1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = std::string(ProducerIdentification); 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 964 return Flags; 965 } 966 967 /// Decode the flags for GlobalValue in the summary. 968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 969 uint64_t Version) { 970 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 971 // like getDecodedLinkage() above. Any future change to the linkage enum and 972 // to getDecodedLinkage() will need to be taken into account here as above. 973 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 974 RawFlags = RawFlags >> 4; 975 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 976 // The Live flag wasn't introduced until version 3. For dead stripping 977 // to work correctly on earlier versions, we must conservatively treat all 978 // values as live. 979 bool Live = (RawFlags & 0x2) || Version < 3; 980 bool Local = (RawFlags & 0x4); 981 bool AutoHide = (RawFlags & 0x8); 982 983 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags( 989 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 990 (RawFlags & 0x4) ? true : false, 991 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 992 } 993 994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 995 switch (Val) { 996 default: // Map unknown visibilities to default. 997 case 0: return GlobalValue::DefaultVisibility; 998 case 1: return GlobalValue::HiddenVisibility; 999 case 2: return GlobalValue::ProtectedVisibility; 1000 } 1001 } 1002 1003 static GlobalValue::DLLStorageClassTypes 1004 getDecodedDLLStorageClass(unsigned Val) { 1005 switch (Val) { 1006 default: // Map unknown values to default. 1007 case 0: return GlobalValue::DefaultStorageClass; 1008 case 1: return GlobalValue::DLLImportStorageClass; 1009 case 2: return GlobalValue::DLLExportStorageClass; 1010 } 1011 } 1012 1013 static bool getDecodedDSOLocal(unsigned Val) { 1014 switch(Val) { 1015 default: // Map unknown values to preemptable. 1016 case 0: return false; 1017 case 1: return true; 1018 } 1019 } 1020 1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1022 switch (Val) { 1023 case 0: return GlobalVariable::NotThreadLocal; 1024 default: // Map unknown non-zero value to general dynamic. 1025 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1026 case 2: return GlobalVariable::LocalDynamicTLSModel; 1027 case 3: return GlobalVariable::InitialExecTLSModel; 1028 case 4: return GlobalVariable::LocalExecTLSModel; 1029 } 1030 } 1031 1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown to UnnamedAddr::None. 1035 case 0: return GlobalVariable::UnnamedAddr::None; 1036 case 1: return GlobalVariable::UnnamedAddr::Global; 1037 case 2: return GlobalVariable::UnnamedAddr::Local; 1038 } 1039 } 1040 1041 static int getDecodedCastOpcode(unsigned Val) { 1042 switch (Val) { 1043 default: return -1; 1044 case bitc::CAST_TRUNC : return Instruction::Trunc; 1045 case bitc::CAST_ZEXT : return Instruction::ZExt; 1046 case bitc::CAST_SEXT : return Instruction::SExt; 1047 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1048 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1049 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1050 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1051 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1052 case bitc::CAST_FPEXT : return Instruction::FPExt; 1053 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1054 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1055 case bitc::CAST_BITCAST : return Instruction::BitCast; 1056 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1057 } 1058 } 1059 1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1061 bool IsFP = Ty->isFPOrFPVectorTy(); 1062 // UnOps are only valid for int/fp or vector of int/fp types 1063 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1064 return -1; 1065 1066 switch (Val) { 1067 default: 1068 return -1; 1069 case bitc::UNOP_FNEG: 1070 return IsFP ? Instruction::FNeg : -1; 1071 } 1072 } 1073 1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1075 bool IsFP = Ty->isFPOrFPVectorTy(); 1076 // BinOps are only valid for int/fp or vector of int/fp types 1077 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1078 return -1; 1079 1080 switch (Val) { 1081 default: 1082 return -1; 1083 case bitc::BINOP_ADD: 1084 return IsFP ? Instruction::FAdd : Instruction::Add; 1085 case bitc::BINOP_SUB: 1086 return IsFP ? Instruction::FSub : Instruction::Sub; 1087 case bitc::BINOP_MUL: 1088 return IsFP ? Instruction::FMul : Instruction::Mul; 1089 case bitc::BINOP_UDIV: 1090 return IsFP ? -1 : Instruction::UDiv; 1091 case bitc::BINOP_SDIV: 1092 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1093 case bitc::BINOP_UREM: 1094 return IsFP ? -1 : Instruction::URem; 1095 case bitc::BINOP_SREM: 1096 return IsFP ? Instruction::FRem : Instruction::SRem; 1097 case bitc::BINOP_SHL: 1098 return IsFP ? -1 : Instruction::Shl; 1099 case bitc::BINOP_LSHR: 1100 return IsFP ? -1 : Instruction::LShr; 1101 case bitc::BINOP_ASHR: 1102 return IsFP ? -1 : Instruction::AShr; 1103 case bitc::BINOP_AND: 1104 return IsFP ? -1 : Instruction::And; 1105 case bitc::BINOP_OR: 1106 return IsFP ? -1 : Instruction::Or; 1107 case bitc::BINOP_XOR: 1108 return IsFP ? -1 : Instruction::Xor; 1109 } 1110 } 1111 1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1113 switch (Val) { 1114 default: return AtomicRMWInst::BAD_BINOP; 1115 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1116 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1117 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1118 case bitc::RMW_AND: return AtomicRMWInst::And; 1119 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1120 case bitc::RMW_OR: return AtomicRMWInst::Or; 1121 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1122 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1123 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1124 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1125 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1126 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1127 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1128 } 1129 } 1130 1131 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1132 switch (Val) { 1133 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1134 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1135 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1136 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1137 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1138 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1139 default: // Map unknown orderings to sequentially-consistent. 1140 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1141 } 1142 } 1143 1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1145 switch (Val) { 1146 default: // Map unknown selection kinds to any. 1147 case bitc::COMDAT_SELECTION_KIND_ANY: 1148 return Comdat::Any; 1149 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1150 return Comdat::ExactMatch; 1151 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1152 return Comdat::Largest; 1153 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1154 return Comdat::NoDuplicates; 1155 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1156 return Comdat::SameSize; 1157 } 1158 } 1159 1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1161 FastMathFlags FMF; 1162 if (0 != (Val & bitc::UnsafeAlgebra)) 1163 FMF.setFast(); 1164 if (0 != (Val & bitc::AllowReassoc)) 1165 FMF.setAllowReassoc(); 1166 if (0 != (Val & bitc::NoNaNs)) 1167 FMF.setNoNaNs(); 1168 if (0 != (Val & bitc::NoInfs)) 1169 FMF.setNoInfs(); 1170 if (0 != (Val & bitc::NoSignedZeros)) 1171 FMF.setNoSignedZeros(); 1172 if (0 != (Val & bitc::AllowReciprocal)) 1173 FMF.setAllowReciprocal(); 1174 if (0 != (Val & bitc::AllowContract)) 1175 FMF.setAllowContract(true); 1176 if (0 != (Val & bitc::ApproxFunc)) 1177 FMF.setApproxFunc(); 1178 return FMF; 1179 } 1180 1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1182 switch (Val) { 1183 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1184 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1185 } 1186 } 1187 1188 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1189 // The type table size is always specified correctly. 1190 if (ID >= TypeList.size()) 1191 return nullptr; 1192 1193 if (Type *Ty = TypeList[ID]) 1194 return Ty; 1195 1196 // If we have a forward reference, the only possible case is when it is to a 1197 // named struct. Just create a placeholder for now. 1198 return TypeList[ID] = createIdentifiedStructType(Context); 1199 } 1200 1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1202 StringRef Name) { 1203 auto *Ret = StructType::create(Context, Name); 1204 IdentifiedStructTypes.push_back(Ret); 1205 return Ret; 1206 } 1207 1208 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1209 auto *Ret = StructType::create(Context); 1210 IdentifiedStructTypes.push_back(Ret); 1211 return Ret; 1212 } 1213 1214 //===----------------------------------------------------------------------===// 1215 // Functions for parsing blocks from the bitcode file 1216 //===----------------------------------------------------------------------===// 1217 1218 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1219 switch (Val) { 1220 case Attribute::EndAttrKinds: 1221 case Attribute::EmptyKey: 1222 case Attribute::TombstoneKey: 1223 llvm_unreachable("Synthetic enumerators which should never get here"); 1224 1225 case Attribute::None: return 0; 1226 case Attribute::ZExt: return 1 << 0; 1227 case Attribute::SExt: return 1 << 1; 1228 case Attribute::NoReturn: return 1 << 2; 1229 case Attribute::InReg: return 1 << 3; 1230 case Attribute::StructRet: return 1 << 4; 1231 case Attribute::NoUnwind: return 1 << 5; 1232 case Attribute::NoAlias: return 1 << 6; 1233 case Attribute::ByVal: return 1 << 7; 1234 case Attribute::Nest: return 1 << 8; 1235 case Attribute::ReadNone: return 1 << 9; 1236 case Attribute::ReadOnly: return 1 << 10; 1237 case Attribute::NoInline: return 1 << 11; 1238 case Attribute::AlwaysInline: return 1 << 12; 1239 case Attribute::OptimizeForSize: return 1 << 13; 1240 case Attribute::StackProtect: return 1 << 14; 1241 case Attribute::StackProtectReq: return 1 << 15; 1242 case Attribute::Alignment: return 31 << 16; 1243 case Attribute::NoCapture: return 1 << 21; 1244 case Attribute::NoRedZone: return 1 << 22; 1245 case Attribute::NoImplicitFloat: return 1 << 23; 1246 case Attribute::Naked: return 1 << 24; 1247 case Attribute::InlineHint: return 1 << 25; 1248 case Attribute::StackAlignment: return 7 << 26; 1249 case Attribute::ReturnsTwice: return 1 << 29; 1250 case Attribute::UWTable: return 1 << 30; 1251 case Attribute::NonLazyBind: return 1U << 31; 1252 case Attribute::SanitizeAddress: return 1ULL << 32; 1253 case Attribute::MinSize: return 1ULL << 33; 1254 case Attribute::NoDuplicate: return 1ULL << 34; 1255 case Attribute::StackProtectStrong: return 1ULL << 35; 1256 case Attribute::SanitizeThread: return 1ULL << 36; 1257 case Attribute::SanitizeMemory: return 1ULL << 37; 1258 case Attribute::NoBuiltin: return 1ULL << 38; 1259 case Attribute::Returned: return 1ULL << 39; 1260 case Attribute::Cold: return 1ULL << 40; 1261 case Attribute::Builtin: return 1ULL << 41; 1262 case Attribute::OptimizeNone: return 1ULL << 42; 1263 case Attribute::InAlloca: return 1ULL << 43; 1264 case Attribute::NonNull: return 1ULL << 44; 1265 case Attribute::JumpTable: return 1ULL << 45; 1266 case Attribute::Convergent: return 1ULL << 46; 1267 case Attribute::SafeStack: return 1ULL << 47; 1268 case Attribute::NoRecurse: return 1ULL << 48; 1269 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1270 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1271 case Attribute::SwiftSelf: return 1ULL << 51; 1272 case Attribute::SwiftError: return 1ULL << 52; 1273 case Attribute::WriteOnly: return 1ULL << 53; 1274 case Attribute::Speculatable: return 1ULL << 54; 1275 case Attribute::StrictFP: return 1ULL << 55; 1276 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1277 case Attribute::NoCfCheck: return 1ULL << 57; 1278 case Attribute::OptForFuzzing: return 1ULL << 58; 1279 case Attribute::ShadowCallStack: return 1ULL << 59; 1280 case Attribute::SpeculativeLoadHardening: 1281 return 1ULL << 60; 1282 case Attribute::ImmArg: 1283 return 1ULL << 61; 1284 case Attribute::WillReturn: 1285 return 1ULL << 62; 1286 case Attribute::NoFree: 1287 return 1ULL << 63; 1288 case Attribute::NoSync: 1289 llvm_unreachable("nosync attribute not supported in raw format"); 1290 break; 1291 case Attribute::Dereferenceable: 1292 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1293 break; 1294 case Attribute::DereferenceableOrNull: 1295 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1296 "format"); 1297 break; 1298 case Attribute::ArgMemOnly: 1299 llvm_unreachable("argmemonly attribute not supported in raw format"); 1300 break; 1301 case Attribute::AllocSize: 1302 llvm_unreachable("allocsize not supported in raw format"); 1303 break; 1304 case Attribute::SanitizeMemTag: 1305 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1306 break; 1307 } 1308 llvm_unreachable("Unsupported attribute type"); 1309 } 1310 1311 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1312 if (!Val) return; 1313 1314 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1315 I = Attribute::AttrKind(I + 1)) { 1316 if (I == Attribute::SanitizeMemTag || 1317 I == Attribute::Dereferenceable || 1318 I == Attribute::DereferenceableOrNull || 1319 I == Attribute::ArgMemOnly || 1320 I == Attribute::AllocSize || 1321 I == Attribute::NoSync) 1322 continue; 1323 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1324 if (I == Attribute::Alignment) 1325 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1326 else if (I == Attribute::StackAlignment) 1327 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1328 else 1329 B.addAttribute(I); 1330 } 1331 } 1332 } 1333 1334 /// This fills an AttrBuilder object with the LLVM attributes that have 1335 /// been decoded from the given integer. This function must stay in sync with 1336 /// 'encodeLLVMAttributesForBitcode'. 1337 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1338 uint64_t EncodedAttrs) { 1339 // FIXME: Remove in 4.0. 1340 1341 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1342 // the bits above 31 down by 11 bits. 1343 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1344 assert((!Alignment || isPowerOf2_32(Alignment)) && 1345 "Alignment must be a power of two."); 1346 1347 if (Alignment) 1348 B.addAlignmentAttr(Alignment); 1349 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1350 (EncodedAttrs & 0xffff)); 1351 } 1352 1353 Error BitcodeReader::parseAttributeBlock() { 1354 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1355 return Err; 1356 1357 if (!MAttributes.empty()) 1358 return error("Invalid multiple blocks"); 1359 1360 SmallVector<uint64_t, 64> Record; 1361 1362 SmallVector<AttributeList, 8> Attrs; 1363 1364 // Read all the records. 1365 while (true) { 1366 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1367 if (!MaybeEntry) 1368 return MaybeEntry.takeError(); 1369 BitstreamEntry Entry = MaybeEntry.get(); 1370 1371 switch (Entry.Kind) { 1372 case BitstreamEntry::SubBlock: // Handled for us already. 1373 case BitstreamEntry::Error: 1374 return error("Malformed block"); 1375 case BitstreamEntry::EndBlock: 1376 return Error::success(); 1377 case BitstreamEntry::Record: 1378 // The interesting case. 1379 break; 1380 } 1381 1382 // Read a record. 1383 Record.clear(); 1384 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1385 if (!MaybeRecord) 1386 return MaybeRecord.takeError(); 1387 switch (MaybeRecord.get()) { 1388 default: // Default behavior: ignore. 1389 break; 1390 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1391 // FIXME: Remove in 4.0. 1392 if (Record.size() & 1) 1393 return error("Invalid record"); 1394 1395 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1396 AttrBuilder B; 1397 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1398 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1399 } 1400 1401 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1402 Attrs.clear(); 1403 break; 1404 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1405 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1406 Attrs.push_back(MAttributeGroups[Record[i]]); 1407 1408 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1409 Attrs.clear(); 1410 break; 1411 } 1412 } 1413 } 1414 1415 // Returns Attribute::None on unrecognized codes. 1416 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1417 switch (Code) { 1418 default: 1419 return Attribute::None; 1420 case bitc::ATTR_KIND_ALIGNMENT: 1421 return Attribute::Alignment; 1422 case bitc::ATTR_KIND_ALWAYS_INLINE: 1423 return Attribute::AlwaysInline; 1424 case bitc::ATTR_KIND_ARGMEMONLY: 1425 return Attribute::ArgMemOnly; 1426 case bitc::ATTR_KIND_BUILTIN: 1427 return Attribute::Builtin; 1428 case bitc::ATTR_KIND_BY_VAL: 1429 return Attribute::ByVal; 1430 case bitc::ATTR_KIND_IN_ALLOCA: 1431 return Attribute::InAlloca; 1432 case bitc::ATTR_KIND_COLD: 1433 return Attribute::Cold; 1434 case bitc::ATTR_KIND_CONVERGENT: 1435 return Attribute::Convergent; 1436 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1437 return Attribute::InaccessibleMemOnly; 1438 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1439 return Attribute::InaccessibleMemOrArgMemOnly; 1440 case bitc::ATTR_KIND_INLINE_HINT: 1441 return Attribute::InlineHint; 1442 case bitc::ATTR_KIND_IN_REG: 1443 return Attribute::InReg; 1444 case bitc::ATTR_KIND_JUMP_TABLE: 1445 return Attribute::JumpTable; 1446 case bitc::ATTR_KIND_MIN_SIZE: 1447 return Attribute::MinSize; 1448 case bitc::ATTR_KIND_NAKED: 1449 return Attribute::Naked; 1450 case bitc::ATTR_KIND_NEST: 1451 return Attribute::Nest; 1452 case bitc::ATTR_KIND_NO_ALIAS: 1453 return Attribute::NoAlias; 1454 case bitc::ATTR_KIND_NO_BUILTIN: 1455 return Attribute::NoBuiltin; 1456 case bitc::ATTR_KIND_NO_CAPTURE: 1457 return Attribute::NoCapture; 1458 case bitc::ATTR_KIND_NO_DUPLICATE: 1459 return Attribute::NoDuplicate; 1460 case bitc::ATTR_KIND_NOFREE: 1461 return Attribute::NoFree; 1462 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1463 return Attribute::NoImplicitFloat; 1464 case bitc::ATTR_KIND_NO_INLINE: 1465 return Attribute::NoInline; 1466 case bitc::ATTR_KIND_NO_RECURSE: 1467 return Attribute::NoRecurse; 1468 case bitc::ATTR_KIND_NON_LAZY_BIND: 1469 return Attribute::NonLazyBind; 1470 case bitc::ATTR_KIND_NON_NULL: 1471 return Attribute::NonNull; 1472 case bitc::ATTR_KIND_DEREFERENCEABLE: 1473 return Attribute::Dereferenceable; 1474 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1475 return Attribute::DereferenceableOrNull; 1476 case bitc::ATTR_KIND_ALLOC_SIZE: 1477 return Attribute::AllocSize; 1478 case bitc::ATTR_KIND_NO_RED_ZONE: 1479 return Attribute::NoRedZone; 1480 case bitc::ATTR_KIND_NO_RETURN: 1481 return Attribute::NoReturn; 1482 case bitc::ATTR_KIND_NOSYNC: 1483 return Attribute::NoSync; 1484 case bitc::ATTR_KIND_NOCF_CHECK: 1485 return Attribute::NoCfCheck; 1486 case bitc::ATTR_KIND_NO_UNWIND: 1487 return Attribute::NoUnwind; 1488 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1489 return Attribute::OptForFuzzing; 1490 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1491 return Attribute::OptimizeForSize; 1492 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1493 return Attribute::OptimizeNone; 1494 case bitc::ATTR_KIND_READ_NONE: 1495 return Attribute::ReadNone; 1496 case bitc::ATTR_KIND_READ_ONLY: 1497 return Attribute::ReadOnly; 1498 case bitc::ATTR_KIND_RETURNED: 1499 return Attribute::Returned; 1500 case bitc::ATTR_KIND_RETURNS_TWICE: 1501 return Attribute::ReturnsTwice; 1502 case bitc::ATTR_KIND_S_EXT: 1503 return Attribute::SExt; 1504 case bitc::ATTR_KIND_SPECULATABLE: 1505 return Attribute::Speculatable; 1506 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1507 return Attribute::StackAlignment; 1508 case bitc::ATTR_KIND_STACK_PROTECT: 1509 return Attribute::StackProtect; 1510 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1511 return Attribute::StackProtectReq; 1512 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1513 return Attribute::StackProtectStrong; 1514 case bitc::ATTR_KIND_SAFESTACK: 1515 return Attribute::SafeStack; 1516 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1517 return Attribute::ShadowCallStack; 1518 case bitc::ATTR_KIND_STRICT_FP: 1519 return Attribute::StrictFP; 1520 case bitc::ATTR_KIND_STRUCT_RET: 1521 return Attribute::StructRet; 1522 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1523 return Attribute::SanitizeAddress; 1524 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1525 return Attribute::SanitizeHWAddress; 1526 case bitc::ATTR_KIND_SANITIZE_THREAD: 1527 return Attribute::SanitizeThread; 1528 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1529 return Attribute::SanitizeMemory; 1530 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1531 return Attribute::SpeculativeLoadHardening; 1532 case bitc::ATTR_KIND_SWIFT_ERROR: 1533 return Attribute::SwiftError; 1534 case bitc::ATTR_KIND_SWIFT_SELF: 1535 return Attribute::SwiftSelf; 1536 case bitc::ATTR_KIND_UW_TABLE: 1537 return Attribute::UWTable; 1538 case bitc::ATTR_KIND_WILLRETURN: 1539 return Attribute::WillReturn; 1540 case bitc::ATTR_KIND_WRITEONLY: 1541 return Attribute::WriteOnly; 1542 case bitc::ATTR_KIND_Z_EXT: 1543 return Attribute::ZExt; 1544 case bitc::ATTR_KIND_IMMARG: 1545 return Attribute::ImmArg; 1546 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1547 return Attribute::SanitizeMemTag; 1548 } 1549 } 1550 1551 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1552 MaybeAlign &Alignment) { 1553 // Note: Alignment in bitcode files is incremented by 1, so that zero 1554 // can be used for default alignment. 1555 if (Exponent > Value::MaxAlignmentExponent + 1) 1556 return error("Invalid alignment value"); 1557 Alignment = decodeMaybeAlign(Exponent); 1558 return Error::success(); 1559 } 1560 1561 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1562 *Kind = getAttrFromCode(Code); 1563 if (*Kind == Attribute::None) 1564 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1565 return Error::success(); 1566 } 1567 1568 Error BitcodeReader::parseAttributeGroupBlock() { 1569 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1570 return Err; 1571 1572 if (!MAttributeGroups.empty()) 1573 return error("Invalid multiple blocks"); 1574 1575 SmallVector<uint64_t, 64> Record; 1576 1577 // Read all the records. 1578 while (true) { 1579 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1580 if (!MaybeEntry) 1581 return MaybeEntry.takeError(); 1582 BitstreamEntry Entry = MaybeEntry.get(); 1583 1584 switch (Entry.Kind) { 1585 case BitstreamEntry::SubBlock: // Handled for us already. 1586 case BitstreamEntry::Error: 1587 return error("Malformed block"); 1588 case BitstreamEntry::EndBlock: 1589 return Error::success(); 1590 case BitstreamEntry::Record: 1591 // The interesting case. 1592 break; 1593 } 1594 1595 // Read a record. 1596 Record.clear(); 1597 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1598 if (!MaybeRecord) 1599 return MaybeRecord.takeError(); 1600 switch (MaybeRecord.get()) { 1601 default: // Default behavior: ignore. 1602 break; 1603 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1604 if (Record.size() < 3) 1605 return error("Invalid record"); 1606 1607 uint64_t GrpID = Record[0]; 1608 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1609 1610 AttrBuilder B; 1611 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1612 if (Record[i] == 0) { // Enum attribute 1613 Attribute::AttrKind Kind; 1614 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1615 return Err; 1616 1617 // Upgrade old-style byval attribute to one with a type, even if it's 1618 // nullptr. We will have to insert the real type when we associate 1619 // this AttributeList with a function. 1620 if (Kind == Attribute::ByVal) 1621 B.addByValAttr(nullptr); 1622 1623 B.addAttribute(Kind); 1624 } else if (Record[i] == 1) { // Integer attribute 1625 Attribute::AttrKind Kind; 1626 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1627 return Err; 1628 if (Kind == Attribute::Alignment) 1629 B.addAlignmentAttr(Record[++i]); 1630 else if (Kind == Attribute::StackAlignment) 1631 B.addStackAlignmentAttr(Record[++i]); 1632 else if (Kind == Attribute::Dereferenceable) 1633 B.addDereferenceableAttr(Record[++i]); 1634 else if (Kind == Attribute::DereferenceableOrNull) 1635 B.addDereferenceableOrNullAttr(Record[++i]); 1636 else if (Kind == Attribute::AllocSize) 1637 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1638 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1639 bool HasValue = (Record[i++] == 4); 1640 SmallString<64> KindStr; 1641 SmallString<64> ValStr; 1642 1643 while (Record[i] != 0 && i != e) 1644 KindStr += Record[i++]; 1645 assert(Record[i] == 0 && "Kind string not null terminated"); 1646 1647 if (HasValue) { 1648 // Has a value associated with it. 1649 ++i; // Skip the '0' that terminates the "kind" string. 