Error: 3268 return Error("Malformed block"); 3269 case BitstreamEntry::EndBlock: 3270 goto OutOfRecordLoop; 3271 3272 case BitstreamEntry::SubBlock: 3273 switch (Entry.ID) { 3274 default: // Skip unknown content. 3275 if (Stream.SkipBlock()) 3276 return Error("Invalid record"); 3277 break; 3278 case bitc::CONSTANTS_BLOCK_ID: 3279 if (std::error_code EC = ParseConstants()) 3280 return EC; 3281 NextValueNo = ValueList.size(); 3282 break; 3283 case bitc::VALUE_SYMTAB_BLOCK_ID: 3284 if (std::error_code EC = ParseValueSymbolTable()) 3285 return EC; 3286 break; 3287 case bitc::METADATA_ATTACHMENT_ID: 3288 if (std::error_code EC = ParseMetadataAttachment()) 3289 return EC; 3290 break; 3291 case bitc::METADATA_BLOCK_ID: 3292 if (std::error_code EC = ParseMetadata()) 3293 return EC; 3294 break; 3295 case bitc::USELIST_BLOCK_ID: 3296 if (std::error_code EC = ParseUseLists()) 3297 return EC; 3298 break; 3299 } 3300 continue; 3301 3302 case BitstreamEntry::Record: 3303 // The interesting case. 3304 break; 3305 } 3306 3307 // Read a record. 3308 Record.clear(); 3309 Instruction *I = nullptr; 3310 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3311 switch (BitCode) { 3312 default: // Default behavior: reject 3313 return Error("Invalid value"); 3314 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3315 if (Record.size() < 1 || Record[0] == 0) 3316 return Error("Invalid record"); 3317 // Create all the basic blocks for the function. 3318 FunctionBBs.resize(Record[0]); 3319 3320 // See if anything took the address of blocks in this function. 3321 auto BBFRI = BasicBlockFwdRefs.find(F); 3322 if (BBFRI == BasicBlockFwdRefs.end()) { 3323 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3324 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3325 } else { 3326 auto &BBRefs = BBFRI->second; 3327 // Check for invalid basic block references. 3328 if (BBRefs.size() > FunctionBBs.size()) 3329 return Error("Invalid ID"); 3330 assert(!BBRefs.empty() && "Unexpected empty array"); 3331 assert(!BBRefs.front() && "Invalid reference to entry block"); 3332 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3333 ++I) 3334 if (I < RE && BBRefs[I]) { 3335 BBRefs[I]->insertInto(F); 3336 FunctionBBs[I] = BBRefs[I]; 3337 } else { 3338 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3339 } 3340 3341 // Erase from the table. 3342 BasicBlockFwdRefs.erase(BBFRI); 3343 } 3344 3345 CurBB = FunctionBBs[0]; 3346 continue; 3347 } 3348 3349 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3350 // This record indicates that the last instruction is at the same 3351 // location as the previous instruction with a location. 3352 I = getLastInstruction(); 3353 3354 if (!I) 3355 return Error("Invalid record"); 3356 I->setDebugLoc(LastLoc); 3357 I = nullptr; 3358 continue; 3359 3360 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3361 I = getLastInstruction(); 3362 if (!I || Record.size() < 4) 3363 return Error("Invalid record"); 3364 3365 unsigned Line = Record[0], Col = Record[1]; 3366 unsigned ScopeID = Record[2], IAID = Record[3]; 3367 3368 MDNode *Scope = nullptr, *IA = nullptr; 3369 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3370 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3371 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3372 I->setDebugLoc(LastLoc); 3373 I = nullptr; 3374 continue; 3375 } 3376 3377 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3378 unsigned OpNum = 0; 3379 Value *LHS, *RHS; 3380 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3381 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3382 OpNum+1 > Record.size()) 3383 return Error("Invalid record"); 3384 3385 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3386 if (Opc == -1) 3387 return Error("Invalid record"); 3388 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3389 InstructionList.push_back(I); 3390 if (OpNum < Record.size()) { 3391 if (Opc == Instruction::Add || 3392 Opc == Instruction::Sub || 3393 Opc == Instruction::Mul || 3394 Opc == Instruction::Shl) { 3395 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3396 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3397 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3398 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3399 } else if (Opc == Instruction::SDiv || 3400 Opc == Instruction::UDiv || 3401 Opc == Instruction::LShr || 3402 Opc == Instruction::AShr) { 3403 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3404 cast<BinaryOperator>(I)->setIsExact(true); 3405 } else if (isa<FPMathOperator>(I)) { 3406 FastMathFlags FMF; 3407 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3408 FMF.setUnsafeAlgebra(); 3409 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3410 FMF.setNoNaNs(); 3411 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3412 FMF.setNoInfs(); 3413 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3414 FMF.setNoSignedZeros(); 3415 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3416 FMF.setAllowReciprocal(); 3417 if (FMF.any()) 3418 I->setFastMathFlags(FMF); 3419 } 3420 3421 } 3422 break; 3423 } 3424 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3425 unsigned OpNum = 0; 3426 Value *Op; 3427 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3428 OpNum+2 != Record.size()) 3429 return Error("Invalid record"); 3430 3431 Type *ResTy = getTypeByID(Record[OpNum]); 3432 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3433 if (Opc == -1 || !ResTy) 3434 return Error("Invalid record"); 3435 Instruction *Temp = nullptr; 3436 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3437 