1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 ModuleSummaryIndex::ModuleInfo *addThisModule(); 755 }; 756 757 } // end anonymous namespace 758 759 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 760 Error Err) { 761 if (Err) { 762 std::error_code EC; 763 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 764 EC = EIB.convertToErrorCode(); 765 Ctx.emitError(EIB.message()); 766 }); 767 return EC; 768 } 769 return std::error_code(); 770 } 771 772 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 773 StringRef ProducerIdentification, 774 LLVMContext &Context) 775 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 776 ValueList(Context) { 777 this->ProducerIdentification = ProducerIdentification; 778 } 779 780 Error BitcodeReader::materializeForwardReferencedFunctions() { 781 if (WillMaterializeAllForwardRefs) 782 return Error::success(); 783 784 // Prevent recursion. 785 WillMaterializeAllForwardRefs = true; 786 787 while (!BasicBlockFwdRefQueue.empty()) { 788 Function *F = BasicBlockFwdRefQueue.front(); 789 BasicBlockFwdRefQueue.pop_front(); 790 assert(F && "Expected valid function"); 791 if (!BasicBlockFwdRefs.count(F)) 792 // Already materialized. 793 continue; 794 795 // Check for a function that isn't materializable to prevent an infinite 796 // loop. When parsing a blockaddress stored in a global variable, there 797 // isn't a trivial way to check if a function will have a body without a 798 // linear search through FunctionsWithBodies, so just check it here. 799 if (!F->isMaterializable()) 800 return error("Never resolved function from blockaddress"); 801 802 // Try to materialize F. 803 if (Error Err = materialize(F)) 804 return Err; 805 } 806 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 807 808 // Reset state. 809 WillMaterializeAllForwardRefs = false; 810 return Error::success(); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Helper functions to implement forward reference resolution, etc. 815 //===----------------------------------------------------------------------===// 816 817 static bool hasImplicitComdat(size_t Val) { 818 switch (Val) { 819 default: 820 return false; 821 case 1: // Old WeakAnyLinkage 822 case 4: // Old LinkOnceAnyLinkage 823 case 10: // Old WeakODRLinkage 824 case 11: // Old LinkOnceODRLinkage 825 return true; 826 } 827 } 828 829 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown/new linkages to external 832 case 0: 833 return GlobalValue::ExternalLinkage; 834 case 2: 835 return GlobalValue::AppendingLinkage; 836 case 3: 837 return GlobalValue::InternalLinkage; 838 case 5: 839 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 840 case 6: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 842 case 7: 843 return GlobalValue::ExternalWeakLinkage; 844 case 8: 845 return GlobalValue::CommonLinkage; 846 case 9: 847 return GlobalValue::PrivateLinkage; 848 case 12: 849 return GlobalValue::AvailableExternallyLinkage; 850 case 13: 851 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 852 case 14: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 854 case 15: 855 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 856 case 1: // Old value with implicit comdat. 857 case 16: 858 return GlobalValue::WeakAnyLinkage; 859 case 10: // Old value with implicit comdat. 860 case 17: 861 return GlobalValue::WeakODRLinkage; 862 case 4: // Old value with implicit comdat. 863 case 18: 864 return GlobalValue::LinkOnceAnyLinkage; 865 case 11: // Old value with implicit comdat. 866 case 19: 867 return GlobalValue::LinkOnceODRLinkage; 868 } 869 } 870 871 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 872 FunctionSummary::FFlags Flags; 873 Flags.ReadNone = RawFlags & 0x1; 874 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 875 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 876 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 877 return Flags; 878 } 879 880 /// Decode the flags for GlobalValue in the summary. 881 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 882 uint64_t Version) { 883 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 884 // like getDecodedLinkage() above. Any future change to the linkage enum and 885 // to getDecodedLinkage() will need to be taken into account here as above. 886 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 887 RawFlags = RawFlags >> 4; 888 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 889 // The Live flag wasn't introduced until version 3. For dead stripping 890 // to work correctly on earlier versions, we must conservatively treat all 891 // values as live. 892 bool Live = (RawFlags & 0x2) || Version < 3; 893 bool Local = (RawFlags & 0x4); 894 895 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 896 } 897 898 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown visibilities to default. 901 case 0: return GlobalValue::DefaultVisibility; 902 case 1: return GlobalValue::HiddenVisibility; 903 case 2: return GlobalValue::ProtectedVisibility; 904 } 905 } 906 907 static GlobalValue::DLLStorageClassTypes 908 getDecodedDLLStorageClass(unsigned Val) { 909 switch (Val) { 910 default: // Map unknown values to default. 911 case 0: return GlobalValue::DefaultStorageClass; 912 case 1: return GlobalValue::DLLImportStorageClass; 913 case 2: return GlobalValue::DLLExportStorageClass; 914 } 915 } 916 917 static bool getDecodedDSOLocal(unsigned Val) { 918 switch(Val) { 919 default: // Map unknown values to preemptable. 920 case 0: return false; 921 case 1: return true; 922 } 923 } 924 925 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 926 switch (Val) { 927 case 0: return GlobalVariable::NotThreadLocal; 928 default: // Map unknown non-zero value to general dynamic. 929 case 1: return GlobalVariable::GeneralDynamicTLSModel; 930 case 2: return GlobalVariable::LocalDynamicTLSModel; 931 case 3: return GlobalVariable::InitialExecTLSModel; 932 case 4: return GlobalVariable::LocalExecTLSModel; 933 } 934 } 935 936 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 937 switch (Val) { 938 default: // Map unknown to UnnamedAddr::None. 939 case 0: return GlobalVariable::UnnamedAddr::None; 940 case 1: return GlobalVariable::UnnamedAddr::Global; 941 case 2: return GlobalVariable::UnnamedAddr::Local; 942 } 943 } 944 945 static int getDecodedCastOpcode(unsigned Val) { 946 switch (Val) { 947 default: return -1; 948 case bitc::CAST_TRUNC : return Instruction::Trunc; 949 case bitc::CAST_ZEXT : return Instruction::ZExt; 950 case bitc::CAST_SEXT : return Instruction::SExt; 951 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 952 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 953 case bitc::CAST_UITOFP : return Instruction::UIToFP; 954 case bitc::CAST_SITOFP : return Instruction::SIToFP; 955 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 956 case bitc::CAST_FPEXT : return Instruction::FPExt; 957 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 958 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 959 case bitc::CAST_BITCAST : return Instruction::BitCast; 960 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 961 } 962 } 963 964 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 965 bool IsFP = Ty->isFPOrFPVectorTy(); 966 // BinOps are only valid for int/fp or vector of int/fp types 967 if (!IsFP && !Ty->isIntOrIntVectorTy()) 968 return -1; 969 970 switch (Val) { 971 default: 972 return -1; 973 case bitc::BINOP_ADD: 974 return IsFP ? Instruction::FAdd : Instruction::Add; 975 case bitc::BINOP_SUB: 976 return IsFP ? Instruction::FSub : Instruction::Sub; 977 case bitc::BINOP_MUL: 978 return IsFP ? Instruction::FMul : Instruction::Mul; 979 case bitc::BINOP_UDIV: 980 return IsFP ? -1 : Instruction::UDiv; 981 case bitc::BINOP_SDIV: 982 return IsFP ? Instruction::FDiv : Instruction::SDiv; 983 case bitc::BINOP_UREM: 984 return IsFP ? -1 : Instruction::URem; 985 case bitc::BINOP_SREM: 986 return IsFP ? Instruction::FRem : Instruction::SRem; 987 case bitc::BINOP_SHL: 988 return IsFP ? -1 : Instruction::Shl; 989 case bitc::BINOP_LSHR: 990 return IsFP ? -1 : Instruction::LShr; 991 case bitc::BINOP_ASHR: 992 return IsFP ? -1 : Instruction::AShr; 993 case bitc::BINOP_AND: 994 return IsFP ? -1 : Instruction::And; 995 case bitc::BINOP_OR: 996 return IsFP ? -1 : Instruction::Or; 997 case bitc::BINOP_XOR: 998 return IsFP ? -1 : Instruction::Xor; 999 } 1000 } 1001 1002 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1003 switch (Val) { 1004 default: return AtomicRMWInst::BAD_BINOP; 1005 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1006 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1007 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1008 case bitc::RMW_AND: return AtomicRMWInst::And; 1009 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1010 case bitc::RMW_OR: return AtomicRMWInst::Or; 1011 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1012 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1013 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1014 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1015 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1016 } 1017 } 1018 1019 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1020 switch (Val) { 1021 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1022 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1023 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1024 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1025 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1026 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1027 default: // Map unknown orderings to sequentially-consistent. 1028 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1029 } 1030 } 1031 1032 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown selection kinds to any. 1035 case bitc::COMDAT_SELECTION_KIND_ANY: 1036 return Comdat::Any; 1037 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1038 return Comdat::ExactMatch; 1039 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1040 return Comdat::Largest; 1041 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1042 return Comdat::NoDuplicates; 1043 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1044 return Comdat::SameSize; 1045 } 1046 } 1047 1048 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1049 FastMathFlags FMF; 1050 if (0 != (Val & FastMathFlags::AllowReassoc)) 1051 FMF.setAllowReassoc(); 1052 if (0 != (Val & FastMathFlags::NoNaNs)) 1053 FMF.setNoNaNs(); 1054 if (0 != (Val & FastMathFlags::NoInfs)) 1055 FMF.setNoInfs(); 1056 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1057 FMF.setNoSignedZeros(); 1058 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1059 FMF.setAllowReciprocal(); 1060 if (0 != (Val & FastMathFlags::AllowContract)) 1061 FMF.setAllowContract(true); 1062 if (0 != (Val & FastMathFlags::ApproxFunc)) 1063 FMF.setApproxFunc(); 1064 return FMF; 1065 } 1066 1067 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1068 switch (Val) { 1069 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1070 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1071 } 1072 } 1073 1074 Type *BitcodeReader::getTypeByID(unsigned ID) { 1075 // The type table size is always specified correctly. 1076 if (ID >= TypeList.size()) 1077 return nullptr; 1078 1079 if (Type *Ty = TypeList[ID]) 1080 return Ty; 1081 1082 // If we have a forward reference, the only possible case is when it is to a 1083 // named struct. Just create a placeholder for now. 1084 return TypeList[ID] = createIdentifiedStructType(Context); 1085 } 1086 1087 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1088 StringRef Name) { 1089 auto *Ret = StructType::create(Context, Name); 1090 IdentifiedStructTypes.push_back(Ret); 1091 return Ret; 1092 } 1093 1094 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1095 auto *Ret = StructType::create(Context); 1096 IdentifiedStructTypes.push_back(Ret); 1097 return Ret; 1098 } 1099 1100 //===----------------------------------------------------------------------===// 1101 // Functions for parsing blocks from the bitcode file 1102 //===----------------------------------------------------------------------===// 1103 1104 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1105 switch (Val) { 1106 case Attribute::EndAttrKinds: 1107 llvm_unreachable("Synthetic enumerators which should never get here"); 1108 1109 case Attribute::None: return 0; 1110 case Attribute::ZExt: return 1 << 0; 1111 case Attribute::SExt: return 1 << 1; 1112 case Attribute::NoReturn: return 1 << 2; 1113 case Attribute::InReg: return 1 << 3; 1114 case Attribute::StructRet: return 1 << 4; 1115 case Attribute::NoUnwind: return 1 << 5; 1116 case Attribute::NoAlias: return 1 << 6; 1117 case Attribute::ByVal: return 1 << 7; 1118 case Attribute::Nest: return 1 << 8; 1119 case Attribute::ReadNone: return 1 << 9; 1120 case Attribute::ReadOnly: return 1 << 10; 1121 case Attribute::NoInline: return 1 << 11; 1122 case Attribute::AlwaysInline: return 1 << 12; 1123 case Attribute::OptimizeForSize: return 1 << 13; 1124 case Attribute::StackProtect: return 1 << 14; 1125 case Attribute::StackProtectReq: return 1 << 15; 1126 case Attribute::Alignment: return 31 << 16; 1127 case Attribute::NoCapture: return 1 << 21; 1128 case Attribute::NoRedZone: return 1 << 22; 1129 case Attribute::NoImplicitFloat: return 1 << 23; 1130 case Attribute::Naked: return 1 << 24; 1131 case Attribute::InlineHint: return 1 << 25; 1132 case Attribute::StackAlignment: return 7 << 26; 1133 case Attribute::ReturnsTwice: return 1 << 29; 1134 case Attribute::UWTable: return 1 << 30; 1135 case Attribute::NonLazyBind: return 1U << 31; 1136 case Attribute::SanitizeAddress: return 1ULL << 32; 1137 case Attribute::MinSize: return 1ULL << 33; 1138 case Attribute::NoDuplicate: return 1ULL << 34; 1139 case Attribute::StackProtectStrong: return 1ULL << 35; 1140 case Attribute::SanitizeThread: return 1ULL << 36; 1141 case Attribute::SanitizeMemory: return 1ULL << 37; 1142 case Attribute::NoBuiltin: return 1ULL << 38; 1143 case Attribute::Returned: return 1ULL << 39; 1144 case Attribute::Cold: return 1ULL << 40; 1145 case Attribute::Builtin: return 1ULL << 41; 1146 case Attribute::OptimizeNone: return 1ULL << 42; 1147 case Attribute::InAlloca: return 1ULL << 43; 1148 case Attribute::NonNull: return 1ULL << 44; 1149 case Attribute::JumpTable: return 1ULL << 45; 1150 case Attribute::Convergent: return 1ULL << 46; 1151 case Attribute::SafeStack: return 1ULL << 47; 1152 case Attribute::NoRecurse: return 1ULL << 48; 1153 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1154 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1155 case Attribute::SwiftSelf: return 1ULL << 51; 1156 case Attribute::SwiftError: return 1ULL << 52; 1157 case Attribute::WriteOnly: return 1ULL << 53; 1158 case Attribute::Speculatable: return 1ULL << 54; 1159 case Attribute::StrictFP: return 1ULL << 55; 1160 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1161 case Attribute::Dereferenceable: 1162 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1163 break; 1164 case Attribute::DereferenceableOrNull: 1165 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1166 "format"); 1167 break; 1168 case Attribute::ArgMemOnly: 1169 llvm_unreachable("argmemonly attribute not supported in raw format"); 1170 break; 1171 case Attribute::AllocSize: 1172 llvm_unreachable("allocsize not supported in raw format"); 1173 break; 1174 } 1175 llvm_unreachable("Unsupported attribute type"); 1176 } 1177 1178 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1179 if (!Val) return; 1180 1181 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1182 I = Attribute::AttrKind(I + 1)) { 1183 if (I == Attribute::Dereferenceable || 1184 I == Attribute::DereferenceableOrNull || 1185 I == Attribute::ArgMemOnly || 1186 I == Attribute::AllocSize) 1187 continue; 1188 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1189 if (I == Attribute::Alignment) 1190 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1191 else if (I == Attribute::StackAlignment) 1192 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1193 else 1194 B.addAttribute(I); 1195 } 1196 } 1197 } 1198 1199 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1200 /// been decoded from the given integer. This function must stay in sync with 1201 /// 'encodeLLVMAttributesForBitcode'. 1202 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1203 uint64_t EncodedAttrs) { 1204 // FIXME: Remove in 4.0. 1205 1206 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1207 // the bits above 31 down by 11 bits. 1208 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1209 assert((!Alignment || isPowerOf2_32(Alignment)) && 1210 "Alignment must be a power of two."); 1211 1212 if (Alignment) 1213 B.addAlignmentAttr(Alignment); 1214 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1215 (EncodedAttrs & 0xffff)); 1216 } 1217 1218 Error BitcodeReader::parseAttributeBlock() { 1219 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1220 return error("Invalid record"); 1221 1222 if (!MAttributes.empty()) 1223 return error("Invalid multiple blocks"); 1224 1225 SmallVector<uint64_t, 64> Record; 1226 1227 SmallVector<AttributeList, 8> Attrs; 1228 1229 // Read all the records. 1230 while (true) { 1231 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1232 1233 switch (Entry.Kind) { 1234 case BitstreamEntry::SubBlock: // Handled for us already. 1235 case BitstreamEntry::Error: 1236 return error("Malformed block"); 1237 case BitstreamEntry::EndBlock: 1238 return Error::success(); 1239 case BitstreamEntry::Record: 1240 // The interesting case. 1241 break; 1242 } 1243 1244 // Read a record. 1245 Record.clear(); 1246 switch (Stream.readRecord(Entry.ID, Record)) { 1247 default: // Default behavior: ignore. 1248 break; 1249 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1250 // FIXME: Remove in 4.0. 1251 if (Record.size() & 1) 1252 return error("Invalid record"); 1253 1254 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1255 AttrBuilder B; 1256 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1257 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1258 } 1259 1260 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1261 Attrs.clear(); 1262 break; 1263 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1264 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1265 Attrs.push_back(MAttributeGroups[Record[i]]); 1266 1267 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1268 Attrs.clear(); 1269 break; 1270 } 1271 } 1272 } 1273 1274 // Returns Attribute::None on unrecognized codes. 1275 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1276 switch (Code) { 1277 default: 1278 return Attribute::None; 1279 case bitc::ATTR_KIND_ALIGNMENT: 1280 return Attribute::Alignment; 1281 case bitc::ATTR_KIND_ALWAYS_INLINE: 1282 return Attribute::AlwaysInline; 1283 case bitc::ATTR_KIND_ARGMEMONLY: 1284 return Attribute::ArgMemOnly; 1285 case bitc::ATTR_KIND_BUILTIN: 1286 return Attribute::Builtin; 1287 case bitc::ATTR_KIND_BY_VAL: 1288 return Attribute::ByVal; 1289 case bitc::ATTR_KIND_IN_ALLOCA: 1290 return Attribute::InAlloca; 1291 case bitc::ATTR_KIND_COLD: 1292 return Attribute::Cold; 1293 case bitc::ATTR_KIND_CONVERGENT: 1294 return Attribute::Convergent; 1295 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1296 return Attribute::InaccessibleMemOnly; 1297 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1298 return Attribute::InaccessibleMemOrArgMemOnly; 1299 case bitc::ATTR_KIND_INLINE_HINT: 1300 return Attribute::InlineHint; 1301 case bitc::ATTR_KIND_IN_REG: 1302 return Attribute::InReg; 1303 case bitc::ATTR_KIND_JUMP_TABLE: 1304 return Attribute::JumpTable; 1305 case bitc::ATTR_KIND_MIN_SIZE: 1306 return Attribute::MinSize; 1307 case bitc::ATTR_KIND_NAKED: 1308 return Attribute::Naked; 1309 case bitc::ATTR_KIND_NEST: 1310 return Attribute::Nest; 1311 case bitc::ATTR_KIND_NO_ALIAS: 1312 return Attribute::NoAlias; 1313 case bitc::ATTR_KIND_NO_BUILTIN: 1314 return Attribute::NoBuiltin; 1315 case bitc::ATTR_KIND_NO_CAPTURE: 1316 return Attribute::NoCapture; 1317 case bitc::ATTR_KIND_NO_DUPLICATE: 1318 return Attribute::NoDuplicate; 1319 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1320 return Attribute::NoImplicitFloat; 1321 case bitc::ATTR_KIND_NO_INLINE: 1322 return Attribute::NoInline; 1323 case bitc::ATTR_KIND_NO_RECURSE: 1324 return Attribute::NoRecurse; 1325 case bitc::ATTR_KIND_NON_LAZY_BIND: 1326 return Attribute::NonLazyBind; 1327 case bitc::ATTR_KIND_NON_NULL: 1328 return Attribute::NonNull; 1329 case bitc::ATTR_KIND_DEREFERENCEABLE: 1330 return Attribute::Dereferenceable; 1331 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1332 return Attribute::DereferenceableOrNull; 1333 case bitc::ATTR_KIND_ALLOC_SIZE: 1334 return Attribute::AllocSize; 1335 case bitc::ATTR_KIND_NO_RED_ZONE: 1336 return Attribute::NoRedZone; 1337 case bitc::ATTR_KIND_NO_RETURN: 1338 return Attribute::NoReturn; 1339 case bitc::ATTR_KIND_NO_UNWIND: 1340 return Attribute::NoUnwind; 1341 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1342 return Attribute::OptimizeForSize; 1343 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1344 return Attribute::OptimizeNone; 1345 case bitc::ATTR_KIND_READ_NONE: 1346 return Attribute::ReadNone; 1347 case bitc::ATTR_KIND_READ_ONLY: 1348 return Attribute::ReadOnly; 1349 case bitc::ATTR_KIND_RETURNED: 1350 return Attribute::Returned; 1351 case bitc::ATTR_KIND_RETURNS_TWICE: 1352 return Attribute::ReturnsTwice; 1353 case bitc::ATTR_KIND_S_EXT: 1354 return Attribute::SExt; 1355 case bitc::ATTR_KIND_SPECULATABLE: 1356 return Attribute::Speculatable; 1357 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1358 return Attribute::StackAlignment; 1359 case bitc::ATTR_KIND_STACK_PROTECT: 1360 return Attribute::StackProtect; 1361 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1362 return Attribute::StackProtectReq; 1363 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1364 return Attribute::StackProtectStrong; 1365 case bitc::ATTR_KIND_SAFESTACK: 1366 return Attribute::SafeStack; 1367 case bitc::ATTR_KIND_STRICT_FP: 1368 return Attribute::StrictFP; 1369 case bitc::ATTR_KIND_STRUCT_RET: 1370 return Attribute::StructRet; 1371 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1372 return Attribute::SanitizeAddress; 1373 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1374 return Attribute::SanitizeHWAddress; 1375 case bitc::ATTR_KIND_SANITIZE_THREAD: 1376 return Attribute::SanitizeThread; 1377 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1378 return Attribute::SanitizeMemory; 1379 case bitc::ATTR_KIND_SWIFT_ERROR: 1380 return Attribute::SwiftError; 1381 case bitc::ATTR_KIND_SWIFT_SELF: 1382 return Attribute::SwiftSelf; 1383 case bitc::ATTR_KIND_UW_TABLE: 1384 return Attribute::UWTable; 1385 case bitc::ATTR_KIND_WRITEONLY: 1386 return Attribute::WriteOnly; 1387 case bitc::ATTR_KIND_Z_EXT: 1388 return Attribute::ZExt; 1389 } 1390 } 1391 1392 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1393 unsigned &Alignment) { 1394 // Note: Alignment in bitcode files is incremented by 1, so that zero 1395 // can be used for default alignment. 