xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision c5ec8890c95bf9f56beff285efbcc7b797ffb15a)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = std::string(ProducerIdentification);
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
964   return Flags;
965 }
966 
967 /// Decode the flags for GlobalValue in the summary.
968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
969                                                             uint64_t Version) {
970   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
971   // like getDecodedLinkage() above. Any future change to the linkage enum and
972   // to getDecodedLinkage() will need to be taken into account here as above.
973   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
974   RawFlags = RawFlags >> 4;
975   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
976   // The Live flag wasn't introduced until version 3. For dead stripping
977   // to work correctly on earlier versions, we must conservatively treat all
978   // values as live.
979   bool Live = (RawFlags & 0x2) || Version < 3;
980   bool Local = (RawFlags & 0x4);
981   bool AutoHide = (RawFlags & 0x8);
982 
983   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags(
989       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
990       (RawFlags & 0x4) ? true : false,
991       (GlobalObject::VCallVisibility)(RawFlags >> 3));
992 }
993 
994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
995   switch (Val) {
996   default: // Map unknown visibilities to default.
997   case 0: return GlobalValue::DefaultVisibility;
998   case 1: return GlobalValue::HiddenVisibility;
999   case 2: return GlobalValue::ProtectedVisibility;
1000   }
1001 }
1002 
1003 static GlobalValue::DLLStorageClassTypes
1004 getDecodedDLLStorageClass(unsigned Val) {
1005   switch (Val) {
1006   default: // Map unknown values to default.
1007   case 0: return GlobalValue::DefaultStorageClass;
1008   case 1: return GlobalValue::DLLImportStorageClass;
1009   case 2: return GlobalValue::DLLExportStorageClass;
1010   }
1011 }
1012 
1013 static bool getDecodedDSOLocal(unsigned Val) {
1014   switch(Val) {
1015   default: // Map unknown values to preemptable.
1016   case 0:  return false;
1017   case 1:  return true;
1018   }
1019 }
1020 
1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1022   switch (Val) {
1023     case 0: return GlobalVariable::NotThreadLocal;
1024     default: // Map unknown non-zero value to general dynamic.
1025     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1026     case 2: return GlobalVariable::LocalDynamicTLSModel;
1027     case 3: return GlobalVariable::InitialExecTLSModel;
1028     case 4: return GlobalVariable::LocalExecTLSModel;
1029   }
1030 }
1031 
1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1033   switch (Val) {
1034     default: // Map unknown to UnnamedAddr::None.
1035     case 0: return GlobalVariable::UnnamedAddr::None;
1036     case 1: return GlobalVariable::UnnamedAddr::Global;
1037     case 2: return GlobalVariable::UnnamedAddr::Local;
1038   }
1039 }
1040 
1041 static int getDecodedCastOpcode(unsigned Val) {
1042   switch (Val) {
1043   default: return -1;
1044   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1045   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1046   case bitc::CAST_SEXT    : return Instruction::SExt;
1047   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1048   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1049   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1050   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1051   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1052   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1053   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1054   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1055   case bitc::CAST_BITCAST : return Instruction::BitCast;
1056   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1057   }
1058 }
1059 
1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1061   bool IsFP = Ty->isFPOrFPVectorTy();
1062   // UnOps are only valid for int/fp or vector of int/fp types
1063   if (!IsFP && !Ty->isIntOrIntVectorTy())
1064     return -1;
1065 
1066   switch (Val) {
1067   default:
1068     return -1;
1069   case bitc::UNOP_FNEG:
1070     return IsFP ? Instruction::FNeg : -1;
1071   }
1072 }
1073 
1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1075   bool IsFP = Ty->isFPOrFPVectorTy();
1076   // BinOps are only valid for int/fp or vector of int/fp types
1077   if (!IsFP && !Ty->isIntOrIntVectorTy())
1078     return -1;
1079 
1080   switch (Val) {
1081   default:
1082     return -1;
1083   case bitc::BINOP_ADD:
1084     return IsFP ? Instruction::FAdd : Instruction::Add;
1085   case bitc::BINOP_SUB:
1086     return IsFP ? Instruction::FSub : Instruction::Sub;
1087   case bitc::BINOP_MUL:
1088     return IsFP ? Instruction::FMul : Instruction::Mul;
1089   case bitc::BINOP_UDIV:
1090     return IsFP ? -1 : Instruction::UDiv;
1091   case bitc::BINOP_SDIV:
1092     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1093   case bitc::BINOP_UREM:
1094     return IsFP ? -1 : Instruction::URem;
1095   case bitc::BINOP_SREM:
1096     return IsFP ? Instruction::FRem : Instruction::SRem;
1097   case bitc::BINOP_SHL:
1098     return IsFP ? -1 : Instruction::Shl;
1099   case bitc::BINOP_LSHR:
1100     return IsFP ? -1 : Instruction::LShr;
1101   case bitc::BINOP_ASHR:
1102     return IsFP ? -1 : Instruction::AShr;
1103   case bitc::BINOP_AND:
1104     return IsFP ? -1 : Instruction::And;
1105   case bitc::BINOP_OR:
1106     return IsFP ? -1 : Instruction::Or;
1107   case bitc::BINOP_XOR:
1108     return IsFP ? -1 : Instruction::Xor;
1109   }
1110 }
1111 
1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1113   switch (Val) {
1114   default: return AtomicRMWInst::BAD_BINOP;
1115   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1116   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1117   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1118   case bitc::RMW_AND: return AtomicRMWInst::And;
1119   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1120   case bitc::RMW_OR: return AtomicRMWInst::Or;
1121   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1122   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1123   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1124   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1125   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1126   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1127   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1128   }
1129 }
1130 
1131 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1132   switch (Val) {
1133   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1134   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1135   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1136   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1137   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1138   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1139   default: // Map unknown orderings to sequentially-consistent.
1140   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1141   }
1142 }
1143 
1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1145   switch (Val) {
1146   default: // Map unknown selection kinds to any.
1147   case bitc::COMDAT_SELECTION_KIND_ANY:
1148     return Comdat::Any;
1149   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1150     return Comdat::ExactMatch;
1151   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1152     return Comdat::Largest;
1153   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1154     return Comdat::NoDuplicates;
1155   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1156     return Comdat::SameSize;
1157   }
1158 }
1159 
1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1161   FastMathFlags FMF;
1162   if (0 != (Val & bitc::UnsafeAlgebra))
1163     FMF.setFast();
1164   if (0 != (Val & bitc::AllowReassoc))
1165     FMF.setAllowReassoc();
1166   if (0 != (Val & bitc::NoNaNs))
1167     FMF.setNoNaNs();
1168   if (0 != (Val & bitc::NoInfs))
1169     FMF.setNoInfs();
1170   if (0 != (Val & bitc::NoSignedZeros))
1171     FMF.setNoSignedZeros();
1172   if (0 != (Val & bitc::AllowReciprocal))
1173     FMF.setAllowReciprocal();
1174   if (0 != (Val & bitc::AllowContract))
1175     FMF.setAllowContract(true);
1176   if (0 != (Val & bitc::ApproxFunc))
1177     FMF.setApproxFunc();
1178   return FMF;
1179 }
1180 
1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1182   switch (Val) {
1183   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1184   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1185   }
1186 }
1187 
1188 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1189   // The type table size is always specified correctly.
1190   if (ID >= TypeList.size())
1191     return nullptr;
1192 
1193   if (Type *Ty = TypeList[ID])
1194     return Ty;
1195 
1196   // If we have a forward reference, the only possible case is when it is to a
1197   // named struct.  Just create a placeholder for now.
1198   return TypeList[ID] = createIdentifiedStructType(Context);
1199 }
1200 
1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1202                                                       StringRef Name) {
1203   auto *Ret = StructType::create(Context, Name);
1204   IdentifiedStructTypes.push_back(Ret);
1205   return Ret;
1206 }
1207 
1208 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1209   auto *Ret = StructType::create(Context);
1210   IdentifiedStructTypes.push_back(Ret);
1211   return Ret;
1212 }
1213 
1214 //===----------------------------------------------------------------------===//
1215 //  Functions for parsing blocks from the bitcode file
1216 //===----------------------------------------------------------------------===//
1217 
1218 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1219   switch (Val) {
1220   case Attribute::EndAttrKinds:
1221   case Attribute::EmptyKey:
1222   case Attribute::TombstoneKey:
1223     llvm_unreachable("Synthetic enumerators which should never get here");
1224 
1225   case Attribute::None:            return 0;
1226   case Attribute::ZExt:            return 1 << 0;
1227   case Attribute::SExt:            return 1 << 1;
1228   case Attribute::NoReturn:        return 1 << 2;
1229   case Attribute::InReg:           return 1 << 3;
1230   case Attribute::StructRet:       return 1 << 4;
1231   case Attribute::NoUnwind:        return 1 << 5;
1232   case Attribute::NoAlias:         return 1 << 6;
1233   case Attribute::ByVal:           return 1 << 7;
1234   case Attribute::Nest:            return 1 << 8;
1235   case Attribute::ReadNone:        return 1 << 9;
1236   case Attribute::ReadOnly:        return 1 << 10;
1237   case Attribute::NoInline:        return 1 << 11;
1238   case Attribute::AlwaysInline:    return 1 << 12;
1239   case Attribute::OptimizeForSize: return 1 << 13;
1240   case Attribute::StackProtect:    return 1 << 14;
1241   case Attribute::StackProtectReq: return 1 << 15;
1242   case Attribute::Alignment:       return 31 << 16;
1243   case Attribute::NoCapture:       return 1 << 21;
1244   case Attribute::NoRedZone:       return 1 << 22;
1245   case Attribute::NoImplicitFloat: return 1 << 23;
1246   case Attribute::Naked:           return 1 << 24;
1247   case Attribute::InlineHint:      return 1 << 25;
1248   case Attribute::StackAlignment:  return 7 << 26;
1249   case Attribute::ReturnsTwice:    return 1 << 29;
1250   case Attribute::UWTable:         return 1 << 30;
1251   case Attribute::NonLazyBind:     return 1U << 31;
1252   case Attribute::SanitizeAddress: return 1ULL << 32;
1253   case Attribute::MinSize:         return 1ULL << 33;
1254   case Attribute::NoDuplicate:     return 1ULL << 34;
1255   case Attribute::StackProtectStrong: return 1ULL << 35;
1256   case Attribute::SanitizeThread:  return 1ULL << 36;
1257   case Attribute::SanitizeMemory:  return 1ULL << 37;
1258   case Attribute::NoBuiltin:       return 1ULL << 38;
1259   case Attribute::Returned:        return 1ULL << 39;
1260   case Attribute::Cold:            return 1ULL << 40;
1261   case Attribute::Builtin:         return 1ULL << 41;
1262   case Attribute::OptimizeNone:    return 1ULL << 42;
1263   case Attribute::InAlloca:        return 1ULL << 43;
1264   case Attribute::NonNull:         return 1ULL << 44;
1265   case Attribute::JumpTable:       return 1ULL << 45;
1266   case Attribute::Convergent:      return 1ULL << 46;
1267   case Attribute::SafeStack:       return 1ULL << 47;
1268   case Attribute::NoRecurse:       return 1ULL << 48;
1269   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1270   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1271   case Attribute::SwiftSelf:       return 1ULL << 51;
1272   case Attribute::SwiftError:      return 1ULL << 52;
1273   case Attribute::WriteOnly:       return 1ULL << 53;
1274   case Attribute::Speculatable:    return 1ULL << 54;
1275   case Attribute::StrictFP:        return 1ULL << 55;
1276   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1277   case Attribute::NoCfCheck:       return 1ULL << 57;
1278   case Attribute::OptForFuzzing:   return 1ULL << 58;
1279   case Attribute::ShadowCallStack: return 1ULL << 59;
1280   case Attribute::SpeculativeLoadHardening:
1281     return 1ULL << 60;
1282   case Attribute::ImmArg:
1283     return 1ULL << 61;
1284   case Attribute::WillReturn:
1285     return 1ULL << 62;
1286   case Attribute::NoFree:
1287     return 1ULL << 63;
1288   case Attribute::NoSync:
1289     llvm_unreachable("nosync attribute not supported in raw format");
1290     break;
1291   case Attribute::Dereferenceable:
1292     llvm_unreachable("dereferenceable attribute not supported in raw format");
1293     break;
1294   case Attribute::DereferenceableOrNull:
1295     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1296                      "format");
1297     break;
1298   case Attribute::ArgMemOnly:
1299     llvm_unreachable("argmemonly attribute not supported in raw format");
1300     break;
1301   case Attribute::AllocSize:
1302     llvm_unreachable("allocsize not supported in raw format");
1303     break;
1304   case Attribute::SanitizeMemTag:
1305     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1306     break;
1307   }
1308   llvm_unreachable("Unsupported attribute type");
1309 }
1310 
1311 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1312   if (!Val) return;
1313 
1314   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1315        I = Attribute::AttrKind(I + 1)) {
1316     if (I == Attribute::SanitizeMemTag ||
1317         I == Attribute::Dereferenceable ||
1318         I == Attribute::DereferenceableOrNull ||
1319         I == Attribute::ArgMemOnly ||
1320         I == Attribute::AllocSize ||
1321         I == Attribute::NoSync)
1322       continue;
1323     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1324       if (I == Attribute::Alignment)
1325         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1326       else if (I == Attribute::StackAlignment)
1327         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1328       else
1329         B.addAttribute(I);
1330     }
1331   }
1332 }
1333 
1334 /// This fills an AttrBuilder object with the LLVM attributes that have
1335 /// been decoded from the given integer. This function must stay in sync with
1336 /// 'encodeLLVMAttributesForBitcode'.
1337 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1338                                            uint64_t EncodedAttrs) {
1339   // FIXME: Remove in 4.0.
1340 
1341   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1342   // the bits above 31 down by 11 bits.
1343   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1344   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1345          "Alignment must be a power of two.");
1346 
1347   if (Alignment)
1348     B.addAlignmentAttr(Alignment);
1349   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1350                           (EncodedAttrs & 0xffff));
1351 }
1352 
1353 Error BitcodeReader::parseAttributeBlock() {
1354   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1355     return Err;
1356 
1357   if (!MAttributes.empty())
1358     return error("Invalid multiple blocks");
1359 
1360   SmallVector<uint64_t, 64> Record;
1361 
1362   SmallVector<AttributeList, 8> Attrs;
1363 
1364   // Read all the records.
1365   while (true) {
1366     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1367     if (!MaybeEntry)
1368       return MaybeEntry.takeError();
1369     BitstreamEntry Entry = MaybeEntry.get();
1370 
1371     switch (Entry.Kind) {
1372     case BitstreamEntry::SubBlock: // Handled for us already.
1373     case BitstreamEntry::Error:
1374       return error("Malformed block");
1375     case BitstreamEntry::EndBlock:
1376       return Error::success();
1377     case BitstreamEntry::Record:
1378       // The interesting case.
1379       break;
1380     }
1381 
1382     // Read a record.
1383     Record.clear();
1384     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1385     if (!MaybeRecord)
1386       return MaybeRecord.takeError();
1387     switch (MaybeRecord.get()) {
1388     default:  // Default behavior: ignore.
1389       break;
1390     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1391       // FIXME: Remove in 4.0.
1392       if (Record.size() & 1)
1393         return error("Invalid record");
1394 
1395       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1396         AttrBuilder B;
1397         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1398         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1399       }
1400 
1401       MAttributes.push_back(AttributeList::get(Context, Attrs));
1402       Attrs.clear();
1403       break;
1404     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1405       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1406         Attrs.push_back(MAttributeGroups[Record[i]]);
1407 
1408       MAttributes.push_back(AttributeList::get(Context, Attrs));
1409       Attrs.clear();
1410       break;
1411     }
1412   }
1413 }
1414 
1415 // Returns Attribute::None on unrecognized codes.
1416 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1417   switch (Code) {
1418   default:
1419     return Attribute::None;
1420   case bitc::ATTR_KIND_ALIGNMENT:
1421     return Attribute::Alignment;
1422   case bitc::ATTR_KIND_ALWAYS_INLINE:
1423     return Attribute::AlwaysInline;
1424   case bitc::ATTR_KIND_ARGMEMONLY:
1425     return Attribute::ArgMemOnly;
1426   case bitc::ATTR_KIND_BUILTIN:
1427     return Attribute::Builtin;
1428   case bitc::ATTR_KIND_BY_VAL:
1429     return Attribute::ByVal;
1430   case bitc::ATTR_KIND_IN_ALLOCA:
1431     return Attribute::InAlloca;
1432   case bitc::ATTR_KIND_COLD:
1433     return Attribute::Cold;
1434   case bitc::ATTR_KIND_CONVERGENT:
1435     return Attribute::Convergent;
1436   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1437     return Attribute::InaccessibleMemOnly;
1438   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1439     return Attribute::InaccessibleMemOrArgMemOnly;
1440   case bitc::ATTR_KIND_INLINE_HINT:
1441     return Attribute::InlineHint;
1442   case bitc::ATTR_KIND_IN_REG:
1443     return Attribute::InReg;
1444   case bitc::ATTR_KIND_JUMP_TABLE:
1445     return Attribute::JumpTable;
1446   case bitc::ATTR_KIND_MIN_SIZE:
1447     return Attribute::MinSize;
1448   case bitc::ATTR_KIND_NAKED:
1449     return Attribute::Naked;
1450   case bitc::ATTR_KIND_NEST:
1451     return Attribute::Nest;
1452   case bitc::ATTR_KIND_NO_ALIAS:
1453     return Attribute::NoAlias;
1454   case bitc::ATTR_KIND_NO_BUILTIN:
1455     return Attribute::NoBuiltin;
1456   case bitc::ATTR_KIND_NO_CAPTURE:
1457     return Attribute::NoCapture;
1458   case bitc::ATTR_KIND_NO_DUPLICATE:
1459     return Attribute::NoDuplicate;
1460   case bitc::ATTR_KIND_NOFREE:
1461     return Attribute::NoFree;
1462   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1463     return Attribute::NoImplicitFloat;
1464   case bitc::ATTR_KIND_NO_INLINE:
1465     return Attribute::NoInline;
1466   case bitc::ATTR_KIND_NO_RECURSE:
1467     return Attribute::NoRecurse;
1468   case bitc::ATTR_KIND_NON_LAZY_BIND:
1469     return Attribute::NonLazyBind;
1470   case bitc::ATTR_KIND_NON_NULL:
1471     return Attribute::NonNull;
1472   case bitc::ATTR_KIND_DEREFERENCEABLE:
1473     return Attribute::Dereferenceable;
1474   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1475     return Attribute::DereferenceableOrNull;
1476   case bitc::ATTR_KIND_ALLOC_SIZE:
1477     return Attribute::AllocSize;
1478   case bitc::ATTR_KIND_NO_RED_ZONE:
1479     return Attribute::NoRedZone;
1480   case bitc::ATTR_KIND_NO_RETURN:
1481     return Attribute::NoReturn;
1482   case bitc::ATTR_KIND_NOSYNC:
1483     return Attribute::NoSync;
1484   case bitc::ATTR_KIND_NOCF_CHECK:
1485     return Attribute::NoCfCheck;
1486   case bitc::ATTR_KIND_NO_UNWIND:
1487     return Attribute::NoUnwind;
1488   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1489     return Attribute::OptForFuzzing;
1490   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1491     return Attribute::OptimizeForSize;
1492   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1493     return Attribute::OptimizeNone;
1494   case bitc::ATTR_KIND_READ_NONE:
1495     return Attribute::ReadNone;
1496   case bitc::ATTR_KIND_READ_ONLY:
1497     return Attribute::ReadOnly;
1498   case bitc::ATTR_KIND_RETURNED:
1499     return Attribute::Returned;
1500   case bitc::ATTR_KIND_RETURNS_TWICE:
1501     return Attribute::ReturnsTwice;
1502   case bitc::ATTR_KIND_S_EXT:
1503     return Attribute::SExt;
1504   case bitc::ATTR_KIND_SPECULATABLE:
1505     return Attribute::Speculatable;
1506   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1507     return Attribute::StackAlignment;
1508   case bitc::ATTR_KIND_STACK_PROTECT:
1509     return Attribute::StackProtect;
1510   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1511     return Attribute::StackProtectReq;
1512   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1513     return Attribute::StackProtectStrong;
1514   case bitc::ATTR_KIND_SAFESTACK:
1515     return Attribute::SafeStack;
1516   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1517     return Attribute::ShadowCallStack;
1518   case bitc::ATTR_KIND_STRICT_FP:
1519     return Attribute::StrictFP;
1520   case bitc::ATTR_KIND_STRUCT_RET:
1521     return Attribute::StructRet;
1522   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1523     return Attribute::SanitizeAddress;
1524   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1525     return Attribute::SanitizeHWAddress;
1526   case bitc::ATTR_KIND_SANITIZE_THREAD:
1527     return Attribute::SanitizeThread;
1528   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1529     return Attribute::SanitizeMemory;
1530   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1531     return Attribute::SpeculativeLoadHardening;
1532   case bitc::ATTR_KIND_SWIFT_ERROR:
1533     return Attribute::SwiftError;
1534   case bitc::ATTR_KIND_SWIFT_SELF:
1535     return Attribute::SwiftSelf;
1536   case bitc::ATTR_KIND_UW_TABLE:
1537     return Attribute::UWTable;
1538   case bitc::ATTR_KIND_WILLRETURN:
1539     return Attribute::WillReturn;
1540   case bitc::ATTR_KIND_WRITEONLY:
1541     return Attribute::WriteOnly;
1542   case bitc::ATTR_KIND_Z_EXT:
1543     return Attribute::ZExt;
1544   case bitc::ATTR_KIND_IMMARG:
1545     return Attribute::ImmArg;
1546   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1547     return Attribute::SanitizeMemTag;
1548   }
1549 }
1550 
1551 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1552                                          MaybeAlign &Alignment) {
1553   // Note: Alignment in bitcode files is incremented by 1, so that zero
1554   // can be used for default alignment.
1555   if (Exponent > Value::MaxAlignmentExponent + 1)
1556     return error("Invalid alignment value");
1557   Alignment = decodeMaybeAlign(Exponent);
1558   return Error::success();
1559 }
1560 
1561 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1562   *Kind = getAttrFromCode(Code);
1563   if (*Kind == Attribute::None)
1564     return error("Unknown attribute kind (" + Twine(Code) + ")");
1565   return Error::success();
1566 }
1567 
1568 Error BitcodeReader::parseAttributeGroupBlock() {
1569   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1570     return Err;
1571 
1572   if (!MAttributeGroups.empty())
1573     return error("Invalid multiple blocks");
1574 
1575   SmallVector<uint64_t, 64> Record;
1576 
1577   // Read all the records.
1578   while (true) {
1579     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1580     if (!MaybeEntry)
1581       return MaybeEntry.takeError();
1582     BitstreamEntry Entry = MaybeEntry.get();
1583 
1584     switch (Entry.Kind) {
1585     case BitstreamEntry::SubBlock: // Handled for us already.
1586     case BitstreamEntry::Error:
1587       return error("Malformed block");
1588     case BitstreamEntry::EndBlock:
1589       return Error::success();
1590     case BitstreamEntry::Record:
1591       // The interesting case.
1592       break;
1593     }
1594 
1595     // Read a record.