if (Temp) { 3438 InstructionList.push_back(Temp); 3439 CurBB->getInstList().push_back(Temp); 3440 } 3441 } else { 3442 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3443 } 3444 InstructionList.push_back(I); 3445 break; 3446 } 3447 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3448 case bitc::FUNC_CODE_INST_GEP_OLD: 3449 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3450 unsigned OpNum = 0; 3451 3452 Type *Ty; 3453 bool InBounds; 3454 3455 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3456 InBounds = Record[OpNum++]; 3457 Ty = getTypeByID(Record[OpNum++]); 3458 } else { 3459 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3460 Ty = nullptr; 3461 } 3462 3463 Value *BasePtr; 3464 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3465 return Error("Invalid record"); 3466 3467 if (Ty && 3468 Ty != 3469 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3470 ->getElementType()) 3471 return Error( 3472 "Explicit gep type does not match pointee type of pointer operand"); 3473 3474 SmallVector<Value*, 16> GEPIdx; 3475 while (OpNum != Record.size()) { 3476 Value *Op; 3477 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3478 return Error("Invalid record"); 3479 GEPIdx.push_back(Op); 3480 } 3481 3482 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3483 3484 InstructionList.push_back(I); 3485 if (InBounds) 3486 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3487 break; 3488 } 3489 3490 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3491 // EXTRACTVAL: [opty, opval, n x indices] 3492 unsigned OpNum = 0; 3493 Value *Agg; 3494 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3495 return Error("Invalid record"); 3496 3497 SmallVector<unsigned, 4> EXTRACTVALIdx; 3498 Type *CurTy = Agg->getType(); 3499 for (unsigned RecSize = Record.size(); 3500 OpNum != RecSize; ++OpNum) { 3501 bool IsArray = CurTy->isArrayTy(); 3502 bool IsStruct = CurTy->isStructTy(); 3503 uint64_t Index = Record[OpNum]; 3504 3505 if (!IsStruct && !IsArray) 3506 return Error("EXTRACTVAL: Invalid type"); 3507 if ((unsigned)Index != Index) 3508 return Error("Invalid value"); 3509 if (IsStruct && Index >= CurTy->subtypes().size()) 3510 return Error("EXTRACTVAL: Invalid struct index"); 3511 if (IsArray && Index >= CurTy->getArrayNumElements()) 3512 return Error("EXTRACTVAL: Invalid array index"); 3513 EXTRACTVALIdx.push_back((unsigned)Index); 3514 3515 if (IsStruct) 3516 CurTy = CurTy->subtypes()[Index]; 3517 else 3518 CurTy = CurTy->subtypes()[0]; 3519 } 3520 3521 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3522 InstructionList.push_back(I); 3523 break; 3524 } 3525 3526 case bitc::FUNC_CODE_INST_INSERTVAL: { 3527 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3528 unsigned OpNum = 0; 3529 Value *Agg; 3530 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3531 return Error("Invalid record"); 3532 Value *Val; 3533 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3534 return Error("Invalid record"); 3535 3536 SmallVector<unsigned, 4> INSERTVALIdx; 3537 Type *CurTy = Agg->getType(); 3538 for (unsigned RecSize = Record.size(); 3539 OpNum != RecSize; ++OpNum) { 3540 bool IsArray = CurTy->isArrayTy(); 3541 bool IsStruct = CurTy->isStructTy(); 3542 uint64_t Index = Record[OpNum]; 3543 3544 if (!IsStruct && !IsArray) 3545 return Error("INSERTVAL: Invalid type"); 3546 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3547 return Error("Invalid type"); 3548 if ((unsigned)Index != Index) 3549 return Error("Invalid value"); 3550 if (IsStruct && Index >= CurTy->subtypes().size()) 3551 return Error("INSERTVAL: Invalid struct index"); 3552 if (IsArray && Index >= CurTy->getArrayNumElements()) 3553 return Error("INSERTVAL: Invalid array index"); 3554 3555 INSERTVALIdx.push_back((unsigned)Index); 3556 if (IsStruct) 3557 CurTy = CurTy->subtypes()[Index]; 3558 else 3559 CurTy = CurTy->subtypes()[0]; 3560 } 3561 3562 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3563 InstructionList.push_back(I); 3564 break; 3565 } 3566 3567 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3568 // obsolete form of select 3569 // handles select i1 ... in old bitcode 3570 unsigned OpNum = 0; 3571 Value *TrueVal, *FalseVal, *Cond; 3572 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3573 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3574 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3575 return Error("Invalid record"); 3576 3577 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3578 InstructionList.push_back(I); 3579 break; 3580 } 3581 3582 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3583 // new form of select 3584 // handles select i1 or select [N x i1] 3585 unsigned OpNum = 0; 3586 Value *TrueVal, *FalseVal, *Cond; 3587 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3588 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3589 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3590 return Error("Invalid record"); 3591 3592 // select condition can be either i1 or [N x i1] 3593 if (VectorType* vector_type = 3594 dyn_cast<VectorType>(Cond->getType())) { 3595 // expect <n x i1> 3596 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3597 return Error("Invalid type for value"); 3598 } else { 3599 // expect i1 3600 if (Cond->getType() != Type::getInt1Ty(Context)) 3601 return Error("Invalid type for value"); 3602 } 3603 3604 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3605 InstructionList.push_back(I); 3606 break; 3607 } 3608 3609 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3610 unsigned OpNum = 0; 3611 Value *Vec, *Idx; 3612 