1396 if (Exponent > Value::MaxAlignmentExponent + 1) 1397 return error("Invalid alignment value"); 1398 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1399 return Error::success(); 1400 } 1401 1402 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1403 *Kind = getAttrFromCode(Code); 1404 if (*Kind == Attribute::None) 1405 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1406 return Error::success(); 1407 } 1408 1409 Error BitcodeReader::parseAttributeGroupBlock() { 1410 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1411 return error("Invalid record"); 1412 1413 if (!MAttributeGroups.empty()) 1414 return error("Invalid multiple blocks"); 1415 1416 SmallVector<uint64_t, 64> Record; 1417 1418 // Read all the records. 1419 while (true) { 1420 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1421 1422 switch (Entry.Kind) { 1423 case BitstreamEntry::SubBlock: // Handled for us already. 1424 case BitstreamEntry::Error: 1425 return error("Malformed block"); 1426 case BitstreamEntry::EndBlock: 1427 return Error::success(); 1428 case BitstreamEntry::Record: 1429 // The interesting case. 1430 break; 1431 } 1432 1433 // Read a record. 1434 Record.clear(); 1435 switch (Stream.readRecord(Entry.ID, Record)) { 1436 default: // Default behavior: ignore. 1437 break; 1438 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1439 if (Record.size() < 3) 1440 return error("Invalid record"); 1441 1442 uint64_t GrpID = Record[0]; 1443 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1444 1445 AttrBuilder B; 1446 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1447 if (Record[i] == 0) { // Enum attribute 1448 Attribute::AttrKind Kind; 1449 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1450 return Err; 1451 1452 B.addAttribute(Kind); 1453 } else if (Record[i] == 1) { // Integer attribute 1454 Attribute::AttrKind Kind; 1455 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1456 return Err; 1457 if (Kind == Attribute::Alignment) 1458 B.addAlignmentAttr(Record[++i]); 1459 else if (Kind == Attribute::StackAlignment) 1460 B.addStackAlignmentAttr(Record[++i]); 1461 else if (Kind == Attribute::Dereferenceable) 1462 B.addDereferenceableAttr(Record[++i]); 1463 else if (Kind == Attribute::DereferenceableOrNull) 1464 B.addDereferenceableOrNullAttr(Record[++i]); 1465 else if (Kind == Attribute::AllocSize) 1466 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1467 } else { // String attribute 1468 assert((Record[i] == 3 || Record[i] == 4) && 1469 "Invalid attribute group entry"); 1470 bool HasValue = (Record[i++] == 4); 1471 SmallString<64> KindStr; 1472 SmallString<64> ValStr; 1473 1474 while (Record[i] != 0 && i != e) 1475 KindStr += Record[i++]; 1476 assert(Record[i] == 0 && "Kind string not null terminated"); 1477 1478 if (HasValue) { 1479 // Has a value associated with it. 1480 ++i; // Skip the '0' that terminates the "kind" string. 1481 while (Record[i] != 0 && i != e) 1482 ValStr += Record[i++]; 1483 assert(Record[i] == 0 && "Value string not null terminated"); 1484 } 1485 1486 B.addAttribute(KindStr.str(), ValStr.str()); 1487 } 1488 } 1489 1490 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1491 break; 1492 } 1493 } 1494 } 1495 } 1496 1497 Error BitcodeReader::parseTypeTable() { 1498 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1499 return error("Invalid record"); 1500 1501 return parseTypeTableBody(); 1502 } 1503 1504 Error BitcodeReader::parseTypeTableBody() { 1505 if (!TypeList.empty()) 1506 return error("Invalid multiple blocks"); 1507 1508 SmallVector<uint64_t, 64> Record; 1509 unsigned NumRecords = 0; 1510 1511 SmallString<64> TypeName; 1512 1513 // Read all the records for this type table. 1514 while (true) { 1515 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1516 1517 switch (Entry.Kind) { 1518 case BitstreamEntry::SubBlock: // Handled for us already. 1519 case BitstreamEntry::Error: 1520 return error("Malformed block"); 1521 case BitstreamEntry::EndBlock: 1522 if (NumRecords != TypeList.size()) 1523 return error("Malformed block"); 1524 return Error::success(); 1525 case BitstreamEntry::Record: 1526 // The interesting case. 1527 break; 1528 } 1529 1530 // Read a record. 1531 Record.clear(); 1532 Type *ResultTy = nullptr; 1533 switch (Stream.readRecord(Entry.ID, Record)) { 1534 default: 1535 return error("Invalid value"); 1536 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1537 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1538 // type list. This allows us to reserve space. 1539 if (Record.size() < 1) 1540 return error("Invalid record"); 1541 TypeList.resize(Record[0]); 1542 continue; 1543 case bitc::TYPE_CODE_VOID: // VOID 1544 ResultTy = Type::getVoidTy(Context); 1545 break; 1546 case bitc::TYPE_CODE_HALF: // HALF 1547 ResultTy = Type::getHalfTy(Context); 1548 break; 1549 case bitc::TYPE_CODE_FLOAT: // FLOAT 1550 ResultTy = Type::getFloatTy(Context); 1551 break; 1552 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1553 ResultTy = Type::getDoubleTy(Context); 1554 break; 1555 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1556 ResultTy = Type::getX86_FP80Ty(Context); 1557 break; 1558 case bitc::TYPE_CODE_FP128: // FP128 1559 ResultTy = Type::getFP128Ty(Context); 1560 break; 1561 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1562 ResultTy = Type::getPPC_FP128Ty(Context); 1563 break; 1564 case bitc::TYPE_CODE_LABEL: // LABEL 1565 ResultTy = Type::getLabelTy(Context); 1566 break; 1567 case bitc::TYPE_CODE_METADATA: // METADATA 1568 ResultTy = Type::getMetadataTy(Context); 1569 break; 1570 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1571 ResultTy = Type::getX86_MMXTy(Context); 1572 break; 1573 case bitc::TYPE_CODE_TOKEN: // TOKEN 1574 ResultTy = Type::getTokenTy(Context); 1575 break; 1576 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1577 if (Record.size() < 1) 1578 return error("Invalid record"); 1579 1580 uint64_t NumBits = Record[0]; 1581 if (NumBits < IntegerType::MIN_INT_BITS || 1582 NumBits > IntegerType::MAX_INT_BITS) 1583 return error("Bitwidth for integer type out of range"); 1584 ResultTy = IntegerType::get(Context, NumBits); 1585 break; 1586 } 1587 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1588 // [pointee type, address space] 1589 if (Record.size() < 1) 1590 return error("Invalid record"); 1591 unsigned AddressSpace = 0; 1592 if (Record.size() == 2) 1593 AddressSpace = Record[1]; 1594 ResultTy = getTypeByID(Record[0]); 1595 if (!ResultTy || 1596 !PointerType::isValidElementType(ResultTy)) 1597 return error("Invalid type"); 1598 ResultTy = PointerType::get(ResultTy, AddressSpace); 1599 break; 1600 } 1601 case bitc::TYPE_CODE_FUNCTION_OLD: { 1602 // FIXME: attrid is dead, remove it in LLVM 4.0 1603 // FUNCTION: [vararg, attrid, retty, paramty x N] 1604 if (Record.size() < 3) 1605 return error("Invalid record"); 1606 SmallVector<Type*, 8> ArgTys; 1607 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 ArgTys.push_back(T); 1610 else 1611 break; 1612 } 1613 1614 ResultTy = getTypeByID(Record[2]); 1615 if (!ResultTy || ArgTys.size() < Record.size()-3) 1616 return error("Invalid type"); 1617 1618 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1619 break; 1620 } 1621 case bitc::TYPE_CODE_FUNCTION: { 1622 // FUNCTION: [vararg, retty, paramty x N] 1623 if (Record.size() < 2) 1624 return error("Invalid record"); 1625 SmallVector<Type*, 8> ArgTys; 1626 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1627 if (Type *T = getTypeByID(Record[i])) { 1628 if (!FunctionType::isValidArgumentType(T)) 1629 return error("Invalid function argument type"); 1630 ArgTys.push_back(T); 1631 } 1632 else 1633 break; 1634 } 1635 1636 ResultTy = getTypeByID(Record[1]); 1637 if (!ResultTy || ArgTys.size() < Record.size()-2) 1638 return error("Invalid type"); 1639 1640 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1641 break; 1642 } 1643 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1644 if (Record.size() < 1) 1645 return error("Invalid record"); 1646 SmallVector<Type*, 8> EltTys; 1647 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1648 if (Type *T = getTypeByID(Record[i])) 1649 EltTys.push_back(T); 1650 else 1651 break; 1652 } 1653 if (EltTys.size() != Record.size()-1) 1654 return error("Invalid type"); 1655 ResultTy = StructType::get(Context, EltTys, Record[0]); 1656 break; 1657 } 1658 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1659 if (convertToString(Record, 0, TypeName)) 1660 return error("Invalid record"); 1661 continue; 1662 1663 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1664 if (Record.size() < 1) 1665 return error("Invalid record"); 1666 1667 if (NumRecords >= TypeList.size()) 1668 return error("Invalid TYPE table"); 1669 1670 // Check to see if this was forward referenced, if so fill in the temp. 1671 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1672 if (Res) { 1673 Res->setName(TypeName); 1674 TypeList[NumRecords] = nullptr; 1675 } else // Otherwise, create a new struct. 1676 Res = createIdentifiedStructType(Context, TypeName); 1677 TypeName.clear(); 1678 1679 SmallVector<Type*, 8> EltTys; 1680 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1681 if (Type *T = getTypeByID(Record[i])) 1682 EltTys.push_back(T); 1683 else 1684 break; 1685 } 1686 if (EltTys.size() != Record.size()-1) 1687 return error("Invalid record"); 1688 Res->setBody(EltTys, Record[0]); 1689 ResultTy = Res; 1690 break; 1691 } 1692 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1693 if (Record.size() != 1) 1694 return error("Invalid record"); 1695 1696 if (NumRecords >= TypeList.size()) 1697 return error("Invalid TYPE table"); 1698 1699 // Check to see if this was forward referenced, if so fill in the temp. 1700 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1701 if (Res) { 1702 Res->setName(TypeName); 1703 TypeList[NumRecords] = nullptr; 1704 } else // Otherwise, create a new struct with no body. 1705 Res = createIdentifiedStructType(Context, TypeName); 1706 TypeName.clear(); 1707 ResultTy = Res; 1708 break; 1709 } 1710 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1711 if (Record.size() < 2) 1712 return error("Invalid record"); 1713 ResultTy = getTypeByID(Record[1]); 1714 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1715 return error("Invalid type"); 1716 ResultTy = ArrayType::get(ResultTy, Record[0]); 1717 break; 1718 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1719 if (Record.size() < 2) 1720 return error("Invalid record"); 1721 if (Record[0] == 0) 1722 return error("Invalid vector length"); 1723 ResultTy = getTypeByID(Record[1]); 1724 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1725 return error("Invalid type"); 1726 ResultTy = VectorType::get(ResultTy, Record[0]); 1727 break; 1728 } 1729 1730 if (NumRecords >= TypeList.size()) 1731 return error("Invalid TYPE table"); 1732 if (TypeList[NumRecords]) 1733 return error( 1734 "Invalid TYPE table: Only named structs can be forward referenced"); 1735 assert(ResultTy && "Didn't read a type?"); 1736 TypeList[NumRecords++] = ResultTy; 1737 } 1738 } 1739 1740 Error BitcodeReader::parseOperandBundleTags() { 1741 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1742 return error("Invalid record"); 1743 1744 if (!BundleTags.empty()) 1745 return error("Invalid multiple blocks"); 1746 1747 SmallVector<uint64_t, 64> Record; 1748 1749 while (true) { 1750 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1751 1752 switch (Entry.Kind) { 1753 case BitstreamEntry::SubBlock: // Handled for us already. 1754 case BitstreamEntry::Error: 1755 return error("Malformed block"); 1756 case BitstreamEntry::EndBlock: 1757 return Error::success(); 1758 case BitstreamEntry::Record: 1759 // The interesting case. 1760 break; 1761 } 1762 1763 // Tags are implicitly mapped to integers by their order. 1764 1765 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1766 return error("Invalid record"); 1767 1768 // OPERAND_BUNDLE_TAG: [strchr x N] 1769 BundleTags.emplace_back(); 1770 if (convertToString(Record, 0, BundleTags.back())) 1771 return error("Invalid record"); 1772 Record.clear(); 1773 } 1774 } 1775 1776 Error BitcodeReader::parseSyncScopeNames() { 1777 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1778 return error("Invalid record"); 1779 1780 if (!SSIDs.empty()) 1781 return error("Invalid multiple synchronization scope names blocks"); 1782 1783 SmallVector<uint64_t, 64> Record; 1784 while (true) { 1785 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1786 switch (Entry.Kind) { 1787 case BitstreamEntry::SubBlock: // Handled for us already. 1788 case BitstreamEntry::Error: 1789 return error("Malformed block"); 1790 case BitstreamEntry::EndBlock: 1791 if (SSIDs.empty()) 1792 return error("Invalid empty synchronization scope names block"); 1793 return Error::success(); 1794 case BitstreamEntry::Record: 1795 // The interesting case. 1796 break; 1797 } 1798 1799 // Synchronization scope names are implicitly mapped to synchronization 1800 // scope IDs by their order. 1801 1802 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1803 return error("Invalid record"); 1804 1805 SmallString<16> SSN; 1806 if (convertToString(Record, 0, SSN)) 1807 return error("Invalid record"); 1808 1809 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1810 Record.clear(); 1811 } 1812 } 1813 1814 /// Associate a value with its name from the given index in the provided record. 1815 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1816 unsigned NameIndex, Triple &TT) { 1817 SmallString<128> ValueName; 1818 if (convertToString(Record, NameIndex, ValueName)) 1819 return error("Invalid record"); 1820 unsigned ValueID = Record[0]; 1821 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1822 return error("Invalid record"); 1823 Value *V = ValueList[ValueID]; 1824 1825 StringRef NameStr(ValueName.data(), ValueName.size()); 1826 if (NameStr.find_first_of(0) != StringRef::npos) 1827 return error("Invalid value name"); 1828 V->setName(NameStr); 1829 auto *GO = dyn_cast<GlobalObject>(V); 1830 if (GO) { 1831 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1832 if (TT.supportsCOMDAT()) 1833 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1834 else 1835 GO->setComdat(nullptr); 1836 } 1837 } 1838 return V; 1839 } 1840 1841 /// Helper to note and return the current location, and jump to the given 1842 /// offset. 1843 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1844 BitstreamCursor &Stream) { 1845 // Save the current parsing location so we can jump back at the end 1846 // of the VST read. 1847 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1848 Stream.JumpToBit(Offset * 32); 1849 #ifndef NDEBUG 1850 // Do some checking if we are in debug mode. 1851 BitstreamEntry Entry = Stream.advance(); 1852 assert(Entry.Kind == BitstreamEntry::SubBlock); 1853 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1854 #else 1855 // In NDEBUG mode ignore the output so we don't get an unused variable 1856 // warning. 1857 Stream.advance(); 1858 #endif 1859 return CurrentBit; 1860 } 1861 1862 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1863 Function *F, 1864 ArrayRef<uint64_t> Record) { 1865 // Note that we subtract 1 here because the offset is relative to one word 1866 // before the start of the identification or module block, which was 1867 // historically always the start of the regular bitcode header. 1868 uint64_t FuncWordOffset = Record[1] - 1; 1869 uint64_t FuncBitOffset = FuncWordOffset * 32; 1870 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1871 // Set the LastFunctionBlockBit to point to the last function block. 1872 // Later when parsing is resumed after function materialization, 1873 // we can simply skip that last function block. 1874 if (FuncBitOffset > LastFunctionBlockBit) 1875 LastFunctionBlockBit = FuncBitOffset; 1876 } 1877 1878 /// Read a new-style GlobalValue symbol table. 1879 Error BitcodeReader::parseGlobalValueSymbolTable() { 1880 unsigned FuncBitcodeOffsetDelta = 1881 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1882 1883 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1884 return error("Invalid record"); 1885 1886 SmallVector<uint64_t, 64> Record; 1887 while (true) { 1888 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1889 1890 switch (Entry.Kind) { 1891 case BitstreamEntry::SubBlock: 1892 case BitstreamEntry::Error: 1893 return error("Malformed block"); 1894 case BitstreamEntry::EndBlock: 1895 return Error::success(); 1896 case BitstreamEntry::Record: 1897 break; 1898 } 1899 1900 Record.clear(); 1901 switch (Stream.readRecord(Entry.ID, Record)) { 1902 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1903 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1904 cast<Function>(ValueList[Record[0]]), Record); 1905 break; 1906 } 1907 } 1908 } 1909 1910 /// Parse the value symbol table at either the current parsing location or 1911 /// at the given bit offset if provided. 1912 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1913 uint64_t CurrentBit; 1914 // Pass in the Offset to distinguish between calling for the module-level 1915 // VST (where we want to jump to the VST offset) and the function-level 1916 // VST (where we don't). 1917 if (Offset > 0) { 1918 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1919 // If this module uses a string table, read this as a module-level VST. 1920 if (UseStrtab) { 1921 if (Error Err = parseGlobalValueSymbolTable()) 1922 return Err; 1923 Stream.JumpToBit(CurrentBit); 1924 return Error::success(); 1925 } 1926 // Otherwise, the VST will be in a similar format to a function-level VST, 1927 // and will contain symbol names. 1928 } 1929 1930 // Compute the delta between the bitcode indices in the VST (the word offset 1931 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1932 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1933 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1934 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1935 // just before entering the VST subblock because: 1) the EnterSubBlock 1936 // changes the AbbrevID width; 2) the VST block is nested within the same 1937 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1938 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1939 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1940 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1941 unsigned FuncBitcodeOffsetDelta = 1942 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1943 1944 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1945 return error("Invalid record"); 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 Triple TT(TheModule->getTargetTriple()); 1950 1951 // Read all the records for this value table. 1952 SmallString<128> ValueName; 1953 1954 while (true) { 1955 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1956 1957 switch (Entry.Kind) { 1958 case BitstreamEntry::SubBlock: // Handled for us already. 1959 case BitstreamEntry::Error: 1960 return error("Malformed block"); 1961 case BitstreamEntry::EndBlock: 1962 if (Offset > 0) 1963 Stream.JumpToBit(CurrentBit); 1964 return Error::success(); 1965 case BitstreamEntry::Record: 1966 // The interesting case. 1967 break; 1968 } 1969 1970 // Read a record. 1971 Record.clear(); 1972 switch (Stream.readRecord(Entry.ID, Record)) { 1973 default: // Default behavior: unknown type. 1974 break; 1975 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1976 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1977 if (Error Err = ValOrErr.takeError()) 1978 return Err; 1979 ValOrErr.get(); 1980 break; 1981 } 1982 case bitc::VST_CODE_FNENTRY: { 1983 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1984 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1985 if (Error Err = ValOrErr.takeError()) 1986 return Err; 1987 Value *V = ValOrErr.get(); 1988 1989 // Ignore function offsets emitted for aliases of functions in older 1990 // versions of LLVM. 1991 if (auto *F = dyn_cast<Function>(V)) 1992 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1993 break; 1994 } 1995 case bitc::VST_CODE_BBENTRY: { 1996 if (convertToString(Record, 1, ValueName)) 1997 return error("Invalid record"); 1998 BasicBlock *BB = getBasicBlock(Record[0]); 1999 if (!BB) 2000 return error("Invalid record"); 2001 2002 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2003 ValueName.clear(); 2004 break; 2005 } 2006 } 2007 } 2008 } 2009 2010 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2011 /// encoding. 2012 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2013 if ((V & 1) == 0) 2014 return V >> 1; 2015 if (V != 1) 2016 return -(V >> 1); 2017 // There is no such thing as -0 with integers. "-0" really means MININT. 