1650 while (Record[i] != 0 && i != e) 1651 ValStr += Record[i++]; 1652 assert(Record[i] == 0 && "Value string not null terminated"); 1653 } 1654 1655 B.addAttribute(KindStr.str(), ValStr.str()); 1656 } else { 1657 assert((Record[i] == 5 || Record[i] == 6) && 1658 "Invalid attribute group entry"); 1659 bool HasType = Record[i] == 6; 1660 Attribute::AttrKind Kind; 1661 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1662 return Err; 1663 if (Kind == Attribute::ByVal) 1664 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1665 } 1666 } 1667 1668 UpgradeFramePointerAttributes(B); 1669 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1670 break; 1671 } 1672 } 1673 } 1674 } 1675 1676 Error BitcodeReader::parseTypeTable() { 1677 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1678 return Err; 1679 1680 return parseTypeTableBody(); 1681 } 1682 1683 Error BitcodeReader::parseTypeTableBody() { 1684 if (!TypeList.empty()) 1685 return error("Invalid multiple blocks"); 1686 1687 SmallVector<uint64_t, 64> Record; 1688 unsigned NumRecords = 0; 1689 1690 SmallString<64> TypeName; 1691 1692 // Read all the records for this type table. 1693 while (true) { 1694 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1695 if (!MaybeEntry) 1696 return MaybeEntry.takeError(); 1697 BitstreamEntry Entry = MaybeEntry.get(); 1698 1699 switch (Entry.Kind) { 1700 case BitstreamEntry::SubBlock: // Handled for us already. 1701 case BitstreamEntry::Error: 1702 return error("Malformed block"); 1703 case BitstreamEntry::EndBlock: 1704 if (NumRecords != TypeList.size()) 1705 return error("Malformed block"); 1706 return Error::success(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Read a record. 1713 Record.clear(); 1714 Type *ResultTy = nullptr; 1715 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1716 if (!MaybeRecord) 1717 return MaybeRecord.takeError(); 1718 switch (MaybeRecord.get()) { 1719 default: 1720 return error("Invalid value"); 1721 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1722 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1723 // type list. This allows us to reserve space. 1724 if (Record.size() < 1) 1725 return error("Invalid record"); 1726 TypeList.resize(Record[0]); 1727 continue; 1728 case bitc::TYPE_CODE_VOID: // VOID 1729 ResultTy = Type::getVoidTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_HALF: // HALF 1732 ResultTy = Type::getHalfTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_FLOAT: // FLOAT 1735 ResultTy = Type::getFloatTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1738 ResultTy = Type::getDoubleTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1741 ResultTy = Type::getX86_FP80Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_FP128: // FP128 1744 ResultTy = Type::getFP128Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1747 ResultTy = Type::getPPC_FP128Ty(Context); 1748 break; 1749 case bitc::TYPE_CODE_LABEL: // LABEL 1750 ResultTy = Type::getLabelTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_METADATA: // METADATA 1753 ResultTy = Type::getMetadataTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1756 ResultTy = Type::getX86_MMXTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_TOKEN: // TOKEN 1759 ResultTy = Type::getTokenTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1762 if (Record.size() < 1) 1763 return error("Invalid record"); 1764 1765 uint64_t NumBits = Record[0]; 1766 if (NumBits < IntegerType::MIN_INT_BITS || 1767 NumBits > IntegerType::MAX_INT_BITS) 1768 return error("Bitwidth for integer type out of range"); 1769 ResultTy = IntegerType::get(Context, NumBits); 1770 break; 1771 } 1772 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1773 // [pointee type, address space] 1774 if (Record.size() < 1) 1775 return error("Invalid record"); 1776 unsigned AddressSpace = 0; 1777 if (Record.size() == 2) 1778 AddressSpace = Record[1]; 1779 ResultTy = getTypeByID(Record[0]); 1780 if (!ResultTy || 1781 !PointerType::isValidElementType(ResultTy)) 1782 return error("Invalid type"); 1783 ResultTy = PointerType::get(ResultTy, AddressSpace); 1784 break; 1785 } 1786 case bitc::TYPE_CODE_FUNCTION_OLD: { 1787 // FIXME: attrid is dead, remove it in LLVM 4.0 1788 // FUNCTION: [vararg, attrid, retty, paramty x N] 1789 if (Record.size() < 3) 1790 return error("Invalid record"); 1791 SmallVector<Type*, 8> ArgTys; 1792 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1793 if (Type *T = getTypeByID(Record[i])) 1794 ArgTys.push_back(T); 1795 else 1796 break; 1797 } 1798 1799 ResultTy = getTypeByID(Record[2]); 1800 if (!ResultTy || ArgTys.size() < Record.size()-3) 1801 return error("Invalid type"); 1802 1803 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1804 break; 1805 } 1806 case bitc::TYPE_CODE_FUNCTION: { 1807 // FUNCTION: [vararg, retty, paramty x N] 1808 if (Record.size() < 2) 1809 return error("Invalid record"); 1810 SmallVector<Type*, 8> ArgTys; 1811 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1812 if (Type *T = getTypeByID(Record[i])) { 1813 if (!FunctionType::isValidArgumentType(T)) 1814 return error("Invalid function argument type"); 1815 ArgTys.push_back(T); 1816 } 1817 else 1818 break; 1819 } 1820 1821 ResultTy = getTypeByID(Record[1]); 1822 if (!ResultTy || ArgTys.size() < Record.size()-2) 1823 return error("Invalid type"); 1824 1825 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1826 break; 1827 } 1828 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1829 if (Record.size() < 1) 1830 return error("Invalid record"); 1831 SmallVector<Type*, 8> EltTys; 1832 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1833 if (Type *T = getTypeByID(Record[i])) 1834 EltTys.push_back(T); 1835 else 1836 break; 1837 } 1838 if (EltTys.size() != Record.size()-1) 1839 return error("Invalid type"); 1840 ResultTy = StructType::get(Context, EltTys, Record[0]); 1841 break; 1842 } 1843 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1844 if (convertToString(Record, 0, TypeName)) 1845 return error("Invalid record"); 1846 continue; 1847 1848 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1849 if (Record.size() < 1) 1850 return error("Invalid record"); 1851 1852 if (NumRecords >= TypeList.size()) 1853 return error("Invalid TYPE table"); 1854 1855 // Check to see if this was forward referenced, if so fill in the temp. 1856 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1857 if (Res) { 1858 Res->setName(TypeName); 1859 TypeList[NumRecords] = nullptr; 1860 } else // Otherwise, create a new struct. 1861 Res = createIdentifiedStructType(Context, TypeName); 1862 TypeName.clear(); 1863 1864 SmallVector<Type*, 8> EltTys; 1865 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1866 if (Type *T = getTypeByID(Record[i])) 1867 EltTys.push_back(T); 1868 else 1869 break; 1870 } 1871 if (EltTys.size() != Record.size()-1) 1872 return error("Invalid record"); 1873 Res->setBody(EltTys, Record[0]); 1874 ResultTy = Res; 1875 break; 1876 } 1877 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1878 if (Record.size() != 1) 1879 return error("Invalid record"); 1880 1881 if (NumRecords >= TypeList.size()) 1882 return error("Invalid TYPE table"); 1883 1884 // Check to see if this was forward referenced, if so fill in the temp. 1885 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1886 if (Res) { 1887 Res->setName(TypeName); 1888 TypeList[NumRecords] = nullptr; 1889 } else // Otherwise, create a new struct with no body. 1890 Res = createIdentifiedStructType(Context, TypeName); 1891 TypeName.clear(); 1892 ResultTy = Res; 1893 break; 1894 } 1895 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1896 if (Record.size() < 2) 1897 return error("Invalid record"); 1898 ResultTy = getTypeByID(Record[1]); 1899 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1900 return error("Invalid type"); 1901 ResultTy = ArrayType::get(ResultTy, Record[0]); 1902 break; 1903 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1904 // [numelts, eltty, scalable] 1905 if (Record.size() < 2) 1906 return error("Invalid record"); 1907 if (Record[0] == 0) 1908 return error("Invalid vector length"); 1909 ResultTy = getTypeByID(Record[1]); 1910 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1911 return error("Invalid type"); 1912 bool Scalable = Record.size() > 2 ? Record[2] : false; 1913 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1914 break; 1915 } 1916 1917 if (NumRecords >= TypeList.size()) 1918 return error("Invalid TYPE table"); 1919 if (TypeList[NumRecords]) 1920 return error( 1921 "Invalid TYPE table: Only named structs can be forward referenced"); 1922 assert(ResultTy && "Didn't read a type?"); 1923 TypeList[NumRecords++] = ResultTy; 1924 } 1925 } 1926 1927 Error BitcodeReader::parseOperandBundleTags() { 1928 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1929 return Err; 1930 1931 if (!BundleTags.empty()) 1932 return error("Invalid multiple blocks"); 1933 1934 SmallVector<uint64_t, 64> Record; 1935 1936 while (true) { 1937 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1938 if (!MaybeEntry) 1939 return MaybeEntry.takeError(); 1940 BitstreamEntry Entry = MaybeEntry.get(); 1941 1942 switch (Entry.Kind) { 1943 case BitstreamEntry::SubBlock: // Handled for us already. 1944 case BitstreamEntry::Error: 1945 return error("Malformed block"); 1946 case BitstreamEntry::EndBlock: 1947 return Error::success(); 1948 case BitstreamEntry::Record: 1949 // The interesting case. 1950 break; 1951 } 1952 1953 // Tags are implicitly mapped to integers by their order. 1954 1955 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1956 if (!MaybeRecord) 1957 return MaybeRecord.takeError(); 1958 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1959 return error("Invalid record"); 1960 1961 // OPERAND_BUNDLE_TAG: [strchr x N] 1962 BundleTags.emplace_back(); 1963 if (convertToString(Record, 0, BundleTags.back())) 1964 return error("Invalid record"); 1965 Record.clear(); 1966 } 1967 } 1968 1969 Error BitcodeReader::parseSyncScopeNames() { 1970 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1971 return Err; 1972 1973 if (!SSIDs.empty()) 1974 return error("Invalid multiple synchronization scope names blocks"); 1975 1976 SmallVector<uint64_t, 64> Record; 1977 while (true) { 1978 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1979 if (!MaybeEntry) 1980 return MaybeEntry.takeError(); 1981 BitstreamEntry Entry = MaybeEntry.get(); 1982 1983 switch (Entry.Kind) { 1984 case BitstreamEntry::SubBlock: // Handled for us already. 1985 case BitstreamEntry::Error: 1986 return error("Malformed block"); 1987 case BitstreamEntry::EndBlock: 1988 if (SSIDs.empty()) 1989 return error("Invalid empty synchronization scope names block"); 1990 return Error::success(); 1991 case BitstreamEntry::Record: 1992 // The interesting case. 1993 break; 1994 } 1995 1996 // Synchronization scope names are implicitly mapped to synchronization 1997 // scope IDs by their order. 1998 1999 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2000 if (!MaybeRecord) 2001 return MaybeRecord.takeError(); 2002 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2003 return error("Invalid record"); 2004 2005 SmallString<16> SSN; 2006 if (convertToString(Record, 0, SSN)) 2007 return error("Invalid record"); 2008 2009 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2010 Record.clear(); 2011 } 2012 } 2013 2014 /// Associate a value with its name from the given index in the provided record. 2015 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2016 unsigned NameIndex, Triple &TT) { 2017 SmallString<128> ValueName; 2018 if (convertToString(Record, NameIndex, ValueName)) 2019 return error("Invalid record"); 2020 unsigned ValueID = Record[0]; 2021 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2022 return error("Invalid record"); 2023 Value *V = ValueList[ValueID]; 2024 2025 StringRef NameStr(ValueName.data(), ValueName.size()); 2026 if (NameStr.find_first_of(0) != StringRef::npos) 2027 return error("Invalid value name"); 2028 V->setName(NameStr); 2029 auto *GO = dyn_cast<GlobalObject>(V); 2030 if (GO) { 2031 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2032 if (TT.supportsCOMDAT()) 2033 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2034 else 2035 GO->setComdat(nullptr); 2036 } 2037 } 2038 return V; 2039 } 2040 2041 /// Helper to note and return the current location, and jump to the given 2042 /// offset. 2043 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2044 BitstreamCursor &Stream) { 2045 // Save the current parsing location so we can jump back at the end 2046 // of the VST read. 2047 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2048 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2049 return std::move(JumpFailed); 2050 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2051 if (!MaybeEntry) 2052 return MaybeEntry.takeError(); 2053 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2054 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2055 return CurrentBit; 2056 } 2057 2058 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2059 Function *F, 2060 ArrayRef<uint64_t> Record) { 2061 // Note that we subtract 1 here because the offset is relative to one word 2062 // before the start of the identification or module block, which was 2063 // historically always the start of the regular bitcode header. 2064 uint64_t FuncWordOffset = Record[1] - 1; 2065 uint64_t FuncBitOffset = FuncWordOffset * 32; 2066 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2067 // Set the LastFunctionBlockBit to point to the last function block. 2068 // Later when parsing is resumed after function materialization, 2069 // we can simply skip that last function block. 2070 if (FuncBitOffset > LastFunctionBlockBit) 2071 LastFunctionBlockBit = FuncBitOffset; 2072 } 2073 2074 /// Read a new-style GlobalValue symbol table. 2075 Error BitcodeReader::parseGlobalValueSymbolTable() { 2076 unsigned FuncBitcodeOffsetDelta = 2077 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2078 2079 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2080 return Err; 2081 2082 SmallVector<uint64_t, 64> Record; 2083 while (true) { 2084 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2085 if (!MaybeEntry) 2086 return MaybeEntry.takeError(); 2087 BitstreamEntry Entry = MaybeEntry.get(); 2088 2089 switch (Entry.Kind) { 2090 case BitstreamEntry::SubBlock: 2091 case BitstreamEntry::Error: 2092 return error("Malformed block"); 2093 case BitstreamEntry::EndBlock: 2094 return Error::success(); 2095 case BitstreamEntry::Record: 2096 break; 2097 } 2098 2099 Record.clear(); 2100 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2101 if (!MaybeRecord) 2102 return MaybeRecord.takeError(); 2103 switch (MaybeRecord.get()) { 2104 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2105 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2106 cast<Function>(ValueList[Record[0]]), Record); 2107 break; 2108 } 2109 } 2110 } 2111 2112 /// Parse the value symbol table at either the current parsing location or 2113 /// at the given bit offset if provided. 2114 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2115 uint64_t CurrentBit; 2116 // Pass in the Offset to distinguish between calling for the module-level 2117 // VST (where we want to jump to the VST offset) and the function-level 2118 // VST (where we don't). 2119 if (Offset > 0) { 2120 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2121 if (!MaybeCurrentBit) 2122 return MaybeCurrentBit.takeError(); 2123 CurrentBit = MaybeCurrentBit.get(); 2124 // If this module uses a string table, read this as a module-level VST. 2125 if (UseStrtab) { 2126 if (Error Err = parseGlobalValueSymbolTable()) 2127 return Err; 2128 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2129 return JumpFailed; 2130 return Error::success(); 2131 } 2132 // Otherwise, the VST will be in a similar format to a function-level VST, 2133 // and will contain symbol names. 2134 } 2135 2136 // Compute the delta between the bitcode indices in the VST (the word offset 2137 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2138 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2139 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2140 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2141 // just before entering the VST subblock because: 1) the EnterSubBlock 2142 // changes the AbbrevID width; 2) the VST block is nested within the same 2143 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2144 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2145 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2146 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2147 unsigned FuncBitcodeOffsetDelta = 2148 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2149 2150 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2151 return Err; 2152 2153 SmallVector<uint64_t, 64> Record; 2154 2155 Triple TT(TheModule->getTargetTriple()); 2156 2157 // Read all the records for this value table. 2158 SmallString<128> ValueName; 2159 2160 while (true) { 2161 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2162 if (!MaybeEntry) 2163 return MaybeEntry.takeError(); 2164 BitstreamEntry Entry = MaybeEntry.get(); 2165 2166 switch (Entry.Kind) { 2167 case BitstreamEntry::SubBlock: // Handled for us already. 2168 case BitstreamEntry::Error: 2169 return error("Malformed block"); 2170 case BitstreamEntry::EndBlock: 2171 if (Offset > 0) 2172 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2173 return JumpFailed; 2174 return Error::success(); 2175 case BitstreamEntry::Record: 2176 // The interesting case. 2177 break; 2178 } 2179 2180 // Read a record. 2181 Record.clear(); 2182 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2183 if (!MaybeRecord) 2184 return MaybeRecord.takeError(); 2185 switch (MaybeRecord.get()) { 2186 default: // Default behavior: unknown type. 2187 break; 2188 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2189 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2190 if (Error Err = ValOrErr.takeError()) 2191 return Err; 2192 ValOrErr.get(); 2193 break; 2194 } 2195 case bitc::VST_CODE_FNENTRY: { 2196 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2197 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2198 if (Error Err = ValOrErr.takeError()) 2199 return Err; 2200 Value *V = ValOrErr.get(); 2201 2202 // Ignore function offsets emitted for aliases of functions in older 2203 // versions of LLVM. 2204 if (auto *F = dyn_cast<Function>(V)) 2205 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2206 break; 2207 } 2208 case bitc::VST_CODE_BBENTRY: { 2209 if (convertToString(Record, 1, ValueName)) 2210 return error("Invalid record"); 2211 BasicBlock *BB = getBasicBlock(Record[0]); 2212 if (!BB) 2213 return error("Invalid record"); 2214 2215 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2216 ValueName.clear(); 2217 break; 2218 } 2219 } 2220 } 2221 } 2222 2223 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2224 /// encoding. 2225 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2226 if ((V & 1) == 0) 2227 return V >> 1; 2228 if (V != 1) 2229 return -(V >> 1); 2230 // There is no such thing as -0 with integers. "-0" really means MININT. 2231 return 1ULL << 63; 2232 } 2233 2234 /// Resolve all of the initializers for global values and aliases that we can. 2235 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2236 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2237 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2238 IndirectSymbolInitWorklist; 2239 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2240 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2241 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2242 2243 GlobalInitWorklist.swap(GlobalInits); 2244 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2245 FunctionPrefixWorklist.swap(FunctionPrefixes); 2246 FunctionPrologueWorklist.swap(FunctionPrologues); 2247 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2248 2249 while (!GlobalInitWorklist.empty()) { 2250 unsigned ValID = GlobalInitWorklist.back().second; 2251 if (ValID >= ValueList.size()) { 2252 // Not ready to resolve this yet, it requires something later in the file. 2253 GlobalInits.push_back(GlobalInitWorklist.back()); 2254 } else { 2255 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2256 GlobalInitWorklist.back().first->setInitializer(C); 2257 else 2258 return error("Expected a constant"); 2259 } 2260 GlobalInitWorklist.pop_back(); 2261 } 2262 2263 while (!IndirectSymbolInitWorklist.empty()) { 2264 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2265 if (ValID >= ValueList.size()) { 2266 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2267 } else { 2268 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2269 if (!C) 2270 return error("Expected a constant"); 2271 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2272 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2273 return error("Alias and aliasee types don't match"); 2274 GIS->setIndirectSymbol(C); 2275 } 2276 IndirectSymbolInitWorklist.pop_back(); 2277 } 2278 2279 while (!FunctionPrefixWorklist.empty()) { 2280 unsigned ValID = FunctionPrefixWorklist.back().second; 2281 if (ValID >= ValueList.size()) { 2282 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2283 } else { 2284 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2285 FunctionPrefixWorklist.back().first->setPrefixData(C); 2286 else 2287 return error("Expected a constant"); 2288 } 2289 FunctionPrefixWorklist.pop_back(); 2290 } 2291 2292 while (!FunctionPrologueWorklist.empty()) { 2293 unsigned ValID = FunctionPrologueWorklist.back().second; 2294 if (ValID >= ValueList.size()) { 2295 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2296 } else { 2297 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2298 FunctionPrologueWorklist.back().first->setPrologueData(C); 2299 else 2300 return error("Expected a constant"); 2301 } 2302 FunctionPrologueWorklist.pop_back(); 2303 } 2304 2305 while (!FunctionPersonalityFnWorklist.empty()) { 2306 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2307 if (ValID >= ValueList.size()) { 2308 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2309 } else { 2310 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2311 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2312 else 2313 return error("Expected a constant"); 2314 } 2315 FunctionPersonalityFnWorklist.pop_back(); 2316 } 2317 2318 return Error::success(); 2319 } 2320 2321 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2322 SmallVector<uint64_t, 8> Words(Vals.size()); 2323 transform(Vals, Words.begin(), 2324 BitcodeReader::decodeSignRotatedValue); 2325 2326 return APInt(TypeBits, Words); 2327 } 2328 2329 Error BitcodeReader::parseConstants() { 2330 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2331 return Err; 2332 2333 SmallVector<uint64_t, 64> Record; 2334 2335 // Read all the records for this value table. 2336 Type *CurTy = Type::getInt32Ty(Context); 2337 Type *CurFullTy = Type::getInt32Ty(Context); 2338 unsigned NextCstNo = ValueList.size(); 2339 2340 while (true) { 2341 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2342 if (!MaybeEntry) 2343 return MaybeEntry.takeError(); 2344 BitstreamEntry Entry = MaybeEntry.get(); 2345 2346 switch (Entry.Kind) { 2347 case BitstreamEntry::SubBlock: // Handled for us already. 2348 case BitstreamEntry::Error: 2349 return error("Malformed block"); 2350 case BitstreamEntry::EndBlock: 2351 if (NextCstNo != ValueList.size()) 2352 return error("Invalid constant reference"); 2353 2354 // Once all the constants have been read, go through and resolve forward 2355 // references. 2356 ValueList.resolveConstantForwardRefs(); 2357 return Error::success(); 2358 case BitstreamEntry::Record: 2359 // The interesting case. 2360 break; 2361 } 2362 2363 // Read a record. 2364 Record.clear(); 2365 Type *VoidType = Type::getVoidTy(Context); 2366 Value *V = nullptr; 2367 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2368 if (!MaybeBitCode) 2369 return MaybeBitCode.takeError(); 2370 switch (unsigned BitCode = MaybeBitCode.get()) { 2371 default: // Default behavior: unknown constant 2372 case bitc::CST_CODE_UNDEF: // UNDEF 2373 V = UndefValue::get(CurTy); 2374 break; 2375 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2376 if (Record.empty()) 2377 return error("Invalid record"); 2378 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2379 return error("Invalid record"); 2380 if (TypeList[Record[0]] == VoidType) 2381 return error("Invalid constant type"); 2382 CurFullTy = TypeList[Record[0]]; 2383 CurTy = flattenPointerTypes(CurFullTy); 2384 continue; // Skip the ValueList manipulation. 