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3613 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3614 return Error("Invalid record"); 3615 I = ExtractElementInst::Create(Vec, Idx); 3616 InstructionList.push_back(I); 3617 break; 3618 } 3619 3620 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3621 unsigned OpNum = 0; 3622 Value *Vec, *Elt, *Idx; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3624 popValue(Record, OpNum, NextValueNo, 3625 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3626 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3627 return Error("Invalid record"); 3628 I = InsertElementInst::Create(Vec, Elt, Idx); 3629 InstructionList.push_back(I); 3630 break; 3631 } 3632 3633 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3634 unsigned OpNum = 0; 3635 Value *Vec1, *Vec2, *Mask; 3636 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3637 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3638 return Error("Invalid record"); 3639 3640 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3641 return Error("Invalid record"); 3642 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3643 InstructionList.push_back(I); 3644 break; 3645 } 3646 3647 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3648 // Old form of ICmp/FCmp returning bool 3649 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3650 // both legal on vectors but had different behaviour. 3651 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3652 // FCmp/ICmp returning bool or vector of bool 3653 3654 unsigned OpNum = 0; 3655 Value *LHS, *RHS; 3656 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3657 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3658 OpNum+1 != Record.size()) 3659 return Error("Invalid record"); 3660 3661 if (LHS->getType()->isFPOrFPVectorTy()) 3662 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3663 else 3664 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3665 InstructionList.push_back(I); 3666 break; 3667 } 3668 3669 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3670 { 3671 unsigned Size = Record.size(); 3672 if (Size == 0) { 3673 I = ReturnInst::Create(Context); 3674 InstructionList.push_back(I); 3675 break; 3676 } 3677 3678 unsigned OpNum = 0; 3679 Value *Op = nullptr; 3680 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3681 return Error("Invalid record"); 3682 if (OpNum != Record.size()) 3683 return Error("Invalid record"); 3684 3685 I = ReturnInst::Create(Context, Op); 3686 InstructionList.push_back(I); 3687 break; 3688 } 3689 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3690 if (Record.size() != 1 && Record.size() != 3) 3691 return Error("Invalid record"); 3692 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3693 if (!TrueDest) 3694 return Error("Invalid record"); 3695 3696 if (Record.size() == 1) { 3697 I = BranchInst::Create(TrueDest); 3698 InstructionList.push_back(I); 3699 } 3700 else { 3701 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3702 Value *Cond = getValue(Record, 2, NextValueNo, 3703 Type::getInt1Ty(Context)); 3704 if (!FalseDest || !Cond) 3705 return Error("Invalid record"); 3706 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3707 InstructionList.push_back(I); 3708 } 3709 break; 3710 } 3711 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3712 // Check magic 3713 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3714 // "New" SwitchInst format with case ranges. The changes to write this 3715 // format were reverted but we still recognize bitcode that uses it. 3716 // Hopefully someday we will have support for case ranges and can use 3717 // this format again. 3718 3719 Type *OpTy = getTypeByID(Record[1]); 3720 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3721 3722 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3723 BasicBlock *Default = getBasicBlock(Record[3]); 3724 if (!OpTy || !Cond || !Default) 3725 return Error("Invalid record"); 3726 3727 unsigned NumCases = Record[4]; 3728 3729 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3730 InstructionList.push_back(SI); 3731 3732 unsigned CurIdx = 5; 3733 for (unsigned i = 0; i != NumCases; ++i) { 3734 SmallVector<ConstantInt*, 1> CaseVals; 3735 unsigned NumItems = Record[CurIdx++]; 3736 for (unsigned ci = 0; ci != NumItems; ++ci) { 3737 bool isSingleNumber = Record[CurIdx++]; 3738 3739 APInt Low; 3740 unsigned ActiveWords = 1; 3741 if (ValueBitWidth > 64) 3742 ActiveWords = Record[CurIdx++]; 3743 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3744 ValueBitWidth); 3745 CurIdx += ActiveWords; 3746 3747 if (!isSingleNumber) { 3748 ActiveWords = 1; 3749 if (ValueBitWidth > 64) 3750 ActiveWords = Record[CurIdx++]; 3751 APInt High = 3752 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3753 ValueBitWidth); 3754 CurIdx += ActiveWords; 3755 3756 // FIXME: It is not clear whether values in the range should be 3757 // compared as signed or unsigned values. The partially 3758 // implemented changes that used this format in the past used 3759 // unsigned comparisons. 3760 for ( ; Low.ule(High); ++Low) 3761 CaseVals.push_back(ConstantInt::get(Context, Low)); 3762 } else 3763 CaseVals.push_back(ConstantInt::get(Context, Low)); 3764 } 3765 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3766 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3767 cve = CaseVals.end(); cvi != cve; ++cvi) 3768 SI->addCase(*cvi, DestBB); 3769 } 3770 I = SI; 3771 break; 3772 } 3773 3774 // Old SwitchInst format without case ranges. 