1596     Record.clear();
1597     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1598     if (!MaybeRecord)
1599       return MaybeRecord.takeError();
1600     switch (MaybeRecord.get()) {
1601     default:  // Default behavior: ignore.
1602       break;
1603     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1604       if (Record.size() < 3)
1605         return error("Invalid record");
1606 
1607       uint64_t GrpID = Record[0];
1608       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1609 
1610       AttrBuilder B;
1611       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1612         if (Record[i] == 0) {        // Enum attribute
1613           Attribute::AttrKind Kind;
1614           if (Error Err = parseAttrKind(Record[++i], &Kind))
1615             return Err;
1616 
1617           // Upgrade old-style byval attribute to one with a type, even if it's
1618           // nullptr. We will have to insert the real type when we associate
1619           // this AttributeList with a function.
1620           if (Kind == Attribute::ByVal)
1621             B.addByValAttr(nullptr);
1622 
1623           B.addAttribute(Kind);
1624         } else if (Record[i] == 1) { // Integer attribute
1625           Attribute::AttrKind Kind;
1626           if (Error Err = parseAttrKind(Record[++i], &Kind))
1627             return Err;
1628           if (Kind == Attribute::Alignment)
1629             B.addAlignmentAttr(Record[++i]);
1630           else if (Kind == Attribute::StackAlignment)
1631             B.addStackAlignmentAttr(Record[++i]);
1632           else if (Kind == Attribute::Dereferenceable)
1633             B.addDereferenceableAttr(Record[++i]);
1634           else if (Kind == Attribute::DereferenceableOrNull)
1635             B.addDereferenceableOrNullAttr(Record[++i]);
1636           else if (Kind == Attribute::AllocSize)
1637             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1638         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1639           bool HasValue = (Record[i++] == 4);
1640           SmallString<64> KindStr;
1641           SmallString<64> ValStr;
1642 
1643           while (Record[i] != 0 && i != e)
1644             KindStr += Record[i++];
1645           assert(Record[i] == 0 && "Kind string not null terminated");
1646 
1647           if (HasValue) {
1648             // Has a value associated with it.
1649             ++i; // Skip the '0' that terminates the "kind" string.
1650             while (Record[i] != 0 && i != e)
1651               ValStr += Record[i++];
1652             assert(Record[i] == 0 && "Value string not null terminated");
1653           }
1654 
1655           B.addAttribute(KindStr.str(), ValStr.str());
1656         } else {
1657           assert((Record[i] == 5 || Record[i] == 6) &&
1658                  "Invalid attribute group entry");
1659           bool HasType = Record[i] == 6;
1660           Attribute::AttrKind Kind;
1661           if (Error Err = parseAttrKind(Record[++i], &Kind))
1662             return Err;
1663           if (Kind == Attribute::ByVal)
1664             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1665         }
1666       }
1667 
1668       UpgradeFramePointerAttributes(B);
1669       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1670       break;
1671     }
1672     }
1673   }
1674 }
1675 
1676 Error BitcodeReader::parseTypeTable() {
1677   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1678     return Err;
1679 
1680   return parseTypeTableBody();
1681 }
1682 
1683 Error BitcodeReader::parseTypeTableBody() {
1684   if (!TypeList.empty())
1685     return error("Invalid multiple blocks");
1686 
1687   SmallVector<uint64_t, 64> Record;
1688   unsigned NumRecords = 0;
1689 
1690   SmallString<64> TypeName;
1691 
1692   // Read all the records for this type table.
1693   while (true) {
1694     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1695     if (!MaybeEntry)
1696       return MaybeEntry.takeError();
1697     BitstreamEntry Entry = MaybeEntry.get();
1698 
1699     switch (Entry.Kind) {
1700     case BitstreamEntry::SubBlock: // Handled for us already.
1701     case BitstreamEntry::Error:
1702       return error("Malformed block");
1703     case BitstreamEntry::EndBlock:
1704       if (NumRecords != TypeList.size())
1705         return error("Malformed block");
1706       return Error::success();
1707     case BitstreamEntry::Record:
1708       // The interesting case.
1709       break;
1710     }
1711 
1712     // Read a record.
1713     Record.clear();
1714     Type *ResultTy = nullptr;
1715     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1716     if (!MaybeRecord)
1717       return MaybeRecord.takeError();
1718     switch (MaybeRecord.get()) {
1719     default:
1720       return error("Invalid value");
1721     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1722       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1723       // type list.  This allows us to reserve space.
1724       if (Record.size() < 1)
1725         return error("Invalid record");
1726       TypeList.resize(Record[0]);
1727       continue;
1728     case bitc::TYPE_CODE_VOID:      // VOID
1729       ResultTy = Type::getVoidTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_HALF:     // HALF
1732       ResultTy = Type::getHalfTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1735       ResultTy = Type::getFloatTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1738       ResultTy = Type::getDoubleTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1741       ResultTy = Type::getX86_FP80Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_FP128:     // FP128
1744       ResultTy = Type::getFP128Ty(Context);
1745       break;
1746     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1747       ResultTy = Type::getPPC_FP128Ty(Context);
1748       break;
1749     case bitc::TYPE_CODE_LABEL:     // LABEL
1750       ResultTy = Type::getLabelTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_METADATA:  // METADATA
1753       ResultTy = Type::getMetadataTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1756       ResultTy = Type::getX86_MMXTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1759       ResultTy = Type::getTokenTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1762       if (Record.size() < 1)
1763         return error("Invalid record");
1764 
1765       uint64_t NumBits = Record[0];
1766       if (NumBits < IntegerType::MIN_INT_BITS ||
1767           NumBits > IntegerType::MAX_INT_BITS)
1768         return error("Bitwidth for integer type out of range");
1769       ResultTy = IntegerType::get(Context, NumBits);
1770       break;
1771     }
1772     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1773                                     //          [pointee type, address space]
1774       if (Record.size() < 1)
1775         return error("Invalid record");
1776       unsigned AddressSpace = 0;
1777       if (Record.size() == 2)
1778         AddressSpace = Record[1];
1779       ResultTy = getTypeByID(Record[0]);
1780       if (!ResultTy ||
1781           !PointerType::isValidElementType(ResultTy))
1782         return error("Invalid type");
1783       ResultTy = PointerType::get(ResultTy, AddressSpace);
1784       break;
1785     }
1786     case bitc::TYPE_CODE_FUNCTION_OLD: {
1787       // FIXME: attrid is dead, remove it in LLVM 4.0
1788       // FUNCTION: [vararg, attrid, retty, paramty x N]
1789       if (Record.size() < 3)
1790         return error("Invalid record");
1791       SmallVector<Type*, 8> ArgTys;
1792       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1793         if (Type *T = getTypeByID(Record[i]))
1794           ArgTys.push_back(T);
1795         else
1796           break;
1797       }
1798 
1799       ResultTy = getTypeByID(Record[2]);
1800       if (!ResultTy || ArgTys.size() < Record.size()-3)
1801         return error("Invalid type");
1802 
1803       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1804       break;
1805     }
1806     case bitc::TYPE_CODE_FUNCTION: {
1807       // FUNCTION: [vararg, retty, paramty x N]
1808       if (Record.size() < 2)
1809         return error("Invalid record");
1810       SmallVector<Type*, 8> ArgTys;
1811       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1812         if (Type *T = getTypeByID(Record[i])) {
1813           if (!FunctionType::isValidArgumentType(T))
1814             return error("Invalid function argument type");
1815           ArgTys.push_back(T);
1816         }
1817         else
1818           break;
1819       }
1820 
1821       ResultTy = getTypeByID(Record[1]);
1822       if (!ResultTy || ArgTys.size() < Record.size()-2)
1823         return error("Invalid type");
1824 
1825       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1826       break;
1827     }
1828     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1829       if (Record.size() < 1)
1830         return error("Invalid record");
1831       SmallVector<Type*, 8> EltTys;
1832       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1833         if (Type *T = getTypeByID(Record[i]))
1834           EltTys.push_back(T);
1835         else
1836           break;
1837       }
1838       if (EltTys.size() != Record.size()-1)
1839         return error("Invalid type");
1840       ResultTy = StructType::get(Context, EltTys, Record[0]);
1841       break;
1842     }
1843     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1844       if (convertToString(Record, 0, TypeName))
1845         return error("Invalid record");
1846       continue;
1847 
1848     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1849       if (Record.size() < 1)
1850         return error("Invalid record");
1851 
1852       if (NumRecords >= TypeList.size())
1853         return error("Invalid TYPE table");
1854 
1855       // Check to see if this was forward referenced, if so fill in the temp.
1856       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1857       if (Res) {
1858         Res->setName(TypeName);
1859         TypeList[NumRecords] = nullptr;
1860       } else  // Otherwise, create a new struct.
1861         Res = createIdentifiedStructType(Context, TypeName);
1862       TypeName.clear();
1863 
1864       SmallVector<Type*, 8> EltTys;
1865       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1866         if (Type *T = getTypeByID(Record[i]))
1867           EltTys.push_back(T);
1868         else
1869           break;
1870       }
1871       if (EltTys.size() != Record.size()-1)
1872         return error("Invalid record");
1873       Res->setBody(EltTys, Record[0]);
1874       ResultTy = Res;
1875       break;
1876     }
1877     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1878       if (Record.size() != 1)
1879         return error("Invalid record");
1880 
1881       if (NumRecords >= TypeList.size())
1882         return error("Invalid TYPE table");
1883 
1884       // Check to see if this was forward referenced, if so fill in the temp.
1885       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1886       if (Res) {
1887         Res->setName(TypeName);
1888         TypeList[NumRecords] = nullptr;
1889       } else  // Otherwise, create a new struct with no body.
1890         Res = createIdentifiedStructType(Context, TypeName);
1891       TypeName.clear();
1892       ResultTy = Res;
1893       break;
1894     }
1895     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1896       if (Record.size() < 2)
1897         return error("Invalid record");
1898       ResultTy = getTypeByID(Record[1]);
1899       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1900         return error("Invalid type");
1901       ResultTy = ArrayType::get(ResultTy, Record[0]);
1902       break;
1903     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1904                                     //         [numelts, eltty, scalable]
1905       if (Record.size() < 2)
1906         return error("Invalid record");
1907       if (Record[0] == 0)
1908         return error("Invalid vector length");
1909       ResultTy = getTypeByID(Record[1]);
1910       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1911         return error("Invalid type");
1912       bool Scalable = Record.size() > 2 ? Record[2] : false;
1913       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1914       break;
1915     }
1916 
1917     if (NumRecords >= TypeList.size())
1918       return error("Invalid TYPE table");
1919     if (TypeList[NumRecords])
1920       return error(
1921           "Invalid TYPE table: Only named structs can be forward referenced");
1922     assert(ResultTy && "Didn't read a type?");
1923     TypeList[NumRecords++] = ResultTy;
1924   }
1925 }
1926 
1927 Error BitcodeReader::parseOperandBundleTags() {
1928   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1929     return Err;
1930 
1931   if (!BundleTags.empty())
1932     return error("Invalid multiple blocks");
1933 
1934   SmallVector<uint64_t, 64> Record;
1935 
1936   while (true) {
1937     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1938     if (!MaybeEntry)
1939       return MaybeEntry.takeError();
1940     BitstreamEntry Entry = MaybeEntry.get();
1941 
1942     switch (Entry.Kind) {
1943     case BitstreamEntry::SubBlock: // Handled for us already.
1944     case BitstreamEntry::Error:
1945       return error("Malformed block");
1946     case BitstreamEntry::EndBlock:
1947       return Error::success();
1948     case BitstreamEntry::Record:
1949       // The interesting case.
1950       break;
1951     }
1952 
1953     // Tags are implicitly mapped to integers by their order.
1954 
1955     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1956     if (!MaybeRecord)
1957       return MaybeRecord.takeError();
1958     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1959       return error("Invalid record");
1960 
1961     // OPERAND_BUNDLE_TAG: [strchr x N]
1962     BundleTags.emplace_back();
1963     if (convertToString(Record, 0, BundleTags.back()))
1964       return error("Invalid record");
1965     Record.clear();
1966   }
1967 }
1968 
1969 Error BitcodeReader::parseSyncScopeNames() {
1970   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1971     return Err;
1972 
1973   if (!SSIDs.empty())
1974     return error("Invalid multiple synchronization scope names blocks");
1975 
1976   SmallVector<uint64_t, 64> Record;
1977   while (true) {
1978     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1979     if (!MaybeEntry)
1980       return MaybeEntry.takeError();
1981     BitstreamEntry Entry = MaybeEntry.get();
1982 
1983     switch (Entry.Kind) {
1984     case BitstreamEntry::SubBlock: // Handled for us already.
1985     case BitstreamEntry::Error:
1986       return error("Malformed block");
1987     case BitstreamEntry::EndBlock:
1988       if (SSIDs.empty())
1989         return error("Invalid empty synchronization scope names block");
1990       return Error::success();
1991     case BitstreamEntry::Record:
1992       // The interesting case.
1993       break;
1994     }
1995 
1996     // Synchronization scope names are implicitly mapped to synchronization
1997     // scope IDs by their order.
1998 
1999     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2000     if (!MaybeRecord)
2001       return MaybeRecord.takeError();
2002     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2003       return error("Invalid record");
2004 
2005     SmallString<16> SSN;
2006     if (convertToString(Record, 0, SSN))
2007       return error("Invalid record");
2008 
2009     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2010     Record.clear();
2011   }
2012 }
2013 
2014 /// Associate a value with its name from the given index in the provided record.
2015 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2016                                              unsigned NameIndex, Triple &TT) {
2017   SmallString<128> ValueName;
2018   if (convertToString(Record, NameIndex, ValueName))
2019     return error("Invalid record");
2020   unsigned ValueID = Record[0];
2021   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2022     return error("Invalid record");
2023   Value *V = ValueList[ValueID];
2024 
2025   StringRef NameStr(ValueName.data(), ValueName.size());
2026   if (NameStr.find_first_of(0) != StringRef::npos)
2027     return error("Invalid value name");
2028   V->setName(NameStr);
2029   auto *GO = dyn_cast<GlobalObject>(V);
2030   if (GO) {
2031     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2032       if (TT.supportsCOMDAT())
2033         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2034       else
2035         GO->setComdat(nullptr);
2036     }
2037   }
2038   return V;
2039 }
2040 
2041 /// Helper to note and return the current location, and jump to the given
2042 /// offset.
2043 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2044                                                  BitstreamCursor &Stream) {
2045   // Save the current parsing location so we can jump back at the end
2046   // of the VST read.
2047   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2048   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2049     return std::move(JumpFailed);
2050   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2051   if (!MaybeEntry)
2052     return MaybeEntry.takeError();
2053   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2054   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2055   return CurrentBit;
2056 }
2057 
2058 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2059                                             Function *F,
2060                                             ArrayRef<uint64_t> Record) {
2061   // Note that we subtract 1 here because the offset is relative to one word
2062   // before the start of the identification or module block, which was
2063   // historically always the start of the regular bitcode header.
2064   uint64_t FuncWordOffset = Record[1] - 1;
2065   uint64_t FuncBitOffset = FuncWordOffset * 32;
2066   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2067   // Set the LastFunctionBlockBit to point to the last function block.
2068   // Later when parsing is resumed after function materialization,
2069   // we can simply skip that last function block.
2070   if (FuncBitOffset > LastFunctionBlockBit)
2071     LastFunctionBlockBit = FuncBitOffset;
2072 }
2073 
2074 /// Read a new-style GlobalValue symbol table.
2075 Error BitcodeReader::parseGlobalValueSymbolTable() {
2076   unsigned FuncBitcodeOffsetDelta =
2077       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2078 
2079   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2080     return Err;
2081 
2082   SmallVector<uint64_t, 64> Record;
2083   while (true) {
2084     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2085     if (!MaybeEntry)
2086       return MaybeEntry.takeError();
2087     BitstreamEntry Entry = MaybeEntry.get();
2088 
2089     switch (Entry.Kind) {
2090     case BitstreamEntry::SubBlock:
2091     case BitstreamEntry::Error:
2092       return error("Malformed block");
2093     case BitstreamEntry::EndBlock:
2094       return Error::success();
2095     case BitstreamEntry::Record:
2096       break;
2097     }
2098 
2099     Record.clear();
2100     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2101     if (!MaybeRecord)
2102       return MaybeRecord.takeError();
2103     switch (MaybeRecord.get()) {
2104     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2105       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2106                               cast<Function>(ValueList[Record[0]]), Record);
2107       break;
2108     }
2109   }
2110 }
2111 
2112 /// Parse the value symbol table at either the current parsing location or
2113 /// at the given bit offset if provided.
2114 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2115   uint64_t CurrentBit;
2116   // Pass in the Offset to distinguish between calling for the module-level
2117   // VST (where we want to jump to the VST offset) and the function-level
2118   // VST (where we don't).
2119   if (Offset > 0) {
2120     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2121     if (!MaybeCurrentBit)
2122       return MaybeCurrentBit.takeError();
2123     CurrentBit = MaybeCurrentBit.get();
2124     // If this module uses a string table, read this as a module-level VST.
2125     if (UseStrtab) {
2126       if (Error Err = parseGlobalValueSymbolTable())
2127         return Err;
2128       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2129         return JumpFailed;
2130       return Error::success();
2131     }
2132     // Otherwise, the VST will be in a similar format to a function-level VST,
2133     // and will contain symbol names.
2134   }
2135 
2136   // Compute the delta between the bitcode indices in the VST (the word offset
2137   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2138   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2139   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2140   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2141   // just before entering the VST subblock because: 1) the EnterSubBlock
2142   // changes the AbbrevID width; 2) the VST block is nested within the same
2143   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2144   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2145   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2146   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2147   unsigned FuncBitcodeOffsetDelta =
2148       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2149 
2150   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2151     return Err;
2152 
2153   SmallVector<uint64_t, 64> Record;
2154 
2155   Triple TT(TheModule->getTargetTriple());
2156 
2157   // Read all the records for this value table.
2158   SmallString<128> ValueName;
2159 
2160   while (true) {
2161     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2162     if (!MaybeEntry)
2163       return MaybeEntry.takeError();
2164     BitstreamEntry Entry = MaybeEntry.get();
2165 
2166     switch (Entry.Kind) {
2167     case BitstreamEntry::SubBlock: // Handled for us already.
2168     case BitstreamEntry::Error:
2169       return error("Malformed block");
2170     case BitstreamEntry::EndBlock:
2171       if (Offset > 0)
2172         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2173           return JumpFailed;
2174       return Error::success();
2175     case BitstreamEntry::Record:
2176       // The interesting case.
2177       break;
2178     }
2179 
2180     // Read a record.
2181     Record.clear();
2182     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2183     if (!MaybeRecord)
2184       return MaybeRecord.takeError();
2185     switch (MaybeRecord.get()) {
2186     default:  // Default behavior: unknown type.
2187       break;
2188     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2189       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2190       if (Error Err = ValOrErr.takeError())
2191         return Err;
2192       ValOrErr.get();
2193       break;
2194     }
2195     case bitc::VST_CODE_FNENTRY: {
2196       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2197       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2198       if (Error Err = ValOrErr.takeError())
2199         return Err;
2200       Value *V = ValOrErr.get();
2201 
2202       // Ignore function offsets emitted for aliases of functions in older
2203       // versions of LLVM.
2204       if (auto *F = dyn_cast<Function>(V))
2205         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2206       break;
2207     }
2208     case bitc::VST_CODE_BBENTRY: {
2209       if (convertToString(Record, 1, ValueName))
2210         return error("Invalid record");
2211       BasicBlock *BB = getBasicBlock(Record[0]);
2212       if (!BB)
2213         return error("Invalid record");
2214 
2215       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2216       ValueName.clear();
2217       break;
2218     }
2219     }
2220   }
2221 }
2222 
2223 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2224 /// encoding.
2225 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2226   if ((V & 1) == 0)
2227     return V >> 1;
2228   if (V != 1)
2229     return -(V >> 1);
2230   // There is no such thing as -0 with integers.  "-0" really means MININT.
2231   return 1ULL << 63;
2232 }
2233 
2234 /// Resolve all of the initializers for global values and aliases that we can.
2235 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2236   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2237   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2238       IndirectSymbolInitWorklist;
2239   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2240   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2241   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2242 
2243   GlobalInitWorklist.swap(GlobalInits);
2244   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2245   FunctionPrefixWorklist.swap(FunctionPrefixes);
2246   FunctionPrologueWorklist.swap(FunctionPrologues);
2247   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2248 
2249   while (!GlobalInitWorklist.empty()) {
2250     unsigned ValID = GlobalInitWorklist.back().second;
2251     if (ValID >= ValueList.size()) {
2252       // Not ready to resolve this yet, it requires something later in the file.
2253       GlobalInits.push_back(GlobalInitWorklist.back());
2254     } else {
2255       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2256         GlobalInitWorklist.back().first->setInitializer(C);
2257       else
2258         return error("Expected a constant");
2259     }
2260     GlobalInitWorklist.pop_back();
2261   }
2262 
2263   while (!IndirectSymbolInitWorklist.empty()) {
2264     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2265     if (ValID >= ValueList.size()) {
2266       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2267     } else {
2268       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2269       if (!C)
2270         return error("Expected a constant");
2271       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2272       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2273         return error("Alias and aliasee types don't match");
2274       GIS->setIndirectSymbol(C);
2275     }
2276     IndirectSymbolInitWorklist.pop_back();
2277   }
2278 
2279   while (!FunctionPrefixWorklist.empty()) {
2280     unsigned ValID = FunctionPrefixWorklist.back().second;
2281     if (ValID >= ValueList.size()) {
2282       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2283     } else {
2284       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2285         FunctionPrefixWorklist.back().first->setPrefixData(C);
2286       else
2287         return error("Expected a constant");
2288     }
2289     FunctionPrefixWorklist.pop_back();
2290   }
2291 
2292   while (!FunctionPrologueWorklist.empty()) {
2293     unsigned ValID = FunctionPrologueWorklist.back().second;
2294     if (ValID >= ValueList.size()) {
2295       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2296     } else {
2297       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2298         FunctionPrologueWorklist.back().first->setPrologueData(C);
2299       else
2300         return error("Expected a constant");
2301     }
2302     FunctionPrologueWorklist.pop_back();
2303   }
2304 
2305   while (!FunctionPersonalityFnWorklist.empty()) {
2306     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2307     if (ValID >= ValueList.size()) {
2308       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2309     } else {
2310       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2311         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2312       else
2313         return error("Expected a constant");
2314     }
2315     FunctionPersonalityFnWorklist.pop_back();
2316   }
2317 
2318   return Error::success();
2319 }
2320 
2321 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2322   SmallVector<uint64_t, 8> Words(Vals.size());
2323   transform(Vals, Words.begin(),
2324                  BitcodeReader::decodeSignRotatedValue);
2325 
2326   return APInt(TypeBits, Words);
2327 }
2328 
2329 Error BitcodeReader::parseConstants() {
2330   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2331     return Err;
2332 
2333   SmallVector<uint64_t, 64> Record;
2334 
2335   // Read all the records for this value table.