2385 case bitc::CST_CODE_NULL: // NULL 2386 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2387 return error("Invalid type for a constant null value"); 2388 V = Constant::getNullValue(CurTy); 2389 break; 2390 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2391 if (!CurTy->isIntegerTy() || Record.empty()) 2392 return error("Invalid record"); 2393 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2394 break; 2395 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2396 if (!CurTy->isIntegerTy() || Record.empty()) 2397 return error("Invalid record"); 2398 2399 APInt VInt = 2400 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2401 V = ConstantInt::get(Context, VInt); 2402 2403 break; 2404 } 2405 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2406 if (Record.empty()) 2407 return error("Invalid record"); 2408 if (CurTy->isHalfTy()) 2409 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2410 APInt(16, (uint16_t)Record[0]))); 2411 else if (CurTy->isFloatTy()) 2412 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2413 APInt(32, (uint32_t)Record[0]))); 2414 else if (CurTy->isDoubleTy()) 2415 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2416 APInt(64, Record[0]))); 2417 else if (CurTy->isX86_FP80Ty()) { 2418 // Bits are not stored the same way as a normal i80 APInt, compensate. 2419 uint64_t Rearrange[2]; 2420 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2421 Rearrange[1] = Record[0] >> 48; 2422 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2423 APInt(80, Rearrange))); 2424 } else if (CurTy->isFP128Ty()) 2425 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2426 APInt(128, Record))); 2427 else if (CurTy->isPPC_FP128Ty()) 2428 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2429 APInt(128, Record))); 2430 else 2431 V = UndefValue::get(CurTy); 2432 break; 2433 } 2434 2435 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2436 if (Record.empty()) 2437 return error("Invalid record"); 2438 2439 unsigned Size = Record.size(); 2440 SmallVector<Constant*, 16> Elts; 2441 2442 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2443 for (unsigned i = 0; i != Size; ++i) 2444 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2445 STy->getElementType(i))); 2446 V = ConstantStruct::get(STy, Elts); 2447 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2448 Type *EltTy = ATy->getElementType(); 2449 for (unsigned i = 0; i != Size; ++i) 2450 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2451 V = ConstantArray::get(ATy, Elts); 2452 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2453 Type *EltTy = VTy->getElementType(); 2454 for (unsigned i = 0; i != Size; ++i) 2455 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2456 V = ConstantVector::get(Elts); 2457 } else { 2458 V = UndefValue::get(CurTy); 2459 } 2460 break; 2461 } 2462 case bitc::CST_CODE_STRING: // STRING: [values] 2463 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2464 if (Record.empty()) 2465 return error("Invalid record"); 2466 2467 SmallString<16> Elts(Record.begin(), Record.end()); 2468 V = ConstantDataArray::getString(Context, Elts, 2469 BitCode == bitc::CST_CODE_CSTRING); 2470 break; 2471 } 2472 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2473 if (Record.empty()) 2474 return error("Invalid record"); 2475 2476 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2477 if (EltTy->isIntegerTy(8)) { 2478 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2479 if (isa<VectorType>(CurTy)) 2480 V = ConstantDataVector::get(Context, Elts); 2481 else 2482 V = ConstantDataArray::get(Context, Elts); 2483 } else if (EltTy->isIntegerTy(16)) { 2484 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2485 if (isa<VectorType>(CurTy)) 2486 V = ConstantDataVector::get(Context, Elts); 2487 else 2488 V = ConstantDataArray::get(Context, Elts); 2489 } else if (EltTy->isIntegerTy(32)) { 2490 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2491 if (isa<VectorType>(CurTy)) 2492 V = ConstantDataVector::get(Context, Elts); 2493 else 2494 V = ConstantDataArray::get(Context, Elts); 2495 } else if (EltTy->isIntegerTy(64)) { 2496 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2497 if (isa<VectorType>(CurTy)) 2498 V = ConstantDataVector::get(Context, Elts); 2499 else 2500 V = ConstantDataArray::get(Context, Elts); 2501 } else if (EltTy->isHalfTy()) { 2502 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2503 if (isa<VectorType>(CurTy)) 2504 V = ConstantDataVector::getFP(Context, Elts); 2505 else 2506 V = ConstantDataArray::getFP(Context, Elts); 2507 } else if (EltTy->isFloatTy()) { 2508 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2509 if (isa<VectorType>(CurTy)) 2510 V = ConstantDataVector::getFP(Context, Elts); 2511 else 2512 V = ConstantDataArray::getFP(Context, Elts); 2513 } else if (EltTy->isDoubleTy()) { 2514 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2515 if (isa<VectorType>(CurTy)) 2516 V = ConstantDataVector::getFP(Context, Elts); 2517 else 2518 V = ConstantDataArray::getFP(Context, Elts); 2519 } else { 2520 return error("Invalid type for value"); 2521 } 2522 break; 2523 } 2524 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2525 if (Record.size() < 2) 2526 return error("Invalid record"); 2527 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2528 if (Opc < 0) { 2529 V = UndefValue::get(CurTy); // Unknown unop. 2530 } else { 2531 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2532 unsigned Flags = 0; 2533 V = ConstantExpr::get(Opc, LHS, Flags); 2534 } 2535 break; 2536 } 2537 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2538 if (Record.size() < 3) 2539 return error("Invalid record"); 2540 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2541 if (Opc < 0) { 2542 V = UndefValue::get(CurTy); // Unknown binop. 2543 } else { 2544 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2545 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2546 unsigned Flags = 0; 2547 if (Record.size() >= 4) { 2548 if (Opc == Instruction::Add || 2549 Opc == Instruction::Sub || 2550 Opc == Instruction::Mul || 2551 Opc == Instruction::Shl) { 2552 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2553 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2554 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2555 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2556 } else if (Opc == Instruction::SDiv || 2557 Opc == Instruction::UDiv || 2558 Opc == Instruction::LShr || 2559 Opc == Instruction::AShr) { 2560 if (Record[3] & (1 << bitc::PEO_EXACT)) 2561 Flags |= SDivOperator::IsExact; 2562 } 2563 } 2564 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2565 } 2566 break; 2567 } 2568 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2569 if (Record.size() < 3) 2570 return error("Invalid record"); 2571 int Opc = getDecodedCastOpcode(Record[0]); 2572 if (Opc < 0) { 2573 V = UndefValue::get(CurTy); // Unknown cast. 2574 } else { 2575 Type *OpTy = getTypeByID(Record[1]); 2576 if (!OpTy) 2577 return error("Invalid record"); 2578 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2579 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2580 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2581 } 2582 break; 2583 } 2584 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2585 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2586 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2587 // operands] 2588 unsigned OpNum = 0; 2589 Type *PointeeType = nullptr; 2590 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2591 Record.size() % 2) 2592 PointeeType = getTypeByID(Record[OpNum++]); 2593 2594 bool InBounds = false; 2595 Optional<unsigned> InRangeIndex; 2596 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2597 uint64_t Op = Record[OpNum++]; 2598 InBounds = Op & 1; 2599 InRangeIndex = Op >> 1; 2600 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2601 InBounds = true; 2602 2603 SmallVector<Constant*, 16> Elts; 2604 Type *Elt0FullTy = nullptr; 2605 while (OpNum != Record.size()) { 2606 if (!Elt0FullTy) 2607 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2608 Type *ElTy = getTypeByID(Record[OpNum++]); 2609 if (!ElTy) 2610 return error("Invalid record"); 2611 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2612 } 2613 2614 if (Elts.size() < 1) 2615 return error("Invalid gep with no operands"); 2616 2617 Type *ImplicitPointeeType = 2618 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2619 if (!PointeeType) 2620 PointeeType = ImplicitPointeeType; 2621 else if (PointeeType != ImplicitPointeeType) 2622 return error("Explicit gep operator type does not match pointee type " 2623 "of pointer operand"); 2624 2625 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2626 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2627 InBounds, InRangeIndex); 2628 break; 2629 } 2630 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2631 if (Record.size() < 3) 2632 return error("Invalid record"); 2633 2634 Type *SelectorTy = Type::getInt1Ty(Context); 2635 2636 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2637 // Get the type from the ValueList before getting a forward ref. 2638 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2639 if (Value *V = ValueList[Record[0]]) 2640 if (SelectorTy != V->getType()) 2641 SelectorTy = VectorType::get(SelectorTy, 2642 VTy->getElementCount()); 2643 2644 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2645 SelectorTy), 2646 ValueList.getConstantFwdRef(Record[1],CurTy), 2647 ValueList.getConstantFwdRef(Record[2],CurTy)); 2648 break; 2649 } 2650 case bitc::CST_CODE_CE_EXTRACTELT 2651 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2652 if (Record.size() < 3) 2653 return error("Invalid record"); 2654 VectorType *OpTy = 2655 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2656 if (!OpTy) 2657 return error("Invalid record"); 2658 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2659 Constant *Op1 = nullptr; 2660 if (Record.size() == 4) { 2661 Type *IdxTy = getTypeByID(Record[2]); 2662 if (!IdxTy) 2663 return error("Invalid record"); 2664 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2665 } else // TODO: Remove with llvm 4.0 2666 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2667 if (!Op1) 2668 return error("Invalid record"); 2669 V = ConstantExpr::getExtractElement(Op0, Op1); 2670 break; 2671 } 2672 case bitc::CST_CODE_CE_INSERTELT 2673 : { // CE_INSERTELT: [opval, opval, opty, opval] 2674 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2675 if (Record.size() < 3 || !OpTy) 2676 return error("Invalid record"); 2677 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2678 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2679 OpTy->getElementType()); 2680 Constant *Op2 = nullptr; 2681 if (Record.size() == 4) { 2682 Type *IdxTy = getTypeByID(Record[2]); 2683 if (!IdxTy) 2684 return error("Invalid record"); 2685 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2686 } else // TODO: Remove with llvm 4.0 2687 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2688 if (!Op2) 2689 return error("Invalid record"); 2690 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2691 break; 2692 } 2693 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2694 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2695 if (Record.size() < 3 || !OpTy) 2696 return error("Invalid record"); 2697 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2698 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2699 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2700 OpTy->getElementCount()); 2701 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2702 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2703 break; 2704 } 2705 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2706 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2707 VectorType *OpTy = 2708 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2709 if (Record.size() < 4 || !RTy || !OpTy) 2710 return error("Invalid record"); 2711 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2712 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2713 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2714 RTy->getElementCount()); 2715 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2716 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2717 break; 2718 } 2719 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2720 if (Record.size() < 4) 2721 return error("Invalid record"); 2722 Type *OpTy = getTypeByID(Record[0]); 2723 if (!OpTy) 2724 return error("Invalid record"); 2725 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2726 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2727 2728 if (OpTy->isFPOrFPVectorTy()) 2729 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2730 else 2731 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2732 break; 2733 } 2734 // This maintains backward compatibility, pre-asm dialect keywords. 2735 // FIXME: Remove with the 4.0 release. 2736 case bitc::CST_CODE_INLINEASM_OLD: { 2737 if (Record.size() < 2) 2738 return error("Invalid record"); 2739 std::string AsmStr, ConstrStr; 2740 bool HasSideEffects = Record[0] & 1; 2741 bool IsAlignStack = Record[0] >> 1; 2742 unsigned AsmStrSize = Record[1]; 2743 if (2+AsmStrSize >= Record.size()) 2744 return error("Invalid record"); 2745 unsigned ConstStrSize = Record[2+AsmStrSize]; 2746 if (3+AsmStrSize+ConstStrSize > Record.size()) 2747 return error("Invalid record"); 2748 2749 for (unsigned i = 0; i != AsmStrSize; ++i) 2750 AsmStr += (char)Record[2+i]; 2751 for (unsigned i = 0; i != ConstStrSize; ++i) 2752 ConstrStr += (char)Record[3+AsmStrSize+i]; 2753 UpgradeInlineAsmString(&AsmStr); 2754 V = InlineAsm::get( 2755 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2756 ConstrStr, HasSideEffects, IsAlignStack); 2757 break; 2758 } 2759 // This version adds support for the asm dialect keywords (e.g., 2760 // inteldialect). 2761 case bitc::CST_CODE_INLINEASM: { 2762 if (Record.size() < 2) 2763 return error("Invalid record"); 2764 std::string AsmStr, ConstrStr; 2765 bool HasSideEffects = Record[0] & 1; 2766 bool IsAlignStack = (Record[0] >> 1) & 1; 2767 unsigned AsmDialect = Record[0] >> 2; 2768 unsigned AsmStrSize = Record[1]; 2769 if (2+AsmStrSize >= Record.size()) 2770 return error("Invalid record"); 2771 unsigned ConstStrSize = Record[2+AsmStrSize]; 2772 if (3+AsmStrSize+ConstStrSize > Record.size()) 2773 return error("Invalid record"); 2774 2775 for (unsigned i = 0; i != AsmStrSize; ++i) 2776 AsmStr += (char)Record[2+i]; 2777 for (unsigned i = 0; i != ConstStrSize; ++i) 2778 ConstrStr += (char)Record[3+AsmStrSize+i]; 2779 UpgradeInlineAsmString(&AsmStr); 2780 V = InlineAsm::get( 2781 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2782 ConstrStr, HasSideEffects, IsAlignStack, 2783 InlineAsm::AsmDialect(AsmDialect)); 2784 break; 2785 } 2786 case bitc::CST_CODE_BLOCKADDRESS:{ 2787 if (Record.size() < 3) 2788 return error("Invalid record"); 2789 Type *FnTy = getTypeByID(Record[0]); 2790 if (!FnTy) 2791 return error("Invalid record"); 2792 Function *Fn = 2793 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2794 if (!Fn) 2795 return error("Invalid record"); 2796 2797 // If the function is already parsed we can insert the block address right 2798 // away. 2799 BasicBlock *BB; 2800 unsigned BBID = Record[2]; 2801 if (!BBID) 2802 // Invalid reference to entry block. 2803 return error("Invalid ID"); 2804 if (!Fn->empty()) { 2805 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2806 for (size_t I = 0, E = BBID; I != E; ++I) { 2807 if (BBI == BBE) 2808 return error("Invalid ID"); 2809 ++BBI; 2810 } 2811 BB = &*BBI; 2812 } else { 2813 // Otherwise insert a placeholder and remember it so it can be inserted 2814 // when the function is parsed. 2815 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2816 if (FwdBBs.empty()) 2817 BasicBlockFwdRefQueue.push_back(Fn); 2818 if (FwdBBs.size() < BBID + 1) 2819 FwdBBs.resize(BBID + 1); 2820 if (!FwdBBs[BBID]) 2821 FwdBBs[BBID] = BasicBlock::Create(Context); 2822 BB = FwdBBs[BBID]; 2823 } 2824 V = BlockAddress::get(Fn, BB); 2825 break; 2826 } 2827 } 2828 2829 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2830 "Incorrect fully structured type provided for Constant"); 2831 ValueList.assignValue(V, NextCstNo, CurFullTy); 2832 ++NextCstNo; 2833 } 2834 } 2835 2836 Error BitcodeReader::parseUseLists() { 2837 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2838 return Err; 2839 2840 // Read all the records. 2841 SmallVector<uint64_t, 64> Record; 2842 2843 while (true) { 2844 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2845 if (!MaybeEntry) 2846 return MaybeEntry.takeError(); 2847 BitstreamEntry Entry = MaybeEntry.get(); 2848 2849 switch (Entry.Kind) { 2850 case BitstreamEntry::SubBlock: // Handled for us already. 2851 case BitstreamEntry::Error: 2852 return error("Malformed block"); 2853 case BitstreamEntry::EndBlock: 2854 return Error::success(); 2855 case BitstreamEntry::Record: 2856 // The interesting case. 2857 break; 2858 } 2859 2860 // Read a use list record. 2861 Record.clear(); 2862 bool IsBB = false; 2863 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2864 if (!MaybeRecord) 2865 return MaybeRecord.takeError(); 2866 switch (MaybeRecord.get()) { 2867 default: // Default behavior: unknown type. 2868 break; 2869 case bitc::USELIST_CODE_BB: 2870 IsBB = true; 2871 LLVM_FALLTHROUGH; 2872 case bitc::USELIST_CODE_DEFAULT: { 2873 unsigned RecordLength = Record.size(); 2874 if (RecordLength < 3) 2875 // Records should have at least an ID and two indexes. 2876 return error("Invalid record"); 2877 unsigned ID = Record.back(); 2878 Record.pop_back(); 2879 2880 Value *V; 2881 if (IsBB) { 2882 assert(ID < FunctionBBs.size() && "Basic block not found"); 2883 V = FunctionBBs[ID]; 2884 } else 2885 V = ValueList[ID]; 2886 unsigned NumUses = 0; 2887 SmallDenseMap<const Use *, unsigned, 16> Order; 2888 for (const Use &U : V->materialized_uses()) { 2889 if (++NumUses > Record.size()) 2890 break; 2891 Order[&U] = Record[NumUses - 1]; 2892 } 2893 if (Order.size() != Record.size() || NumUses > Record.size()) 2894 // Mismatches can happen if the functions are being materialized lazily 2895 // (out-of-order), or a value has been upgraded. 2896 break; 2897 2898 V->sortUseList([&](const Use &L, const Use &R) { 2899 return Order.lookup(&L) < Order.lookup(&R); 2900 }); 2901 break; 2902 } 2903 } 2904 } 2905 } 2906 2907 /// When we see the block for metadata, remember where it is and then skip it. 2908 /// This lets us lazily deserialize the metadata. 2909 Error BitcodeReader::rememberAndSkipMetadata() { 2910 // Save the current stream state. 2911 uint64_t CurBit = Stream.GetCurrentBitNo(); 2912 DeferredMetadataInfo.push_back(CurBit); 2913 2914 // Skip over the block for now. 2915 if (Error Err = Stream.SkipBlock()) 2916 return Err; 2917 return Error::success(); 2918 } 2919 2920 Error BitcodeReader::materializeMetadata() { 2921 for (uint64_t BitPos : DeferredMetadataInfo) { 2922 // Move the bit stream to the saved position. 2923 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2924 return JumpFailed; 2925 if (Error Err = MDLoader->parseModuleMetadata()) 2926 return Err; 2927 } 2928 2929 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2930 // metadata. 2931 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2932 NamedMDNode *LinkerOpts = 2933 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2934 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2935 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2936 } 2937 2938 DeferredMetadataInfo.clear(); 2939 return Error::success(); 2940 } 2941 2942 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2943 2944 /// When we see the block for a function body, remember where it is and then 2945 /// skip it. This lets us lazily deserialize the functions. 2946 Error BitcodeReader::rememberAndSkipFunctionBody() { 2947 // Get the function we are talking about. 2948 if (FunctionsWithBodies.empty()) 2949 return error("Insufficient function protos"); 2950 2951 Function *Fn = FunctionsWithBodies.back(); 2952 FunctionsWithBodies.pop_back(); 2953 2954 // Save the current stream state. 2955 uint64_t CurBit = Stream.GetCurrentBitNo(); 2956 assert( 2957 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2958 "Mismatch between VST and scanned function offsets"); 2959 DeferredFunctionInfo[Fn] = CurBit; 2960 2961 // Skip over the function block for now. 2962 if (Error Err = Stream.SkipBlock()) 2963 return Err; 2964 return Error::success(); 2965 } 2966 2967 Error BitcodeReader::globalCleanup() { 2968 // Patch the initializers for globals and aliases up. 2969 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2970 return Err; 2971 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2972 return error("Malformed global initializer set"); 2973 2974 // Look for intrinsic functions which need to be upgraded at some point 2975 for (Function &F : *TheModule) { 2976 MDLoader->upgradeDebugIntrinsics(F); 2977 Function *NewFn; 2978 if (UpgradeIntrinsicFunction(&F, NewFn)) 2979 UpgradedIntrinsics[&F] = NewFn; 2980 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2981 // Some types could be renamed during loading if several modules are 2982 // loaded in the same LLVMContext (LTO scenario). In this case we should 2983 // remangle intrinsics names as well. 2984 RemangledIntrinsics[&F] = Remangled.getValue(); 2985 } 2986 2987 // Look for global variables which need to be renamed. 2988 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2989 for (GlobalVariable &GV : TheModule->globals()) 2990 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2991 UpgradedVariables.emplace_back(&GV, Upgraded); 2992 for (auto &Pair : UpgradedVariables) { 2993 Pair.first->eraseFromParent(); 2994 TheModule->getGlobalList().push_back(Pair.second); 2995 } 2996 2997 // Force deallocation of memory for these vectors to favor the client that 2998 // want lazy deserialization. 2999 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3000 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3001 IndirectSymbolInits); 3002 return Error::success(); 3003 } 3004 3005 /// Support for lazy parsing of function bodies. This is required if we 3006 /// either have an old bitcode file without a VST forward declaration record, 3007 /// or if we have an anonymous function being materialized, since anonymous 3008 /// functions do not have a name and are therefore not in the VST. 3009 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3010 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3011 return JumpFailed; 3012 3013 if (Stream.AtEndOfStream()) 3014 return error("Could not find function in stream"); 3015 3016 if (!SeenFirstFunctionBody) 3017 return error("Trying to materialize functions before seeing function blocks"); 3018 3019 // An old bitcode file with the symbol table at the end would have 3020 // finished the parse greedily. 3021 assert(SeenValueSymbolTable); 3022 3023 SmallVector<uint64_t, 64> Record; 3024 3025 while (true) { 3026 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3027 if (!MaybeEntry) 3028 return MaybeEntry.takeError(); 3029 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3030 3031 switch (Entry.Kind) { 3032 default: 3033 return error("Expect SubBlock"); 3034 case BitstreamEntry::SubBlock: 3035 switch (Entry.ID) { 3036 default: 3037 return error("Expect function block"); 3038 case bitc::FUNCTION_BLOCK_ID: 3039 if (Error Err = rememberAndSkipFunctionBody()) 3040 return Err; 3041 NextUnreadBit = Stream.GetCurrentBitNo(); 3042 return Error::success(); 3043 } 3044 } 3045 } 3046 } 3047 3048 bool BitcodeReaderBase::readBlockInfo() { 3049 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3050 Stream.ReadBlockInfoBlock(); 3051 if (!MaybeNewBlockInfo) 3052 return true; // FIXME Handle the error. 3053 Optional<BitstreamBlockInfo> NewBlockInfo = 3054 std::move(MaybeNewBlockInfo.get()); 3055 if (!NewBlockInfo) 3056 return true; 3057 BlockInfo = std::move(*NewBlockInfo); 3058 return false; 3059 } 3060 3061 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3062 // v1: [selection_kind, name] 3063 // v2: [strtab_offset, strtab_size, selection_kind] 3064 StringRef Name; 3065 std::tie(Name, Record) = readNameFromStrtab(Record); 3066 3067 if (Record.empty()) 3068 return error("Invalid record"); 3069 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3070 std::string OldFormatName; 3071 if (!UseStrtab) { 3072 if (Record.size() < 2) 3073 return error("Invalid record"); 3074 unsigned ComdatNameSize = Record[1]; 3075 OldFormatName.reserve(ComdatNameSize); 3076 for (unsigned i = 0; i != ComdatNameSize; ++i) 3077 OldFormatName += (char)Record[2 + i]; 3078 Name = OldFormatName; 3079 } 3080 Comdat *C = TheModule->getOrInsertComdat(Name); 3081 C->setSelectionKind(SK); 3082 ComdatList.push_back(C); 3083 return Error::success(); 3084 } 3085 3086 static void inferDSOLocal(GlobalValue *GV) { 3087 // infer dso_local from linkage and visibility if it is not encoded. 3088 if (GV->hasLocalLinkage() || 3089 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3090 GV->setDSOLocal(true); 3091 } 3092 3093 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3094 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3095 // visibility, threadlocal, unnamed_addr, externally_initialized, 3096 // dllstorageclass, comdat, attributes, preemption specifier, 3097 // partition strtab offset, partition strtab size] (name in VST) 3098 // v2: [strtab_offset, strtab_size, v1] 3099 StringRef Name; 3100 std::tie(Name, Record) = readNameFromStrtab(Record); 3101 3102 if (Record.size() < 6) 3103 return error("Invalid record"); 3104 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3105 Type *Ty = flattenPointerTypes(FullTy); 3106 if (!Ty) 3107 return error("Invalid record"); 3108 bool isConstant = Record[1] & 1; 3109 bool explicitType = Record[1] & 2; 3110 unsigned AddressSpace; 3111 if (explicitType) { 3112 AddressSpace = Record[1] >> 2; 3113 } else { 3114 if (!Ty->isPointerTy()) 3115 return error("Invalid type for value"); 3116 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3117 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3118 } 3119 3120 uint64_t RawLinkage = Record[3]; 3121 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3122 MaybeAlign Alignment; 3123 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3124 return Err; 3125 std::string Section; 3126 if (Record[5]) { 3127 if (Record[5] - 1 >= SectionTable.size()) 3128 return error("Invalid ID"); 3129 Section = SectionTable[Record[5] - 1]; 3130 } 3131 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3132 // Local linkage must have default visibility. 