3775 3776 if (Record.size() < 3 || (Record.size() & 1) == 0) 3777 return Error("Invalid record"); 3778 Type *OpTy = getTypeByID(Record[0]); 3779 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3780 BasicBlock *Default = getBasicBlock(Record[2]); 3781 if (!OpTy || !Cond || !Default) 3782 return Error("Invalid record"); 3783 unsigned NumCases = (Record.size()-3)/2; 3784 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3785 InstructionList.push_back(SI); 3786 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3787 ConstantInt *CaseVal = 3788 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3789 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3790 if (!CaseVal || !DestBB) { 3791 delete SI; 3792 return Error("Invalid record"); 3793 } 3794 SI->addCase(CaseVal, DestBB); 3795 } 3796 I = SI; 3797 break; 3798 } 3799 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3800 if (Record.size() < 2) 3801 return Error("Invalid record"); 3802 Type *OpTy = getTypeByID(Record[0]); 3803 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3804 if (!OpTy || !Address) 3805 return Error("Invalid record"); 3806 unsigned NumDests = Record.size()-2; 3807 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3808 InstructionList.push_back(IBI); 3809 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3810 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3811 IBI->addDestination(DestBB); 3812 } else { 3813 delete IBI; 3814 return Error("Invalid record"); 3815 } 3816 } 3817 I = IBI; 3818 break; 3819 } 3820 3821 case bitc::FUNC_CODE_INST_INVOKE: { 3822 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3823 if (Record.size() < 4) 3824 return Error("Invalid record"); 3825 AttributeSet PAL = getAttributes(Record[0]); 3826 unsigned CCInfo = Record[1]; 3827 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3828 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3829 3830 unsigned OpNum = 4; 3831 Value *Callee; 3832 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3833 return Error("Invalid record"); 3834 3835 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3836 FunctionType *FTy = !CalleeTy ? nullptr : 3837 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3838 3839 // Check that the right number of fixed parameters are here. 3840 if (!FTy || !NormalBB || !UnwindBB || 3841 Record.size() < OpNum+FTy->getNumParams()) 3842 return Error("Invalid record"); 3843 3844 SmallVector<Value*, 16> Ops; 3845 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3846 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3847 FTy->getParamType(i))); 3848 if (!Ops.back()) 3849 return Error("Invalid record"); 3850 } 3851 3852 if (!FTy->isVarArg()) { 3853 if (Record.size() != OpNum) 3854 return Error("Invalid record"); 3855 } else { 3856 // Read type/value pairs for varargs params. 3857 while (OpNum != Record.size()) { 3858 Value *Op; 3859 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3860 return Error("Invalid record"); 3861 Ops.push_back(Op); 3862 } 3863 } 3864 3865 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3866 InstructionList.push_back(I); 3867 cast<InvokeInst>(I)->setCallingConv( 3868 static_cast<CallingConv::ID>(CCInfo)); 3869 cast<InvokeInst>(I)->setAttributes(PAL); 3870 break; 3871 } 3872 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3873 unsigned Idx = 0; 3874 Value *Val = nullptr; 3875 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3876 return Error("Invalid record"); 3877 I = ResumeInst::Create(Val); 3878 InstructionList.push_back(I); 3879 break; 3880 } 3881 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3882 I = new UnreachableInst(Context); 3883 InstructionList.push_back(I); 3884 break; 3885 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3886 if (Record.size() < 1 || ((Record.size()-1)&1)) 3887 return Error("Invalid record"); 3888 Type *Ty = getTypeByID(Record[0]); 3889 if (!Ty) 3890 return Error("Invalid record"); 3891 3892 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3893 InstructionList.push_back(PN); 3894 3895 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3896 Value *V; 3897 // With the new function encoding, it is possible that operands have 3898 // negative IDs (for forward references). Use a signed VBR 3899 // representation to keep the encoding small. 3900 if (UseRelativeIDs) 3901 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3902 else 3903 V = getValue(Record, 1+i, NextValueNo, Ty); 3904 BasicBlock *BB = getBasicBlock(Record[2+i]); 3905 if (!V || !BB) 3906 return Error("Invalid record"); 3907 PN->addIncoming(V, BB); 3908 } 3909 I = PN; 3910 break; 3911 } 3912 3913 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3914 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3915 unsigned Idx = 0; 3916 if (Record.size() < 4) 3917 return Error("Invalid record"); 3918 Type *Ty = getTypeByID(Record[Idx++]); 3919 if (!Ty) 3920 return Error("Invalid record"); 3921 Value *PersFn = nullptr; 3922 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3923 return Error("Invalid record"); 3924 3925 bool IsCleanup = !!Record[Idx++]; 3926 unsigned NumClauses = Record[Idx++]; 3927 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3928 LP->setCleanup(IsCleanup); 3929 for (unsigned J = 0; J != NumClauses; ++J) { 3930 LandingPadInst::ClauseType CT = 3931 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3932 Value *Val; 3933 3934 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3935 delete LP; 3936 return Error("Invalid record"); 3937 } 3938 3939 assert((CT != LandingPadInst::Catch || 3940 !isa<ArrayType>(Val->getType())) && 3941 "Catch clause has a invalid type!"); 3942 assert((CT != LandingPadInst::Filter || 3943 isa<ArrayType>(Val->getType())) && 3944 "Filter clause has invalid type!"); 3945 LP->addClause(cast<Constant>(Val)); 3946 } 3947 3948 I = LP; 3949 InstructionList.push_back(I); 3950 break; 3951 } 3952 3953 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3954 if (Record.size() != 4) 3955 return Error("Invalid record"); 3956 PointerType *Ty = 3957 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3958 Type *OpTy = getTypeByID(Record[1]); 3959 Value *Size = getFnValueByID(Record[2], OpTy); 3960 uint64_t AlignRecord = Record[3]; 3961 const uint64_t InAllocaMask = uint64_t(1) << 5; 3962 bool InAlloca = AlignRecord & InAllocaMask; 3963 unsigned Align; 3964 if (std::error_code EC = 3965 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3966 return EC; 3967 } 3968 if (!Ty || !Size) 3969 return Error("Invalid record"); 3970 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3971 AI->setUsedWithInAlloca(InAlloca); 3972 I = AI; 3973 InstructionList.push_back(I); 3974 break; 3975 } 3976 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3977 unsigned OpNum = 0; 3978 Value *Op; 3979 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3980 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3981 return Error("Invalid record"); 3982 3983 Type *Ty = nullptr; 3984 if (OpNum + 3 == Record.size()) 3985 Ty = getTypeByID(Record[OpNum++]); 3986 3987 unsigned Align; 3988 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3989 return EC; 3990 I = new LoadInst(Op, "", Record[OpNum+1], Align); 3991 3992 if (Ty && Ty != I->getType()) 3993 return Error("Explicit load type does not match pointee type of " 3994 "pointer operand"); 3995 3996 InstructionList.push_back(I); 3997 break; 3998 } 3999 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4000 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4001 unsigned OpNum = 0; 4002 Value *Op; 4003 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4004 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4005 return Error("Invalid record"); 4006 4007 Type *Ty = nullptr; 4008 if (OpNum + 5 == Record.size()) 4009 Ty = getTypeByID(Record[OpNum++]); 4010 4011 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4012 if (Ordering == NotAtomic || Ordering == Release || 4013 Ordering == AcquireRelease) 4014 return Error("Invalid record"); 4015 if (Ordering != NotAtomic && Record[OpNum] == 0) 4016 return Error("Invalid record"); 4017 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4018 4019 unsigned Align; 4020 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4021 return EC; 4022 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4023 4024 (void)Ty; 4025 assert((!Ty || Ty == I->getType()) && 4026 "Explicit type doesn't match pointee type of the first operand"); 4027 4028 InstructionList.push_back(I); 4029 break; 4030 } 4031 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 4032 unsigned OpNum = 0; 4033 Value *Val, *Ptr; 4034 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4035 popValue(Record, OpNum, NextValueNo, 4036 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4037 OpNum+2 != Record.size()) 4038 return Error("Invalid record"); 4039 unsigned Align; 4040 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4041 return EC; 4042 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4043 InstructionList.push_back(I); 4044 break; 4045 } 4046 case bitc::FUNC_CODE_INST_STOREATOMIC: { 4047 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4048 unsigned OpNum = 0; 4049 Value *Val, *Ptr; 4050 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4051 popValue(Record, OpNum, NextValueNo, 4052 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4053 OpNum+4 != Record.size()) 4054 return Error("Invalid record"); 4055 4056 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4057 if (Ordering == NotAtomic || Ordering == Acquire || 4058 Ordering == AcquireRelease) 4059 return Error("Invalid record"); 4060 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4061 if (Ordering != NotAtomic && Record[OpNum] == 0) 4062 return Error("Invalid record"); 4063 4064 unsigned Align; 4065 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4066 return EC; 4067 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4068 InstructionList.push_back(I); 4069 break; 4070 } 4071 case bitc::FUNC_CODE_INST_CMPXCHG: { 4072 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4073 // failureordering?, isweak?] 4074 unsigned OpNum = 0; 4075 Value *Ptr, *Cmp, *New; 4076 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4077 popValue(Record, OpNum, NextValueNo, 4078 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 4079 popValue(Record, OpNum, NextValueNo, 4080 cast<PointerType>(Ptr->getType())->getElementType(), New) || 4081 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 4082 return Error("Invalid record"); 4083 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4084 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4085 return Error("Invalid record"); 4086 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4087 4088 AtomicOrdering FailureOrdering; 4089 if (Record.size() < 7) 4090 FailureOrdering = 4091 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4092 else 4093 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4094 4095 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4096 SynchScope); 4097 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4098 4099 if (Record.size() < 8) { 4100 // Before weak cmpxchgs existed, the instruction simply returned the 4101 // value loaded from memory, so bitcode files from that era will be 4102 // expecting the first component of a modern cmpxchg. 