1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/AutoUpgrade.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/OperandTraits.h" 27 using namespace llvm; 28 29 void BitcodeReader::FreeState() { 30 delete Buffer; 31 Buffer = 0; 32 std::vector<PATypeHolder>().swap(TypeList); 33 ValueList.clear(); 34 35 std::vector<PAListPtr>().swap(ParamAttrs); 36 std::vector<BasicBlock*>().swap(FunctionBBs); 37 std::vector<Function*>().swap(FunctionsWithBodies); 38 DeferredFunctionInfo.clear(); 39 } 40 41 //===----------------------------------------------------------------------===// 42 // Helper functions to implement forward reference resolution, etc. 43 //===----------------------------------------------------------------------===// 44 45 /// ConvertToString - Convert a string from a record into an std::string, return 46 /// true on failure. 47 template<typename StrTy> 48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 49 StrTy &Result) { 50 if (Idx > Record.size()) 51 return true; 52 53 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 54 Result += (char)Record[i]; 55 return false; 56 } 57 58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 59 switch (Val) { 60 default: // Map unknown/new linkages to external 61 case 0: return GlobalValue::ExternalLinkage; 62 case 1: return GlobalValue::WeakLinkage; 63 case 2: return GlobalValue::AppendingLinkage; 64 case 3: return GlobalValue::InternalLinkage; 65 case 4: return GlobalValue::LinkOnceLinkage; 66 case 5: return GlobalValue::DLLImportLinkage; 67 case 6: return GlobalValue::DLLExportLinkage; 68 case 7: return GlobalValue::ExternalWeakLinkage; 69 case 8: return GlobalValue::CommonLinkage; 70 } 71 } 72 73 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 74 switch (Val) { 75 default: // Map unknown visibilities to default. 76 case 0: return GlobalValue::DefaultVisibility; 77 case 1: return GlobalValue::HiddenVisibility; 78 case 2: return GlobalValue::ProtectedVisibility; 79 } 80 } 81 82 static int GetDecodedCastOpcode(unsigned Val) { 83 switch (Val) { 84 default: return -1; 85 case bitc::CAST_TRUNC : return Instruction::Trunc; 86 case bitc::CAST_ZEXT : return Instruction::ZExt; 87 case bitc::CAST_SEXT : return Instruction::SExt; 88 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 89 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 90 case bitc::CAST_UITOFP : return Instruction::UIToFP; 91 case bitc::CAST_SITOFP : return Instruction::SIToFP; 92 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 93 case bitc::CAST_FPEXT : return Instruction::FPExt; 94 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 95 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 96 case bitc::CAST_BITCAST : return Instruction::BitCast; 97 } 98 } 99 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 100 switch (Val) { 101 default: return -1; 102 case bitc::BINOP_ADD: return Instruction::Add; 103 case bitc::BINOP_SUB: return Instruction::Sub; 104 case bitc::BINOP_MUL: return Instruction::Mul; 105 case bitc::BINOP_UDIV: return Instruction::UDiv; 106 case bitc::BINOP_SDIV: 107 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 108 case bitc::BINOP_UREM: return Instruction::URem; 109 case bitc::BINOP_SREM: 110 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 111 case bitc::BINOP_SHL: return Instruction::Shl; 112 case bitc::BINOP_LSHR: return Instruction::LShr; 113 case bitc::BINOP_ASHR: return Instruction::AShr; 114 case bitc::BINOP_AND: return Instruction::And; 115 case bitc::BINOP_OR: return Instruction::Or; 116 case bitc::BINOP_XOR: return Instruction::Xor; 117 } 118 } 119 120 namespace llvm { 121 namespace { 122 /// @brief A class for maintaining the slot number definition 123 /// as a placeholder for the actual definition for forward constants defs. 124 class ConstantPlaceHolder : public ConstantExpr { 125 ConstantPlaceHolder(); // DO NOT IMPLEMENT 126 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 127 public: 128 // allocate space for exactly one operand 129 void *operator new(size_t s) { 130 return User::operator new(s, 1); 131 } 132 explicit ConstantPlaceHolder(const Type *Ty) 133 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 134 Op<0>() = UndefValue::get(Type::Int32Ty); 135 } 136 137 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 138 static inline bool classof(const ConstantPlaceHolder *) { return true; } 139 static bool classof(const Value *V) { 140 return isa<ConstantExpr>(V) && 141 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 142 } 143 144 145 /// Provide fast operand accessors 146 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 147 }; 148 } 149 150 151 // FIXME: can we inherit this from ConstantExpr? 