2336   Type *CurTy = Type::getInt32Ty(Context);
2337   Type *CurFullTy = Type::getInt32Ty(Context);
2338   unsigned NextCstNo = ValueList.size();
2339 
2340   while (true) {
2341     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2342     if (!MaybeEntry)
2343       return MaybeEntry.takeError();
2344     BitstreamEntry Entry = MaybeEntry.get();
2345 
2346     switch (Entry.Kind) {
2347     case BitstreamEntry::SubBlock: // Handled for us already.
2348     case BitstreamEntry::Error:
2349       return error("Malformed block");
2350     case BitstreamEntry::EndBlock:
2351       if (NextCstNo != ValueList.size())
2352         return error("Invalid constant reference");
2353 
2354       // Once all the constants have been read, go through and resolve forward
2355       // references.
2356       ValueList.resolveConstantForwardRefs();
2357       return Error::success();
2358     case BitstreamEntry::Record:
2359       // The interesting case.
2360       break;
2361     }
2362 
2363     // Read a record.
2364     Record.clear();
2365     Type *VoidType = Type::getVoidTy(Context);
2366     Value *V = nullptr;
2367     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2368     if (!MaybeBitCode)
2369       return MaybeBitCode.takeError();
2370     switch (unsigned BitCode = MaybeBitCode.get()) {
2371     default:  // Default behavior: unknown constant
2372     case bitc::CST_CODE_UNDEF:     // UNDEF
2373       V = UndefValue::get(CurTy);
2374       break;
2375     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2376       if (Record.empty())
2377         return error("Invalid record");
2378       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2379         return error("Invalid record");
2380       if (TypeList[Record[0]] == VoidType)
2381         return error("Invalid constant type");
2382       CurFullTy = TypeList[Record[0]];
2383       CurTy = flattenPointerTypes(CurFullTy);
2384       continue;  // Skip the ValueList manipulation.
2385     case bitc::CST_CODE_NULL:      // NULL
2386       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2387         return error("Invalid type for a constant null value");
2388       V = Constant::getNullValue(CurTy);
2389       break;
2390     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2391       if (!CurTy->isIntegerTy() || Record.empty())
2392         return error("Invalid record");
2393       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2394       break;
2395     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2396       if (!CurTy->isIntegerTy() || Record.empty())
2397         return error("Invalid record");
2398 
2399       APInt VInt =
2400           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2401       V = ConstantInt::get(Context, VInt);
2402 
2403       break;
2404     }
2405     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2406       if (Record.empty())
2407         return error("Invalid record");
2408       if (CurTy->isHalfTy())
2409         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2410                                              APInt(16, (uint16_t)Record[0])));
2411       else if (CurTy->isFloatTy())
2412         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2413                                              APInt(32, (uint32_t)Record[0])));
2414       else if (CurTy->isDoubleTy())
2415         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2416                                              APInt(64, Record[0])));
2417       else if (CurTy->isX86_FP80Ty()) {
2418         // Bits are not stored the same way as a normal i80 APInt, compensate.
2419         uint64_t Rearrange[2];
2420         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2421         Rearrange[1] = Record[0] >> 48;
2422         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2423                                              APInt(80, Rearrange)));
2424       } else if (CurTy->isFP128Ty())
2425         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2426                                              APInt(128, Record)));
2427       else if (CurTy->isPPC_FP128Ty())
2428         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2429                                              APInt(128, Record)));
2430       else
2431         V = UndefValue::get(CurTy);
2432       break;
2433     }
2434 
2435     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2436       if (Record.empty())
2437         return error("Invalid record");
2438 
2439       unsigned Size = Record.size();
2440       SmallVector<Constant*, 16> Elts;
2441 
2442       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2443         for (unsigned i = 0; i != Size; ++i)
2444           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2445                                                      STy->getElementType(i)));
2446         V = ConstantStruct::get(STy, Elts);
2447       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2448         Type *EltTy = ATy->getElementType();
2449         for (unsigned i = 0; i != Size; ++i)
2450           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2451         V = ConstantArray::get(ATy, Elts);
2452       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2453         Type *EltTy = VTy->getElementType();
2454         for (unsigned i = 0; i != Size; ++i)
2455           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2456         V = ConstantVector::get(Elts);
2457       } else {
2458         V = UndefValue::get(CurTy);
2459       }
2460       break;
2461     }
2462     case bitc::CST_CODE_STRING:    // STRING: [values]
2463     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2464       if (Record.empty())
2465         return error("Invalid record");
2466 
2467       SmallString<16> Elts(Record.begin(), Record.end());
2468       V = ConstantDataArray::getString(Context, Elts,
2469                                        BitCode == bitc::CST_CODE_CSTRING);
2470       break;
2471     }
2472     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2473       if (Record.empty())
2474         return error("Invalid record");
2475 
2476       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2477       if (EltTy->isIntegerTy(8)) {
2478         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2479         if (isa<VectorType>(CurTy))
2480           V = ConstantDataVector::get(Context, Elts);
2481         else
2482           V = ConstantDataArray::get(Context, Elts);
2483       } else if (EltTy->isIntegerTy(16)) {
2484         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2485         if (isa<VectorType>(CurTy))
2486           V = ConstantDataVector::get(Context, Elts);
2487         else
2488           V = ConstantDataArray::get(Context, Elts);
2489       } else if (EltTy->isIntegerTy(32)) {
2490         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2491         if (isa<VectorType>(CurTy))
2492           V = ConstantDataVector::get(Context, Elts);
2493         else
2494           V = ConstantDataArray::get(Context, Elts);
2495       } else if (EltTy->isIntegerTy(64)) {
2496         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2497         if (isa<VectorType>(CurTy))
2498           V = ConstantDataVector::get(Context, Elts);
2499         else
2500           V = ConstantDataArray::get(Context, Elts);
2501       } else if (EltTy->isHalfTy()) {
2502         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2503         if (isa<VectorType>(CurTy))
2504           V = ConstantDataVector::getFP(Context, Elts);
2505         else
2506           V = ConstantDataArray::getFP(Context, Elts);
2507       } else if (EltTy->isFloatTy()) {
2508         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2509         if (isa<VectorType>(CurTy))
2510           V = ConstantDataVector::getFP(Context, Elts);
2511         else
2512           V = ConstantDataArray::getFP(Context, Elts);
2513       } else if (EltTy->isDoubleTy()) {
2514         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2515         if (isa<VectorType>(CurTy))
2516           V = ConstantDataVector::getFP(Context, Elts);
2517         else
2518           V = ConstantDataArray::getFP(Context, Elts);
2519       } else {
2520         return error("Invalid type for value");
2521       }
2522       break;
2523     }
2524     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2525       if (Record.size() < 2)
2526         return error("Invalid record");
2527       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2528       if (Opc < 0) {
2529         V = UndefValue::get(CurTy);  // Unknown unop.
2530       } else {
2531         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2532         unsigned Flags = 0;
2533         V = ConstantExpr::get(Opc, LHS, Flags);
2534       }
2535       break;
2536     }
2537     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2538       if (Record.size() < 3)
2539         return error("Invalid record");
2540       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2541       if (Opc < 0) {
2542         V = UndefValue::get(CurTy);  // Unknown binop.
2543       } else {
2544         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2545         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2546         unsigned Flags = 0;
2547         if (Record.size() >= 4) {
2548           if (Opc == Instruction::Add ||
2549               Opc == Instruction::Sub ||
2550               Opc == Instruction::Mul ||
2551               Opc == Instruction::Shl) {
2552             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2553               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2554             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2555               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2556           } else if (Opc == Instruction::SDiv ||
2557                      Opc == Instruction::UDiv ||
2558                      Opc == Instruction::LShr ||
2559                      Opc == Instruction::AShr) {
2560             if (Record[3] & (1 << bitc::PEO_EXACT))
2561               Flags |= SDivOperator::IsExact;
2562           }
2563         }
2564         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2565       }
2566       break;
2567     }
2568     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2569       if (Record.size() < 3)
2570         return error("Invalid record");
2571       int Opc = getDecodedCastOpcode(Record[0]);
2572       if (Opc < 0) {
2573         V = UndefValue::get(CurTy);  // Unknown cast.
2574       } else {
2575         Type *OpTy = getTypeByID(Record[1]);
2576         if (!OpTy)
2577           return error("Invalid record");
2578         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2579         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2580         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2581       }
2582       break;
2583     }
2584     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2585     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2586     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2587                                                      // operands]
2588       unsigned OpNum = 0;
2589       Type *PointeeType = nullptr;
2590       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2591           Record.size() % 2)
2592         PointeeType = getTypeByID(Record[OpNum++]);
2593 
2594       bool InBounds = false;
2595       Optional<unsigned> InRangeIndex;
2596       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2597         uint64_t Op = Record[OpNum++];
2598         InBounds = Op & 1;
2599         InRangeIndex = Op >> 1;
2600       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2601         InBounds = true;
2602 
2603       SmallVector<Constant*, 16> Elts;
2604       Type *Elt0FullTy = nullptr;
2605       while (OpNum != Record.size()) {
2606         if (!Elt0FullTy)
2607           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2608         Type *ElTy = getTypeByID(Record[OpNum++]);
2609         if (!ElTy)
2610           return error("Invalid record");
2611         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2612       }
2613 
2614       if (Elts.size() < 1)
2615         return error("Invalid gep with no operands");
2616 
2617       Type *ImplicitPointeeType =
2618           getPointerElementFlatType(Elt0FullTy->getScalarType());
2619       if (!PointeeType)
2620         PointeeType = ImplicitPointeeType;
2621       else if (PointeeType != ImplicitPointeeType)
2622         return error("Explicit gep operator type does not match pointee type "
2623                      "of pointer operand");
2624 
2625       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2626       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2627                                          InBounds, InRangeIndex);
2628       break;
2629     }
2630     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2631       if (Record.size() < 3)
2632         return error("Invalid record");
2633 
2634       Type *SelectorTy = Type::getInt1Ty(Context);
2635 
2636       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2637       // Get the type from the ValueList before getting a forward ref.
2638       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2639         if (Value *V = ValueList[Record[0]])
2640           if (SelectorTy != V->getType())
2641             SelectorTy = VectorType::get(SelectorTy,
2642                                          VTy->getElementCount());
2643 
2644       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2645                                                               SelectorTy),
2646                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2647                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2648       break;
2649     }
2650     case bitc::CST_CODE_CE_EXTRACTELT
2651         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2652       if (Record.size() < 3)
2653         return error("Invalid record");
2654       VectorType *OpTy =
2655         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2656       if (!OpTy)
2657         return error("Invalid record");
2658       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2659       Constant *Op1 = nullptr;
2660       if (Record.size() == 4) {
2661         Type *IdxTy = getTypeByID(Record[2]);
2662         if (!IdxTy)
2663           return error("Invalid record");
2664         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2665       } else // TODO: Remove with llvm 4.0
2666         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2667       if (!Op1)
2668         return error("Invalid record");
2669       V = ConstantExpr::getExtractElement(Op0, Op1);
2670       break;
2671     }
2672     case bitc::CST_CODE_CE_INSERTELT
2673         : { // CE_INSERTELT: [opval, opval, opty, opval]
2674       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2675       if (Record.size() < 3 || !OpTy)
2676         return error("Invalid record");
2677       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2678       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2679                                                   OpTy->getElementType());
2680       Constant *Op2 = nullptr;
2681       if (Record.size() == 4) {
2682         Type *IdxTy = getTypeByID(Record[2]);
2683         if (!IdxTy)
2684           return error("Invalid record");
2685         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2686       } else // TODO: Remove with llvm 4.0
2687         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2688       if (!Op2)
2689         return error("Invalid record");
2690       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2691       break;
2692     }
2693     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2694       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2695       if (Record.size() < 3 || !OpTy)
2696         return error("Invalid record");
2697       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2698       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2699       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2700                                      OpTy->getElementCount());
2701       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2702       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2703       break;
2704     }
2705     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2706       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2707       VectorType *OpTy =
2708         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2709       if (Record.size() < 4 || !RTy || !OpTy)
2710         return error("Invalid record");
2711       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2712       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2713       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2714                                      RTy->getElementCount());
2715       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2716       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2717       break;
2718     }
2719     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2720       if (Record.size() < 4)
2721         return error("Invalid record");
2722       Type *OpTy = getTypeByID(Record[0]);
2723       if (!OpTy)
2724         return error("Invalid record");
2725       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2726       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2727 
2728       if (OpTy->isFPOrFPVectorTy())
2729         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2730       else
2731         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2732       break;
2733     }
2734     // This maintains backward compatibility, pre-asm dialect keywords.
2735     // FIXME: Remove with the 4.0 release.
2736     case bitc::CST_CODE_INLINEASM_OLD: {
2737       if (Record.size() < 2)
2738         return error("Invalid record");
2739       std::string AsmStr, ConstrStr;
2740       bool HasSideEffects = Record[0] & 1;
2741       bool IsAlignStack = Record[0] >> 1;
2742       unsigned AsmStrSize = Record[1];
2743       if (2+AsmStrSize >= Record.size())
2744         return error("Invalid record");
2745       unsigned ConstStrSize = Record[2+AsmStrSize];
2746       if (3+AsmStrSize+ConstStrSize > Record.size())
2747         return error("Invalid record");
2748 
2749       for (unsigned i = 0; i != AsmStrSize; ++i)
2750         AsmStr += (char)Record[2+i];
2751       for (unsigned i = 0; i != ConstStrSize; ++i)
2752         ConstrStr += (char)Record[3+AsmStrSize+i];
2753       UpgradeInlineAsmString(&AsmStr);
2754       V = InlineAsm::get(
2755           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2756           ConstrStr, HasSideEffects, IsAlignStack);
2757       break;
2758     }
2759     // This version adds support for the asm dialect keywords (e.g.,
2760     // inteldialect).
2761     case bitc::CST_CODE_INLINEASM: {
2762       if (Record.size() < 2)
2763         return error("Invalid record");
2764       std::string AsmStr, ConstrStr;
2765       bool HasSideEffects = Record[0] & 1;
2766       bool IsAlignStack = (Record[0] >> 1) & 1;
2767       unsigned AsmDialect = Record[0] >> 2;
2768       unsigned AsmStrSize = Record[1];
2769       if (2+AsmStrSize >= Record.size())
2770         return error("Invalid record");
2771       unsigned ConstStrSize = Record[2+AsmStrSize];
2772       if (3+AsmStrSize+ConstStrSize > Record.size())
2773         return error("Invalid record");
2774 
2775       for (unsigned i = 0; i != AsmStrSize; ++i)
2776         AsmStr += (char)Record[2+i];
2777       for (unsigned i = 0; i != ConstStrSize; ++i)
2778         ConstrStr += (char)Record[3+AsmStrSize+i];
2779       UpgradeInlineAsmString(&AsmStr);
2780       V = InlineAsm::get(
2781           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2782           ConstrStr, HasSideEffects, IsAlignStack,
2783           InlineAsm::AsmDialect(AsmDialect));
2784       break;
2785     }
2786     case bitc::CST_CODE_BLOCKADDRESS:{
2787       if (Record.size() < 3)
2788         return error("Invalid record");
2789       Type *FnTy = getTypeByID(Record[0]);
2790       if (!FnTy)
2791         return error("Invalid record");
2792       Function *Fn =
2793         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2794       if (!Fn)
2795         return error("Invalid record");
2796 
2797       // If the function is already parsed we can insert the block address right
2798       // away.
2799       BasicBlock *BB;
2800       unsigned BBID = Record[2];
2801       if (!BBID)
2802         // Invalid reference to entry block.
2803         return error("Invalid ID");
2804       if (!Fn->empty()) {
2805         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2806         for (size_t I = 0, E = BBID; I != E; ++I) {
2807           if (BBI == BBE)
2808             return error("Invalid ID");
2809           ++BBI;
2810         }
2811         BB = &*BBI;
2812       } else {
2813         // Otherwise insert a placeholder and remember it so it can be inserted
2814         // when the function is parsed.
2815         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2816         if (FwdBBs.empty())
2817           BasicBlockFwdRefQueue.push_back(Fn);
2818         if (FwdBBs.size() < BBID + 1)
2819           FwdBBs.resize(BBID + 1);
2820         if (!FwdBBs[BBID])
2821           FwdBBs[BBID] = BasicBlock::Create(Context);
2822         BB = FwdBBs[BBID];
2823       }
2824       V = BlockAddress::get(Fn, BB);
2825       break;
2826     }
2827     }
2828 
2829     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2830            "Incorrect fully structured type provided for Constant");
2831     ValueList.assignValue(V, NextCstNo, CurFullTy);
2832     ++NextCstNo;
2833   }
2834 }
2835 
2836 Error BitcodeReader::parseUseLists() {
2837   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2838     return Err;
2839 
2840   // Read all the records.
2841   SmallVector<uint64_t, 64> Record;
2842 
2843   while (true) {
2844     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2845     if (!MaybeEntry)
2846       return MaybeEntry.takeError();
2847     BitstreamEntry Entry = MaybeEntry.get();
2848 
2849     switch (Entry.Kind) {
2850     case BitstreamEntry::SubBlock: // Handled for us already.
2851     case BitstreamEntry::Error:
2852       return error("Malformed block");
2853     case BitstreamEntry::EndBlock:
2854       return Error::success();
2855     case BitstreamEntry::Record:
2856       // The interesting case.
2857       break;
2858     }
2859 
2860     // Read a use list record.
2861     Record.clear();
2862     bool IsBB = false;
2863     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2864     if (!MaybeRecord)
2865       return MaybeRecord.takeError();
2866     switch (MaybeRecord.get()) {
2867     default:  // Default behavior: unknown type.
2868       break;
2869     case bitc::USELIST_CODE_BB:
2870       IsBB = true;
2871       LLVM_FALLTHROUGH;
2872     case bitc::USELIST_CODE_DEFAULT: {
2873       unsigned RecordLength = Record.size();
2874       if (RecordLength < 3)
2875         // Records should have at least an ID and two indexes.
2876         return error("Invalid record");
2877       unsigned ID = Record.back();
2878       Record.pop_back();
2879 
2880       Value *V;
2881       if (IsBB) {
2882         assert(ID < FunctionBBs.size() && "Basic block not found");
2883         V = FunctionBBs[ID];
2884       } else
2885         V = ValueList[ID];
2886       unsigned NumUses = 0;
2887       SmallDenseMap<const Use *, unsigned, 16> Order;
2888       for (const Use &U : V->materialized_uses()) {
2889         if (++NumUses > Record.size())
2890           break;
2891         Order[&U] = Record[NumUses - 1];
2892       }
2893       if (Order.size() != Record.size() || NumUses > Record.size())
2894         // Mismatches can happen if the functions are being materialized lazily
2895         // (out-of-order), or a value has been upgraded.
2896         break;
2897 
2898       V->sortUseList([&](const Use &L, const Use &R) {
2899         return Order.lookup(&L) < Order.lookup(&R);
2900       });
2901       break;
2902     }
2903     }
2904   }
2905 }
2906 
2907 /// When we see the block for metadata, remember where it is and then skip it.
2908 /// This lets us lazily deserialize the metadata.
2909 Error BitcodeReader::rememberAndSkipMetadata() {
2910   // Save the current stream state.
2911   uint64_t CurBit = Stream.GetCurrentBitNo();
2912   DeferredMetadataInfo.push_back(CurBit);
2913 
2914   // Skip over the block for now.
2915   if (Error Err = Stream.SkipBlock())
2916     return Err;
2917   return Error::success();
2918 }
2919 
2920 Error BitcodeReader::materializeMetadata() {
2921   for (uint64_t BitPos : DeferredMetadataInfo) {
2922     // Move the bit stream to the saved position.
2923     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2924       return JumpFailed;
2925     if (Error Err = MDLoader->parseModuleMetadata())
2926       return Err;
2927   }
2928 
2929   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2930   // metadata.
2931   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2932     NamedMDNode *LinkerOpts =
2933         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2934     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2935       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2936   }
2937 
2938   DeferredMetadataInfo.clear();
2939   return Error::success();
2940 }
2941 
2942 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2943 
2944 /// When we see the block for a function body, remember where it is and then
2945 /// skip it.  This lets us lazily deserialize the functions.
2946 Error BitcodeReader::rememberAndSkipFunctionBody() {
2947   // Get the function we are talking about.
2948   if (FunctionsWithBodies.empty())
2949     return error("Insufficient function protos");
2950 
2951   Function *Fn = FunctionsWithBodies.back();
2952   FunctionsWithBodies.pop_back();
2953 
2954   // Save the current stream state.
2955   uint64_t CurBit = Stream.GetCurrentBitNo();
2956   assert(
2957       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2958       "Mismatch between VST and scanned function offsets");
2959   DeferredFunctionInfo[Fn] = CurBit;
2960 
2961   // Skip over the function block for now.
2962   if (Error Err = Stream.SkipBlock())
2963     return Err;
2964   return Error::success();
2965 }
2966 
2967 Error BitcodeReader::globalCleanup() {
2968   // Patch the initializers for globals and aliases up.
2969   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2970     return Err;
2971   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2972     return error("Malformed global initializer set");
2973 
2974   // Look for intrinsic functions which need to be upgraded at some point
2975   for (Function &F : *TheModule) {
2976     MDLoader->upgradeDebugIntrinsics(F);
2977     Function *NewFn;
2978     if (UpgradeIntrinsicFunction(&F, NewFn))
2979       UpgradedIntrinsics[&F] = NewFn;
2980     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2981       // Some types could be renamed during loading if several modules are
2982       // loaded in the same LLVMContext (LTO scenario). In this case we should
2983       // remangle intrinsics names as well.
2984       RemangledIntrinsics[&F] = Remangled.getValue();
2985   }
2986 
2987   // Look for global variables which need to be renamed.
2988   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2989   for (GlobalVariable &GV : TheModule->globals())
2990     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2991       UpgradedVariables.emplace_back(&GV, Upgraded);
2992   for (auto &Pair : UpgradedVariables) {
2993     Pair.first->eraseFromParent();
2994     TheModule->getGlobalList().push_back(Pair.second);
2995   }
2996 
2997   // Force deallocation of memory for these vectors to favor the client that
2998   // want lazy deserialization.
2999   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3000   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3001       IndirectSymbolInits);
3002   return Error::success();
3003 }
3004 
3005 /// Support for lazy parsing of function bodies. This is required if we
3006 /// either have an old bitcode file without a VST forward declaration record,
3007 /// or if we have an anonymous function being materialized, since anonymous
3008 /// functions do not have a name and are therefore not in the VST.
3009 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3010   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3011     return JumpFailed;
3012 
3013   if (Stream.AtEndOfStream())
3014     return error("Could not find function in stream");
3015 
3016   if (!SeenFirstFunctionBody)
3017     return error("Trying to materialize functions before seeing function blocks");
3018 
3019   // An old bitcode file with the symbol table at the end would have
3020   // finished the parse greedily.
