1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMDString = [&](unsigned ID) -> MDString *{ 1187 // This requires that the ID is not really a forward reference. In 1188 // particular, the MDString must already have been resolved. 1189 if (ID) 1190 return cast<MDString>(MDValueList.getValueFwdRef(ID - 1)); 1191 return nullptr; 1192 }; 1193 1194 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1195 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1196 1197 // Read all the records. 1198 while (1) { 1199 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1200 1201 switch (Entry.Kind) { 1202 case BitstreamEntry::SubBlock: // Handled for us already. 1203 case BitstreamEntry::Error: 1204 return Error("Malformed block"); 1205 case BitstreamEntry::EndBlock: 1206 MDValueList.tryToResolveCycles(); 1207 return std::error_code(); 1208 case BitstreamEntry::Record: 1209 // The interesting case. 1210 break; 1211 } 1212 1213 // Read a record. 1214 Record.clear(); 1215 unsigned Code = Stream.readRecord(Entry.ID, Record); 1216 bool IsDistinct = false; 1217 switch (Code) { 1218 default: // Default behavior: ignore. 1219 break; 1220 case bitc::METADATA_NAME: { 1221 // Read name of the named metadata. 1222 SmallString<8> Name(Record.begin(), Record.end()); 1223 Record.clear(); 1224 Code = Stream.ReadCode(); 1225 1226 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1227 unsigned NextBitCode = Stream.readRecord(Code, Record); 1228 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1229 1230 // Read named metadata elements. 1231 unsigned Size = Record.size(); 1232 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1233 for (unsigned i = 0; i != Size; ++i) { 1234 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1235 if (!MD) 1236 return Error("Invalid record"); 1237 NMD->addOperand(MD); 1238 } 1239 break; 1240 } 1241 case bitc::METADATA_OLD_FN_NODE: { 1242 // FIXME: Remove in 4.0. 1243 // This is a LocalAsMetadata record, the only type of function-local 1244 // metadata. 1245 if (Record.size() % 2 == 1) 1246 return Error("Invalid record"); 1247 1248 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1249 // to be legal, but there's no upgrade path. 1250 auto dropRecord = [&] { 1251 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1252 }; 1253 if (Record.size() != 2) { 1254 dropRecord(); 1255 break; 1256 } 1257 1258 Type *Ty = getTypeByID(Record[0]); 1259 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1260 dropRecord(); 1261 break; 1262 } 1263 1264 MDValueList.AssignValue( 1265 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1266 NextMDValueNo++); 1267 break; 1268 } 1269 case bitc::METADATA_OLD_NODE: { 1270 // FIXME: Remove in 4.0. 1271 if (Record.size() % 2 == 1) 1272 return Error("Invalid record"); 1273 1274 unsigned Size = Record.size(); 1275 SmallVector<Metadata *, 8> Elts; 1276 for (unsigned i = 0; i != Size; i += 2) { 1277 Type *Ty = getTypeByID(Record[i]); 1278 if (!Ty) 1279 return Error("Invalid record"); 1280 if (Ty->isMetadataTy()) 1281 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1282 else if (!Ty->isVoidTy()) { 1283 auto *MD = 1284 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1285 assert(isa<ConstantAsMetadata>(MD) && 1286 "Expected non-function-local metadata"); 1287 Elts.push_back(MD); 1288 } else 1289 Elts.push_back(nullptr); 1290 } 1291 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1292 break; 1293 } 1294 case bitc::METADATA_VALUE: { 1295 if (Record.size() != 2) 1296 return Error("Invalid record"); 1297 1298 Type *Ty = getTypeByID(Record[0]); 1299 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1300 return Error("Invalid record"); 1301 1302 MDValueList.AssignValue( 1303 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1304 NextMDValueNo++); 1305 break; 1306 } 1307 case bitc::METADATA_DISTINCT_NODE: 1308 IsDistinct = true; 1309 // fallthrough... 1310 case bitc::METADATA_NODE: { 1311 SmallVector<Metadata *, 8> Elts; 1312 Elts.reserve(Record.size()); 1313 for (unsigned ID : Record) 1314 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1315 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1316 : MDNode::get(Context, Elts), 1317 NextMDValueNo++); 1318 break; 1319 } 1320 case bitc::METADATA_LOCATION: { 1321 if (Record.size() != 5) 1322 return Error("Invalid record"); 1323 1324 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1325 unsigned Line = Record[1]; 1326 unsigned Column = Record[2]; 1327 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1328 Metadata *InlinedAt = 1329 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1330 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1331 NextMDValueNo++); 1332 break; 1333 } 1334 case bitc::METADATA_GENERIC_DEBUG: { 1335 if (Record.size() < 4) 1336 return Error("Invalid record"); 1337 1338 unsigned Tag = Record[1]; 1339 unsigned Version = Record[2]; 1340 1341 if (Tag >= 1u << 16 || Version != 0) 1342 return Error("Invalid record"); 1343 1344 auto *Header = getMDString(Record[3]); 1345 SmallVector<Metadata *, 8> DwarfOps; 1346 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1347 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1348 : nullptr); 1349 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1350 (Context, Tag, Header, DwarfOps)), 1351 NextMDValueNo++); 1352 break; 1353 } 1354 case bitc::METADATA_SUBRANGE: { 1355 if (Record.size() != 3) 1356 return Error("Invalid record"); 1357 1358 MDValueList.AssignValue( 1359 GET_OR_DISTINCT(MDSubrange, Record[0], 1360 (Context, Record[1], unrotateSign(Record[2]))), 1361 NextMDValueNo++); 1362 break; 1363 } 1364 case bitc::METADATA_STRING: { 1365 std::string String(Record.begin(), Record.end()); 1366 llvm::UpgradeMDStringConstant(String); 1367 Metadata *MD = MDString::get(Context, String); 1368 MDValueList.AssignValue(MD, NextMDValueNo++); 1369 break; 1370 } 1371 case bitc::METADATA_KIND: { 1372 if (Record.size() < 2) 1373 return Error("Invalid record"); 1374 1375 unsigned Kind = Record[0]; 1376 SmallString<8> Name(Record.begin()+1, Record.end()); 1377 1378 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1379 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1380 return Error("Conflicting METADATA_KIND records"); 1381 break; 1382 } 1383 } 1384 } 1385 #undef GET_OR_DISTINCT 1386 } 1387 1388 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1389 /// the LSB for dense VBR encoding. 1390 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1391 if ((V & 1) == 0) 1392 return V >> 1; 1393 if (V != 1) 1394 return -(V >> 1); 1395 // There is no such thing as -0 with integers. "-0" really means MININT. 1396 return 1ULL << 63; 1397 } 1398 1399 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1400 /// values and aliases that we can. 1401 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1402 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1403 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1404 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1405 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1406 1407 GlobalInitWorklist.swap(GlobalInits); 1408 AliasInitWorklist.swap(AliasInits); 1409 FunctionPrefixWorklist.swap(FunctionPrefixes); 1410 FunctionPrologueWorklist.swap(FunctionPrologues); 1411 1412 while (!GlobalInitWorklist.empty()) { 1413 unsigned ValID = GlobalInitWorklist.back().second; 1414 if (ValID >= ValueList.size()) { 1415 // Not ready to resolve this yet, it requires something later in the file. 1416 GlobalInits.push_back(GlobalInitWorklist.back()); 1417 } else { 1418 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1419 GlobalInitWorklist.back().first->setInitializer(C); 1420 else 1421 return Error("Expected a constant"); 1422 } 1423 GlobalInitWorklist.pop_back(); 1424 } 1425 1426 while (!AliasInitWorklist.empty()) { 1427 unsigned ValID = AliasInitWorklist.back().second; 1428 if (ValID >= ValueList.size()) { 1429 AliasInits.push_back(AliasInitWorklist.back()); 1430 } else { 1431 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1432 AliasInitWorklist.back().first->setAliasee(C); 1433 else 1434 return Error("Expected a constant"); 1435 } 1436 AliasInitWorklist.pop_back(); 1437 } 1438 1439 while (!FunctionPrefixWorklist.empty()) { 1440 unsigned ValID = FunctionPrefixWorklist.back().second; 1441 if (ValID >= ValueList.size()) { 1442 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1443 } else { 1444 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1445 FunctionPrefixWorklist.back().first->setPrefixData(C); 1446 else 1447 return Error("Expected a constant"); 1448 } 1449 FunctionPrefixWorklist.pop_back(); 1450 } 1451 1452 while (!FunctionPrologueWorklist.empty()) { 1453 unsigned ValID = FunctionPrologueWorklist.back().second; 1454 if (ValID >= ValueList.size()) { 1455 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1456 } else { 1457 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1458 FunctionPrologueWorklist.back().first->setPrologueData(C); 1459 else 1460 return Error("Expected a constant"); 1461 } 1462 FunctionPrologueWorklist.pop_back(); 1463 } 1464 1465 return std::error_code(); 1466 } 1467 1468 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1469 SmallVector<uint64_t, 8> Words(Vals.size()); 1470 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1471 BitcodeReader::decodeSignRotatedValue); 1472 1473 return APInt(TypeBits, Words); 1474 } 1475 1476 std::error_code BitcodeReader::ParseConstants() { 1477 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1478 return Error("Invalid record"); 1479 1480 SmallVector<uint64_t, 64> Record; 1481 1482 // Read all the records for this value table. 1483 Type *CurTy = Type::getInt32Ty(Context); 1484 unsigned NextCstNo = ValueList.size(); 1485 while (1) { 1486 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1487 1488 switch (Entry.Kind) { 1489 case BitstreamEntry::SubBlock: // Handled for us already. 1490 case BitstreamEntry::Error: 1491 return Error("Malformed block"); 1492 case BitstreamEntry::EndBlock: 1493 if (NextCstNo != ValueList.size()) 1494 return Error("Invalid ronstant reference"); 1495 1496 // Once all the constants have been read, go through and resolve forward 1497 // references. 1498 ValueList.ResolveConstantForwardRefs(); 1499 return std::error_code(); 1500 case BitstreamEntry::Record: 1501 // The interesting case. 1502 break; 1503 } 1504 1505 // Read a record. 1506 Record.clear(); 1507 Value *V = nullptr; 1508 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1509 switch (BitCode) { 1510 default: // Default behavior: unknown constant 1511 case bitc::CST_CODE_UNDEF: // UNDEF 1512 V = UndefValue::get(CurTy); 1513 break; 1514 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1515 if (Record.empty()) 1516 return Error("Invalid record"); 1517 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1518 return Error("Invalid record"); 1519 CurTy = TypeList[Record[0]]; 1520 continue; // Skip the ValueList manipulation. 