152 template <> 153 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 154 }; 155 156 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 157 } 158 159 void BitcodeReaderValueList::resize(unsigned Desired) { 160 if (Desired > Capacity) { 161 // Since we expect many values to come from the bitcode file we better 162 // allocate the double amount, so that the array size grows exponentially 163 // at each reallocation. Also, add a small amount of 100 extra elements 164 // each time, to reallocate less frequently when the array is still small. 165 // 166 Capacity = Desired * 2 + 100; 167 Use *New = allocHungoffUses(Capacity); 168 Use *Old = OperandList; 169 unsigned Ops = getNumOperands(); 170 for (int i(Ops - 1); i >= 0; --i) 171 New[i] = Old[i].get(); 172 OperandList = New; 173 if (Old) Use::zap(Old, Old + Ops, true); 174 } 175 } 176 177 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 178 const Type *Ty) { 179 if (Idx >= size()) { 180 // Insert a bunch of null values. 181 resize(Idx + 1); 182 NumOperands = Idx+1; 183 } 184 185 if (Value *V = OperandList[Idx]) { 186 assert(Ty == V->getType() && "Type mismatch in constant table!"); 187 return cast<Constant>(V); 188 } 189 190 // Create and return a placeholder, which will later be RAUW'd. 191 Constant *C = new ConstantPlaceHolder(Ty); 192 OperandList[Idx] = C; 193 return C; 194 } 195 196 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 197 if (Idx >= size()) { 198 // Insert a bunch of null values. 199 resize(Idx + 1); 200 NumOperands = Idx+1; 201 } 202 203 if (Value *V = OperandList[Idx]) { 204 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 205 return V; 206 } 207 208 // No type specified, must be invalid reference. 209 if (Ty == 0) return 0; 210 211 // Create and return a placeholder, which will later be RAUW'd. 212 Value *V = new Argument(Ty); 213 OperandList[Idx] = V; 214 return V; 215 } 216 217 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 218 /// resolves any forward references. The idea behind this is that we sometimes 219 /// get constants (such as large arrays) which reference *many* forward ref 220 /// constants. Replacing each of these causes a lot of thrashing when 221 /// building/reuniquing the constant. Instead of doing this, we look at all the 222 /// uses and rewrite all the place holders at once for any constant that uses 223 /// a placeholder. 224 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 225 // Sort the values by-pointer so that they are efficient to look up with a 226 // binary search. 227 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 228 229 SmallVector<Constant*, 64> NewOps; 230 231 while (!ResolveConstants.empty()) { 232 Value *RealVal = getOperand(ResolveConstants.back().second); 233 Constant *Placeholder = ResolveConstants.back().first; 234 ResolveConstants.pop_back(); 235 236 // Loop over all users of the placeholder, updating them to reference the 237 // new value. If they reference more than one placeholder, update them all 238 // at once. 239 while (!Placeholder->use_empty()) { 240 Value::use_iterator UI = Placeholder->use_begin(); 241 242 // If the using object isn't uniqued, just update the operands. This 243 // handles instructions and initializers for global variables. 244 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 245 UI.getUse().set(RealVal); 246 continue; 247 } 248 249 // Otherwise, we have a constant that uses the placeholder. Replace that 250 // constant with a new constant that has *all* placeholder uses updated. 251 Constant *UserC = cast<Constant>(*UI); 252 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 253 I != E; ++I) { 254 Value *NewOp; 255 if (!isa<ConstantPlaceHolder>(*I)) { 256 // Not a placeholder reference. 257 NewOp = *I; 258 } else if (*I == Placeholder) { 259 // Common case is that it just references this one placeholder. 260 NewOp = RealVal; 261 } else { 262 // Otherwise, look up the placeholder in ResolveConstants. 263 ResolveConstantsTy::iterator It = 264 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 265 std::pair<Constant*, unsigned>(cast<Constant>(*I), 266 0)); 267 assert(It != ResolveConstants.end() && It->first == *I); 268 NewOp = this->getOperand(It->second); 269 } 270 271 NewOps.push_back(cast<Constant>(NewOp)); 272 } 273 274 // Make the new constant. 275 Constant *NewC; 276 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 277 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 278 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 279 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 280 UserCS->getType()->isPacked()); 281 } else if (isa<ConstantVector>(UserC)) { 282 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 283 } else { 284 // Must be a constant expression. 