3021   assert(SeenValueSymbolTable);
3022 
3023   SmallVector<uint64_t, 64> Record;
3024 
3025   while (true) {
3026     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3027     if (!MaybeEntry)
3028       return MaybeEntry.takeError();
3029     llvm::BitstreamEntry Entry = MaybeEntry.get();
3030 
3031     switch (Entry.Kind) {
3032     default:
3033       return error("Expect SubBlock");
3034     case BitstreamEntry::SubBlock:
3035       switch (Entry.ID) {
3036       default:
3037         return error("Expect function block");
3038       case bitc::FUNCTION_BLOCK_ID:
3039         if (Error Err = rememberAndSkipFunctionBody())
3040           return Err;
3041         NextUnreadBit = Stream.GetCurrentBitNo();
3042         return Error::success();
3043       }
3044     }
3045   }
3046 }
3047 
3048 bool BitcodeReaderBase::readBlockInfo() {
3049   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3050       Stream.ReadBlockInfoBlock();
3051   if (!MaybeNewBlockInfo)
3052     return true; // FIXME Handle the error.
3053   Optional<BitstreamBlockInfo> NewBlockInfo =
3054       std::move(MaybeNewBlockInfo.get());
3055   if (!NewBlockInfo)
3056     return true;
3057   BlockInfo = std::move(*NewBlockInfo);
3058   return false;
3059 }
3060 
3061 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3062   // v1: [selection_kind, name]
3063   // v2: [strtab_offset, strtab_size, selection_kind]
3064   StringRef Name;
3065   std::tie(Name, Record) = readNameFromStrtab(Record);
3066 
3067   if (Record.empty())
3068     return error("Invalid record");
3069   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3070   std::string OldFormatName;
3071   if (!UseStrtab) {
3072     if (Record.size() < 2)
3073       return error("Invalid record");
3074     unsigned ComdatNameSize = Record[1];
3075     OldFormatName.reserve(ComdatNameSize);
3076     for (unsigned i = 0; i != ComdatNameSize; ++i)
3077       OldFormatName += (char)Record[2 + i];
3078     Name = OldFormatName;
3079   }
3080   Comdat *C = TheModule->getOrInsertComdat(Name);
3081   C->setSelectionKind(SK);
3082   ComdatList.push_back(C);
3083   return Error::success();
3084 }
3085 
3086 static void inferDSOLocal(GlobalValue *GV) {
3087   // infer dso_local from linkage and visibility if it is not encoded.
3088   if (GV->hasLocalLinkage() ||
3089       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3090     GV->setDSOLocal(true);
3091 }
3092 
3093 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3094   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3095   // visibility, threadlocal, unnamed_addr, externally_initialized,
3096   // dllstorageclass, comdat, attributes, preemption specifier,
3097   // partition strtab offset, partition strtab size] (name in VST)
3098   // v2: [strtab_offset, strtab_size, v1]
3099   StringRef Name;
3100   std::tie(Name, Record) = readNameFromStrtab(Record);
3101 
3102   if (Record.size() < 6)
3103     return error("Invalid record");
3104   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3105   Type *Ty = flattenPointerTypes(FullTy);
3106   if (!Ty)
3107     return error("Invalid record");
3108   bool isConstant = Record[1] & 1;
3109   bool explicitType = Record[1] & 2;
3110   unsigned AddressSpace;
3111   if (explicitType) {
3112     AddressSpace = Record[1] >> 2;
3113   } else {
3114     if (!Ty->isPointerTy())
3115       return error("Invalid type for value");
3116     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3117     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3118   }
3119 
3120   uint64_t RawLinkage = Record[3];
3121   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3122   MaybeAlign Alignment;
3123   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3124     return Err;
3125   std::string Section;
3126   if (Record[5]) {
3127     if (Record[5] - 1 >= SectionTable.size())
3128       return error("Invalid ID");
3129     Section = SectionTable[Record[5] - 1];
3130   }
3131   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3132   // Local linkage must have default visibility.
3133   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3134     // FIXME: Change to an error if non-default in 4.0.
3135     Visibility = getDecodedVisibility(Record[6]);
3136 
3137   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3138   if (Record.size() > 7)
3139     TLM = getDecodedThreadLocalMode(Record[7]);
3140 
3141   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3142   if (Record.size() > 8)
3143     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3144 
3145   bool ExternallyInitialized = false;
3146   if (Record.size() > 9)
3147     ExternallyInitialized = Record[9];
3148 
3149   GlobalVariable *NewGV =
3150       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3151                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3152   NewGV->setAlignment(Alignment);
3153   if (!Section.empty())
3154     NewGV->setSection(Section);
3155   NewGV->setVisibility(Visibility);
3156   NewGV->setUnnamedAddr(UnnamedAddr);
3157 
3158   if (Record.size() > 10)
3159     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3160   else
3161     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3162 
3163   FullTy = PointerType::get(FullTy, AddressSpace);
3164   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3165          "Incorrect fully specified type for GlobalVariable");
3166   ValueList.push_back(NewGV, FullTy);
3167 
3168   // Remember which value to use for the global initializer.
3169   if (unsigned InitID = Record[2])
3170     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3171 
3172   if (Record.size() > 11) {
3173     if (unsigned ComdatID = Record[11]) {
3174       if (ComdatID > ComdatList.size())
3175         return error("Invalid global variable comdat ID");
3176       NewGV->setComdat(ComdatList[ComdatID - 1]);
3177     }
3178   } else if (hasImplicitComdat(RawLinkage)) {
3179     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3180   }
3181 
3182   if (Record.size() > 12) {
3183     auto AS = getAttributes(Record[12]).getFnAttributes();
3184     NewGV->setAttributes(AS);
3185   }
3186 
3187   if (Record.size() > 13) {
3188     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3189   }
3190   inferDSOLocal(NewGV);
3191 
3192   // Check whether we have enough values to read a partition name.
3193   if (Record.size() > 15)
3194     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3195 
3196   return Error::success();
3197 }
3198 
3199 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3200   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3201   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3202   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3203   // v2: [strtab_offset, strtab_size, v1]
3204   StringRef Name;
3205   std::tie(Name, Record) = readNameFromStrtab(Record);
3206 
3207   if (Record.size() < 8)
3208     return error("Invalid record");
3209   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3210   Type *FTy = flattenPointerTypes(FullFTy);
3211   if (!FTy)
3212     return error("Invalid record");
3213   if (isa<PointerType>(FTy))
3214     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3215 
3216   if (!isa<FunctionType>(FTy))
3217     return error("Invalid type for value");
3218   auto CC = static_cast<CallingConv::ID>(Record[1]);
3219   if (CC & ~CallingConv::MaxID)
3220     return error("Invalid calling convention ID");
3221 
3222   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3223   if (Record.size() > 16)
3224     AddrSpace = Record[16];
3225 
3226   Function *Func =
3227       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3228                        AddrSpace, Name, TheModule);
3229 
3230   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3231          "Incorrect fully specified type provided for function");
3232   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3233 
3234   Func->setCallingConv(CC);
3235   bool isProto = Record[2];
3236   uint64_t RawLinkage = Record[3];
3237   Func->setLinkage(getDecodedLinkage(RawLinkage));
3238   Func->setAttributes(getAttributes(Record[4]));
3239 
3240   // Upgrade any old-style byval without a type by propagating the argument's
3241   // pointee type. There should be no opaque pointers where the byval type is
3242   // implicit.
3243   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3244     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3245       continue;
3246 
3247     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3248     Func->removeParamAttr(i, Attribute::ByVal);
3249     Func->addParamAttr(i, Attribute::getWithByValType(
3250                               Context, getPointerElementFlatType(PTy)));
3251   }
3252 
3253   MaybeAlign Alignment;
3254   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3255     return Err;
3256   Func->setAlignment(Alignment);
3257   if (Record[6]) {
3258     if (Record[6] - 1 >= SectionTable.size())
3259       return error("Invalid ID");
3260     Func->setSection(SectionTable[Record[6] - 1]);
3261   }
3262   // Local linkage must have default visibility.
3263   if (!Func->hasLocalLinkage())
3264     // FIXME: Change to an error if non-default in 4.0.
3265     Func->setVisibility(getDecodedVisibility(Record[7]));
3266   if (Record.size() > 8 && Record[8]) {
3267     if (Record[8] - 1 >= GCTable.size())
3268       return error("Invalid ID");
3269     Func->setGC(GCTable[Record[8] - 1]);
3270   }
3271   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3272   if (Record.size() > 9)
3273     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3274   Func->setUnnamedAddr(UnnamedAddr);
3275   if (Record.size() > 10 && Record[10] != 0)
3276     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3277 
3278   if (Record.size() > 11)
3279     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3280   else
3281     upgradeDLLImportExportLinkage(Func, RawLinkage);
3282 
3283   if (Record.size() > 12) {
3284     if (unsigned ComdatID = Record[12]) {
3285       if (ComdatID > ComdatList.size())
3286         return error("Invalid function comdat ID");
3287       Func->setComdat(ComdatList[ComdatID - 1]);
3288     }
3289   } else if (hasImplicitComdat(RawLinkage)) {
3290     Func->setComdat(reinterpret_cast<Comdat *>(1));
3291   }
3292 
3293   if (Record.size() > 13 && Record[13] != 0)
3294     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3295 
3296   if (Record.size() > 14 && Record[14] != 0)
3297     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3298 
3299   if (Record.size() > 15) {
3300     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3301   }
3302   inferDSOLocal(Func);
3303 
3304   // Record[16] is the address space number.
3305 
3306   // Check whether we have enough values to read a partition name.
3307   if (Record.size() > 18)
3308     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3309 
3310   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3311   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3312          "Incorrect fully specified type provided for Function");
3313   ValueList.push_back(Func, FullTy);
3314 
3315   // If this is a function with a body, remember the prototype we are
3316   // creating now, so that we can match up the body with them later.
3317   if (!isProto) {
3318     Func->setIsMaterializable(true);
3319     FunctionsWithBodies.push_back(Func);
3320     DeferredFunctionInfo[Func] = 0;
3321   }
3322   return Error::success();
3323 }
3324 
3325 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3326     unsigned BitCode, ArrayRef<uint64_t> Record) {
3327   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3328   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3329   // dllstorageclass, threadlocal, unnamed_addr,
3330   // preemption specifier] (name in VST)
3331   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3332   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3333   // preemption specifier] (name in VST)
3334   // v2: [strtab_offset, strtab_size, v1]
3335   StringRef Name;
3336   std::tie(Name, Record) = readNameFromStrtab(Record);
3337 
3338   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3339   if (Record.size() < (3 + (unsigned)NewRecord))
3340     return error("Invalid record");
3341   unsigned OpNum = 0;
3342   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3343   Type *Ty = flattenPointerTypes(FullTy);
3344   if (!Ty)
3345     return error("Invalid record");
3346 
3347   unsigned AddrSpace;
3348   if (!NewRecord) {
3349     auto *PTy = dyn_cast<PointerType>(Ty);
3350     if (!PTy)
3351       return error("Invalid type for value");
3352     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3353     AddrSpace = PTy->getAddressSpace();
3354   } else {
3355     AddrSpace = Record[OpNum++];
3356   }
3357 
3358   auto Val = Record[OpNum++];
3359   auto Linkage = Record[OpNum++];
3360   GlobalIndirectSymbol *NewGA;
3361   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3362       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3363     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3364                                 TheModule);
3365   else
3366     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3367                                 nullptr, TheModule);
3368 
3369   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3370          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3371   // Old bitcode files didn't have visibility field.
3372   // Local linkage must have default visibility.
3373   if (OpNum != Record.size()) {
3374     auto VisInd = OpNum++;
3375     if (!NewGA->hasLocalLinkage())
3376       // FIXME: Change to an error if non-default in 4.0.
3377       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3378   }
3379   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3380       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3381     if (OpNum != Record.size())
3382       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3383     else
3384       upgradeDLLImportExportLinkage(NewGA, Linkage);
3385     if (OpNum != Record.size())
3386       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3387     if (OpNum != Record.size())
3388       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3389   }
3390   if (OpNum != Record.size())
3391     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3392   inferDSOLocal(NewGA);
3393 
3394   // Check whether we have enough values to read a partition name.
3395   if (OpNum + 1 < Record.size()) {
3396     NewGA->setPartition(
3397         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3398     OpNum += 2;
3399   }
3400 
3401   FullTy = PointerType::get(FullTy, AddrSpace);
3402   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3403          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3404   ValueList.push_back(NewGA, FullTy);
3405   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3406   return Error::success();
3407 }
3408 
3409 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3410                                  bool ShouldLazyLoadMetadata) {
3411   if (ResumeBit) {
3412     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3413       return JumpFailed;
3414   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3415     return Err;
3416 
3417   SmallVector<uint64_t, 64> Record;
3418 
3419   // Read all the records for this module.
3420   while (true) {
3421     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3422     if (!MaybeEntry)
3423       return MaybeEntry.takeError();
3424     llvm::BitstreamEntry Entry = MaybeEntry.get();
3425 
3426     switch (Entry.Kind) {
3427     case BitstreamEntry::Error:
3428       return error("Malformed block");
3429     case BitstreamEntry::EndBlock:
3430       return globalCleanup();
3431 
3432     case BitstreamEntry::SubBlock:
3433       switch (Entry.ID) {
3434       default:  // Skip unknown content.
3435         if (Error Err = Stream.SkipBlock())
3436           return Err;
3437         break;
3438       case bitc::BLOCKINFO_BLOCK_ID:
3439         if (readBlockInfo())
3440           return error("Malformed block");
3441         break;
3442       case bitc::PARAMATTR_BLOCK_ID:
3443         if (Error Err = parseAttributeBlock())
3444           return Err;
3445         break;
3446       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3447         if (Error Err = parseAttributeGroupBlock())
3448           return Err;
3449         break;
3450       case bitc::TYPE_BLOCK_ID_NEW:
3451         if (Error Err = parseTypeTable())
3452           return Err;
3453         break;
3454       case bitc::VALUE_SYMTAB_BLOCK_ID:
3455         if (!SeenValueSymbolTable) {
3456           // Either this is an old form VST without function index and an
3457           // associated VST forward declaration record (which would have caused
3458           // the VST to be jumped to and parsed before it was encountered
3459           // normally in the stream), or there were no function blocks to
3460           // trigger an earlier parsing of the VST.
3461           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3462           if (Error Err = parseValueSymbolTable())
3463             return Err;
3464           SeenValueSymbolTable = true;
3465         } else {
3466           // We must have had a VST forward declaration record, which caused
3467           // the parser to jump to and parse the VST earlier.
3468           assert(VSTOffset > 0);
3469           if (Error Err = Stream.SkipBlock())
3470             return Err;
3471         }
3472         break;
3473       case bitc::CONSTANTS_BLOCK_ID:
3474         if (Error Err = parseConstants())
3475           return Err;
3476         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3477           return Err;
3478         break;
3479       case bitc::METADATA_BLOCK_ID:
3480         if (ShouldLazyLoadMetadata) {
3481           if (Error Err = rememberAndSkipMetadata())
3482             return Err;
3483           break;
3484         }
3485         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3486         if (Error Err = MDLoader->parseModuleMetadata())
3487           return Err;
3488         break;
3489       case bitc::METADATA_KIND_BLOCK_ID:
3490         if (Error Err = MDLoader->parseMetadataKinds())
3491           return Err;
3492         break;
3493       case bitc::FUNCTION_BLOCK_ID:
3494         // If this is the first function body we've seen, reverse the
3495         // FunctionsWithBodies list.
3496         if (!SeenFirstFunctionBody) {
3497           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3498           if (Error Err = globalCleanup())
3499             return Err;
3500           SeenFirstFunctionBody = true;
3501         }
3502 
3503         if (VSTOffset > 0) {
3504           // If we have a VST forward declaration record, make sure we
3505           // parse the VST now if we haven't already. It is needed to
3506           // set up the DeferredFunctionInfo vector for lazy reading.
3507           if (!SeenValueSymbolTable) {
3508             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3509               return Err;
3510             SeenValueSymbolTable = true;
3511             // Fall through so that we record the NextUnreadBit below.
3512             // This is necessary in case we have an anonymous function that
3513             // is later materialized. Since it will not have a VST entry we
3514             // need to fall back to the lazy parse to find its offset.
3515           } else {
3516             // If we have a VST forward declaration record, but have already
3517             // parsed the VST (just above, when the first function body was
3518             // encountered here), then we are resuming the parse after
3519             // materializing functions. The ResumeBit points to the
3520             // start of the last function block recorded in the
3521             // DeferredFunctionInfo map. Skip it.
3522             if (Error Err = Stream.SkipBlock())
3523               return Err;
3524             continue;
3525           }
3526         }
3527 
3528         // Support older bitcode files that did not have the function
3529         // index in the VST, nor a VST forward declaration record, as
3530         // well as anonymous functions that do not have VST entries.
3531         // Build the DeferredFunctionInfo vector on the fly.
3532         if (Error Err = rememberAndSkipFunctionBody())
3533           return Err;
3534 
3535         // Suspend parsing when we reach the function bodies. Subsequent
3536         // materialization calls will resume it when necessary. If the bitcode
3537         // file is old, the symbol table will be at the end instead and will not
3538         // have been seen yet. In this case, just finish the parse now.
3539         if (SeenValueSymbolTable) {
3540           NextUnreadBit = Stream.GetCurrentBitNo();
3541           // After the VST has been parsed, we need to make sure intrinsic name
3542           // are auto-upgraded.
3543           return globalCleanup();
3544         }
3545         break;
3546       case bitc::USELIST_BLOCK_ID:
3547         if (Error Err = parseUseLists())
3548           return Err;
3549         break;
3550       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3551         if (Error Err = parseOperandBundleTags())
3552           return Err;
3553         break;
3554       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3555         if (Error Err = parseSyncScopeNames())
3556           return Err;
3557         break;
3558       }
3559       continue;
3560 
3561     case BitstreamEntry::Record:
3562       // The interesting case.
3563       break;
3564     }
3565 
3566     // Read a record.
3567     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3568     if (!MaybeBitCode)
3569       return MaybeBitCode.takeError();
3570     switch (unsigned BitCode = MaybeBitCode.get()) {
3571     default: break;  // Default behavior, ignore unknown content.
3572     case bitc::MODULE_CODE_VERSION: {
3573       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3574       if (!VersionOrErr)
3575         return VersionOrErr.takeError();
3576       UseRelativeIDs = *VersionOrErr >= 1;
3577       break;
3578     }
3579     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3580       std::string S;
3581       if (convertToString(Record, 0, S))
3582         return error("Invalid record");
3583       TheModule->setTargetTriple(S);
3584       break;
3585     }
3586     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3587       std::string S;
3588       if (convertToString(Record, 0, S))
3589         return error("Invalid record");
3590       TheModule->setDataLayout(S);
3591       break;
3592     }
3593     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3594       std::string S;
3595       if (convertToString(Record, 0, S))
3596         return error("Invalid record");
3597       TheModule->setModuleInlineAsm(S);
3598       break;
3599     }
3600     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3601       // FIXME: Remove in 4.0.
3602       std::string S;
3603       if (convertToString(Record, 0, S))
3604         return error("Invalid record");
3605       // Ignore value.
3606       break;
3607     }
3608     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3609       std::string S;
3610       if (convertToString(Record, 0, S))
3611         return error("Invalid record");
3612       SectionTable.push_back(S);
3613       break;
3614     }
3615     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3616       std::string S;
3617       if (convertToString(Record, 0, S))
3618         return error("Invalid record");
3619       GCTable.push_back(S);
3620       break;
3621     }
3622     case bitc::MODULE_CODE_COMDAT:
3623       if (Error Err = parseComdatRecord(Record))
3624         return Err;
3625       break;
3626     case bitc::MODULE_CODE_GLOBALVAR:
3627       if (Error Err = parseGlobalVarRecord(Record))
3628         return Err;
3629       break;
3630     case bitc::MODULE_CODE_FUNCTION:
3631       if (Error Err = parseFunctionRecord(Record))
3632         return Err;
3633       break;
3634     case bitc::MODULE_CODE_IFUNC:
3635     case bitc::MODULE_CODE_ALIAS:
3636     case bitc::MODULE_CODE_ALIAS_OLD:
3637       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3638         return Err;
3639       break;
3640     /// MODULE_CODE_VSTOFFSET: [offset]
3641     case bitc::MODULE_CODE_VSTOFFSET:
3642       if (Record.size() < 1)
3643         return error("Invalid record");
3644       // Note that we subtract 1 here because the offset is relative to one word
3645       // before the start of the identification or module block, which was
3646       // historically always the start of the regular bitcode header.
3647       VSTOffset = Record[0] - 1;
3648       break;
3649     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3650     case bitc::MODULE_CODE_SOURCE_FILENAME:
3651       SmallString<128> ValueName;
3652       if (convertToString(Record, 0, ValueName))
3653         return error("Invalid record");
3654       TheModule->setSourceFileName(ValueName);
3655       break;
3656     }
3657     Record.clear();
3658 
3659     // Upgrade data layout string.
3660     std::string DL = llvm::UpgradeDataLayoutString(
3661         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3662     TheModule->setDataLayout(DL);
3663   }
3664 }
3665 
3666 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3667                                       bool IsImporting) {
3668   TheModule = M;
3669   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3670                             [&](unsigned ID) { return getTypeByID(ID); });
3671   return parseModule(0, ShouldLazyLoadMetadata);
3672 }
3673 
3674 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3675   if (!isa<PointerType>(PtrType))
3676     return error("Load/Store operand is not a pointer type");
3677   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3678 
3679   if (ValType && ValType != ElemType)
3680     return error("Explicit load/store type does not match pointee "
3681                  "type of pointer operand");
3682   if (!PointerType::isLoadableOrStorableType(ElemType))
3683     return error("Cannot load/store from pointer");
3684   return Error::success();
3685 }
3686 
3687 void BitcodeReader::propagateByValTypes(CallBase *CB,
3688                                         ArrayRef<Type *> ArgsFullTys) {
3689   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3690     if (!CB->paramHasAttr(i, Attribute::ByVal))
3691       continue;
3692 
3693     CB->removeParamAttr(i, Attribute::ByVal);
3694     CB->addParamAttr(
3695         i, Attribute::getWithByValType(
3696                Context, getPointerElementFlatType(ArgsFullTys[i])));
3697   }
3698 }
3699 
3700 /// Lazily parse the specified function body block.
3701 Error BitcodeReader::parseFunctionBody(Function *F) {
3702   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3703     return Err;
3704 
3705   // Unexpected unresolved metadata when parsing function.
3706   if (MDLoader->hasFwdRefs())
3707     return error("Invalid function metadata: incoming forward references");
3708 
3709   InstructionList.clear();
3710   unsigned ModuleValueListSize = ValueList.size();
3711   unsigned ModuleMDLoaderSize = MDLoader->size();
3712 
3713   // Add all the function arguments to the value table.
3714   unsigned ArgNo = 0;
3715   FunctionType *FullFTy = FunctionTypes[F];
3716   for (Argument &I : F->args()) {
3717     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3718            "Incorrect fully specified type for Function Argument");
3719     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3720   }
3721   unsigned NextValueNo = ValueList.size();
3722   BasicBlock *CurBB = nullptr;
3723   unsigned CurBBNo = 0;
3724 
3725   DebugLoc LastLoc;
3726   auto getLastInstruction = [&]() -> Instruction * {
3727     if (CurBB && !CurBB->empty())
3728       return &CurBB->back();
3729     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3730              !FunctionBBs[CurBBNo - 1]->empty())
3731       return &FunctionBBs[CurBBNo - 1]->back();
3732     return nullptr;
3733   };
3734 
3735   std::vector<OperandBundleDef> OperandBundles;
3736 
3737   // Read all the records.