1521 case bitc::CST_CODE_NULL: // NULL 1522 V = Constant::getNullValue(CurTy); 1523 break; 1524 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1525 if (!CurTy->isIntegerTy() || Record.empty()) 1526 return Error("Invalid record"); 1527 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1528 break; 1529 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1530 if (!CurTy->isIntegerTy() || Record.empty()) 1531 return Error("Invalid record"); 1532 1533 APInt VInt = ReadWideAPInt(Record, 1534 cast<IntegerType>(CurTy)->getBitWidth()); 1535 V = ConstantInt::get(Context, VInt); 1536 1537 break; 1538 } 1539 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1540 if (Record.empty()) 1541 return Error("Invalid record"); 1542 if (CurTy->isHalfTy()) 1543 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1544 APInt(16, (uint16_t)Record[0]))); 1545 else if (CurTy->isFloatTy()) 1546 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1547 APInt(32, (uint32_t)Record[0]))); 1548 else if (CurTy->isDoubleTy()) 1549 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1550 APInt(64, Record[0]))); 1551 else if (CurTy->isX86_FP80Ty()) { 1552 // Bits are not stored the same way as a normal i80 APInt, compensate. 1553 uint64_t Rearrange[2]; 1554 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1555 Rearrange[1] = Record[0] >> 48; 1556 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1557 APInt(80, Rearrange))); 1558 } else if (CurTy->isFP128Ty()) 1559 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1560 APInt(128, Record))); 1561 else if (CurTy->isPPC_FP128Ty()) 1562 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1563 APInt(128, Record))); 1564 else 1565 V = UndefValue::get(CurTy); 1566 break; 1567 } 1568 1569 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1570 if (Record.empty()) 1571 return Error("Invalid record"); 1572 1573 unsigned Size = Record.size(); 1574 SmallVector<Constant*, 16> Elts; 1575 1576 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1577 for (unsigned i = 0; i != Size; ++i) 1578 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1579 STy->getElementType(i))); 1580 V = ConstantStruct::get(STy, Elts); 1581 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1582 Type *EltTy = ATy->getElementType(); 1583 for (unsigned i = 0; i != Size; ++i) 1584 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1585 V = ConstantArray::get(ATy, Elts); 1586 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1587 Type *EltTy = VTy->getElementType(); 1588 for (unsigned i = 0; i != Size; ++i) 1589 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1590 V = ConstantVector::get(Elts); 1591 } else { 1592 V = UndefValue::get(CurTy); 1593 } 1594 break; 1595 } 1596 case bitc::CST_CODE_STRING: // STRING: [values] 1597 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1598 if (Record.empty()) 1599 return Error("Invalid record"); 1600 1601 SmallString<16> Elts(Record.begin(), Record.end()); 1602 V = ConstantDataArray::getString(Context, Elts, 1603 BitCode == bitc::CST_CODE_CSTRING); 1604 break; 1605 } 1606 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1607 if (Record.empty()) 1608 return Error("Invalid record"); 1609 1610 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1611 unsigned Size = Record.size(); 1612 1613 if (EltTy->isIntegerTy(8)) { 1614 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1615 if (isa<VectorType>(CurTy)) 1616 V = ConstantDataVector::get(Context, Elts); 1617 else 1618 V = ConstantDataArray::get(Context, Elts); 1619 } else if (EltTy->isIntegerTy(16)) { 1620 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1621 if (isa<VectorType>(CurTy)) 1622 V = ConstantDataVector::get(Context, Elts); 1623 else 1624 V = ConstantDataArray::get(Context, Elts); 1625 } else if (EltTy->isIntegerTy(32)) { 1626 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1627 if (isa<VectorType>(CurTy)) 1628 V = ConstantDataVector::get(Context, Elts); 1629 else 1630 V = ConstantDataArray::get(Context, Elts); 1631 } else if (EltTy->isIntegerTy(64)) { 1632 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1633 if (isa<VectorType>(CurTy)) 1634 V = ConstantDataVector::get(Context, Elts); 1635 else 1636 V = ConstantDataArray::get(Context, Elts); 1637 } else if (EltTy->isFloatTy()) { 1638 SmallVector<float, 16> Elts(Size); 1639 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1640 if (isa<VectorType>(CurTy)) 1641 V = ConstantDataVector::get(Context, Elts); 1642 else 1643 V = ConstantDataArray::get(Context, Elts); 1644 } else if (EltTy->isDoubleTy()) { 1645 SmallVector<double, 16> Elts(Size); 1646 std::transform(Record.begin(), Record.end(), Elts.begin(), 1647 BitsToDouble); 1648 if (isa<VectorType>(CurTy)) 1649 V = ConstantDataVector::get(Context, Elts); 1650 else 1651 V = ConstantDataArray::get(Context, Elts); 1652 } else { 1653 return Error("Invalid type for value"); 1654 } 1655 break; 1656 } 1657 1658 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1659 if (Record.size() < 3) 1660 return Error("Invalid record"); 1661 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1662 if (Opc < 0) { 1663 V = UndefValue::get(CurTy); // Unknown binop. 1664 } else { 1665 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1666 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1667 unsigned Flags = 0; 1668 if (Record.size() >= 4) { 1669 if (Opc == Instruction::Add || 1670 Opc == Instruction::Sub || 1671 Opc == Instruction::Mul || 1672 Opc == Instruction::Shl) { 1673 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1674 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1675 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1676 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1677 } else if (Opc == Instruction::SDiv || 1678 Opc == Instruction::UDiv || 1679 Opc == Instruction::LShr || 1680 Opc == Instruction::AShr) { 1681 if (Record[3] & (1 << bitc::PEO_EXACT)) 1682 Flags |= SDivOperator::IsExact; 1683 } 1684 } 1685 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1686 } 1687 break; 1688 } 1689 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1690 if (Record.size() < 3) 1691 return Error("Invalid record"); 1692 int Opc = GetDecodedCastOpcode(Record[0]); 1693 if (Opc < 0) { 1694 V = UndefValue::get(CurTy); // Unknown cast. 1695 } else { 1696 Type *OpTy = getTypeByID(Record[1]); 1697 if (!OpTy) 1698 return Error("Invalid record"); 1699 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1700 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1701 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1702 } 1703 break; 1704 } 1705 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1706 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1707 if (Record.size() & 1) 1708 return Error("Invalid record"); 1709 SmallVector<Constant*, 16> Elts; 1710 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1711 Type *ElTy = getTypeByID(Record[i]); 1712 if (!ElTy) 1713 return Error("Invalid record"); 1714 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1715 } 1716 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1717 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1718 BitCode == 1719 bitc::CST_CODE_CE_INBOUNDS_GEP); 1720 break; 1721 } 1722 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1723 if (Record.size() < 3) 1724 return Error("Invalid record"); 1725 1726 Type *SelectorTy = Type::getInt1Ty(Context); 1727 1728 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1729 // vector. Otherwise, it must be a single bit. 1730 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1731 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1732 VTy->getNumElements()); 1733 1734 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1735 SelectorTy), 1736 ValueList.getConstantFwdRef(Record[1],CurTy), 1737 ValueList.getConstantFwdRef(Record[2],CurTy)); 1738 break; 1739 } 1740 case bitc::CST_CODE_CE_EXTRACTELT 1741 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1742 if (Record.size() < 3) 1743 return Error("Invalid record"); 1744 VectorType *OpTy = 1745 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1746 if (!OpTy) 1747 return Error("Invalid record"); 1748 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1749 Constant *Op1 = nullptr; 1750 if (Record.size() == 4) { 1751 Type *IdxTy = getTypeByID(Record[2]); 1752 if (!IdxTy) 1753 return Error("Invalid record"); 1754 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1755 } else // TODO: Remove with llvm 4.0 1756 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1757 if (!Op1) 1758 return Error("Invalid record"); 1759 V = ConstantExpr::getExtractElement(Op0, Op1); 1760 break; 1761 } 1762 case bitc::CST_CODE_CE_INSERTELT 1763 : { // CE_INSERTELT: [opval, opval, opty, opval] 1764 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1765 if (Record.size() < 3 || !OpTy) 1766 return Error("Invalid record"); 1767 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1768 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1769 OpTy->getElementType()); 1770 Constant *Op2 = nullptr; 1771 if (Record.size() == 4) { 1772 Type *IdxTy = getTypeByID(Record[2]); 1773 if (!IdxTy) 1774 return Error("Invalid record"); 1775 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1776 } else // TODO: Remove with llvm 4.0 1777 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1778 if (!Op2) 1779 return Error("Invalid record"); 1780 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1781 break; 1782 } 1783 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1784 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1785 if (Record.size() < 3 || !OpTy) 1786 return Error("Invalid record"); 1787 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1788 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1789 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1790 OpTy->getNumElements()); 1791 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1792 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1793 break; 1794 } 1795 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1796 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1797 VectorType *OpTy = 1798 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1799 if (Record.size() < 4 || !RTy || !OpTy) 1800 return Error("Invalid record"); 1801 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1802 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1803 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1804 RTy->getNumElements()); 1805 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1806 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1807 break; 1808 } 1809 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1810 if (Record.size() < 4) 1811 return Error("Invalid record"); 1812 Type *OpTy = getTypeByID(Record[0]); 1813 if (!OpTy) 1814 return Error("Invalid record"); 1815 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1816 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1817 1818 if (OpTy->isFPOrFPVectorTy()) 1819 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1820 else 1821 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1822 break; 1823 } 1824 // This maintains backward compatibility, pre-asm dialect keywords. 1825 // FIXME: Remove with the 4.0 release. 