3133 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3134 // FIXME: Change to an error if non-default in 4.0. 3135 Visibility = getDecodedVisibility(Record[6]); 3136 3137 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3138 if (Record.size() > 7) 3139 TLM = getDecodedThreadLocalMode(Record[7]); 3140 3141 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3142 if (Record.size() > 8) 3143 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3144 3145 bool ExternallyInitialized = false; 3146 if (Record.size() > 9) 3147 ExternallyInitialized = Record[9]; 3148 3149 GlobalVariable *NewGV = 3150 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3151 nullptr, TLM, AddressSpace, ExternallyInitialized); 3152 NewGV->setAlignment(Alignment); 3153 if (!Section.empty()) 3154 NewGV->setSection(Section); 3155 NewGV->setVisibility(Visibility); 3156 NewGV->setUnnamedAddr(UnnamedAddr); 3157 3158 if (Record.size() > 10) 3159 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3160 else 3161 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3162 3163 FullTy = PointerType::get(FullTy, AddressSpace); 3164 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3165 "Incorrect fully specified type for GlobalVariable"); 3166 ValueList.push_back(NewGV, FullTy); 3167 3168 // Remember which value to use for the global initializer. 3169 if (unsigned InitID = Record[2]) 3170 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3171 3172 if (Record.size() > 11) { 3173 if (unsigned ComdatID = Record[11]) { 3174 if (ComdatID > ComdatList.size()) 3175 return error("Invalid global variable comdat ID"); 3176 NewGV->setComdat(ComdatList[ComdatID - 1]); 3177 } 3178 } else if (hasImplicitComdat(RawLinkage)) { 3179 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3180 } 3181 3182 if (Record.size() > 12) { 3183 auto AS = getAttributes(Record[12]).getFnAttributes(); 3184 NewGV->setAttributes(AS); 3185 } 3186 3187 if (Record.size() > 13) { 3188 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3189 } 3190 inferDSOLocal(NewGV); 3191 3192 // Check whether we have enough values to read a partition name. 3193 if (Record.size() > 15) 3194 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3195 3196 return Error::success(); 3197 } 3198 3199 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3200 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3201 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3202 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3203 // v2: [strtab_offset, strtab_size, v1] 3204 StringRef Name; 3205 std::tie(Name, Record) = readNameFromStrtab(Record); 3206 3207 if (Record.size() < 8) 3208 return error("Invalid record"); 3209 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3210 Type *FTy = flattenPointerTypes(FullFTy); 3211 if (!FTy) 3212 return error("Invalid record"); 3213 if (isa<PointerType>(FTy)) 3214 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3215 3216 if (!isa<FunctionType>(FTy)) 3217 return error("Invalid type for value"); 3218 auto CC = static_cast<CallingConv::ID>(Record[1]); 3219 if (CC & ~CallingConv::MaxID) 3220 return error("Invalid calling convention ID"); 3221 3222 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3223 if (Record.size() > 16) 3224 AddrSpace = Record[16]; 3225 3226 Function *Func = 3227 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3228 AddrSpace, Name, TheModule); 3229 3230 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3231 "Incorrect fully specified type provided for function"); 3232 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3233 3234 Func->setCallingConv(CC); 3235 bool isProto = Record[2]; 3236 uint64_t RawLinkage = Record[3]; 3237 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3238 Func->setAttributes(getAttributes(Record[4])); 3239 3240 // Upgrade any old-style byval without a type by propagating the argument's 3241 // pointee type. There should be no opaque pointers where the byval type is 3242 // implicit. 3243 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3244 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3245 continue; 3246 3247 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3248 Func->removeParamAttr(i, Attribute::ByVal); 3249 Func->addParamAttr(i, Attribute::getWithByValType( 3250 Context, getPointerElementFlatType(PTy))); 3251 } 3252 3253 MaybeAlign Alignment; 3254 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3255 return Err; 3256 Func->setAlignment(Alignment); 3257 if (Record[6]) { 3258 if (Record[6] - 1 >= SectionTable.size()) 3259 return error("Invalid ID"); 3260 Func->setSection(SectionTable[Record[6] - 1]); 3261 } 3262 // Local linkage must have default visibility. 3263 if (!Func->hasLocalLinkage()) 3264 // FIXME: Change to an error if non-default in 4.0. 3265 Func->setVisibility(getDecodedVisibility(Record[7])); 3266 if (Record.size() > 8 && Record[8]) { 3267 if (Record[8] - 1 >= GCTable.size()) 3268 return error("Invalid ID"); 3269 Func->setGC(GCTable[Record[8] - 1]); 3270 } 3271 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3272 if (Record.size() > 9) 3273 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3274 Func->setUnnamedAddr(UnnamedAddr); 3275 if (Record.size() > 10 && Record[10] != 0) 3276 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3277 3278 if (Record.size() > 11) 3279 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3280 else 3281 upgradeDLLImportExportLinkage(Func, RawLinkage); 3282 3283 if (Record.size() > 12) { 3284 if (unsigned ComdatID = Record[12]) { 3285 if (ComdatID > ComdatList.size()) 3286 return error("Invalid function comdat ID"); 3287 Func->setComdat(ComdatList[ComdatID - 1]); 3288 } 3289 } else if (hasImplicitComdat(RawLinkage)) { 3290 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3291 } 3292 3293 if (Record.size() > 13 && Record[13] != 0) 3294 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3295 3296 if (Record.size() > 14 && Record[14] != 0) 3297 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3298 3299 if (Record.size() > 15) { 3300 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3301 } 3302 inferDSOLocal(Func); 3303 3304 // Record[16] is the address space number. 3305 3306 // Check whether we have enough values to read a partition name. 3307 if (Record.size() > 18) 3308 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3309 3310 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3311 assert(Func->getType() == flattenPointerTypes(FullTy) && 3312 "Incorrect fully specified type provided for Function"); 3313 ValueList.push_back(Func, FullTy); 3314 3315 // If this is a function with a body, remember the prototype we are 3316 // creating now, so that we can match up the body with them later. 3317 if (!isProto) { 3318 Func->setIsMaterializable(true); 3319 FunctionsWithBodies.push_back(Func); 3320 DeferredFunctionInfo[Func] = 0; 3321 } 3322 return Error::success(); 3323 } 3324 3325 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3326 unsigned BitCode, ArrayRef<uint64_t> Record) { 3327 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3328 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3329 // dllstorageclass, threadlocal, unnamed_addr, 3330 // preemption specifier] (name in VST) 3331 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3332 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3333 // preemption specifier] (name in VST) 3334 // v2: [strtab_offset, strtab_size, v1] 3335 StringRef Name; 3336 std::tie(Name, Record) = readNameFromStrtab(Record); 3337 3338 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3339 if (Record.size() < (3 + (unsigned)NewRecord)) 3340 return error("Invalid record"); 3341 unsigned OpNum = 0; 3342 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3343 Type *Ty = flattenPointerTypes(FullTy); 3344 if (!Ty) 3345 return error("Invalid record"); 3346 3347 unsigned AddrSpace; 3348 if (!NewRecord) { 3349 auto *PTy = dyn_cast<PointerType>(Ty); 3350 if (!PTy) 3351 return error("Invalid type for value"); 3352 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3353 AddrSpace = PTy->getAddressSpace(); 3354 } else { 3355 AddrSpace = Record[OpNum++]; 3356 } 3357 3358 auto Val = Record[OpNum++]; 3359 auto Linkage = Record[OpNum++]; 3360 GlobalIndirectSymbol *NewGA; 3361 if (BitCode == bitc::MODULE_CODE_ALIAS || 3362 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3363 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3364 TheModule); 3365 else 3366 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3367 nullptr, TheModule); 3368 3369 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3370 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3371 // Old bitcode files didn't have visibility field. 3372 // Local linkage must have default visibility. 3373 if (OpNum != Record.size()) { 3374 auto VisInd = OpNum++; 3375 if (!NewGA->hasLocalLinkage()) 3376 // FIXME: Change to an error if non-default in 4.0. 3377 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3378 } 3379 if (BitCode == bitc::MODULE_CODE_ALIAS || 3380 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3381 if (OpNum != Record.size()) 3382 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3383 else 3384 upgradeDLLImportExportLinkage(NewGA, Linkage); 3385 if (OpNum != Record.size()) 3386 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3387 if (OpNum != Record.size()) 3388 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3389 } 3390 if (OpNum != Record.size()) 3391 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3392 inferDSOLocal(NewGA); 3393 3394 // Check whether we have enough values to read a partition name. 3395 if (OpNum + 1 < Record.size()) { 3396 NewGA->setPartition( 3397 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3398 OpNum += 2; 3399 } 3400 3401 FullTy = PointerType::get(FullTy, AddrSpace); 3402 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3403 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3404 ValueList.push_back(NewGA, FullTy); 3405 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3406 return Error::success(); 3407 } 3408 3409 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3410 bool ShouldLazyLoadMetadata) { 3411 if (ResumeBit) { 3412 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3413 return JumpFailed; 3414 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3415 return Err; 3416 3417 SmallVector<uint64_t, 64> Record; 3418 3419 // Read all the records for this module. 3420 while (true) { 3421 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3422 if (!MaybeEntry) 3423 return MaybeEntry.takeError(); 3424 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3425 3426 switch (Entry.Kind) { 3427 case BitstreamEntry::Error: 3428 return error("Malformed block"); 3429 case BitstreamEntry::EndBlock: 3430 return globalCleanup(); 3431 3432 case BitstreamEntry::SubBlock: 3433 switch (Entry.ID) { 3434 default: // Skip unknown content. 3435 if (Error Err = Stream.SkipBlock()) 3436 return Err; 3437 break; 3438 case bitc::BLOCKINFO_BLOCK_ID: 3439 if (readBlockInfo()) 3440 return error("Malformed block"); 3441 break; 3442 case bitc::PARAMATTR_BLOCK_ID: 3443 if (Error Err = parseAttributeBlock()) 3444 return Err; 3445 break; 3446 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3447 if (Error Err = parseAttributeGroupBlock()) 3448 return Err; 3449 break; 3450 case bitc::TYPE_BLOCK_ID_NEW: 3451 if (Error Err = parseTypeTable()) 3452 return Err; 3453 break; 3454 case bitc::VALUE_SYMTAB_BLOCK_ID: 3455 if (!SeenValueSymbolTable) { 3456 // Either this is an old form VST without function index and an 3457 // associated VST forward declaration record (which would have caused 3458 // the VST to be jumped to and parsed before it was encountered 3459 // normally in the stream), or there were no function blocks to 3460 // trigger an earlier parsing of the VST. 3461 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3462 if (Error Err = parseValueSymbolTable()) 3463 return Err; 3464 SeenValueSymbolTable = true; 3465 } else { 3466 // We must have had a VST forward declaration record, which caused 3467 // the parser to jump to and parse the VST earlier. 3468 assert(VSTOffset > 0); 3469 if (Error Err = Stream.SkipBlock()) 3470 return Err; 3471 } 3472 break; 3473 case bitc::CONSTANTS_BLOCK_ID: 3474 if (Error Err = parseConstants()) 3475 return Err; 3476 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3477 return Err; 3478 break; 3479 case bitc::METADATA_BLOCK_ID: 3480 if (ShouldLazyLoadMetadata) { 3481 if (Error Err = rememberAndSkipMetadata()) 3482 return Err; 3483 break; 3484 } 3485 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3486 if (Error Err = MDLoader->parseModuleMetadata()) 3487 return Err; 3488 break; 3489 case bitc::METADATA_KIND_BLOCK_ID: 3490 if (Error Err = MDLoader->parseMetadataKinds()) 3491 return Err; 3492 break; 3493 case bitc::FUNCTION_BLOCK_ID: 3494 // If this is the first function body we've seen, reverse the 3495 // FunctionsWithBodies list. 3496 if (!SeenFirstFunctionBody) { 3497 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3498 if (Error Err = globalCleanup()) 3499 return Err; 3500 SeenFirstFunctionBody = true; 3501 } 3502 3503 if (VSTOffset > 0) { 3504 // If we have a VST forward declaration record, make sure we 3505 // parse the VST now if we haven't already. It is needed to 3506 // set up the DeferredFunctionInfo vector for lazy reading. 3507 if (!SeenValueSymbolTable) { 3508 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3509 return Err; 3510 SeenValueSymbolTable = true; 3511 // Fall through so that we record the NextUnreadBit below. 3512 // This is necessary in case we have an anonymous function that 3513 // is later materialized. Since it will not have a VST entry we 3514 // need to fall back to the lazy parse to find its offset. 3515 } else { 3516 // If we have a VST forward declaration record, but have already 3517 // parsed the VST (just above, when the first function body was 3518 // encountered here), then we are resuming the parse after 3519 // materializing functions. The ResumeBit points to the 3520 // start of the last function block recorded in the 3521 // DeferredFunctionInfo map. Skip it. 3522 if (Error Err = Stream.SkipBlock()) 3523 return Err; 3524 continue; 3525 } 3526 } 3527 3528 // Support older bitcode files that did not have the function 3529 // index in the VST, nor a VST forward declaration record, as 3530 // well as anonymous functions that do not have VST entries. 3531 // Build the DeferredFunctionInfo vector on the fly. 3532 if (Error Err = rememberAndSkipFunctionBody()) 3533 return Err; 3534 3535 // Suspend parsing when we reach the function bodies. Subsequent 3536 // materialization calls will resume it when necessary. If the bitcode 3537 // file is old, the symbol table will be at the end instead and will not 3538 // have been seen yet. In this case, just finish the parse now. 3539 if (SeenValueSymbolTable) { 3540 NextUnreadBit = Stream.GetCurrentBitNo(); 3541 // After the VST has been parsed, we need to make sure intrinsic name 3542 // are auto-upgraded. 3543 return globalCleanup(); 3544 } 3545 break; 3546 case bitc::USELIST_BLOCK_ID: 3547 if (Error Err = parseUseLists()) 3548 return Err; 3549 break; 3550 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3551 if (Error Err = parseOperandBundleTags()) 3552 return Err; 3553 break; 3554 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3555 if (Error Err = parseSyncScopeNames()) 3556 return Err; 3557 break; 3558 } 3559 continue; 3560 3561 case BitstreamEntry::Record: 3562 // The interesting case. 3563 break; 3564 } 3565 3566 // Read a record. 3567 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3568 if (!MaybeBitCode) 3569 return MaybeBitCode.takeError(); 3570 switch (unsigned BitCode = MaybeBitCode.get()) { 3571 default: break; // Default behavior, ignore unknown content. 3572 case bitc::MODULE_CODE_VERSION: { 3573 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3574 if (!VersionOrErr) 3575 return VersionOrErr.takeError(); 3576 UseRelativeIDs = *VersionOrErr >= 1; 3577 break; 3578 } 3579 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3580 std::string S; 3581 if (convertToString(Record, 0, S)) 3582 return error("Invalid record"); 3583 TheModule->setTargetTriple(S); 3584 break; 3585 } 3586 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3587 std::string S; 3588 if (convertToString(Record, 0, S)) 3589 return error("Invalid record"); 3590 TheModule->setDataLayout(S); 3591 break; 3592 } 3593 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3594 std::string S; 3595 if (convertToString(Record, 0, S)) 3596 return error("Invalid record"); 3597 TheModule->setModuleInlineAsm(S); 3598 break; 3599 } 3600 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3601 // FIXME: Remove in 4.0. 3602 std::string S; 3603 if (convertToString(Record, 0, S)) 3604 return error("Invalid record"); 3605 // Ignore value. 3606 break; 3607 } 3608 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3609 std::string S; 3610 if (convertToString(Record, 0, S)) 3611 return error("Invalid record"); 3612 SectionTable.push_back(S); 3613 break; 3614 } 3615 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3616 std::string S; 3617 if (convertToString(Record, 0, S)) 3618 return error("Invalid record"); 3619 GCTable.push_back(S); 3620 break; 3621 } 3622 case bitc::MODULE_CODE_COMDAT: 3623 if (Error Err = parseComdatRecord(Record)) 3624 return Err; 3625 break; 3626 case bitc::MODULE_CODE_GLOBALVAR: 3627 if (Error Err = parseGlobalVarRecord(Record)) 3628 return Err; 3629 break; 3630 case bitc::MODULE_CODE_FUNCTION: 3631 if (Error Err = parseFunctionRecord(Record)) 3632 return Err; 3633 break; 3634 case bitc::MODULE_CODE_IFUNC: 3635 case bitc::MODULE_CODE_ALIAS: 3636 case bitc::MODULE_CODE_ALIAS_OLD: 3637 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3638 return Err; 3639 break; 3640 /// MODULE_CODE_VSTOFFSET: [offset] 3641 case bitc::MODULE_CODE_VSTOFFSET: 3642 if (Record.size() < 1) 3643 return error("Invalid record"); 3644 // Note that we subtract 1 here because the offset is relative to one word 3645 // before the start of the identification or module block, which was 3646 // historically always the start of the regular bitcode header. 3647 VSTOffset = Record[0] - 1; 3648 break; 3649 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3650 case bitc::MODULE_CODE_SOURCE_FILENAME: 3651 SmallString<128> ValueName; 3652 if (convertToString(Record, 0, ValueName)) 3653 return error("Invalid record"); 3654 TheModule->setSourceFileName(ValueName); 3655 break; 3656 } 3657 Record.clear(); 3658 3659 // Upgrade data layout string. 3660 std::string DL = llvm::UpgradeDataLayoutString( 3661 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3662 TheModule->setDataLayout(DL); 3663 } 3664 } 3665 3666 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3667 bool IsImporting) { 3668 TheModule = M; 3669 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3670 [&](unsigned ID) { return getTypeByID(ID); }); 3671 return parseModule(0, ShouldLazyLoadMetadata); 3672 } 3673 3674 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3675 if (!isa<PointerType>(PtrType)) 3676 return error("Load/Store operand is not a pointer type"); 3677 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3678 3679 if (ValType && ValType != ElemType) 3680 return error("Explicit load/store type does not match pointee " 3681 "type of pointer operand"); 3682 if (!PointerType::isLoadableOrStorableType(ElemType)) 3683 return error("Cannot load/store from pointer"); 3684 return Error::success(); 3685 } 3686 3687 void BitcodeReader::propagateByValTypes(CallBase *CB, 3688 ArrayRef<Type *> ArgsFullTys) { 3689 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3690 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3691 continue; 3692 3693 CB->removeParamAttr(i, Attribute::ByVal); 3694 CB->addParamAttr( 3695 i, Attribute::getWithByValType( 3696 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3697 } 3698 } 3699 3700 /// Lazily parse the specified function body block. 3701 Error BitcodeReader::parseFunctionBody(Function *F) { 3702 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3703 return Err; 3704 3705 // Unexpected unresolved metadata when parsing function. 3706 if (MDLoader->hasFwdRefs()) 3707 return error("Invalid function metadata: incoming forward references"); 3708 3709 InstructionList.clear(); 3710 unsigned ModuleValueListSize = ValueList.size(); 3711 unsigned ModuleMDLoaderSize = MDLoader->size(); 3712 3713 // Add all the function arguments to the value table. 3714 unsigned ArgNo = 0; 3715 FunctionType *FullFTy = FunctionTypes[F]; 3716 for (Argument &I : F->args()) { 3717 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3718 "Incorrect fully specified type for Function Argument"); 3719 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3720 } 3721 unsigned NextValueNo = ValueList.size(); 3722 BasicBlock *CurBB = nullptr; 3723 unsigned CurBBNo = 0; 3724 3725 DebugLoc LastLoc; 3726 auto getLastInstruction = [&]() -> Instruction * { 3727 if (CurBB && !CurBB->empty()) 3728 return &CurBB->back(); 3729 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3730 !FunctionBBs[CurBBNo - 1]->empty()) 3731 return &FunctionBBs[CurBBNo - 1]->back(); 3732 return nullptr; 3733 }; 3734 3735 std::vector<OperandBundleDef> OperandBundles; 3736 3737 // Read all the records. 3738 SmallVector<uint64_t, 64> Record; 3739 3740 while (true) { 3741 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3742 if (!MaybeEntry) 3743 return MaybeEntry.takeError(); 3744 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3745 3746 switch (Entry.Kind) { 3747 case BitstreamEntry::Error: 3748 return error("Malformed block"); 3749 case BitstreamEntry::EndBlock: 3750 goto OutOfRecordLoop; 3751 3752 case BitstreamEntry::SubBlock: 3753 switch (Entry.ID) { 3754 default: // Skip unknown content. 3755 if (Error Err = Stream.SkipBlock()) 3756 return Err; 3757 break; 3758 case bitc::CONSTANTS_BLOCK_ID: 3759 if (Error Err = parseConstants()) 3760 return Err; 3761 NextValueNo = ValueList.size(); 3762 break; 3763 case bitc::VALUE_SYMTAB_BLOCK_ID: 3764 if (Error Err = parseValueSymbolTable()) 3765 return Err; 3766 break; 3767 case bitc::METADATA_ATTACHMENT_ID: 3768 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3769 return Err; 3770 break; 3771 case bitc::METADATA_BLOCK_ID: 3772 assert(DeferredMetadataInfo.empty() && 3773 "Must read all module-level metadata before function-level"); 3774 if (Error Err = MDLoader->parseFunctionMetadata()) 3775 return Err; 3776 break; 3777 case bitc::USELIST_BLOCK_ID: 3778 if (Error Err = parseUseLists()) 3779 return Err; 3780 break; 3781 } 3782 continue; 3783 3784 case BitstreamEntry::Record: 3785 // The interesting case. 3786 break; 3787 } 3788 3789 // Read a record. 3790 Record.clear(); 3791 Instruction *I = nullptr; 3792 Type *FullTy = nullptr; 3793 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3794 if (!MaybeBitCode) 3795 return MaybeBitCode.takeError(); 3796 switch (unsigned BitCode = MaybeBitCode.get()) { 3797 default: // Default behavior: reject 3798 return error("Invalid value"); 3799 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3800 if (Record.size() < 1 || Record[0] == 0) 3801 return error("Invalid record"); 3802 // Create all the basic blocks for the function. 3803 FunctionBBs.resize(Record[0]); 3804 3805 // See if anything took the address of blocks in this function. 3806 auto BBFRI = BasicBlockFwdRefs.find(F); 3807 if (BBFRI == BasicBlockFwdRefs.end()) { 3808 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3809 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3810 } else { 3811 auto &BBRefs = BBFRI->second; 3812 // Check for invalid basic block references. 3813 if (BBRefs.size() > FunctionBBs.size()) 3814 return error("Invalid ID"); 3815 assert(!BBRefs.empty() && "Unexpected empty array"); 3816 assert(!BBRefs.front() && "Invalid reference to entry block"); 3817 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3818 ++I) 3819 if (I < RE && BBRefs[I]) { 3820 BBRefs[I]->insertInto(F); 3821 FunctionBBs[I] = BBRefs[I]; 3822 } else { 3823 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3824 } 3825 3826 // Erase from the table. 