4103 CurBB->getInstList().push_back(I); 4104 I = ExtractValueInst::Create(I, 0); 4105 } else { 4106 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4107 } 4108 4109 InstructionList.push_back(I); 4110 break; 4111 } 4112 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4113 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4114 unsigned OpNum = 0; 4115 Value *Ptr, *Val; 4116 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4117 popValue(Record, OpNum, NextValueNo, 4118 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4119 OpNum+4 != Record.size()) 4120 return Error("Invalid record"); 4121 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4122 if (Operation < AtomicRMWInst::FIRST_BINOP || 4123 Operation > AtomicRMWInst::LAST_BINOP) 4124 return Error("Invalid record"); 4125 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4126 if (Ordering == NotAtomic || Ordering == Unordered) 4127 return Error("Invalid record"); 4128 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4129 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4130 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4131 InstructionList.push_back(I); 4132 break; 4133 } 4134 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4135 if (2 != Record.size()) 4136 return Error("Invalid record"); 4137 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4138 if (Ordering == NotAtomic || Ordering == Unordered || 4139 Ordering == Monotonic) 4140 return Error("Invalid record"); 4141 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4142 I = new FenceInst(Context, Ordering, SynchScope); 4143 InstructionList.push_back(I); 4144 break; 4145 } 4146 case bitc::FUNC_CODE_INST_CALL: { 4147 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4148 if (Record.size() < 3) 4149 return Error("Invalid record"); 4150 4151 AttributeSet PAL = getAttributes(Record[0]); 4152 unsigned CCInfo = Record[1]; 4153 4154 unsigned OpNum = 2; 4155 Value *Callee; 4156 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4157 return Error("Invalid record"); 4158 4159 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4160 FunctionType *FTy = nullptr; 4161 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4162 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 4163 return Error("Invalid record"); 4164 4165 SmallVector<Value*, 16> Args; 4166 // Read the fixed params. 4167 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4168 if (FTy->getParamType(i)->isLabelTy()) 4169 Args.push_back(getBasicBlock(Record[OpNum])); 4170 else 4171 Args.push_back(getValue(Record, OpNum, NextValueNo, 4172 FTy->getParamType(i))); 4173 if (!Args.back()) 4174 return Error("Invalid record"); 4175 } 4176 4177 // Read type/value pairs for varargs params. 4178 if (!FTy->isVarArg()) { 4179 if (OpNum != Record.size()) 4180 return Error("Invalid record"); 4181 } else { 4182 while (OpNum != Record.size()) { 4183 Value *Op; 4184 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4185 return Error("Invalid record"); 4186 Args.push_back(Op); 4187 } 4188 } 4189 4190 I = CallInst::Create(Callee, Args); 4191 InstructionList.push_back(I); 4192 cast<CallInst>(I)->setCallingConv( 4193 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4194 CallInst::TailCallKind TCK = CallInst::TCK_None; 4195 if (CCInfo & 1) 4196 TCK = CallInst::TCK_Tail; 4197 if (CCInfo & (1 << 14)) 4198 TCK = CallInst::TCK_MustTail; 4199 cast<CallInst>(I)->setTailCallKind(TCK); 4200 cast<CallInst>(I)->setAttributes(PAL); 4201 break; 4202 } 4203 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4204 if (Record.size() < 3) 4205 return Error("Invalid record"); 4206 Type *OpTy = getTypeByID(Record[0]); 4207 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4208 Type *ResTy = getTypeByID(Record[2]); 4209 if (!OpTy || !Op || !ResTy) 4210 return Error("Invalid record"); 4211 I = new VAArgInst(Op, ResTy); 4212 InstructionList.push_back(I); 4213 break; 4214 } 4215 } 4216 4217 // Add instruction to end of current BB. If there is no current BB, reject 4218 // this file. 4219 if (!CurBB) { 4220 delete I; 4221 return Error("Invalid instruction with no BB"); 4222 } 4223 CurBB->getInstList().push_back(I); 4224 4225 // If this was a terminator instruction, move to the next block. 4226 if (isa<TerminatorInst>(I)) { 4227 ++CurBBNo; 4228 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4229 } 4230 4231 // Non-void values get registered in the value table for future use. 4232 if (I && !I->getType()->isVoidTy()) 4233 ValueList.AssignValue(I, NextValueNo++); 4234 } 4235 4236 OutOfRecordLoop: 4237 4238 // Check the function list for unresolved values. 4239 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4240 if (!A->getParent()) { 4241 // We found at least one unresolved value. Nuke them all to avoid leaks. 4242 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4243 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4244 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4245 delete A; 4246 } 4247 } 4248 return Error("Never resolved value found in function"); 4249 } 4250 } 4251 4252 // FIXME: Check for unresolved forward-declared metadata references 4253 // and clean up leaks. 4254 4255 // Trim the value list down to the size it was before we parsed this function. 