1826 case bitc::CST_CODE_INLINEASM_OLD: { 1827 if (Record.size() < 2) 1828 return Error("Invalid record"); 1829 std::string AsmStr, ConstrStr; 1830 bool HasSideEffects = Record[0] & 1; 1831 bool IsAlignStack = Record[0] >> 1; 1832 unsigned AsmStrSize = Record[1]; 1833 if (2+AsmStrSize >= Record.size()) 1834 return Error("Invalid record"); 1835 unsigned ConstStrSize = Record[2+AsmStrSize]; 1836 if (3+AsmStrSize+ConstStrSize > Record.size()) 1837 return Error("Invalid record"); 1838 1839 for (unsigned i = 0; i != AsmStrSize; ++i) 1840 AsmStr += (char)Record[2+i]; 1841 for (unsigned i = 0; i != ConstStrSize; ++i) 1842 ConstrStr += (char)Record[3+AsmStrSize+i]; 1843 PointerType *PTy = cast<PointerType>(CurTy); 1844 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1845 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1846 break; 1847 } 1848 // This version adds support for the asm dialect keywords (e.g., 1849 // inteldialect). 1850 case bitc::CST_CODE_INLINEASM: { 1851 if (Record.size() < 2) 1852 return Error("Invalid record"); 1853 std::string AsmStr, ConstrStr; 1854 bool HasSideEffects = Record[0] & 1; 1855 bool IsAlignStack = (Record[0] >> 1) & 1; 1856 unsigned AsmDialect = Record[0] >> 2; 1857 unsigned AsmStrSize = Record[1]; 1858 if (2+AsmStrSize >= Record.size()) 1859 return Error("Invalid record"); 1860 unsigned ConstStrSize = Record[2+AsmStrSize]; 1861 if (3+AsmStrSize+ConstStrSize > Record.size()) 1862 return Error("Invalid record"); 1863 1864 for (unsigned i = 0; i != AsmStrSize; ++i) 1865 AsmStr += (char)Record[2+i]; 1866 for (unsigned i = 0; i != ConstStrSize; ++i) 1867 ConstrStr += (char)Record[3+AsmStrSize+i]; 1868 PointerType *PTy = cast<PointerType>(CurTy); 1869 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1870 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1871 InlineAsm::AsmDialect(AsmDialect)); 1872 break; 1873 } 1874 case bitc::CST_CODE_BLOCKADDRESS:{ 1875 if (Record.size() < 3) 1876 return Error("Invalid record"); 1877 Type *FnTy = getTypeByID(Record[0]); 1878 if (!FnTy) 1879 return Error("Invalid record"); 1880 Function *Fn = 1881 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1882 if (!Fn) 1883 return Error("Invalid record"); 1884 1885 // Don't let Fn get dematerialized. 1886 BlockAddressesTaken.insert(Fn); 1887 1888 // If the function is already parsed we can insert the block address right 1889 // away. 1890 BasicBlock *BB; 1891 unsigned BBID = Record[2]; 1892 if (!BBID) 1893 // Invalid reference to entry block. 1894 return Error("Invalid ID"); 1895 if (!Fn->empty()) { 1896 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1897 for (size_t I = 0, E = BBID; I != E; ++I) { 1898 if (BBI == BBE) 1899 return Error("Invalid ID"); 1900 ++BBI; 1901 } 1902 BB = BBI; 1903 } else { 1904 // Otherwise insert a placeholder and remember it so it can be inserted 1905 // when the function is parsed. 1906 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1907 if (FwdBBs.empty()) 1908 BasicBlockFwdRefQueue.push_back(Fn); 1909 if (FwdBBs.size() < BBID + 1) 1910 FwdBBs.resize(BBID + 1); 1911 if (!FwdBBs[BBID]) 1912 FwdBBs[BBID] = BasicBlock::Create(Context); 1913 BB = FwdBBs[BBID]; 1914 } 1915 V = BlockAddress::get(Fn, BB); 1916 break; 1917 } 1918 } 1919 1920 ValueList.AssignValue(V, NextCstNo); 1921 ++NextCstNo; 1922 } 1923 } 1924 1925 std::error_code BitcodeReader::ParseUseLists() { 1926 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1927 return Error("Invalid record"); 1928 1929 // Read all the records. 1930 SmallVector<uint64_t, 64> Record; 1931 while (1) { 1932 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1933 1934 switch (Entry.Kind) { 1935 case BitstreamEntry::SubBlock: // Handled for us already. 1936 case BitstreamEntry::Error: 1937 return Error("Malformed block"); 1938 case BitstreamEntry::EndBlock: 1939 return std::error_code(); 1940 case BitstreamEntry::Record: 1941 // The interesting case. 1942 break; 1943 } 1944 1945 // Read a use list record. 1946 Record.clear(); 1947 bool IsBB = false; 1948 switch (Stream.readRecord(Entry.ID, Record)) { 1949 default: // Default behavior: unknown type. 1950 break; 1951 case bitc::USELIST_CODE_BB: 1952 IsBB = true; 1953 // fallthrough 1954 case bitc::USELIST_CODE_DEFAULT: { 1955 unsigned RecordLength = Record.size(); 1956 if (RecordLength < 3) 1957 // Records should have at least an ID and two indexes. 1958 return Error("Invalid record"); 1959 unsigned ID = Record.back(); 1960 Record.pop_back(); 1961 1962 Value *V; 1963 if (IsBB) { 1964 assert(ID < FunctionBBs.size() && "Basic block not found"); 1965 V = FunctionBBs[ID]; 1966 } else 1967 V = ValueList[ID]; 1968 unsigned NumUses = 0; 1969 SmallDenseMap<const Use *, unsigned, 16> Order; 1970 for (const Use &U : V->uses()) { 1971 if (++NumUses > Record.size()) 1972 break; 1973 Order[&U] = Record[NumUses - 1]; 1974 } 1975 if (Order.size() != Record.size() || NumUses > Record.size()) 1976 // Mismatches can happen if the functions are being materialized lazily 1977 // (out-of-order), or a value has been upgraded. 1978 break; 1979 1980 V->sortUseList([&](const Use &L, const Use &R) { 1981 return Order.lookup(&L) < Order.lookup(&R); 1982 }); 1983 break; 1984 } 1985 } 1986 } 1987 } 1988 1989 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1990 /// remember where it is and then skip it. This lets us lazily deserialize the 1991 /// functions. 1992 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1993 // Get the function we are talking about. 1994 if (FunctionsWithBodies.empty()) 1995 return Error("Insufficient function protos"); 1996 1997 Function *Fn = FunctionsWithBodies.back(); 1998 FunctionsWithBodies.pop_back(); 1999 2000 // Save the current stream state. 2001 uint64_t CurBit = Stream.GetCurrentBitNo(); 2002 DeferredFunctionInfo[Fn] = CurBit; 2003 2004 // Skip over the function block for now. 2005 if (Stream.SkipBlock()) 2006 return Error("Invalid record"); 2007 return std::error_code(); 2008 } 2009 2010 std::error_code BitcodeReader::GlobalCleanup() { 2011 // Patch the initializers for globals and aliases up. 2012 ResolveGlobalAndAliasInits(); 2013 if (!GlobalInits.empty() || !AliasInits.empty()) 2014 return Error("Malformed global initializer set"); 2015 2016 // Look for intrinsic functions which need to be upgraded at some point 2017 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2018 FI != FE; ++FI) { 2019 Function *NewFn; 2020 if (UpgradeIntrinsicFunction(FI, NewFn)) 2021 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2022 } 2023 2024 // Look for global variables which need to be renamed. 2025 for (Module::global_iterator 2026 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2027 GI != GE;) { 2028 GlobalVariable *GV = GI++; 2029 UpgradeGlobalVariable(GV); 2030 } 2031 2032 // Force deallocation of memory for these vectors to favor the client that 2033 // want lazy deserialization. 2034 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2035 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2036 return std::error_code(); 2037 } 2038 2039 std::error_code BitcodeReader::ParseModule(bool Resume) { 2040 if (Resume) 2041 Stream.JumpToBit(NextUnreadBit); 2042 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2043 return Error("Invalid record"); 2044 2045 SmallVector<uint64_t, 64> Record; 2046 std::vector<std::string> SectionTable; 2047 std::vector<std::string> GCTable; 2048 2049 // Read all the records for this module. 2050 while (1) { 2051 BitstreamEntry Entry = Stream.advance(); 2052 2053 switch (Entry.Kind) { 2054 case BitstreamEntry::Error: 2055 return Error("Malformed block"); 2056 case BitstreamEntry::EndBlock: 2057 return GlobalCleanup(); 2058 2059 case BitstreamEntry::SubBlock: 2060 switch (Entry.ID) { 2061 default: // Skip unknown content. 2062 if (Stream.SkipBlock()) 2063 return Error("Invalid record"); 2064 break; 2065 case bitc::BLOCKINFO_BLOCK_ID: 2066 if (Stream.ReadBlockInfoBlock()) 2067 return Error("Malformed block"); 2068 break; 2069 case bitc::PARAMATTR_BLOCK_ID: 2070 if (std::error_code EC = ParseAttributeBlock()) 2071 return EC; 2072 break; 2073 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2074 if (std::error_code EC = ParseAttributeGroupBlock()) 2075 return EC; 2076 break; 2077 case bitc::TYPE_BLOCK_ID_NEW: 2078 if (std::error_code EC = ParseTypeTable()) 2079 return EC; 2080 break; 2081 case bitc::VALUE_SYMTAB_BLOCK_ID: 2082 if (std::error_code EC = ParseValueSymbolTable()) 2083 return EC; 2084 SeenValueSymbolTable = true; 2085 break; 2086 case bitc::CONSTANTS_BLOCK_ID: 2087 if (std::error_code EC = ParseConstants()) 2088 return EC; 2089 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2090 return EC; 2091 break; 2092 case bitc::METADATA_BLOCK_ID: 2093 if (std::error_code EC = ParseMetadata()) 2094 return EC; 2095 break; 2096 case bitc::FUNCTION_BLOCK_ID: 2097 // If this is the first function body we've seen, reverse the 2098 // FunctionsWithBodies list. 2099 if (!SeenFirstFunctionBody) { 2100 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2101 if (std::error_code EC = GlobalCleanup()) 2102 return EC; 2103 SeenFirstFunctionBody = true; 2104 } 2105 2106 if (std::error_code EC = RememberAndSkipFunctionBody()) 2107 return EC; 2108 // For streaming bitcode, suspend parsing when we reach the function 2109 // bodies. Subsequent materialization calls will resume it when 2110 // necessary. For streaming, the function bodies must be at the end of 2111 // the bitcode. If the bitcode file is old, the symbol table will be 2112 // at the end instead and will not have been seen yet. In this case, 2113 // just finish the parse now. 2114 if (LazyStreamer && SeenValueSymbolTable) { 2115 NextUnreadBit = Stream.GetCurrentBitNo(); 2116 return std::error_code(); 2117 } 2118 break; 2119 case bitc::USELIST_BLOCK_ID: 2120 if (std::error_code EC = ParseUseLists()) 2121 return EC; 2122 break; 2123 } 2124 continue; 2125 2126 case BitstreamEntry::Record: 2127 // The interesting case. 2128 break; 2129 } 2130 2131 2132 // Read a record. 2133 switch (Stream.readRecord(Entry.ID, Record)) { 2134 default: break; // Default behavior, ignore unknown content. 2135 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2136 if (Record.size() < 1) 2137 return Error("Invalid record"); 2138 // Only version #0 and #1 are supported so far. 2139 unsigned module_version = Record[0]; 2140 switch (module_version) { 2141 default: 2142 return Error("Invalid value"); 2143 case 0: 2144 UseRelativeIDs = false; 2145 break; 2146 case 1: 2147 UseRelativeIDs = true; 2148 break; 2149 } 2150 break; 2151 } 2152 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2153 std::string S; 2154 if (ConvertToString(Record, 0, S)) 2155 return Error("Invalid record"); 2156 TheModule->setTargetTriple(S); 2157 break; 2158 } 2159 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2160 std::string S; 2161 if (ConvertToString(Record, 0, S)) 2162 return Error("Invalid record"); 2163 TheModule->setDataLayout(S); 2164 break; 2165 } 2166 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2167 std::string S; 2168 if (ConvertToString(Record, 0, S)) 2169 return Error("Invalid record"); 2170 TheModule->setModuleInlineAsm(S); 2171 break; 2172 } 2173 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2174 // FIXME: Remove in 4.0. 2175 std::string S; 2176 if (ConvertToString(Record, 0, S)) 2177 return Error("Invalid record"); 2178 // Ignore value. 