3827 BasicBlockFwdRefs.erase(BBFRI); 3828 } 3829 3830 CurBB = FunctionBBs[0]; 3831 continue; 3832 } 3833 3834 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3835 // This record indicates that the last instruction is at the same 3836 // location as the previous instruction with a location. 3837 I = getLastInstruction(); 3838 3839 if (!I) 3840 return error("Invalid record"); 3841 I->setDebugLoc(LastLoc); 3842 I = nullptr; 3843 continue; 3844 3845 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3846 I = getLastInstruction(); 3847 if (!I || Record.size() < 4) 3848 return error("Invalid record"); 3849 3850 unsigned Line = Record[0], Col = Record[1]; 3851 unsigned ScopeID = Record[2], IAID = Record[3]; 3852 bool isImplicitCode = Record.size() == 5 && Record[4]; 3853 3854 MDNode *Scope = nullptr, *IA = nullptr; 3855 if (ScopeID) { 3856 Scope = dyn_cast_or_null<MDNode>( 3857 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3858 if (!Scope) 3859 return error("Invalid record"); 3860 } 3861 if (IAID) { 3862 IA = dyn_cast_or_null<MDNode>( 3863 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3864 if (!IA) 3865 return error("Invalid record"); 3866 } 3867 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3868 I->setDebugLoc(LastLoc); 3869 I = nullptr; 3870 continue; 3871 } 3872 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3873 unsigned OpNum = 0; 3874 Value *LHS; 3875 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3876 OpNum+1 > Record.size()) 3877 return error("Invalid record"); 3878 3879 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3880 if (Opc == -1) 3881 return error("Invalid record"); 3882 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3883 InstructionList.push_back(I); 3884 if (OpNum < Record.size()) { 3885 if (isa<FPMathOperator>(I)) { 3886 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3887 if (FMF.any()) 3888 I->setFastMathFlags(FMF); 3889 } 3890 } 3891 break; 3892 } 3893 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3894 unsigned OpNum = 0; 3895 Value *LHS, *RHS; 3896 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3897 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3898 OpNum+1 > Record.size()) 3899 return error("Invalid record"); 3900 3901 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3902 if (Opc == -1) 3903 return error("Invalid record"); 3904 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3905 InstructionList.push_back(I); 3906 if (OpNum < Record.size()) { 3907 if (Opc == Instruction::Add || 3908 Opc == Instruction::Sub || 3909 Opc == Instruction::Mul || 3910 Opc == Instruction::Shl) { 3911 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3912 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3913 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3914 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3915 } else if (Opc == Instruction::SDiv || 3916 Opc == Instruction::UDiv || 3917 Opc == Instruction::LShr || 3918 Opc == Instruction::AShr) { 3919 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3920 cast<BinaryOperator>(I)->setIsExact(true); 3921 } else if (isa<FPMathOperator>(I)) { 3922 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3923 if (FMF.any()) 3924 I->setFastMathFlags(FMF); 3925 } 3926 3927 } 3928 break; 3929 } 3930 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3931 unsigned OpNum = 0; 3932 Value *Op; 3933 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3934 OpNum+2 != Record.size()) 3935 return error("Invalid record"); 3936 3937 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3938 Type *ResTy = flattenPointerTypes(FullTy); 3939 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3940 if (Opc == -1 || !ResTy) 3941 return error("Invalid record"); 3942 Instruction *Temp = nullptr; 3943 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3944 if (Temp) { 3945 InstructionList.push_back(Temp); 3946 assert(CurBB && "No current BB?"); 3947 CurBB->getInstList().push_back(Temp); 3948 } 3949 } else { 3950 auto CastOp = (Instruction::CastOps)Opc; 3951 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3952 return error("Invalid cast"); 3953 I = CastInst::Create(CastOp, Op, ResTy); 3954 } 3955 InstructionList.push_back(I); 3956 break; 3957 } 3958 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3959 case bitc::FUNC_CODE_INST_GEP_OLD: 3960 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3961 unsigned OpNum = 0; 3962 3963 Type *Ty; 3964 bool InBounds; 3965 3966 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3967 InBounds = Record[OpNum++]; 3968 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3969 Ty = flattenPointerTypes(FullTy); 3970 } else { 3971 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3972 Ty = nullptr; 3973 } 3974 3975 Value *BasePtr; 3976 Type *FullBaseTy = nullptr; 3977 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3978 return error("Invalid record"); 3979 3980 if (!Ty) { 3981 std::tie(FullTy, Ty) = 3982 getPointerElementTypes(FullBaseTy->getScalarType()); 3983 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3984 return error( 3985 "Explicit gep type does not match pointee type of pointer operand"); 3986 3987 SmallVector<Value*, 16> GEPIdx; 3988 while (OpNum != Record.size()) { 3989 Value *Op; 3990 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3991 return error("Invalid record"); 3992 GEPIdx.push_back(Op); 3993 } 3994 3995 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3996 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3997 3998 InstructionList.push_back(I); 3999 if (InBounds) 4000 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4001 break; 4002 } 4003 4004 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4005 // EXTRACTVAL: [opty, opval, n x indices] 4006 unsigned OpNum = 0; 4007 Value *Agg; 4008 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4009 return error("Invalid record"); 4010 4011 unsigned RecSize = Record.size(); 4012 if (OpNum == RecSize) 4013 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4014 4015 SmallVector<unsigned, 4> EXTRACTVALIdx; 4016 for (; OpNum != RecSize; ++OpNum) { 4017 bool IsArray = FullTy->isArrayTy(); 4018 bool IsStruct = FullTy->isStructTy(); 4019 uint64_t Index = Record[OpNum]; 4020 4021 if (!IsStruct && !IsArray) 4022 return error("EXTRACTVAL: Invalid type"); 4023 if ((unsigned)Index != Index) 4024 return error("Invalid value"); 4025 if (IsStruct && Index >= FullTy->getStructNumElements()) 4026 return error("EXTRACTVAL: Invalid struct index"); 4027 if (IsArray && Index >= FullTy->getArrayNumElements()) 4028 return error("EXTRACTVAL: Invalid array index"); 4029 EXTRACTVALIdx.push_back((unsigned)Index); 4030 4031 if (IsStruct) 4032 FullTy = FullTy->getStructElementType(Index); 4033 else 4034 FullTy = FullTy->getArrayElementType(); 4035 } 4036 4037 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4038 InstructionList.push_back(I); 4039 break; 4040 } 4041 4042 case bitc::FUNC_CODE_INST_INSERTVAL: { 4043 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4044 unsigned OpNum = 0; 4045 Value *Agg; 4046 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4047 return error("Invalid record"); 4048 Value *Val; 4049 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4050 return error("Invalid record"); 4051 4052 unsigned RecSize = Record.size(); 4053 if (OpNum == RecSize) 4054 return error("INSERTVAL: Invalid instruction with 0 indices"); 4055 4056 SmallVector<unsigned, 4> INSERTVALIdx; 4057 Type *CurTy = Agg->getType(); 4058 for (; OpNum != RecSize; ++OpNum) { 4059 bool IsArray = CurTy->isArrayTy(); 4060 bool IsStruct = CurTy->isStructTy(); 4061 uint64_t Index = Record[OpNum]; 4062 4063 if (!IsStruct && !IsArray) 4064 return error("INSERTVAL: Invalid type"); 4065 if ((unsigned)Index != Index) 4066 return error("Invalid value"); 4067 if (IsStruct && Index >= CurTy->getStructNumElements()) 4068 return error("INSERTVAL: Invalid struct index"); 4069 if (IsArray && Index >= CurTy->getArrayNumElements()) 4070 return error("INSERTVAL: Invalid array index"); 4071 4072 INSERTVALIdx.push_back((unsigned)Index); 4073 if (IsStruct) 4074 CurTy = CurTy->getStructElementType(Index); 4075 else 4076 CurTy = CurTy->getArrayElementType(); 4077 } 4078 4079 if (CurTy != Val->getType()) 4080 return error("Inserted value type doesn't match aggregate type"); 4081 4082 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4083 InstructionList.push_back(I); 4084 break; 4085 } 4086 4087 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4088 // obsolete form of select 4089 // handles select i1 ... in old bitcode 4090 unsigned OpNum = 0; 4091 Value *TrueVal, *FalseVal, *Cond; 4092 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4093 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4094 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4095 return error("Invalid record"); 4096 4097 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4098 InstructionList.push_back(I); 4099 break; 4100 } 4101 4102 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4103 // new form of select 4104 // handles select i1 or select [N x i1] 4105 unsigned OpNum = 0; 4106 Value *TrueVal, *FalseVal, *Cond; 4107 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4108 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4109 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4110 return error("Invalid record"); 4111 4112 // select condition can be either i1 or [N x i1] 4113 if (VectorType* vector_type = 4114 dyn_cast<VectorType>(Cond->getType())) { 4115 // expect <n x i1> 4116 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4117 return error("Invalid type for value"); 4118 } else { 4119 // expect i1 4120 if (Cond->getType() != Type::getInt1Ty(Context)) 4121 return error("Invalid type for value"); 4122 } 4123 4124 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4125 InstructionList.push_back(I); 4126 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4127 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4128 if (FMF.any()) 4129 I->setFastMathFlags(FMF); 4130 } 4131 break; 4132 } 4133 4134 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4135 unsigned OpNum = 0; 4136 Value *Vec, *Idx; 4137 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4138 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4139 return error("Invalid record"); 4140 if (!Vec->getType()->isVectorTy()) 4141 return error("Invalid type for value"); 4142 I = ExtractElementInst::Create(Vec, Idx); 4143 FullTy = FullTy->getVectorElementType(); 4144 InstructionList.push_back(I); 4145 break; 4146 } 4147 4148 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4149 unsigned OpNum = 0; 4150 Value *Vec, *Elt, *Idx; 4151 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4152 return error("Invalid record"); 4153 if (!Vec->getType()->isVectorTy()) 4154 return error("Invalid type for value"); 4155 if (popValue(Record, OpNum, NextValueNo, 4156 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4157 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4158 return error("Invalid record"); 4159 I = InsertElementInst::Create(Vec, Elt, Idx); 4160 InstructionList.push_back(I); 4161 break; 4162 } 4163 4164 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4165 unsigned OpNum = 0; 4166 Value *Vec1, *Vec2, *Mask; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4168 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4169 return error("Invalid record"); 4170 4171 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4172 return error("Invalid record"); 4173 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4174 return error("Invalid type for value"); 4175 4176 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4177 FullTy = VectorType::get(FullTy->getVectorElementType(), 4178 Mask->getType()->getVectorElementCount()); 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 4183 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4184 // Old form of ICmp/FCmp returning bool 4185 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4186 // both legal on vectors but had different behaviour. 4187 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4188 // FCmp/ICmp returning bool or vector of bool 4189 4190 unsigned OpNum = 0; 4191 Value *LHS, *RHS; 4192 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4193 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4194 return error("Invalid record"); 4195 4196 if (OpNum >= Record.size()) 4197 return error( 4198 "Invalid record: operand number exceeded available operands"); 4199 4200 unsigned PredVal = Record[OpNum]; 4201 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4202 FastMathFlags FMF; 4203 if (IsFP && Record.size() > OpNum+1) 4204 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4205 4206 if (OpNum+1 != Record.size()) 4207 return error("Invalid record"); 4208 4209 if (LHS->getType()->isFPOrFPVectorTy()) 4210 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4211 else 4212 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4213 4214 if (FMF.any()) 4215 I->setFastMathFlags(FMF); 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 4220 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4221 { 4222 unsigned Size = Record.size(); 4223 if (Size == 0) { 4224 I = ReturnInst::Create(Context); 4225 InstructionList.push_back(I); 4226 break; 4227 } 4228 4229 unsigned OpNum = 0; 4230 Value *Op = nullptr; 4231 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4232 return error("Invalid record"); 4233 if (OpNum != Record.size()) 4234 return error("Invalid record"); 4235 4236 I = ReturnInst::Create(Context, Op); 4237 InstructionList.push_back(I); 4238 break; 4239 } 4240 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4241 if (Record.size() != 1 && Record.size() != 3) 4242 return error("Invalid record"); 4243 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4244 if (!TrueDest) 4245 return error("Invalid record"); 4246 4247 if (Record.size() == 1) { 4248 I = BranchInst::Create(TrueDest); 4249 InstructionList.push_back(I); 4250 } 4251 else { 4252 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4253 Value *Cond = getValue(Record, 2, NextValueNo, 4254 Type::getInt1Ty(Context)); 4255 if (!FalseDest || !Cond) 4256 return error("Invalid record"); 4257 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4258 InstructionList.push_back(I); 4259 } 4260 break; 4261 } 4262 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4263 if (Record.size() != 1 && Record.size() != 2) 4264 return error("Invalid record"); 4265 unsigned Idx = 0; 4266 Value *CleanupPad = 4267 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4268 if (!CleanupPad) 4269 return error("Invalid record"); 4270 BasicBlock *UnwindDest = nullptr; 4271 if (Record.size() == 2) { 4272 UnwindDest = getBasicBlock(Record[Idx++]); 4273 if (!UnwindDest) 4274 return error("Invalid record"); 4275 } 4276 4277 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4278 InstructionList.push_back(I); 4279 break; 4280 } 4281 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4282 if (Record.size() != 2) 4283 return error("Invalid record"); 4284 unsigned Idx = 0; 4285 Value *CatchPad = 4286 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4287 if (!CatchPad) 4288 return error("Invalid record"); 4289 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4290 if (!BB) 4291 return error("Invalid record"); 4292 4293 I = CatchReturnInst::Create(CatchPad, BB); 4294 InstructionList.push_back(I); 4295 break; 4296 } 4297 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4298 // We must have, at minimum, the outer scope and the number of arguments. 4299 if (Record.size() < 2) 4300 return error("Invalid record"); 4301 4302 unsigned Idx = 0; 4303 4304 Value *ParentPad = 4305 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4306 4307 unsigned NumHandlers = Record[Idx++]; 4308 4309 SmallVector<BasicBlock *, 2> Handlers; 4310 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4311 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4312 if (!BB) 4313 return error("Invalid record"); 4314 Handlers.push_back(BB); 4315 } 4316 4317 BasicBlock *UnwindDest = nullptr; 4318 if (Idx + 1 == Record.size()) { 4319 UnwindDest = getBasicBlock(Record[Idx++]); 4320 if (!UnwindDest) 4321 return error("Invalid record"); 4322 } 4323 4324 if (Record.size() != Idx) 4325 return error("Invalid record"); 4326 4327 auto *CatchSwitch = 4328 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4329 for (BasicBlock *Handler : Handlers) 4330 CatchSwitch->addHandler(Handler); 4331 I = CatchSwitch; 4332 InstructionList.push_back(I); 4333 break; 4334 } 4335 case bitc::FUNC_CODE_INST_CATCHPAD: 4336 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4337 // We must have, at minimum, the outer scope and the number of arguments. 4338 if (Record.size() < 2) 4339 return error("Invalid record"); 4340 4341 unsigned Idx = 0; 4342 4343 Value *ParentPad = 4344 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4345 4346 unsigned NumArgOperands = Record[Idx++]; 4347 4348 SmallVector<Value *, 2> Args; 4349 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4350 Value *Val; 4351 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4352 return error("Invalid record"); 4353 Args.push_back(Val); 4354 } 4355 4356 if (Record.size() != Idx) 4357 return error("Invalid record"); 4358 4359 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4360 I = CleanupPadInst::Create(ParentPad, Args); 4361 else 4362 I = CatchPadInst::Create(ParentPad, Args); 4363 InstructionList.push_back(I); 4364 break; 4365 } 4366 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4367 // Check magic 4368 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4369 // "New" SwitchInst format with case ranges. The changes to write this 4370 // format were reverted but we still recognize bitcode that uses it. 4371 // Hopefully someday we will have support for case ranges and can use 4372 // this format again. 4373 4374 Type *OpTy = getTypeByID(Record[1]); 4375 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4376 4377 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4378 BasicBlock *Default = getBasicBlock(Record[3]); 4379 if (!OpTy || !Cond || !Default) 4380 return error("Invalid record"); 4381 4382 unsigned NumCases = Record[4]; 4383 4384 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4385 InstructionList.push_back(SI); 4386 4387 unsigned CurIdx = 5; 4388 for (unsigned i = 0; i != NumCases; ++i) { 4389 SmallVector<ConstantInt*, 1> CaseVals; 4390 unsigned NumItems = Record[CurIdx++]; 4391 for (unsigned ci = 0; ci != NumItems; ++ci) { 4392 bool isSingleNumber = Record[CurIdx++]; 4393 4394 APInt Low; 4395 unsigned ActiveWords = 1; 4396 if (ValueBitWidth > 64) 4397 ActiveWords = Record[CurIdx++]; 4398 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4399 ValueBitWidth); 4400 CurIdx += ActiveWords; 4401 4402 if (!isSingleNumber) { 4403 ActiveWords = 1; 4404 if (ValueBitWidth > 64) 4405 ActiveWords = Record[CurIdx++]; 4406 APInt High = readWideAPInt( 4407 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4408 CurIdx += ActiveWords; 4409 4410 // FIXME: It is not clear whether values in the range should be 4411 // compared as signed or unsigned values. The partially 4412 // implemented changes that used this format in the past used 4413 // unsigned comparisons. 4414 for ( ; Low.ule(High); ++Low) 4415 CaseVals.push_back(ConstantInt::get(Context, Low)); 4416 } else 4417 CaseVals.push_back(ConstantInt::get(Context, Low)); 4418 } 4419 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4420 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4421 cve = CaseVals.end(); cvi != cve; ++cvi) 4422 SI->addCase(*cvi, DestBB); 4423 } 4424 I = SI; 4425 break; 4426 } 4427 4428 // Old SwitchInst format without case ranges. 4429 4430 if (Record.size() < 3 || (Record.size() & 1) == 0) 4431 return error("Invalid record"); 4432 Type *OpTy = getTypeByID(Record[0]); 4433 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4434 BasicBlock *Default = getBasicBlock(Record[2]); 4435 if (!OpTy || !Cond || !Default) 4436 return error("Invalid record"); 4437 unsigned NumCases = (Record.size()-3)/2; 4438 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4439 InstructionList.push_back(SI); 4440 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4441 ConstantInt *CaseVal = 4442 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4443 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4444 if (!CaseVal || !DestBB) { 4445 delete SI; 4446 return error("Invalid record"); 4447 } 4448 SI->addCase(CaseVal, DestBB); 4449 } 4450 I = SI; 4451 break; 4452 } 4453 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4454 if (Record.size() < 2) 4455 return error("Invalid record"); 4456 Type *OpTy = getTypeByID(Record[0]); 4457 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4458 if (!OpTy || !Address) 4459 return error("Invalid record"); 4460 unsigned NumDests = Record.size()-2; 4461 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4462 InstructionList.push_back(IBI); 4463 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4464 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4465 IBI->addDestination(DestBB); 4466 } else { 4467 delete IBI; 4468 return error("Invalid record"); 4469 } 4470 } 4471 I = IBI; 4472 break; 4473 } 4474 4475 case bitc::FUNC_CODE_INST_INVOKE: { 4476 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4477 if (Record.size() < 4) 4478 return error("Invalid record"); 4479 unsigned OpNum = 0; 4480 AttributeList PAL = getAttributes(Record[OpNum++]); 4481 unsigned CCInfo = Record[OpNum++]; 4482 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4483 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4484 4485 FunctionType *FTy = nullptr; 4486 FunctionType *FullFTy = nullptr; 4487 if ((CCInfo >> 13) & 1) { 4488 FullFTy = 4489 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4490 if (!FullFTy) 4491 return error("Explicit invoke type is not a function type"); 4492 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4493 } 4494 4495 Value *Callee; 4496 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4497 return error("Invalid record"); 4498 4499 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4500 if (!CalleeTy) 4501 return error("Callee is not a pointer"); 4502 if (!FTy) { 4503 FullFTy = 4504 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4505 if (!FullFTy) 4506 return error("Callee is not of pointer to function type"); 4507 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4508 } else if (getPointerElementFlatType(FullTy) != FTy) 4509 return error("Explicit invoke type does not match pointee type of " 4510 "callee operand"); 4511 if (Record.size() < FTy->getNumParams() + OpNum) 4512 return error("Insufficient operands to call"); 4513 4514 SmallVector<Value*, 16> Ops; 4515 SmallVector<Type *, 16> ArgsFullTys; 4516 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4517 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4518 FTy->getParamType(i))); 4519 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4520 if (!Ops.back()) 4521 return error("Invalid record"); 4522 } 4523 4524 if (!FTy->isVarArg()) { 4525 if (Record.size() != OpNum) 4526 return error("Invalid record"); 4527 } else { 4528 // Read type/value pairs for varargs params. 4529 while (OpNum != Record.size()) { 4530 Value *Op; 4531 Type *FullTy; 4532 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4533 return error("Invalid record"); 4534 Ops.push_back(Op); 4535 ArgsFullTys.push_back(FullTy); 4536 } 4537 } 4538 4539 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4540 OperandBundles); 4541 FullTy = FullFTy->getReturnType(); 4542 OperandBundles.clear(); 4543 InstructionList.push_back(I); 4544 cast<InvokeInst>(I)->setCallingConv( 4545 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4546 cast<InvokeInst>(I)->setAttributes(PAL); 4547 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4548 4549 break; 4550 } 4551 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4552 unsigned Idx = 0; 4553 Value *Val = nullptr; 4554 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4555 return error("Invalid record"); 4556 I = ResumeInst::Create(Val); 4557 InstructionList.push_back(I); 4558 break; 4559 } 4560 case bitc::FUNC_CODE_INST_CALLBR: { 4561 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4562 unsigned OpNum = 0; 4563 AttributeList PAL = getAttributes(Record[OpNum++]); 4564 unsigned CCInfo = Record[OpNum++]; 4565 4566 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4567 unsigned NumIndirectDests = Record[OpNum++]; 4568 SmallVector<BasicBlock *, 16> IndirectDests; 4569 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4570 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4571 4572 FunctionType *FTy = nullptr; 4573 FunctionType *FullFTy = nullptr; 4574 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4575 FullFTy = 4576 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4577 if (!FullFTy) 4578 return error("Explicit call type is not a function type"); 4579 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4580 } 4581 4582 Value *Callee; 4583 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4584 return error("Invalid record"); 4585 4586 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4587 if (!OpTy) 4588 return error("Callee is not a pointer type"); 4589 if (!FTy) { 4590 FullFTy = 4591 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4592 if (!FullFTy) 4593 return error("Callee is not of pointer to function type"); 4594 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4595 } else if (getPointerElementFlatType(FullTy) != FTy) 4596 return error("Explicit call type does not match pointee type of " 4597 "callee operand"); 4598 if (Record.size() < FTy->getNumParams() + OpNum) 4599 return error("Insufficient operands to call"); 4600 4601 SmallVector<Value*, 16> Args; 4602 // Read the fixed params. 