2018 return 1ULL << 63; 2019 } 2020 2021 /// Resolve all of the initializers for global values and aliases that we can. 2022 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2023 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2024 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2025 IndirectSymbolInitWorklist; 2026 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2027 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2028 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2029 2030 GlobalInitWorklist.swap(GlobalInits); 2031 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2032 FunctionPrefixWorklist.swap(FunctionPrefixes); 2033 FunctionPrologueWorklist.swap(FunctionPrologues); 2034 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2035 2036 while (!GlobalInitWorklist.empty()) { 2037 unsigned ValID = GlobalInitWorklist.back().second; 2038 if (ValID >= ValueList.size()) { 2039 // Not ready to resolve this yet, it requires something later in the file. 2040 GlobalInits.push_back(GlobalInitWorklist.back()); 2041 } else { 2042 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2043 GlobalInitWorklist.back().first->setInitializer(C); 2044 else 2045 return error("Expected a constant"); 2046 } 2047 GlobalInitWorklist.pop_back(); 2048 } 2049 2050 while (!IndirectSymbolInitWorklist.empty()) { 2051 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2052 if (ValID >= ValueList.size()) { 2053 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2054 } else { 2055 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2056 if (!C) 2057 return error("Expected a constant"); 2058 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2059 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2060 return error("Alias and aliasee types don't match"); 2061 GIS->setIndirectSymbol(C); 2062 } 2063 IndirectSymbolInitWorklist.pop_back(); 2064 } 2065 2066 while (!FunctionPrefixWorklist.empty()) { 2067 unsigned ValID = FunctionPrefixWorklist.back().second; 2068 if (ValID >= ValueList.size()) { 2069 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2070 } else { 2071 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2072 FunctionPrefixWorklist.back().first->setPrefixData(C); 2073 else 2074 return error("Expected a constant"); 2075 } 2076 FunctionPrefixWorklist.pop_back(); 2077 } 2078 2079 while (!FunctionPrologueWorklist.empty()) { 2080 unsigned ValID = FunctionPrologueWorklist.back().second; 2081 if (ValID >= ValueList.size()) { 2082 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2083 } else { 2084 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2085 FunctionPrologueWorklist.back().first->setPrologueData(C); 2086 else 2087 return error("Expected a constant"); 2088 } 2089 FunctionPrologueWorklist.pop_back(); 2090 } 2091 2092 while (!FunctionPersonalityFnWorklist.empty()) { 2093 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2094 if (ValID >= ValueList.size()) { 2095 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2096 } else { 2097 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2098 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2099 else 2100 return error("Expected a constant"); 2101 } 2102 FunctionPersonalityFnWorklist.pop_back(); 2103 } 2104 2105 return Error::success(); 2106 } 2107 2108 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2109 SmallVector<uint64_t, 8> Words(Vals.size()); 2110 transform(Vals, Words.begin(), 2111 BitcodeReader::decodeSignRotatedValue); 2112 2113 return APInt(TypeBits, Words); 2114 } 2115 2116 Error BitcodeReader::parseConstants() { 2117 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2118 return error("Invalid record"); 2119 2120 SmallVector<uint64_t, 64> Record; 2121 2122 // Read all the records for this value table. 2123 Type *CurTy = Type::getInt32Ty(Context); 2124 unsigned NextCstNo = ValueList.size(); 2125 2126 while (true) { 2127 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2128 2129 switch (Entry.Kind) { 2130 case BitstreamEntry::SubBlock: // Handled for us already. 2131 case BitstreamEntry::Error: 2132 return error("Malformed block"); 2133 case BitstreamEntry::EndBlock: 2134 if (NextCstNo != ValueList.size()) 2135 return error("Invalid constant reference"); 2136 2137 // Once all the constants have been read, go through and resolve forward 2138 // references. 2139 ValueList.resolveConstantForwardRefs(); 2140 return Error::success(); 2141 case BitstreamEntry::Record: 2142 // The interesting case. 2143 break; 2144 } 2145 2146 // Read a record. 2147 Record.clear(); 2148 Type *VoidType = Type::getVoidTy(Context); 2149 Value *V = nullptr; 2150 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2151 switch (BitCode) { 2152 default: // Default behavior: unknown constant 2153 case bitc::CST_CODE_UNDEF: // UNDEF 2154 V = UndefValue::get(CurTy); 2155 break; 2156 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2157 if (Record.empty()) 2158 return error("Invalid record"); 2159 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2160 return error("Invalid record"); 2161 if (TypeList[Record[0]] == VoidType) 2162 return error("Invalid constant type"); 2163 CurTy = TypeList[Record[0]]; 2164 continue; // Skip the ValueList manipulation. 2165 case bitc::CST_CODE_NULL: // NULL 2166 V = Constant::getNullValue(CurTy); 2167 break; 2168 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2169 if (!CurTy->isIntegerTy() || Record.empty()) 2170 return error("Invalid record"); 2171 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2172 break; 2173 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2174 if (!CurTy->isIntegerTy() || Record.empty()) 2175 return error("Invalid record"); 2176 2177 APInt VInt = 2178 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2179 V = ConstantInt::get(Context, VInt); 2180 2181 break; 2182 } 2183 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2184 if (Record.empty()) 2185 return error("Invalid record"); 2186 if (CurTy->isHalfTy()) 2187 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2188 APInt(16, (uint16_t)Record[0]))); 2189 else if (CurTy->isFloatTy()) 2190 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2191 APInt(32, (uint32_t)Record[0]))); 2192 else if (CurTy->isDoubleTy()) 2193 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2194 APInt(64, Record[0]))); 2195 else if (CurTy->isX86_FP80Ty()) { 2196 // Bits are not stored the same way as a normal i80 APInt, compensate. 2197 uint64_t Rearrange[2]; 2198 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2199 Rearrange[1] = Record[0] >> 48; 2200 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2201 APInt(80, Rearrange))); 2202 } else if (CurTy->isFP128Ty()) 2203 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2204 APInt(128, Record))); 2205 else if (CurTy->isPPC_FP128Ty()) 2206 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2207 APInt(128, Record))); 2208 else 2209 V = UndefValue::get(CurTy); 2210 break; 2211 } 2212 2213 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2214 if (Record.empty()) 2215 return error("Invalid record"); 2216 2217 unsigned Size = Record.size(); 2218 SmallVector<Constant*, 16> Elts; 2219 2220 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2221 for (unsigned i = 0; i != Size; ++i) 2222 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2223 STy->getElementType(i))); 2224 V = ConstantStruct::get(STy, Elts); 2225 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2226 Type *EltTy = ATy->getElementType(); 2227 for (unsigned i = 0; i != Size; ++i) 2228 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2229 V = ConstantArray::get(ATy, Elts); 2230 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2231 Type *EltTy = VTy->getElementType(); 2232 for (unsigned i = 0; i != Size; ++i) 2233 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2234 V = ConstantVector::get(Elts); 2235 } else { 2236 V = UndefValue::get(CurTy); 2237 } 2238 break; 2239 } 2240 case bitc::CST_CODE_STRING: // STRING: [values] 2241 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2242 if (Record.empty()) 2243 return error("Invalid record"); 2244 2245 SmallString<16> Elts(Record.begin(), Record.end()); 2246 V = ConstantDataArray::getString(Context, Elts, 2247 BitCode == bitc::CST_CODE_CSTRING); 2248 break; 2249 } 2250 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2251 if (Record.empty()) 2252 return error("Invalid record"); 2253 2254 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2255 if (EltTy->isIntegerTy(8)) { 2256 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2257 if (isa<VectorType>(CurTy)) 2258 V = ConstantDataVector::get(Context, Elts); 2259 else 2260 V = ConstantDataArray::get(Context, Elts); 2261 } else if (EltTy->isIntegerTy(16)) { 2262 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2263 if (isa<VectorType>(CurTy)) 2264 V = ConstantDataVector::get(Context, Elts); 2265 else 2266 V = ConstantDataArray::get(Context, Elts); 2267 } else if (EltTy->isIntegerTy(32)) { 2268 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2269 if (isa<VectorType>(CurTy)) 2270 V = ConstantDataVector::get(Context, Elts); 2271 else 2272 V = ConstantDataArray::get(Context, Elts); 2273 } else if (EltTy->isIntegerTy(64)) { 2274 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2275 if (isa<VectorType>(CurTy)) 2276 V = ConstantDataVector::get(Context, Elts); 2277 else 2278 V = ConstantDataArray::get(Context, Elts); 2279 } else if (EltTy->isHalfTy()) { 2280 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2281 if (isa<VectorType>(CurTy)) 2282 V = ConstantDataVector::getFP(Context, Elts); 2283 else 2284 V = ConstantDataArray::getFP(Context, Elts); 2285 } else if (EltTy->isFloatTy()) { 2286 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2287 if (isa<VectorType>(CurTy)) 2288 V = ConstantDataVector::getFP(Context, Elts); 2289 else 2290 V = ConstantDataArray::getFP(Context, Elts); 2291 } else if (EltTy->isDoubleTy()) { 2292 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2293 if (isa<VectorType>(CurTy)) 2294 V = ConstantDataVector::getFP(Context, Elts); 2295 else 2296 V = ConstantDataArray::getFP(Context, Elts); 2297 } else { 2298 return error("Invalid type for value"); 2299 } 2300 break; 2301 } 2302 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2303 if (Record.size() < 3) 2304 return error("Invalid record"); 2305 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2306 if (Opc < 0) { 2307 V = UndefValue::get(CurTy); // Unknown binop. 2308 } else { 2309 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2310 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2311 unsigned Flags = 0; 2312 if (Record.size() >= 4) { 2313 if (Opc == Instruction::Add || 2314 Opc == Instruction::Sub || 2315 Opc == Instruction::Mul || 2316 Opc == Instruction::Shl) { 2317 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2318 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2319 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2320 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2321 } else if (Opc == Instruction::SDiv || 2322 Opc == Instruction::UDiv || 2323 Opc == Instruction::LShr || 2324 Opc == Instruction::AShr) { 2325 if (Record[3] & (1 << bitc::PEO_EXACT)) 2326 Flags |= SDivOperator::IsExact; 2327 } 2328 } 2329 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2330 } 2331 break; 2332 } 2333 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2334 if (Record.size() < 3) 2335 return error("Invalid record"); 2336 int Opc = getDecodedCastOpcode(Record[0]); 2337 if (Opc < 0) { 2338 V = UndefValue::get(CurTy); // Unknown cast. 2339 } else { 2340 Type *OpTy = getTypeByID(Record[1]); 2341 if (!OpTy) 2342 return error("Invalid record"); 2343 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2344 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2345 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2346 } 2347 break; 2348 } 2349 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2350 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2351 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2352 // operands] 2353 unsigned OpNum = 0; 2354 Type *PointeeType = nullptr; 2355 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2356 Record.size() % 2) 2357 PointeeType = getTypeByID(Record[OpNum++]); 2358 2359 bool InBounds = false; 2360 Optional<unsigned> InRangeIndex; 2361 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2362 uint64_t Op = Record[OpNum++]; 2363 InBounds = Op & 1; 2364 InRangeIndex = Op >> 1; 2365 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2366 InBounds = true; 2367 2368 SmallVector<Constant*, 16> Elts; 2369 while (OpNum != Record.size()) { 2370 Type *ElTy = getTypeByID(Record[OpNum++]); 2371 if (!ElTy) 2372 return error("Invalid record"); 2373 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2374 } 2375 2376 if (PointeeType && 2377 PointeeType != 2378 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2379 ->getElementType()) 2380 return error("Explicit gep operator type does not match pointee type " 2381 "of pointer operand"); 2382 2383 if (Elts.size() < 1) 2384 return error("Invalid gep with no operands"); 2385 2386 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2387 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2388 InBounds, InRangeIndex); 2389 break; 2390 } 2391 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2392 if (Record.size() < 3) 2393 return error("Invalid record"); 2394 2395 Type *SelectorTy = Type::getInt1Ty(Context); 2396 2397 // The selector might be an i1 or an <n x i1> 2398 // Get the type from the ValueList before getting a forward ref. 2399 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2400 if (Value *V = ValueList[Record[0]]) 2401 if (SelectorTy != V->getType()) 2402 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2403 2404 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2405 SelectorTy), 2406 ValueList.getConstantFwdRef(Record[1],CurTy), 2407 ValueList.getConstantFwdRef(Record[2],CurTy)); 2408 break; 2409 } 2410 case bitc::CST_CODE_CE_EXTRACTELT 2411 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2412 if (Record.size() < 3) 2413 return error("Invalid record"); 2414 VectorType *OpTy = 2415 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2416 if (!OpTy) 2417 return error("Invalid record"); 2418 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2419 Constant *Op1 = nullptr; 2420 if (Record.size() == 4) { 2421 Type *IdxTy = getTypeByID(Record[2]); 2422 if (!IdxTy) 2423 return error("Invalid record"); 2424 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2425 } else // TODO: Remove with llvm 4.0 2426 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2427 if (!Op1) 2428 return error("Invalid record"); 2429 V = ConstantExpr::getExtractElement(Op0, Op1); 2430 break; 2431 } 2432 case bitc::CST_CODE_CE_INSERTELT 2433 : { // CE_INSERTELT: [opval, opval, opty, opval] 2434 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2435 if (Record.size() < 3 || !OpTy) 2436 return error("Invalid record"); 2437 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2438 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2439 OpTy->getElementType()); 2440 Constant *Op2 = nullptr; 2441 if (Record.size() == 4) { 2442 Type *IdxTy = getTypeByID(Record[2]); 2443 if (!IdxTy) 2444 return error("Invalid record"); 2445 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2446 } else // TODO: Remove with llvm 4.0 2447 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2448 if (!Op2) 2449 return error("Invalid record"); 2450 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2451 break; 2452 } 2453 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2454 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2455 if (Record.size() < 3 || !OpTy) 2456 return error("Invalid record"); 2457 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2458 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2459 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2460 OpTy->getNumElements()); 2461 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2462 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2463 break; 2464 } 2465 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2466 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2467 VectorType *OpTy = 2468 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2469 if (Record.size() < 4 || !RTy || !OpTy) 2470 return error("Invalid record"); 2471 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2472 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2473 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2474 RTy->getNumElements()); 2475 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2476 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2477 break; 2478 } 2479 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2480 if (Record.size() < 4) 2481 return error("Invalid record"); 2482 Type *OpTy = getTypeByID(Record[0]); 2483 if (!OpTy) 2484 return error("Invalid record"); 2485 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2486 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2487 2488 if (OpTy->isFPOrFPVectorTy()) 2489 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2490 else 2491 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2492 break; 2493 } 2494 // This maintains backward compatibility, pre-asm dialect keywords. 2495 // FIXME: Remove with the 4.0 release. 2496 case bitc::CST_CODE_INLINEASM_OLD: { 2497 if (Record.size() < 2) 2498 return error("Invalid record"); 2499 std::string AsmStr, ConstrStr; 2500 bool HasSideEffects = Record[0] & 1; 2501 bool IsAlignStack = Record[0] >> 1; 2502 unsigned AsmStrSize = Record[1]; 2503 if (2+AsmStrSize >= Record.size()) 2504 return error("Invalid record"); 2505 unsigned ConstStrSize = Record[2+AsmStrSize]; 2506 if (3+AsmStrSize+ConstStrSize > Record.size()) 2507 return error("Invalid record"); 2508 2509 for (unsigned i = 0; i != AsmStrSize; ++i) 2510 AsmStr += (char)Record[2+i]; 2511 for (unsigned i = 0; i != ConstStrSize; ++i) 2512 ConstrStr += (char)Record[3+AsmStrSize+i]; 2513 PointerType *PTy = cast<PointerType>(CurTy); 2514 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2515 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2516 break; 2517 } 2518 // This version adds support for the asm dialect keywords (e.g., 2519 // inteldialect). 2520 case bitc::CST_CODE_INLINEASM: { 2521 if (Record.size() < 2) 2522 return error("Invalid record"); 2523 std::string AsmStr, ConstrStr; 2524 bool HasSideEffects = Record[0] & 1; 2525 bool IsAlignStack = (Record[0] >> 1) & 1; 2526 unsigned AsmDialect = Record[0] >> 2; 2527 unsigned AsmStrSize = Record[1]; 2528 if (2+AsmStrSize >= Record.size()) 2529 return error("Invalid record"); 2530 unsigned ConstStrSize = Record[2+AsmStrSize]; 2531 if (3+AsmStrSize+ConstStrSize > Record.size()) 2532 return error("Invalid record"); 2533 2534 for (unsigned i = 0; i != AsmStrSize; ++i) 2535 AsmStr += (char)Record[2+i]; 2536 for (unsigned i = 0; i != ConstStrSize; ++i) 2537 ConstrStr += (char)Record[3+AsmStrSize+i]; 2538 PointerType *PTy = cast<PointerType>(CurTy); 2539 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2540 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2541 InlineAsm::AsmDialect(AsmDialect)); 2542 break; 2543 } 2544 case bitc::CST_CODE_BLOCKADDRESS:{ 2545 if (Record.size() < 3) 2546 return error("Invalid record"); 2547 Type *FnTy = getTypeByID(Record[0]); 2548 if (!FnTy) 2549 return error("Invalid record"); 2550 Function *Fn = 2551 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2552 if (!Fn) 2553 return error("Invalid record"); 2554 2555 // If the function is already parsed we can insert the block address right 2556 // away. 2557 BasicBlock *BB; 2558 unsigned BBID = Record[2]; 2559 if (!BBID) 2560 // Invalid reference to entry block. 2561 return error("Invalid ID"); 2562 if (!Fn->empty()) { 2563 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2564 for (size_t I = 0, E = BBID; I != E; ++I) { 2565 if (BBI == BBE) 2566 return error("Invalid ID"); 2567 ++BBI; 2568 } 2569 BB = &*BBI; 2570 } else { 2571 // Otherwise insert a placeholder and remember it so it can be inserted 2572 // when the function is parsed. 2573 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2574 if (FwdBBs.empty()) 2575 BasicBlockFwdRefQueue.push_back(Fn); 2576 if (FwdBBs.size() < BBID + 1) 2577 FwdBBs.resize(BBID + 1); 2578 if (!FwdBBs[BBID]) 2579 FwdBBs[BBID] = BasicBlock::Create(Context); 2580 BB = FwdBBs[BBID]; 2581 } 2582 V = BlockAddress::get(Fn, BB); 2583 break; 2584 } 2585 } 2586 2587 ValueList.assignValue(V, NextCstNo); 2588 ++NextCstNo; 2589 } 2590 } 2591 2592 Error BitcodeReader::parseUseLists() { 2593 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2594 return error("Invalid record"); 2595 2596 // Read all the records. 2597 SmallVector<uint64_t, 64> Record; 2598 2599 while (true) { 2600 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2601 2602 switch (Entry.Kind) { 2603 case BitstreamEntry::SubBlock: // Handled for us already. 2604 case BitstreamEntry::Error: 2605 return error("Malformed block"); 2606 case BitstreamEntry::EndBlock: 2607 return Error::success(); 2608 case BitstreamEntry::Record: 2609 // The interesting case. 2610 break; 2611 } 2612 2613 // Read a use list record. 2614 Record.clear(); 2615 bool IsBB = false; 2616 switch (Stream.readRecord(Entry.ID, Record)) { 2617 default: // Default behavior: unknown type. 2618 break; 2619 case bitc::USELIST_CODE_BB: 2620 IsBB = true; 2621 LLVM_FALLTHROUGH; 2622 case bitc::USELIST_CODE_DEFAULT: { 2623 unsigned RecordLength = Record.size(); 2624 if (RecordLength < 3) 2625 // Records should have at least an ID and two indexes. 2626 return error("Invalid record"); 2627 unsigned ID = Record.back(); 2628 Record.pop_back(); 2629 2630 Value *V; 2631 if (IsBB) { 2632 assert(ID < FunctionBBs.size() && "Basic block not found"); 2633 V = FunctionBBs[ID]; 2634 } else 2635 V = ValueList[ID]; 2636 unsigned NumUses = 0; 2637 SmallDenseMap<const Use *, unsigned, 16> Order; 2638 for (const Use &U : V->materialized_uses()) { 2639 if (++NumUses > Record.size()) 2640 break; 2641 Order[&U] = Record[NumUses - 1]; 2642 } 2643 if (Order.size() != Record.size() || NumUses > Record.size()) 2644 // Mismatches can happen if the functions are being materialized lazily 2645 // (out-of-order), or a value has been upgraded. 2646 break; 2647 2648 V->sortUseList([&](const Use &L, const Use &R) { 2649 return Order.lookup(&L) < Order.lookup(&R); 2650 }); 2651 break; 2652 } 2653 } 2654 } 2655 } 2656 2657 /// When we see the block for metadata, remember where it is and then skip it. 2658 /// This lets us lazily deserialize the metadata. 2659 Error BitcodeReader::rememberAndSkipMetadata() { 2660 // Save the current stream state. 