1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 delete Buffer; 32 Buffer = 0; 33 std::vector<PATypeHolder>().swap(TypeList); 34 ValueList.clear(); 35 MDValueList.clear(); 36 37 std::vector<AttrListPtr>().swap(MAttributes); 38 std::vector<BasicBlock*>().swap(FunctionBBs); 39 std::vector<Function*>().swap(FunctionsWithBodies); 40 DeferredFunctionInfo.clear(); 41 } 42 43 //===----------------------------------------------------------------------===// 44 // Helper functions to implement forward reference resolution, etc. 45 //===----------------------------------------------------------------------===// 46 47 /// ConvertToString - Convert a string from a record into an std::string, return 48 /// true on failure. 49 template<typename StrTy> 50 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 51 StrTy &Result) { 52 if (Idx > Record.size()) 53 return true; 54 55 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 56 Result += (char)Record[i]; 57 return false; 58 } 59 60 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 61 switch (Val) { 62 default: // Map unknown/new linkages to external 63 case 0: return GlobalValue::ExternalLinkage; 64 case 1: return GlobalValue::WeakAnyLinkage; 65 case 2: return GlobalValue::AppendingLinkage; 66 case 3: return GlobalValue::InternalLinkage; 67 case 4: return GlobalValue::LinkOnceAnyLinkage; 68 case 5: return GlobalValue::DLLImportLinkage; 69 case 6: return GlobalValue::DLLExportLinkage; 70 case 7: return GlobalValue::ExternalWeakLinkage; 71 case 8: return GlobalValue::CommonLinkage; 72 case 9: return GlobalValue::PrivateLinkage; 73 case 10: return GlobalValue::WeakODRLinkage; 74 case 11: return GlobalValue::LinkOnceODRLinkage; 75 case 12: return GlobalValue::AvailableExternallyLinkage; 76 case 13: return GlobalValue::LinkerPrivateLinkage; 77 } 78 } 79 80 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 81 switch (Val) { 82 default: // Map unknown visibilities to default. 83 case 0: return GlobalValue::DefaultVisibility; 84 case 1: return GlobalValue::HiddenVisibility; 85 case 2: return GlobalValue::ProtectedVisibility; 86 } 87 } 88 89 static int GetDecodedCastOpcode(unsigned Val) { 90 switch (Val) { 91 default: return -1; 92 case bitc::CAST_TRUNC : return Instruction::Trunc; 93 case bitc::CAST_ZEXT : return Instruction::ZExt; 94 case bitc::CAST_SEXT : return Instruction::SExt; 95 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 96 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 97 case bitc::CAST_UITOFP : return Instruction::UIToFP; 98 case bitc::CAST_SITOFP : return Instruction::SIToFP; 99 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 100 case bitc::CAST_FPEXT : return Instruction::FPExt; 101 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 102 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 103 case bitc::CAST_BITCAST : return Instruction::BitCast; 104 } 105 } 106 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 107 switch (Val) { 108 default: return -1; 109 case bitc::BINOP_ADD: 110 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 111 case bitc::BINOP_SUB: 112 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 113 case bitc::BINOP_MUL: 114 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 115 case bitc::BINOP_UDIV: return Instruction::UDiv; 116 case bitc::BINOP_SDIV: 117 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 118 case bitc::BINOP_UREM: return Instruction::URem; 119 case bitc::BINOP_SREM: 120 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 121 case bitc::BINOP_SHL: return Instruction::Shl; 122 case bitc::BINOP_LSHR: return Instruction::LShr; 123 case bitc::BINOP_ASHR: return Instruction::AShr; 124 case bitc::BINOP_AND: return Instruction::And; 125 case bitc::BINOP_OR: return Instruction::Or; 126 case bitc::BINOP_XOR: return Instruction::Xor; 127 } 128 } 129 130 namespace llvm { 131 namespace { 132 /// @brief A class for maintaining the slot number definition 133 /// as a placeholder for the actual definition for forward constants defs. 134 class ConstantPlaceHolder : public ConstantExpr { 135 ConstantPlaceHolder(); // DO NOT IMPLEMENT 136 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 137 public: 138 // allocate space for exactly one operand 139 void *operator new(size_t s) { 140 return User::operator new(s, 1); 141 } 142 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 143 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 144 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 145 } 146 147 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 148 static inline bool classof(const ConstantPlaceHolder *) { return true; } 149 static bool classof(const Value *V) { 150 return isa<ConstantExpr>(V) && 151 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 152 } 153 154 155 /// Provide fast operand accessors 156 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 157 }; 158 } 159 160 // FIXME: can we inherit this from ConstantExpr? 161 template <> 162 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 163 }; 164 } 165 166 167 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 168 if (Idx == size()) { 169 push_back(V); 170 return; 171 } 172 173 if (Idx >= size()) 174 resize(Idx+1); 175 176 WeakVH &OldV = ValuePtrs[Idx]; 177 if (OldV == 0) { 178 OldV = V; 179 return; 180 } 181 182 // Handle constants and non-constants (e.g. instrs) differently for 183 // efficiency. 184 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 185 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 186 OldV = V; 187 } else { 188 // If there was a forward reference to this value, replace it. 189 Value *PrevVal = OldV; 190 OldV->replaceAllUsesWith(V); 191 delete PrevVal; 192 } 193 } 194 195 196 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 197 const Type *Ty) { 198 if (Idx >= size()) 199 resize(Idx + 1); 200 201 if (Value *V = ValuePtrs[Idx]) { 202 assert(Ty == V->getType() && "Type mismatch in constant table!"); 203 return cast<Constant>(V); 204 } 205 206 // Create and return a placeholder, which will later be RAUW'd. 207 Constant *C = new ConstantPlaceHolder(Ty, Context); 208 ValuePtrs[Idx] = C; 209 return C; 210 } 211 212 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 213 if (Idx >= size()) 214 resize(Idx + 1); 215 216 if (Value *V = ValuePtrs[Idx]) { 217 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 218 return V; 219 } 220 221 // No type specified, must be invalid reference. 222 if (Ty == 0) return 0; 223 224 // Create and return a placeholder, which will later be RAUW'd. 225 Value *V = new Argument(Ty); 226 ValuePtrs[Idx] = V; 227 return V; 228 } 229 230 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 231 /// resolves any forward references. The idea behind this is that we sometimes 232 /// get constants (such as large arrays) which reference *many* forward ref 233 /// constants. Replacing each of these causes a lot of thrashing when 234 /// building/reuniquing the constant. Instead of doing this, we look at all the 235 /// uses and rewrite all the place holders at once for any constant that uses 236 /// a placeholder. 237 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 238 // Sort the values by-pointer so that they are efficient to look up with a 239 // binary search. 240 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 241 242 SmallVector<Constant*, 64> NewOps; 243 244 while (!ResolveConstants.empty()) { 245 Value *RealVal = operator[](ResolveConstants.back().second); 246 Constant *Placeholder = ResolveConstants.back().first; 247 ResolveConstants.pop_back(); 248 249 // Loop over all users of the placeholder, updating them to reference the 250 // new value. If they reference more than one placeholder, update them all 251 // at once. 252 while (!Placeholder->use_empty()) { 253 Value::use_iterator UI = Placeholder->use_begin(); 254 255 // If the using object isn't uniqued, just update the operands. This 256 // handles instructions and initializers for global variables. 257 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 258 UI.getUse().set(RealVal); 259 continue; 260 } 261 262 // Otherwise, we have a constant that uses the placeholder. Replace that 263 // constant with a new constant that has *all* placeholder uses updated. 264 Constant *UserC = cast<Constant>(*UI); 265 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 266 I != E; ++I) { 267 Value *NewOp; 268 if (!isa<ConstantPlaceHolder>(*I)) { 269 // Not a placeholder reference. 270 NewOp = *I; 271 } else if (*I == Placeholder) { 272 // Common case is that it just references this one placeholder. 273 NewOp = RealVal; 274 } else { 275 // Otherwise, look up the placeholder in ResolveConstants. 276 ResolveConstantsTy::iterator It = 277 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 278 std::pair<Constant*, unsigned>(cast<Constant>(*I), 279 0)); 280 assert(It != ResolveConstants.end() && It->first == *I); 281 NewOp = operator[](It->second); 282 } 283 284 NewOps.push_back(cast<Constant>(NewOp)); 285 } 286 287 // Make the new constant. 288 Constant *NewC; 289 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 290 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 291 NewOps.size()); 292 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 293 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 294 UserCS->getType()->isPacked()); 295 } else if (isa<ConstantVector>(UserC)) { 296 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 297 } else { 298 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 299 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 300 NewOps.size()); 301 } 302 303 UserC->replaceAllUsesWith(NewC); 304 UserC->destroyConstant(); 305 NewOps.clear(); 306 } 307 308 // Update all ValueHandles, they should be the only users at this point. 