4603 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4604 if (FTy->getParamType(i)->isLabelTy()) 4605 Args.push_back(getBasicBlock(Record[OpNum])); 4606 else 4607 Args.push_back(getValue(Record, OpNum, NextValueNo, 4608 FTy->getParamType(i))); 4609 if (!Args.back()) 4610 return error("Invalid record"); 4611 } 4612 4613 // Read type/value pairs for varargs params. 4614 if (!FTy->isVarArg()) { 4615 if (OpNum != Record.size()) 4616 return error("Invalid record"); 4617 } else { 4618 while (OpNum != Record.size()) { 4619 Value *Op; 4620 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4621 return error("Invalid record"); 4622 Args.push_back(Op); 4623 } 4624 } 4625 4626 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4627 OperandBundles); 4628 FullTy = FullFTy->getReturnType(); 4629 OperandBundles.clear(); 4630 InstructionList.push_back(I); 4631 cast<CallBrInst>(I)->setCallingConv( 4632 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4633 cast<CallBrInst>(I)->setAttributes(PAL); 4634 break; 4635 } 4636 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4637 I = new UnreachableInst(Context); 4638 InstructionList.push_back(I); 4639 break; 4640 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4641 if (Record.size() < 1) 4642 return error("Invalid record"); 4643 // The first record specifies the type. 4644 FullTy = getFullyStructuredTypeByID(Record[0]); 4645 Type *Ty = flattenPointerTypes(FullTy); 4646 if (!Ty) 4647 return error("Invalid record"); 4648 4649 // Phi arguments are pairs of records of [value, basic block]. 4650 // There is an optional final record for fast-math-flags if this phi has a 4651 // floating-point type. 4652 size_t NumArgs = (Record.size() - 1) / 2; 4653 PHINode *PN = PHINode::Create(Ty, NumArgs); 4654 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4655 return error("Invalid record"); 4656 InstructionList.push_back(PN); 4657 4658 for (unsigned i = 0; i != NumArgs; i++) { 4659 Value *V; 4660 // With the new function encoding, it is possible that operands have 4661 // negative IDs (for forward references). Use a signed VBR 4662 // representation to keep the encoding small. 4663 if (UseRelativeIDs) 4664 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4665 else 4666 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4667 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4668 if (!V || !BB) 4669 return error("Invalid record"); 4670 PN->addIncoming(V, BB); 4671 } 4672 I = PN; 4673 4674 // If there are an even number of records, the final record must be FMF. 4675 if (Record.size() % 2 == 0) { 4676 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4677 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4678 if (FMF.any()) 4679 I->setFastMathFlags(FMF); 4680 } 4681 4682 break; 4683 } 4684 4685 case bitc::FUNC_CODE_INST_LANDINGPAD: 4686 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4687 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4688 unsigned Idx = 0; 4689 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4690 if (Record.size() < 3) 4691 return error("Invalid record"); 4692 } else { 4693 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4694 if (Record.size() < 4) 4695 return error("Invalid record"); 4696 } 4697 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4698 Type *Ty = flattenPointerTypes(FullTy); 4699 if (!Ty) 4700 return error("Invalid record"); 4701 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4702 Value *PersFn = nullptr; 4703 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4704 return error("Invalid record"); 4705 4706 if (!F->hasPersonalityFn()) 4707 F->setPersonalityFn(cast<Constant>(PersFn)); 4708 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4709 return error("Personality function mismatch"); 4710 } 4711 4712 bool IsCleanup = !!Record[Idx++]; 4713 unsigned NumClauses = Record[Idx++]; 4714 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4715 LP->setCleanup(IsCleanup); 4716 for (unsigned J = 0; J != NumClauses; ++J) { 4717 LandingPadInst::ClauseType CT = 4718 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4719 Value *Val; 4720 4721 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4722 delete LP; 4723 return error("Invalid record"); 4724 } 4725 4726 assert((CT != LandingPadInst::Catch || 4727 !isa<ArrayType>(Val->getType())) && 4728 "Catch clause has a invalid type!"); 4729 assert((CT != LandingPadInst::Filter || 4730 isa<ArrayType>(Val->getType())) && 4731 "Filter clause has invalid type!"); 4732 LP->addClause(cast<Constant>(Val)); 4733 } 4734 4735 I = LP; 4736 InstructionList.push_back(I); 4737 break; 4738 } 4739 4740 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4741 if (Record.size() != 4) 4742 return error("Invalid record"); 4743 uint64_t AlignRecord = Record[3]; 4744 const uint64_t InAllocaMask = uint64_t(1) << 5; 4745 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4746 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4747 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4748 SwiftErrorMask; 4749 bool InAlloca = AlignRecord & InAllocaMask; 4750 bool SwiftError = AlignRecord & SwiftErrorMask; 4751 FullTy = getFullyStructuredTypeByID(Record[0]); 4752 Type *Ty = flattenPointerTypes(FullTy); 4753 if ((AlignRecord & ExplicitTypeMask) == 0) { 4754 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4755 if (!PTy) 4756 return error("Old-style alloca with a non-pointer type"); 4757 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4758 } 4759 Type *OpTy = getTypeByID(Record[1]); 4760 Value *Size = getFnValueByID(Record[2], OpTy); 4761 MaybeAlign Align; 4762 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4763 return Err; 4764 } 4765 if (!Ty || !Size) 4766 return error("Invalid record"); 4767 4768 // FIXME: Make this an optional field. 4769 const DataLayout &DL = TheModule->getDataLayout(); 4770 unsigned AS = DL.getAllocaAddrSpace(); 4771 4772 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4773 AI->setUsedWithInAlloca(InAlloca); 4774 AI->setSwiftError(SwiftError); 4775 I = AI; 4776 FullTy = PointerType::get(FullTy, AS); 4777 InstructionList.push_back(I); 4778 break; 4779 } 4780 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4781 unsigned OpNum = 0; 4782 Value *Op; 4783 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4784 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4785 return error("Invalid record"); 4786 4787 if (!isa<PointerType>(Op->getType())) 4788 return error("Load operand is not a pointer type"); 4789 4790 Type *Ty = nullptr; 4791 if (OpNum + 3 == Record.size()) { 4792 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4793 Ty = flattenPointerTypes(FullTy); 4794 } else 4795 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4796 4797 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4798 return Err; 4799 4800 MaybeAlign Align; 4801 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4802 return Err; 4803 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4804 InstructionList.push_back(I); 4805 break; 4806 } 4807 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4808 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4809 unsigned OpNum = 0; 4810 Value *Op; 4811 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4812 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4813 return error("Invalid record"); 4814 4815 if (!isa<PointerType>(Op->getType())) 4816 return error("Load operand is not a pointer type"); 4817 4818 Type *Ty = nullptr; 4819 if (OpNum + 5 == Record.size()) { 4820 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4821 Ty = flattenPointerTypes(FullTy); 4822 } else 4823 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4824 4825 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4826 return Err; 4827 4828 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4829 if (Ordering == AtomicOrdering::NotAtomic || 4830 Ordering == AtomicOrdering::Release || 4831 Ordering == AtomicOrdering::AcquireRelease) 4832 return error("Invalid record"); 4833 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4834 return error("Invalid record"); 4835 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4836 4837 MaybeAlign Align; 4838 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4839 return Err; 4840 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4841 InstructionList.push_back(I); 4842 break; 4843 } 4844 case bitc::FUNC_CODE_INST_STORE: 4845 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4846 unsigned OpNum = 0; 4847 Value *Val, *Ptr; 4848 Type *FullTy; 4849 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4850 (BitCode == bitc::FUNC_CODE_INST_STORE 4851 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4852 : popValue(Record, OpNum, NextValueNo, 4853 getPointerElementFlatType(FullTy), Val)) || 4854 OpNum + 2 != Record.size()) 4855 return error("Invalid record"); 4856 4857 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4858 return Err; 4859 MaybeAlign Align; 4860 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4861 return Err; 4862 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4863 InstructionList.push_back(I); 4864 break; 4865 } 4866 case bitc::FUNC_CODE_INST_STOREATOMIC: 4867 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4868 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4869 unsigned OpNum = 0; 4870 Value *Val, *Ptr; 4871 Type *FullTy; 4872 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4873 !isa<PointerType>(Ptr->getType()) || 4874 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4875 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4876 : popValue(Record, OpNum, NextValueNo, 4877 getPointerElementFlatType(FullTy), Val)) || 4878 OpNum + 4 != Record.size()) 4879 return error("Invalid record"); 4880 4881 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4882 return Err; 4883 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4884 if (Ordering == AtomicOrdering::NotAtomic || 4885 Ordering == AtomicOrdering::Acquire || 4886 Ordering == AtomicOrdering::AcquireRelease) 4887 return error("Invalid record"); 4888 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4889 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4890 return error("Invalid record"); 4891 4892 MaybeAlign Align; 4893 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4894 return Err; 4895 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4896 InstructionList.push_back(I); 4897 break; 4898 } 4899 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4900 case bitc::FUNC_CODE_INST_CMPXCHG: { 4901 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4902 // failureordering?, isweak?] 4903 unsigned OpNum = 0; 4904 Value *Ptr, *Cmp, *New; 4905 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4906 return error("Invalid record"); 4907 4908 if (!isa<PointerType>(Ptr->getType())) 4909 return error("Cmpxchg operand is not a pointer type"); 4910 4911 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4912 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4913 return error("Invalid record"); 4914 } else if (popValue(Record, OpNum, NextValueNo, 4915 getPointerElementFlatType(FullTy), Cmp)) 4916 return error("Invalid record"); 4917 else 4918 FullTy = cast<PointerType>(FullTy)->getElementType(); 4919 4920 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4921 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4922 return error("Invalid record"); 4923 4924 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4925 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4926 SuccessOrdering == AtomicOrdering::Unordered) 4927 return error("Invalid record"); 4928 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4929 4930 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4931 return Err; 4932 AtomicOrdering FailureOrdering; 4933 if (Record.size() < 7) 4934 FailureOrdering = 4935 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4936 else 4937 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4938 4939 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4940 SSID); 4941 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4942 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4943 4944 if (Record.size() < 8) { 4945 // Before weak cmpxchgs existed, the instruction simply returned the 4946 // value loaded from memory, so bitcode files from that era will be 4947 // expecting the first component of a modern cmpxchg. 4948 CurBB->getInstList().push_back(I); 4949 I = ExtractValueInst::Create(I, 0); 4950 FullTy = cast<StructType>(FullTy)->getElementType(0); 4951 } else { 4952 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4953 } 4954 4955 InstructionList.push_back(I); 4956 break; 4957 } 4958 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4959 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4960 unsigned OpNum = 0; 4961 Value *Ptr, *Val; 4962 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4963 !isa<PointerType>(Ptr->getType()) || 4964 popValue(Record, OpNum, NextValueNo, 4965 getPointerElementFlatType(FullTy), Val) || 4966 OpNum + 4 != Record.size()) 4967 return error("Invalid record"); 4968 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4969 if (Operation < AtomicRMWInst::FIRST_BINOP || 4970 Operation > AtomicRMWInst::LAST_BINOP) 4971 return error("Invalid record"); 4972 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4973 if (Ordering == AtomicOrdering::NotAtomic || 4974 Ordering == AtomicOrdering::Unordered) 4975 return error("Invalid record"); 4976 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4977 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4978 FullTy = getPointerElementFlatType(FullTy); 4979 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4980 InstructionList.push_back(I); 4981 break; 4982 } 4983 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4984 if (2 != Record.size()) 4985 return error("Invalid record"); 4986 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4987 if (Ordering == AtomicOrdering::NotAtomic || 4988 Ordering == AtomicOrdering::Unordered || 4989 Ordering == AtomicOrdering::Monotonic) 4990 return error("Invalid record"); 4991 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4992 I = new FenceInst(Context, Ordering, SSID); 4993 InstructionList.push_back(I); 4994 break; 4995 } 4996 case bitc::FUNC_CODE_INST_CALL: { 4997 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4998 if (Record.size() < 3) 4999 return error("Invalid record"); 5000 5001 unsigned OpNum = 0; 5002 AttributeList PAL = getAttributes(Record[OpNum++]); 5003 unsigned CCInfo = Record[OpNum++]; 5004 5005 FastMathFlags FMF; 5006 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5007 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5008 if (!FMF.any()) 5009 return error("Fast math flags indicator set for call with no FMF"); 5010 } 5011 5012 FunctionType *FTy = nullptr; 5013 FunctionType *FullFTy = nullptr; 5014 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5015 FullFTy = 5016 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5017 if (!FullFTy) 5018 return error("Explicit call type is not a function type"); 5019 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5020 } 5021 5022 Value *Callee; 5023 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5024 return error("Invalid record"); 5025 5026 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5027 if (!OpTy) 5028 return error("Callee is not a pointer type"); 5029 if (!FTy) { 5030 FullFTy = 5031 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5032 if (!FullFTy) 5033 return error("Callee is not of pointer to function type"); 5034 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5035 } else if (getPointerElementFlatType(FullTy) != FTy) 5036 return error("Explicit call type does not match pointee type of " 5037 "callee operand"); 5038 if (Record.size() < FTy->getNumParams() + OpNum) 5039 return error("Insufficient operands to call"); 5040 5041 SmallVector<Value*, 16> Args; 5042 SmallVector<Type*, 16> ArgsFullTys; 5043 // Read the fixed params. 5044 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5045 if (FTy->getParamType(i)->isLabelTy()) 5046 Args.push_back(getBasicBlock(Record[OpNum])); 5047 else 5048 Args.push_back(getValue(Record, OpNum, NextValueNo, 5049 FTy->getParamType(i))); 5050 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5051 if (!Args.back()) 5052 return error("Invalid record"); 5053 } 5054 5055 // Read type/value pairs for varargs params. 5056 if (!FTy->isVarArg()) { 5057 if (OpNum != Record.size()) 5058 return error("Invalid record"); 5059 } else { 5060 while (OpNum != Record.size()) { 5061 Value *Op; 5062 Type *FullTy; 5063 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5064 return error("Invalid record"); 5065 Args.push_back(Op); 5066 ArgsFullTys.push_back(FullTy); 5067 } 5068 } 5069 5070 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5071 FullTy = FullFTy->getReturnType(); 5072 OperandBundles.clear(); 5073 InstructionList.push_back(I); 5074 cast<CallInst>(I)->setCallingConv( 5075 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5076 CallInst::TailCallKind TCK = CallInst::TCK_None; 5077 if (CCInfo & 1 << bitc::CALL_TAIL) 5078 TCK = CallInst::TCK_Tail; 5079 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5080 TCK = CallInst::TCK_MustTail; 5081 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5082 TCK = CallInst::TCK_NoTail; 5083 cast<CallInst>(I)->setTailCallKind(TCK); 5084 cast<CallInst>(I)->setAttributes(PAL); 5085 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5086 if (FMF.any()) { 5087 if (!isa<FPMathOperator>(I)) 5088 return error("Fast-math-flags specified for call without " 5089 "floating-point scalar or vector return type"); 5090 I->setFastMathFlags(FMF); 5091 } 5092 break; 5093 } 5094 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5095 if (Record.size() < 3) 5096 return error("Invalid record"); 5097 Type *OpTy = getTypeByID(Record[0]); 5098 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5099 FullTy = getFullyStructuredTypeByID(Record[2]); 5100 Type *ResTy = flattenPointerTypes(FullTy); 5101 if (!OpTy || !Op || !ResTy) 5102 return error("Invalid record"); 5103 I = new VAArgInst(Op, ResTy); 5104 InstructionList.push_back(I); 5105 break; 5106 } 5107 5108 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5109 // A call or an invoke can be optionally prefixed with some variable 5110 // number of operand bundle blocks. These blocks are read into 5111 // OperandBundles and consumed at the next call or invoke instruction. 5112 5113 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5114 return error("Invalid record"); 5115 5116 std::vector<Value *> Inputs; 5117 5118 unsigned OpNum = 1; 5119 while (OpNum != Record.size()) { 5120 Value *Op; 5121 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5122 return error("Invalid record"); 5123 Inputs.push_back(Op); 5124 } 5125 5126 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5127 continue; 5128 } 5129 5130 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5131 unsigned OpNum = 0; 5132 Value *Op = nullptr; 5133 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5134 return error("Invalid record"); 5135 if (OpNum != Record.size()) 5136 return error("Invalid record"); 5137 5138 I = new FreezeInst(Op); 5139 InstructionList.push_back(I); 5140 break; 5141 } 5142 } 5143 5144 // Add instruction to end of current BB. If there is no current BB, reject 5145 // this file. 5146 if (!CurBB) { 5147 I->deleteValue(); 5148 return error("Invalid instruction with no BB"); 5149 } 5150 if (!OperandBundles.empty()) { 5151 I->deleteValue(); 5152 return error("Operand bundles found with no consumer"); 5153 } 5154 CurBB->getInstList().push_back(I); 5155 5156 // If this was a terminator instruction, move to the next block. 5157 if (I->isTerminator()) { 5158 ++CurBBNo; 5159 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5160 } 5161 5162 // Non-void values get registered in the value table for future use. 5163 if (!I->getType()->isVoidTy()) { 5164 if (!FullTy) { 5165 FullTy = I->getType(); 5166 assert( 5167 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5168 !isa<ArrayType>(FullTy) && 5169 (!isa<VectorType>(FullTy) || 5170 FullTy->getVectorElementType()->isFloatingPointTy() || 5171 FullTy->getVectorElementType()->isIntegerTy()) && 5172 "Structured types must be assigned with corresponding non-opaque " 5173 "pointer type"); 5174 } 5175 5176 assert(I->getType() == flattenPointerTypes(FullTy) && 5177 "Incorrect fully structured type provided for Instruction"); 5178 ValueList.assignValue(I, NextValueNo++, FullTy); 5179 } 5180 } 5181 5182 OutOfRecordLoop: 5183 5184 if (!OperandBundles.empty()) 5185 return error("Operand bundles found with no consumer"); 5186 5187 // Check the function list for unresolved values. 5188 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5189 if (!A->getParent()) { 5190 // We found at least one unresolved value. Nuke them all to avoid leaks. 5191 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5192 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5193 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5194 delete A; 5195 } 5196 } 5197 return error("Never resolved value found in function"); 5198 } 5199 } 5200 5201 // Unexpected unresolved metadata about to be dropped. 5202 if (MDLoader->hasFwdRefs()) 5203 return error("Invalid function metadata: outgoing forward refs"); 5204 5205 // Trim the value list down to the size it was before we parsed this function. 5206 ValueList.shrinkTo(ModuleValueListSize); 5207 MDLoader->shrinkTo(ModuleMDLoaderSize); 5208 std::vector<BasicBlock*>().swap(FunctionBBs); 5209 return Error::success(); 5210 } 5211 5212 /// Find the function body in the bitcode stream 5213 Error BitcodeReader::findFunctionInStream( 5214 Function *F, 5215 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5216 while (DeferredFunctionInfoIterator->second == 0) { 5217 // This is the fallback handling for the old format bitcode that 5218 // didn't contain the function index in the VST, or when we have 5219 // an anonymous function which would not have a VST entry. 5220 // Assert that we have one of those two cases. 5221 assert(VSTOffset == 0 || !F->hasName()); 5222 // Parse the next body in the stream and set its position in the 5223 // DeferredFunctionInfo map. 5224 if (Error Err = rememberAndSkipFunctionBodies()) 5225 return Err; 5226 } 5227 return Error::success(); 5228 } 5229 5230 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5231 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5232 return SyncScope::ID(Val); 5233 if (Val >= SSIDs.size()) 5234 return SyncScope::System; // Map unknown synchronization scopes to system. 5235 return SSIDs[Val]; 5236 } 5237 5238 //===----------------------------------------------------------------------===// 5239 // GVMaterializer implementation 5240 //===----------------------------------------------------------------------===// 5241 5242 Error BitcodeReader::materialize(GlobalValue *GV) { 5243 Function *F = dyn_cast<Function>(GV); 5244 // If it's not a function or is already material, ignore the request. 5245 if (!F || !F->isMaterializable()) 5246 return Error::success(); 5247 5248 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5249 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5250 // If its position is recorded as 0, its body is somewhere in the stream 5251 // but we haven't seen it yet. 5252 if (DFII->second == 0) 5253 if (Error Err = findFunctionInStream(F, DFII)) 5254 return Err; 5255 5256 // Materialize metadata before parsing any function bodies. 5257 if (Error Err = materializeMetadata()) 5258 return Err; 5259 5260 // Move the bit stream to the saved position of the deferred function body. 5261 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5262 return JumpFailed; 5263 if (Error Err = parseFunctionBody(F)) 5264 return Err; 5265 F->setIsMaterializable(false); 5266 5267 if (StripDebugInfo) 5268 stripDebugInfo(*F); 5269 5270 // Upgrade any old intrinsic calls in the function. 5271 for (auto &I : UpgradedIntrinsics) { 5272 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5273 UI != UE;) { 5274 User *U = *UI; 5275 ++UI; 5276 if (CallInst *CI = dyn_cast<CallInst>(U)) 5277 UpgradeIntrinsicCall(CI, I.second); 5278 } 5279 } 5280 5281 // Update calls to the remangled intrinsics 5282 for (auto &I : RemangledIntrinsics) 5283 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5284 UI != UE;) 5285 // Don't expect any other users than call sites 5286 CallSite(*UI++).setCalledFunction(I.second); 5287 5288 // Finish fn->subprogram upgrade for materialized functions. 