3738   SmallVector<uint64_t, 64> Record;
3739 
3740   while (true) {
3741     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3742     if (!MaybeEntry)
3743       return MaybeEntry.takeError();
3744     llvm::BitstreamEntry Entry = MaybeEntry.get();
3745 
3746     switch (Entry.Kind) {
3747     case BitstreamEntry::Error:
3748       return error("Malformed block");
3749     case BitstreamEntry::EndBlock:
3750       goto OutOfRecordLoop;
3751 
3752     case BitstreamEntry::SubBlock:
3753       switch (Entry.ID) {
3754       default:  // Skip unknown content.
3755         if (Error Err = Stream.SkipBlock())
3756           return Err;
3757         break;
3758       case bitc::CONSTANTS_BLOCK_ID:
3759         if (Error Err = parseConstants())
3760           return Err;
3761         NextValueNo = ValueList.size();
3762         break;
3763       case bitc::VALUE_SYMTAB_BLOCK_ID:
3764         if (Error Err = parseValueSymbolTable())
3765           return Err;
3766         break;
3767       case bitc::METADATA_ATTACHMENT_ID:
3768         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3769           return Err;
3770         break;
3771       case bitc::METADATA_BLOCK_ID:
3772         assert(DeferredMetadataInfo.empty() &&
3773                "Must read all module-level metadata before function-level");
3774         if (Error Err = MDLoader->parseFunctionMetadata())
3775           return Err;
3776         break;
3777       case bitc::USELIST_BLOCK_ID:
3778         if (Error Err = parseUseLists())
3779           return Err;
3780         break;
3781       }
3782       continue;
3783 
3784     case BitstreamEntry::Record:
3785       // The interesting case.
3786       break;
3787     }
3788 
3789     // Read a record.
3790     Record.clear();
3791     Instruction *I = nullptr;
3792     Type *FullTy = nullptr;
3793     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3794     if (!MaybeBitCode)
3795       return MaybeBitCode.takeError();
3796     switch (unsigned BitCode = MaybeBitCode.get()) {
3797     default: // Default behavior: reject
3798       return error("Invalid value");
3799     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3800       if (Record.size() < 1 || Record[0] == 0)
3801         return error("Invalid record");
3802       // Create all the basic blocks for the function.
3803       FunctionBBs.resize(Record[0]);
3804 
3805       // See if anything took the address of blocks in this function.
3806       auto BBFRI = BasicBlockFwdRefs.find(F);
3807       if (BBFRI == BasicBlockFwdRefs.end()) {
3808         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3809           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3810       } else {
3811         auto &BBRefs = BBFRI->second;
3812         // Check for invalid basic block references.
3813         if (BBRefs.size() > FunctionBBs.size())
3814           return error("Invalid ID");
3815         assert(!BBRefs.empty() && "Unexpected empty array");
3816         assert(!BBRefs.front() && "Invalid reference to entry block");
3817         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3818              ++I)
3819           if (I < RE && BBRefs[I]) {
3820             BBRefs[I]->insertInto(F);
3821             FunctionBBs[I] = BBRefs[I];
3822           } else {
3823             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3824           }
3825 
3826         // Erase from the table.
3827         BasicBlockFwdRefs.erase(BBFRI);
3828       }
3829 
3830       CurBB = FunctionBBs[0];
3831       continue;
3832     }
3833 
3834     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3835       // This record indicates that the last instruction is at the same
3836       // location as the previous instruction with a location.
3837       I = getLastInstruction();
3838 
3839       if (!I)
3840         return error("Invalid record");
3841       I->setDebugLoc(LastLoc);
3842       I = nullptr;
3843       continue;
3844 
3845     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3846       I = getLastInstruction();
3847       if (!I || Record.size() < 4)
3848         return error("Invalid record");
3849 
3850       unsigned Line = Record[0], Col = Record[1];
3851       unsigned ScopeID = Record[2], IAID = Record[3];
3852       bool isImplicitCode = Record.size() == 5 && Record[4];
3853 
3854       MDNode *Scope = nullptr, *IA = nullptr;
3855       if (ScopeID) {
3856         Scope = dyn_cast_or_null<MDNode>(
3857             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3858         if (!Scope)
3859           return error("Invalid record");
3860       }
3861       if (IAID) {
3862         IA = dyn_cast_or_null<MDNode>(
3863             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3864         if (!IA)
3865           return error("Invalid record");
3866       }
3867       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3868       I->setDebugLoc(LastLoc);
3869       I = nullptr;
3870       continue;
3871     }
3872     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3873       unsigned OpNum = 0;
3874       Value *LHS;
3875       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3876           OpNum+1 > Record.size())
3877         return error("Invalid record");
3878 
3879       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3880       if (Opc == -1)
3881         return error("Invalid record");
3882       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3883       InstructionList.push_back(I);
3884       if (OpNum < Record.size()) {
3885         if (isa<FPMathOperator>(I)) {
3886           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3887           if (FMF.any())
3888             I->setFastMathFlags(FMF);
3889         }
3890       }
3891       break;
3892     }
3893     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3894       unsigned OpNum = 0;
3895       Value *LHS, *RHS;
3896       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3897           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3898           OpNum+1 > Record.size())
3899         return error("Invalid record");
3900 
3901       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3902       if (Opc == -1)
3903         return error("Invalid record");
3904       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3905       InstructionList.push_back(I);
3906       if (OpNum < Record.size()) {
3907         if (Opc == Instruction::Add ||
3908             Opc == Instruction::Sub ||
3909             Opc == Instruction::Mul ||
3910             Opc == Instruction::Shl) {
3911           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3912             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3913           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3914             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3915         } else if (Opc == Instruction::SDiv ||
3916                    Opc == Instruction::UDiv ||
3917                    Opc == Instruction::LShr ||
3918                    Opc == Instruction::AShr) {
3919           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3920             cast<BinaryOperator>(I)->setIsExact(true);
3921         } else if (isa<FPMathOperator>(I)) {
3922           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3923           if (FMF.any())
3924             I->setFastMathFlags(FMF);
3925         }
3926 
3927       }
3928       break;
3929     }
3930     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3931       unsigned OpNum = 0;
3932       Value *Op;
3933       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3934           OpNum+2 != Record.size())
3935         return error("Invalid record");
3936 
3937       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3938       Type *ResTy = flattenPointerTypes(FullTy);
3939       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3940       if (Opc == -1 || !ResTy)
3941         return error("Invalid record");
3942       Instruction *Temp = nullptr;
3943       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3944         if (Temp) {
3945           InstructionList.push_back(Temp);
3946           assert(CurBB && "No current BB?");
3947           CurBB->getInstList().push_back(Temp);
3948         }
3949       } else {
3950         auto CastOp = (Instruction::CastOps)Opc;
3951         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3952           return error("Invalid cast");
3953         I = CastInst::Create(CastOp, Op, ResTy);
3954       }
3955       InstructionList.push_back(I);
3956       break;
3957     }
3958     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3959     case bitc::FUNC_CODE_INST_GEP_OLD:
3960     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3961       unsigned OpNum = 0;
3962 
3963       Type *Ty;
3964       bool InBounds;
3965 
3966       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3967         InBounds = Record[OpNum++];
3968         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3969         Ty = flattenPointerTypes(FullTy);
3970       } else {
3971         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3972         Ty = nullptr;
3973       }
3974 
3975       Value *BasePtr;
3976       Type *FullBaseTy = nullptr;
3977       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3978         return error("Invalid record");
3979 
3980       if (!Ty) {
3981         std::tie(FullTy, Ty) =
3982             getPointerElementTypes(FullBaseTy->getScalarType());
3983       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3984         return error(
3985             "Explicit gep type does not match pointee type of pointer operand");
3986 
3987       SmallVector<Value*, 16> GEPIdx;
3988       while (OpNum != Record.size()) {
3989         Value *Op;
3990         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3991           return error("Invalid record");
3992         GEPIdx.push_back(Op);
3993       }
3994 
3995       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3996       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3997 
3998       InstructionList.push_back(I);
3999       if (InBounds)
4000         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4001       break;
4002     }
4003 
4004     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4005                                        // EXTRACTVAL: [opty, opval, n x indices]
4006       unsigned OpNum = 0;
4007       Value *Agg;
4008       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4009         return error("Invalid record");
4010 
4011       unsigned RecSize = Record.size();
4012       if (OpNum == RecSize)
4013         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4014 
4015       SmallVector<unsigned, 4> EXTRACTVALIdx;
4016       for (; OpNum != RecSize; ++OpNum) {
4017         bool IsArray = FullTy->isArrayTy();
4018         bool IsStruct = FullTy->isStructTy();
4019         uint64_t Index = Record[OpNum];
4020 
4021         if (!IsStruct && !IsArray)
4022           return error("EXTRACTVAL: Invalid type");
4023         if ((unsigned)Index != Index)
4024           return error("Invalid value");
4025         if (IsStruct && Index >= FullTy->getStructNumElements())
4026           return error("EXTRACTVAL: Invalid struct index");
4027         if (IsArray && Index >= FullTy->getArrayNumElements())
4028           return error("EXTRACTVAL: Invalid array index");
4029         EXTRACTVALIdx.push_back((unsigned)Index);
4030 
4031         if (IsStruct)
4032           FullTy = FullTy->getStructElementType(Index);
4033         else
4034           FullTy = FullTy->getArrayElementType();
4035       }
4036 
4037       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4038       InstructionList.push_back(I);
4039       break;
4040     }
4041 
4042     case bitc::FUNC_CODE_INST_INSERTVAL: {
4043                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4044       unsigned OpNum = 0;
4045       Value *Agg;
4046       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4047         return error("Invalid record");
4048       Value *Val;
4049       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4050         return error("Invalid record");
4051 
4052       unsigned RecSize = Record.size();
4053       if (OpNum == RecSize)
4054         return error("INSERTVAL: Invalid instruction with 0 indices");
4055 
4056       SmallVector<unsigned, 4> INSERTVALIdx;
4057       Type *CurTy = Agg->getType();
4058       for (; OpNum != RecSize; ++OpNum) {
4059         bool IsArray = CurTy->isArrayTy();
4060         bool IsStruct = CurTy->isStructTy();
4061         uint64_t Index = Record[OpNum];
4062 
4063         if (!IsStruct && !IsArray)
4064           return error("INSERTVAL: Invalid type");
4065         if ((unsigned)Index != Index)
4066           return error("Invalid value");
4067         if (IsStruct && Index >= CurTy->getStructNumElements())
4068           return error("INSERTVAL: Invalid struct index");
4069         if (IsArray && Index >= CurTy->getArrayNumElements())
4070           return error("INSERTVAL: Invalid array index");
4071 
4072         INSERTVALIdx.push_back((unsigned)Index);
4073         if (IsStruct)
4074           CurTy = CurTy->getStructElementType(Index);
4075         else
4076           CurTy = CurTy->getArrayElementType();
4077       }
4078 
4079       if (CurTy != Val->getType())
4080         return error("Inserted value type doesn't match aggregate type");
4081 
4082       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4083       InstructionList.push_back(I);
4084       break;
4085     }
4086 
4087     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4088       // obsolete form of select
4089       // handles select i1 ... in old bitcode
4090       unsigned OpNum = 0;
4091       Value *TrueVal, *FalseVal, *Cond;
4092       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4093           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4094           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4095         return error("Invalid record");
4096 
4097       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4098       InstructionList.push_back(I);
4099       break;
4100     }
4101 
4102     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4103       // new form of select
4104       // handles select i1 or select [N x i1]
4105       unsigned OpNum = 0;
4106       Value *TrueVal, *FalseVal, *Cond;
4107       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4108           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4109           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4110         return error("Invalid record");
4111 
4112       // select condition can be either i1 or [N x i1]
4113       if (VectorType* vector_type =
4114           dyn_cast<VectorType>(Cond->getType())) {
4115         // expect <n x i1>
4116         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4117           return error("Invalid type for value");
4118       } else {
4119         // expect i1
4120         if (Cond->getType() != Type::getInt1Ty(Context))
4121           return error("Invalid type for value");
4122       }
4123 
4124       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4125       InstructionList.push_back(I);
4126       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4127         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4128         if (FMF.any())
4129           I->setFastMathFlags(FMF);
4130       }
4131       break;
4132     }
4133 
4134     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4135       unsigned OpNum = 0;
4136       Value *Vec, *Idx;
4137       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4138           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4139         return error("Invalid record");
4140       if (!Vec->getType()->isVectorTy())
4141         return error("Invalid type for value");
4142       I = ExtractElementInst::Create(Vec, Idx);
4143       FullTy = FullTy->getVectorElementType();
4144       InstructionList.push_back(I);
4145       break;
4146     }
4147 
4148     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4149       unsigned OpNum = 0;
4150       Value *Vec, *Elt, *Idx;
4151       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4152         return error("Invalid record");
4153       if (!Vec->getType()->isVectorTy())
4154         return error("Invalid type for value");
4155       if (popValue(Record, OpNum, NextValueNo,
4156                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4157           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4158         return error("Invalid record");
4159       I = InsertElementInst::Create(Vec, Elt, Idx);
4160       InstructionList.push_back(I);
4161       break;
4162     }
4163 
4164     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4165       unsigned OpNum = 0;
4166       Value *Vec1, *Vec2, *Mask;
4167       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4168           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4169         return error("Invalid record");
4170 
4171       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4172         return error("Invalid record");
4173       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4174         return error("Invalid type for value");
4175 
4176       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4177       FullTy = VectorType::get(FullTy->getVectorElementType(),
4178                                Mask->getType()->getVectorElementCount());
4179       InstructionList.push_back(I);
4180       break;
4181     }
4182 
4183     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4184       // Old form of ICmp/FCmp returning bool
4185       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4186       // both legal on vectors but had different behaviour.
4187     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4188       // FCmp/ICmp returning bool or vector of bool
4189 
4190       unsigned OpNum = 0;
4191       Value *LHS, *RHS;
4192       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4193           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4194         return error("Invalid record");
4195 
4196       if (OpNum >= Record.size())
4197         return error(
4198             "Invalid record: operand number exceeded available operands");
4199 
4200       unsigned PredVal = Record[OpNum];
4201       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4202       FastMathFlags FMF;
4203       if (IsFP && Record.size() > OpNum+1)
4204         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4205 
4206       if (OpNum+1 != Record.size())
4207         return error("Invalid record");
4208 
4209       if (LHS->getType()->isFPOrFPVectorTy())
4210         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4211       else
4212         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4213 
4214       if (FMF.any())
4215         I->setFastMathFlags(FMF);
4216       InstructionList.push_back(I);
4217       break;
4218     }
4219 
4220     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4221       {
4222         unsigned Size = Record.size();
4223         if (Size == 0) {
4224           I = ReturnInst::Create(Context);
4225           InstructionList.push_back(I);
4226           break;
4227         }
4228 
4229         unsigned OpNum = 0;
4230         Value *Op = nullptr;
4231         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4232           return error("Invalid record");
4233         if (OpNum != Record.size())
4234           return error("Invalid record");
4235 
4236         I = ReturnInst::Create(Context, Op);
4237         InstructionList.push_back(I);
4238         break;
4239       }
4240     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4241       if (Record.size() != 1 && Record.size() != 3)
4242         return error("Invalid record");
4243       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4244       if (!TrueDest)
4245         return error("Invalid record");
4246 
4247       if (Record.size() == 1) {
4248         I = BranchInst::Create(TrueDest);
4249         InstructionList.push_back(I);
4250       }
4251       else {
4252         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4253         Value *Cond = getValue(Record, 2, NextValueNo,
4254                                Type::getInt1Ty(Context));
4255         if (!FalseDest || !Cond)
4256           return error("Invalid record");
4257         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4258         InstructionList.push_back(I);
4259       }
4260       break;
4261     }
4262     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4263       if (Record.size() != 1 && Record.size() != 2)
4264         return error("Invalid record");
4265       unsigned Idx = 0;
4266       Value *CleanupPad =
4267           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4268       if (!CleanupPad)
4269         return error("Invalid record");
4270       BasicBlock *UnwindDest = nullptr;
4271       if (Record.size() == 2) {
4272         UnwindDest = getBasicBlock(Record[Idx++]);
4273         if (!UnwindDest)
4274           return error("Invalid record");
4275       }
4276 
4277       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4278       InstructionList.push_back(I);
4279       break;
4280     }
4281     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4282       if (Record.size() != 2)
4283         return error("Invalid record");
4284       unsigned Idx = 0;
4285       Value *CatchPad =
4286           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4287       if (!CatchPad)
4288         return error("Invalid record");
4289       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4290       if (!BB)
4291         return error("Invalid record");
4292 
4293       I = CatchReturnInst::Create(CatchPad, BB);
4294       InstructionList.push_back(I);
4295       break;
4296     }
4297     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4298       // We must have, at minimum, the outer scope and the number of arguments.
4299       if (Record.size() < 2)
4300         return error("Invalid record");
4301 
4302       unsigned Idx = 0;
4303 
4304       Value *ParentPad =
4305           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4306 
4307       unsigned NumHandlers = Record[Idx++];
4308 
4309       SmallVector<BasicBlock *, 2> Handlers;
4310       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4311         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4312         if (!BB)
4313           return error("Invalid record");
4314         Handlers.push_back(BB);
4315       }
4316 
4317       BasicBlock *UnwindDest = nullptr;
4318       if (Idx + 1 == Record.size()) {
4319         UnwindDest = getBasicBlock(Record[Idx++]);
4320         if (!UnwindDest)
4321           return error("Invalid record");
4322       }
4323 
4324       if (Record.size() != Idx)
4325         return error("Invalid record");
4326 
4327       auto *CatchSwitch =
4328           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4329       for (BasicBlock *Handler : Handlers)
4330         CatchSwitch->addHandler(Handler);
4331       I = CatchSwitch;
4332       InstructionList.push_back(I);
4333       break;
4334     }
4335     case bitc::FUNC_CODE_INST_CATCHPAD:
4336     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4337       // We must have, at minimum, the outer scope and the number of arguments.
4338       if (Record.size() < 2)
4339         return error("Invalid record");
4340 
4341       unsigned Idx = 0;
4342 
4343       Value *ParentPad =
4344           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4345 
4346       unsigned NumArgOperands = Record[Idx++];
4347 
4348       SmallVector<Value *, 2> Args;
4349       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4350         Value *Val;
4351         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4352           return error("Invalid record");
4353         Args.push_back(Val);
4354       }
4355 
4356       if (Record.size() != Idx)
4357         return error("Invalid record");
4358 
4359       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4360         I = CleanupPadInst::Create(ParentPad, Args);
4361       else
4362         I = CatchPadInst::Create(ParentPad, Args);
4363       InstructionList.push_back(I);
4364       break;
4365     }
4366     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4367       // Check magic
4368       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4369         // "New" SwitchInst format with case ranges. The changes to write this
4370         // format were reverted but we still recognize bitcode that uses it.
4371         // Hopefully someday we will have support for case ranges and can use
4372         // this format again.
4373 
4374         Type *OpTy = getTypeByID(Record[1]);
4375         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4376 
4377         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4378         BasicBlock *Default = getBasicBlock(Record[3]);
4379         if (!OpTy || !Cond || !Default)
4380           return error("Invalid record");
4381 
4382         unsigned NumCases = Record[4];
4383 
4384         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4385         InstructionList.push_back(SI);
4386 
4387         unsigned CurIdx = 5;
4388         for (unsigned i = 0; i != NumCases; ++i) {
4389           SmallVector<ConstantInt*, 1> CaseVals;
4390           unsigned NumItems = Record[CurIdx++];
4391           for (unsigned ci = 0; ci != NumItems; ++ci) {
4392             bool isSingleNumber = Record[CurIdx++];
4393 
4394             APInt Low;
4395             unsigned ActiveWords = 1;
4396             if (ValueBitWidth > 64)
4397               ActiveWords = Record[CurIdx++];
4398             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4399                                 ValueBitWidth);
4400             CurIdx += ActiveWords;
4401 
4402             if (!isSingleNumber) {
4403               ActiveWords = 1;
4404               if (ValueBitWidth > 64)
4405                 ActiveWords = Record[CurIdx++];
4406               APInt High = readWideAPInt(
4407                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4408               CurIdx += ActiveWords;
4409 
4410               // FIXME: It is not clear whether values in the range should be
4411               // compared as signed or unsigned values. The partially
4412               // implemented changes that used this format in the past used
4413               // unsigned comparisons.
4414               for ( ; Low.ule(High); ++Low)
4415                 CaseVals.push_back(ConstantInt::get(Context, Low));
4416             } else
4417               CaseVals.push_back(ConstantInt::get(Context, Low));
4418           }
4419           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4420           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4421                  cve = CaseVals.end(); cvi != cve; ++cvi)
4422             SI->addCase(*cvi, DestBB);
4423         }
4424         I = SI;
4425         break;
4426       }
4427 
4428       // Old SwitchInst format without case ranges.
4429 
4430       if (Record.size() < 3 || (Record.size() & 1) == 0)
4431         return error("Invalid record");
4432       Type *OpTy = getTypeByID(Record[0]);
4433       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4434       BasicBlock *Default = getBasicBlock(Record[2]);
4435       if (!OpTy || !Cond || !Default)
4436         return error("Invalid record");
4437       unsigned NumCases = (Record.size()-3)/2;
4438       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4439       InstructionList.push_back(SI);
4440       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4441         ConstantInt *CaseVal =
4442           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4443         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4444         if (!CaseVal || !DestBB) {
4445           delete SI;
4446           return error("Invalid record");
4447         }
4448         SI->addCase(CaseVal, DestBB);
4449       }
4450       I = SI;
4451       break;
4452     }
4453     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4454       if (Record.size() < 2)
4455         return error("Invalid record");
4456       Type *OpTy = getTypeByID(Record[0]);
4457       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4458       if (!OpTy || !Address)
4459         return error("Invalid record");
4460       unsigned NumDests = Record.size()-2;
4461       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4462       InstructionList.push_back(IBI);
4463       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4464         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4465           IBI->addDestination(DestBB);
4466         } else {
4467           delete IBI;
4468           return error("Invalid record");
4469         }
4470       }
4471       I = IBI;
4472       break;
4473     }
4474 
4475     case bitc::FUNC_CODE_INST_INVOKE: {
4476       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4477       if (Record.size() < 4)
4478         return error("Invalid record");
4479       unsigned OpNum = 0;
4480       AttributeList PAL = getAttributes(Record[OpNum++]);
4481       unsigned CCInfo = Record[OpNum++];
4482       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4483       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4484 
4485       FunctionType *FTy = nullptr;
4486       FunctionType *FullFTy = nullptr;
4487       if ((CCInfo >> 13) & 1) {
4488         FullFTy =
4489             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4490         if (!FullFTy)
4491           return error("Explicit invoke type is not a function type");
4492         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4493       }
4494 
4495       Value *Callee;
4496       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4497         return error("Invalid record");
4498 
4499       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4500       if (!CalleeTy)
4501         return error("Callee is not a pointer");
4502       if (!FTy) {
4503         FullFTy =
4504             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4505         if (!FullFTy)
4506           return error("Callee is not of pointer to function type");
4507         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4508       } else if (getPointerElementFlatType(FullTy) != FTy)
4509         return error("Explicit invoke type does not match pointee type of "
4510                      "callee operand");
4511       if (Record.size() < FTy->getNumParams() + OpNum)
4512         return error("Insufficient operands to call");
4513 
4514       SmallVector<Value*, 16> Ops;
4515       SmallVector<Type *, 16> ArgsFullTys;
4516       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4517         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4518                                FTy->getParamType(i)));
4519         ArgsFullTys.push_back(FullFTy->getParamType(i));
4520         if (!Ops.back())
4521           return error("Invalid record");
4522       }
4523 
4524       if (!FTy->isVarArg()) {
4525         if (Record.size() != OpNum)
4526           return error("Invalid record");
4527       } else {
4528         // Read type/value pairs for varargs params.