2661 uint64_t CurBit = Stream.GetCurrentBitNo(); 2662 DeferredMetadataInfo.push_back(CurBit); 2663 2664 // Skip over the block for now. 2665 if (Stream.SkipBlock()) 2666 return error("Invalid record"); 2667 return Error::success(); 2668 } 2669 2670 Error BitcodeReader::materializeMetadata() { 2671 for (uint64_t BitPos : DeferredMetadataInfo) { 2672 // Move the bit stream to the saved position. 2673 Stream.JumpToBit(BitPos); 2674 if (Error Err = MDLoader->parseModuleMetadata()) 2675 return Err; 2676 } 2677 2678 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2679 // metadata. 2680 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2681 NamedMDNode *LinkerOpts = 2682 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2683 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2684 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2685 } 2686 2687 DeferredMetadataInfo.clear(); 2688 return Error::success(); 2689 } 2690 2691 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2692 2693 /// When we see the block for a function body, remember where it is and then 2694 /// skip it. This lets us lazily deserialize the functions. 2695 Error BitcodeReader::rememberAndSkipFunctionBody() { 2696 // Get the function we are talking about. 2697 if (FunctionsWithBodies.empty()) 2698 return error("Insufficient function protos"); 2699 2700 Function *Fn = FunctionsWithBodies.back(); 2701 FunctionsWithBodies.pop_back(); 2702 2703 // Save the current stream state. 2704 uint64_t CurBit = Stream.GetCurrentBitNo(); 2705 assert( 2706 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2707 "Mismatch between VST and scanned function offsets"); 2708 DeferredFunctionInfo[Fn] = CurBit; 2709 2710 // Skip over the function block for now. 2711 if (Stream.SkipBlock()) 2712 return error("Invalid record"); 2713 return Error::success(); 2714 } 2715 2716 Error BitcodeReader::globalCleanup() { 2717 // Patch the initializers for globals and aliases up. 2718 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2719 return Err; 2720 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2721 return error("Malformed global initializer set"); 2722 2723 // Look for intrinsic functions which need to be upgraded at some point 2724 for (Function &F : *TheModule) { 2725 MDLoader->upgradeDebugIntrinsics(F); 2726 Function *NewFn; 2727 if (UpgradeIntrinsicFunction(&F, NewFn)) 2728 UpgradedIntrinsics[&F] = NewFn; 2729 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2730 // Some types could be renamed during loading if several modules are 2731 // loaded in the same LLVMContext (LTO scenario). In this case we should 2732 // remangle intrinsics names as well. 2733 RemangledIntrinsics[&F] = Remangled.getValue(); 2734 } 2735 2736 // Look for global variables which need to be renamed. 2737 for (GlobalVariable &GV : TheModule->globals()) 2738 UpgradeGlobalVariable(&GV); 2739 2740 // Force deallocation of memory for these vectors to favor the client that 2741 // want lazy deserialization. 2742 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2743 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2744 IndirectSymbolInits); 2745 return Error::success(); 2746 } 2747 2748 /// Support for lazy parsing of function bodies. This is required if we 2749 /// either have an old bitcode file without a VST forward declaration record, 2750 /// or if we have an anonymous function being materialized, since anonymous 2751 /// functions do not have a name and are therefore not in the VST. 2752 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2753 Stream.JumpToBit(NextUnreadBit); 2754 2755 if (Stream.AtEndOfStream()) 2756 return error("Could not find function in stream"); 2757 2758 if (!SeenFirstFunctionBody) 2759 return error("Trying to materialize functions before seeing function blocks"); 2760 2761 // An old bitcode file with the symbol table at the end would have 2762 // finished the parse greedily. 2763 assert(SeenValueSymbolTable); 2764 2765 SmallVector<uint64_t, 64> Record; 2766 2767 while (true) { 2768 BitstreamEntry Entry = Stream.advance(); 2769 switch (Entry.Kind) { 2770 default: 2771 return error("Expect SubBlock"); 2772 case BitstreamEntry::SubBlock: 2773 switch (Entry.ID) { 2774 default: 2775 return error("Expect function block"); 2776 case bitc::FUNCTION_BLOCK_ID: 2777 if (Error Err = rememberAndSkipFunctionBody()) 2778 return Err; 2779 NextUnreadBit = Stream.GetCurrentBitNo(); 2780 return Error::success(); 2781 } 2782 } 2783 } 2784 } 2785 2786 bool BitcodeReaderBase::readBlockInfo() { 2787 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2788 if (!NewBlockInfo) 2789 return true; 2790 BlockInfo = std::move(*NewBlockInfo); 2791 return false; 2792 } 2793 2794 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2795 // v1: [selection_kind, name] 2796 // v2: [strtab_offset, strtab_size, selection_kind] 2797 StringRef Name; 2798 std::tie(Name, Record) = readNameFromStrtab(Record); 2799 2800 if (Record.empty()) 2801 return error("Invalid record"); 2802 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2803 std::string OldFormatName; 2804 if (!UseStrtab) { 2805 if (Record.size() < 2) 2806 return error("Invalid record"); 2807 unsigned ComdatNameSize = Record[1]; 2808 OldFormatName.reserve(ComdatNameSize); 2809 for (unsigned i = 0; i != ComdatNameSize; ++i) 2810 OldFormatName += (char)Record[2 + i]; 2811 Name = OldFormatName; 2812 } 2813 Comdat *C = TheModule->getOrInsertComdat(Name); 2814 C->setSelectionKind(SK); 2815 ComdatList.push_back(C); 2816 return Error::success(); 2817 } 2818 2819 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2820 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2821 // visibility, threadlocal, unnamed_addr, externally_initialized, 2822 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2823 // v2: [strtab_offset, strtab_size, v1] 2824 StringRef Name; 2825 std::tie(Name, Record) = readNameFromStrtab(Record); 2826 2827 if (Record.size() < 6) 2828 return error("Invalid record"); 2829 Type *Ty = getTypeByID(Record[0]); 2830 if (!Ty) 2831 return error("Invalid record"); 2832 bool isConstant = Record[1] & 1; 2833 bool explicitType = Record[1] & 2; 2834 unsigned AddressSpace; 2835 if (explicitType) { 2836 AddressSpace = Record[1] >> 2; 2837 } else { 2838 if (!Ty->isPointerTy()) 2839 return error("Invalid type for value"); 2840 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2841 Ty = cast<PointerType>(Ty)->getElementType(); 2842 } 2843 2844 uint64_t RawLinkage = Record[3]; 2845 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2846 unsigned Alignment; 2847 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2848 return Err; 2849 std::string Section; 2850 if (Record[5]) { 2851 if (Record[5] - 1 >= SectionTable.size()) 2852 return error("Invalid ID"); 2853 Section = SectionTable[Record[5] - 1]; 2854 } 2855 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2856 // Local linkage must have default visibility. 2857 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2858 // FIXME: Change to an error if non-default in 4.0. 2859 Visibility = getDecodedVisibility(Record[6]); 2860 2861 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2862 if (Record.size() > 7) 2863 TLM = getDecodedThreadLocalMode(Record[7]); 2864 2865 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2866 if (Record.size() > 8) 2867 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2868 2869 bool ExternallyInitialized = false; 2870 if (Record.size() > 9) 2871 ExternallyInitialized = Record[9]; 2872 2873 GlobalVariable *NewGV = 2874 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2875 nullptr, TLM, AddressSpace, ExternallyInitialized); 2876 NewGV->setAlignment(Alignment); 2877 if (!Section.empty()) 2878 NewGV->setSection(Section); 2879 NewGV->setVisibility(Visibility); 2880 NewGV->setUnnamedAddr(UnnamedAddr); 2881 2882 if (Record.size() > 10) 2883 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2884 else 2885 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2886 2887 ValueList.push_back(NewGV); 2888 2889 // Remember which value to use for the global initializer. 2890 if (unsigned InitID = Record[2]) 2891 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2892 2893 if (Record.size() > 11) { 2894 if (unsigned ComdatID = Record[11]) { 2895 if (ComdatID > ComdatList.size()) 2896 return error("Invalid global variable comdat ID"); 2897 NewGV->setComdat(ComdatList[ComdatID - 1]); 2898 } 2899 } else if (hasImplicitComdat(RawLinkage)) { 2900 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2901 } 2902 2903 if (Record.size() > 12) { 2904 auto AS = getAttributes(Record[12]).getFnAttributes(); 2905 NewGV->setAttributes(AS); 2906 } 2907 2908 if (Record.size() > 13) { 2909 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2910 } 2911 2912 return Error::success(); 2913 } 2914 2915 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2916 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2917 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2918 // prefixdata, personalityfn, preemption specifier] (name in VST) 2919 // v2: [strtab_offset, strtab_size, v1] 2920 StringRef Name; 2921 std::tie(Name, Record) = readNameFromStrtab(Record); 2922 2923 if (Record.size() < 8) 2924 return error("Invalid record"); 2925 Type *Ty = getTypeByID(Record[0]); 2926 if (!Ty) 2927 return error("Invalid record"); 2928 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2929 Ty = PTy->getElementType(); 2930 auto *FTy = dyn_cast<FunctionType>(Ty); 2931 if (!FTy) 2932 return error("Invalid type for value"); 2933 auto CC = static_cast<CallingConv::ID>(Record[1]); 2934 if (CC & ~CallingConv::MaxID) 2935 return error("Invalid calling convention ID"); 2936 2937 Function *Func = 2938 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2939 2940 Func->setCallingConv(CC); 2941 bool isProto = Record[2]; 2942 uint64_t RawLinkage = Record[3]; 2943 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2944 Func->setAttributes(getAttributes(Record[4])); 2945 2946 unsigned Alignment; 2947 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2948 return Err; 2949 Func->setAlignment(Alignment); 2950 if (Record[6]) { 2951 if (Record[6] - 1 >= SectionTable.size()) 2952 return error("Invalid ID"); 2953 Func->setSection(SectionTable[Record[6] - 1]); 2954 } 2955 // Local linkage must have default visibility. 2956 if (!Func->hasLocalLinkage()) 2957 // FIXME: Change to an error if non-default in 4.0. 2958 Func->setVisibility(getDecodedVisibility(Record[7])); 2959 if (Record.size() > 8 && Record[8]) { 2960 if (Record[8] - 1 >= GCTable.size()) 2961 return error("Invalid ID"); 2962 Func->setGC(GCTable[Record[8] - 1]); 2963 } 2964 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2965 if (Record.size() > 9) 2966 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2967 Func->setUnnamedAddr(UnnamedAddr); 2968 if (Record.size() > 10 && Record[10] != 0) 2969 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2970 2971 if (Record.size() > 11) 2972 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2973 else 2974 upgradeDLLImportExportLinkage(Func, RawLinkage); 2975 2976 if (Record.size() > 12) { 2977 if (unsigned ComdatID = Record[12]) { 2978 if (ComdatID > ComdatList.size()) 2979 return error("Invalid function comdat ID"); 2980 Func->setComdat(ComdatList[ComdatID - 1]); 2981 } 2982 } else if (hasImplicitComdat(RawLinkage)) { 2983 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2984 } 2985 2986 if (Record.size() > 13 && Record[13] != 0) 2987 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2988 2989 if (Record.size() > 14 && Record[14] != 0) 2990 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2991 2992 if (Record.size() > 15) { 2993 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 2994 } 2995 2996 ValueList.push_back(Func); 2997 2998 // If this is a function with a body, remember the prototype we are 2999 // creating now, so that we can match up the body with them later. 3000 if (!isProto) { 3001 Func->setIsMaterializable(true); 3002 FunctionsWithBodies.push_back(Func); 3003 DeferredFunctionInfo[Func] = 0; 3004 } 3005 return Error::success(); 3006 } 3007 3008 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3009 unsigned BitCode, ArrayRef<uint64_t> Record) { 3010 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3011 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3012 // dllstorageclass, threadlocal, unnamed_addr, 3013 // preemption specifier] (name in VST) 3014 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3015 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3016 // preemption specifier] (name in VST) 3017 // v2: [strtab_offset, strtab_size, v1] 3018 StringRef Name; 3019 std::tie(Name, Record) = readNameFromStrtab(Record); 3020 3021 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3022 if (Record.size() < (3 + (unsigned)NewRecord)) 3023 return error("Invalid record"); 3024 unsigned OpNum = 0; 3025 Type *Ty = getTypeByID(Record[OpNum++]); 3026 if (!Ty) 3027 return error("Invalid record"); 3028 3029 unsigned AddrSpace; 3030 if (!NewRecord) { 3031 auto *PTy = dyn_cast<PointerType>(Ty); 3032 if (!PTy) 3033 return error("Invalid type for value"); 3034 Ty = PTy->getElementType(); 3035 AddrSpace = PTy->getAddressSpace(); 3036 } else { 3037 AddrSpace = Record[OpNum++]; 3038 } 3039 3040 auto Val = Record[OpNum++]; 3041 auto Linkage = Record[OpNum++]; 3042 GlobalIndirectSymbol *NewGA; 3043 if (BitCode == bitc::MODULE_CODE_ALIAS || 3044 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3045 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3046 TheModule); 3047 else 3048 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3049 nullptr, TheModule); 3050 // Old bitcode files didn't have visibility field. 3051 // Local linkage must have default visibility. 3052 if (OpNum != Record.size()) { 3053 auto VisInd = OpNum++; 3054 if (!NewGA->hasLocalLinkage()) 3055 // FIXME: Change to an error if non-default in 4.0. 3056 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3057 } 3058 if (BitCode == bitc::MODULE_CODE_ALIAS || 3059 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3060 if (OpNum != Record.size()) 3061 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3062 else 3063 upgradeDLLImportExportLinkage(NewGA, Linkage); 3064 if (OpNum != Record.size()) 3065 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3066 if (OpNum != Record.size()) 3067 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3068 } 3069 if (OpNum != Record.size()) 3070 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3071 ValueList.push_back(NewGA); 3072 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3073 return Error::success(); 3074 } 3075 3076 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3077 bool ShouldLazyLoadMetadata) { 3078 if (ResumeBit) 3079 Stream.JumpToBit(ResumeBit); 3080 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3081 return error("Invalid record"); 3082 3083 SmallVector<uint64_t, 64> Record; 3084 3085 // Read all the records for this module. 3086 while (true) { 3087 BitstreamEntry Entry = Stream.advance(); 3088 3089 switch (Entry.Kind) { 3090 case BitstreamEntry::Error: 3091 return error("Malformed block"); 3092 case BitstreamEntry::EndBlock: 3093 return globalCleanup(); 3094 3095 case BitstreamEntry::SubBlock: 3096 switch (Entry.ID) { 3097 default: // Skip unknown content. 3098 if (Stream.SkipBlock()) 3099 return error("Invalid record"); 3100 break; 3101 case bitc::BLOCKINFO_BLOCK_ID: 3102 if (readBlockInfo()) 3103 return error("Malformed block"); 3104 break; 3105 case bitc::PARAMATTR_BLOCK_ID: 3106 if (Error Err = parseAttributeBlock()) 3107 return Err; 3108 break; 3109 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3110 if (Error Err = parseAttributeGroupBlock()) 3111 return Err; 3112 break; 3113 case bitc::TYPE_BLOCK_ID_NEW: 3114 if (Error Err = parseTypeTable()) 3115 return Err; 3116 break; 3117 case bitc::VALUE_SYMTAB_BLOCK_ID: 3118 if (!SeenValueSymbolTable) { 3119 // Either this is an old form VST without function index and an 3120 // associated VST forward declaration record (which would have caused 3121 // the VST to be jumped to and parsed before it was encountered 3122 // normally in the stream), or there were no function blocks to 3123 // trigger an earlier parsing of the VST. 3124 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3125 if (Error Err = parseValueSymbolTable()) 3126 return Err; 3127 SeenValueSymbolTable = true; 3128 } else { 3129 // We must have had a VST forward declaration record, which caused 3130 // the parser to jump to and parse the VST earlier. 3131 assert(VSTOffset > 0); 3132 if (Stream.SkipBlock()) 3133 return error("Invalid record"); 3134 } 3135 break; 3136 case bitc::CONSTANTS_BLOCK_ID: 3137 if (Error Err = parseConstants()) 3138 return Err; 3139 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3140 return Err; 3141 break; 3142 case bitc::METADATA_BLOCK_ID: 3143 if (ShouldLazyLoadMetadata) { 3144 if (Error Err = rememberAndSkipMetadata()) 3145 return Err; 3146 break; 3147 } 3148 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3149 if (Error Err = MDLoader->parseModuleMetadata()) 3150 return Err; 3151 break; 3152 case bitc::METADATA_KIND_BLOCK_ID: 3153 if (Error Err = MDLoader->parseMetadataKinds()) 3154 return Err; 3155 break; 3156 case bitc::FUNCTION_BLOCK_ID: 3157 // If this is the first function body we've seen, reverse the 3158 // FunctionsWithBodies list. 3159 if (!SeenFirstFunctionBody) { 3160 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3161 if (Error Err = globalCleanup()) 3162 return Err; 3163 SeenFirstFunctionBody = true; 3164 } 3165 3166 if (VSTOffset > 0) { 3167 // If we have a VST forward declaration record, make sure we 3168 // parse the VST now if we haven't already. It is needed to 3169 // set up the DeferredFunctionInfo vector for lazy reading. 3170 if (!SeenValueSymbolTable) { 3171 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3172 return Err; 3173 SeenValueSymbolTable = true; 3174 // Fall through so that we record the NextUnreadBit below. 3175 // This is necessary in case we have an anonymous function that 3176 // is later materialized. Since it will not have a VST entry we 3177 // need to fall back to the lazy parse to find its offset. 3178 } else { 3179 // If we have a VST forward declaration record, but have already 3180 // parsed the VST (just above, when the first function body was 3181 // encountered here), then we are resuming the parse after 3182 // materializing functions. The ResumeBit points to the 3183 // start of the last function block recorded in the 3184 // DeferredFunctionInfo map. Skip it. 3185 if (Stream.SkipBlock()) 3186 return error("Invalid record"); 3187 continue; 3188 } 3189 } 3190 3191 // Support older bitcode files that did not have the function 3192 // index in the VST, nor a VST forward declaration record, as 3193 // well as anonymous functions that do not have VST entries. 3194 // Build the DeferredFunctionInfo vector on the fly. 3195 if (Error Err = rememberAndSkipFunctionBody()) 3196 return Err; 3197 3198 // Suspend parsing when we reach the function bodies. Subsequent 3199 // materialization calls will resume it when necessary. If the bitcode 3200 // file is old, the symbol table will be at the end instead and will not 3201 // have been seen yet. In this case, just finish the parse now. 3202 if (SeenValueSymbolTable) { 3203 NextUnreadBit = Stream.GetCurrentBitNo(); 3204 // After the VST has been parsed, we need to make sure intrinsic name 3205 // are auto-upgraded. 3206 return globalCleanup(); 3207 } 3208 break; 3209 case bitc::USELIST_BLOCK_ID: 3210 if (Error Err = parseUseLists()) 3211 return Err; 3212 break; 3213 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3214 if (Error Err = parseOperandBundleTags()) 3215 return Err; 3216 break; 3217 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3218 if (Error Err = parseSyncScopeNames()) 3219 return Err; 3220 break; 3221 } 3222 continue; 3223 3224 case BitstreamEntry::Record: 3225 // The interesting case. 3226 break; 3227 } 3228 3229 // Read a record. 3230 auto BitCode = Stream.readRecord(Entry.ID, Record); 3231 switch (BitCode) { 3232 default: break; // Default behavior, ignore unknown content. 3233 case bitc::MODULE_CODE_VERSION: { 3234 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3235 if (!VersionOrErr) 3236 return VersionOrErr.takeError(); 3237 UseRelativeIDs = *VersionOrErr >= 1; 3238 break; 3239 } 3240 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3241 std::string S; 3242 if (convertToString(Record, 0, S)) 3243 return error("Invalid record"); 3244 TheModule->setTargetTriple(S); 3245 break; 3246 } 3247 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3248 std::string S; 3249 if (convertToString(Record, 0, S)) 3250 return error("Invalid record"); 3251 TheModule->setDataLayout(S); 3252 break; 3253 } 3254 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3255 std::string S; 3256 if (convertToString(Record, 0, S)) 3257 return error("Invalid record"); 3258 TheModule->setModuleInlineAsm(S); 3259 break; 3260 } 3261 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3262 // FIXME: Remove in 4.0. 3263 std::string S; 3264 if (convertToString(Record, 0, S)) 3265 return error("Invalid record"); 3266 // Ignore value. 3267 break; 3268 } 3269 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3270 std::string S; 3271 if (convertToString(Record, 0, S)) 3272 return error("Invalid record"); 3273 SectionTable.push_back(S); 3274 break; 3275 } 3276 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3277 std::string S; 3278 if (convertToString(Record, 0, S)) 3279 return error("Invalid record"); 3280 GCTable.push_back(S); 3281 break; 3282 } 3283 case bitc::MODULE_CODE_COMDAT: 3284 if (Error Err = parseComdatRecord(Record)) 3285 return Err; 3286 break; 3287 case bitc::MODULE_CODE_GLOBALVAR: 3288 if (Error Err = parseGlobalVarRecord(Record)) 3289 return Err; 3290 break; 3291 case bitc::MODULE_CODE_FUNCTION: 3292 if (Error Err = parseFunctionRecord(Record)) 3293 return Err; 3294 break; 3295 case bitc::MODULE_CODE_IFUNC: 3296 case bitc::MODULE_CODE_ALIAS: 3297 case bitc::MODULE_CODE_ALIAS_OLD: 3298 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3299 return Err; 3300 break; 3301 /// MODULE_CODE_VSTOFFSET: [offset] 3302 case bitc::MODULE_CODE_VSTOFFSET: 3303 if (Record.size() < 1) 3304 return error("Invalid record"); 3305 // Note that we subtract 1 here because the offset is relative to one word 3306 // before the start of the identification or module block, which was 3307 // historically always the start of the regular bitcode header. 