5289 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5290 F->setSubprogram(SP); 5291 5292 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5293 if (!MDLoader->isStrippingTBAA()) { 5294 for (auto &I : instructions(F)) { 5295 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5296 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5297 continue; 5298 MDLoader->setStripTBAA(true); 5299 stripTBAA(F->getParent()); 5300 } 5301 } 5302 5303 // Bring in any functions that this function forward-referenced via 5304 // blockaddresses. 5305 return materializeForwardReferencedFunctions(); 5306 } 5307 5308 Error BitcodeReader::materializeModule() { 5309 if (Error Err = materializeMetadata()) 5310 return Err; 5311 5312 // Promise to materialize all forward references. 5313 WillMaterializeAllForwardRefs = true; 5314 5315 // Iterate over the module, deserializing any functions that are still on 5316 // disk. 5317 for (Function &F : *TheModule) { 5318 if (Error Err = materialize(&F)) 5319 return Err; 5320 } 5321 // At this point, if there are any function bodies, parse the rest of 5322 // the bits in the module past the last function block we have recorded 5323 // through either lazy scanning or the VST. 5324 if (LastFunctionBlockBit || NextUnreadBit) 5325 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5326 ? LastFunctionBlockBit 5327 : NextUnreadBit)) 5328 return Err; 5329 5330 // Check that all block address forward references got resolved (as we 5331 // promised above). 5332 if (!BasicBlockFwdRefs.empty()) 5333 return error("Never resolved function from blockaddress"); 5334 5335 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5336 // delete the old functions to clean up. We can't do this unless the entire 5337 // module is materialized because there could always be another function body 5338 // with calls to the old function. 5339 for (auto &I : UpgradedIntrinsics) { 5340 for (auto *U : I.first->users()) { 5341 if (CallInst *CI = dyn_cast<CallInst>(U)) 5342 UpgradeIntrinsicCall(CI, I.second); 5343 } 5344 if (!I.first->use_empty()) 5345 I.first->replaceAllUsesWith(I.second); 5346 I.first->eraseFromParent(); 5347 } 5348 UpgradedIntrinsics.clear(); 5349 // Do the same for remangled intrinsics 5350 for (auto &I : RemangledIntrinsics) { 5351 I.first->replaceAllUsesWith(I.second); 5352 I.first->eraseFromParent(); 5353 } 5354 RemangledIntrinsics.clear(); 5355 5356 UpgradeDebugInfo(*TheModule); 5357 5358 UpgradeModuleFlags(*TheModule); 5359 5360 UpgradeARCRuntime(*TheModule); 5361 5362 return Error::success(); 5363 } 5364 5365 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5366 return IdentifiedStructTypes; 5367 } 5368 5369 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5370 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5371 StringRef ModulePath, unsigned ModuleId) 5372 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5373 ModulePath(ModulePath), ModuleId(ModuleId) {} 5374 5375 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5376 TheIndex.addModule(ModulePath, ModuleId); 5377 } 5378 5379 ModuleSummaryIndex::ModuleInfo * 5380 ModuleSummaryIndexBitcodeReader::getThisModule() { 5381 return TheIndex.getModule(ModulePath); 5382 } 5383 5384 std::pair<ValueInfo, GlobalValue::GUID> 5385 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5386 auto VGI = ValueIdToValueInfoMap[ValueId]; 5387 assert(VGI.first); 5388 return VGI; 5389 } 5390 5391 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5392 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5393 StringRef SourceFileName) { 5394 std::string GlobalId = 5395 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5396 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5397 auto OriginalNameID = ValueGUID; 5398 if (GlobalValue::isLocalLinkage(Linkage)) 5399 OriginalNameID = GlobalValue::getGUID(ValueName); 5400 if (PrintSummaryGUIDs) 5401 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5402 << ValueName << "\n"; 5403 5404 // UseStrtab is false for legacy summary formats and value names are 5405 // created on stack. In that case we save the name in a string saver in 5406 // the index so that the value name can be recorded. 5407 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5408 TheIndex.getOrInsertValueInfo( 5409 ValueGUID, 5410 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5411 OriginalNameID); 5412 } 5413 5414 // Specialized value symbol table parser used when reading module index 5415 // blocks where we don't actually create global values. The parsed information 5416 // is saved in the bitcode reader for use when later parsing summaries. 5417 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5418 uint64_t Offset, 5419 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5420 // With a strtab the VST is not required to parse the summary. 5421 if (UseStrtab) 5422 return Error::success(); 5423 5424 assert(Offset > 0 && "Expected non-zero VST offset"); 5425 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5426 if (!MaybeCurrentBit) 5427 return MaybeCurrentBit.takeError(); 5428 uint64_t CurrentBit = MaybeCurrentBit.get(); 5429 5430 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5431 return Err; 5432 5433 SmallVector<uint64_t, 64> Record; 5434 5435 // Read all the records for this value table. 5436 SmallString<128> ValueName; 5437 5438 while (true) { 5439 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5440 if (!MaybeEntry) 5441 return MaybeEntry.takeError(); 5442 BitstreamEntry Entry = MaybeEntry.get(); 5443 5444 switch (Entry.Kind) { 5445 case BitstreamEntry::SubBlock: // Handled for us already. 5446 case BitstreamEntry::Error: 5447 return error("Malformed block"); 5448 case BitstreamEntry::EndBlock: 5449 // Done parsing VST, jump back to wherever we came from. 5450 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5451 return JumpFailed; 5452 return Error::success(); 5453 case BitstreamEntry::Record: 5454 // The interesting case. 5455 break; 5456 } 5457 5458 // Read a record. 5459 Record.clear(); 5460 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5461 if (!MaybeRecord) 5462 return MaybeRecord.takeError(); 5463 switch (MaybeRecord.get()) { 5464 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5465 break; 5466 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5467 if (convertToString(Record, 1, ValueName)) 5468 return error("Invalid record"); 5469 unsigned ValueID = Record[0]; 5470 assert(!SourceFileName.empty()); 5471 auto VLI = ValueIdToLinkageMap.find(ValueID); 5472 assert(VLI != ValueIdToLinkageMap.end() && 5473 "No linkage found for VST entry?"); 5474 auto Linkage = VLI->second; 5475 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5476 ValueName.clear(); 5477 break; 5478 } 5479 case bitc::VST_CODE_FNENTRY: { 5480 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5481 if (convertToString(Record, 2, ValueName)) 5482 return error("Invalid record"); 5483 unsigned ValueID = Record[0]; 5484 assert(!SourceFileName.empty()); 5485 auto VLI = ValueIdToLinkageMap.find(ValueID); 5486 assert(VLI != ValueIdToLinkageMap.end() && 5487 "No linkage found for VST entry?"); 5488 auto Linkage = VLI->second; 5489 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5490 ValueName.clear(); 5491 break; 5492 } 5493 case bitc::VST_CODE_COMBINED_ENTRY: { 5494 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5495 unsigned ValueID = Record[0]; 5496 GlobalValue::GUID RefGUID = Record[1]; 5497 // The "original name", which is the second value of the pair will be 5498 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5499 ValueIdToValueInfoMap[ValueID] = 5500 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5501 break; 5502 } 5503 } 5504 } 5505 } 5506 5507 // Parse just the blocks needed for building the index out of the module. 5508 // At the end of this routine the module Index is populated with a map 5509 // from global value id to GlobalValueSummary objects. 5510 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5511 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5512 return Err; 5513 5514 SmallVector<uint64_t, 64> Record; 5515 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5516 unsigned ValueId = 0; 5517 5518 // Read the index for this module. 5519 while (true) { 5520 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5521 if (!MaybeEntry) 5522 return MaybeEntry.takeError(); 5523 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5524 5525 switch (Entry.Kind) { 5526 case BitstreamEntry::Error: 5527 return error("Malformed block"); 5528 case BitstreamEntry::EndBlock: 5529 return Error::success(); 5530 5531 case BitstreamEntry::SubBlock: 5532 switch (Entry.ID) { 5533 default: // Skip unknown content. 5534 if (Error Err = Stream.SkipBlock()) 5535 return Err; 5536 break; 5537 case bitc::BLOCKINFO_BLOCK_ID: 5538 // Need to parse these to get abbrev ids (e.g. for VST) 5539 if (readBlockInfo()) 5540 return error("Malformed block"); 5541 break; 5542 case bitc::VALUE_SYMTAB_BLOCK_ID: 5543 // Should have been parsed earlier via VSTOffset, unless there 5544 // is no summary section. 5545 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5546 !SeenGlobalValSummary) && 5547 "Expected early VST parse via VSTOffset record"); 5548 if (Error Err = Stream.SkipBlock()) 5549 return Err; 5550 break; 5551 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5552 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5553 // Add the module if it is a per-module index (has a source file name). 5554 if (!SourceFileName.empty()) 5555 addThisModule(); 5556 assert(!SeenValueSymbolTable && 5557 "Already read VST when parsing summary block?"); 5558 // We might not have a VST if there were no values in the 5559 // summary. An empty summary block generated when we are 5560 // performing ThinLTO compiles so we don't later invoke 5561 // the regular LTO process on them. 5562 if (VSTOffset > 0) { 5563 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5564 return Err; 5565 SeenValueSymbolTable = true; 5566 } 5567 SeenGlobalValSummary = true; 5568 if (Error Err = parseEntireSummary(Entry.ID)) 5569 return Err; 5570 break; 5571 case bitc::MODULE_STRTAB_BLOCK_ID: 5572 if (Error Err = parseModuleStringTable()) 5573 return Err; 5574 break; 5575 } 5576 continue; 5577 5578 case BitstreamEntry::Record: { 5579 Record.clear(); 5580 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5581 if (!MaybeBitCode) 5582 return MaybeBitCode.takeError(); 5583 switch (MaybeBitCode.get()) { 5584 default: 5585 break; // Default behavior, ignore unknown content. 5586 case bitc::MODULE_CODE_VERSION: { 5587 if (Error Err = parseVersionRecord(Record).takeError()) 5588 return Err; 5589 break; 5590 } 5591 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5592 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5593 SmallString<128> ValueName; 5594 if (convertToString(Record, 0, ValueName)) 5595 return error("Invalid record"); 5596 SourceFileName = ValueName.c_str(); 5597 break; 5598 } 5599 /// MODULE_CODE_HASH: [5*i32] 5600 case bitc::MODULE_CODE_HASH: { 5601 if (Record.size() != 5) 5602 return error("Invalid hash length " + Twine(Record.size()).str()); 5603 auto &Hash = getThisModule()->second.second; 5604 int Pos = 0; 5605 for (auto &Val : Record) { 5606 assert(!(Val >> 32) && "Unexpected high bits set"); 5607 Hash[Pos++] = Val; 5608 } 5609 break; 5610 } 5611 /// MODULE_CODE_VSTOFFSET: [offset] 5612 case bitc::MODULE_CODE_VSTOFFSET: 5613 if (Record.size() < 1) 5614 return error("Invalid record"); 5615 // Note that we subtract 1 here because the offset is relative to one 5616 // word before the start of the identification or module block, which 5617 // was historically always the start of the regular bitcode header. 5618 VSTOffset = Record[0] - 1; 5619 break; 5620 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5621 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5622 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5623 // v2: [strtab offset, strtab size, v1] 5624 case bitc::MODULE_CODE_GLOBALVAR: 5625 case bitc::MODULE_CODE_FUNCTION: 5626 case bitc::MODULE_CODE_ALIAS: { 5627 StringRef Name; 5628 ArrayRef<uint64_t> GVRecord; 5629 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5630 if (GVRecord.size() <= 3) 5631 return error("Invalid record"); 5632 uint64_t RawLinkage = GVRecord[3]; 5633 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5634 if (!UseStrtab) { 5635 ValueIdToLinkageMap[ValueId++] = Linkage; 5636 break; 5637 } 5638 5639 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5640 break; 5641 } 5642 } 5643 } 5644 continue; 5645 } 5646 } 5647 } 5648 5649 std::vector<ValueInfo> 5650 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5651 std::vector<ValueInfo> Ret; 5652 Ret.reserve(Record.size()); 5653 for (uint64_t RefValueId : Record) 5654 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5655 return Ret; 5656 } 5657 5658 std::vector<FunctionSummary::EdgeTy> 5659 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5660 bool IsOldProfileFormat, 5661 bool HasProfile, bool HasRelBF) { 5662 std::vector<FunctionSummary::EdgeTy> Ret; 5663 Ret.reserve(Record.size()); 5664 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5665 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5666 uint64_t RelBF = 0; 5667 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5668 if (IsOldProfileFormat) { 5669 I += 1; // Skip old callsitecount field 5670 if (HasProfile) 5671 I += 1; // Skip old profilecount field 5672 } else if (HasProfile) 5673 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5674 else if (HasRelBF) 5675 RelBF = Record[++I]; 5676 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5677 } 5678 return Ret; 5679 } 5680 5681 static void 5682 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5683 WholeProgramDevirtResolution &Wpd) { 5684 uint64_t ArgNum = Record[Slot++]; 5685 WholeProgramDevirtResolution::ByArg &B = 5686 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5687 Slot += ArgNum; 5688 5689 B.TheKind = 5690 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5691 B.Info = Record[Slot++]; 5692 B.Byte = Record[Slot++]; 5693 B.Bit = Record[Slot++]; 5694 } 5695 5696 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5697 StringRef Strtab, size_t &Slot, 5698 TypeIdSummary &TypeId) { 5699 uint64_t Id = Record[Slot++]; 5700 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5701 5702 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5703 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5704 static_cast<size_t>(Record[Slot + 1])}; 5705 Slot += 2; 5706 5707 uint64_t ResByArgNum = Record[Slot++]; 5708 for (uint64_t I = 0; I != ResByArgNum; ++I) 5709 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5710 } 5711 5712 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5713 StringRef Strtab, 5714 ModuleSummaryIndex &TheIndex) { 5715 size_t Slot = 0; 5716 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5717 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5718 Slot += 2; 5719 5720 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5721 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5722 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5723 TypeId.TTRes.SizeM1 = Record[Slot++]; 5724 TypeId.TTRes.BitMask = Record[Slot++]; 5725 TypeId.TTRes.InlineBits = Record[Slot++]; 5726 5727 while (Slot < Record.size()) 5728 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5729 } 5730 5731 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5732 ArrayRef<uint64_t> Record, size_t &Slot, 5733 TypeIdCompatibleVtableInfo &TypeId) { 5734 uint64_t Offset = Record[Slot++]; 5735 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5736 TypeId.push_back({Offset, Callee}); 5737 } 5738 5739 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5740 ArrayRef<uint64_t> Record) { 5741 size_t Slot = 0; 5742 TypeIdCompatibleVtableInfo &TypeId = 5743 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5744 {Strtab.data() + Record[Slot], 5745 static_cast<size_t>(Record[Slot + 1])}); 5746 Slot += 2; 5747 5748 while (Slot < Record.size()) 5749 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5750 } 5751 5752 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5753 unsigned WOCnt) { 5754 // Readonly and writeonly refs are in the end of the refs list. 5755 assert(ROCnt + WOCnt <= Refs.size()); 5756 unsigned FirstWORef = Refs.size() - WOCnt; 5757 unsigned RefNo = FirstWORef - ROCnt; 5758 for (; RefNo < FirstWORef; ++RefNo) 5759 Refs[RefNo].setReadOnly(); 5760 for (; RefNo < Refs.size(); ++RefNo) 5761 Refs[RefNo].setWriteOnly(); 5762 } 5763 5764 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5765 // objects in the index. 5766 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5767 if (Error Err = Stream.EnterSubBlock(ID)) 5768 return Err; 5769 SmallVector<uint64_t, 64> Record; 5770 5771 // Parse version 5772 { 5773 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5774 if (!MaybeEntry) 5775 return MaybeEntry.takeError(); 5776 BitstreamEntry Entry = MaybeEntry.get(); 5777 5778 if (Entry.Kind != BitstreamEntry::Record) 5779 return error("Invalid Summary Block: record for version expected"); 5780 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5781 if (!MaybeRecord) 5782 return MaybeRecord.takeError(); 5783 if (MaybeRecord.get() != bitc::FS_VERSION) 5784 return error("Invalid Summary Block: version expected"); 5785 } 5786 const uint64_t Version = Record[0]; 5787 const bool IsOldProfileFormat = Version == 1; 5788 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5789 return error("Invalid summary version " + Twine(Version) + 5790 ". Version should be in the range [1-" + 5791 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5792 "]."); 5793 Record.clear(); 5794 5795 // Keep around the last seen summary to be used when we see an optional 5796 // "OriginalName" attachement. 5797 GlobalValueSummary *LastSeenSummary = nullptr; 5798 GlobalValue::GUID LastSeenGUID = 0; 5799 5800 // We can expect to see any number of type ID information records before 5801 // each function summary records; these variables store the information 5802 // collected so far so that it can be used to create the summary object. 5803 std::vector<GlobalValue::GUID> PendingTypeTests; 5804 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5805 PendingTypeCheckedLoadVCalls; 5806 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5807 PendingTypeCheckedLoadConstVCalls; 5808 5809 while (true) { 5810 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5811 if (!MaybeEntry) 5812 return MaybeEntry.takeError(); 5813 BitstreamEntry Entry = MaybeEntry.get(); 5814 5815 switch (Entry.Kind) { 5816 case BitstreamEntry::SubBlock: // Handled for us already. 5817 case BitstreamEntry::Error: 5818 return error("Malformed block"); 5819 case BitstreamEntry::EndBlock: 5820 return Error::success(); 5821 case BitstreamEntry::Record: 5822 // The interesting case. 5823 break; 5824 } 5825 5826 // Read a record. The record format depends on whether this 5827 // is a per-module index or a combined index file. In the per-module 5828 // case the records contain the associated value's ID for correlation 5829 // with VST entries. In the combined index the correlation is done 5830 // via the bitcode offset of the summary records (which were saved 5831 // in the combined index VST entries). The records also contain 5832 // information used for ThinLTO renaming and importing. 5833 Record.clear(); 5834 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5835 if (!MaybeBitCode) 5836 return MaybeBitCode.takeError(); 5837 switch (unsigned BitCode = MaybeBitCode.get()) { 5838 default: // Default behavior: ignore. 5839 break; 5840 case bitc::FS_FLAGS: { // [flags] 5841 TheIndex.setFlags(Record[0]); 5842 break; 5843 } 5844 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5845 uint64_t ValueID = Record[0]; 5846 GlobalValue::GUID RefGUID = Record[1]; 5847 ValueIdToValueInfoMap[ValueID] = 5848 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5849 break; 5850 } 5851 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5852 // numrefs x valueid, n x (valueid)] 5853 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5854 // numrefs x valueid, 5855 // n x (valueid, hotness)] 5856 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5857 // numrefs x valueid, 5858 // n x (valueid, relblockfreq)] 5859 case bitc::FS_PERMODULE: 5860 case bitc::FS_PERMODULE_RELBF: 5861 case bitc::FS_PERMODULE_PROFILE: { 5862 unsigned ValueID = Record[0]; 5863 uint64_t RawFlags = Record[1]; 5864 unsigned InstCount = Record[2]; 5865 uint64_t RawFunFlags = 0; 5866 unsigned NumRefs = Record[3]; 5867 unsigned NumRORefs = 0, NumWORefs = 0; 5868 int RefListStartIndex = 4; 5869 if (Version >= 4) { 5870 RawFunFlags = Record[3]; 5871 NumRefs = Record[4]; 5872 RefListStartIndex = 5; 5873 if (Version >= 5) { 5874 NumRORefs = Record[5]; 5875 RefListStartIndex = 6; 5876 if (Version >= 7) { 5877 NumWORefs = Record[6]; 5878 RefListStartIndex = 7; 5879 } 5880 } 5881 } 5882 5883 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5884 // The module path string ref set in the summary must be owned by the 5885 // index's module string table. Since we don't have a module path 5886 // string table section in the per-module index, we create a single 5887 // module path string table entry with an empty (0) ID to take 5888 // ownership. 5889 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5890 assert(Record.size() >= RefListStartIndex + NumRefs && 5891 "Record size inconsistent with number of references"); 5892 std::vector<ValueInfo> Refs = makeRefList( 5893 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5894 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5895 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5896 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5897 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5898 IsOldProfileFormat, HasProfile, HasRelBF); 5899 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5900 auto FS = std::make_unique<FunctionSummary>( 5901 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5902 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5903 std::move(PendingTypeTestAssumeVCalls), 5904 std::move(PendingTypeCheckedLoadVCalls), 5905 std::move(PendingTypeTestAssumeConstVCalls), 5906 std::move(PendingTypeCheckedLoadConstVCalls)); 5907 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5908 FS->setModulePath(getThisModule()->first()); 5909 FS->setOriginalName(VIAndOriginalGUID.second); 5910 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5911 break; 5912 } 5913 // FS_ALIAS: [valueid, flags, valueid] 5914 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5915 // they expect all aliasee summaries to be available. 5916 case bitc::FS_ALIAS: { 5917 unsigned ValueID = Record[0]; 5918 uint64_t RawFlags = Record[1]; 5919 unsigned AliaseeID = Record[2]; 5920 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5921 auto AS = std::make_unique<AliasSummary>(Flags); 5922 // The module path string ref set in the summary must be owned by the 5923 // index's module string table. Since we don't have a module path 5924 // string table section in the per-module index, we create a single 5925 // module path string table entry with an empty (0) ID to take 5926 // ownership. 