309 Placeholder->replaceAllUsesWith(RealVal); 310 delete Placeholder; 311 } 312 } 313 314 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 315 if (Idx == size()) { 316 push_back(V); 317 return; 318 } 319 320 if (Idx >= size()) 321 resize(Idx+1); 322 323 WeakVH &OldV = MDValuePtrs[Idx]; 324 if (OldV == 0) { 325 OldV = V; 326 return; 327 } 328 329 // If there was a forward reference to this value, replace it. 330 Value *PrevVal = OldV; 331 OldV->replaceAllUsesWith(V); 332 delete PrevVal; 333 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 334 // value for Idx. 335 MDValuePtrs[Idx] = V; 336 } 337 338 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 339 if (Idx >= size()) 340 resize(Idx + 1); 341 342 if (Value *V = MDValuePtrs[Idx]) { 343 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 344 return V; 345 } 346 347 // Create and return a placeholder, which will later be RAUW'd. 348 Value *V = new Argument(Type::getMetadataTy(Context)); 349 MDValuePtrs[Idx] = V; 350 return V; 351 } 352 353 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 354 // If the TypeID is in range, return it. 355 if (ID < TypeList.size()) 356 return TypeList[ID].get(); 357 if (!isTypeTable) return 0; 358 359 // The type table allows forward references. Push as many Opaque types as 360 // needed to get up to ID. 361 while (TypeList.size() <= ID) 362 TypeList.push_back(OpaqueType::get(Context)); 363 return TypeList.back().get(); 364 } 365 366 //===----------------------------------------------------------------------===// 367 // Functions for parsing blocks from the bitcode file 368 //===----------------------------------------------------------------------===// 369 370 bool BitcodeReader::ParseAttributeBlock() { 371 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 372 return Error("Malformed block record"); 373 374 if (!MAttributes.empty()) 375 return Error("Multiple PARAMATTR blocks found!"); 376 377 SmallVector<uint64_t, 64> Record; 378 379 SmallVector<AttributeWithIndex, 8> Attrs; 380 381 // Read all the records. 382 while (1) { 383 unsigned Code = Stream.ReadCode(); 384 if (Code == bitc::END_BLOCK) { 385 if (Stream.ReadBlockEnd()) 386 return Error("Error at end of PARAMATTR block"); 387 return false; 388 } 389 390 if (Code == bitc::ENTER_SUBBLOCK) { 391 // No known subblocks, always skip them. 392 Stream.ReadSubBlockID(); 393 if (Stream.SkipBlock()) 394 return Error("Malformed block record"); 395 continue; 396 } 397 398 if (Code == bitc::DEFINE_ABBREV) { 399 Stream.ReadAbbrevRecord(); 400 continue; 401 } 402 403 // Read a record. 404 Record.clear(); 405 switch (Stream.ReadRecord(Code, Record)) { 406 default: // Default behavior: ignore. 407 break; 408 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 409 if (Record.size() & 1) 410 return Error("Invalid ENTRY record"); 411 412 // FIXME : Remove this autoupgrade code in LLVM 3.0. 413 // If Function attributes are using index 0 then transfer them 414 // to index ~0. Index 0 is used for return value attributes but used to be 415 // used for function attributes. 416 Attributes RetAttribute = Attribute::None; 417 Attributes FnAttribute = Attribute::None; 418 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 419 // FIXME: remove in LLVM 3.0 420 // The alignment is stored as a 16-bit raw value from bits 31--16. 421 // We shift the bits above 31 down by 11 bits. 422 423 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 424 if (Alignment && !isPowerOf2_32(Alignment)) 425 return Error("Alignment is not a power of two."); 426 427 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 428 if (Alignment) 429 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 430 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 431 Record[i+1] = ReconstitutedAttr; 432 433 if (Record[i] == 0) 434 RetAttribute = Record[i+1]; 435 else if (Record[i] == ~0U) 436 FnAttribute = Record[i+1]; 437 } 438 439 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 440 Attribute::ReadOnly|Attribute::ReadNone); 441 442 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 443 (RetAttribute & OldRetAttrs) != 0) { 444 if (FnAttribute == Attribute::None) { // add a slot so they get added. 445 Record.push_back(~0U); 446 Record.push_back(0); 447 } 448 449 FnAttribute |= RetAttribute & OldRetAttrs; 450 RetAttribute &= ~OldRetAttrs; 451 } 452 453 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 454 if (Record[i] == 0) { 455 if (RetAttribute != Attribute::None) 456 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 457 } else if (Record[i] == ~0U) { 458 if (FnAttribute != Attribute::None) 459 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 460 } else if (Record[i+1] != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 462 } 463 464 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 465 Attrs.clear(); 466 break; 467 } 468 } 469 } 470 } 471 472 473 bool BitcodeReader::ParseTypeTable() { 474 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 475 return Error("Malformed block record"); 476 477 if (!TypeList.empty()) 478 return Error("Multiple TYPE_BLOCKs found!"); 479 480 SmallVector<uint64_t, 64> Record; 481 unsigned NumRecords = 0; 482 483 // Read all the records for this type table. 484 while (1) { 485 unsigned Code = Stream.ReadCode(); 486 if (Code == bitc::END_BLOCK) { 487 if (NumRecords != TypeList.size()) 488 return Error("Invalid type forward reference in TYPE_BLOCK"); 489 if (Stream.ReadBlockEnd()) 490 return Error("Error at end of type table block"); 491 return false; 492 } 493 494 if (Code == bitc::ENTER_SUBBLOCK) { 495 // No known subblocks, always skip them. 496 Stream.ReadSubBlockID(); 497 if (Stream.SkipBlock()) 498 return Error("Malformed block record"); 499 continue; 500 } 501 502 if (Code == bitc::DEFINE_ABBREV) { 503 Stream.ReadAbbrevRecord(); 504 continue; 505 } 506 507 // Read a record. 508 Record.clear(); 509 const Type *ResultTy = 0; 510 switch (Stream.ReadRecord(Code, Record)) { 511 default: // Default behavior: unknown type. 512 ResultTy = 0; 513 break; 514 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 515 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 516 // type list. This allows us to reserve space. 517 if (Record.size() < 1) 518 return Error("Invalid TYPE_CODE_NUMENTRY record"); 519 TypeList.reserve(Record[0]); 520 continue; 521 case bitc::TYPE_CODE_VOID: // VOID 522 ResultTy = Type::getVoidTy(Context); 523 break; 524 case bitc::TYPE_CODE_FLOAT: // FLOAT 525 ResultTy = Type::getFloatTy(Context); 526 break; 527 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 528 ResultTy = Type::getDoubleTy(Context); 529 break; 530 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 531 ResultTy = Type::getX86_FP80Ty(Context); 532 break; 533 case bitc::TYPE_CODE_FP128: // FP128 534 ResultTy = Type::getFP128Ty(Context); 535 break; 536 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 537 ResultTy = Type::getPPC_FP128Ty(Context); 538 break; 539 case bitc::TYPE_CODE_LABEL: // LABEL 540 ResultTy = Type::getLabelTy(Context); 541 break; 542 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 543 ResultTy = 0; 544 break; 545 case bitc::TYPE_CODE_METADATA: // METADATA 546 ResultTy = Type::getMetadataTy(Context); 547 break; 548 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 549 if (Record.size() < 1) 550 return Error("Invalid Integer type record"); 551 552 ResultTy = IntegerType::get(Context, Record[0]); 553 break; 554 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 555 // [pointee type, address space] 556 if (Record.size() < 1) 557 return Error("Invalid POINTER type record"); 558 unsigned AddressSpace = 0; 559 if (Record.size() == 2) 560 AddressSpace = Record[1]; 561 ResultTy = PointerType::get(getTypeByID(Record[0], true), 562 AddressSpace); 563 break; 564 } 565 case bitc::TYPE_CODE_FUNCTION: { 566 // FIXME: attrid is dead, remove it in LLVM 3.0 567 // FUNCTION: [vararg, attrid, retty, paramty x N] 568 if (Record.size() < 3) 569 return Error("Invalid FUNCTION type record"); 570 std::vector<const Type*> ArgTys; 571 for (unsigned i = 3, e = Record.size(); i != e; ++i) 572 ArgTys.push_back(getTypeByID(Record[i], true)); 573 574 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 575 Record[0]); 576 break; 577 } 578 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 579 if (Record.size() < 1) 580 return Error("Invalid STRUCT type record"); 581 std::vector<const Type*> EltTys; 582 for (unsigned i = 1, e = Record.size(); i != e; ++i) 583 EltTys.push_back(getTypeByID(Record[i], true)); 584 ResultTy = StructType::get(Context, EltTys, Record[0]); 585 break; 586 } 587 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 588 if (Record.size() < 2) 589 return Error("Invalid ARRAY type record"); 590 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 591 break; 592 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 593 if (Record.size() < 2) 594 return Error("Invalid VECTOR type record"); 595 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 596 break; 597 } 598 599 if (NumRecords == TypeList.size()) { 600 // If this is a new type slot, just append it. 601 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 602 ++NumRecords; 603 } else if (ResultTy == 0) { 604 // Otherwise, this was forward referenced, so an opaque type was created, 605 // but the result type is actually just an opaque. Leave the one we 606 // created previously. 607 ++NumRecords; 608 } else { 609 // Otherwise, this was forward referenced, so an opaque type was created. 610 // Resolve the opaque type to the real type now. 611 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 612 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 613 614 // Don't directly push the new type on the Tab. Instead we want to replace 615 // the opaque type we previously inserted with the new concrete value. The 616 // refinement from the abstract (opaque) type to the new type causes all 617 // uses of the abstract type to use the concrete type (NewTy). This will 618 // also cause the opaque type to be deleted. 619 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 620 621 // This should have replaced the old opaque type with the new type in the 622 // value table... or with a preexisting type that was already in the 623 // system. Let's just make sure it did. 624 assert(TypeList[NumRecords-1].get() != OldTy && 625 "refineAbstractType didn't work!"); 626 } 627 } 628 } 629 630 631 bool BitcodeReader::ParseTypeSymbolTable() { 632 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 633 return Error("Malformed block record"); 634 635 SmallVector<uint64_t, 64> Record; 636 637 // Read all the records for this type table. 