3308 VSTOffset = Record[0] - 1; 3309 break; 3310 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3311 case bitc::MODULE_CODE_SOURCE_FILENAME: 3312 SmallString<128> ValueName; 3313 if (convertToString(Record, 0, ValueName)) 3314 return error("Invalid record"); 3315 TheModule->setSourceFileName(ValueName); 3316 break; 3317 } 3318 Record.clear(); 3319 } 3320 } 3321 3322 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3323 bool IsImporting) { 3324 TheModule = M; 3325 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3326 [&](unsigned ID) { return getTypeByID(ID); }); 3327 return parseModule(0, ShouldLazyLoadMetadata); 3328 } 3329 3330 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3331 if (!isa<PointerType>(PtrType)) 3332 return error("Load/Store operand is not a pointer type"); 3333 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3334 3335 if (ValType && ValType != ElemType) 3336 return error("Explicit load/store type does not match pointee " 3337 "type of pointer operand"); 3338 if (!PointerType::isLoadableOrStorableType(ElemType)) 3339 return error("Cannot load/store from pointer"); 3340 return Error::success(); 3341 } 3342 3343 /// Lazily parse the specified function body block. 3344 Error BitcodeReader::parseFunctionBody(Function *F) { 3345 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3346 return error("Invalid record"); 3347 3348 // Unexpected unresolved metadata when parsing function. 3349 if (MDLoader->hasFwdRefs()) 3350 return error("Invalid function metadata: incoming forward references"); 3351 3352 InstructionList.clear(); 3353 unsigned ModuleValueListSize = ValueList.size(); 3354 unsigned ModuleMDLoaderSize = MDLoader->size(); 3355 3356 // Add all the function arguments to the value table. 3357 for (Argument &I : F->args()) 3358 ValueList.push_back(&I); 3359 3360 unsigned NextValueNo = ValueList.size(); 3361 BasicBlock *CurBB = nullptr; 3362 unsigned CurBBNo = 0; 3363 3364 DebugLoc LastLoc; 3365 auto getLastInstruction = [&]() -> Instruction * { 3366 if (CurBB && !CurBB->empty()) 3367 return &CurBB->back(); 3368 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3369 !FunctionBBs[CurBBNo - 1]->empty()) 3370 return &FunctionBBs[CurBBNo - 1]->back(); 3371 return nullptr; 3372 }; 3373 3374 std::vector<OperandBundleDef> OperandBundles; 3375 3376 // Read all the records. 3377 SmallVector<uint64_t, 64> Record; 3378 3379 while (true) { 3380 BitstreamEntry Entry = Stream.advance(); 3381 3382 switch (Entry.Kind) { 3383 case BitstreamEntry::Error: 3384 return error("Malformed block"); 3385 case BitstreamEntry::EndBlock: 3386 goto OutOfRecordLoop; 3387 3388 case BitstreamEntry::SubBlock: 3389 switch (Entry.ID) { 3390 default: // Skip unknown content. 3391 if (Stream.SkipBlock()) 3392 return error("Invalid record"); 3393 break; 3394 case bitc::CONSTANTS_BLOCK_ID: 3395 if (Error Err = parseConstants()) 3396 return Err; 3397 NextValueNo = ValueList.size(); 3398 break; 3399 case bitc::VALUE_SYMTAB_BLOCK_ID: 3400 if (Error Err = parseValueSymbolTable()) 3401 return Err; 3402 break; 3403 case bitc::METADATA_ATTACHMENT_ID: 3404 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3405 return Err; 3406 break; 3407 case bitc::METADATA_BLOCK_ID: 3408 assert(DeferredMetadataInfo.empty() && 3409 "Must read all module-level metadata before function-level"); 3410 if (Error Err = MDLoader->parseFunctionMetadata()) 3411 return Err; 3412 break; 3413 case bitc::USELIST_BLOCK_ID: 3414 if (Error Err = parseUseLists()) 3415 return Err; 3416 break; 3417 } 3418 continue; 3419 3420 case BitstreamEntry::Record: 3421 // The interesting case. 3422 break; 3423 } 3424 3425 // Read a record. 3426 Record.clear(); 3427 Instruction *I = nullptr; 3428 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3429 switch (BitCode) { 3430 default: // Default behavior: reject 3431 return error("Invalid value"); 3432 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3433 if (Record.size() < 1 || Record[0] == 0) 3434 return error("Invalid record"); 3435 // Create all the basic blocks for the function. 3436 FunctionBBs.resize(Record[0]); 3437 3438 // See if anything took the address of blocks in this function. 3439 auto BBFRI = BasicBlockFwdRefs.find(F); 3440 if (BBFRI == BasicBlockFwdRefs.end()) { 3441 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3442 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3443 } else { 3444 auto &BBRefs = BBFRI->second; 3445 // Check for invalid basic block references. 3446 if (BBRefs.size() > FunctionBBs.size()) 3447 return error("Invalid ID"); 3448 assert(!BBRefs.empty() && "Unexpected empty array"); 3449 assert(!BBRefs.front() && "Invalid reference to entry block"); 3450 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3451 ++I) 3452 if (I < RE && BBRefs[I]) { 3453 BBRefs[I]->insertInto(F); 3454 FunctionBBs[I] = BBRefs[I]; 3455 } else { 3456 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3457 } 3458 3459 // Erase from the table. 3460 BasicBlockFwdRefs.erase(BBFRI); 3461 } 3462 3463 CurBB = FunctionBBs[0]; 3464 continue; 3465 } 3466 3467 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3468 // This record indicates that the last instruction is at the same 3469 // location as the previous instruction with a location. 3470 I = getLastInstruction(); 3471 3472 if (!I) 3473 return error("Invalid record"); 3474 I->setDebugLoc(LastLoc); 3475 I = nullptr; 3476 continue; 3477 3478 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3479 I = getLastInstruction(); 3480 if (!I || Record.size() < 4) 3481 return error("Invalid record"); 3482 3483 unsigned Line = Record[0], Col = Record[1]; 3484 unsigned ScopeID = Record[2], IAID = Record[3]; 3485 3486 MDNode *Scope = nullptr, *IA = nullptr; 3487 if (ScopeID) { 3488 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3489 if (!Scope) 3490 return error("Invalid record"); 3491 } 3492 if (IAID) { 3493 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3494 if (!IA) 3495 return error("Invalid record"); 3496 } 3497 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3498 I->setDebugLoc(LastLoc); 3499 I = nullptr; 3500 continue; 3501 } 3502 3503 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3504 unsigned OpNum = 0; 3505 Value *LHS, *RHS; 3506 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3507 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3508 OpNum+1 > Record.size()) 3509 return error("Invalid record"); 3510 3511 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3512 if (Opc == -1) 3513 return error("Invalid record"); 3514 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3515 InstructionList.push_back(I); 3516 if (OpNum < Record.size()) { 3517 if (Opc == Instruction::Add || 3518 Opc == Instruction::Sub || 3519 Opc == Instruction::Mul || 3520 Opc == Instruction::Shl) { 3521 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3522 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3523 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3524 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3525 } else if (Opc == Instruction::SDiv || 3526 Opc == Instruction::UDiv || 3527 Opc == Instruction::LShr || 3528 Opc == Instruction::AShr) { 3529 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3530 cast<BinaryOperator>(I)->setIsExact(true); 3531 } else if (isa<FPMathOperator>(I)) { 3532 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3533 if (FMF.any()) 3534 I->setFastMathFlags(FMF); 3535 } 3536 3537 } 3538 break; 3539 } 3540 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3541 unsigned OpNum = 0; 3542 Value *Op; 3543 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3544 OpNum+2 != Record.size()) 3545 return error("Invalid record"); 3546 3547 Type *ResTy = getTypeByID(Record[OpNum]); 3548 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3549 if (Opc == -1 || !ResTy) 3550 return error("Invalid record"); 3551 Instruction *Temp = nullptr; 3552 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3553 if (Temp) { 3554 InstructionList.push_back(Temp); 3555 CurBB->getInstList().push_back(Temp); 3556 } 3557 } else { 3558 auto CastOp = (Instruction::CastOps)Opc; 3559 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3560 return error("Invalid cast"); 3561 I = CastInst::Create(CastOp, Op, ResTy); 3562 } 3563 InstructionList.push_back(I); 3564 break; 3565 } 3566 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3567 case bitc::FUNC_CODE_INST_GEP_OLD: 3568 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3569 unsigned OpNum = 0; 3570 3571 Type *Ty; 3572 bool InBounds; 3573 3574 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3575 InBounds = Record[OpNum++]; 3576 Ty = getTypeByID(Record[OpNum++]); 3577 } else { 3578 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3579 Ty = nullptr; 3580 } 3581 3582 Value *BasePtr; 3583 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3584 return error("Invalid record"); 3585 3586 if (!Ty) 3587 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3588 ->getElementType(); 3589 else if (Ty != 3590 cast<PointerType>(BasePtr->getType()->getScalarType()) 3591 ->getElementType()) 3592 return error( 3593 "Explicit gep type does not match pointee type of pointer operand"); 3594 3595 SmallVector<Value*, 16> GEPIdx; 3596 while (OpNum != Record.size()) { 3597 Value *Op; 3598 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3599 return error("Invalid record"); 3600 GEPIdx.push_back(Op); 3601 } 3602 3603 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3604 3605 InstructionList.push_back(I); 3606 if (InBounds) 3607 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3608 break; 3609 } 3610 3611 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3612 // EXTRACTVAL: [opty, opval, n x indices] 3613 unsigned OpNum = 0; 3614 Value *Agg; 3615 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3616 return error("Invalid record"); 3617 3618 unsigned RecSize = Record.size(); 3619 if (OpNum == RecSize) 3620 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3621 3622 SmallVector<unsigned, 4> EXTRACTVALIdx; 3623 Type *CurTy = Agg->getType(); 3624 for (; OpNum != RecSize; ++OpNum) { 3625 bool IsArray = CurTy->isArrayTy(); 3626 bool IsStruct = CurTy->isStructTy(); 3627 uint64_t Index = Record[OpNum]; 3628 3629 if (!IsStruct && !IsArray) 3630 return error("EXTRACTVAL: Invalid type"); 3631 if ((unsigned)Index != Index) 3632 return error("Invalid value"); 3633 if (IsStruct && Index >= CurTy->subtypes().size()) 3634 return error("EXTRACTVAL: Invalid struct index"); 3635 if (IsArray && Index >= CurTy->getArrayNumElements()) 3636 return error("EXTRACTVAL: Invalid array index"); 3637 EXTRACTVALIdx.push_back((unsigned)Index); 3638 3639 if (IsStruct) 3640 CurTy = CurTy->subtypes()[Index]; 3641 else 3642 CurTy = CurTy->subtypes()[0]; 3643 } 3644 3645 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3646 InstructionList.push_back(I); 3647 break; 3648 } 3649 3650 case bitc::FUNC_CODE_INST_INSERTVAL: { 3651 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3652 unsigned OpNum = 0; 3653 Value *Agg; 3654 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3655 return error("Invalid record"); 3656 Value *Val; 3657 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3658 return error("Invalid record"); 3659 3660 unsigned RecSize = Record.size(); 3661 if (OpNum == RecSize) 3662 return error("INSERTVAL: Invalid instruction with 0 indices"); 3663 3664 SmallVector<unsigned, 4> INSERTVALIdx; 3665 Type *CurTy = Agg->getType(); 3666 for (; OpNum != RecSize; ++OpNum) { 3667 bool IsArray = CurTy->isArrayTy(); 3668 bool IsStruct = CurTy->isStructTy(); 3669 uint64_t Index = Record[OpNum]; 3670 3671 if (!IsStruct && !IsArray) 3672 return error("INSERTVAL: Invalid type"); 3673 if ((unsigned)Index != Index) 3674 return error("Invalid value"); 3675 if (IsStruct && Index >= CurTy->subtypes().size()) 3676 return error("INSERTVAL: Invalid struct index"); 3677 if (IsArray && Index >= CurTy->getArrayNumElements()) 3678 return error("INSERTVAL: Invalid array index"); 3679 3680 INSERTVALIdx.push_back((unsigned)Index); 3681 if (IsStruct) 3682 CurTy = CurTy->subtypes()[Index]; 3683 else 3684 CurTy = CurTy->subtypes()[0]; 3685 } 3686 3687 if (CurTy != Val->getType()) 3688 return error("Inserted value type doesn't match aggregate type"); 3689 3690 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3691 InstructionList.push_back(I); 3692 break; 3693 } 3694 3695 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3696 // obsolete form of select 3697 // handles select i1 ... in old bitcode 3698 unsigned OpNum = 0; 3699 Value *TrueVal, *FalseVal, *Cond; 3700 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3701 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3702 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3703 return error("Invalid record"); 3704 3705 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3706 InstructionList.push_back(I); 3707 break; 3708 } 3709 3710 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3711 // new form of select 3712 // handles select i1 or select [N x i1] 3713 unsigned OpNum = 0; 3714 Value *TrueVal, *FalseVal, *Cond; 3715 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3716 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3717 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3718 return error("Invalid record"); 3719 3720 // select condition can be either i1 or [N x i1] 3721 if (VectorType* vector_type = 3722 dyn_cast<VectorType>(Cond->getType())) { 3723 // expect <n x i1> 3724 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3725 return error("Invalid type for value"); 3726 } else { 3727 // expect i1 3728 if (Cond->getType() != Type::getInt1Ty(Context)) 3729 return error("Invalid type for value"); 3730 } 3731 3732 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3733 InstructionList.push_back(I); 3734 break; 3735 } 3736 3737 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3738 unsigned OpNum = 0; 3739 Value *Vec, *Idx; 3740 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3741 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3742 return error("Invalid record"); 3743 if (!Vec->getType()->isVectorTy()) 3744 return error("Invalid type for value"); 3745 I = ExtractElementInst::Create(Vec, Idx); 3746 InstructionList.push_back(I); 3747 break; 3748 } 3749 3750 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3751 unsigned OpNum = 0; 3752 Value *Vec, *Elt, *Idx; 3753 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3754 return error("Invalid record"); 3755 if (!Vec->getType()->isVectorTy()) 3756 return error("Invalid type for value"); 3757 if (popValue(Record, OpNum, NextValueNo, 3758 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3759 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3760 return error("Invalid record"); 3761 I = InsertElementInst::Create(Vec, Elt, Idx); 3762 InstructionList.push_back(I); 3763 break; 3764 } 3765 3766 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3767 unsigned OpNum = 0; 3768 Value *Vec1, *Vec2, *Mask; 3769 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3770 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3771 return error("Invalid record"); 3772 3773 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3774 return error("Invalid record"); 3775 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3776 return error("Invalid type for value"); 3777 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3778 InstructionList.push_back(I); 3779 break; 3780 } 3781 3782 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3783 // Old form of ICmp/FCmp returning bool 3784 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3785 // both legal on vectors but had different behaviour. 3786 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3787 // FCmp/ICmp returning bool or vector of bool 3788 3789 unsigned OpNum = 0; 3790 Value *LHS, *RHS; 3791 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3792 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3793 return error("Invalid record"); 3794 3795 unsigned PredVal = Record[OpNum]; 3796 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3797 FastMathFlags FMF; 3798 if (IsFP && Record.size() > OpNum+1) 3799 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3800 3801 if (OpNum+1 != Record.size()) 3802 return error("Invalid record"); 3803 3804 if (LHS->getType()->isFPOrFPVectorTy()) 3805 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3806 else 3807 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3808 3809 if (FMF.any()) 3810 I->setFastMathFlags(FMF); 3811 InstructionList.push_back(I); 3812 break; 3813 } 3814 3815 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3816 { 3817 unsigned Size = Record.size(); 3818 if (Size == 0) { 3819 I = ReturnInst::Create(Context); 3820 InstructionList.push_back(I); 3821 break; 3822 } 3823 3824 unsigned OpNum = 0; 3825 Value *Op = nullptr; 3826 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3827 return error("Invalid record"); 3828 if (OpNum != Record.size()) 3829 return error("Invalid record"); 3830 3831 I = ReturnInst::Create(Context, Op); 3832 InstructionList.push_back(I); 3833 break; 3834 } 3835 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3836 if (Record.size() != 1 && Record.size() != 3) 3837 return error("Invalid record"); 3838 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3839 if (!TrueDest) 3840 return error("Invalid record"); 3841 3842 if (Record.size() == 1) { 3843 I = BranchInst::Create(TrueDest); 3844 InstructionList.push_back(I); 3845 } 3846 else { 3847 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3848 Value *Cond = getValue(Record, 2, NextValueNo, 3849 Type::getInt1Ty(Context)); 3850 if (!FalseDest || !Cond) 3851 return error("Invalid record"); 3852 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3853 InstructionList.push_back(I); 3854 } 3855 break; 3856 } 3857 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3858 if (Record.size() != 1 && Record.size() != 2) 3859 return error("Invalid record"); 3860 unsigned Idx = 0; 3861 Value *CleanupPad = 3862 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3863 if (!CleanupPad) 3864 return error("Invalid record"); 3865 BasicBlock *UnwindDest = nullptr; 3866 if (Record.size() == 2) { 3867 UnwindDest = getBasicBlock(Record[Idx++]); 3868 if (!UnwindDest) 3869 return error("Invalid record"); 3870 } 3871 3872 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3873 InstructionList.push_back(I); 3874 break; 3875 } 3876 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3877 if (Record.size() != 2) 3878 return error("Invalid record"); 3879 unsigned Idx = 0; 3880 Value *CatchPad = 3881 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3882 if (!CatchPad) 3883 return error("Invalid record"); 3884 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3885 if (!BB) 3886 return error("Invalid record"); 3887 3888 I = CatchReturnInst::Create(CatchPad, BB); 3889 InstructionList.push_back(I); 3890 break; 3891 } 3892 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3893 // We must have, at minimum, the outer scope and the number of arguments. 3894 if (Record.size() < 2) 3895 return error("Invalid record"); 3896 3897 unsigned Idx = 0; 3898 3899 Value *ParentPad = 3900 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3901 3902 unsigned NumHandlers = Record[Idx++]; 3903 3904 SmallVector<BasicBlock *, 2> Handlers; 3905 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3906 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3907 if (!BB) 3908 return error("Invalid record"); 3909 Handlers.push_back(BB); 3910 } 3911 3912 BasicBlock *UnwindDest = nullptr; 3913 if (Idx + 1 == Record.size()) { 3914 UnwindDest = getBasicBlock(Record[Idx++]); 3915 if (!UnwindDest) 3916 return error("Invalid record"); 3917 } 3918 3919 if (Record.size() != Idx) 3920 return error("Invalid record"); 3921 3922 auto *CatchSwitch = 3923 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3924 for (BasicBlock *Handler : Handlers) 3925 CatchSwitch->addHandler(Handler); 3926 I = CatchSwitch; 3927 InstructionList.push_back(I); 3928 break; 3929 } 3930 case bitc::FUNC_CODE_INST_CATCHPAD: 3931 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3932 // We must have, at minimum, the outer scope and the number of arguments. 3933 if (Record.size() < 2) 3934 return error("Invalid record"); 3935 3936 unsigned Idx = 0; 3937 3938 Value *ParentPad = 3939 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3940 3941 unsigned NumArgOperands = Record[Idx++]; 3942 3943 SmallVector<Value *, 2> Args; 3944 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3945 Value *Val; 3946 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3947 return error("Invalid record"); 3948 Args.push_back(Val); 3949 } 3950 3951 if (Record.size() != Idx) 3952 return error("Invalid record"); 3953 3954 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3955 I = CleanupPadInst::Create(ParentPad, Args); 3956 else 3957 I = CatchPadInst::Create(ParentPad, Args); 3958 InstructionList.push_back(I); 3959 break; 3960 } 3961 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3962 // Check magic 3963 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3964 // "New" SwitchInst format with case ranges. The changes to write this 3965 // format were reverted but we still recognize bitcode that uses it. 3966 // Hopefully someday we will have support for case ranges and can use 3967 // this format again. 