4529         while (OpNum != Record.size()) {
4530           Value *Op;
4531           Type *FullTy;
4532           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4533             return error("Invalid record");
4534           Ops.push_back(Op);
4535           ArgsFullTys.push_back(FullTy);
4536         }
4537       }
4538 
4539       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4540                              OperandBundles);
4541       FullTy = FullFTy->getReturnType();
4542       OperandBundles.clear();
4543       InstructionList.push_back(I);
4544       cast<InvokeInst>(I)->setCallingConv(
4545           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4546       cast<InvokeInst>(I)->setAttributes(PAL);
4547       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4548 
4549       break;
4550     }
4551     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4552       unsigned Idx = 0;
4553       Value *Val = nullptr;
4554       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4555         return error("Invalid record");
4556       I = ResumeInst::Create(Val);
4557       InstructionList.push_back(I);
4558       break;
4559     }
4560     case bitc::FUNC_CODE_INST_CALLBR: {
4561       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4562       unsigned OpNum = 0;
4563       AttributeList PAL = getAttributes(Record[OpNum++]);
4564       unsigned CCInfo = Record[OpNum++];
4565 
4566       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4567       unsigned NumIndirectDests = Record[OpNum++];
4568       SmallVector<BasicBlock *, 16> IndirectDests;
4569       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4570         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4571 
4572       FunctionType *FTy = nullptr;
4573       FunctionType *FullFTy = nullptr;
4574       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4575         FullFTy =
4576             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4577         if (!FullFTy)
4578           return error("Explicit call type is not a function type");
4579         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4580       }
4581 
4582       Value *Callee;
4583       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4584         return error("Invalid record");
4585 
4586       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4587       if (!OpTy)
4588         return error("Callee is not a pointer type");
4589       if (!FTy) {
4590         FullFTy =
4591             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4592         if (!FullFTy)
4593           return error("Callee is not of pointer to function type");
4594         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4595       } else if (getPointerElementFlatType(FullTy) != FTy)
4596         return error("Explicit call type does not match pointee type of "
4597                      "callee operand");
4598       if (Record.size() < FTy->getNumParams() + OpNum)
4599         return error("Insufficient operands to call");
4600 
4601       SmallVector<Value*, 16> Args;
4602       // Read the fixed params.
4603       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4604         if (FTy->getParamType(i)->isLabelTy())
4605           Args.push_back(getBasicBlock(Record[OpNum]));
4606         else
4607           Args.push_back(getValue(Record, OpNum, NextValueNo,
4608                                   FTy->getParamType(i)));
4609         if (!Args.back())
4610           return error("Invalid record");
4611       }
4612 
4613       // Read type/value pairs for varargs params.
4614       if (!FTy->isVarArg()) {
4615         if (OpNum != Record.size())
4616           return error("Invalid record");
4617       } else {
4618         while (OpNum != Record.size()) {
4619           Value *Op;
4620           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4621             return error("Invalid record");
4622           Args.push_back(Op);
4623         }
4624       }
4625 
4626       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4627                              OperandBundles);
4628       FullTy = FullFTy->getReturnType();
4629       OperandBundles.clear();
4630       InstructionList.push_back(I);
4631       cast<CallBrInst>(I)->setCallingConv(
4632           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4633       cast<CallBrInst>(I)->setAttributes(PAL);
4634       break;
4635     }
4636     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4637       I = new UnreachableInst(Context);
4638       InstructionList.push_back(I);
4639       break;
4640     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4641       if (Record.size() < 1)
4642         return error("Invalid record");
4643       // The first record specifies the type.
4644       FullTy = getFullyStructuredTypeByID(Record[0]);
4645       Type *Ty = flattenPointerTypes(FullTy);
4646       if (!Ty)
4647         return error("Invalid record");
4648 
4649       // Phi arguments are pairs of records of [value, basic block].
4650       // There is an optional final record for fast-math-flags if this phi has a
4651       // floating-point type.
4652       size_t NumArgs = (Record.size() - 1) / 2;
4653       PHINode *PN = PHINode::Create(Ty, NumArgs);
4654       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4655         return error("Invalid record");
4656       InstructionList.push_back(PN);
4657 
4658       for (unsigned i = 0; i != NumArgs; i++) {
4659         Value *V;
4660         // With the new function encoding, it is possible that operands have
4661         // negative IDs (for forward references).  Use a signed VBR
4662         // representation to keep the encoding small.
4663         if (UseRelativeIDs)
4664           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4665         else
4666           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4667         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4668         if (!V || !BB)
4669           return error("Invalid record");
4670         PN->addIncoming(V, BB);
4671       }
4672       I = PN;
4673 
4674       // If there are an even number of records, the final record must be FMF.
4675       if (Record.size() % 2 == 0) {
4676         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4677         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4678         if (FMF.any())
4679           I->setFastMathFlags(FMF);
4680       }
4681 
4682       break;
4683     }
4684 
4685     case bitc::FUNC_CODE_INST_LANDINGPAD:
4686     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4687       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4688       unsigned Idx = 0;
4689       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4690         if (Record.size() < 3)
4691           return error("Invalid record");
4692       } else {
4693         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4694         if (Record.size() < 4)
4695           return error("Invalid record");
4696       }
4697       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4698       Type *Ty = flattenPointerTypes(FullTy);
4699       if (!Ty)
4700         return error("Invalid record");
4701       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4702         Value *PersFn = nullptr;
4703         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4704           return error("Invalid record");
4705 
4706         if (!F->hasPersonalityFn())
4707           F->setPersonalityFn(cast<Constant>(PersFn));
4708         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4709           return error("Personality function mismatch");
4710       }
4711 
4712       bool IsCleanup = !!Record[Idx++];
4713       unsigned NumClauses = Record[Idx++];
4714       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4715       LP->setCleanup(IsCleanup);
4716       for (unsigned J = 0; J != NumClauses; ++J) {
4717         LandingPadInst::ClauseType CT =
4718           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4719         Value *Val;
4720 
4721         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4722           delete LP;
4723           return error("Invalid record");
4724         }
4725 
4726         assert((CT != LandingPadInst::Catch ||
4727                 !isa<ArrayType>(Val->getType())) &&
4728                "Catch clause has a invalid type!");
4729         assert((CT != LandingPadInst::Filter ||
4730                 isa<ArrayType>(Val->getType())) &&
4731                "Filter clause has invalid type!");
4732         LP->addClause(cast<Constant>(Val));
4733       }
4734 
4735       I = LP;
4736       InstructionList.push_back(I);
4737       break;
4738     }
4739 
4740     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4741       if (Record.size() != 4)
4742         return error("Invalid record");
4743       uint64_t AlignRecord = Record[3];
4744       const uint64_t InAllocaMask = uint64_t(1) << 5;
4745       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4746       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4747       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4748                                 SwiftErrorMask;
4749       bool InAlloca = AlignRecord & InAllocaMask;
4750       bool SwiftError = AlignRecord & SwiftErrorMask;
4751       FullTy = getFullyStructuredTypeByID(Record[0]);
4752       Type *Ty = flattenPointerTypes(FullTy);
4753       if ((AlignRecord & ExplicitTypeMask) == 0) {
4754         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4755         if (!PTy)
4756           return error("Old-style alloca with a non-pointer type");
4757         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4758       }
4759       Type *OpTy = getTypeByID(Record[1]);
4760       Value *Size = getFnValueByID(Record[2], OpTy);
4761       MaybeAlign Align;
4762       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4763         return Err;
4764       }
4765       if (!Ty || !Size)
4766         return error("Invalid record");
4767 
4768       // FIXME: Make this an optional field.
4769       const DataLayout &DL = TheModule->getDataLayout();
4770       unsigned AS = DL.getAllocaAddrSpace();
4771 
4772       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4773       AI->setUsedWithInAlloca(InAlloca);
4774       AI->setSwiftError(SwiftError);
4775       I = AI;
4776       FullTy = PointerType::get(FullTy, AS);
4777       InstructionList.push_back(I);
4778       break;
4779     }
4780     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4781       unsigned OpNum = 0;
4782       Value *Op;
4783       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4784           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4785         return error("Invalid record");
4786 
4787       if (!isa<PointerType>(Op->getType()))
4788         return error("Load operand is not a pointer type");
4789 
4790       Type *Ty = nullptr;
4791       if (OpNum + 3 == Record.size()) {
4792         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4793         Ty = flattenPointerTypes(FullTy);
4794       } else
4795         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4796 
4797       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4798         return Err;
4799 
4800       MaybeAlign Align;
4801       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4802         return Err;
4803       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4804       InstructionList.push_back(I);
4805       break;
4806     }
4807     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4808        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4809       unsigned OpNum = 0;
4810       Value *Op;
4811       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4812           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4813         return error("Invalid record");
4814 
4815       if (!isa<PointerType>(Op->getType()))
4816         return error("Load operand is not a pointer type");
4817 
4818       Type *Ty = nullptr;
4819       if (OpNum + 5 == Record.size()) {
4820         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4821         Ty = flattenPointerTypes(FullTy);
4822       } else
4823         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4824 
4825       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4826         return Err;
4827 
4828       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4829       if (Ordering == AtomicOrdering::NotAtomic ||
4830           Ordering == AtomicOrdering::Release ||
4831           Ordering == AtomicOrdering::AcquireRelease)
4832         return error("Invalid record");
4833       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4834         return error("Invalid record");
4835       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4836 
4837       MaybeAlign Align;
4838       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4839         return Err;
4840       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4841       InstructionList.push_back(I);
4842       break;
4843     }
4844     case bitc::FUNC_CODE_INST_STORE:
4845     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4846       unsigned OpNum = 0;
4847       Value *Val, *Ptr;
4848       Type *FullTy;
4849       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4850           (BitCode == bitc::FUNC_CODE_INST_STORE
4851                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4852                : popValue(Record, OpNum, NextValueNo,
4853                           getPointerElementFlatType(FullTy), Val)) ||
4854           OpNum + 2 != Record.size())
4855         return error("Invalid record");
4856 
4857       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4858         return Err;
4859       MaybeAlign Align;
4860       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4861         return Err;
4862       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4863       InstructionList.push_back(I);
4864       break;
4865     }
4866     case bitc::FUNC_CODE_INST_STOREATOMIC:
4867     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4868       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4869       unsigned OpNum = 0;
4870       Value *Val, *Ptr;
4871       Type *FullTy;
4872       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4873           !isa<PointerType>(Ptr->getType()) ||
4874           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4875                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4876                : popValue(Record, OpNum, NextValueNo,
4877                           getPointerElementFlatType(FullTy), Val)) ||
4878           OpNum + 4 != Record.size())
4879         return error("Invalid record");
4880 
4881       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4882         return Err;
4883       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4884       if (Ordering == AtomicOrdering::NotAtomic ||
4885           Ordering == AtomicOrdering::Acquire ||
4886           Ordering == AtomicOrdering::AcquireRelease)
4887         return error("Invalid record");
4888       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4889       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4890         return error("Invalid record");
4891 
4892       MaybeAlign Align;
4893       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4894         return Err;
4895       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4896       InstructionList.push_back(I);
4897       break;
4898     }
4899     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4900     case bitc::FUNC_CODE_INST_CMPXCHG: {
4901       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4902       //          failureordering?, isweak?]
4903       unsigned OpNum = 0;
4904       Value *Ptr, *Cmp, *New;
4905       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4906         return error("Invalid record");
4907 
4908       if (!isa<PointerType>(Ptr->getType()))
4909         return error("Cmpxchg operand is not a pointer type");
4910 
4911       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4912         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4913           return error("Invalid record");
4914       } else if (popValue(Record, OpNum, NextValueNo,
4915                           getPointerElementFlatType(FullTy), Cmp))
4916         return error("Invalid record");
4917       else
4918         FullTy = cast<PointerType>(FullTy)->getElementType();
4919 
4920       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4921           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4922         return error("Invalid record");
4923 
4924       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4925       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4926           SuccessOrdering == AtomicOrdering::Unordered)
4927         return error("Invalid record");
4928       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4929 
4930       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4931         return Err;
4932       AtomicOrdering FailureOrdering;
4933       if (Record.size() < 7)
4934         FailureOrdering =
4935             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4936       else
4937         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4938 
4939       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4940                                 SSID);
4941       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4942       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4943 
4944       if (Record.size() < 8) {
4945         // Before weak cmpxchgs existed, the instruction simply returned the
4946         // value loaded from memory, so bitcode files from that era will be
4947         // expecting the first component of a modern cmpxchg.
4948         CurBB->getInstList().push_back(I);
4949         I = ExtractValueInst::Create(I, 0);
4950         FullTy = cast<StructType>(FullTy)->getElementType(0);
4951       } else {
4952         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4953       }
4954 
4955       InstructionList.push_back(I);
4956       break;
4957     }
4958     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4959       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4960       unsigned OpNum = 0;
4961       Value *Ptr, *Val;
4962       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4963           !isa<PointerType>(Ptr->getType()) ||
4964           popValue(Record, OpNum, NextValueNo,
4965                    getPointerElementFlatType(FullTy), Val) ||
4966           OpNum + 4 != Record.size())
4967         return error("Invalid record");
4968       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4969       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4970           Operation > AtomicRMWInst::LAST_BINOP)
4971         return error("Invalid record");
4972       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4973       if (Ordering == AtomicOrdering::NotAtomic ||
4974           Ordering == AtomicOrdering::Unordered)
4975         return error("Invalid record");
4976       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4977       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4978       FullTy = getPointerElementFlatType(FullTy);
4979       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4980       InstructionList.push_back(I);
4981       break;
4982     }
4983     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4984       if (2 != Record.size())
4985         return error("Invalid record");
4986       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4987       if (Ordering == AtomicOrdering::NotAtomic ||
4988           Ordering == AtomicOrdering::Unordered ||
4989           Ordering == AtomicOrdering::Monotonic)
4990         return error("Invalid record");
4991       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4992       I = new FenceInst(Context, Ordering, SSID);
4993       InstructionList.push_back(I);
4994       break;
4995     }
4996     case bitc::FUNC_CODE_INST_CALL: {
4997       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4998       if (Record.size() < 3)
4999         return error("Invalid record");
5000 
5001       unsigned OpNum = 0;
5002       AttributeList PAL = getAttributes(Record[OpNum++]);
5003       unsigned CCInfo = Record[OpNum++];
5004 
5005       FastMathFlags FMF;
5006       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5007         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5008         if (!FMF.any())
5009           return error("Fast math flags indicator set for call with no FMF");
5010       }
5011 
5012       FunctionType *FTy = nullptr;
5013       FunctionType *FullFTy = nullptr;
5014       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5015         FullFTy =
5016             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5017         if (!FullFTy)
5018           return error("Explicit call type is not a function type");
5019         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5020       }
5021 
5022       Value *Callee;
5023       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5024         return error("Invalid record");
5025 
5026       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5027       if (!OpTy)
5028         return error("Callee is not a pointer type");
5029       if (!FTy) {
5030         FullFTy =
5031             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5032         if (!FullFTy)
5033           return error("Callee is not of pointer to function type");
5034         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5035       } else if (getPointerElementFlatType(FullTy) != FTy)
5036         return error("Explicit call type does not match pointee type of "
5037                      "callee operand");
5038       if (Record.size() < FTy->getNumParams() + OpNum)
5039         return error("Insufficient operands to call");
5040 
5041       SmallVector<Value*, 16> Args;
5042       SmallVector<Type*, 16> ArgsFullTys;
5043       // Read the fixed params.
5044       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5045         if (FTy->getParamType(i)->isLabelTy())
5046           Args.push_back(getBasicBlock(Record[OpNum]));
5047         else
5048           Args.push_back(getValue(Record, OpNum, NextValueNo,
5049                                   FTy->getParamType(i)));
5050         ArgsFullTys.push_back(FullFTy->getParamType(i));
5051         if (!Args.back())
5052           return error("Invalid record");
5053       }
5054 
5055       // Read type/value pairs for varargs params.
5056       if (!FTy->isVarArg()) {
5057         if (OpNum != Record.size())
5058           return error("Invalid record");
5059       } else {
5060         while (OpNum != Record.size()) {
5061           Value *Op;
5062           Type *FullTy;
5063           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5064             return error("Invalid record");
5065           Args.push_back(Op);
5066           ArgsFullTys.push_back(FullTy);
5067         }
5068       }
5069 
5070       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5071       FullTy = FullFTy->getReturnType();
5072       OperandBundles.clear();
5073       InstructionList.push_back(I);
5074       cast<CallInst>(I)->setCallingConv(
5075           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5076       CallInst::TailCallKind TCK = CallInst::TCK_None;
5077       if (CCInfo & 1 << bitc::CALL_TAIL)
5078         TCK = CallInst::TCK_Tail;
5079       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5080         TCK = CallInst::TCK_MustTail;
5081       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5082         TCK = CallInst::TCK_NoTail;
5083       cast<CallInst>(I)->setTailCallKind(TCK);
5084       cast<CallInst>(I)->setAttributes(PAL);
5085       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5086       if (FMF.any()) {
5087         if (!isa<FPMathOperator>(I))
5088           return error("Fast-math-flags specified for call without "
5089                        "floating-point scalar or vector return type");
5090         I->setFastMathFlags(FMF);
5091       }
5092       break;
5093     }
5094     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5095       if (Record.size() < 3)
5096         return error("Invalid record");
5097       Type *OpTy = getTypeByID(Record[0]);
5098       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5099       FullTy = getFullyStructuredTypeByID(Record[2]);
5100       Type *ResTy = flattenPointerTypes(FullTy);
5101       if (!OpTy || !Op || !ResTy)
5102         return error("Invalid record");
5103       I = new VAArgInst(Op, ResTy);
5104       InstructionList.push_back(I);
5105       break;
5106     }
5107 
5108     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5109       // A call or an invoke can be optionally prefixed with some variable
5110       // number of operand bundle blocks.  These blocks are read into
5111       // OperandBundles and consumed at the next call or invoke instruction.
5112 
5113       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5114         return error("Invalid record");
5115 
5116       std::vector<Value *> Inputs;
5117 
5118       unsigned OpNum = 1;
5119       while (OpNum != Record.size()) {
5120         Value *Op;
5121         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5122           return error("Invalid record");
5123         Inputs.push_back(Op);
5124       }
5125 
5126       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5127       continue;
5128     }
5129 
5130     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5131       unsigned OpNum = 0;
5132       Value *Op = nullptr;
5133       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5134         return error("Invalid record");
5135       if (OpNum != Record.size())
5136         return error("Invalid record");
5137 
5138       I = new FreezeInst(Op);
5139       InstructionList.push_back(I);
5140       break;
5141     }
5142     }
5143 
5144     // Add instruction to end of current BB.  If there is no current BB, reject
5145     // this file.
5146     if (!CurBB) {
5147       I->deleteValue();
5148       return error("Invalid instruction with no BB");
5149     }
5150     if (!OperandBundles.empty()) {
5151       I->deleteValue();
5152       return error("Operand bundles found with no consumer");
5153     }
5154     CurBB->getInstList().push_back(I);
5155 
5156     // If this was a terminator instruction, move to the next block.
5157     if (I->isTerminator()) {
5158       ++CurBBNo;
5159       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5160     }
5161 
5162     // Non-void values get registered in the value table for future use.
5163     if (!I->getType()->isVoidTy()) {
5164       if (!FullTy) {
5165         FullTy = I->getType();
5166         assert(
5167             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5168             !isa<ArrayType>(FullTy) &&
5169             (!isa<VectorType>(FullTy) ||
5170              FullTy->getVectorElementType()->isFloatingPointTy() ||
5171              FullTy->getVectorElementType()->isIntegerTy()) &&
5172             "Structured types must be assigned with corresponding non-opaque "
5173             "pointer type");
5174       }
5175 
5176       assert(I->getType() == flattenPointerTypes(FullTy) &&
5177              "Incorrect fully structured type provided for Instruction");
5178       ValueList.assignValue(I, NextValueNo++, FullTy);
5179     }
5180   }
5181 
5182 OutOfRecordLoop:
5183 
5184   if (!OperandBundles.empty())
5185     return error("Operand bundles found with no consumer");
5186 
5187   // Check the function list for unresolved values.
5188   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5189     if (!A->getParent()) {
5190       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5191       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5192         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5193           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5194           delete A;
5195         }
5196       }
5197       return error("Never resolved value found in function");
5198     }
5199   }
5200 
5201   // Unexpected unresolved metadata about to be dropped.
5202   if (MDLoader->hasFwdRefs())
5203     return error("Invalid function metadata: outgoing forward refs");
5204 
5205   // Trim the value list down to the size it was before we parsed this function.
5206   ValueList.shrinkTo(ModuleValueListSize);
5207   MDLoader->shrinkTo(ModuleMDLoaderSize);
5208   std::vector<BasicBlock*>().swap(FunctionBBs);
5209   return Error::success();
5210 }
5211 
5212 /// Find the function body in the bitcode stream
5213 Error BitcodeReader::findFunctionInStream(
5214     Function *F,
5215     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5216   while (DeferredFunctionInfoIterator->second == 0) {
5217     // This is the fallback handling for the old format bitcode that
5218     // didn't contain the function index in the VST, or when we have
5219     // an anonymous function which would not have a VST entry.
5220     // Assert that we have one of those two cases.
5221     assert(VSTOffset == 0 || !F->hasName());
5222     // Parse the next body in the stream and set its position in the
5223     // DeferredFunctionInfo map.
5224     if (Error Err = rememberAndSkipFunctionBodies())
5225       return Err;
5226   }
5227   return Error::success();
5228 }
5229 
5230 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5231   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5232     return SyncScope::ID(Val);
5233   if (Val >= SSIDs.size())
5234     return SyncScope::System; // Map unknown synchronization scopes to system.
5235   return SSIDs[Val];
5236 }
5237 
5238 //===----------------------------------------------------------------------===//
5239 // GVMaterializer implementation
5240 //===----------------------------------------------------------------------===//
5241 
5242 Error BitcodeReader::materialize(GlobalValue *GV) {
5243   Function *F = dyn_cast<Function>(GV);
5244   // If it's not a function or is already material, ignore the request.
5245   if (!F || !F->isMaterializable())
5246     return Error::success();
5247 
5248   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5249   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5250   // If its position is recorded as 0, its body is somewhere in the stream
5251   // but we haven't seen it yet.
5252   if (DFII->second == 0)
5253     if (Error Err = findFunctionInStream(F, DFII))
5254       return Err;
5255 
5256   // Materialize metadata before parsing any function bodies.
5257   if (Error Err = materializeMetadata())
5258     return Err;
5259 
5260   // Move the bit stream to the saved position of the deferred function body.