638 std::string TypeName; 639 while (1) { 640 unsigned Code = Stream.ReadCode(); 641 if (Code == bitc::END_BLOCK) { 642 if (Stream.ReadBlockEnd()) 643 return Error("Error at end of type symbol table block"); 644 return false; 645 } 646 647 if (Code == bitc::ENTER_SUBBLOCK) { 648 // No known subblocks, always skip them. 649 Stream.ReadSubBlockID(); 650 if (Stream.SkipBlock()) 651 return Error("Malformed block record"); 652 continue; 653 } 654 655 if (Code == bitc::DEFINE_ABBREV) { 656 Stream.ReadAbbrevRecord(); 657 continue; 658 } 659 660 // Read a record. 661 Record.clear(); 662 switch (Stream.ReadRecord(Code, Record)) { 663 default: // Default behavior: unknown type. 664 break; 665 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 666 if (ConvertToString(Record, 1, TypeName)) 667 return Error("Invalid TST_ENTRY record"); 668 unsigned TypeID = Record[0]; 669 if (TypeID >= TypeList.size()) 670 return Error("Invalid Type ID in TST_ENTRY record"); 671 672 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 673 TypeName.clear(); 674 break; 675 } 676 } 677 } 678 679 bool BitcodeReader::ParseValueSymbolTable() { 680 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 681 return Error("Malformed block record"); 682 683 SmallVector<uint64_t, 64> Record; 684 685 // Read all the records for this value table. 686 SmallString<128> ValueName; 687 while (1) { 688 unsigned Code = Stream.ReadCode(); 689 if (Code == bitc::END_BLOCK) { 690 if (Stream.ReadBlockEnd()) 691 return Error("Error at end of value symbol table block"); 692 return false; 693 } 694 if (Code == bitc::ENTER_SUBBLOCK) { 695 // No known subblocks, always skip them. 696 Stream.ReadSubBlockID(); 697 if (Stream.SkipBlock()) 698 return Error("Malformed block record"); 699 continue; 700 } 701 702 if (Code == bitc::DEFINE_ABBREV) { 703 Stream.ReadAbbrevRecord(); 704 continue; 705 } 706 707 // Read a record. 708 Record.clear(); 709 switch (Stream.ReadRecord(Code, Record)) { 710 default: // Default behavior: unknown type. 711 break; 712 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 713 if (ConvertToString(Record, 1, ValueName)) 714 return Error("Invalid VST_ENTRY record"); 715 unsigned ValueID = Record[0]; 716 if (ValueID >= ValueList.size()) 717 return Error("Invalid Value ID in VST_ENTRY record"); 718 Value *V = ValueList[ValueID]; 719 720 V->setName(StringRef(ValueName.data(), ValueName.size())); 721 ValueName.clear(); 722 break; 723 } 724 case bitc::VST_CODE_BBENTRY: { 725 if (ConvertToString(Record, 1, ValueName)) 726 return Error("Invalid VST_BBENTRY record"); 727 BasicBlock *BB = getBasicBlock(Record[0]); 728 if (BB == 0) 729 return Error("Invalid BB ID in VST_BBENTRY record"); 730 731 BB->setName(StringRef(ValueName.data(), ValueName.size())); 732 ValueName.clear(); 733 break; 734 } 735 } 736 } 737 } 738 739 bool BitcodeReader::ParseMetadata() { 740 unsigned NextValueNo = MDValueList.size(); 741 742 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 743 return Error("Malformed block record"); 744 745 SmallVector<uint64_t, 64> Record; 746 747 // Read all the records. 748 while (1) { 749 unsigned Code = Stream.ReadCode(); 750 if (Code == bitc::END_BLOCK) { 751 if (Stream.ReadBlockEnd()) 752 return Error("Error at end of PARAMATTR block"); 753 return false; 754 } 755 756 if (Code == bitc::ENTER_SUBBLOCK) { 757 // No known subblocks, always skip them. 758 Stream.ReadSubBlockID(); 759 if (Stream.SkipBlock()) 760 return Error("Malformed block record"); 761 continue; 762 } 763 764 if (Code == bitc::DEFINE_ABBREV) { 765 Stream.ReadAbbrevRecord(); 766 continue; 767 } 768 769 // Read a record. 770 Record.clear(); 771 switch (Stream.ReadRecord(Code, Record)) { 772 default: // Default behavior: ignore. 773 break; 774 case bitc::METADATA_NAME: { 775 // Read named of the named metadata. 776 unsigned NameLength = Record.size(); 777 SmallString<8> Name; 778 Name.resize(NameLength); 779 for (unsigned i = 0; i != NameLength; ++i) 780 Name[i] = Record[i]; 781 Record.clear(); 782 Code = Stream.ReadCode(); 783 784 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 785 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 786 assert ( 0 && "Inavlid Named Metadata record"); 787 788 // Read named metadata elements. 789 unsigned Size = Record.size(); 790 SmallVector<MetadataBase*, 8> Elts; 791 for (unsigned i = 0; i != Size; ++i) { 792 Value *MD = MDValueList.getValueFwdRef(Record[i]); 793 if (MetadataBase *B = dyn_cast<MetadataBase>(MD)) 794 Elts.push_back(B); 795 } 796 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 797 Elts.size(), TheModule); 798 MDValueList.AssignValue(V, NextValueNo++); 799 break; 800 } 801 case bitc::METADATA_NODE: { 802 if (Record.empty() || Record.size() % 2 == 1) 803 return Error("Invalid METADATA_NODE record"); 804 805 unsigned Size = Record.size(); 806 SmallVector<Value*, 8> Elts; 807 for (unsigned i = 0; i != Size; i += 2) { 808 const Type *Ty = getTypeByID(Record[i], false); 809 if (Ty->isMetadataTy()) 810 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 811 else if (!Ty->isVoidTy()) 812 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 813 else 814 Elts.push_back(NULL); 815 } 816 Value *V = MDNode::get(Context, &Elts[0], Elts.size()); 817 MDValueList.AssignValue(V, NextValueNo++); 818 break; 819 } 820 case bitc::METADATA_STRING: { 821 unsigned MDStringLength = Record.size(); 822 SmallString<8> String; 823 String.resize(MDStringLength); 824 for (unsigned i = 0; i != MDStringLength; ++i) 825 String[i] = Record[i]; 826 Value *V = MDString::get(Context, 827 StringRef(String.data(), String.size())); 828 MDValueList.AssignValue(V, NextValueNo++); 829 break; 830 } 831 case bitc::METADATA_KIND: { 832 unsigned RecordLength = Record.size(); 833 if (Record.empty() || RecordLength < 2) 834 return Error("Invalid METADATA_KIND record"); 835 SmallString<8> Name; 836 Name.resize(RecordLength-1); 837 unsigned Kind = Record[0]; 838 (void) Kind; 839 for (unsigned i = 1; i != RecordLength; ++i) 840 Name[i-1] = Record[i]; 841 842 unsigned NewKind = TheModule->getMDKindID(Name.str()); 843 assert(Kind == NewKind && 844 "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind; 845 break; 846 } 847 } 848 } 849 } 850 851 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 852 /// the LSB for dense VBR encoding. 853 static uint64_t DecodeSignRotatedValue(uint64_t V) { 854 if ((V & 1) == 0) 855 return V >> 1; 856 if (V != 1) 857 return -(V >> 1); 858 // There is no such thing as -0 with integers. "-0" really means MININT. 859 return 1ULL << 63; 860 } 861 862 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 863 /// values and aliases that we can. 864 bool BitcodeReader::ResolveGlobalAndAliasInits() { 865 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 866 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 867 868 GlobalInitWorklist.swap(GlobalInits); 869 AliasInitWorklist.swap(AliasInits); 870 871 while (!GlobalInitWorklist.empty()) { 872 unsigned ValID = GlobalInitWorklist.back().second; 873 if (ValID >= ValueList.size()) { 874 // Not ready to resolve this yet, it requires something later in the file. 875 GlobalInits.push_back(GlobalInitWorklist.back()); 876 } else { 877 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 878 GlobalInitWorklist.back().first->setInitializer(C); 879 else 880 return Error("Global variable initializer is not a constant!"); 881 } 882 GlobalInitWorklist.pop_back(); 883 } 884 885 while (!AliasInitWorklist.empty()) { 886 unsigned ValID = AliasInitWorklist.back().second; 887 if (ValID >= ValueList.size()) { 888 AliasInits.push_back(AliasInitWorklist.back()); 889 } else { 890 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 891 AliasInitWorklist.back().first->setAliasee(C); 892 else 893 return Error("Alias initializer is not a constant!"); 894 } 895 AliasInitWorklist.pop_back(); 896 } 897 return false; 898 } 899 900 bool BitcodeReader::ParseConstants() { 901 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 902 return Error("Malformed block record"); 903 904 SmallVector<uint64_t, 64> Record; 905 906 // Read all the records for this value table. 907 const Type *CurTy = Type::getInt32Ty(Context); 908 unsigned NextCstNo = ValueList.size(); 909 while (1) { 910 unsigned Code = Stream.ReadCode(); 911 if (Code == bitc::END_BLOCK) 912 break; 913 914 if (Code == bitc::ENTER_SUBBLOCK) { 915 // No known subblocks, always skip them. 916 Stream.ReadSubBlockID(); 917 if (Stream.SkipBlock()) 918 return Error("Malformed block record"); 919 continue; 920 } 921 922 if (Code == bitc::DEFINE_ABBREV) { 923 Stream.ReadAbbrevRecord(); 924 continue; 925 } 926 927 // Read a record. 928 Record.clear(); 929 Value *V = 0; 930 unsigned BitCode = Stream.ReadRecord(Code, Record); 931 switch (BitCode) { 932 default: // Default behavior: unknown constant 933 case bitc::CST_CODE_UNDEF: // UNDEF 934 V = UndefValue::get(CurTy); 935 break; 936 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 937 if (Record.empty()) 938 return Error("Malformed CST_SETTYPE record"); 939 if (Record[0] >= TypeList.size()) 940 return Error("Invalid Type ID in CST_SETTYPE record"); 941 CurTy = TypeList[Record[0]]; 942 continue; // Skip the ValueList manipulation. 943 case bitc::CST_CODE_NULL: // NULL 944 V = Constant::getNullValue(CurTy); 945 break; 946 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 947 if (!isa<IntegerType>(CurTy) || Record.empty()) 948 return Error("Invalid CST_INTEGER record"); 949 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 950 break; 951 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 952 if (!isa<IntegerType>(CurTy) || Record.empty()) 953 return Error("Invalid WIDE_INTEGER record"); 954 955 unsigned NumWords = Record.size(); 956 SmallVector<uint64_t, 8> Words; 957 Words.resize(NumWords); 958 for (unsigned i = 0; i != NumWords; ++i) 959 Words[i] = DecodeSignRotatedValue(Record[i]); 960 V = ConstantInt::get(Context, 961 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 962 NumWords, &Words[0])); 963 break; 964 } 965 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 966 if (Record.empty()) 967 return Error("Invalid FLOAT record"); 968 if (CurTy->isFloatTy()) 969 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 970 else if (CurTy->isDoubleTy()) 971 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 972 else if (CurTy->isX86_FP80Ty()) { 973 // Bits are not stored the same way as a normal i80 APInt, compensate. 