5927 AS->setModulePath(getThisModule()->first()); 5928 5929 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5930 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5931 if (!AliaseeInModule) 5932 return error("Alias expects aliasee summary to be parsed"); 5933 AS->setAliasee(AliaseeVI, AliaseeInModule); 5934 5935 auto GUID = getValueInfoFromValueId(ValueID); 5936 AS->setOriginalName(GUID.second); 5937 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5938 break; 5939 } 5940 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5941 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5942 unsigned ValueID = Record[0]; 5943 uint64_t RawFlags = Record[1]; 5944 unsigned RefArrayStart = 2; 5945 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5946 /* WriteOnly */ false, 5947 /* Constant */ false, 5948 GlobalObject::VCallVisibilityPublic); 5949 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5950 if (Version >= 5) { 5951 GVF = getDecodedGVarFlags(Record[2]); 5952 RefArrayStart = 3; 5953 } 5954 std::vector<ValueInfo> Refs = 5955 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5956 auto FS = 5957 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5958 FS->setModulePath(getThisModule()->first()); 5959 auto GUID = getValueInfoFromValueId(ValueID); 5960 FS->setOriginalName(GUID.second); 5961 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5962 break; 5963 } 5964 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5965 // numrefs, numrefs x valueid, 5966 // n x (valueid, offset)] 5967 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5968 unsigned ValueID = Record[0]; 5969 uint64_t RawFlags = Record[1]; 5970 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5971 unsigned NumRefs = Record[3]; 5972 unsigned RefListStartIndex = 4; 5973 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5974 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5975 std::vector<ValueInfo> Refs = makeRefList( 5976 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5977 VTableFuncList VTableFuncs; 5978 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5979 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5980 uint64_t Offset = Record[++I]; 5981 VTableFuncs.push_back({Callee, Offset}); 5982 } 5983 auto VS = 5984 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5985 VS->setModulePath(getThisModule()->first()); 5986 VS->setVTableFuncs(VTableFuncs); 5987 auto GUID = getValueInfoFromValueId(ValueID); 5988 VS->setOriginalName(GUID.second); 5989 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5990 break; 5991 } 5992 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5993 // numrefs x valueid, n x (valueid)] 5994 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5995 // numrefs x valueid, n x (valueid, hotness)] 5996 case bitc::FS_COMBINED: 5997 case bitc::FS_COMBINED_PROFILE: { 5998 unsigned ValueID = Record[0]; 5999 uint64_t ModuleId = Record[1]; 6000 uint64_t RawFlags = Record[2]; 6001 unsigned InstCount = Record[3]; 6002 uint64_t RawFunFlags = 0; 6003 uint64_t EntryCount = 0; 6004 unsigned NumRefs = Record[4]; 6005 unsigned NumRORefs = 0, NumWORefs = 0; 6006 int RefListStartIndex = 5; 6007 6008 if (Version >= 4) { 6009 RawFunFlags = Record[4]; 6010 RefListStartIndex = 6; 6011 size_t NumRefsIndex = 5; 6012 if (Version >= 5) { 6013 unsigned NumRORefsOffset = 1; 6014 RefListStartIndex = 7; 6015 if (Version >= 6) { 6016 NumRefsIndex = 6; 6017 EntryCount = Record[5]; 6018 RefListStartIndex = 8; 6019 if (Version >= 7) { 6020 RefListStartIndex = 9; 6021 NumWORefs = Record[8]; 6022 NumRORefsOffset = 2; 6023 } 6024 } 6025 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6026 } 6027 NumRefs = Record[NumRefsIndex]; 6028 } 6029 6030 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6031 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6032 assert(Record.size() >= RefListStartIndex + NumRefs && 6033 "Record size inconsistent with number of references"); 6034 std::vector<ValueInfo> Refs = makeRefList( 6035 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6036 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6037 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6038 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6039 IsOldProfileFormat, HasProfile, false); 6040 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6041 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6042 auto FS = std::make_unique<FunctionSummary>( 6043 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6044 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6045 std::move(PendingTypeTestAssumeVCalls), 6046 std::move(PendingTypeCheckedLoadVCalls), 6047 std::move(PendingTypeTestAssumeConstVCalls), 6048 std::move(PendingTypeCheckedLoadConstVCalls)); 6049 LastSeenSummary = FS.get(); 6050 LastSeenGUID = VI.getGUID(); 6051 FS->setModulePath(ModuleIdMap[ModuleId]); 6052 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6053 break; 6054 } 6055 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6056 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6057 // they expect all aliasee summaries to be available. 6058 case bitc::FS_COMBINED_ALIAS: { 6059 unsigned ValueID = Record[0]; 6060 uint64_t ModuleId = Record[1]; 6061 uint64_t RawFlags = Record[2]; 6062 unsigned AliaseeValueId = Record[3]; 6063 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6064 auto AS = std::make_unique<AliasSummary>(Flags); 6065 LastSeenSummary = AS.get(); 6066 AS->setModulePath(ModuleIdMap[ModuleId]); 6067 6068 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6069 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6070 AS->setAliasee(AliaseeVI, AliaseeInModule); 6071 6072 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6073 LastSeenGUID = VI.getGUID(); 6074 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6075 break; 6076 } 6077 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6078 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6079 unsigned ValueID = Record[0]; 6080 uint64_t ModuleId = Record[1]; 6081 uint64_t RawFlags = Record[2]; 6082 unsigned RefArrayStart = 3; 6083 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6084 /* WriteOnly */ false, 6085 /* Constant */ false, 6086 GlobalObject::VCallVisibilityPublic); 6087 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6088 if (Version >= 5) { 6089 GVF = getDecodedGVarFlags(Record[3]); 6090 RefArrayStart = 4; 6091 } 6092 std::vector<ValueInfo> Refs = 6093 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6094 auto FS = 6095 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6096 LastSeenSummary = FS.get(); 6097 FS->setModulePath(ModuleIdMap[ModuleId]); 6098 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6099 LastSeenGUID = VI.getGUID(); 6100 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6101 break; 6102 } 6103 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6104 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6105 uint64_t OriginalName = Record[0]; 6106 if (!LastSeenSummary) 6107 return error("Name attachment that does not follow a combined record"); 6108 LastSeenSummary->setOriginalName(OriginalName); 6109 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6110 // Reset the LastSeenSummary 6111 LastSeenSummary = nullptr; 6112 LastSeenGUID = 0; 6113 break; 6114 } 6115 case bitc::FS_TYPE_TESTS: 6116 assert(PendingTypeTests.empty()); 6117 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6118 Record.end()); 6119 break; 6120 6121 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6122 assert(PendingTypeTestAssumeVCalls.empty()); 6123 for (unsigned I = 0; I != Record.size(); I += 2) 6124 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6125 break; 6126 6127 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6128 assert(PendingTypeCheckedLoadVCalls.empty()); 6129 for (unsigned I = 0; I != Record.size(); I += 2) 6130 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6131 break; 6132 6133 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6134 PendingTypeTestAssumeConstVCalls.push_back( 6135 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6136 break; 6137 6138 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6139 PendingTypeCheckedLoadConstVCalls.push_back( 6140 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6141 break; 6142 6143 case bitc::FS_CFI_FUNCTION_DEFS: { 6144 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6145 for (unsigned I = 0; I != Record.size(); I += 2) 6146 CfiFunctionDefs.insert( 6147 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6148 break; 6149 } 6150 6151 case bitc::FS_CFI_FUNCTION_DECLS: { 6152 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6153 for (unsigned I = 0; I != Record.size(); I += 2) 6154 CfiFunctionDecls.insert( 6155 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6156 break; 6157 } 6158 6159 case bitc::FS_TYPE_ID: 6160 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6161 break; 6162 6163 case bitc::FS_TYPE_ID_METADATA: 6164 parseTypeIdCompatibleVtableSummaryRecord(Record); 6165 break; 6166 } 6167 } 6168 llvm_unreachable("Exit infinite loop"); 6169 } 6170 6171 // Parse the module string table block into the Index. 6172 // This populates the ModulePathStringTable map in the index. 6173 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6174 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6175 return Err; 6176 6177 SmallVector<uint64_t, 64> Record; 6178 6179 SmallString<128> ModulePath; 6180 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6181 6182 while (true) { 6183 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6184 if (!MaybeEntry) 6185 return MaybeEntry.takeError(); 6186 BitstreamEntry Entry = MaybeEntry.get(); 6187 6188 switch (Entry.Kind) { 6189 case BitstreamEntry::SubBlock: // Handled for us already. 6190 case BitstreamEntry::Error: 6191 return error("Malformed block"); 6192 case BitstreamEntry::EndBlock: 6193 return Error::success(); 6194 case BitstreamEntry::Record: 6195 // The interesting case. 6196 break; 6197 } 6198 6199 Record.clear(); 6200 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6201 if (!MaybeRecord) 6202 return MaybeRecord.takeError(); 6203 switch (MaybeRecord.get()) { 6204 default: // Default behavior: ignore. 6205 break; 6206 case bitc::MST_CODE_ENTRY: { 6207 // MST_ENTRY: [modid, namechar x N] 6208 uint64_t ModuleId = Record[0]; 6209 6210 if (convertToString(Record, 1, ModulePath)) 6211 return error("Invalid record"); 6212 6213 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6214 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6215 6216 ModulePath.clear(); 6217 break; 6218 } 6219 /// MST_CODE_HASH: [5*i32] 6220 case bitc::MST_CODE_HASH: { 6221 if (Record.size() != 5) 6222 return error("Invalid hash length " + Twine(Record.size()).str()); 6223 if (!LastSeenModule) 6224 return error("Invalid hash that does not follow a module path"); 6225 int Pos = 0; 6226 for (auto &Val : Record) { 6227 assert(!(Val >> 32) && "Unexpected high bits set"); 6228 LastSeenModule->second.second[Pos++] = Val; 6229 } 6230 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6231 LastSeenModule = nullptr; 6232 break; 6233 } 6234 } 6235 } 6236 llvm_unreachable("Exit infinite loop"); 6237 } 6238 6239 namespace { 6240 6241 // FIXME: This class is only here to support the transition to llvm::Error. It 6242 // will be removed once this transition is complete. Clients should prefer to 6243 // deal with the Error value directly, rather than converting to error_code. 6244 class BitcodeErrorCategoryType : public std::error_category { 6245 const char *name() const noexcept override { 6246 return "llvm.bitcode"; 6247 } 6248 6249 std::string message(int IE) const override { 6250 BitcodeError E = static_cast<BitcodeError>(IE); 6251 switch (E) { 6252 case BitcodeError::CorruptedBitcode: 6253 return "Corrupted bitcode"; 6254 } 6255 llvm_unreachable("Unknown error type!"); 6256 } 6257 }; 6258 6259 } // end anonymous namespace 6260 6261 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6262 6263 const std::error_category &llvm::BitcodeErrorCategory() { 6264 return *ErrorCategory; 6265 } 6266 6267 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6268 unsigned Block, unsigned RecordID) { 6269 if (Error Err = Stream.EnterSubBlock(Block)) 6270 return std::move(Err); 6271 6272 StringRef Strtab; 6273 while (true) { 6274 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6275 if (!MaybeEntry) 6276 return MaybeEntry.takeError(); 6277 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6278 6279 switch (Entry.Kind) { 6280 case BitstreamEntry::EndBlock: 6281 return Strtab; 6282 6283 case BitstreamEntry::Error: 6284 return error("Malformed block"); 6285 6286 case BitstreamEntry::SubBlock: 6287 if (Error Err = Stream.SkipBlock()) 6288 return std::move(Err); 6289 break; 6290 6291 case BitstreamEntry::Record: 6292 StringRef Blob; 6293 SmallVector<uint64_t, 1> Record; 6294 Expected<unsigned> MaybeRecord = 6295 Stream.readRecord(Entry.ID, Record, &Blob); 6296 if (!MaybeRecord) 6297 return MaybeRecord.takeError(); 6298 if (MaybeRecord.get() == RecordID) 6299 Strtab = Blob; 6300 break; 6301 } 6302 } 6303 } 6304 6305 //===----------------------------------------------------------------------===// 6306 // External interface 6307 //===----------------------------------------------------------------------===// 6308 6309 Expected<std::vector<BitcodeModule>> 6310 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6311 auto FOrErr = getBitcodeFileContents(Buffer); 6312 if (!FOrErr) 6313 return FOrErr.takeError(); 6314 return std::move(FOrErr->Mods); 6315 } 6316 6317 Expected<BitcodeFileContents> 6318 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6319 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6320 if (!StreamOrErr) 6321 return StreamOrErr.takeError(); 6322 BitstreamCursor &Stream = *StreamOrErr; 6323 6324 BitcodeFileContents F; 6325 while (true) { 6326 uint64_t BCBegin = Stream.getCurrentByteNo(); 6327 6328 // We may be consuming bitcode from a client that leaves garbage at the end 6329 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6330 // the end that there cannot possibly be another module, stop looking. 6331 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6332 return F; 6333 6334 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6335 if (!MaybeEntry) 6336 return MaybeEntry.takeError(); 6337 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6338 6339 switch (Entry.Kind) { 6340 case BitstreamEntry::EndBlock: 6341 case BitstreamEntry::Error: 6342 return error("Malformed block"); 6343 6344 case BitstreamEntry::SubBlock: { 6345 uint64_t IdentificationBit = -1ull; 6346 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6347 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6348 if (Error Err = Stream.SkipBlock()) 6349 return std::move(Err); 6350 6351 { 6352 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6353 if (!MaybeEntry) 6354 return MaybeEntry.takeError(); 6355 Entry = MaybeEntry.get(); 6356 } 6357 6358 if (Entry.Kind != BitstreamEntry::SubBlock || 6359 Entry.ID != bitc::MODULE_BLOCK_ID) 6360 return error("Malformed block"); 6361 } 6362 6363 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6364 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6365 if (Error Err = Stream.SkipBlock()) 6366 return std::move(Err); 6367 6368 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6369 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6370 Buffer.getBufferIdentifier(), IdentificationBit, 6371 ModuleBit}); 6372 continue; 6373 } 6374 6375 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6376 Expected<StringRef> Strtab = 6377 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6378 if (!Strtab) 6379 return Strtab.takeError(); 6380 // This string table is used by every preceding bitcode module that does 6381 // not have its own string table. A bitcode file may have multiple 6382 // string tables if it was created by binary concatenation, for example 6383 // with "llvm-cat -b". 6384 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6385 if (!I->Strtab.empty()) 6386 break; 6387 I->Strtab = *Strtab; 6388 } 6389 // Similarly, the string table is used by every preceding symbol table; 6390 // normally there will be just one unless the bitcode file was created 6391 // by binary concatenation. 6392 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6393 F.StrtabForSymtab = *Strtab; 6394 continue; 6395 } 6396 6397 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6398 Expected<StringRef> SymtabOrErr = 6399 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6400 if (!SymtabOrErr) 6401 return SymtabOrErr.takeError(); 6402 6403 // We can expect the bitcode file to have multiple symbol tables if it 6404 // was created by binary concatenation. In that case we silently 6405 // ignore any subsequent symbol tables, which is fine because this is a 6406 // low level function. The client is expected to notice that the number 6407 // of modules in the symbol table does not match the number of modules 6408 // in the input file and regenerate the symbol table. 6409 if (F.Symtab.empty()) 6410 F.Symtab = *SymtabOrErr; 6411 continue; 6412 } 6413 6414 if (Error Err = Stream.SkipBlock()) 6415 return std::move(Err); 6416 continue; 6417 } 6418 case BitstreamEntry::Record: 6419 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6420 continue; 6421 else 6422 return StreamFailed.takeError(); 6423 } 6424 } 6425 } 6426 6427 /// Get a lazy one-at-time loading module from bitcode. 6428 /// 6429 /// This isn't always used in a lazy context. In particular, it's also used by 6430 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6431 /// in forward-referenced functions from block address references. 6432 /// 6433 /// \param[in] MaterializeAll Set to \c true if we should materialize 6434 /// everything. 6435 Expected<std::unique_ptr<Module>> 6436 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6437 bool ShouldLazyLoadMetadata, bool IsImporting) { 6438 BitstreamCursor Stream(Buffer); 6439 6440 std::string ProducerIdentification; 6441 if (IdentificationBit != -1ull) { 6442 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6443 return std::move(JumpFailed); 6444 Expected<std::string> ProducerIdentificationOrErr = 6445 readIdentificationBlock(Stream); 6446 if (!ProducerIdentificationOrErr) 6447 return ProducerIdentificationOrErr.takeError(); 6448 6449 ProducerIdentification = *ProducerIdentificationOrErr; 6450 } 6451 6452 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6453 return std::move(JumpFailed); 6454 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6455 Context); 6456 6457 std::unique_ptr<Module> M = 6458 std::make_unique<Module>(ModuleIdentifier, Context); 6459 M->setMaterializer(R); 6460 6461 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6462 if (Error Err = 6463 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6464 return std::move(Err); 6465 6466 if (MaterializeAll) { 6467 // Read in the entire module, and destroy the BitcodeReader. 6468 if (Error Err = M->materializeAll()) 6469 return std::move(Err); 6470 } else { 6471 // Resolve forward references from blockaddresses. 6472 if (Error Err = R->materializeForwardReferencedFunctions()) 6473 return std::move(Err); 6474 } 6475 return std::move(M); 6476 } 6477 6478 Expected<std::unique_ptr<Module>> 6479 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6480 bool IsImporting) { 6481 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6482 } 6483 6484 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6485 // We don't use ModuleIdentifier here because the client may need to control the 6486 // module path used in the combined summary (e.g. when reading summaries for 6487 // regular LTO modules). 6488 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6489 StringRef ModulePath, uint64_t ModuleId) { 6490 BitstreamCursor Stream(Buffer); 6491 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6492 return JumpFailed; 6493 6494 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6495 ModulePath, ModuleId); 6496 return R.parseModule(); 6497 } 6498 6499 // Parse the specified bitcode buffer, returning the function info index. 6500 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6501 BitstreamCursor Stream(Buffer); 6502 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6503 return std::move(JumpFailed); 6504 6505 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6506 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6507 ModuleIdentifier, 0); 6508 6509 if (Error Err = R.parseModule()) 6510 return std::move(Err); 6511 6512 return std::move(Index); 6513 } 6514 6515 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6516 unsigned ID) { 6517 if (Error Err = Stream.EnterSubBlock(ID)) 6518 return std::move(Err); 6519 SmallVector<uint64_t, 64> Record; 6520 6521 while (true) { 6522 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6523 if (!MaybeEntry) 6524 return MaybeEntry.takeError(); 6525 BitstreamEntry Entry = MaybeEntry.get(); 6526 6527 switch (Entry.Kind) { 6528 case BitstreamEntry::SubBlock: // Handled for us already. 6529 case BitstreamEntry::Error: 6530 return error("Malformed block"); 6531 case BitstreamEntry::EndBlock: 6532 // If no flags record found, conservatively return true to mimic 6533 // behavior before this flag was added. 6534 return true; 6535 case BitstreamEntry::Record: 6536 // The interesting case. 6537 break; 6538 } 6539 6540 // Look for the FS_FLAGS record. 6541 Record.clear(); 6542 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6543 if (!MaybeBitCode) 6544 return MaybeBitCode.takeError(); 6545 switch (MaybeBitCode.get()) { 6546 default: // Default behavior: ignore. 6547 break; 6548 case bitc::FS_FLAGS: { // [flags] 6549 uint64_t Flags = Record[0]; 6550 // Scan flags. 6551 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6552 6553 return Flags & 0x8; 6554 } 6555 } 6556 } 6557 llvm_unreachable("Exit infinite loop"); 6558 } 6559 6560 // Check if the given bitcode buffer contains a global value summary block. 6561 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6562 BitstreamCursor Stream(Buffer); 6563 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6564 return std::move(JumpFailed); 6565 6566 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6567 return std::move(Err); 6568 6569 while (true) { 6570 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6571 if (!MaybeEntry) 6572 return MaybeEntry.takeError(); 6573 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6574 6575 switch (Entry.Kind) { 6576 case BitstreamEntry::Error: 6577 return error("Malformed block"); 6578 case BitstreamEntry::EndBlock: 6579 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6580 /*EnableSplitLTOUnit=*/false}; 6581 6582 case BitstreamEntry::SubBlock: 6583 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6584 Expected<bool> EnableSplitLTOUnit = 6585 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6586 if (!EnableSplitLTOUnit) 6587 return EnableSplitLTOUnit.takeError(); 6588 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6589 *EnableSplitLTOUnit}; 6590 } 6591 6592 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6593 Expected<bool> EnableSplitLTOUnit = 6594 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6595 if (!EnableSplitLTOUnit) 6596 return EnableSplitLTOUnit.takeError(); 6597 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6598 *EnableSplitLTOUnit}; 6599 } 6600 6601 // Ignore other sub-blocks. 6602 if (Error Err = Stream.SkipBlock()) 6603 return std::move(Err); 6604 continue; 6605 6606 case BitstreamEntry::Record: 6607 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6608 continue; 6609 else 6610 return StreamFailed.takeError(); 6611 } 6612 } 6613 } 6614 6615 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6616 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6617 if (!MsOrErr) 6618 return MsOrErr.takeError(); 6619 6620 if (MsOrErr->size() != 1) 6621 return error("Expected a single module"); 6622 6623 return (*MsOrErr)[0]; 6624 } 6625 6626 Expected<std::unique_ptr<Module>> 6627 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6628 bool ShouldLazyLoadMetadata, bool IsImporting) { 6629 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6630 if (!BM) 6631 return BM.takeError(); 6632 6633 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6634 } 6635 6636 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6637 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6638 bool ShouldLazyLoadMetadata, bool IsImporting) { 6639 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6640 IsImporting); 6641 if (MOrErr) 6642 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6643 return MOrErr; 6644 } 6645 6646 Expected<std::unique_ptr<Module>> 6647 BitcodeModule::parseModule(LLVMContext &Context) { 6648 return getModuleImpl(Context, true, false, false); 6649 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6650 // written. We must defer until the Module has been fully materialized. 6651 } 6652 6653 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6654 LLVMContext &Context) { 6655 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6656 if (!BM) 6657 return BM.takeError(); 6658 6659 return BM->parseModule(Context); 6660 } 6661 6662 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6663 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6664 if (!StreamOrErr) 6665 return StreamOrErr.takeError(); 6666 6667 return readTriple(*StreamOrErr); 6668 } 6669 6670 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6671 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6672 if (!StreamOrErr) 6673 return StreamOrErr.takeError(); 6674 6675 return hasObjCCategory(*StreamOrErr); 6676 } 6677 6678 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6679 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6680 if (!StreamOrErr) 6681 return StreamOrErr.takeError(); 6682 6683 return readIdentificationCode(*StreamOrErr); 6684 } 6685 6686 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6687 ModuleSummaryIndex &CombinedIndex, 6688 uint64_t ModuleId) { 6689 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6690 if (!BM) 6691 return BM.takeError(); 6692 6693 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6694 } 6695 6696 Expected<std::unique_ptr<ModuleSummaryIndex>> 6697 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6698 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6699 if (!BM) 6700 return BM.takeError(); 6701 6702 return BM->getSummary(); 6703 } 6704 6705 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6706 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6707 if (!BM) 6708 return BM.takeError(); 6709 6710 return BM->getLTOInfo(); 6711 } 6712 6713 Expected<std::unique_ptr<ModuleSummaryIndex>> 6714 llvm::getModuleSummaryIndexForFile(StringRef Path, 6715 bool IgnoreEmptyThinLTOIndexFile) { 6716 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6717 MemoryBuffer::getFileOrSTDIN(Path); 6718 if (!FileOrErr) 6719 return errorCodeToError(FileOrErr.getError()); 6720 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6721 return nullptr; 6722 return getModuleSummaryIndex(**FileOrErr); 6723 } 6724