285 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 286 NewOps.size()); 287 } 288 289 UserC->replaceAllUsesWith(NewC); 290 UserC->destroyConstant(); 291 NewOps.clear(); 292 } 293 294 delete Placeholder; 295 } 296 } 297 298 299 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 300 // If the TypeID is in range, return it. 301 if (ID < TypeList.size()) 302 return TypeList[ID].get(); 303 if (!isTypeTable) return 0; 304 305 // The type table allows forward references. Push as many Opaque types as 306 // needed to get up to ID. 307 while (TypeList.size() <= ID) 308 TypeList.push_back(OpaqueType::get()); 309 return TypeList.back().get(); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // Functions for parsing blocks from the bitcode file 314 //===----------------------------------------------------------------------===// 315 316 bool BitcodeReader::ParseParamAttrBlock() { 317 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 318 return Error("Malformed block record"); 319 320 if (!ParamAttrs.empty()) 321 return Error("Multiple PARAMATTR blocks found!"); 322 323 SmallVector<uint64_t, 64> Record; 324 325 SmallVector<ParamAttrsWithIndex, 8> Attrs; 326 327 // Read all the records. 328 while (1) { 329 unsigned Code = Stream.ReadCode(); 330 if (Code == bitc::END_BLOCK) { 331 if (Stream.ReadBlockEnd()) 332 return Error("Error at end of PARAMATTR block"); 333 return false; 334 } 335 336 if (Code == bitc::ENTER_SUBBLOCK) { 337 // No known subblocks, always skip them. 338 Stream.ReadSubBlockID(); 339 if (Stream.SkipBlock()) 340 return Error("Malformed block record"); 341 continue; 342 } 343 344 if (Code == bitc::DEFINE_ABBREV) { 345 Stream.ReadAbbrevRecord(); 346 continue; 347 } 348 349 // Read a record. 350 Record.clear(); 351 switch (Stream.ReadRecord(Code, Record)) { 352 default: // Default behavior: ignore. 353 break; 354 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 355 if (Record.size() & 1) 356 return Error("Invalid ENTRY record"); 357 358 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 359 if (Record[i+1] != ParamAttr::None) 360 Attrs.push_back(ParamAttrsWithIndex::get(Record[i], Record[i+1])); 361 } 362 363 ParamAttrs.push_back(PAListPtr::get(Attrs.begin(), Attrs.end())); 364 Attrs.clear(); 365 break; 366 } 367 } 368 } 369 } 370 371 372 bool BitcodeReader::ParseTypeTable() { 373 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 374 return Error("Malformed block record"); 375 376 if (!TypeList.empty()) 377 return Error("Multiple TYPE_BLOCKs found!"); 378 379 SmallVector<uint64_t, 64> Record; 380 unsigned NumRecords = 0; 381 382 // Read all the records for this type table. 383 while (1) { 384 unsigned Code = Stream.ReadCode(); 385 if (Code == bitc::END_BLOCK) { 386 if (NumRecords != TypeList.size()) 387 return Error("Invalid type forward reference in TYPE_BLOCK"); 388 if (Stream.ReadBlockEnd()) 389 return Error("Error at end of type table block"); 390 return false; 391 } 392 393 if (Code == bitc::ENTER_SUBBLOCK) { 394 // No known subblocks, always skip them. 395 Stream.ReadSubBlockID(); 396 if (Stream.SkipBlock()) 397 return Error("Malformed block record"); 398 continue; 399 } 400 401 if (Code == bitc::DEFINE_ABBREV) { 402 Stream.ReadAbbrevRecord(); 403 continue; 404 } 405 406 // Read a record. 407 Record.clear(); 408 const Type *ResultTy = 0; 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: unknown type. 411 ResultTy = 0; 412 break; 413 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 414 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 415 // type list. This allows us to reserve space. 416 if (Record.size() < 1) 417 return Error("Invalid TYPE_CODE_NUMENTRY record"); 418 TypeList.reserve(Record[0]); 419 continue; 420 case bitc::TYPE_CODE_VOID: // VOID 421 ResultTy = Type::VoidTy; 422 break; 423 case bitc::TYPE_CODE_FLOAT: // FLOAT 424 ResultTy = Type::FloatTy; 425 break; 426 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 427 ResultTy = Type::DoubleTy; 428 break; 429 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 430 ResultTy = Type::X86_FP80Ty; 431 break; 432 case bitc::TYPE_CODE_FP128: // FP128 433 ResultTy = Type::FP128Ty; 434 break; 435 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 436 ResultTy = Type::PPC_FP128Ty; 437 break; 438 case bitc::TYPE_CODE_LABEL: // LABEL 439 ResultTy = Type::LabelTy; 440 break; 441 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 