974 uint64_t Rearrange[2]; 975 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 976 Rearrange[1] = Record[0] >> 48; 977 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 978 } else if (CurTy->isFP128Ty()) 979 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 980 else if (CurTy->isPPC_FP128Ty()) 981 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 982 else 983 V = UndefValue::get(CurTy); 984 break; 985 } 986 987 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 988 if (Record.empty()) 989 return Error("Invalid CST_AGGREGATE record"); 990 991 unsigned Size = Record.size(); 992 std::vector<Constant*> Elts; 993 994 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 995 for (unsigned i = 0; i != Size; ++i) 996 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 997 STy->getElementType(i))); 998 V = ConstantStruct::get(STy, Elts); 999 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1000 const Type *EltTy = ATy->getElementType(); 1001 for (unsigned i = 0; i != Size; ++i) 1002 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1003 V = ConstantArray::get(ATy, Elts); 1004 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1005 const Type *EltTy = VTy->getElementType(); 1006 for (unsigned i = 0; i != Size; ++i) 1007 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1008 V = ConstantVector::get(Elts); 1009 } else { 1010 V = UndefValue::get(CurTy); 1011 } 1012 break; 1013 } 1014 case bitc::CST_CODE_STRING: { // STRING: [values] 1015 if (Record.empty()) 1016 return Error("Invalid CST_AGGREGATE record"); 1017 1018 const ArrayType *ATy = cast<ArrayType>(CurTy); 1019 const Type *EltTy = ATy->getElementType(); 1020 1021 unsigned Size = Record.size(); 1022 std::vector<Constant*> Elts; 1023 for (unsigned i = 0; i != Size; ++i) 1024 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1025 V = ConstantArray::get(ATy, Elts); 1026 break; 1027 } 1028 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1029 if (Record.empty()) 1030 return Error("Invalid CST_AGGREGATE record"); 1031 1032 const ArrayType *ATy = cast<ArrayType>(CurTy); 1033 const Type *EltTy = ATy->getElementType(); 1034 1035 unsigned Size = Record.size(); 1036 std::vector<Constant*> Elts; 1037 for (unsigned i = 0; i != Size; ++i) 1038 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1039 Elts.push_back(Constant::getNullValue(EltTy)); 1040 V = ConstantArray::get(ATy, Elts); 1041 break; 1042 } 1043 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1044 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1045 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1046 if (Opc < 0) { 1047 V = UndefValue::get(CurTy); // Unknown binop. 1048 } else { 1049 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1050 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1051 unsigned Flags = 0; 1052 if (Record.size() >= 4) { 1053 if (Opc == Instruction::Add || 1054 Opc == Instruction::Sub || 1055 Opc == Instruction::Mul) { 1056 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1057 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1058 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1059 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1060 } else if (Opc == Instruction::SDiv) { 1061 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1062 Flags |= SDivOperator::IsExact; 1063 } 1064 } 1065 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1066 } 1067 break; 1068 } 1069 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1070 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1071 int Opc = GetDecodedCastOpcode(Record[0]); 1072 if (Opc < 0) { 1073 V = UndefValue::get(CurTy); // Unknown cast. 1074 } else { 1075 const Type *OpTy = getTypeByID(Record[1]); 1076 if (!OpTy) return Error("Invalid CE_CAST record"); 1077 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1078 V = ConstantExpr::getCast(Opc, Op, CurTy); 1079 } 1080 break; 1081 } 1082 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1083 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1084 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1085 SmallVector<Constant*, 16> Elts; 1086 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1087 const Type *ElTy = getTypeByID(Record[i]); 1088 if (!ElTy) return Error("Invalid CE_GEP record"); 1089 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1090 } 1091 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1092 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1093 Elts.size()-1); 1094 else 1095 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1096 Elts.size()-1); 1097 break; 1098 } 1099 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1100 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1101 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1102 Type::getInt1Ty(Context)), 1103 ValueList.getConstantFwdRef(Record[1],CurTy), 1104 ValueList.getConstantFwdRef(Record[2],CurTy)); 1105 break; 1106 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1107 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1108 const VectorType *OpTy = 1109 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1110 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1111 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1112 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1113 V = ConstantExpr::getExtractElement(Op0, Op1); 1114 break; 1115 } 1116 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1117 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1118 if (Record.size() < 3 || OpTy == 0) 1119 return Error("Invalid CE_INSERTELT record"); 1120 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1121 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1122 OpTy->getElementType()); 1123 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1124 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1125 break; 1126 } 1127 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1128 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1129 if (Record.size() < 3 || OpTy == 0) 1130 return Error("Invalid CE_SHUFFLEVEC record"); 1131 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1132 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1133 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1134 OpTy->getNumElements()); 1135 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1136 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1137 break; 1138 } 1139 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1140 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1141 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1142 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1143 return Error("Invalid CE_SHUFVEC_EX record"); 1144 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1145 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1146 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1147 RTy->getNumElements()); 1148 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1149 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1150 break; 1151 } 1152 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1153 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1154 const Type *OpTy = getTypeByID(Record[0]); 1155 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1156 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1157 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1158 1159 if (OpTy->isFloatingPoint()) 1160 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1161 else 1162 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1163 break; 1164 } 1165 case bitc::CST_CODE_INLINEASM: { 1166 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1167 std::string AsmStr, ConstrStr; 1168 bool HasSideEffects = Record[0] & 1; 1169 bool IsAlignStack = Record[0] >> 1; 1170 unsigned AsmStrSize = Record[1]; 1171 if (2+AsmStrSize >= Record.size()) 1172 return Error("Invalid INLINEASM record"); 1173 unsigned ConstStrSize = Record[2+AsmStrSize]; 1174 if (3+AsmStrSize+ConstStrSize > Record.size()) 1175 return Error("Invalid INLINEASM record"); 1176 1177 for (unsigned i = 0; i != AsmStrSize; ++i) 1178 AsmStr += (char)Record[2+i]; 1179 for (unsigned i = 0; i != ConstStrSize; ++i) 1180 ConstrStr += (char)Record[3+AsmStrSize+i]; 1181 const PointerType *PTy = cast<PointerType>(CurTy); 1182 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1183 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1184 break; 1185 } 1186 case bitc::CST_CODE_BLOCKADDRESS:{ 1187 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1188 const Type *FnTy = getTypeByID(Record[0]); 1189 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1190 Function *Fn = 1191 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1192 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1193 1194 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1195 Type::getInt8Ty(Context), 1196 false, GlobalValue::InternalLinkage, 1197 0, ""); 1198 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1199 V = FwdRef; 1200 break; 1201 } 1202 } 1203 1204 ValueList.AssignValue(V, NextCstNo); 1205 ++NextCstNo; 1206 } 1207 1208 if (NextCstNo != ValueList.size()) 1209 return Error("Invalid constant reference!"); 1210 1211 if (Stream.ReadBlockEnd()) 1212 return Error("Error at end of constants block"); 1213 1214 // Once all the constants have been read, go through and resolve forward 1215 // references. 1216 ValueList.ResolveConstantForwardRefs(); 1217 return false; 1218 } 1219 1220 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1221 /// remember where it is and then skip it. This lets us lazily deserialize the 1222 /// functions. 1223 bool BitcodeReader::RememberAndSkipFunctionBody() { 1224 // Get the function we are talking about. 1225 if (FunctionsWithBodies.empty()) 1226 return Error("Insufficient function protos"); 1227 1228 Function *Fn = FunctionsWithBodies.back(); 1229 FunctionsWithBodies.pop_back(); 1230 1231 // Save the current stream state. 