2179 break; 2180 } 2181 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2182 std::string S; 2183 if (ConvertToString(Record, 0, S)) 2184 return Error("Invalid record"); 2185 SectionTable.push_back(S); 2186 break; 2187 } 2188 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2189 std::string S; 2190 if (ConvertToString(Record, 0, S)) 2191 return Error("Invalid record"); 2192 GCTable.push_back(S); 2193 break; 2194 } 2195 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2196 if (Record.size() < 2) 2197 return Error("Invalid record"); 2198 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2199 unsigned ComdatNameSize = Record[1]; 2200 std::string ComdatName; 2201 ComdatName.reserve(ComdatNameSize); 2202 for (unsigned i = 0; i != ComdatNameSize; ++i) 2203 ComdatName += (char)Record[2 + i]; 2204 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2205 C->setSelectionKind(SK); 2206 ComdatList.push_back(C); 2207 break; 2208 } 2209 // GLOBALVAR: [pointer type, isconst, initid, 2210 // linkage, alignment, section, visibility, threadlocal, 2211 // unnamed_addr, externally_initialized, dllstorageclass, 2212 // comdat] 2213 case bitc::MODULE_CODE_GLOBALVAR: { 2214 if (Record.size() < 6) 2215 return Error("Invalid record"); 2216 Type *Ty = getTypeByID(Record[0]); 2217 if (!Ty) 2218 return Error("Invalid record"); 2219 if (!Ty->isPointerTy()) 2220 return Error("Invalid type for value"); 2221 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2222 Ty = cast<PointerType>(Ty)->getElementType(); 2223 2224 bool isConstant = Record[1]; 2225 uint64_t RawLinkage = Record[3]; 2226 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2227 unsigned Alignment = (1 << Record[4]) >> 1; 2228 std::string Section; 2229 if (Record[5]) { 2230 if (Record[5]-1 >= SectionTable.size()) 2231 return Error("Invalid ID"); 2232 Section = SectionTable[Record[5]-1]; 2233 } 2234 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2235 // Local linkage must have default visibility. 2236 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2237 // FIXME: Change to an error if non-default in 4.0. 2238 Visibility = GetDecodedVisibility(Record[6]); 2239 2240 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2241 if (Record.size() > 7) 2242 TLM = GetDecodedThreadLocalMode(Record[7]); 2243 2244 bool UnnamedAddr = false; 2245 if (Record.size() > 8) 2246 UnnamedAddr = Record[8]; 2247 2248 bool ExternallyInitialized = false; 2249 if (Record.size() > 9) 2250 ExternallyInitialized = Record[9]; 2251 2252 GlobalVariable *NewGV = 2253 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2254 TLM, AddressSpace, ExternallyInitialized); 2255 NewGV->setAlignment(Alignment); 2256 if (!Section.empty()) 2257 NewGV->setSection(Section); 2258 NewGV->setVisibility(Visibility); 2259 NewGV->setUnnamedAddr(UnnamedAddr); 2260 2261 if (Record.size() > 10) 2262 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2263 else 2264 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2265 2266 ValueList.push_back(NewGV); 2267 2268 // Remember which value to use for the global initializer. 2269 if (unsigned InitID = Record[2]) 2270 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2271 2272 if (Record.size() > 11) { 2273 if (unsigned ComdatID = Record[11]) { 2274 assert(ComdatID <= ComdatList.size()); 2275 NewGV->setComdat(ComdatList[ComdatID - 1]); 2276 } 2277 } else if (hasImplicitComdat(RawLinkage)) { 2278 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2279 } 2280 break; 2281 } 2282 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2283 // alignment, section, visibility, gc, unnamed_addr, 2284 // prologuedata, dllstorageclass, comdat, prefixdata] 2285 case bitc::MODULE_CODE_FUNCTION: { 2286 if (Record.size() < 8) 2287 return Error("Invalid record"); 2288 Type *Ty = getTypeByID(Record[0]); 2289 if (!Ty) 2290 return Error("Invalid record"); 2291 if (!Ty->isPointerTy()) 2292 return Error("Invalid type for value"); 2293 FunctionType *FTy = 2294 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2295 if (!FTy) 2296 return Error("Invalid type for value"); 2297 2298 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2299 "", TheModule); 2300 2301 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2302 bool isProto = Record[2]; 2303 uint64_t RawLinkage = Record[3]; 2304 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2305 Func->setAttributes(getAttributes(Record[4])); 2306 2307 Func->setAlignment((1 << Record[5]) >> 1); 2308 if (Record[6]) { 2309 if (Record[6]-1 >= SectionTable.size()) 2310 return Error("Invalid ID"); 2311 Func->setSection(SectionTable[Record[6]-1]); 2312 } 2313 // Local linkage must have default visibility. 2314 if (!Func->hasLocalLinkage()) 2315 // FIXME: Change to an error if non-default in 4.0. 2316 Func->setVisibility(GetDecodedVisibility(Record[7])); 2317 if (Record.size() > 8 && Record[8]) { 2318 if (Record[8]-1 > GCTable.size()) 2319 return Error("Invalid ID"); 2320 Func->setGC(GCTable[Record[8]-1].c_str()); 2321 } 2322 bool UnnamedAddr = false; 2323 if (Record.size() > 9) 2324 UnnamedAddr = Record[9]; 2325 Func->setUnnamedAddr(UnnamedAddr); 2326 if (Record.size() > 10 && Record[10] != 0) 2327 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2328 2329 if (Record.size() > 11) 2330 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2331 else 2332 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2333 2334 if (Record.size() > 12) { 2335 if (unsigned ComdatID = Record[12]) { 2336 assert(ComdatID <= ComdatList.size()); 2337 Func->setComdat(ComdatList[ComdatID - 1]); 2338 } 2339 } else if (hasImplicitComdat(RawLinkage)) { 2340 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2341 } 2342 2343 if (Record.size() > 13 && Record[13] != 0) 2344 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2345 2346 ValueList.push_back(Func); 2347 2348 // If this is a function with a body, remember the prototype we are 2349 // creating now, so that we can match up the body with them later. 2350 if (!isProto) { 2351 Func->setIsMaterializable(true); 2352 FunctionsWithBodies.push_back(Func); 2353 if (LazyStreamer) 2354 DeferredFunctionInfo[Func] = 0; 2355 } 2356 break; 2357 } 2358 // ALIAS: [alias type, aliasee val#, linkage] 2359 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2360 case bitc::MODULE_CODE_ALIAS: { 2361 if (Record.size() < 3) 2362 return Error("Invalid record"); 2363 Type *Ty = getTypeByID(Record[0]); 2364 if (!Ty) 2365 return Error("Invalid record"); 2366 auto *PTy = dyn_cast<PointerType>(Ty); 2367 if (!PTy) 2368 return Error("Invalid type for value"); 2369 2370 auto *NewGA = 2371 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2372 getDecodedLinkage(Record[2]), "", TheModule); 2373 // Old bitcode files didn't have visibility field. 2374 // Local linkage must have default visibility. 2375 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2376 // FIXME: Change to an error if non-default in 4.0. 2377 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2378 if (Record.size() > 4) 2379 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2380 else 2381 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2382 if (Record.size() > 5) 2383 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2384 if (Record.size() > 6) 2385 NewGA->setUnnamedAddr(Record[6]); 2386 ValueList.push_back(NewGA); 2387 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2388 break; 2389 } 2390 /// MODULE_CODE_PURGEVALS: [numvals] 2391 case bitc::MODULE_CODE_PURGEVALS: 2392 // Trim down the value list to the specified size. 2393 if (Record.size() < 1 || Record[0] > ValueList.size()) 2394 return Error("Invalid record"); 2395 ValueList.shrinkTo(Record[0]); 2396 break; 2397 } 2398 Record.clear(); 2399 } 2400 } 2401 2402 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2403 TheModule = nullptr; 2404 2405 if (std::error_code EC = InitStream()) 2406 return EC; 2407 2408 // Sniff for the signature. 2409 if (Stream.Read(8) != 'B' || 2410 Stream.Read(8) != 'C' || 2411 Stream.Read(4) != 0x0 || 2412 Stream.Read(4) != 0xC || 2413 Stream.Read(4) != 0xE || 2414 Stream.Read(4) != 0xD) 2415 return Error("Invalid bitcode signature"); 2416 2417 // We expect a number of well-defined blocks, though we don't necessarily 2418 // need to understand them all. 2419 while (1) { 2420 if (Stream.AtEndOfStream()) 2421 return std::error_code(); 2422 2423 BitstreamEntry Entry = 2424 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2425 2426 switch (Entry.Kind) { 2427 case BitstreamEntry::Error: 2428 return Error("Malformed block"); 2429 case BitstreamEntry::EndBlock: 2430 return std::error_code(); 2431 2432 case BitstreamEntry::SubBlock: 2433 switch (Entry.ID) { 2434 case bitc::BLOCKINFO_BLOCK_ID: 2435 if (Stream.ReadBlockInfoBlock()) 2436 return Error("Malformed block"); 2437 break; 2438 case bitc::MODULE_BLOCK_ID: 2439 // Reject multiple MODULE_BLOCK's in a single bitstream. 2440 if (TheModule) 2441 return Error("Invalid multiple blocks"); 2442 TheModule = M; 2443 if (std::error_code EC = ParseModule(false)) 2444 return EC; 2445 if (LazyStreamer) 2446 return std::error_code(); 2447 break; 2448 default: 2449 if (Stream.SkipBlock()) 2450 return Error("Invalid record"); 2451 break; 2452 } 2453 continue; 2454 case BitstreamEntry::Record: 2455 // There should be no records in the top-level of blocks. 2456 2457 // The ranlib in Xcode 4 will align archive members by appending newlines 2458 // to the end of them. If this file size is a multiple of 4 but not 8, we 2459 // have to read and ignore these final 4 bytes :-( 2460 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2461 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2462 Stream.AtEndOfStream()) 2463 return std::error_code(); 2464 2465 return Error("Invalid record"); 2466 } 2467 } 2468 } 2469 2470 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2471 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2472 return Error("Invalid record"); 2473 2474 SmallVector<uint64_t, 64> Record; 2475 2476 std::string Triple; 2477 // Read all the records for this module. 2478 while (1) { 2479 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2480 2481 switch (Entry.Kind) { 2482 case BitstreamEntry::SubBlock: // Handled for us already. 2483 case BitstreamEntry::Error: 2484 return Error("Malformed block"); 2485 case BitstreamEntry::EndBlock: 2486 return Triple; 2487 case BitstreamEntry::Record: 2488 // The interesting case. 2489 break; 2490 } 2491 2492 // Read a record. 2493 switch (Stream.readRecord(Entry.ID, Record)) { 2494 default: break; // Default behavior, ignore unknown content. 2495 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2496 std::string S; 2497 if (ConvertToString(Record, 0, S)) 2498 return Error("Invalid record"); 2499 Triple = S; 2500 break; 2501 } 2502 } 2503 Record.clear(); 2504 } 2505 llvm_unreachable("Exit infinite loop"); 2506 } 2507 2508 ErrorOr<std::string> BitcodeReader::parseTriple() { 2509 if (std::error_code EC = InitStream()) 2510 return EC; 2511 2512 // Sniff for the signature. 2513 if (Stream.Read(8) != 'B' || 2514 Stream.Read(8) != 'C' || 2515 Stream.Read(4) != 0x0 || 2516 Stream.Read(4) != 0xC || 2517 Stream.Read(4) != 0xE || 2518 Stream.Read(4) != 0xD) 2519 return Error("Invalid bitcode signature"); 2520 2521 // We expect a number of well-defined blocks, though we don't necessarily 2522 // need to understand them all. 2523 while (1) { 2524 BitstreamEntry Entry = Stream.advance(); 2525 2526 switch (Entry.Kind) { 2527 case BitstreamEntry::Error: 2528 return Error("Malformed block"); 2529 case BitstreamEntry::EndBlock: 2530 return std::error_code(); 2531 2532 case BitstreamEntry::SubBlock: 2533 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2534 return parseModuleTriple(); 2535 2536 // Ignore other sub-blocks. 