4256 ValueList.shrinkTo(ModuleValueListSize); 4257 MDValueList.shrinkTo(ModuleMDValueListSize); 4258 std::vector<BasicBlock*>().swap(FunctionBBs); 4259 return std::error_code(); 4260 } 4261 4262 /// Find the function body in the bitcode stream 4263 std::error_code BitcodeReader::FindFunctionInStream( 4264 Function *F, 4265 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4266 while (DeferredFunctionInfoIterator->second == 0) { 4267 if (Stream.AtEndOfStream()) 4268 return Error("Could not find function in stream"); 4269 // ParseModule will parse the next body in the stream and set its 4270 // position in the DeferredFunctionInfo map. 4271 if (std::error_code EC = ParseModule(true)) 4272 return EC; 4273 } 4274 return std::error_code(); 4275 } 4276 4277 //===----------------------------------------------------------------------===// 4278 // GVMaterializer implementation 4279 //===----------------------------------------------------------------------===// 4280 4281 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4282 4283 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4284 if (std::error_code EC = materializeMetadata()) 4285 return EC; 4286 4287 Function *F = dyn_cast<Function>(GV); 4288 // If it's not a function or is already material, ignore the request. 4289 if (!F || !F->isMaterializable()) 4290 return std::error_code(); 4291 4292 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4293 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4294 // If its position is recorded as 0, its body is somewhere in the stream 4295 // but we haven't seen it yet. 4296 if (DFII->second == 0 && LazyStreamer) 4297 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4298 return EC; 4299 4300 // Move the bit stream to the saved position of the deferred function body. 4301 Stream.JumpToBit(DFII->second); 4302 4303 if (std::error_code EC = ParseFunctionBody(F)) 4304 return EC; 4305 F->setIsMaterializable(false); 4306 4307 // Upgrade any old intrinsic calls in the function. 4308 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4309 E = UpgradedIntrinsics.end(); I != E; ++I) { 4310 if (I->first != I->second) { 4311 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4312 UI != UE;) { 4313 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4314 UpgradeIntrinsicCall(CI, I->second); 4315 } 4316 } 4317 } 4318 4319 // Bring in any functions that this function forward-referenced via 4320 // blockaddresses. 4321 return materializeForwardReferencedFunctions(); 4322 } 4323 4324 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4325 const Function *F = dyn_cast<Function>(GV); 4326 if (!F || F->isDeclaration()) 4327 return false; 4328 4329 // Dematerializing F would leave dangling references that wouldn't be 4330 // reconnected on re-materialization. 4331 if (BlockAddressesTaken.count(F)) 4332 return false; 4333 4334 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4335 } 4336 4337 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4338 Function *F = dyn_cast<Function>(GV); 4339 // If this function isn't dematerializable, this is a noop. 4340 if (!F || !isDematerializable(F)) 4341 return; 4342 4343 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4344 4345 // Just forget the function body, we can remat it later. 4346 F->dropAllReferences(); 4347 F->setIsMaterializable(true); 4348 } 4349 4350 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4351 assert(M == TheModule && 4352 "Can only Materialize the Module this BitcodeReader is attached to."); 4353 4354 if (std::error_code EC = materializeMetadata()) 4355 return EC; 4356 4357 // Promise to materialize all forward references. 4358 WillMaterializeAllForwardRefs = true; 4359 4360 // Iterate over the module, deserializing any functions that are still on 4361 // disk. 4362 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4363 F != E; ++F) { 4364 if (std::error_code EC = materialize(F)) 4365 return EC; 4366 } 4367 // At this point, if there are any function bodies, the current bit is 4368 // pointing to the END_BLOCK record after them. Now make sure the rest 4369 // of the bits in the module have been read. 4370 if (NextUnreadBit) 4371 ParseModule(true); 4372 4373 // Check that all block address forward references got resolved (as we 4374 // promised above). 4375 if (!BasicBlockFwdRefs.empty()) 4376 return Error("Never resolved function from blockaddress"); 4377 4378 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4379 // delete the old functions to clean up. We can't do this unless the entire 4380 // module is materialized because there could always be another function body 4381 // with calls to the old function. 4382 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4383 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4384 if (I->first != I->second) { 4385 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4386 UI != UE;) { 4387 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4388 UpgradeIntrinsicCall(CI, I->second); 4389 } 4390 if (!I->first->use_empty()) 4391 I->first->replaceAllUsesWith(I->second); 4392 I->first->eraseFromParent(); 4393 } 4394 } 4395 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4396 4397 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4398 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4399 4400 UpgradeDebugInfo(*M); 4401 return std::error_code(); 4402 } 4403 4404 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4405 return IdentifiedStructTypes; 4406 } 4407 4408 std::error_code BitcodeReader::InitStream() { 4409 if (LazyStreamer) 4410 return InitLazyStream(); 4411 return InitStreamFromBuffer(); 4412 } 4413 4414 std::error_code BitcodeReader::InitStreamFromBuffer() { 4415 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4416 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4417 4418 if (Buffer->getBufferSize() & 3) 4419 return Error("Invalid bitcode signature"); 4420 4421 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4422 // The magic number is 0x0B17C0DE stored in little endian. 