1232 uint64_t CurBit = Stream.GetCurrentBitNo(); 1233 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1234 1235 // Set the functions linkage to GhostLinkage so we know it is lazily 1236 // deserialized. 1237 Fn->setLinkage(GlobalValue::GhostLinkage); 1238 1239 // Skip over the function block for now. 1240 if (Stream.SkipBlock()) 1241 return Error("Malformed block record"); 1242 return false; 1243 } 1244 1245 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1246 // Reject multiple MODULE_BLOCK's in a single bitstream. 1247 if (TheModule) 1248 return Error("Multiple MODULE_BLOCKs in same stream"); 1249 1250 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1251 return Error("Malformed block record"); 1252 1253 // Otherwise, create the module. 1254 TheModule = new Module(ModuleID, Context); 1255 1256 SmallVector<uint64_t, 64> Record; 1257 std::vector<std::string> SectionTable; 1258 std::vector<std::string> GCTable; 1259 1260 // Read all the records for this module. 1261 while (!Stream.AtEndOfStream()) { 1262 unsigned Code = Stream.ReadCode(); 1263 if (Code == bitc::END_BLOCK) { 1264 if (Stream.ReadBlockEnd()) 1265 return Error("Error at end of module block"); 1266 1267 // Patch the initializers for globals and aliases up. 1268 ResolveGlobalAndAliasInits(); 1269 if (!GlobalInits.empty() || !AliasInits.empty()) 1270 return Error("Malformed global initializer set"); 1271 if (!FunctionsWithBodies.empty()) 1272 return Error("Too few function bodies found"); 1273 1274 // Look for intrinsic functions which need to be upgraded at some point 1275 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1276 FI != FE; ++FI) { 1277 Function* NewFn; 1278 if (UpgradeIntrinsicFunction(FI, NewFn)) 1279 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1280 } 1281 1282 // Force deallocation of memory for these vectors to favor the client that 1283 // want lazy deserialization. 1284 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1285 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1286 std::vector<Function*>().swap(FunctionsWithBodies); 1287 return false; 1288 } 1289 1290 if (Code == bitc::ENTER_SUBBLOCK) { 1291 switch (Stream.ReadSubBlockID()) { 1292 default: // Skip unknown content. 1293 if (Stream.SkipBlock()) 1294 return Error("Malformed block record"); 1295 break; 1296 case bitc::BLOCKINFO_BLOCK_ID: 1297 if (Stream.ReadBlockInfoBlock()) 1298 return Error("Malformed BlockInfoBlock"); 1299 break; 1300 case bitc::PARAMATTR_BLOCK_ID: 1301 if (ParseAttributeBlock()) 1302 return true; 1303 break; 1304 case bitc::TYPE_BLOCK_ID: 1305 if (ParseTypeTable()) 1306 return true; 1307 break; 1308 case bitc::TYPE_SYMTAB_BLOCK_ID: 1309 if (ParseTypeSymbolTable()) 1310 return true; 1311 break; 1312 case bitc::VALUE_SYMTAB_BLOCK_ID: 1313 if (ParseValueSymbolTable()) 1314 return true; 1315 break; 1316 case bitc::CONSTANTS_BLOCK_ID: 1317 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1318 return true; 1319 break; 1320 case bitc::METADATA_BLOCK_ID: 1321 if (ParseMetadata()) 1322 return true; 1323 break; 1324 case bitc::FUNCTION_BLOCK_ID: 1325 // If this is the first function body we've seen, reverse the 1326 // FunctionsWithBodies list. 1327 if (!HasReversedFunctionsWithBodies) { 1328 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1329 HasReversedFunctionsWithBodies = true; 1330 } 1331 1332 if (RememberAndSkipFunctionBody()) 1333 return true; 1334 break; 1335 } 1336 continue; 1337 } 1338 1339 if (Code == bitc::DEFINE_ABBREV) { 1340 Stream.ReadAbbrevRecord(); 1341 continue; 1342 } 1343 1344 // Read a record. 1345 switch (Stream.ReadRecord(Code, Record)) { 1346 default: break; // Default behavior, ignore unknown content. 1347 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1348 if (Record.size() < 1) 1349 return Error("Malformed MODULE_CODE_VERSION"); 1350 // Only version #0 is supported so far. 1351 if (Record[0] != 0) 1352 return Error("Unknown bitstream version!"); 1353 break; 1354 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1355 std::string S; 1356 if (ConvertToString(Record, 0, S)) 1357 return Error("Invalid MODULE_CODE_TRIPLE record"); 1358 TheModule->setTargetTriple(S); 1359 break; 1360 } 1361 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1362 std::string S; 1363 if (ConvertToString(Record, 0, S)) 1364 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1365 TheModule->setDataLayout(S); 1366 break; 1367 } 1368 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1369 std::string S; 1370 if (ConvertToString(Record, 0, S)) 1371 return Error("Invalid MODULE_CODE_ASM record"); 1372 TheModule->setModuleInlineAsm(S); 1373 break; 1374 } 1375 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1376 std::string S; 1377 if (ConvertToString(Record, 0, S)) 1378 return Error("Invalid MODULE_CODE_DEPLIB record"); 1379 TheModule->addLibrary(S); 1380 break; 1381 } 1382 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1383 std::string S; 1384 if (ConvertToString(Record, 0, S)) 1385 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1386 SectionTable.push_back(S); 1387 break; 1388 } 1389 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1390 std::string S; 1391 if (ConvertToString(Record, 0, S)) 1392 return Error("Invalid MODULE_CODE_GCNAME record"); 1393 GCTable.push_back(S); 1394 break; 1395 } 1396 // GLOBALVAR: [pointer type, isconst, initid, 1397 // linkage, alignment, section, visibility, threadlocal] 1398 case bitc::MODULE_CODE_GLOBALVAR: { 1399 if (Record.size() < 6) 1400 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1401 const Type *Ty = getTypeByID(Record[0]); 1402 if (!isa<PointerType>(Ty)) 1403 return Error("Global not a pointer type!"); 1404 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1405 Ty = cast<PointerType>(Ty)->getElementType(); 1406 1407 bool isConstant = Record[1]; 1408 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1409 unsigned Alignment = (1 << Record[4]) >> 1; 1410 std::string Section; 1411 if (Record[5]) { 1412 if (Record[5]-1 >= SectionTable.size()) 1413 return Error("Invalid section ID"); 1414 Section = SectionTable[Record[5]-1]; 1415 } 1416 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1417 if (Record.size() > 6) 1418 Visibility = GetDecodedVisibility(Record[6]); 1419 bool isThreadLocal = false; 1420 if (Record.size() > 7) 1421 isThreadLocal = Record[7]; 1422 1423 GlobalVariable *NewGV = 1424 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1425 isThreadLocal, AddressSpace); 1426 NewGV->setAlignment(Alignment); 1427 if (!Section.empty()) 1428 NewGV->setSection(Section); 1429 NewGV->setVisibility(Visibility); 1430 NewGV->setThreadLocal(isThreadLocal); 1431 1432 ValueList.push_back(NewGV); 1433 1434 // Remember which value to use for the global initializer. 1435 if (unsigned InitID = Record[2]) 1436 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1437 break; 1438 } 1439 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1440 // alignment, section, visibility, gc] 1441 case bitc::MODULE_CODE_FUNCTION: { 1442 if (Record.size() < 8) 1443 return Error("Invalid MODULE_CODE_FUNCTION record"); 1444 const Type *Ty = getTypeByID(Record[0]); 1445 if (!isa<PointerType>(Ty)) 1446 return Error("Function not a pointer type!"); 1447 const FunctionType *FTy = 1448 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1449 if (!FTy) 1450 return Error("Function not a pointer to function type!"); 1451 1452 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1453 "", TheModule); 1454 1455 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1456 bool isProto = Record[2]; 1457 Func->setLinkage(GetDecodedLinkage(Record[3])); 1458 Func->setAttributes(getAttributes(Record[4])); 1459 1460 Func->setAlignment((1 << Record[5]) >> 1); 1461 if (Record[6]) { 1462 if (Record[6]-1 >= SectionTable.size()) 1463 return Error("Invalid section ID"); 1464 Func->setSection(SectionTable[Record[6]-1]); 1465 } 1466 Func->setVisibility(GetDecodedVisibility(Record[7])); 1467 if (Record.size() > 8 && Record[8]) { 1468 if (Record[8]-1 > GCTable.size()) 1469 return Error("Invalid GC ID"); 1470 Func->setGC(GCTable[Record[8]-1].c_str()); 1471 } 1472 ValueList.push_back(Func); 1473 1474 // If this is a function with a body, remember the prototype we are 1475 // creating now, so that we can match up the body with them later. 1476 if (!isProto) 1477 FunctionsWithBodies.push_back(Func); 1478 break; 1479 } 1480 // ALIAS: [alias type, aliasee val#, linkage] 1481 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1482 case bitc::MODULE_CODE_ALIAS: { 1483 if (Record.size() < 3) 1484 return Error("Invalid MODULE_ALIAS record"); 1485 const Type *Ty = getTypeByID(Record[0]); 1486 if (!isa<PointerType>(Ty)) 1487 return Error("Function not a pointer type!"); 1488 1489 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1490 "", 0, TheModule); 1491 // Old bitcode files didn't have visibility field. 1492 if (Record.size() > 3) 1493 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1494 ValueList.push_back(NewGA); 1495 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1496 break; 1497 } 1498 /// MODULE_CODE_PURGEVALS: [numvals] 1499 case bitc::MODULE_CODE_PURGEVALS: 1500 // Trim down the value list to the specified size. 1501 if (Record.size() < 1 || Record[0] > ValueList.size()) 1502 return Error("Invalid MODULE_PURGEVALS record"); 1503 ValueList.shrinkTo(Record[0]); 1504 break; 1505 } 1506 Record.clear(); 1507 } 1508 1509 return Error("Premature end of bitstream"); 1510 } 1511 1512 bool BitcodeReader::ParseBitcode() { 1513 TheModule = 0; 1514 1515 if (Buffer->getBufferSize() & 3) 1516 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1517 1518 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1519 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1520 1521 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1522 // The magic number is 0x0B17C0DE stored in little endian. 1523 if (isBitcodeWrapper(BufPtr, BufEnd)) 1524 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1525 return Error("Invalid bitcode wrapper header"); 1526 1527 StreamFile.init(BufPtr, BufEnd); 1528 Stream.init(StreamFile); 1529 1530 // Sniff for the signature. 