3968 3969 Type *OpTy = getTypeByID(Record[1]); 3970 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3971 3972 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3973 BasicBlock *Default = getBasicBlock(Record[3]); 3974 if (!OpTy || !Cond || !Default) 3975 return error("Invalid record"); 3976 3977 unsigned NumCases = Record[4]; 3978 3979 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3980 InstructionList.push_back(SI); 3981 3982 unsigned CurIdx = 5; 3983 for (unsigned i = 0; i != NumCases; ++i) { 3984 SmallVector<ConstantInt*, 1> CaseVals; 3985 unsigned NumItems = Record[CurIdx++]; 3986 for (unsigned ci = 0; ci != NumItems; ++ci) { 3987 bool isSingleNumber = Record[CurIdx++]; 3988 3989 APInt Low; 3990 unsigned ActiveWords = 1; 3991 if (ValueBitWidth > 64) 3992 ActiveWords = Record[CurIdx++]; 3993 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3994 ValueBitWidth); 3995 CurIdx += ActiveWords; 3996 3997 if (!isSingleNumber) { 3998 ActiveWords = 1; 3999 if (ValueBitWidth > 64) 4000 ActiveWords = Record[CurIdx++]; 4001 APInt High = readWideAPInt( 4002 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4003 CurIdx += ActiveWords; 4004 4005 // FIXME: It is not clear whether values in the range should be 4006 // compared as signed or unsigned values. The partially 4007 // implemented changes that used this format in the past used 4008 // unsigned comparisons. 4009 for ( ; Low.ule(High); ++Low) 4010 CaseVals.push_back(ConstantInt::get(Context, Low)); 4011 } else 4012 CaseVals.push_back(ConstantInt::get(Context, Low)); 4013 } 4014 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4015 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4016 cve = CaseVals.end(); cvi != cve; ++cvi) 4017 SI->addCase(*cvi, DestBB); 4018 } 4019 I = SI; 4020 break; 4021 } 4022 4023 // Old SwitchInst format without case ranges. 4024 4025 if (Record.size() < 3 || (Record.size() & 1) == 0) 4026 return error("Invalid record"); 4027 Type *OpTy = getTypeByID(Record[0]); 4028 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4029 BasicBlock *Default = getBasicBlock(Record[2]); 4030 if (!OpTy || !Cond || !Default) 4031 return error("Invalid record"); 4032 unsigned NumCases = (Record.size()-3)/2; 4033 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4034 InstructionList.push_back(SI); 4035 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4036 ConstantInt *CaseVal = 4037 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4038 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4039 if (!CaseVal || !DestBB) { 4040 delete SI; 4041 return error("Invalid record"); 4042 } 4043 SI->addCase(CaseVal, DestBB); 4044 } 4045 I = SI; 4046 break; 4047 } 4048 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4049 if (Record.size() < 2) 4050 return error("Invalid record"); 4051 Type *OpTy = getTypeByID(Record[0]); 4052 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4053 if (!OpTy || !Address) 4054 return error("Invalid record"); 4055 unsigned NumDests = Record.size()-2; 4056 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4057 InstructionList.push_back(IBI); 4058 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4059 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4060 IBI->addDestination(DestBB); 4061 } else { 4062 delete IBI; 4063 return error("Invalid record"); 4064 } 4065 } 4066 I = IBI; 4067 break; 4068 } 4069 4070 case bitc::FUNC_CODE_INST_INVOKE: { 4071 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4072 if (Record.size() < 4) 4073 return error("Invalid record"); 4074 unsigned OpNum = 0; 4075 AttributeList PAL = getAttributes(Record[OpNum++]); 4076 unsigned CCInfo = Record[OpNum++]; 4077 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4078 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4079 4080 FunctionType *FTy = nullptr; 4081 if (CCInfo >> 13 & 1 && 4082 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4083 return error("Explicit invoke type is not a function type"); 4084 4085 Value *Callee; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4087 return error("Invalid record"); 4088 4089 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4090 if (!CalleeTy) 4091 return error("Callee is not a pointer"); 4092 if (!FTy) { 4093 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4094 if (!FTy) 4095 return error("Callee is not of pointer to function type"); 4096 } else if (CalleeTy->getElementType() != FTy) 4097 return error("Explicit invoke type does not match pointee type of " 4098 "callee operand"); 4099 if (Record.size() < FTy->getNumParams() + OpNum) 4100 return error("Insufficient operands to call"); 4101 4102 SmallVector<Value*, 16> Ops; 4103 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4104 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4105 FTy->getParamType(i))); 4106 if (!Ops.back()) 4107 return error("Invalid record"); 4108 } 4109 4110 if (!FTy->isVarArg()) { 4111 if (Record.size() != OpNum) 4112 return error("Invalid record"); 4113 } else { 4114 // Read type/value pairs for varargs params. 4115 while (OpNum != Record.size()) { 4116 Value *Op; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4118 return error("Invalid record"); 4119 Ops.push_back(Op); 4120 } 4121 } 4122 4123 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4124 OperandBundles.clear(); 4125 InstructionList.push_back(I); 4126 cast<InvokeInst>(I)->setCallingConv( 4127 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4128 cast<InvokeInst>(I)->setAttributes(PAL); 4129 break; 4130 } 4131 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4132 unsigned Idx = 0; 4133 Value *Val = nullptr; 4134 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4135 return error("Invalid record"); 4136 I = ResumeInst::Create(Val); 4137 InstructionList.push_back(I); 4138 break; 4139 } 4140 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4141 I = new UnreachableInst(Context); 4142 InstructionList.push_back(I); 4143 break; 4144 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4145 if (Record.size() < 1 || ((Record.size()-1)&1)) 4146 return error("Invalid record"); 4147 Type *Ty = getTypeByID(Record[0]); 4148 if (!Ty) 4149 return error("Invalid record"); 4150 4151 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4152 InstructionList.push_back(PN); 4153 4154 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4155 Value *V; 4156 // With the new function encoding, it is possible that operands have 4157 // negative IDs (for forward references). Use a signed VBR 4158 // representation to keep the encoding small. 4159 if (UseRelativeIDs) 4160 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4161 else 4162 V = getValue(Record, 1+i, NextValueNo, Ty); 4163 BasicBlock *BB = getBasicBlock(Record[2+i]); 4164 if (!V || !BB) 4165 return error("Invalid record"); 4166 PN->addIncoming(V, BB); 4167 } 4168 I = PN; 4169 break; 4170 } 4171 4172 case bitc::FUNC_CODE_INST_LANDINGPAD: 4173 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4174 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4175 unsigned Idx = 0; 4176 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4177 if (Record.size() < 3) 4178 return error("Invalid record"); 4179 } else { 4180 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4181 if (Record.size() < 4) 4182 return error("Invalid record"); 4183 } 4184 Type *Ty = getTypeByID(Record[Idx++]); 4185 if (!Ty) 4186 return error("Invalid record"); 4187 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4188 Value *PersFn = nullptr; 4189 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4190 return error("Invalid record"); 4191 4192 if (!F->hasPersonalityFn()) 4193 F->setPersonalityFn(cast<Constant>(PersFn)); 4194 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4195 return error("Personality function mismatch"); 4196 } 4197 4198 bool IsCleanup = !!Record[Idx++]; 4199 unsigned NumClauses = Record[Idx++]; 4200 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4201 LP->setCleanup(IsCleanup); 4202 for (unsigned J = 0; J != NumClauses; ++J) { 4203 LandingPadInst::ClauseType CT = 4204 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4205 Value *Val; 4206 4207 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4208 delete LP; 4209 return error("Invalid record"); 4210 } 4211 4212 assert((CT != LandingPadInst::Catch || 4213 !isa<ArrayType>(Val->getType())) && 4214 "Catch clause has a invalid type!"); 4215 assert((CT != LandingPadInst::Filter || 4216 isa<ArrayType>(Val->getType())) && 4217 "Filter clause has invalid type!"); 4218 LP->addClause(cast<Constant>(Val)); 4219 } 4220 4221 I = LP; 4222 InstructionList.push_back(I); 4223 break; 4224 } 4225 4226 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4227 if (Record.size() != 4) 4228 return error("Invalid record"); 4229 uint64_t AlignRecord = Record[3]; 4230 const uint64_t InAllocaMask = uint64_t(1) << 5; 4231 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4232 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4233 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4234 SwiftErrorMask; 4235 bool InAlloca = AlignRecord & InAllocaMask; 4236 bool SwiftError = AlignRecord & SwiftErrorMask; 4237 Type *Ty = getTypeByID(Record[0]); 4238 if ((AlignRecord & ExplicitTypeMask) == 0) { 4239 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4240 if (!PTy) 4241 return error("Old-style alloca with a non-pointer type"); 4242 Ty = PTy->getElementType(); 4243 } 4244 Type *OpTy = getTypeByID(Record[1]); 4245 Value *Size = getFnValueByID(Record[2], OpTy); 4246 unsigned Align; 4247 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4248 return Err; 4249 } 4250 if (!Ty || !Size) 4251 return error("Invalid record"); 4252 4253 // FIXME: Make this an optional field. 4254 const DataLayout &DL = TheModule->getDataLayout(); 4255 unsigned AS = DL.getAllocaAddrSpace(); 4256 4257 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4258 AI->setUsedWithInAlloca(InAlloca); 4259 AI->setSwiftError(SwiftError); 4260 I = AI; 4261 InstructionList.push_back(I); 4262 break; 4263 } 4264 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4265 unsigned OpNum = 0; 4266 Value *Op; 4267 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4268 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4269 return error("Invalid record"); 4270 4271 Type *Ty = nullptr; 4272 if (OpNum + 3 == Record.size()) 4273 Ty = getTypeByID(Record[OpNum++]); 4274 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4275 return Err; 4276 if (!Ty) 4277 Ty = cast<PointerType>(Op->getType())->getElementType(); 4278 4279 unsigned Align; 4280 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4281 return Err; 4282 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4283 4284 InstructionList.push_back(I); 4285 break; 4286 } 4287 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4288 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4289 unsigned OpNum = 0; 4290 Value *Op; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4292 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4293 return error("Invalid record"); 4294 4295 Type *Ty = nullptr; 4296 if (OpNum + 5 == Record.size()) 4297 Ty = getTypeByID(Record[OpNum++]); 4298 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4299 return Err; 4300 if (!Ty) 4301 Ty = cast<PointerType>(Op->getType())->getElementType(); 4302 4303 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4304 if (Ordering == AtomicOrdering::NotAtomic || 4305 Ordering == AtomicOrdering::Release || 4306 Ordering == AtomicOrdering::AcquireRelease) 4307 return error("Invalid record"); 4308 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4309 return error("Invalid record"); 4310 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4311 4312 unsigned Align; 4313 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4314 return Err; 4315 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4316 4317 InstructionList.push_back(I); 4318 break; 4319 } 4320 case bitc::FUNC_CODE_INST_STORE: 4321 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4322 unsigned OpNum = 0; 4323 Value *Val, *Ptr; 4324 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4325 (BitCode == bitc::FUNC_CODE_INST_STORE 4326 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4327 : popValue(Record, OpNum, NextValueNo, 4328 cast<PointerType>(Ptr->getType())->getElementType(), 4329 Val)) || 4330 OpNum + 2 != Record.size()) 4331 return error("Invalid record"); 4332 4333 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4334 return Err; 4335 unsigned Align; 4336 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4337 return Err; 4338 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4339 InstructionList.push_back(I); 4340 break; 4341 } 4342 case bitc::FUNC_CODE_INST_STOREATOMIC: 4343 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4344 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4345 unsigned OpNum = 0; 4346 Value *Val, *Ptr; 4347 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4348 !isa<PointerType>(Ptr->getType()) || 4349 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4350 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4351 : popValue(Record, OpNum, NextValueNo, 4352 cast<PointerType>(Ptr->getType())->getElementType(), 4353 Val)) || 4354 OpNum + 4 != Record.size()) 4355 return error("Invalid record"); 4356 4357 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4358 return Err; 4359 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4360 if (Ordering == AtomicOrdering::NotAtomic || 4361 Ordering == AtomicOrdering::Acquire || 4362 Ordering == AtomicOrdering::AcquireRelease) 4363 return error("Invalid record"); 4364 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4365 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4366 return error("Invalid record"); 4367 4368 unsigned Align; 4369 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4370 return Err; 4371 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4372 InstructionList.push_back(I); 4373 break; 4374 } 4375 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4376 case bitc::FUNC_CODE_INST_CMPXCHG: { 4377 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4378 // failureordering?, isweak?] 4379 unsigned OpNum = 0; 4380 Value *Ptr, *Cmp, *New; 4381 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4382 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4383 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4384 : popValue(Record, OpNum, NextValueNo, 4385 cast<PointerType>(Ptr->getType())->getElementType(), 4386 Cmp)) || 4387 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4388 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4389 return error("Invalid record"); 4390 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4391 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4392 SuccessOrdering == AtomicOrdering::Unordered) 4393 return error("Invalid record"); 4394 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4395 4396 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4397 return Err; 4398 AtomicOrdering FailureOrdering; 4399 if (Record.size() < 7) 4400 FailureOrdering = 4401 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4402 else 4403 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4404 4405 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4406 SSID); 4407 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4408 4409 if (Record.size() < 8) { 4410 // Before weak cmpxchgs existed, the instruction simply returned the 4411 // value loaded from memory, so bitcode files from that era will be 4412 // expecting the first component of a modern cmpxchg. 4413 CurBB->getInstList().push_back(I); 4414 I = ExtractValueInst::Create(I, 0); 4415 } else { 4416 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4417 } 4418 4419 InstructionList.push_back(I); 4420 break; 4421 } 4422 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4423 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4424 unsigned OpNum = 0; 4425 Value *Ptr, *Val; 4426 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4427 !isa<PointerType>(Ptr->getType()) || 4428 popValue(Record, OpNum, NextValueNo, 4429 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4430 OpNum+4 != Record.size()) 4431 return error("Invalid record"); 4432 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4433 if (Operation < AtomicRMWInst::FIRST_BINOP || 4434 Operation > AtomicRMWInst::LAST_BINOP) 4435 return error("Invalid record"); 4436 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4437 if (Ordering == AtomicOrdering::NotAtomic || 4438 Ordering == AtomicOrdering::Unordered) 4439 return error("Invalid record"); 4440 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4441 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4442 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4443 InstructionList.push_back(I); 4444 break; 4445 } 4446 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4447 if (2 != Record.size()) 4448 return error("Invalid record"); 4449 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4450 if (Ordering == AtomicOrdering::NotAtomic || 4451 Ordering == AtomicOrdering::Unordered || 4452 Ordering == AtomicOrdering::Monotonic) 4453 return error("Invalid record"); 4454 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4455 I = new FenceInst(Context, Ordering, SSID); 4456 InstructionList.push_back(I); 4457 break; 4458 } 4459 case bitc::FUNC_CODE_INST_CALL: { 4460 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4461 if (Record.size() < 3) 4462 return error("Invalid record"); 4463 4464 unsigned OpNum = 0; 4465 AttributeList PAL = getAttributes(Record[OpNum++]); 4466 unsigned CCInfo = Record[OpNum++]; 4467 4468 FastMathFlags FMF; 4469 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4470 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4471 if (!FMF.any()) 4472 return error("Fast math flags indicator set for call with no FMF"); 4473 } 4474 4475 FunctionType *FTy = nullptr; 4476 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4477 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4478 return error("Explicit call type is not a function type"); 4479 4480 Value *Callee; 4481 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4482 return error("Invalid record"); 4483 4484 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4485 if (!OpTy) 4486 return error("Callee is not a pointer type"); 4487 if (!FTy) { 4488 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4489 if (!FTy) 4490 return error("Callee is not of pointer to function type"); 4491 } else if (OpTy->getElementType() != FTy) 4492 return error("Explicit call type does not match pointee type of " 4493 "callee operand"); 4494 if (Record.size() < FTy->getNumParams() + OpNum) 4495 return error("Insufficient operands to call"); 4496 4497 SmallVector<Value*, 16> Args; 4498 // Read the fixed params. 4499 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4500 if (FTy->getParamType(i)->isLabelTy()) 4501 Args.push_back(getBasicBlock(Record[OpNum])); 4502 else 4503 Args.push_back(getValue(Record, OpNum, NextValueNo, 4504 FTy->getParamType(i))); 4505 if (!Args.back()) 4506 return error("Invalid record"); 4507 } 4508 4509 // Read type/value pairs for varargs params. 4510 if (!FTy->isVarArg()) { 4511 if (OpNum != Record.size()) 4512 return error("Invalid record"); 4513 } else { 4514 while (OpNum != Record.size()) { 4515 Value *Op; 4516 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4517 return error("Invalid record"); 4518 Args.push_back(Op); 4519 } 4520 } 4521 4522 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4523 OperandBundles.clear(); 4524 InstructionList.push_back(I); 4525 cast<CallInst>(I)->setCallingConv( 4526 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4527 CallInst::TailCallKind TCK = CallInst::TCK_None; 4528 if (CCInfo & 1 << bitc::CALL_TAIL) 4529 TCK = CallInst::TCK_Tail; 4530 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4531 TCK = CallInst::TCK_MustTail; 4532 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4533 TCK = CallInst::TCK_NoTail; 4534 cast<CallInst>(I)->setTailCallKind(TCK); 4535 cast<CallInst>(I)->setAttributes(PAL); 4536 if (FMF.any()) { 4537 if (!isa<FPMathOperator>(I)) 4538 return error("Fast-math-flags specified for call without " 4539 "floating-point scalar or vector return type"); 4540 I->setFastMathFlags(FMF); 4541 } 4542 break; 4543 } 4544 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4545 if (Record.size() < 3) 4546 return error("Invalid record"); 4547 Type *OpTy = getTypeByID(Record[0]); 4548 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4549 Type *ResTy = getTypeByID(Record[2]); 4550 if (!OpTy || !Op || !ResTy) 4551 return error("Invalid record"); 4552 I = new VAArgInst(Op, ResTy); 4553 InstructionList.push_back(I); 4554 break; 4555 } 4556 4557 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4558 // A call or an invoke can be optionally prefixed with some variable 4559 // number of operand bundle blocks. These blocks are read into 4560 // OperandBundles and consumed at the next call or invoke instruction. 4561 4562 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4563 return error("Invalid record"); 4564 4565 std::vector<Value *> Inputs; 4566 4567 unsigned OpNum = 1; 4568 while (OpNum != Record.size()) { 4569 Value *Op; 4570 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4571 return error("Invalid record"); 4572 Inputs.push_back(Op); 4573 } 4574 4575 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4576 continue; 4577 } 4578 } 4579 4580 // Add instruction to end of current BB. If there is no current BB, reject 4581 // this file. 4582 if (!CurBB) { 4583 I->deleteValue(); 4584 return error("Invalid instruction with no BB"); 4585 } 4586 if (!OperandBundles.empty()) { 4587 I->deleteValue(); 4588 return error("Operand bundles found with no consumer"); 4589 } 4590 CurBB->getInstList().push_back(I); 4591 4592 // If this was a terminator instruction, move to the next block. 4593 if (isa<TerminatorInst>(I)) { 4594 ++CurBBNo; 4595 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4596 } 4597 4598 // Non-void values get registered in the value table for future use. 4599 if (I && !I->getType()->isVoidTy()) 4600 ValueList.assignValue(I, NextValueNo++); 4601 } 4602 4603 OutOfRecordLoop: 4604 4605 if (!OperandBundles.empty()) 4606 return error("Operand bundles found with no consumer"); 4607 4608 // Check the function list for unresolved values. 4609 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4610 if (!A->getParent()) { 4611 // We found at least one unresolved value. Nuke them all to avoid leaks. 