4423 if (isBitcodeWrapper(BufPtr, BufEnd)) 4424 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4425 return Error("Invalid bitcode wrapper header"); 4426 4427 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4428 Stream.init(&*StreamFile); 4429 4430 return std::error_code(); 4431 } 4432 4433 std::error_code BitcodeReader::InitLazyStream() { 4434 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4435 // see it. 4436 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4437 StreamingMemoryObject &Bytes = *OwnedBytes; 4438 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4439 Stream.init(&*StreamFile); 4440 4441 unsigned char buf[16]; 4442 if (Bytes.readBytes(buf, 16, 0) != 16) 4443 return Error("Invalid bitcode signature"); 4444 4445 if (!isBitcode(buf, buf + 16)) 4446 return Error("Invalid bitcode signature"); 4447 4448 if (isBitcodeWrapper(buf, buf + 4)) { 4449 const unsigned char *bitcodeStart = buf; 4450 const unsigned char *bitcodeEnd = buf + 16; 4451 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4452 Bytes.dropLeadingBytes(bitcodeStart - buf); 4453 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4454 } 4455 return std::error_code(); 4456 } 4457 4458 namespace { 4459 class BitcodeErrorCategoryType : public std::error_category { 4460 const char *name() const LLVM_NOEXCEPT override { 4461 return "llvm.bitcode"; 4462 } 4463 std::string message(int IE) const override { 4464 BitcodeError E = static_cast<BitcodeError>(IE); 4465 switch (E) { 4466 case BitcodeError::InvalidBitcodeSignature: 4467 return "Invalid bitcode signature"; 4468 case BitcodeError::CorruptedBitcode: 4469 return "Corrupted bitcode"; 4470 } 4471 llvm_unreachable("Unknown error type!"); 4472 } 4473 }; 4474 } 4475 4476 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4477 4478 const std::error_category &llvm::BitcodeErrorCategory() { 4479 return *ErrorCategory; 4480 } 4481 4482 //===----------------------------------------------------------------------===// 4483 // External interface 4484 //===----------------------------------------------------------------------===// 4485 4486 /// \brief Get a lazy one-at-time loading module from bitcode. 4487 /// 4488 /// This isn't always used in a lazy context. In particular, it's also used by 4489 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4490 /// in forward-referenced functions from block address references. 4491 /// 4492 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4493 /// materialize everything -- in particular, if this isn't truly lazy. 4494 static ErrorOr<Module *> 4495 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4496 LLVMContext &Context, bool WillMaterializeAll, 4497 DiagnosticHandlerFunction DiagnosticHandler, 4498 bool ShouldLazyLoadMetadata = false) { 4499 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4500 BitcodeReader *R = 4501 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4502 M->setMaterializer(R); 4503 4504 auto cleanupOnError = [&](std::error_code EC) { 4505 R->releaseBuffer(); // Never take ownership on error. 4506 delete M; // Also deletes R. 4507 return EC; 4508 }; 4509 4510 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4511 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4512 return cleanupOnError(EC); 4513 4514 if (!WillMaterializeAll) 4515 // Resolve forward references from blockaddresses. 4516 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4517 return cleanupOnError(EC); 4518 4519 Buffer.release(); // The BitcodeReader owns it now. 4520 return M; 4521 } 4522 4523 ErrorOr<Module *> 4524 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4525 LLVMContext &Context, 4526 DiagnosticHandlerFunction DiagnosticHandler, 4527 bool ShouldLazyLoadMetadata) { 4528 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4529 DiagnosticHandler, ShouldLazyLoadMetadata); 4530 } 4531 4532 ErrorOr<std::unique_ptr<Module>> 4533 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4534 LLVMContext &Context, 4535 DiagnosticHandlerFunction DiagnosticHandler) { 4536 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4537 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4538 M->setMaterializer(R); 4539 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4540 return EC; 4541 return std::move(M); 4542 } 4543 4544 ErrorOr<Module *> 4545 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4546 DiagnosticHandlerFunction DiagnosticHandler) { 4547 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4548 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4549 std::move(Buf), Context, true, DiagnosticHandler); 4550 if (!ModuleOrErr) 4551 return ModuleOrErr; 4552 Module *M = ModuleOrErr.get(); 4553 // Read in the entire module, and destroy the BitcodeReader. 4554 if (std::error_code EC = M->materializeAllPermanently()) { 4555 delete M; 4556 return EC; 4557 } 4558 4559 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4560 // written. We must defer until the Module has been fully materialized. 4561 4562 return M; 4563 } 4564 4565 std::string 4566 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4567 DiagnosticHandlerFunction DiagnosticHandler) { 4568 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4569 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4570 DiagnosticHandler); 4571 ErrorOr<std::string> Triple = R->parseTriple(); 4572 if (Triple.getError()) 4573 return ""; 4574 return Triple.get(); 4575 } 4576