1531 if (Stream.Read(8) != 'B' || 1532 Stream.Read(8) != 'C' || 1533 Stream.Read(4) != 0x0 || 1534 Stream.Read(4) != 0xC || 1535 Stream.Read(4) != 0xE || 1536 Stream.Read(4) != 0xD) 1537 return Error("Invalid bitcode signature"); 1538 1539 // We expect a number of well-defined blocks, though we don't necessarily 1540 // need to understand them all. 1541 while (!Stream.AtEndOfStream()) { 1542 unsigned Code = Stream.ReadCode(); 1543 1544 if (Code != bitc::ENTER_SUBBLOCK) 1545 return Error("Invalid record at top-level"); 1546 1547 unsigned BlockID = Stream.ReadSubBlockID(); 1548 1549 // We only know the MODULE subblock ID. 1550 switch (BlockID) { 1551 case bitc::BLOCKINFO_BLOCK_ID: 1552 if (Stream.ReadBlockInfoBlock()) 1553 return Error("Malformed BlockInfoBlock"); 1554 break; 1555 case bitc::MODULE_BLOCK_ID: 1556 if (ParseModule(Buffer->getBufferIdentifier())) 1557 return true; 1558 break; 1559 default: 1560 if (Stream.SkipBlock()) 1561 return Error("Malformed block record"); 1562 break; 1563 } 1564 } 1565 1566 return false; 1567 } 1568 1569 /// ParseMetadataAttachment - Parse metadata attachments. 1570 bool BitcodeReader::ParseMetadataAttachment() { 1571 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1572 return Error("Malformed block record"); 1573 1574 SmallVector<uint64_t, 64> Record; 1575 while(1) { 1576 unsigned Code = Stream.ReadCode(); 1577 if (Code == bitc::END_BLOCK) { 1578 if (Stream.ReadBlockEnd()) 1579 return Error("Error at end of PARAMATTR block"); 1580 break; 1581 } 1582 if (Code == bitc::DEFINE_ABBREV) { 1583 Stream.ReadAbbrevRecord(); 1584 continue; 1585 } 1586 // Read a metadata attachment record. 1587 Record.clear(); 1588 switch (Stream.ReadRecord(Code, Record)) { 1589 default: // Default behavior: ignore. 1590 break; 1591 case bitc::METADATA_ATTACHMENT: { 1592 unsigned RecordLength = Record.size(); 1593 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1594 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1595 Instruction *Inst = InstructionList[Record[0]]; 1596 for (unsigned i = 1; i != RecordLength; i = i+2) { 1597 unsigned Kind = Record[i]; 1598 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1599 Inst->setMetadata(Kind, cast<MDNode>(Node)); 1600 } 1601 break; 1602 } 1603 } 1604 } 1605 return false; 1606 } 1607 1608 /// ParseFunctionBody - Lazily parse the specified function body block. 1609 bool BitcodeReader::ParseFunctionBody(Function *F) { 1610 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1611 return Error("Malformed block record"); 1612 1613 unsigned ModuleValueListSize = ValueList.size(); 1614 1615 // Add all the function arguments to the value table. 1616 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1617 ValueList.push_back(I); 1618 1619 unsigned NextValueNo = ValueList.size(); 1620 BasicBlock *CurBB = 0; 1621 unsigned CurBBNo = 0; 1622 1623 // Read all the records. 1624 SmallVector<uint64_t, 64> Record; 1625 while (1) { 1626 unsigned Code = Stream.ReadCode(); 1627 if (Code == bitc::END_BLOCK) { 1628 if (Stream.ReadBlockEnd()) 1629 return Error("Error at end of function block"); 1630 break; 1631 } 1632 1633 if (Code == bitc::ENTER_SUBBLOCK) { 1634 switch (Stream.ReadSubBlockID()) { 1635 default: // Skip unknown content. 1636 if (Stream.SkipBlock()) 1637 return Error("Malformed block record"); 1638 break; 1639 case bitc::CONSTANTS_BLOCK_ID: 1640 if (ParseConstants()) return true; 1641 NextValueNo = ValueList.size(); 1642 break; 1643 case bitc::VALUE_SYMTAB_BLOCK_ID: 1644 if (ParseValueSymbolTable()) return true; 1645 break; 1646 case bitc::METADATA_ATTACHMENT_ID: 1647 if (ParseMetadataAttachment()) return true; 1648 break; 1649 } 1650 continue; 1651 } 1652 1653 if (Code == bitc::DEFINE_ABBREV) { 1654 Stream.ReadAbbrevRecord(); 1655 continue; 1656 } 1657 1658 // Read a record. 1659 Record.clear(); 1660 Instruction *I = 0; 1661 unsigned BitCode = Stream.ReadRecord(Code, Record); 1662 switch (BitCode) { 1663 default: // Default behavior: reject 1664 return Error("Unknown instruction"); 1665 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1666 if (Record.size() < 1 || Record[0] == 0) 1667 return Error("Invalid DECLAREBLOCKS record"); 1668 // Create all the basic blocks for the function. 1669 FunctionBBs.resize(Record[0]); 1670 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1671 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1672 CurBB = FunctionBBs[0]; 1673 continue; 1674 1675 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1676 unsigned OpNum = 0; 1677 Value *LHS, *RHS; 1678 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1679 getValue(Record, OpNum, LHS->getType(), RHS) || 1680 OpNum+1 > Record.size()) 1681 return Error("Invalid BINOP record"); 1682 1683 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1684 if (Opc == -1) return Error("Invalid BINOP record"); 1685 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1686 InstructionList.push_back(I); 1687 if (OpNum < Record.size()) { 1688 if (Opc == Instruction::Add || 1689 Opc == Instruction::Sub || 1690 Opc == Instruction::Mul) { 1691 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1692 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1693 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1694 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1695 } else if (Opc == Instruction::SDiv) { 1696 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1697 cast<BinaryOperator>(I)->setIsExact(true); 1698 } 1699 } 1700 break; 1701 } 1702 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1703 unsigned OpNum = 0; 1704 Value *Op; 1705 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1706 OpNum+2 != Record.size()) 1707 return Error("Invalid CAST record"); 1708 1709 const Type *ResTy = getTypeByID(Record[OpNum]); 1710 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1711 if (Opc == -1 || ResTy == 0) 1712 return Error("Invalid CAST record"); 1713 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1714 InstructionList.push_back(I); 1715 break; 1716 } 1717 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1718 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1719 unsigned OpNum = 0; 1720 Value *BasePtr; 1721 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1722 return Error("Invalid GEP record"); 1723 1724 SmallVector<Value*, 16> GEPIdx; 1725 while (OpNum != Record.size()) { 1726 Value *Op; 1727 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1728 return Error("Invalid GEP record"); 1729 GEPIdx.push_back(Op); 1730 } 1731 1732 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1733 InstructionList.push_back(I); 1734 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1735 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1736 break; 1737 } 1738 1739 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1740 // EXTRACTVAL: [opty, opval, n x indices] 1741 unsigned OpNum = 0; 1742 Value *Agg; 1743 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1744 return Error("Invalid EXTRACTVAL record"); 1745 1746 SmallVector<unsigned, 4> EXTRACTVALIdx; 1747 for (unsigned RecSize = Record.size(); 1748 OpNum != RecSize; ++OpNum) { 1749 uint64_t Index = Record[OpNum]; 1750 if ((unsigned)Index != Index) 1751 return Error("Invalid EXTRACTVAL index"); 1752 EXTRACTVALIdx.push_back((unsigned)Index); 1753 } 1754 1755 I = ExtractValueInst::Create(Agg, 1756 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1757 InstructionList.push_back(I); 1758 break; 1759 } 1760 1761 case bitc::FUNC_CODE_INST_INSERTVAL: { 1762 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1763 unsigned OpNum = 0; 1764 Value *Agg; 1765 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1766 return Error("Invalid INSERTVAL record"); 1767 Value *Val; 1768 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1769 return Error("Invalid INSERTVAL record"); 1770 1771 SmallVector<unsigned, 4> INSERTVALIdx; 1772 for (unsigned RecSize = Record.size(); 1773 OpNum != RecSize; ++OpNum) { 1774 uint64_t Index = Record[OpNum]; 1775 if ((unsigned)Index != Index) 1776 return Error("Invalid INSERTVAL index"); 1777 INSERTVALIdx.push_back((unsigned)Index); 1778 } 1779 1780 I = InsertValueInst::Create(Agg, Val, 1781 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1782 InstructionList.push_back(I); 1783 break; 1784 } 1785 1786 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1787 // obsolete form of select 1788 // handles select i1 ... in old bitcode 1789 unsigned OpNum = 0; 1790 Value *TrueVal, *FalseVal, *Cond; 1791 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1792 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1793 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1794 return Error("Invalid SELECT record"); 1795 1796 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1797 InstructionList.push_back(I); 1798 break; 1799 } 1800 1801 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1802 // new form of select 1803 // handles select i1 or select [N x i1] 1804 unsigned OpNum = 0; 1805 Value *TrueVal, *FalseVal, *Cond; 1806 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1807 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1808 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1809 return Error("Invalid SELECT record"); 1810 1811 // select condition can be either i1 or [N x i1] 1812 if (const VectorType* vector_type = 1813 dyn_cast<const VectorType>(Cond->getType())) { 1814 // expect <n x i1> 1815 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1816 return Error("Invalid SELECT condition type"); 1817 } else { 1818 // expect i1 1819 if (Cond->getType() != Type::getInt1Ty(Context)) 1820 return Error("Invalid SELECT condition type"); 1821 } 1822 1823 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1824 InstructionList.push_back(I); 1825 break; 1826 } 1827 1828 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1829 unsigned OpNum = 0; 1830 Value *Vec, *Idx; 1831 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1832 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1833 return Error("Invalid EXTRACTELT record"); 1834 I = ExtractElementInst::Create(Vec, Idx); 1835 InstructionList.push_back(I); 1836 break; 1837 } 1838 1839 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1840 unsigned OpNum = 0; 1841 Value *Vec, *Elt, *Idx; 1842 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1843 getValue(Record, OpNum, 1844 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1845 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1846 return Error("Invalid INSERTELT record"); 1847 I = InsertElementInst::Create(Vec, Elt, Idx); 1848 InstructionList.push_back(I); 1849 break; 1850 } 1851 1852 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1853 unsigned OpNum = 0; 1854 Value *Vec1, *Vec2, *Mask; 1855 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1856 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1857 return Error("Invalid SHUFFLEVEC record"); 1858 1859 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1860 return Error("Invalid SHUFFLEVEC record"); 1861 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1862 InstructionList.push_back(I); 1863 break; 1864 } 1865 1866 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1867 // Old form of ICmp/FCmp returning bool 1868 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1869 // both legal on vectors but had different behaviour. 