2537 if (Stream.SkipBlock()) 2538 return Error("Malformed block"); 2539 continue; 2540 2541 case BitstreamEntry::Record: 2542 Stream.skipRecord(Entry.ID); 2543 continue; 2544 } 2545 } 2546 } 2547 2548 /// ParseMetadataAttachment - Parse metadata attachments. 2549 std::error_code BitcodeReader::ParseMetadataAttachment() { 2550 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2551 return Error("Invalid record"); 2552 2553 SmallVector<uint64_t, 64> Record; 2554 while (1) { 2555 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2556 2557 switch (Entry.Kind) { 2558 case BitstreamEntry::SubBlock: // Handled for us already. 2559 case BitstreamEntry::Error: 2560 return Error("Malformed block"); 2561 case BitstreamEntry::EndBlock: 2562 return std::error_code(); 2563 case BitstreamEntry::Record: 2564 // The interesting case. 2565 break; 2566 } 2567 2568 // Read a metadata attachment record. 2569 Record.clear(); 2570 switch (Stream.readRecord(Entry.ID, Record)) { 2571 default: // Default behavior: ignore. 2572 break; 2573 case bitc::METADATA_ATTACHMENT: { 2574 unsigned RecordLength = Record.size(); 2575 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2576 return Error("Invalid record"); 2577 Instruction *Inst = InstructionList[Record[0]]; 2578 for (unsigned i = 1; i != RecordLength; i = i+2) { 2579 unsigned Kind = Record[i]; 2580 DenseMap<unsigned, unsigned>::iterator I = 2581 MDKindMap.find(Kind); 2582 if (I == MDKindMap.end()) 2583 return Error("Invalid ID"); 2584 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2585 if (isa<LocalAsMetadata>(Node)) 2586 // Drop the attachment. This used to be legal, but there's no 2587 // upgrade path. 2588 break; 2589 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2590 if (I->second == LLVMContext::MD_tbaa) 2591 InstsWithTBAATag.push_back(Inst); 2592 } 2593 break; 2594 } 2595 } 2596 } 2597 } 2598 2599 /// ParseFunctionBody - Lazily parse the specified function body block. 2600 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2601 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2602 return Error("Invalid record"); 2603 2604 InstructionList.clear(); 2605 unsigned ModuleValueListSize = ValueList.size(); 2606 unsigned ModuleMDValueListSize = MDValueList.size(); 2607 2608 // Add all the function arguments to the value table. 2609 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2610 ValueList.push_back(I); 2611 2612 unsigned NextValueNo = ValueList.size(); 2613 BasicBlock *CurBB = nullptr; 2614 unsigned CurBBNo = 0; 2615 2616 DebugLoc LastLoc; 2617 auto getLastInstruction = [&]() -> Instruction * { 2618 if (CurBB && !CurBB->empty()) 2619 return &CurBB->back(); 2620 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2621 !FunctionBBs[CurBBNo - 1]->empty()) 2622 return &FunctionBBs[CurBBNo - 1]->back(); 2623 return nullptr; 2624 }; 2625 2626 // Read all the records. 2627 SmallVector<uint64_t, 64> Record; 2628 while (1) { 2629 BitstreamEntry Entry = Stream.advance(); 2630 2631 switch (Entry.Kind) { 2632 case BitstreamEntry::Error: 2633 return Error("Malformed block"); 2634 case BitstreamEntry::EndBlock: 2635 goto OutOfRecordLoop; 2636 2637 case BitstreamEntry::SubBlock: 2638 switch (Entry.ID) { 2639 default: // Skip unknown content. 2640 if (Stream.SkipBlock()) 2641 return Error("Invalid record"); 2642 break; 2643 case bitc::CONSTANTS_BLOCK_ID: 2644 if (std::error_code EC = ParseConstants()) 2645 return EC; 2646 NextValueNo = ValueList.size(); 2647 break; 2648 case bitc::VALUE_SYMTAB_BLOCK_ID: 2649 if (std::error_code EC = ParseValueSymbolTable()) 2650 return EC; 2651 break; 2652 case bitc::METADATA_ATTACHMENT_ID: 2653 if (std::error_code EC = ParseMetadataAttachment()) 2654 return EC; 2655 break; 2656 case bitc::METADATA_BLOCK_ID: 2657 if (std::error_code EC = ParseMetadata()) 2658 return EC; 2659 break; 2660 case bitc::USELIST_BLOCK_ID: 2661 if (std::error_code EC = ParseUseLists()) 2662 return EC; 2663 break; 2664 } 2665 continue; 2666 2667 case BitstreamEntry::Record: 2668 // The interesting case. 2669 break; 2670 } 2671 2672 // Read a record. 2673 Record.clear(); 2674 Instruction *I = nullptr; 2675 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2676 switch (BitCode) { 2677 default: // Default behavior: reject 2678 return Error("Invalid value"); 2679 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2680 if (Record.size() < 1 || Record[0] == 0) 2681 return Error("Invalid record"); 2682 // Create all the basic blocks for the function. 2683 FunctionBBs.resize(Record[0]); 2684 2685 // See if anything took the address of blocks in this function. 2686 auto BBFRI = BasicBlockFwdRefs.find(F); 2687 if (BBFRI == BasicBlockFwdRefs.end()) { 2688 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2689 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2690 } else { 2691 auto &BBRefs = BBFRI->second; 2692 // Check for invalid basic block references. 2693 if (BBRefs.size() > FunctionBBs.size()) 2694 return Error("Invalid ID"); 2695 assert(!BBRefs.empty() && "Unexpected empty array"); 2696 assert(!BBRefs.front() && "Invalid reference to entry block"); 2697 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2698 ++I) 2699 if (I < RE && BBRefs[I]) { 2700 BBRefs[I]->insertInto(F); 2701 FunctionBBs[I] = BBRefs[I]; 2702 } else { 2703 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2704 } 2705 2706 // Erase from the table. 2707 BasicBlockFwdRefs.erase(BBFRI); 2708 } 2709 2710 CurBB = FunctionBBs[0]; 2711 continue; 2712 } 2713 2714 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2715 // This record indicates that the last instruction is at the same 2716 // location as the previous instruction with a location. 2717 I = getLastInstruction(); 2718 2719 if (!I) 2720 return Error("Invalid record"); 2721 I->setDebugLoc(LastLoc); 2722 I = nullptr; 2723 continue; 2724 2725 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2726 I = getLastInstruction(); 2727 if (!I || Record.size() < 4) 2728 return Error("Invalid record"); 2729 2730 unsigned Line = Record[0], Col = Record[1]; 2731 unsigned ScopeID = Record[2], IAID = Record[3]; 2732 2733 MDNode *Scope = nullptr, *IA = nullptr; 2734 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2735 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2736 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2737 I->setDebugLoc(LastLoc); 2738 I = nullptr; 2739 continue; 2740 } 2741 2742 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2743 unsigned OpNum = 0; 2744 Value *LHS, *RHS; 2745 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2746 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2747 OpNum+1 > Record.size()) 2748 return Error("Invalid record"); 2749 2750 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2751 if (Opc == -1) 2752 return Error("Invalid record"); 2753 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2754 InstructionList.push_back(I); 2755 if (OpNum < Record.size()) { 2756 if (Opc == Instruction::Add || 2757 Opc == Instruction::Sub || 2758 Opc == Instruction::Mul || 2759 Opc == Instruction::Shl) { 2760 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2761 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2762 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2763 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2764 } else if (Opc == Instruction::SDiv || 2765 Opc == Instruction::UDiv || 2766 Opc == Instruction::LShr || 2767 Opc == Instruction::AShr) { 2768 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2769 cast<BinaryOperator>(I)->setIsExact(true); 2770 } else if (isa<FPMathOperator>(I)) { 2771 FastMathFlags FMF; 2772 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2773 FMF.setUnsafeAlgebra(); 2774 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2775 FMF.setNoNaNs(); 2776 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2777 FMF.setNoInfs(); 2778 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2779 FMF.setNoSignedZeros(); 2780 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2781 FMF.setAllowReciprocal(); 2782 if (FMF.any()) 2783 I->setFastMathFlags(FMF); 2784 } 2785 2786 } 2787 break; 2788 } 2789 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2790 unsigned OpNum = 0; 2791 Value *Op; 2792 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2793 OpNum+2 != Record.size()) 2794 return Error("Invalid record"); 2795 2796 Type *ResTy = getTypeByID(Record[OpNum]); 2797 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2798 if (Opc == -1 || !ResTy) 2799 return Error("Invalid record"); 2800 Instruction *Temp = nullptr; 2801 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2802 if (Temp) { 2803 InstructionList.push_back(Temp); 2804 CurBB->getInstList().push_back(Temp); 2805 } 2806 } else { 2807 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2808 } 2809 InstructionList.push_back(I); 2810 break; 2811 } 2812 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2813 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2814 unsigned OpNum = 0; 2815 Value *BasePtr; 2816 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2817 return Error("Invalid record"); 2818 2819 SmallVector<Value*, 16> GEPIdx; 2820 while (OpNum != Record.size()) { 2821 Value *Op; 2822 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2823 return Error("Invalid record"); 2824 GEPIdx.push_back(Op); 2825 } 2826 2827 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2828 InstructionList.push_back(I); 2829 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2830 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2831 break; 2832 } 2833 2834 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2835 // EXTRACTVAL: [opty, opval, n x indices] 2836 unsigned OpNum = 0; 2837 Value *Agg; 2838 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2839 return Error("Invalid record"); 2840 2841 SmallVector<unsigned, 4> EXTRACTVALIdx; 2842 for (unsigned RecSize = Record.size(); 2843 OpNum != RecSize; ++OpNum) { 2844 uint64_t Index = Record[OpNum]; 2845 if ((unsigned)Index != Index) 2846 return Error("Invalid value"); 2847 EXTRACTVALIdx.push_back((unsigned)Index); 2848 } 2849 2850 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2851 InstructionList.push_back(I); 2852 break; 2853 } 2854 2855 case bitc::FUNC_CODE_INST_INSERTVAL: { 2856 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2857 unsigned OpNum = 0; 2858 Value *Agg; 2859 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2860 return Error("Invalid record"); 2861 Value *Val; 2862 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2863 return Error("Invalid record"); 2864 2865 SmallVector<unsigned, 4> INSERTVALIdx; 2866 for (unsigned RecSize = Record.size(); 2867 OpNum != RecSize; ++OpNum) { 2868 uint64_t Index = Record[OpNum]; 2869 if ((unsigned)Index != Index) 2870 return Error("Invalid value"); 2871 INSERTVALIdx.push_back((unsigned)Index); 2872 } 2873 2874 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2875 InstructionList.push_back(I); 2876 break; 2877 } 2878 2879 