4612 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4613 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4614 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4615 delete A; 4616 } 4617 } 4618 return error("Never resolved value found in function"); 4619 } 4620 } 4621 4622 // Unexpected unresolved metadata about to be dropped. 4623 if (MDLoader->hasFwdRefs()) 4624 return error("Invalid function metadata: outgoing forward refs"); 4625 4626 // Trim the value list down to the size it was before we parsed this function. 4627 ValueList.shrinkTo(ModuleValueListSize); 4628 MDLoader->shrinkTo(ModuleMDLoaderSize); 4629 std::vector<BasicBlock*>().swap(FunctionBBs); 4630 return Error::success(); 4631 } 4632 4633 /// Find the function body in the bitcode stream 4634 Error BitcodeReader::findFunctionInStream( 4635 Function *F, 4636 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4637 while (DeferredFunctionInfoIterator->second == 0) { 4638 // This is the fallback handling for the old format bitcode that 4639 // didn't contain the function index in the VST, or when we have 4640 // an anonymous function which would not have a VST entry. 4641 // Assert that we have one of those two cases. 4642 assert(VSTOffset == 0 || !F->hasName()); 4643 // Parse the next body in the stream and set its position in the 4644 // DeferredFunctionInfo map. 4645 if (Error Err = rememberAndSkipFunctionBodies()) 4646 return Err; 4647 } 4648 return Error::success(); 4649 } 4650 4651 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4652 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4653 return SyncScope::ID(Val); 4654 if (Val >= SSIDs.size()) 4655 return SyncScope::System; // Map unknown synchronization scopes to system. 4656 return SSIDs[Val]; 4657 } 4658 4659 //===----------------------------------------------------------------------===// 4660 // GVMaterializer implementation 4661 //===----------------------------------------------------------------------===// 4662 4663 Error BitcodeReader::materialize(GlobalValue *GV) { 4664 Function *F = dyn_cast<Function>(GV); 4665 // If it's not a function or is already material, ignore the request. 4666 if (!F || !F->isMaterializable()) 4667 return Error::success(); 4668 4669 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4670 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4671 // If its position is recorded as 0, its body is somewhere in the stream 4672 // but we haven't seen it yet. 4673 if (DFII->second == 0) 4674 if (Error Err = findFunctionInStream(F, DFII)) 4675 return Err; 4676 4677 // Materialize metadata before parsing any function bodies. 4678 if (Error Err = materializeMetadata()) 4679 return Err; 4680 4681 // Move the bit stream to the saved position of the deferred function body. 4682 Stream.JumpToBit(DFII->second); 4683 4684 if (Error Err = parseFunctionBody(F)) 4685 return Err; 4686 F->setIsMaterializable(false); 4687 4688 if (StripDebugInfo) 4689 stripDebugInfo(*F); 4690 4691 // Upgrade any old intrinsic calls in the function. 4692 for (auto &I : UpgradedIntrinsics) { 4693 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4694 UI != UE;) { 4695 User *U = *UI; 4696 ++UI; 4697 if (CallInst *CI = dyn_cast<CallInst>(U)) 4698 UpgradeIntrinsicCall(CI, I.second); 4699 } 4700 } 4701 4702 // Update calls to the remangled intrinsics 4703 for (auto &I : RemangledIntrinsics) 4704 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4705 UI != UE;) 4706 // Don't expect any other users than call sites 4707 CallSite(*UI++).setCalledFunction(I.second); 4708 4709 // Finish fn->subprogram upgrade for materialized functions. 4710 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4711 F->setSubprogram(SP); 4712 4713 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4714 if (!MDLoader->isStrippingTBAA()) { 4715 for (auto &I : instructions(F)) { 4716 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4717 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4718 continue; 4719 MDLoader->setStripTBAA(true); 4720 stripTBAA(F->getParent()); 4721 } 4722 } 4723 4724 // Bring in any functions that this function forward-referenced via 4725 // blockaddresses. 4726 return materializeForwardReferencedFunctions(); 4727 } 4728 4729 Error BitcodeReader::materializeModule() { 4730 if (Error Err = materializeMetadata()) 4731 return Err; 4732 4733 // Promise to materialize all forward references. 4734 WillMaterializeAllForwardRefs = true; 4735 4736 // Iterate over the module, deserializing any functions that are still on 4737 // disk. 4738 for (Function &F : *TheModule) { 4739 if (Error Err = materialize(&F)) 4740 return Err; 4741 } 4742 // At this point, if there are any function bodies, parse the rest of 4743 // the bits in the module past the last function block we have recorded 4744 // through either lazy scanning or the VST. 4745 if (LastFunctionBlockBit || NextUnreadBit) 4746 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4747 ? LastFunctionBlockBit 4748 : NextUnreadBit)) 4749 return Err; 4750 4751 // Check that all block address forward references got resolved (as we 4752 // promised above). 4753 if (!BasicBlockFwdRefs.empty()) 4754 return error("Never resolved function from blockaddress"); 4755 4756 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4757 // delete the old functions to clean up. We can't do this unless the entire 4758 // module is materialized because there could always be another function body 4759 // with calls to the old function. 4760 for (auto &I : UpgradedIntrinsics) { 4761 for (auto *U : I.first->users()) { 4762 if (CallInst *CI = dyn_cast<CallInst>(U)) 4763 UpgradeIntrinsicCall(CI, I.second); 4764 } 4765 if (!I.first->use_empty()) 4766 I.first->replaceAllUsesWith(I.second); 4767 I.first->eraseFromParent(); 4768 } 4769 UpgradedIntrinsics.clear(); 4770 // Do the same for remangled intrinsics 4771 for (auto &I : RemangledIntrinsics) { 4772 I.first->replaceAllUsesWith(I.second); 4773 I.first->eraseFromParent(); 4774 } 4775 RemangledIntrinsics.clear(); 4776 4777 UpgradeDebugInfo(*TheModule); 4778 4779 UpgradeModuleFlags(*TheModule); 4780 return Error::success(); 4781 } 4782 4783 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4784 return IdentifiedStructTypes; 4785 } 4786 4787 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4788 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4789 StringRef ModulePath, unsigned ModuleId) 4790 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4791 ModulePath(ModulePath), ModuleId(ModuleId) {} 4792 4793 ModuleSummaryIndex::ModuleInfo * 4794 ModuleSummaryIndexBitcodeReader::addThisModule() { 4795 return TheIndex.addModule(ModulePath, ModuleId); 4796 } 4797 4798 std::pair<ValueInfo, GlobalValue::GUID> 4799 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4800 auto VGI = ValueIdToValueInfoMap[ValueId]; 4801 assert(VGI.first); 4802 return VGI; 4803 } 4804 4805 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4806 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4807 StringRef SourceFileName) { 4808 std::string GlobalId = 4809 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4810 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4811 auto OriginalNameID = ValueGUID; 4812 if (GlobalValue::isLocalLinkage(Linkage)) 4813 OriginalNameID = GlobalValue::getGUID(ValueName); 4814 if (PrintSummaryGUIDs) 4815 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4816 << ValueName << "\n"; 4817 4818 // UseStrtab is false for legacy summary formats and value names are 4819 // created on stack. We can't use them outside of parseValueSymbolTable. 4820 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4821 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""), 4822 OriginalNameID); 4823 } 4824 4825 // Specialized value symbol table parser used when reading module index 4826 // blocks where we don't actually create global values. The parsed information 4827 // is saved in the bitcode reader for use when later parsing summaries. 4828 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4829 uint64_t Offset, 4830 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4831 // With a strtab the VST is not required to parse the summary. 4832 if (UseStrtab) 4833 return Error::success(); 4834 4835 assert(Offset > 0 && "Expected non-zero VST offset"); 4836 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4837 4838 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4839 return error("Invalid record"); 4840 4841 SmallVector<uint64_t, 64> Record; 4842 4843 // Read all the records for this value table. 4844 SmallString<128> ValueName; 4845 4846 while (true) { 4847 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4848 4849 switch (Entry.Kind) { 4850 case BitstreamEntry::SubBlock: // Handled for us already. 4851 case BitstreamEntry::Error: 4852 return error("Malformed block"); 4853 case BitstreamEntry::EndBlock: 4854 // Done parsing VST, jump back to wherever we came from. 4855 Stream.JumpToBit(CurrentBit); 4856 return Error::success(); 4857 case BitstreamEntry::Record: 4858 // The interesting case. 4859 break; 4860 } 4861 4862 // Read a record. 4863 Record.clear(); 4864 switch (Stream.readRecord(Entry.ID, Record)) { 4865 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4866 break; 4867 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4868 if (convertToString(Record, 1, ValueName)) 4869 return error("Invalid record"); 4870 unsigned ValueID = Record[0]; 4871 assert(!SourceFileName.empty()); 4872 auto VLI = ValueIdToLinkageMap.find(ValueID); 4873 assert(VLI != ValueIdToLinkageMap.end() && 4874 "No linkage found for VST entry?"); 4875 auto Linkage = VLI->second; 4876 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4877 ValueName.clear(); 4878 break; 4879 } 4880 case bitc::VST_CODE_FNENTRY: { 4881 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4882 if (convertToString(Record, 2, ValueName)) 4883 return error("Invalid record"); 4884 unsigned ValueID = Record[0]; 4885 assert(!SourceFileName.empty()); 4886 auto VLI = ValueIdToLinkageMap.find(ValueID); 4887 assert(VLI != ValueIdToLinkageMap.end() && 4888 "No linkage found for VST entry?"); 4889 auto Linkage = VLI->second; 4890 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4891 ValueName.clear(); 4892 break; 4893 } 4894 case bitc::VST_CODE_COMBINED_ENTRY: { 4895 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4896 unsigned ValueID = Record[0]; 4897 GlobalValue::GUID RefGUID = Record[1]; 4898 // The "original name", which is the second value of the pair will be 4899 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4900 ValueIdToValueInfoMap[ValueID] = 4901 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4902 break; 4903 } 4904 } 4905 } 4906 } 4907 4908 // Parse just the blocks needed for building the index out of the module. 4909 // At the end of this routine the module Index is populated with a map 4910 // from global value id to GlobalValueSummary objects. 4911 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4912 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4913 return error("Invalid record"); 4914 4915 SmallVector<uint64_t, 64> Record; 4916 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4917 unsigned ValueId = 0; 4918 4919 // Read the index for this module. 4920 while (true) { 4921 BitstreamEntry Entry = Stream.advance(); 4922 4923 switch (Entry.Kind) { 4924 case BitstreamEntry::Error: 4925 return error("Malformed block"); 4926 case BitstreamEntry::EndBlock: 4927 return Error::success(); 4928 4929 case BitstreamEntry::SubBlock: 4930 switch (Entry.ID) { 4931 default: // Skip unknown content. 4932 if (Stream.SkipBlock()) 4933 return error("Invalid record"); 4934 break; 4935 case bitc::BLOCKINFO_BLOCK_ID: 4936 // Need to parse these to get abbrev ids (e.g. for VST) 4937 if (readBlockInfo()) 4938 return error("Malformed block"); 4939 break; 4940 case bitc::VALUE_SYMTAB_BLOCK_ID: 4941 // Should have been parsed earlier via VSTOffset, unless there 4942 // is no summary section. 4943 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4944 !SeenGlobalValSummary) && 4945 "Expected early VST parse via VSTOffset record"); 4946 if (Stream.SkipBlock()) 4947 return error("Invalid record"); 4948 break; 4949 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4950 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4951 assert(!SeenValueSymbolTable && 4952 "Already read VST when parsing summary block?"); 4953 // We might not have a VST if there were no values in the 4954 // summary. An empty summary block generated when we are 4955 // performing ThinLTO compiles so we don't later invoke 4956 // the regular LTO process on them. 4957 if (VSTOffset > 0) { 4958 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4959 return Err; 4960 SeenValueSymbolTable = true; 4961 } 4962 SeenGlobalValSummary = true; 4963 if (Error Err = parseEntireSummary(Entry.ID)) 4964 return Err; 4965 break; 4966 case bitc::MODULE_STRTAB_BLOCK_ID: 4967 if (Error Err = parseModuleStringTable()) 4968 return Err; 4969 break; 4970 } 4971 continue; 4972 4973 case BitstreamEntry::Record: { 4974 Record.clear(); 4975 auto BitCode = Stream.readRecord(Entry.ID, Record); 4976 switch (BitCode) { 4977 default: 4978 break; // Default behavior, ignore unknown content. 4979 case bitc::MODULE_CODE_VERSION: { 4980 if (Error Err = parseVersionRecord(Record).takeError()) 4981 return Err; 4982 break; 4983 } 4984 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4985 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4986 SmallString<128> ValueName; 4987 if (convertToString(Record, 0, ValueName)) 4988 return error("Invalid record"); 4989 SourceFileName = ValueName.c_str(); 4990 break; 4991 } 4992 /// MODULE_CODE_HASH: [5*i32] 4993 case bitc::MODULE_CODE_HASH: { 4994 if (Record.size() != 5) 4995 return error("Invalid hash length " + Twine(Record.size()).str()); 4996 auto &Hash = addThisModule()->second.second; 4997 int Pos = 0; 4998 for (auto &Val : Record) { 4999 assert(!(Val >> 32) && "Unexpected high bits set"); 5000 Hash[Pos++] = Val; 5001 } 5002 break; 5003 } 5004 /// MODULE_CODE_VSTOFFSET: [offset] 5005 case bitc::MODULE_CODE_VSTOFFSET: 5006 if (Record.size() < 1) 5007 return error("Invalid record"); 5008 // Note that we subtract 1 here because the offset is relative to one 5009 // word before the start of the identification or module block, which 5010 // was historically always the start of the regular bitcode header. 5011 VSTOffset = Record[0] - 1; 5012 break; 5013 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5014 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5015 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5016 // v2: [strtab offset, strtab size, v1] 5017 case bitc::MODULE_CODE_GLOBALVAR: 5018 case bitc::MODULE_CODE_FUNCTION: 5019 case bitc::MODULE_CODE_ALIAS: { 5020 StringRef Name; 5021 ArrayRef<uint64_t> GVRecord; 5022 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5023 if (GVRecord.size() <= 3) 5024 return error("Invalid record"); 5025 uint64_t RawLinkage = GVRecord[3]; 5026 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5027 if (!UseStrtab) { 5028 ValueIdToLinkageMap[ValueId++] = Linkage; 5029 break; 5030 } 5031 5032 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5033 break; 5034 } 5035 } 5036 } 5037 continue; 5038 } 5039 } 5040 } 5041 5042 std::vector<ValueInfo> 5043 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5044 std::vector<ValueInfo> Ret; 5045 Ret.reserve(Record.size()); 5046 for (uint64_t RefValueId : Record) 5047 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5048 return Ret; 5049 } 5050 5051 std::vector<FunctionSummary::EdgeTy> 5052 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5053 bool IsOldProfileFormat, 5054 bool HasProfile, bool HasRelBF) { 5055 std::vector<FunctionSummary::EdgeTy> Ret; 5056 Ret.reserve(Record.size()); 5057 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5058 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5059 uint64_t RelBF = 0; 5060 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5061 if (IsOldProfileFormat) { 5062 I += 1; // Skip old callsitecount field 5063 if (HasProfile) 5064 I += 1; // Skip old profilecount field 5065 } else if (HasProfile) 5066 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5067 else if (HasRelBF) 5068 RelBF = Record[++I]; 5069 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5070 } 5071 return Ret; 5072 } 5073 5074 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5075 // objects in the index. 5076 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5077 if (Stream.EnterSubBlock(ID)) 5078 return error("Invalid record"); 5079 SmallVector<uint64_t, 64> Record; 5080 5081 // Parse version 5082 { 5083 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5084 if (Entry.Kind != BitstreamEntry::Record) 5085 return error("Invalid Summary Block: record for version expected"); 5086 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5087 return error("Invalid Summary Block: version expected"); 5088 } 5089 const uint64_t Version = Record[0]; 5090 const bool IsOldProfileFormat = Version == 1; 5091 if (Version < 1 || Version > 4) 5092 return error("Invalid summary version " + Twine(Version) + 5093 ", 1, 2, 3 or 4 expected"); 5094 Record.clear(); 5095 5096 // Keep around the last seen summary to be used when we see an optional 5097 // "OriginalName" attachement. 5098 GlobalValueSummary *LastSeenSummary = nullptr; 5099 GlobalValue::GUID LastSeenGUID = 0; 5100 5101 // We can expect to see any number of type ID information records before 5102 // each function summary records; these variables store the information 5103 // collected so far so that it can be used to create the summary object. 5104 std::vector<GlobalValue::GUID> PendingTypeTests; 5105 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5106 PendingTypeCheckedLoadVCalls; 5107 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5108 PendingTypeCheckedLoadConstVCalls; 5109 5110 while (true) { 5111 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5112 5113 switch (Entry.Kind) { 5114 case BitstreamEntry::SubBlock: // Handled for us already. 5115 case BitstreamEntry::Error: 5116 return error("Malformed block"); 5117 case BitstreamEntry::EndBlock: 5118 return Error::success(); 5119 case BitstreamEntry::Record: 5120 // The interesting case. 5121 break; 5122 } 5123 5124 // Read a record. The record format depends on whether this 5125 // is a per-module index or a combined index file. In the per-module 5126 // case the records contain the associated value's ID for correlation 5127 // with VST entries. In the combined index the correlation is done 5128 // via the bitcode offset of the summary records (which were saved 5129 // in the combined index VST entries). The records also contain 5130 // information used for ThinLTO renaming and importing. 5131 Record.clear(); 5132 auto BitCode = Stream.readRecord(Entry.ID, Record); 5133 switch (BitCode) { 5134 default: // Default behavior: ignore. 5135 break; 5136 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5137 uint64_t ValueID = Record[0]; 5138 GlobalValue::GUID RefGUID = Record[1]; 5139 ValueIdToValueInfoMap[ValueID] = 5140 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5141 break; 5142 } 5143 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5144 // numrefs x valueid, n x (valueid)] 5145 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5146 // numrefs x valueid, 5147 // n x (valueid, hotness)] 5148 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5149 // numrefs x valueid, 5150 // n x (valueid, relblockfreq)] 5151 case bitc::FS_PERMODULE: 5152 case bitc::FS_PERMODULE_RELBF: 5153 case bitc::FS_PERMODULE_PROFILE: { 5154 unsigned ValueID = Record[0]; 5155 uint64_t RawFlags = Record[1]; 5156 unsigned InstCount = Record[2]; 5157 uint64_t RawFunFlags = 0; 5158 unsigned NumRefs = Record[3]; 5159 int RefListStartIndex = 4; 5160 if (Version >= 4) { 5161 RawFunFlags = Record[3]; 5162 NumRefs = Record[4]; 5163 RefListStartIndex = 5; 5164 } 5165 5166 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5167 // The module path string ref set in the summary must be owned by the 5168 // index's module string table. Since we don't have a module path 5169 // string table section in the per-module index, we create a single 5170 // module path string table entry with an empty (0) ID to take 5171 // ownership. 5172 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5173 assert(Record.size() >= RefListStartIndex + NumRefs && 5174 "Record size inconsistent with number of references"); 5175 std::vector<ValueInfo> Refs = makeRefList( 5176 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5177 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5178 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5179 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5180 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5181 IsOldProfileFormat, HasProfile, HasRelBF); 5182 auto FS = llvm::make_unique<FunctionSummary>( 5183 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5184 std::move(Calls), std::move(PendingTypeTests), 5185 std::move(PendingTypeTestAssumeVCalls), 5186 std::move(PendingTypeCheckedLoadVCalls), 5187 std::move(PendingTypeTestAssumeConstVCalls), 5188 std::move(PendingTypeCheckedLoadConstVCalls)); 5189 PendingTypeTests.clear(); 5190 PendingTypeTestAssumeVCalls.clear(); 5191 PendingTypeCheckedLoadVCalls.clear(); 5192 PendingTypeTestAssumeConstVCalls.clear(); 5193 PendingTypeCheckedLoadConstVCalls.clear(); 5194 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5195 FS->setModulePath(addThisModule()->first()); 5196 FS->setOriginalName(VIAndOriginalGUID.second); 5197 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5198 break; 5199 } 5200 // FS_ALIAS: [valueid, flags, valueid] 5201 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5202 // they expect all aliasee summaries to be available. 5203 case bitc::FS_ALIAS: { 5204 unsigned ValueID = Record[0]; 5205 uint64_t RawFlags = Record[1]; 5206 unsigned AliaseeID = Record[2]; 5207 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5208 auto AS = llvm::make_unique<AliasSummary>(Flags); 5209 // The module path string ref set in the summary must be owned by the 5210 // index's module string table. Since we don't have a module path 5211 // string table section in the per-module index, we create a single 5212 // module path string table entry with an empty (0) ID to take 5213 // ownership. 