1870 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1871 // FCmp/ICmp returning bool or vector of bool 1872 1873 unsigned OpNum = 0; 1874 Value *LHS, *RHS; 1875 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1876 getValue(Record, OpNum, LHS->getType(), RHS) || 1877 OpNum+1 != Record.size()) 1878 return Error("Invalid CMP record"); 1879 1880 if (LHS->getType()->isFPOrFPVector()) 1881 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1882 else 1883 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1884 InstructionList.push_back(I); 1885 break; 1886 } 1887 1888 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1889 if (Record.size() != 2) 1890 return Error("Invalid GETRESULT record"); 1891 unsigned OpNum = 0; 1892 Value *Op; 1893 getValueTypePair(Record, OpNum, NextValueNo, Op); 1894 unsigned Index = Record[1]; 1895 I = ExtractValueInst::Create(Op, Index); 1896 InstructionList.push_back(I); 1897 break; 1898 } 1899 1900 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1901 { 1902 unsigned Size = Record.size(); 1903 if (Size == 0) { 1904 I = ReturnInst::Create(Context); 1905 InstructionList.push_back(I); 1906 break; 1907 } 1908 1909 unsigned OpNum = 0; 1910 SmallVector<Value *,4> Vs; 1911 do { 1912 Value *Op = NULL; 1913 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1914 return Error("Invalid RET record"); 1915 Vs.push_back(Op); 1916 } while(OpNum != Record.size()); 1917 1918 const Type *ReturnType = F->getReturnType(); 1919 if (Vs.size() > 1 || 1920 (isa<StructType>(ReturnType) && 1921 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1922 Value *RV = UndefValue::get(ReturnType); 1923 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1924 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1925 InstructionList.push_back(I); 1926 CurBB->getInstList().push_back(I); 1927 ValueList.AssignValue(I, NextValueNo++); 1928 RV = I; 1929 } 1930 I = ReturnInst::Create(Context, RV); 1931 InstructionList.push_back(I); 1932 break; 1933 } 1934 1935 I = ReturnInst::Create(Context, Vs[0]); 1936 InstructionList.push_back(I); 1937 break; 1938 } 1939 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1940 if (Record.size() != 1 && Record.size() != 3) 1941 return Error("Invalid BR record"); 1942 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1943 if (TrueDest == 0) 1944 return Error("Invalid BR record"); 1945 1946 if (Record.size() == 1) { 1947 I = BranchInst::Create(TrueDest); 1948 InstructionList.push_back(I); 1949 } 1950 else { 1951 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1952 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 1953 if (FalseDest == 0 || Cond == 0) 1954 return Error("Invalid BR record"); 1955 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1956 InstructionList.push_back(I); 1957 } 1958 break; 1959 } 1960 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 1961 if (Record.size() < 3 || (Record.size() & 1) == 0) 1962 return Error("Invalid SWITCH record"); 1963 const Type *OpTy = getTypeByID(Record[0]); 1964 Value *Cond = getFnValueByID(Record[1], OpTy); 1965 BasicBlock *Default = getBasicBlock(Record[2]); 1966 if (OpTy == 0 || Cond == 0 || Default == 0) 1967 return Error("Invalid SWITCH record"); 1968 unsigned NumCases = (Record.size()-3)/2; 1969 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1970 InstructionList.push_back(SI); 1971 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1972 ConstantInt *CaseVal = 1973 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1974 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1975 if (CaseVal == 0 || DestBB == 0) { 1976 delete SI; 1977 return Error("Invalid SWITCH record!"); 1978 } 1979 SI->addCase(CaseVal, DestBB); 1980 } 1981 I = SI; 1982 break; 1983 } 1984 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 1985 if (Record.size() < 2) 1986 return Error("Invalid INDIRECTBR record"); 1987 const Type *OpTy = getTypeByID(Record[0]); 1988 Value *Address = getFnValueByID(Record[1], OpTy); 1989 if (OpTy == 0 || Address == 0) 1990 return Error("Invalid INDIRECTBR record"); 1991 unsigned NumDests = Record.size()-2; 1992 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 1993 InstructionList.push_back(IBI); 1994 for (unsigned i = 0, e = NumDests; i != e; ++i) { 1995 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 1996 IBI->addDestination(DestBB); 1997 } else { 1998 delete IBI; 1999 return Error("Invalid INDIRECTBR record!"); 2000 } 2001 } 2002 I = IBI; 2003 break; 2004 } 2005 2006 case bitc::FUNC_CODE_INST_INVOKE: { 2007 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2008 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2009 AttrListPtr PAL = getAttributes(Record[0]); 2010 unsigned CCInfo = Record[1]; 2011 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2012 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2013 2014 unsigned OpNum = 4; 2015 Value *Callee; 2016 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2017 return Error("Invalid INVOKE record"); 2018 2019 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2020 const FunctionType *FTy = !CalleeTy ? 0 : 2021 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2022 2023 // Check that the right number of fixed parameters are here. 2024 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2025 Record.size() < OpNum+FTy->getNumParams()) 2026 return Error("Invalid INVOKE record"); 2027 2028 SmallVector<Value*, 16> Ops; 2029 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2030 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2031 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2032 } 2033 2034 if (!FTy->isVarArg()) { 2035 if (Record.size() != OpNum) 2036 return Error("Invalid INVOKE record"); 2037 } else { 2038 // Read type/value pairs for varargs params. 2039 while (OpNum != Record.size()) { 2040 Value *Op; 2041 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2042 return Error("Invalid INVOKE record"); 2043 Ops.push_back(Op); 2044 } 2045 } 2046 2047 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2048 Ops.begin(), Ops.end()); 2049 InstructionList.push_back(I); 2050 cast<InvokeInst>(I)->setCallingConv( 2051 static_cast<CallingConv::ID>(CCInfo)); 2052 cast<InvokeInst>(I)->setAttributes(PAL); 2053 break; 2054 } 2055 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2056 I = new UnwindInst(Context); 2057 InstructionList.push_back(I); 2058 break; 2059 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2060 I = new UnreachableInst(Context); 2061 InstructionList.push_back(I); 2062 break; 2063 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2064 if (Record.size() < 1 || ((Record.size()-1)&1)) 2065 return Error("Invalid PHI record"); 2066 const Type *Ty = getTypeByID(Record[0]); 2067 if (!Ty) return Error("Invalid PHI record"); 2068 2069 PHINode *PN = PHINode::Create(Ty); 2070 InstructionList.push_back(PN); 2071 PN->reserveOperandSpace((Record.size()-1)/2); 2072 2073 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2074 Value *V = getFnValueByID(Record[1+i], Ty); 2075 BasicBlock *BB = getBasicBlock(Record[2+i]); 2076 if (!V || !BB) return Error("Invalid PHI record"); 2077 PN->addIncoming(V, BB); 2078 } 2079 I = PN; 2080 break; 2081 } 2082 2083 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2084 // Autoupgrade malloc instruction to malloc call. 2085 // FIXME: Remove in LLVM 3.0. 2086 if (Record.size() < 3) 2087 return Error("Invalid MALLOC record"); 2088 const PointerType *Ty = 2089 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2090 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2091 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2092 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2093 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2094 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2095 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2096 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2097 AllocSize, Size, NULL); 2098 InstructionList.push_back(I); 2099 break; 2100 } 2101 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2102 unsigned OpNum = 0; 2103 Value *Op; 2104 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2105 OpNum != Record.size()) 2106 return Error("Invalid FREE record"); 2107 if (!CurBB) return Error("Invalid free instruction with no BB"); 2108 I = CallInst::CreateFree(Op, CurBB); 2109 InstructionList.push_back(I); 2110 break; 2111 } 2112 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 2113 if (Record.size() < 3) 2114 return Error("Invalid ALLOCA record"); 2115 const PointerType *Ty = 2116 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2117 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2118 unsigned Align = Record[2]; 2119 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2120 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2121 InstructionList.push_back(I); 2122 break; 2123 } 2124 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2125 unsigned OpNum = 0; 2126 Value *Op; 2127 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2128 OpNum+2 != Record.size()) 2129 return Error("Invalid LOAD record"); 2130 2131 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2132 InstructionList.push_back(I); 