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2880 // obsolete form of select 2881 // handles select i1 ... in old bitcode 2882 unsigned OpNum = 0; 2883 Value *TrueVal, *FalseVal, *Cond; 2884 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2885 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2886 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2887 return Error("Invalid record"); 2888 2889 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2890 InstructionList.push_back(I); 2891 break; 2892 } 2893 2894 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2895 // new form of select 2896 // handles select i1 or select [N x i1] 2897 unsigned OpNum = 0; 2898 Value *TrueVal, *FalseVal, *Cond; 2899 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2900 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2901 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2902 return Error("Invalid record"); 2903 2904 // select condition can be either i1 or [N x i1] 2905 if (VectorType* vector_type = 2906 dyn_cast<VectorType>(Cond->getType())) { 2907 // expect <n x i1> 2908 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2909 return Error("Invalid type for value"); 2910 } else { 2911 // expect i1 2912 if (Cond->getType() != Type::getInt1Ty(Context)) 2913 return Error("Invalid type for value"); 2914 } 2915 2916 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2917 InstructionList.push_back(I); 2918 break; 2919 } 2920 2921 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2922 unsigned OpNum = 0; 2923 Value *Vec, *Idx; 2924 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2925 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2926 return Error("Invalid record"); 2927 I = ExtractElementInst::Create(Vec, Idx); 2928 InstructionList.push_back(I); 2929 break; 2930 } 2931 2932 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2933 unsigned OpNum = 0; 2934 Value *Vec, *Elt, *Idx; 2935 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2936 popValue(Record, OpNum, NextValueNo, 2937 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2938 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2939 return Error("Invalid record"); 2940 I = InsertElementInst::Create(Vec, Elt, Idx); 2941 InstructionList.push_back(I); 2942 break; 2943 } 2944 2945 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2946 unsigned OpNum = 0; 2947 Value *Vec1, *Vec2, *Mask; 2948 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2949 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2950 return Error("Invalid record"); 2951 2952 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2953 return Error("Invalid record"); 2954 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2955 InstructionList.push_back(I); 2956 break; 2957 } 2958 2959 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2960 // Old form of ICmp/FCmp returning bool 2961 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2962 // both legal on vectors but had different behaviour. 2963 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2964 // FCmp/ICmp returning bool or vector of bool 2965 2966 unsigned OpNum = 0; 2967 Value *LHS, *RHS; 2968 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2969 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2970 OpNum+1 != Record.size()) 2971 return Error("Invalid record"); 2972 2973 if (LHS->getType()->isFPOrFPVectorTy()) 2974 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2975 else 2976 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2977 InstructionList.push_back(I); 2978 break; 2979 } 2980 2981 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2982 { 2983 unsigned Size = Record.size(); 2984 if (Size == 0) { 2985 I = ReturnInst::Create(Context); 2986 InstructionList.push_back(I); 2987 break; 2988 } 2989 2990 unsigned OpNum = 0; 2991 Value *Op = nullptr; 2992 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2993 return Error("Invalid record"); 2994 if (OpNum != Record.size()) 2995 return Error("Invalid record"); 2996 2997 I = ReturnInst::Create(Context, Op); 2998 InstructionList.push_back(I); 2999 break; 3000 } 3001 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3002 if (Record.size() != 1 && Record.size() != 3) 3003 return Error("Invalid record"); 3004 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3005 if (!TrueDest) 3006 return Error("Invalid record"); 3007 3008 if (Record.size() == 1) { 3009 I = BranchInst::Create(TrueDest); 3010 InstructionList.push_back(I); 3011 } 3012 else { 3013 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3014 Value *Cond = getValue(Record, 2, NextValueNo, 3015 Type::getInt1Ty(Context)); 3016 if (!FalseDest || !Cond) 3017 return Error("Invalid record"); 3018 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3019 InstructionList.push_back(I); 3020 } 3021 break; 3022 } 3023 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3024 // Check magic 3025 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3026 // "New" SwitchInst format with case ranges. The changes to write this 3027 // format were reverted but we still recognize bitcode that uses it. 3028 // Hopefully someday we will have support for case ranges and can use 3029 // this format again. 3030 3031 Type *OpTy = getTypeByID(Record[1]); 3032 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3033 3034 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3035 BasicBlock *Default = getBasicBlock(Record[3]); 3036 if (!OpTy || !Cond || !Default) 3037 return Error("Invalid record"); 3038 3039 unsigned NumCases = Record[4]; 3040 3041 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3042 InstructionList.push_back(SI); 3043 3044 unsigned CurIdx = 5; 3045 for (unsigned i = 0; i != NumCases; ++i) { 3046 SmallVector<ConstantInt*, 1> CaseVals; 3047 unsigned NumItems = Record[CurIdx++]; 3048 for (unsigned ci = 0; ci != NumItems; ++ci) { 3049 bool isSingleNumber = Record[CurIdx++]; 3050 3051 APInt Low; 3052 unsigned ActiveWords = 1; 3053 if (ValueBitWidth > 64) 3054 ActiveWords = Record[CurIdx++]; 3055 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3056 ValueBitWidth); 3057 CurIdx += ActiveWords; 3058 3059 if (!isSingleNumber) { 3060 ActiveWords = 1; 3061 if (ValueBitWidth > 64) 3062 ActiveWords = Record[CurIdx++]; 3063 APInt High = 3064 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3065 ValueBitWidth); 3066 CurIdx += ActiveWords; 3067 3068 // FIXME: It is not clear whether values in the range should be 3069 // compared as signed or unsigned values. The partially 3070 // implemented changes that used this format in the past used 3071 // unsigned comparisons. 3072 for ( ; Low.ule(High); ++Low) 3073 CaseVals.push_back(ConstantInt::get(Context, Low)); 3074 } else 3075 CaseVals.push_back(ConstantInt::get(Context, Low)); 3076 } 3077 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3078 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3079 cve = CaseVals.end(); cvi != cve; ++cvi) 3080 SI->addCase(*cvi, DestBB); 3081 } 3082 I = SI; 3083 break; 3084 } 3085 3086 // Old SwitchInst format without case ranges. 3087 3088 if (Record.size() < 3 || (Record.size() & 1) == 0) 3089 return Error("Invalid record"); 3090 Type *OpTy = getTypeByID(Record[0]); 3091 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3092 BasicBlock *Default = getBasicBlock(Record[2]); 3093 if (!OpTy || !Cond || !Default) 3094 return Error("Invalid record"); 3095 unsigned NumCases = (Record.size()-3)/2; 3096 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3097 InstructionList.push_back(SI); 3098 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3099 ConstantInt *CaseVal = 3100 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3101 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3102 if (!CaseVal || !DestBB) { 3103 delete SI; 3104 return Error("Invalid record"); 3105 } 3106 SI->addCase(CaseVal, DestBB); 3107 } 3108 I = SI; 3109 break; 3110 } 3111 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3112 if (Record.size() < 2) 3113 return Error("Invalid record"); 3114 Type *OpTy = getTypeByID(Record[0]); 3115 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3116 if (!OpTy || !Address) 3117 return Error("Invalid record"); 3118 unsigned NumDests = Record.size()-2; 3119 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3120 InstructionList.push_back(IBI); 3121 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3122 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3123 IBI->addDestination(DestBB); 3124 } else { 3125 delete IBI; 3126 return Error("Invalid record"); 3127 } 3128 } 3129 I = IBI; 3130 break; 3131 } 3132 3133 case bitc::FUNC_CODE_INST_INVOKE: { 3134 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3135 if (Record.size() < 4) 3136 return Error("Invalid record"); 3137 AttributeSet PAL = getAttributes(Record[0]); 3138 unsigned CCInfo = Record[1]; 3139 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3140 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3141 3142 unsigned OpNum = 4; 3143 Value *Callee; 3144 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3145 return Error("Invalid record"); 3146 3147 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3148 FunctionType *FTy = !CalleeTy ? nullptr : 3149 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3150 3151 // Check that the right number of fixed parameters are here. 3152 if (!FTy || !NormalBB || !UnwindBB || 3153 Record.size() < OpNum+FTy->getNumParams()) 3154 return Error("Invalid record"); 3155 3156 SmallVector<Value*, 16> Ops; 3157 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3158 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3159 FTy->getParamType(i))); 3160 if (!Ops.back()) 3161 return Error("Invalid record"); 3162 } 3163 3164 if (!FTy->isVarArg()) { 3165 if (Record.size() != OpNum) 3166 return Error("Invalid record"); 3167 } else { 3168 // Read type/value pairs for varargs params. 3169 while (OpNum != Record.size()) { 3170 Value *Op; 3171 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3172 return Error("Invalid record"); 3173 Ops.push_back(Op); 3174 } 3175 } 3176 3177 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3178 InstructionList.push_back(I); 3179 cast<InvokeInst>(I)->setCallingConv( 3180 static_cast<CallingConv::ID>(CCInfo)); 3181 cast<InvokeInst>(I)->setAttributes(PAL); 3182 break; 3183 } 3184 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3185 unsigned Idx = 0; 3186 Value *Val = nullptr; 3187 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3188 return Error("Invalid record"); 3189 I = ResumeInst::Create(Val); 3190 InstructionList.push_back(I); 3191 break; 3192 } 3193 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3194 I = new UnreachableInst(Context); 3195 InstructionList.push_back(I); 3196 break; 3197 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3198 if (Record.size() < 1 || ((Record.size()-1)&1)) 3199 return Error("Invalid record"); 3200 Type *Ty = getTypeByID(Record[0]); 3201 if (!Ty) 3202 return Error("Invalid record"); 3203 3204 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3205 InstructionList.push_back(PN); 3206 3207 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3208 Value *V; 3209 // With the new function encoding, it is possible that operands have 3210 // negative IDs (for forward references). Use a signed VBR 3211 // representation to keep the encoding small. 