5261   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5262     return JumpFailed;
5263   if (Error Err = parseFunctionBody(F))
5264     return Err;
5265   F->setIsMaterializable(false);
5266 
5267   if (StripDebugInfo)
5268     stripDebugInfo(*F);
5269 
5270   // Upgrade any old intrinsic calls in the function.
5271   for (auto &I : UpgradedIntrinsics) {
5272     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5273          UI != UE;) {
5274       User *U = *UI;
5275       ++UI;
5276       if (CallInst *CI = dyn_cast<CallInst>(U))
5277         UpgradeIntrinsicCall(CI, I.second);
5278     }
5279   }
5280 
5281   // Update calls to the remangled intrinsics
5282   for (auto &I : RemangledIntrinsics)
5283     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5284          UI != UE;)
5285       // Don't expect any other users than call sites
5286       CallSite(*UI++).setCalledFunction(I.second);
5287 
5288   // Finish fn->subprogram upgrade for materialized functions.
5289   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5290     F->setSubprogram(SP);
5291 
5292   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5293   if (!MDLoader->isStrippingTBAA()) {
5294     for (auto &I : instructions(F)) {
5295       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5296       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5297         continue;
5298       MDLoader->setStripTBAA(true);
5299       stripTBAA(F->getParent());
5300     }
5301   }
5302 
5303   // Bring in any functions that this function forward-referenced via
5304   // blockaddresses.
5305   return materializeForwardReferencedFunctions();
5306 }
5307 
5308 Error BitcodeReader::materializeModule() {
5309   if (Error Err = materializeMetadata())
5310     return Err;
5311 
5312   // Promise to materialize all forward references.
5313   WillMaterializeAllForwardRefs = true;
5314 
5315   // Iterate over the module, deserializing any functions that are still on
5316   // disk.
5317   for (Function &F : *TheModule) {
5318     if (Error Err = materialize(&F))
5319       return Err;
5320   }
5321   // At this point, if there are any function bodies, parse the rest of
5322   // the bits in the module past the last function block we have recorded
5323   // through either lazy scanning or the VST.
5324   if (LastFunctionBlockBit || NextUnreadBit)
5325     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5326                                     ? LastFunctionBlockBit
5327                                     : NextUnreadBit))
5328       return Err;
5329 
5330   // Check that all block address forward references got resolved (as we
5331   // promised above).
5332   if (!BasicBlockFwdRefs.empty())
5333     return error("Never resolved function from blockaddress");
5334 
5335   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5336   // delete the old functions to clean up. We can't do this unless the entire
5337   // module is materialized because there could always be another function body
5338   // with calls to the old function.
5339   for (auto &I : UpgradedIntrinsics) {
5340     for (auto *U : I.first->users()) {
5341       if (CallInst *CI = dyn_cast<CallInst>(U))
5342         UpgradeIntrinsicCall(CI, I.second);
5343     }
5344     if (!I.first->use_empty())
5345       I.first->replaceAllUsesWith(I.second);
5346     I.first->eraseFromParent();
5347   }
5348   UpgradedIntrinsics.clear();
5349   // Do the same for remangled intrinsics
5350   for (auto &I : RemangledIntrinsics) {
5351     I.first->replaceAllUsesWith(I.second);
5352     I.first->eraseFromParent();
5353   }
5354   RemangledIntrinsics.clear();
5355 
5356   UpgradeDebugInfo(*TheModule);
5357 
5358   UpgradeModuleFlags(*TheModule);
5359 
5360   UpgradeARCRuntime(*TheModule);
5361 
5362   return Error::success();
5363 }
5364 
5365 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5366   return IdentifiedStructTypes;
5367 }
5368 
5369 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5370     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5371     StringRef ModulePath, unsigned ModuleId)
5372     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5373       ModulePath(ModulePath), ModuleId(ModuleId) {}
5374 
5375 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5376   TheIndex.addModule(ModulePath, ModuleId);
5377 }
5378 
5379 ModuleSummaryIndex::ModuleInfo *
5380 ModuleSummaryIndexBitcodeReader::getThisModule() {
5381   return TheIndex.getModule(ModulePath);
5382 }
5383 
5384 std::pair<ValueInfo, GlobalValue::GUID>
5385 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5386   auto VGI = ValueIdToValueInfoMap[ValueId];
5387   assert(VGI.first);
5388   return VGI;
5389 }
5390 
5391 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5392     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5393     StringRef SourceFileName) {
5394   std::string GlobalId =
5395       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5396   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5397   auto OriginalNameID = ValueGUID;
5398   if (GlobalValue::isLocalLinkage(Linkage))
5399     OriginalNameID = GlobalValue::getGUID(ValueName);
5400   if (PrintSummaryGUIDs)
5401     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5402            << ValueName << "\n";
5403 
5404   // UseStrtab is false for legacy summary formats and value names are
5405   // created on stack. In that case we save the name in a string saver in
5406   // the index so that the value name can be recorded.
5407   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5408       TheIndex.getOrInsertValueInfo(
5409           ValueGUID,
5410           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5411       OriginalNameID);
5412 }
5413 
5414 // Specialized value symbol table parser used when reading module index
5415 // blocks where we don't actually create global values. The parsed information
5416 // is saved in the bitcode reader for use when later parsing summaries.
5417 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5418     uint64_t Offset,
5419     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5420   // With a strtab the VST is not required to parse the summary.
5421   if (UseStrtab)
5422     return Error::success();
5423 
5424   assert(Offset > 0 && "Expected non-zero VST offset");
5425   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5426   if (!MaybeCurrentBit)
5427     return MaybeCurrentBit.takeError();
5428   uint64_t CurrentBit = MaybeCurrentBit.get();
5429 
5430   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5431     return Err;
5432 
5433   SmallVector<uint64_t, 64> Record;
5434 
5435   // Read all the records for this value table.
5436   SmallString<128> ValueName;
5437 
5438   while (true) {
5439     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5440     if (!MaybeEntry)
5441       return MaybeEntry.takeError();
5442     BitstreamEntry Entry = MaybeEntry.get();
5443 
5444     switch (Entry.Kind) {
5445     case BitstreamEntry::SubBlock: // Handled for us already.
5446     case BitstreamEntry::Error:
5447       return error("Malformed block");
5448     case BitstreamEntry::EndBlock:
5449       // Done parsing VST, jump back to wherever we came from.
5450       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5451         return JumpFailed;
5452       return Error::success();
5453     case BitstreamEntry::Record:
5454       // The interesting case.
5455       break;
5456     }
5457 
5458     // Read a record.
5459     Record.clear();
5460     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5461     if (!MaybeRecord)
5462       return MaybeRecord.takeError();
5463     switch (MaybeRecord.get()) {
5464     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5465       break;
5466     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5467       if (convertToString(Record, 1, ValueName))
5468         return error("Invalid record");
5469       unsigned ValueID = Record[0];
5470       assert(!SourceFileName.empty());
5471       auto VLI = ValueIdToLinkageMap.find(ValueID);
5472       assert(VLI != ValueIdToLinkageMap.end() &&
5473              "No linkage found for VST entry?");
5474       auto Linkage = VLI->second;
5475       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5476       ValueName.clear();
5477       break;
5478     }
5479     case bitc::VST_CODE_FNENTRY: {
5480       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5481       if (convertToString(Record, 2, ValueName))
5482         return error("Invalid record");
5483       unsigned ValueID = Record[0];
5484       assert(!SourceFileName.empty());
5485       auto VLI = ValueIdToLinkageMap.find(ValueID);
5486       assert(VLI != ValueIdToLinkageMap.end() &&
5487              "No linkage found for VST entry?");
5488       auto Linkage = VLI->second;
5489       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5490       ValueName.clear();
5491       break;
5492     }
5493     case bitc::VST_CODE_COMBINED_ENTRY: {
5494       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5495       unsigned ValueID = Record[0];
5496       GlobalValue::GUID RefGUID = Record[1];
5497       // The "original name", which is the second value of the pair will be
5498       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5499       ValueIdToValueInfoMap[ValueID] =
5500           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5501       break;
5502     }
5503     }
5504   }
5505 }
5506 
5507 // Parse just the blocks needed for building the index out of the module.
5508 // At the end of this routine the module Index is populated with a map
5509 // from global value id to GlobalValueSummary objects.
5510 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5511   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5512     return Err;
5513 
5514   SmallVector<uint64_t, 64> Record;
5515   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5516   unsigned ValueId = 0;
5517 
5518   // Read the index for this module.
5519   while (true) {
5520     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5521     if (!MaybeEntry)
5522       return MaybeEntry.takeError();
5523     llvm::BitstreamEntry Entry = MaybeEntry.get();
5524 
5525     switch (Entry.Kind) {
5526     case BitstreamEntry::Error:
5527       return error("Malformed block");
5528     case BitstreamEntry::EndBlock:
5529       return Error::success();
5530 
5531     case BitstreamEntry::SubBlock:
5532       switch (Entry.ID) {
5533       default: // Skip unknown content.
5534         if (Error Err = Stream.SkipBlock())
5535           return Err;
5536         break;
5537       case bitc::BLOCKINFO_BLOCK_ID:
5538         // Need to parse these to get abbrev ids (e.g. for VST)
5539         if (readBlockInfo())
5540           return error("Malformed block");
5541         break;
5542       case bitc::VALUE_SYMTAB_BLOCK_ID:
5543         // Should have been parsed earlier via VSTOffset, unless there
5544         // is no summary section.
5545         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5546                 !SeenGlobalValSummary) &&
5547                "Expected early VST parse via VSTOffset record");
5548         if (Error Err = Stream.SkipBlock())
5549           return Err;
5550         break;
5551       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5552       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5553         // Add the module if it is a per-module index (has a source file name).
5554         if (!SourceFileName.empty())
5555           addThisModule();
5556         assert(!SeenValueSymbolTable &&
5557                "Already read VST when parsing summary block?");
5558         // We might not have a VST if there were no values in the
5559         // summary. An empty summary block generated when we are
5560         // performing ThinLTO compiles so we don't later invoke
5561         // the regular LTO process on them.
5562         if (VSTOffset > 0) {
5563           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5564             return Err;
5565           SeenValueSymbolTable = true;
5566         }
5567         SeenGlobalValSummary = true;
5568         if (Error Err = parseEntireSummary(Entry.ID))
5569           return Err;
5570         break;
5571       case bitc::MODULE_STRTAB_BLOCK_ID:
5572         if (Error Err = parseModuleStringTable())
5573           return Err;
5574         break;
5575       }
5576       continue;
5577 
5578     case BitstreamEntry::Record: {
5579         Record.clear();
5580         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5581         if (!MaybeBitCode)
5582           return MaybeBitCode.takeError();
5583         switch (MaybeBitCode.get()) {
5584         default:
5585           break; // Default behavior, ignore unknown content.
5586         case bitc::MODULE_CODE_VERSION: {
5587           if (Error Err = parseVersionRecord(Record).takeError())
5588             return Err;
5589           break;
5590         }
5591         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5592         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5593           SmallString<128> ValueName;
5594           if (convertToString(Record, 0, ValueName))
5595             return error("Invalid record");
5596           SourceFileName = ValueName.c_str();
5597           break;
5598         }
5599         /// MODULE_CODE_HASH: [5*i32]
5600         case bitc::MODULE_CODE_HASH: {
5601           if (Record.size() != 5)
5602             return error("Invalid hash length " + Twine(Record.size()).str());
5603           auto &Hash = getThisModule()->second.second;
5604           int Pos = 0;
5605           for (auto &Val : Record) {
5606             assert(!(Val >> 32) && "Unexpected high bits set");
5607             Hash[Pos++] = Val;
5608           }
5609           break;
5610         }
5611         /// MODULE_CODE_VSTOFFSET: [offset]
5612         case bitc::MODULE_CODE_VSTOFFSET:
5613           if (Record.size() < 1)
5614             return error("Invalid record");
5615           // Note that we subtract 1 here because the offset is relative to one
5616           // word before the start of the identification or module block, which
5617           // was historically always the start of the regular bitcode header.
5618           VSTOffset = Record[0] - 1;
5619           break;
5620         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5621         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5622         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5623         // v2: [strtab offset, strtab size, v1]
5624         case bitc::MODULE_CODE_GLOBALVAR:
5625         case bitc::MODULE_CODE_FUNCTION:
5626         case bitc::MODULE_CODE_ALIAS: {
5627           StringRef Name;
5628           ArrayRef<uint64_t> GVRecord;
5629           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5630           if (GVRecord.size() <= 3)
5631             return error("Invalid record");
5632           uint64_t RawLinkage = GVRecord[3];
5633           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5634           if (!UseStrtab) {
5635             ValueIdToLinkageMap[ValueId++] = Linkage;
5636             break;
5637           }
5638 
5639           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5640           break;
5641         }
5642         }
5643       }
5644       continue;
5645     }
5646   }
5647 }
5648 
5649 std::vector<ValueInfo>
5650 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5651   std::vector<ValueInfo> Ret;
5652   Ret.reserve(Record.size());
5653   for (uint64_t RefValueId : Record)
5654     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5655   return Ret;
5656 }
5657 
5658 std::vector<FunctionSummary::EdgeTy>
5659 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5660                                               bool IsOldProfileFormat,
5661                                               bool HasProfile, bool HasRelBF) {
5662   std::vector<FunctionSummary::EdgeTy> Ret;
5663   Ret.reserve(Record.size());
5664   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5665     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5666     uint64_t RelBF = 0;
5667     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5668     if (IsOldProfileFormat) {
5669       I += 1; // Skip old callsitecount field
5670       if (HasProfile)
5671         I += 1; // Skip old profilecount field
5672     } else if (HasProfile)
5673       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5674     else if (HasRelBF)
5675       RelBF = Record[++I];
5676     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5677   }
5678   return Ret;
5679 }
5680 
5681 static void
5682 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5683                                        WholeProgramDevirtResolution &Wpd) {
5684   uint64_t ArgNum = Record[Slot++];
5685   WholeProgramDevirtResolution::ByArg &B =
5686       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5687   Slot += ArgNum;
5688 
5689   B.TheKind =
5690       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5691   B.Info = Record[Slot++];
5692   B.Byte = Record[Slot++];
5693   B.Bit = Record[Slot++];
5694 }
5695 
5696 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5697                                               StringRef Strtab, size_t &Slot,
5698                                               TypeIdSummary &TypeId) {
5699   uint64_t Id = Record[Slot++];
5700   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5701 
5702   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5703   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5704                         static_cast<size_t>(Record[Slot + 1])};
5705   Slot += 2;
5706 
5707   uint64_t ResByArgNum = Record[Slot++];
5708   for (uint64_t I = 0; I != ResByArgNum; ++I)
5709     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5710 }
5711 
5712 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5713                                      StringRef Strtab,
5714                                      ModuleSummaryIndex &TheIndex) {
5715   size_t Slot = 0;
5716   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5717       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5718   Slot += 2;
5719 
5720   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5721   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5722   TypeId.TTRes.AlignLog2 = Record[Slot++];
5723   TypeId.TTRes.SizeM1 = Record[Slot++];
5724   TypeId.TTRes.BitMask = Record[Slot++];
5725   TypeId.TTRes.InlineBits = Record[Slot++];
5726 
5727   while (Slot < Record.size())
5728     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5729 }
5730 
5731 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5732     ArrayRef<uint64_t> Record, size_t &Slot,
5733     TypeIdCompatibleVtableInfo &TypeId) {
5734   uint64_t Offset = Record[Slot++];
5735   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5736   TypeId.push_back({Offset, Callee});
5737 }
5738 
5739 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5740     ArrayRef<uint64_t> Record) {
5741   size_t Slot = 0;
5742   TypeIdCompatibleVtableInfo &TypeId =
5743       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5744           {Strtab.data() + Record[Slot],
5745            static_cast<size_t>(Record[Slot + 1])});
5746   Slot += 2;
5747 
5748   while (Slot < Record.size())
5749     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5750 }
5751 
5752 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5753                            unsigned WOCnt) {
5754   // Readonly and writeonly refs are in the end of the refs list.
5755   assert(ROCnt + WOCnt <= Refs.size());
5756   unsigned FirstWORef = Refs.size() - WOCnt;
5757   unsigned RefNo = FirstWORef - ROCnt;
5758   for (; RefNo < FirstWORef; ++RefNo)
5759     Refs[RefNo].setReadOnly();
5760   for (; RefNo < Refs.size(); ++RefNo)
5761     Refs[RefNo].setWriteOnly();
5762 }
5763 
5764 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5765 // objects in the index.
5766 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5767   if (Error Err = Stream.EnterSubBlock(ID))
5768     return Err;
5769   SmallVector<uint64_t, 64> Record;
5770 
5771   // Parse version
5772   {
5773     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5774     if (!MaybeEntry)
5775       return MaybeEntry.takeError();
5776     BitstreamEntry Entry = MaybeEntry.get();
5777 
5778     if (Entry.Kind != BitstreamEntry::Record)
5779       return error("Invalid Summary Block: record for version expected");
5780     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5781     if (!MaybeRecord)
5782       return MaybeRecord.takeError();
5783     if (MaybeRecord.get() != bitc::FS_VERSION)
5784       return error("Invalid Summary Block: version expected");
5785   }
5786   const uint64_t Version = Record[0];
5787   const bool IsOldProfileFormat = Version == 1;
5788   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5789     return error("Invalid summary version " + Twine(Version) +
5790                  ". Version should be in the range [1-" +
5791                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5792                  "].");
5793   Record.clear();
5794 
5795   // Keep around the last seen summary to be used when we see an optional
5796   // "OriginalName" attachement.
5797   GlobalValueSummary *LastSeenSummary = nullptr;
5798   GlobalValue::GUID LastSeenGUID = 0;
5799 
5800   // We can expect to see any number of type ID information records before
5801   // each function summary records; these variables store the information
5802   // collected so far so that it can be used to create the summary object.
5803   std::vector<GlobalValue::GUID> PendingTypeTests;
5804   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5805       PendingTypeCheckedLoadVCalls;
5806   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5807       PendingTypeCheckedLoadConstVCalls;
5808 
5809   while (true) {
5810     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5811     if (!MaybeEntry)
5812       return MaybeEntry.takeError();
5813     BitstreamEntry Entry = MaybeEntry.get();
5814 
5815     switch (Entry.Kind) {
5816     case BitstreamEntry::SubBlock: // Handled for us already.
5817     case BitstreamEntry::Error:
5818       return error("Malformed block");
5819     case BitstreamEntry::EndBlock:
5820       return Error::success();
5821     case BitstreamEntry::Record:
5822       // The interesting case.
5823       break;
5824     }
5825 
5826     // Read a record. The record format depends on whether this
5827     // is a per-module index or a combined index file. In the per-module
5828     // case the records contain the associated value's ID for correlation
5829     // with VST entries. In the combined index the correlation is done
5830     // via the bitcode offset of the summary records (which were saved
5831     // in the combined index VST entries). The records also contain
5832     // information used for ThinLTO renaming and importing.
5833     Record.clear();
5834     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5835     if (!MaybeBitCode)
5836       return MaybeBitCode.takeError();
5837     switch (unsigned BitCode = MaybeBitCode.get()) {
5838     default: // Default behavior: ignore.
5839       break;
5840     case bitc::FS_FLAGS: {  // [flags]
5841       TheIndex.setFlags(Record[0]);
5842       break;
5843     }
5844     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5845       uint64_t ValueID = Record[0];
5846       GlobalValue::GUID RefGUID = Record[1];
5847       ValueIdToValueInfoMap[ValueID] =
5848           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5849       break;
5850     }
5851     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5852     //                numrefs x valueid, n x (valueid)]
5853     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5854     //                        numrefs x valueid,
5855     //                        n x (valueid, hotness)]
5856     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5857     //                      numrefs x valueid,
5858     //                      n x (valueid, relblockfreq)]
5859     case bitc::FS_PERMODULE:
5860     case bitc::FS_PERMODULE_RELBF:
5861     case bitc::FS_PERMODULE_PROFILE: {
5862       unsigned ValueID = Record[0];
5863       uint64_t RawFlags = Record[1];
5864       unsigned InstCount = Record[2];
5865       uint64_t RawFunFlags = 0;
5866       unsigned NumRefs = Record[3];
5867       unsigned NumRORefs = 0, NumWORefs = 0;
5868       int RefListStartIndex = 4;
5869       if (Version >= 4) {
5870         RawFunFlags = Record[3];
5871         NumRefs = Record[4];
5872         RefListStartIndex = 5;
5873         if (Version >= 5) {
5874           NumRORefs = Record[5];
5875           RefListStartIndex = 6;
5876           if (Version >= 7) {
5877             NumWORefs = Record[6];
5878             RefListStartIndex = 7;
5879           }
5880         }
5881       }
5882 
5883       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5884       // The module path string ref set in the summary must be owned by the
5885       // index's module string table. Since we don't have a module path
5886       // string table section in the per-module index, we create a single
5887       // module path string table entry with an empty (0) ID to take
5888       // ownership.
5889       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5890       assert(Record.size() >= RefListStartIndex + NumRefs &&
5891              "Record size inconsistent with number of references");
5892       std::vector<ValueInfo> Refs = makeRefList(
5893           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5894       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5895       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5896       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5897           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5898           IsOldProfileFormat, HasProfile, HasRelBF);
5899       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5900       auto FS = std::make_unique<FunctionSummary>(
5901           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5902           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5903           std::move(PendingTypeTestAssumeVCalls),
5904           std::move(PendingTypeCheckedLoadVCalls),
5905           std::move(PendingTypeTestAssumeConstVCalls),
5906           std::move(PendingTypeCheckedLoadConstVCalls));
5907       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5908       FS->setModulePath(getThisModule()->first());
5909       FS->setOriginalName(VIAndOriginalGUID.second);
5910       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5911       break;
5912     }
5913     // FS_ALIAS: [valueid, flags, valueid]
5914     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5915     // they expect all aliasee summaries to be available.
5916     case bitc::FS_ALIAS: {
5917       unsigned ValueID = Record[0];
5918       uint64_t RawFlags = Record[1];
5919       unsigned AliaseeID = Record[2];
5920       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5921       auto AS = std::make_unique<AliasSummary>(Flags);
5922       // The module path string ref set in the summary must be owned by the
5923       // index's module string table. Since we don't have a module path
5924       // string table section in the per-module index, we create a single
5925       // module path string table entry with an empty (0) ID to take
5926       // ownership.