2133 break; 2134 } 2135 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2136 unsigned OpNum = 0; 2137 Value *Val, *Ptr; 2138 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2139 getValue(Record, OpNum, 2140 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2141 OpNum+2 != Record.size()) 2142 return Error("Invalid STORE record"); 2143 2144 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2145 InstructionList.push_back(I); 2146 break; 2147 } 2148 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2149 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2150 unsigned OpNum = 0; 2151 Value *Val, *Ptr; 2152 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2153 getValue(Record, OpNum, 2154 PointerType::getUnqual(Val->getType()), Ptr)|| 2155 OpNum+2 != Record.size()) 2156 return Error("Invalid STORE record"); 2157 2158 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2159 InstructionList.push_back(I); 2160 break; 2161 } 2162 case bitc::FUNC_CODE_INST_CALL: { 2163 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2164 if (Record.size() < 3) 2165 return Error("Invalid CALL record"); 2166 2167 AttrListPtr PAL = getAttributes(Record[0]); 2168 unsigned CCInfo = Record[1]; 2169 2170 unsigned OpNum = 2; 2171 Value *Callee; 2172 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2173 return Error("Invalid CALL record"); 2174 2175 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2176 const FunctionType *FTy = 0; 2177 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2178 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2179 return Error("Invalid CALL record"); 2180 2181 SmallVector<Value*, 16> Args; 2182 // Read the fixed params. 2183 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2184 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2185 Args.push_back(getBasicBlock(Record[OpNum])); 2186 else 2187 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2188 if (Args.back() == 0) return Error("Invalid CALL record"); 2189 } 2190 2191 // Read type/value pairs for varargs params. 2192 if (!FTy->isVarArg()) { 2193 if (OpNum != Record.size()) 2194 return Error("Invalid CALL record"); 2195 } else { 2196 while (OpNum != Record.size()) { 2197 Value *Op; 2198 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2199 return Error("Invalid CALL record"); 2200 Args.push_back(Op); 2201 } 2202 } 2203 2204 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2205 InstructionList.push_back(I); 2206 cast<CallInst>(I)->setCallingConv( 2207 static_cast<CallingConv::ID>(CCInfo>>1)); 2208 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2209 cast<CallInst>(I)->setAttributes(PAL); 2210 break; 2211 } 2212 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2213 if (Record.size() < 3) 2214 return Error("Invalid VAARG record"); 2215 const Type *OpTy = getTypeByID(Record[0]); 2216 Value *Op = getFnValueByID(Record[1], OpTy); 2217 const Type *ResTy = getTypeByID(Record[2]); 2218 if (!OpTy || !Op || !ResTy) 2219 return Error("Invalid VAARG record"); 2220 I = new VAArgInst(Op, ResTy); 2221 InstructionList.push_back(I); 2222 break; 2223 } 2224 } 2225 2226 // Add instruction to end of current BB. If there is no current BB, reject 2227 // this file. 2228 if (CurBB == 0) { 2229 delete I; 2230 return Error("Invalid instruction with no BB"); 2231 } 2232 CurBB->getInstList().push_back(I); 2233 2234 // If this was a terminator instruction, move to the next block. 2235 if (isa<TerminatorInst>(I)) { 2236 ++CurBBNo; 2237 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2238 } 2239 2240 // Non-void values get registered in the value table for future use. 2241 if (I && !I->getType()->isVoidTy()) 2242 ValueList.AssignValue(I, NextValueNo++); 2243 } 2244 2245 // Check the function list for unresolved values. 2246 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2247 if (A->getParent() == 0) { 2248 // We found at least one unresolved value. Nuke them all to avoid leaks. 2249 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2250 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2251 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2252 delete A; 2253 } 2254 } 2255 return Error("Never resolved value found in function!"); 2256 } 2257 } 2258 2259 // See if anything took the address of blocks in this function. If so, 2260 // resolve them now. 2261 /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These 2262 /// are resolved lazily when functions are loaded. 2263 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2264 BlockAddrFwdRefs.find(F); 2265 if (BAFRI != BlockAddrFwdRefs.end()) { 2266 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2267 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2268 unsigned BlockIdx = RefList[i].first; 2269 if (BlockIdx >= FunctionBBs.size()) 2270 return Error("Invalid blockaddress block #"); 2271 2272 GlobalVariable *FwdRef = RefList[i].second; 2273 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2274 FwdRef->eraseFromParent(); 2275 } 2276 2277 BlockAddrFwdRefs.erase(BAFRI); 2278 } 2279 2280 // Trim the value list down to the size it was before we parsed this function. 2281 ValueList.shrinkTo(ModuleValueListSize); 2282 std::vector<BasicBlock*>().swap(FunctionBBs); 2283 2284 return false; 2285 } 2286 2287 //===----------------------------------------------------------------------===// 2288 // ModuleProvider implementation 2289 //===----------------------------------------------------------------------===// 2290 2291 2292 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 2293 // If it already is material, ignore the request. 2294 if (!F->hasNotBeenReadFromBitcode()) return false; 2295 2296 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2297 DeferredFunctionInfo.find(F); 2298 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2299 2300 // Move the bit stream to the saved position of the deferred function body and 2301 // restore the real linkage type for the function. 2302 Stream.JumpToBit(DFII->second.first); 2303 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2304 2305 if (ParseFunctionBody(F)) { 2306 if (ErrInfo) *ErrInfo = ErrorString; 2307 return true; 2308 } 2309 2310 // Upgrade any old intrinsic calls in the function. 2311 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2312 E = UpgradedIntrinsics.end(); I != E; ++I) { 2313 if (I->first != I->second) { 2314 for (Value::use_iterator UI = I->first->use_begin(), 2315 UE = I->first->use_end(); UI != UE; ) { 2316 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2317 UpgradeIntrinsicCall(CI, I->second); 2318 } 2319 } 2320 } 2321 2322 return false; 2323 } 2324 2325 void BitcodeReader::dematerializeFunction(Function *F) { 2326 // If this function isn't materialized, or if it is a proto, this is a noop. 2327 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2328 return; 2329 2330 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2331 2332 // Just forget the function body, we can remat it later. 2333 F->deleteBody(); 2334 F->setLinkage(GlobalValue::GhostLinkage); 2335 } 2336 2337 2338 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2339 // Iterate over the module, deserializing any functions that are still on 2340 // disk. 2341 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2342 F != E; ++F) 2343 if (F->hasNotBeenReadFromBitcode() && 2344 materializeFunction(F, ErrInfo)) 2345 return 0; 2346 2347 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2348 // delete the old functions to clean up. We can't do this unless the entire 2349 // module is materialized because there could always be another function body 2350 // with calls to the old function. 2351 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2352 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2353 if (I->first != I->second) { 2354 for (Value::use_iterator UI = I->first->use_begin(), 2355 UE = I->first->use_end(); UI != UE; ) { 2356 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2357 UpgradeIntrinsicCall(CI, I->second); 2358 } 2359 if (!I->first->use_empty()) 2360 I->first->replaceAllUsesWith(I->second); 2361 I->first->eraseFromParent(); 2362 } 2363 } 2364 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2365 2366 // Check debug info intrinsics. 2367 CheckDebugInfoIntrinsics(TheModule); 2368 2369 return TheModule; 2370 } 2371 2372 2373 /// This method is provided by the parent ModuleProvde class and overriden 2374 /// here. It simply releases the module from its provided and frees up our 2375 /// state. 2376 /// @brief Release our hold on the generated module 2377 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2378 // Since we're losing control of this Module, we must hand it back complete 2379 Module *M = ModuleProvider::releaseModule(ErrInfo); 2380 FreeState(); 2381 return M; 2382 } 2383 2384 2385 //===----------------------------------------------------------------------===// 2386 // External interface 2387 //===----------------------------------------------------------------------===// 2388 2389 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2390 /// 2391 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2392 LLVMContext& Context, 2393 std::string *ErrMsg) { 2394 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2395 if (R->ParseBitcode()) { 2396 if (ErrMsg) 2397 *ErrMsg = R->getErrorString(); 2398 2399 // Don't let the BitcodeReader dtor delete 'Buffer'. 2400 R->releaseMemoryBuffer(); 2401 delete R; 2402 return 0; 2403 } 2404 return R; 2405 } 2406 2407 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2408 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2409 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2410 std::string *ErrMsg){ 2411 BitcodeReader *R; 2412 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2413 ErrMsg)); 2414 if (!R) return 0; 2415 2416 // Read in the entire module. 2417 Module *M = R->materializeModule(ErrMsg); 2418 2419 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2420 // there was an error. 2421 R->releaseMemoryBuffer(); 2422 2423 // If there was no error, tell ModuleProvider not to delete it when its dtor 2424 // is run. 2425 if (M) 2426 M = R->releaseModule(ErrMsg); 2427 2428 delete R; 2429 return M; 2430 } 2431