3212 if (UseRelativeIDs) 3213 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3214 else 3215 V = getValue(Record, 1+i, NextValueNo, Ty); 3216 BasicBlock *BB = getBasicBlock(Record[2+i]); 3217 if (!V || !BB) 3218 return Error("Invalid record"); 3219 PN->addIncoming(V, BB); 3220 } 3221 I = PN; 3222 break; 3223 } 3224 3225 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3226 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3227 unsigned Idx = 0; 3228 if (Record.size() < 4) 3229 return Error("Invalid record"); 3230 Type *Ty = getTypeByID(Record[Idx++]); 3231 if (!Ty) 3232 return Error("Invalid record"); 3233 Value *PersFn = nullptr; 3234 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3235 return Error("Invalid record"); 3236 3237 bool IsCleanup = !!Record[Idx++]; 3238 unsigned NumClauses = Record[Idx++]; 3239 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3240 LP->setCleanup(IsCleanup); 3241 for (unsigned J = 0; J != NumClauses; ++J) { 3242 LandingPadInst::ClauseType CT = 3243 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3244 Value *Val; 3245 3246 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3247 delete LP; 3248 return Error("Invalid record"); 3249 } 3250 3251 assert((CT != LandingPadInst::Catch || 3252 !isa<ArrayType>(Val->getType())) && 3253 "Catch clause has a invalid type!"); 3254 assert((CT != LandingPadInst::Filter || 3255 isa<ArrayType>(Val->getType())) && 3256 "Filter clause has invalid type!"); 3257 LP->addClause(cast<Constant>(Val)); 3258 } 3259 3260 I = LP; 3261 InstructionList.push_back(I); 3262 break; 3263 } 3264 3265 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3266 if (Record.size() != 4) 3267 return Error("Invalid record"); 3268 PointerType *Ty = 3269 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3270 Type *OpTy = getTypeByID(Record[1]); 3271 Value *Size = getFnValueByID(Record[2], OpTy); 3272 unsigned AlignRecord = Record[3]; 3273 bool InAlloca = AlignRecord & (1 << 5); 3274 unsigned Align = AlignRecord & ((1 << 5) - 1); 3275 if (!Ty || !Size) 3276 return Error("Invalid record"); 3277 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3278 AI->setUsedWithInAlloca(InAlloca); 3279 I = AI; 3280 InstructionList.push_back(I); 3281 break; 3282 } 3283 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3284 unsigned OpNum = 0; 3285 Value *Op; 3286 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3287 OpNum+2 != Record.size()) 3288 return Error("Invalid record"); 3289 3290 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3291 InstructionList.push_back(I); 3292 break; 3293 } 3294 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3295 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3296 unsigned OpNum = 0; 3297 Value *Op; 3298 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3299 OpNum+4 != Record.size()) 3300 return Error("Invalid record"); 3301 3302 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3303 if (Ordering == NotAtomic || Ordering == Release || 3304 Ordering == AcquireRelease) 3305 return Error("Invalid record"); 3306 if (Ordering != NotAtomic && Record[OpNum] == 0) 3307 return Error("Invalid record"); 3308 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3309 3310 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3311 Ordering, SynchScope); 3312 InstructionList.push_back(I); 3313 break; 3314 } 3315 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3316 unsigned OpNum = 0; 3317 Value *Val, *Ptr; 3318 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3319 popValue(Record, OpNum, NextValueNo, 3320 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3321 OpNum+2 != Record.size()) 3322 return Error("Invalid record"); 3323 3324 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3325 InstructionList.push_back(I); 3326 break; 3327 } 3328 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3329 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3330 unsigned OpNum = 0; 3331 Value *Val, *Ptr; 3332 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3333 popValue(Record, OpNum, NextValueNo, 3334 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3335 OpNum+4 != Record.size()) 3336 return Error("Invalid record"); 3337 3338 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3339 if (Ordering == NotAtomic || Ordering == Acquire || 3340 Ordering == AcquireRelease) 3341 return Error("Invalid record"); 3342 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3343 if (Ordering != NotAtomic && Record[OpNum] == 0) 3344 return Error("Invalid record"); 3345 3346 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3347 Ordering, SynchScope); 3348 InstructionList.push_back(I); 3349 break; 3350 } 3351 case bitc::FUNC_CODE_INST_CMPXCHG: { 3352 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3353 // failureordering?, isweak?] 3354 unsigned OpNum = 0; 3355 Value *Ptr, *Cmp, *New; 3356 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3357 popValue(Record, OpNum, NextValueNo, 3358 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3359 popValue(Record, OpNum, NextValueNo, 3360 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3361 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3362 return Error("Invalid record"); 3363 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3364 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3365 return Error("Invalid record"); 3366 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3367 3368 AtomicOrdering FailureOrdering; 3369 if (Record.size() < 7) 3370 FailureOrdering = 3371 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3372 else 3373 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3374 3375 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3376 SynchScope); 3377 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3378 3379 if (Record.size() < 8) { 3380 // Before weak cmpxchgs existed, the instruction simply returned the 3381 // value loaded from memory, so bitcode files from that era will be 3382 // expecting the first component of a modern cmpxchg. 3383 CurBB->getInstList().push_back(I); 3384 I = ExtractValueInst::Create(I, 0); 3385 } else { 3386 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3387 } 3388 3389 InstructionList.push_back(I); 3390 break; 3391 } 3392 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3393 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3394 unsigned OpNum = 0; 3395 Value *Ptr, *Val; 3396 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3397 popValue(Record, OpNum, NextValueNo, 3398 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3399 OpNum+4 != Record.size()) 3400 return Error("Invalid record"); 3401 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3402 if (Operation < AtomicRMWInst::FIRST_BINOP || 3403 Operation > AtomicRMWInst::LAST_BINOP) 3404 return Error("Invalid record"); 3405 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3406 if (Ordering == NotAtomic || Ordering == Unordered) 3407 return Error("Invalid record"); 3408 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3409 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3410 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3411 InstructionList.push_back(I); 3412 break; 3413 } 3414 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3415 if (2 != Record.size()) 3416 return Error("Invalid record"); 3417 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3418 if (Ordering == NotAtomic || Ordering == Unordered || 3419 Ordering == Monotonic) 3420 return Error("Invalid record"); 3421 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3422 I = new FenceInst(Context, Ordering, SynchScope); 3423 InstructionList.push_back(I); 3424 break; 3425 } 3426 case bitc::FUNC_CODE_INST_CALL: { 3427 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3428 if (Record.size() < 3) 3429 return Error("Invalid record"); 3430 3431 AttributeSet PAL = getAttributes(Record[0]); 3432 unsigned CCInfo = Record[1]; 3433 3434 unsigned OpNum = 2; 3435 Value *Callee; 3436 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3437 return Error("Invalid record"); 3438 3439 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3440 FunctionType *FTy = nullptr; 3441 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3442 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3443 return Error("Invalid record"); 3444 3445 SmallVector<Value*, 16> Args; 3446 // Read the fixed params. 3447 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3448 if (FTy->getParamType(i)->isLabelTy()) 3449 Args.push_back(getBasicBlock(Record[OpNum])); 3450 else 3451 Args.push_back(getValue(Record, OpNum, NextValueNo, 3452 FTy->getParamType(i))); 3453 if (!Args.back()) 3454 return Error("Invalid record"); 3455 } 3456 3457 // Read type/value pairs for varargs params. 3458 if (!FTy->isVarArg()) { 3459 if (OpNum != Record.size()) 3460 return Error("Invalid record"); 3461 } else { 3462 while (OpNum != Record.size()) { 3463 Value *Op; 3464 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3465 return Error("Invalid record"); 3466 Args.push_back(Op); 3467 } 3468 } 3469 3470 I = CallInst::Create(Callee, Args); 3471 InstructionList.push_back(I); 3472 cast<CallInst>(I)->setCallingConv( 3473 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3474 CallInst::TailCallKind TCK = CallInst::TCK_None; 3475 if (CCInfo & 1) 3476 TCK = CallInst::TCK_Tail; 3477 if (CCInfo & (1 << 14)) 3478 TCK = CallInst::TCK_MustTail; 3479 cast<CallInst>(I)->setTailCallKind(TCK); 3480 cast<CallInst>(I)->setAttributes(PAL); 3481 break; 3482 } 3483 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3484 if (Record.size() < 3) 3485 return Error("Invalid record"); 3486 Type *OpTy = getTypeByID(Record[0]); 3487 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3488 Type *ResTy = getTypeByID(Record[2]); 3489 if (!OpTy || !Op || !ResTy) 3490 return Error("Invalid record"); 3491 I = new VAArgInst(Op, ResTy); 3492 InstructionList.push_back(I); 3493 break; 3494 } 3495 } 3496 3497 // Add instruction to end of current BB. If there is no current BB, reject 3498 // this file. 3499 if (!CurBB) { 3500 delete I; 3501 return Error("Invalid instruction with no BB"); 3502 } 3503 CurBB->getInstList().push_back(I); 3504 3505 // If this was a terminator instruction, move to the next block. 3506 if (isa<TerminatorInst>(I)) { 3507 ++CurBBNo; 3508 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3509 } 3510 3511 // Non-void values get registered in the value table for future use. 3512 if (I && !I->getType()->isVoidTy()) 3513 ValueList.AssignValue(I, NextValueNo++); 3514 } 3515 3516 OutOfRecordLoop: 3517 3518 // Check the function list for unresolved values. 3519 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3520 if (!A->getParent()) { 3521 // We found at least one unresolved value. Nuke them all to avoid leaks. 3522 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3523 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3524 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3525 delete A; 3526 } 3527 } 3528 return Error("Never resolved value found in function"); 3529 } 3530 } 3531 3532 // FIXME: Check for unresolved forward-declared metadata references 3533 // and clean up leaks. 