5214 AS->setModulePath(addThisModule()->first()); 5215 5216 GlobalValue::GUID AliaseeGUID = 5217 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5218 auto AliaseeInModule = 5219 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5220 if (!AliaseeInModule) 5221 return error("Alias expects aliasee summary to be parsed"); 5222 AS->setAliasee(AliaseeInModule); 5223 AS->setAliaseeGUID(AliaseeGUID); 5224 5225 auto GUID = getValueInfoFromValueId(ValueID); 5226 AS->setOriginalName(GUID.second); 5227 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5228 break; 5229 } 5230 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5231 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5232 unsigned ValueID = Record[0]; 5233 uint64_t RawFlags = Record[1]; 5234 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5235 std::vector<ValueInfo> Refs = 5236 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5237 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5238 FS->setModulePath(addThisModule()->first()); 5239 auto GUID = getValueInfoFromValueId(ValueID); 5240 FS->setOriginalName(GUID.second); 5241 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5242 break; 5243 } 5244 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5245 // numrefs x valueid, n x (valueid)] 5246 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5247 // numrefs x valueid, n x (valueid, hotness)] 5248 case bitc::FS_COMBINED: 5249 case bitc::FS_COMBINED_PROFILE: { 5250 unsigned ValueID = Record[0]; 5251 uint64_t ModuleId = Record[1]; 5252 uint64_t RawFlags = Record[2]; 5253 unsigned InstCount = Record[3]; 5254 uint64_t RawFunFlags = 0; 5255 unsigned NumRefs = Record[4]; 5256 int RefListStartIndex = 5; 5257 5258 if (Version >= 4) { 5259 RawFunFlags = Record[4]; 5260 NumRefs = Record[5]; 5261 RefListStartIndex = 6; 5262 } 5263 5264 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5265 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5266 assert(Record.size() >= RefListStartIndex + NumRefs && 5267 "Record size inconsistent with number of references"); 5268 std::vector<ValueInfo> Refs = makeRefList( 5269 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5270 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5271 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5272 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5273 IsOldProfileFormat, HasProfile, false); 5274 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5275 auto FS = llvm::make_unique<FunctionSummary>( 5276 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5277 std::move(Edges), std::move(PendingTypeTests), 5278 std::move(PendingTypeTestAssumeVCalls), 5279 std::move(PendingTypeCheckedLoadVCalls), 5280 std::move(PendingTypeTestAssumeConstVCalls), 5281 std::move(PendingTypeCheckedLoadConstVCalls)); 5282 PendingTypeTests.clear(); 5283 PendingTypeTestAssumeVCalls.clear(); 5284 PendingTypeCheckedLoadVCalls.clear(); 5285 PendingTypeTestAssumeConstVCalls.clear(); 5286 PendingTypeCheckedLoadConstVCalls.clear(); 5287 LastSeenSummary = FS.get(); 5288 LastSeenGUID = VI.getGUID(); 5289 FS->setModulePath(ModuleIdMap[ModuleId]); 5290 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5291 break; 5292 } 5293 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5294 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5295 // they expect all aliasee summaries to be available. 5296 case bitc::FS_COMBINED_ALIAS: { 5297 unsigned ValueID = Record[0]; 5298 uint64_t ModuleId = Record[1]; 5299 uint64_t RawFlags = Record[2]; 5300 unsigned AliaseeValueId = Record[3]; 5301 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5302 auto AS = llvm::make_unique<AliasSummary>(Flags); 5303 LastSeenSummary = AS.get(); 5304 AS->setModulePath(ModuleIdMap[ModuleId]); 5305 5306 auto AliaseeGUID = 5307 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5308 auto AliaseeInModule = 5309 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5310 AS->setAliasee(AliaseeInModule); 5311 AS->setAliaseeGUID(AliaseeGUID); 5312 5313 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5314 LastSeenGUID = VI.getGUID(); 5315 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5316 break; 5317 } 5318 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5319 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5320 unsigned ValueID = Record[0]; 5321 uint64_t ModuleId = Record[1]; 5322 uint64_t RawFlags = Record[2]; 5323 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5324 std::vector<ValueInfo> Refs = 5325 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5326 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5327 LastSeenSummary = FS.get(); 5328 FS->setModulePath(ModuleIdMap[ModuleId]); 5329 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5330 LastSeenGUID = VI.getGUID(); 5331 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5332 break; 5333 } 5334 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5335 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5336 uint64_t OriginalName = Record[0]; 5337 if (!LastSeenSummary) 5338 return error("Name attachment that does not follow a combined record"); 5339 LastSeenSummary->setOriginalName(OriginalName); 5340 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5341 // Reset the LastSeenSummary 5342 LastSeenSummary = nullptr; 5343 LastSeenGUID = 0; 5344 break; 5345 } 5346 case bitc::FS_TYPE_TESTS: 5347 assert(PendingTypeTests.empty()); 5348 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5349 Record.end()); 5350 break; 5351 5352 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5353 assert(PendingTypeTestAssumeVCalls.empty()); 5354 for (unsigned I = 0; I != Record.size(); I += 2) 5355 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5356 break; 5357 5358 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5359 assert(PendingTypeCheckedLoadVCalls.empty()); 5360 for (unsigned I = 0; I != Record.size(); I += 2) 5361 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5362 break; 5363 5364 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5365 PendingTypeTestAssumeConstVCalls.push_back( 5366 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5367 break; 5368 5369 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5370 PendingTypeCheckedLoadConstVCalls.push_back( 5371 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5372 break; 5373 5374 case bitc::FS_CFI_FUNCTION_DEFS: { 5375 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5376 for (unsigned I = 0; I != Record.size(); I += 2) 5377 CfiFunctionDefs.insert( 5378 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5379 break; 5380 } 5381 case bitc::FS_CFI_FUNCTION_DECLS: { 5382 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5383 for (unsigned I = 0; I != Record.size(); I += 2) 5384 CfiFunctionDecls.insert( 5385 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5386 break; 5387 } 5388 } 5389 } 5390 llvm_unreachable("Exit infinite loop"); 5391 } 5392 5393 // Parse the module string table block into the Index. 5394 // This populates the ModulePathStringTable map in the index. 5395 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5396 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5397 return error("Invalid record"); 5398 5399 SmallVector<uint64_t, 64> Record; 5400 5401 SmallString<128> ModulePath; 5402 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5403 5404 while (true) { 5405 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5406 5407 switch (Entry.Kind) { 5408 case BitstreamEntry::SubBlock: // Handled for us already. 5409 case BitstreamEntry::Error: 5410 return error("Malformed block"); 5411 case BitstreamEntry::EndBlock: 5412 return Error::success(); 5413 case BitstreamEntry::Record: 5414 // The interesting case. 5415 break; 5416 } 5417 5418 Record.clear(); 5419 switch (Stream.readRecord(Entry.ID, Record)) { 5420 default: // Default behavior: ignore. 5421 break; 5422 case bitc::MST_CODE_ENTRY: { 5423 // MST_ENTRY: [modid, namechar x N] 5424 uint64_t ModuleId = Record[0]; 5425 5426 if (convertToString(Record, 1, ModulePath)) 5427 return error("Invalid record"); 5428 5429 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5430 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5431 5432 ModulePath.clear(); 5433 break; 5434 } 5435 /// MST_CODE_HASH: [5*i32] 5436 case bitc::MST_CODE_HASH: { 5437 if (Record.size() != 5) 5438 return error("Invalid hash length " + Twine(Record.size()).str()); 5439 if (!LastSeenModule) 5440 return error("Invalid hash that does not follow a module path"); 5441 int Pos = 0; 5442 for (auto &Val : Record) { 5443 assert(!(Val >> 32) && "Unexpected high bits set"); 5444 LastSeenModule->second.second[Pos++] = Val; 5445 } 5446 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5447 LastSeenModule = nullptr; 5448 break; 5449 } 5450 } 5451 } 5452 llvm_unreachable("Exit infinite loop"); 5453 } 5454 5455 namespace { 5456 5457 // FIXME: This class is only here to support the transition to llvm::Error. It 5458 // will be removed once this transition is complete. Clients should prefer to 5459 // deal with the Error value directly, rather than converting to error_code. 5460 class BitcodeErrorCategoryType : public std::error_category { 5461 const char *name() const noexcept override { 5462 return "llvm.bitcode"; 5463 } 5464 5465 std::string message(int IE) const override { 5466 BitcodeError E = static_cast<BitcodeError>(IE); 5467 switch (E) { 5468 case BitcodeError::CorruptedBitcode: 5469 return "Corrupted bitcode"; 5470 } 5471 llvm_unreachable("Unknown error type!"); 5472 } 5473 }; 5474 5475 } // end anonymous namespace 5476 5477 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5478 5479 const std::error_category &llvm::BitcodeErrorCategory() { 5480 return *ErrorCategory; 5481 } 5482 5483 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5484 unsigned Block, unsigned RecordID) { 5485 if (Stream.EnterSubBlock(Block)) 5486 return error("Invalid record"); 5487 5488 StringRef Strtab; 5489 while (true) { 5490 BitstreamEntry Entry = Stream.advance(); 5491 switch (Entry.Kind) { 5492 case BitstreamEntry::EndBlock: 5493 return Strtab; 5494 5495 case BitstreamEntry::Error: 5496 return error("Malformed block"); 5497 5498 case BitstreamEntry::SubBlock: 5499 if (Stream.SkipBlock()) 5500 return error("Malformed block"); 5501 break; 5502 5503 case BitstreamEntry::Record: 5504 StringRef Blob; 5505 SmallVector<uint64_t, 1> Record; 5506 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5507 Strtab = Blob; 5508 break; 5509 } 5510 } 5511 } 5512 5513 //===----------------------------------------------------------------------===// 5514 // External interface 5515 //===----------------------------------------------------------------------===// 5516 5517 Expected<std::vector<BitcodeModule>> 5518 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5519 auto FOrErr = getBitcodeFileContents(Buffer); 5520 if (!FOrErr) 5521 return FOrErr.takeError(); 5522 return std::move(FOrErr->Mods); 5523 } 5524 5525 Expected<BitcodeFileContents> 5526 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5527 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5528 if (!StreamOrErr) 5529 return StreamOrErr.takeError(); 5530 BitstreamCursor &Stream = *StreamOrErr; 5531 5532 BitcodeFileContents F; 5533 while (true) { 5534 uint64_t BCBegin = Stream.getCurrentByteNo(); 5535 5536 // We may be consuming bitcode from a client that leaves garbage at the end 5537 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5538 // the end that there cannot possibly be another module, stop looking. 5539 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5540 return F; 5541 5542 BitstreamEntry Entry = Stream.advance(); 5543 switch (Entry.Kind) { 5544 case BitstreamEntry::EndBlock: 5545 case BitstreamEntry::Error: 5546 return error("Malformed block"); 5547 5548 case BitstreamEntry::SubBlock: { 5549 uint64_t IdentificationBit = -1ull; 5550 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5551 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5552 if (Stream.SkipBlock()) 5553 return error("Malformed block"); 5554 5555 Entry = Stream.advance(); 5556 if (Entry.Kind != BitstreamEntry::SubBlock || 5557 Entry.ID != bitc::MODULE_BLOCK_ID) 5558 return error("Malformed block"); 5559 } 5560 5561 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5562 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5563 if (Stream.SkipBlock()) 5564 return error("Malformed block"); 5565 5566 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5567 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5568 Buffer.getBufferIdentifier(), IdentificationBit, 5569 ModuleBit}); 5570 continue; 5571 } 5572 5573 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5574 Expected<StringRef> Strtab = 5575 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5576 if (!Strtab) 5577 return Strtab.takeError(); 5578 // This string table is used by every preceding bitcode module that does 5579 // not have its own string table. A bitcode file may have multiple 5580 // string tables if it was created by binary concatenation, for example 5581 // with "llvm-cat -b". 5582 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5583 if (!I->Strtab.empty()) 5584 break; 5585 I->Strtab = *Strtab; 5586 } 5587 // Similarly, the string table is used by every preceding symbol table; 5588 // normally there will be just one unless the bitcode file was created 5589 // by binary concatenation. 5590 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5591 F.StrtabForSymtab = *Strtab; 5592 continue; 5593 } 5594 5595 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5596 Expected<StringRef> SymtabOrErr = 5597 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5598 if (!SymtabOrErr) 5599 return SymtabOrErr.takeError(); 5600 5601 // We can expect the bitcode file to have multiple symbol tables if it 5602 // was created by binary concatenation. In that case we silently 5603 // ignore any subsequent symbol tables, which is fine because this is a 5604 // low level function. The client is expected to notice that the number 5605 // of modules in the symbol table does not match the number of modules 5606 // in the input file and regenerate the symbol table. 5607 if (F.Symtab.empty()) 5608 F.Symtab = *SymtabOrErr; 5609 continue; 5610 } 5611 5612 if (Stream.SkipBlock()) 5613 return error("Malformed block"); 5614 continue; 5615 } 5616 case BitstreamEntry::Record: 5617 Stream.skipRecord(Entry.ID); 5618 continue; 5619 } 5620 } 5621 } 5622 5623 /// \brief Get a lazy one-at-time loading module from bitcode. 5624 /// 5625 /// This isn't always used in a lazy context. In particular, it's also used by 5626 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5627 /// in forward-referenced functions from block address references. 5628 /// 5629 /// \param[in] MaterializeAll Set to \c true if we should materialize 5630 /// everything. 5631 Expected<std::unique_ptr<Module>> 5632 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5633 bool ShouldLazyLoadMetadata, bool IsImporting) { 5634 BitstreamCursor Stream(Buffer); 5635 5636 std::string ProducerIdentification; 5637 if (IdentificationBit != -1ull) { 5638 Stream.JumpToBit(IdentificationBit); 5639 Expected<std::string> ProducerIdentificationOrErr = 5640 readIdentificationBlock(Stream); 5641 if (!ProducerIdentificationOrErr) 5642 return ProducerIdentificationOrErr.takeError(); 5643 5644 ProducerIdentification = *ProducerIdentificationOrErr; 5645 } 5646 5647 Stream.JumpToBit(ModuleBit); 5648 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5649 Context); 5650 5651 std::unique_ptr<Module> M = 5652 llvm::make_unique<Module>(ModuleIdentifier, Context); 5653 M->setMaterializer(R); 5654 5655 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5656 if (Error Err = 5657 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5658 return std::move(Err); 5659 5660 if (MaterializeAll) { 5661 // Read in the entire module, and destroy the BitcodeReader. 5662 if (Error Err = M->materializeAll()) 5663 return std::move(Err); 5664 } else { 5665 // Resolve forward references from blockaddresses. 5666 if (Error Err = R->materializeForwardReferencedFunctions()) 5667 return std::move(Err); 5668 } 5669 return std::move(M); 5670 } 5671 5672 Expected<std::unique_ptr<Module>> 5673 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5674 bool IsImporting) { 5675 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5676 } 5677 5678 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5679 // We don't use ModuleIdentifier here because the client may need to control the 5680 // module path used in the combined summary (e.g. when reading summaries for 5681 // regular LTO modules). 5682 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5683 StringRef ModulePath, uint64_t ModuleId) { 5684 BitstreamCursor Stream(Buffer); 5685 Stream.JumpToBit(ModuleBit); 5686 5687 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5688 ModulePath, ModuleId); 5689 return R.parseModule(); 5690 } 5691 5692 // Parse the specified bitcode buffer, returning the function info index. 5693 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5694 BitstreamCursor Stream(Buffer); 5695 Stream.JumpToBit(ModuleBit); 5696 5697 auto Index = 5698 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false); 5699 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5700 ModuleIdentifier, 0); 5701 5702 if (Error Err = R.parseModule()) 5703 return std::move(Err); 5704 5705 return std::move(Index); 5706 } 5707 5708 // Check if the given bitcode buffer contains a global value summary block. 5709 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5710 BitstreamCursor Stream(Buffer); 5711 Stream.JumpToBit(ModuleBit); 5712 5713 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5714 return error("Invalid record"); 5715 5716 while (true) { 5717 BitstreamEntry Entry = Stream.advance(); 5718 5719 switch (Entry.Kind) { 5720 case BitstreamEntry::Error: 5721 return error("Malformed block"); 5722 case BitstreamEntry::EndBlock: 5723 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5724 5725 case BitstreamEntry::SubBlock: 5726 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5727 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5728 5729 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5730 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5731 5732 // Ignore other sub-blocks. 5733 if (Stream.SkipBlock()) 5734 return error("Malformed block"); 5735 continue; 5736 5737 case BitstreamEntry::Record: 5738 Stream.skipRecord(Entry.ID); 5739 continue; 5740 } 5741 } 5742 } 5743 5744 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5745 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5746 if (!MsOrErr) 5747 return MsOrErr.takeError(); 5748 5749 if (MsOrErr->size() != 1) 5750 return error("Expected a single module"); 5751 5752 return (*MsOrErr)[0]; 5753 } 5754 5755 Expected<std::unique_ptr<Module>> 5756 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5757 bool ShouldLazyLoadMetadata, bool IsImporting) { 5758 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5759 if (!BM) 5760 return BM.takeError(); 5761 5762 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5763 } 5764 5765 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5766 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5767 bool ShouldLazyLoadMetadata, bool IsImporting) { 5768 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5769 IsImporting); 5770 if (MOrErr) 5771 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5772 return MOrErr; 5773 } 5774 5775 Expected<std::unique_ptr<Module>> 5776 BitcodeModule::parseModule(LLVMContext &Context) { 5777 return getModuleImpl(Context, true, false, false); 5778 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5779 // written. We must defer until the Module has been fully materialized. 5780 } 5781 5782 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5783 LLVMContext &Context) { 5784 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5785 if (!BM) 5786 return BM.takeError(); 5787 5788 return BM->parseModule(Context); 5789 } 5790 5791 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5792 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5793 if (!StreamOrErr) 5794 return StreamOrErr.takeError(); 5795 5796 return readTriple(*StreamOrErr); 5797 } 5798 5799 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5800 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5801 if (!StreamOrErr) 5802 return StreamOrErr.takeError(); 5803 5804 return hasObjCCategory(*StreamOrErr); 5805 } 5806 5807 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5808 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5809 if (!StreamOrErr) 5810 return StreamOrErr.takeError(); 5811 5812 return readIdentificationCode(*StreamOrErr); 5813 } 5814 5815 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5816 ModuleSummaryIndex &CombinedIndex, 5817 uint64_t ModuleId) { 5818 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5819 if (!BM) 5820 return BM.takeError(); 5821 5822 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5823 } 5824 5825 Expected<std::unique_ptr<ModuleSummaryIndex>> 5826 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5827 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5828 if (!BM) 5829 return BM.takeError(); 5830 5831 return BM->getSummary(); 5832 } 5833 5834 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5835 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5836 if (!BM) 5837 return BM.takeError(); 5838 5839 return BM->getLTOInfo(); 5840 } 5841 5842 Expected<std::unique_ptr<ModuleSummaryIndex>> 5843 llvm::getModuleSummaryIndexForFile(StringRef Path, 5844 bool IgnoreEmptyThinLTOIndexFile) { 5845 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5846 MemoryBuffer::getFileOrSTDIN(Path); 5847 if (!FileOrErr) 5848 return errorCodeToError(FileOrErr.getError()); 5849 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5850 return nullptr; 5851 return getModuleSummaryIndex(**FileOrErr); 5852 } 5853