5927       AS->setModulePath(getThisModule()->first());
5928 
5929       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5930       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5931       if (!AliaseeInModule)
5932         return error("Alias expects aliasee summary to be parsed");
5933       AS->setAliasee(AliaseeVI, AliaseeInModule);
5934 
5935       auto GUID = getValueInfoFromValueId(ValueID);
5936       AS->setOriginalName(GUID.second);
5937       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5938       break;
5939     }
5940     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5941     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5942       unsigned ValueID = Record[0];
5943       uint64_t RawFlags = Record[1];
5944       unsigned RefArrayStart = 2;
5945       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5946                                       /* WriteOnly */ false,
5947                                       /* Constant */ false,
5948                                       GlobalObject::VCallVisibilityPublic);
5949       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5950       if (Version >= 5) {
5951         GVF = getDecodedGVarFlags(Record[2]);
5952         RefArrayStart = 3;
5953       }
5954       std::vector<ValueInfo> Refs =
5955           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5956       auto FS =
5957           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5958       FS->setModulePath(getThisModule()->first());
5959       auto GUID = getValueInfoFromValueId(ValueID);
5960       FS->setOriginalName(GUID.second);
5961       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5962       break;
5963     }
5964     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5965     //                        numrefs, numrefs x valueid,
5966     //                        n x (valueid, offset)]
5967     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5968       unsigned ValueID = Record[0];
5969       uint64_t RawFlags = Record[1];
5970       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5971       unsigned NumRefs = Record[3];
5972       unsigned RefListStartIndex = 4;
5973       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5974       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5975       std::vector<ValueInfo> Refs = makeRefList(
5976           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5977       VTableFuncList VTableFuncs;
5978       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5979         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5980         uint64_t Offset = Record[++I];
5981         VTableFuncs.push_back({Callee, Offset});
5982       }
5983       auto VS =
5984           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5985       VS->setModulePath(getThisModule()->first());
5986       VS->setVTableFuncs(VTableFuncs);
5987       auto GUID = getValueInfoFromValueId(ValueID);
5988       VS->setOriginalName(GUID.second);
5989       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5990       break;
5991     }
5992     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5993     //               numrefs x valueid, n x (valueid)]
5994     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5995     //                       numrefs x valueid, n x (valueid, hotness)]
5996     case bitc::FS_COMBINED:
5997     case bitc::FS_COMBINED_PROFILE: {
5998       unsigned ValueID = Record[0];
5999       uint64_t ModuleId = Record[1];
6000       uint64_t RawFlags = Record[2];
6001       unsigned InstCount = Record[3];
6002       uint64_t RawFunFlags = 0;
6003       uint64_t EntryCount = 0;
6004       unsigned NumRefs = Record[4];
6005       unsigned NumRORefs = 0, NumWORefs = 0;
6006       int RefListStartIndex = 5;
6007 
6008       if (Version >= 4) {
6009         RawFunFlags = Record[4];
6010         RefListStartIndex = 6;
6011         size_t NumRefsIndex = 5;
6012         if (Version >= 5) {
6013           unsigned NumRORefsOffset = 1;
6014           RefListStartIndex = 7;
6015           if (Version >= 6) {
6016             NumRefsIndex = 6;
6017             EntryCount = Record[5];
6018             RefListStartIndex = 8;
6019             if (Version >= 7) {
6020               RefListStartIndex = 9;
6021               NumWORefs = Record[8];
6022               NumRORefsOffset = 2;
6023             }
6024           }
6025           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6026         }
6027         NumRefs = Record[NumRefsIndex];
6028       }
6029 
6030       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6031       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6032       assert(Record.size() >= RefListStartIndex + NumRefs &&
6033              "Record size inconsistent with number of references");
6034       std::vector<ValueInfo> Refs = makeRefList(
6035           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6036       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6037       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6038           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6039           IsOldProfileFormat, HasProfile, false);
6040       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6041       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6042       auto FS = std::make_unique<FunctionSummary>(
6043           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6044           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6045           std::move(PendingTypeTestAssumeVCalls),
6046           std::move(PendingTypeCheckedLoadVCalls),
6047           std::move(PendingTypeTestAssumeConstVCalls),
6048           std::move(PendingTypeCheckedLoadConstVCalls));
6049       LastSeenSummary = FS.get();
6050       LastSeenGUID = VI.getGUID();
6051       FS->setModulePath(ModuleIdMap[ModuleId]);
6052       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6053       break;
6054     }
6055     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6056     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6057     // they expect all aliasee summaries to be available.
6058     case bitc::FS_COMBINED_ALIAS: {
6059       unsigned ValueID = Record[0];
6060       uint64_t ModuleId = Record[1];
6061       uint64_t RawFlags = Record[2];
6062       unsigned AliaseeValueId = Record[3];
6063       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6064       auto AS = std::make_unique<AliasSummary>(Flags);
6065       LastSeenSummary = AS.get();
6066       AS->setModulePath(ModuleIdMap[ModuleId]);
6067 
6068       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6069       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6070       AS->setAliasee(AliaseeVI, AliaseeInModule);
6071 
6072       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6073       LastSeenGUID = VI.getGUID();
6074       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6075       break;
6076     }
6077     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6078     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6079       unsigned ValueID = Record[0];
6080       uint64_t ModuleId = Record[1];
6081       uint64_t RawFlags = Record[2];
6082       unsigned RefArrayStart = 3;
6083       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6084                                       /* WriteOnly */ false,
6085                                       /* Constant */ false,
6086                                       GlobalObject::VCallVisibilityPublic);
6087       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6088       if (Version >= 5) {
6089         GVF = getDecodedGVarFlags(Record[3]);
6090         RefArrayStart = 4;
6091       }
6092       std::vector<ValueInfo> Refs =
6093           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6094       auto FS =
6095           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6096       LastSeenSummary = FS.get();
6097       FS->setModulePath(ModuleIdMap[ModuleId]);
6098       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6099       LastSeenGUID = VI.getGUID();
6100       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6101       break;
6102     }
6103     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6104     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6105       uint64_t OriginalName = Record[0];
6106       if (!LastSeenSummary)
6107         return error("Name attachment that does not follow a combined record");
6108       LastSeenSummary->setOriginalName(OriginalName);
6109       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6110       // Reset the LastSeenSummary
6111       LastSeenSummary = nullptr;
6112       LastSeenGUID = 0;
6113       break;
6114     }
6115     case bitc::FS_TYPE_TESTS:
6116       assert(PendingTypeTests.empty());
6117       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6118                               Record.end());
6119       break;
6120 
6121     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6122       assert(PendingTypeTestAssumeVCalls.empty());
6123       for (unsigned I = 0; I != Record.size(); I += 2)
6124         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6125       break;
6126 
6127     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6128       assert(PendingTypeCheckedLoadVCalls.empty());
6129       for (unsigned I = 0; I != Record.size(); I += 2)
6130         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6131       break;
6132 
6133     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6134       PendingTypeTestAssumeConstVCalls.push_back(
6135           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6136       break;
6137 
6138     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6139       PendingTypeCheckedLoadConstVCalls.push_back(
6140           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6141       break;
6142 
6143     case bitc::FS_CFI_FUNCTION_DEFS: {
6144       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6145       for (unsigned I = 0; I != Record.size(); I += 2)
6146         CfiFunctionDefs.insert(
6147             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6148       break;
6149     }
6150 
6151     case bitc::FS_CFI_FUNCTION_DECLS: {
6152       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6153       for (unsigned I = 0; I != Record.size(); I += 2)
6154         CfiFunctionDecls.insert(
6155             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6156       break;
6157     }
6158 
6159     case bitc::FS_TYPE_ID:
6160       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6161       break;
6162 
6163     case bitc::FS_TYPE_ID_METADATA:
6164       parseTypeIdCompatibleVtableSummaryRecord(Record);
6165       break;
6166     }
6167   }
6168   llvm_unreachable("Exit infinite loop");
6169 }
6170 
6171 // Parse the  module string table block into the Index.
6172 // This populates the ModulePathStringTable map in the index.
6173 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6174   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6175     return Err;
6176 
6177   SmallVector<uint64_t, 64> Record;
6178 
6179   SmallString<128> ModulePath;
6180   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6181 
6182   while (true) {
6183     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6184     if (!MaybeEntry)
6185       return MaybeEntry.takeError();
6186     BitstreamEntry Entry = MaybeEntry.get();
6187 
6188     switch (Entry.Kind) {
6189     case BitstreamEntry::SubBlock: // Handled for us already.
6190     case BitstreamEntry::Error:
6191       return error("Malformed block");
6192     case BitstreamEntry::EndBlock:
6193       return Error::success();
6194     case BitstreamEntry::Record:
6195       // The interesting case.
6196       break;
6197     }
6198 
6199     Record.clear();
6200     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6201     if (!MaybeRecord)
6202       return MaybeRecord.takeError();
6203     switch (MaybeRecord.get()) {
6204     default: // Default behavior: ignore.
6205       break;
6206     case bitc::MST_CODE_ENTRY: {
6207       // MST_ENTRY: [modid, namechar x N]
6208       uint64_t ModuleId = Record[0];
6209 
6210       if (convertToString(Record, 1, ModulePath))
6211         return error("Invalid record");
6212 
6213       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6214       ModuleIdMap[ModuleId] = LastSeenModule->first();
6215 
6216       ModulePath.clear();
6217       break;
6218     }
6219     /// MST_CODE_HASH: [5*i32]
6220     case bitc::MST_CODE_HASH: {
6221       if (Record.size() != 5)
6222         return error("Invalid hash length " + Twine(Record.size()).str());
6223       if (!LastSeenModule)
6224         return error("Invalid hash that does not follow a module path");
6225       int Pos = 0;
6226       for (auto &Val : Record) {
6227         assert(!(Val >> 32) && "Unexpected high bits set");
6228         LastSeenModule->second.second[Pos++] = Val;
6229       }
6230       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6231       LastSeenModule = nullptr;
6232       break;
6233     }
6234     }
6235   }
6236   llvm_unreachable("Exit infinite loop");
6237 }
6238 
6239 namespace {
6240 
6241 // FIXME: This class is only here to support the transition to llvm::Error. It
6242 // will be removed once this transition is complete. Clients should prefer to
6243 // deal with the Error value directly, rather than converting to error_code.
6244 class BitcodeErrorCategoryType : public std::error_category {
6245   const char *name() const noexcept override {
6246     return "llvm.bitcode";
6247   }
6248 
6249   std::string message(int IE) const override {
6250     BitcodeError E = static_cast<BitcodeError>(IE);
6251     switch (E) {
6252     case BitcodeError::CorruptedBitcode:
6253       return "Corrupted bitcode";
6254     }
6255     llvm_unreachable("Unknown error type!");
6256   }
6257 };
6258 
6259 } // end anonymous namespace
6260 
6261 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6262 
6263 const std::error_category &llvm::BitcodeErrorCategory() {
6264   return *ErrorCategory;
6265 }
6266 
6267 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6268                                             unsigned Block, unsigned RecordID) {
6269   if (Error Err = Stream.EnterSubBlock(Block))
6270     return std::move(Err);
6271 
6272   StringRef Strtab;
6273   while (true) {
6274     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6275     if (!MaybeEntry)
6276       return MaybeEntry.takeError();
6277     llvm::BitstreamEntry Entry = MaybeEntry.get();
6278 
6279     switch (Entry.Kind) {
6280     case BitstreamEntry::EndBlock:
6281       return Strtab;
6282 
6283     case BitstreamEntry::Error:
6284       return error("Malformed block");
6285 
6286     case BitstreamEntry::SubBlock:
6287       if (Error Err = Stream.SkipBlock())
6288         return std::move(Err);
6289       break;
6290 
6291     case BitstreamEntry::Record:
6292       StringRef Blob;
6293       SmallVector<uint64_t, 1> Record;
6294       Expected<unsigned> MaybeRecord =
6295           Stream.readRecord(Entry.ID, Record, &Blob);
6296       if (!MaybeRecord)
6297         return MaybeRecord.takeError();
6298       if (MaybeRecord.get() == RecordID)
6299         Strtab = Blob;
6300       break;
6301     }
6302   }
6303 }
6304 
6305 //===----------------------------------------------------------------------===//
6306 // External interface
6307 //===----------------------------------------------------------------------===//
6308 
6309 Expected<std::vector<BitcodeModule>>
6310 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6311   auto FOrErr = getBitcodeFileContents(Buffer);
6312   if (!FOrErr)
6313     return FOrErr.takeError();
6314   return std::move(FOrErr->Mods);
6315 }
6316 
6317 Expected<BitcodeFileContents>
6318 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6319   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6320   if (!StreamOrErr)
6321     return StreamOrErr.takeError();
6322   BitstreamCursor &Stream = *StreamOrErr;
6323 
6324   BitcodeFileContents F;
6325   while (true) {
6326     uint64_t BCBegin = Stream.getCurrentByteNo();
6327 
6328     // We may be consuming bitcode from a client that leaves garbage at the end
6329     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6330     // the end that there cannot possibly be another module, stop looking.
6331     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6332       return F;
6333 
6334     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6335     if (!MaybeEntry)
6336       return MaybeEntry.takeError();
6337     llvm::BitstreamEntry Entry = MaybeEntry.get();
6338 
6339     switch (Entry.Kind) {
6340     case BitstreamEntry::EndBlock:
6341     case BitstreamEntry::Error:
6342       return error("Malformed block");
6343 
6344     case BitstreamEntry::SubBlock: {
6345       uint64_t IdentificationBit = -1ull;
6346       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6347         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6348         if (Error Err = Stream.SkipBlock())
6349           return std::move(Err);
6350 
6351         {
6352           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6353           if (!MaybeEntry)
6354             return MaybeEntry.takeError();
6355           Entry = MaybeEntry.get();
6356         }
6357 
6358         if (Entry.Kind != BitstreamEntry::SubBlock ||
6359             Entry.ID != bitc::MODULE_BLOCK_ID)
6360           return error("Malformed block");
6361       }
6362 
6363       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6364         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6365         if (Error Err = Stream.SkipBlock())
6366           return std::move(Err);
6367 
6368         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6369                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6370                           Buffer.getBufferIdentifier(), IdentificationBit,
6371                           ModuleBit});
6372         continue;
6373       }
6374 
6375       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6376         Expected<StringRef> Strtab =
6377             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6378         if (!Strtab)
6379           return Strtab.takeError();
6380         // This string table is used by every preceding bitcode module that does
6381         // not have its own string table. A bitcode file may have multiple
6382         // string tables if it was created by binary concatenation, for example
6383         // with "llvm-cat -b".
6384         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6385           if (!I->Strtab.empty())
6386             break;
6387           I->Strtab = *Strtab;
6388         }
6389         // Similarly, the string table is used by every preceding symbol table;
6390         // normally there will be just one unless the bitcode file was created
6391         // by binary concatenation.
6392         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6393           F.StrtabForSymtab = *Strtab;
6394         continue;
6395       }
6396 
6397       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6398         Expected<StringRef> SymtabOrErr =
6399             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6400         if (!SymtabOrErr)
6401           return SymtabOrErr.takeError();
6402 
6403         // We can expect the bitcode file to have multiple symbol tables if it
6404         // was created by binary concatenation. In that case we silently
6405         // ignore any subsequent symbol tables, which is fine because this is a
6406         // low level function. The client is expected to notice that the number
6407         // of modules in the symbol table does not match the number of modules
6408         // in the input file and regenerate the symbol table.
6409         if (F.Symtab.empty())
6410           F.Symtab = *SymtabOrErr;
6411         continue;
6412       }
6413 
6414       if (Error Err = Stream.SkipBlock())
6415         return std::move(Err);
6416       continue;
6417     }
6418     case BitstreamEntry::Record:
6419       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6420         continue;
6421       else
6422         return StreamFailed.takeError();
6423     }
6424   }
6425 }
6426 
6427 /// Get a lazy one-at-time loading module from bitcode.
6428 ///
6429 /// This isn't always used in a lazy context.  In particular, it's also used by
6430 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6431 /// in forward-referenced functions from block address references.
6432 ///
6433 /// \param[in] MaterializeAll Set to \c true if we should materialize
6434 /// everything.
6435 Expected<std::unique_ptr<Module>>
6436 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6437                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6438   BitstreamCursor Stream(Buffer);
6439 
6440   std::string ProducerIdentification;
6441   if (IdentificationBit != -1ull) {
6442     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6443       return std::move(JumpFailed);
6444     Expected<std::string> ProducerIdentificationOrErr =
6445         readIdentificationBlock(Stream);
6446     if (!ProducerIdentificationOrErr)
6447       return ProducerIdentificationOrErr.takeError();
6448 
6449     ProducerIdentification = *ProducerIdentificationOrErr;
6450   }
6451 
6452   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6453     return std::move(JumpFailed);
6454   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6455                               Context);
6456 
6457   std::unique_ptr<Module> M =
6458       std::make_unique<Module>(ModuleIdentifier, Context);
6459   M->setMaterializer(R);
6460 
6461   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6462   if (Error Err =
6463           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6464     return std::move(Err);
6465 
6466   if (MaterializeAll) {
6467     // Read in the entire module, and destroy the BitcodeReader.
6468     if (Error Err = M->materializeAll())
6469       return std::move(Err);
6470   } else {
6471     // Resolve forward references from blockaddresses.
6472     if (Error Err = R->materializeForwardReferencedFunctions())
6473       return std::move(Err);
6474   }
6475   return std::move(M);
6476 }
6477 
6478 Expected<std::unique_ptr<Module>>
6479 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6480                              bool IsImporting) {
6481   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6482 }
6483 
6484 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6485 // We don't use ModuleIdentifier here because the client may need to control the
6486 // module path used in the combined summary (e.g. when reading summaries for
6487 // regular LTO modules).
6488 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6489                                  StringRef ModulePath, uint64_t ModuleId) {
6490   BitstreamCursor Stream(Buffer);
6491   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6492     return JumpFailed;
6493 
6494   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6495                                     ModulePath, ModuleId);
6496   return R.parseModule();
6497 }
6498 
6499 // Parse the specified bitcode buffer, returning the function info index.
6500 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6501   BitstreamCursor Stream(Buffer);
6502   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6503     return std::move(JumpFailed);
6504 
6505   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6506   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6507                                     ModuleIdentifier, 0);
6508 
6509   if (Error Err = R.parseModule())
6510     return std::move(Err);
6511 
6512   return std::move(Index);
6513 }
6514 
6515 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6516                                                 unsigned ID) {
6517   if (Error Err = Stream.EnterSubBlock(ID))
6518     return std::move(Err);
6519   SmallVector<uint64_t, 64> Record;
6520 
6521   while (true) {
6522     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6523     if (!MaybeEntry)
6524       return MaybeEntry.takeError();
6525     BitstreamEntry Entry = MaybeEntry.get();
6526 
6527     switch (Entry.Kind) {
6528     case BitstreamEntry::SubBlock: // Handled for us already.
6529     case BitstreamEntry::Error:
6530       return error("Malformed block");
6531     case BitstreamEntry::EndBlock:
6532       // If no flags record found, conservatively return true to mimic
6533       // behavior before this flag was added.
6534       return true;
6535     case BitstreamEntry::Record:
6536       // The interesting case.
6537       break;
6538     }
6539 
6540     // Look for the FS_FLAGS record.
6541     Record.clear();
6542     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6543     if (!MaybeBitCode)
6544       return MaybeBitCode.takeError();
6545     switch (MaybeBitCode.get()) {
6546     default: // Default behavior: ignore.
6547       break;
6548     case bitc::FS_FLAGS: { // [flags]
6549       uint64_t Flags = Record[0];
6550       // Scan flags.
6551       assert(Flags <= 0x3f && "Unexpected bits in flag");
6552 
6553       return Flags & 0x8;
6554     }
6555     }
6556   }
6557   llvm_unreachable("Exit infinite loop");
6558 }
6559 
6560 // Check if the given bitcode buffer contains a global value summary block.
6561 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6562   BitstreamCursor Stream(Buffer);
6563   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6564     return std::move(JumpFailed);
6565 
6566   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6567     return std::move(Err);
6568 
6569   while (true) {
6570     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6571     if (!MaybeEntry)
6572       return MaybeEntry.takeError();
6573     llvm::BitstreamEntry Entry = MaybeEntry.get();
6574 
6575     switch (Entry.Kind) {
6576     case BitstreamEntry::Error:
6577       return error("Malformed block");
6578     case BitstreamEntry::EndBlock:
6579       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6580                             /*EnableSplitLTOUnit=*/false};
6581 
6582     case BitstreamEntry::SubBlock:
6583       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6584         Expected<bool> EnableSplitLTOUnit =
6585             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6586         if (!EnableSplitLTOUnit)
6587           return EnableSplitLTOUnit.takeError();
6588         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6589                               *EnableSplitLTOUnit};
6590       }
6591 
6592       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6593         Expected<bool> EnableSplitLTOUnit =
6594             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6595         if (!EnableSplitLTOUnit)
6596           return EnableSplitLTOUnit.takeError();
6597         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6598                               *EnableSplitLTOUnit};
6599       }
6600 
6601       // Ignore other sub-blocks.
6602       if (Error Err = Stream.SkipBlock())
6603         return std::move(Err);
6604       continue;
6605 
6606     case BitstreamEntry::Record:
6607       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6608         continue;
6609       else
6610         return StreamFailed.takeError();
6611     }
6612   }
6613 }
6614 
6615 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6616   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6617   if (!MsOrErr)
6618     return MsOrErr.takeError();
6619 
6620   if (MsOrErr->size() != 1)
6621     return error("Expected a single module");
6622 
6623   return (*MsOrErr)[0];
6624 }
6625 
6626 Expected<std::unique_ptr<Module>>
6627 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6628                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6629   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6630   if (!BM)
6631     return BM.takeError();
6632 
6633   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6634 }
6635 
6636 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6637     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6638     bool ShouldLazyLoadMetadata, bool IsImporting) {
6639   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6640                                      IsImporting);
6641   if (MOrErr)
6642     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6643   return MOrErr;
6644 }
6645 
6646 Expected<std::unique_ptr<Module>>
6647 BitcodeModule::parseModule(LLVMContext &Context) {
6648   return getModuleImpl(Context, true, false, false);
6649   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6650   // written.  We must defer until the Module has been fully materialized.
6651 }
6652 
6653 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6654                                                          LLVMContext &Context) {
6655   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6656   if (!BM)
6657     return BM.takeError();
6658 
6659   return BM->parseModule(Context);
6660 }
6661 
6662 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6663   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6664   if (!StreamOrErr)
6665     return StreamOrErr.takeError();
6666 
6667   return readTriple(*StreamOrErr);
6668 }
6669 
6670 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6671   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6672   if (!StreamOrErr)
6673     return StreamOrErr.takeError();
6674 
6675   return hasObjCCategory(*StreamOrErr);
6676 }
6677 
6678 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6679   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6680   if (!StreamOrErr)
6681     return StreamOrErr.takeError();
6682 
6683   return readIdentificationCode(*StreamOrErr);
6684 }
6685 
6686 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6687                                    ModuleSummaryIndex &CombinedIndex,
6688                                    uint64_t ModuleId) {
6689   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6690   if (!BM)
6691     return BM.takeError();
6692 
6693   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6694 }
6695 
6696 Expected<std::unique_ptr<ModuleSummaryIndex>>
6697 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6698   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6699   if (!BM)
6700     return BM.takeError();
6701 
6702   return BM->getSummary();
6703 }
6704 
6705 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6706   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6707   if (!BM)
6708     return BM.takeError();
6709 
6710   return BM->getLTOInfo();
6711 }
6712 
6713 Expected<std::unique_ptr<ModuleSummaryIndex>>
6714 llvm::getModuleSummaryIndexForFile(StringRef Path,
6715                                    bool IgnoreEmptyThinLTOIndexFile) {
6716   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6717       MemoryBuffer::getFileOrSTDIN(Path);
6718   if (!FileOrErr)
6719     return errorCodeToError(FileOrErr.getError());
6720   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6721     return nullptr;
6722   return getModuleSummaryIndex(**FileOrErr);
6723 }
6724