3534 3535 // Trim the value list down to the size it was before we parsed this function. 3536 ValueList.shrinkTo(ModuleValueListSize); 3537 MDValueList.shrinkTo(ModuleMDValueListSize); 3538 std::vector<BasicBlock*>().swap(FunctionBBs); 3539 return std::error_code(); 3540 } 3541 3542 /// Find the function body in the bitcode stream 3543 std::error_code BitcodeReader::FindFunctionInStream( 3544 Function *F, 3545 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3546 while (DeferredFunctionInfoIterator->second == 0) { 3547 if (Stream.AtEndOfStream()) 3548 return Error("Could not find function in stream"); 3549 // ParseModule will parse the next body in the stream and set its 3550 // position in the DeferredFunctionInfo map. 3551 if (std::error_code EC = ParseModule(true)) 3552 return EC; 3553 } 3554 return std::error_code(); 3555 } 3556 3557 //===----------------------------------------------------------------------===// 3558 // GVMaterializer implementation 3559 //===----------------------------------------------------------------------===// 3560 3561 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3562 3563 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3564 Function *F = dyn_cast<Function>(GV); 3565 // If it's not a function or is already material, ignore the request. 3566 if (!F || !F->isMaterializable()) 3567 return std::error_code(); 3568 3569 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3570 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3571 // If its position is recorded as 0, its body is somewhere in the stream 3572 // but we haven't seen it yet. 3573 if (DFII->second == 0 && LazyStreamer) 3574 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3575 return EC; 3576 3577 // Move the bit stream to the saved position of the deferred function body. 3578 Stream.JumpToBit(DFII->second); 3579 3580 if (std::error_code EC = ParseFunctionBody(F)) 3581 return EC; 3582 F->setIsMaterializable(false); 3583 3584 // Upgrade any old intrinsic calls in the function. 3585 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3586 E = UpgradedIntrinsics.end(); I != E; ++I) { 3587 if (I->first != I->second) { 3588 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3589 UI != UE;) { 3590 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3591 UpgradeIntrinsicCall(CI, I->second); 3592 } 3593 } 3594 } 3595 3596 // Bring in any functions that this function forward-referenced via 3597 // blockaddresses. 3598 return materializeForwardReferencedFunctions(); 3599 } 3600 3601 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3602 const Function *F = dyn_cast<Function>(GV); 3603 if (!F || F->isDeclaration()) 3604 return false; 3605 3606 // Dematerializing F would leave dangling references that wouldn't be 3607 // reconnected on re-materialization. 3608 if (BlockAddressesTaken.count(F)) 3609 return false; 3610 3611 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3612 } 3613 3614 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3615 Function *F = dyn_cast<Function>(GV); 3616 // If this function isn't dematerializable, this is a noop. 3617 if (!F || !isDematerializable(F)) 3618 return; 3619 3620 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3621 3622 // Just forget the function body, we can remat it later. 3623 F->dropAllReferences(); 3624 F->setIsMaterializable(true); 3625 } 3626 3627 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3628 assert(M == TheModule && 3629 "Can only Materialize the Module this BitcodeReader is attached to."); 3630 3631 // Promise to materialize all forward references. 3632 WillMaterializeAllForwardRefs = true; 3633 3634 // Iterate over the module, deserializing any functions that are still on 3635 // disk. 3636 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3637 F != E; ++F) { 3638 if (std::error_code EC = materialize(F)) 3639 return EC; 3640 } 3641 // At this point, if there are any function bodies, the current bit is 3642 // pointing to the END_BLOCK record after them. Now make sure the rest 3643 // of the bits in the module have been read. 3644 if (NextUnreadBit) 3645 ParseModule(true); 3646 3647 // Check that all block address forward references got resolved (as we 3648 // promised above). 3649 if (!BasicBlockFwdRefs.empty()) 3650 return Error("Never resolved function from blockaddress"); 3651 3652 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3653 // delete the old functions to clean up. We can't do this unless the entire 3654 // module is materialized because there could always be another function body 3655 // with calls to the old function. 3656 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3657 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3658 if (I->first != I->second) { 3659 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3660 UI != UE;) { 3661 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3662 UpgradeIntrinsicCall(CI, I->second); 3663 } 3664 if (!I->first->use_empty()) 3665 I->first->replaceAllUsesWith(I->second); 3666 I->first->eraseFromParent(); 3667 } 3668 } 3669 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3670 3671 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3672 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3673 3674 UpgradeDebugInfo(*M); 3675 return std::error_code(); 3676 } 3677 3678 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3679 return IdentifiedStructTypes; 3680 } 3681 3682 std::error_code BitcodeReader::InitStream() { 3683 if (LazyStreamer) 3684 return InitLazyStream(); 3685 return InitStreamFromBuffer(); 3686 } 3687 3688 std::error_code BitcodeReader::InitStreamFromBuffer() { 3689 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3690 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3691 3692 if (Buffer->getBufferSize() & 3) 3693 return Error("Invalid bitcode signature"); 3694 3695 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3696 // The magic number is 0x0B17C0DE stored in little endian. 3697 if (isBitcodeWrapper(BufPtr, BufEnd)) 3698 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3699 return Error("Invalid bitcode wrapper header"); 3700 3701 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3702 Stream.init(&*StreamFile); 3703 3704 return std::error_code(); 3705 } 3706 3707 std::error_code BitcodeReader::InitLazyStream() { 3708 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3709 // see it. 3710 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3711 StreamingMemoryObject &Bytes = *OwnedBytes; 3712 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3713 Stream.init(&*StreamFile); 3714 3715 unsigned char buf[16]; 3716 if (Bytes.readBytes(buf, 16, 0) != 16) 3717 return Error("Invalid bitcode signature"); 3718 3719 if (!isBitcode(buf, buf + 16)) 3720 return Error("Invalid bitcode signature"); 3721 3722 if (isBitcodeWrapper(buf, buf + 4)) { 3723 const unsigned char *bitcodeStart = buf; 3724 const unsigned char *bitcodeEnd = buf + 16; 3725 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3726 Bytes.dropLeadingBytes(bitcodeStart - buf); 3727 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3728 } 3729 return std::error_code(); 3730 } 3731 3732 namespace { 3733 class BitcodeErrorCategoryType : public std::error_category { 3734 const char *name() const LLVM_NOEXCEPT override { 3735 return "llvm.bitcode"; 3736 } 3737 std::string message(int IE) const override { 3738 BitcodeError E = static_cast<BitcodeError>(IE); 3739 switch (E) { 3740 case BitcodeError::InvalidBitcodeSignature: 3741 return "Invalid bitcode signature"; 3742 case BitcodeError::CorruptedBitcode: 3743 return "Corrupted bitcode"; 3744 } 3745 llvm_unreachable("Unknown error type!"); 3746 } 3747 }; 3748 } 3749 3750 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3751 3752 const std::error_category &llvm::BitcodeErrorCategory() { 3753 return *ErrorCategory; 3754 } 3755 3756 //===----------------------------------------------------------------------===// 3757 // External interface 3758 //===----------------------------------------------------------------------===// 3759 3760 /// \brief Get a lazy one-at-time loading module from bitcode. 3761 /// 3762 /// This isn't always used in a lazy context. In particular, it's also used by 3763 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3764 /// in forward-referenced functions from block address references. 3765 /// 3766 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3767 /// materialize everything -- in particular, if this isn't truly lazy. 3768 static ErrorOr<Module *> 3769 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3770 LLVMContext &Context, bool WillMaterializeAll, 3771 DiagnosticHandlerFunction DiagnosticHandler) { 3772 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3773 BitcodeReader *R = 3774 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3775 M->setMaterializer(R); 3776 3777 auto cleanupOnError = [&](std::error_code EC) { 3778 R->releaseBuffer(); // Never take ownership on error. 3779 delete M; // Also deletes R. 3780 return EC; 3781 }; 3782 3783 if (std::error_code EC = R->ParseBitcodeInto(M)) 3784 return cleanupOnError(EC); 3785 3786 if (!WillMaterializeAll) 3787 // Resolve forward references from blockaddresses. 3788 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3789 return cleanupOnError(EC); 3790 3791 Buffer.release(); // The BitcodeReader owns it now. 3792 return M; 3793 } 3794 3795 ErrorOr<Module *> 3796 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3797 LLVMContext &Context, 3798 DiagnosticHandlerFunction DiagnosticHandler) { 3799 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3800 DiagnosticHandler); 3801 } 3802 3803 ErrorOr<std::unique_ptr<Module>> 3804 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3805 LLVMContext &Context, 3806 DiagnosticHandlerFunction DiagnosticHandler) { 3807 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3808 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3809 M->setMaterializer(R); 3810 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3811 return EC; 3812 return std::move(M); 3813 } 3814 3815 ErrorOr<Module *> 3816 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3817 DiagnosticHandlerFunction DiagnosticHandler) { 3818 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3819 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3820 std::move(Buf), Context, true, DiagnosticHandler); 3821 if (!ModuleOrErr) 3822 return ModuleOrErr; 3823 Module *M = ModuleOrErr.get(); 3824 // Read in the entire module, and destroy the BitcodeReader. 3825 if (std::error_code EC = M->materializeAllPermanently()) { 3826 delete M; 3827 return EC; 3828 } 3829 3830 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3831 // written. We must defer until the Module has been fully materialized. 3832 3833 return M; 3834 } 3835 3836 std::string 3837 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3838 DiagnosticHandlerFunction DiagnosticHandler) { 3839 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3840 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3841 DiagnosticHandler); 3842 ErrorOr<std::string> Triple = R->parseTriple(); 3843 if (Triple.getError()) 3844 return ""; 3845 return Triple.get(); 3846 } 3847