442 ResultTy = 0; 443 break; 444 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 445 if (Record.size() < 1) 446 return Error("Invalid Integer type record"); 447 448 ResultTy = IntegerType::get(Record[0]); 449 break; 450 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 451 // [pointee type, address space] 452 if (Record.size() < 1) 453 return Error("Invalid POINTER type record"); 454 unsigned AddressSpace = 0; 455 if (Record.size() == 2) 456 AddressSpace = Record[1]; 457 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 458 break; 459 } 460 case bitc::TYPE_CODE_FUNCTION: { 461 // FIXME: attrid is dead, remove it in LLVM 3.0 462 // FUNCTION: [vararg, attrid, retty, paramty x N] 463 if (Record.size() < 3) 464 return Error("Invalid FUNCTION type record"); 465 std::vector<const Type*> ArgTys; 466 for (unsigned i = 3, e = Record.size(); i != e; ++i) 467 ArgTys.push_back(getTypeByID(Record[i], true)); 468 469 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 470 Record[0]); 471 break; 472 } 473 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 474 if (Record.size() < 1) 475 return Error("Invalid STRUCT type record"); 476 std::vector<const Type*> EltTys; 477 for (unsigned i = 1, e = Record.size(); i != e; ++i) 478 EltTys.push_back(getTypeByID(Record[i], true)); 479 ResultTy = StructType::get(EltTys, Record[0]); 480 break; 481 } 482 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 483 if (Record.size() < 2) 484 return Error("Invalid ARRAY type record"); 485 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 486 break; 487 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 488 if (Record.size() < 2) 489 return Error("Invalid VECTOR type record"); 490 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 491 break; 492 } 493 494 if (NumRecords == TypeList.size()) { 495 // If this is a new type slot, just append it. 496 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 497 ++NumRecords; 498 } else if (ResultTy == 0) { 499 // Otherwise, this was forward referenced, so an opaque type was created, 500 // but the result type is actually just an opaque. Leave the one we 501 // created previously. 502 ++NumRecords; 503 } else { 504 // Otherwise, this was forward referenced, so an opaque type was created. 505 // Resolve the opaque type to the real type now. 506 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 507 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 508 509 // Don't directly push the new type on the Tab. Instead we want to replace 510 // the opaque type we previously inserted with the new concrete value. The 511 // refinement from the abstract (opaque) type to the new type causes all 512 // uses of the abstract type to use the concrete type (NewTy). This will 513 // also cause the opaque type to be deleted. 514 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 515 516 // This should have replaced the old opaque type with the new type in the 517 // value table... or with a preexisting type that was already in the 518 // system. Let's just make sure it did. 519 assert(TypeList[NumRecords-1].get() != OldTy && 520 "refineAbstractType didn't work!"); 521 } 522 } 523 } 524 525 526 bool BitcodeReader::ParseTypeSymbolTable() { 527 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 528 return Error("Malformed block record"); 529 530 SmallVector<uint64_t, 64> Record; 531 532 // Read all the records for this type table. 533 std::string TypeName; 534 while (1) { 535 unsigned Code = Stream.ReadCode(); 536 if (Code == bitc::END_BLOCK) { 537 if (Stream.ReadBlockEnd()) 538 return Error("Error at end of type symbol table block"); 539 return false; 540 } 541 542 if (Code == bitc::ENTER_SUBBLOCK) { 543 // No known subblocks, always skip them. 544 Stream.ReadSubBlockID(); 545 if (Stream.SkipBlock()) 546 return Error("Malformed block record"); 547 continue; 548 } 549 550 if (Code == bitc::DEFINE_ABBREV) { 551 Stream.ReadAbbrevRecord(); 552 continue; 553 } 554 555 // Read a record. 556 Record.clear(); 557 switch (Stream.ReadRecord(Code, Record)) { 558 default: // Default behavior: unknown type. 559 break; 560 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 561 if (ConvertToString(Record, 1, TypeName)) 562 return Error("Invalid TST_ENTRY record"); 563 unsigned TypeID = Record[0]; 564 if (TypeID >= TypeList.size()) 565 return Error("Invalid Type ID in TST_ENTRY record"); 566 567 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 568 TypeName.clear(); 569 break; 570 } 571 } 572 } 573 574 bool BitcodeReader::ParseValueSymbolTable() { 575 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 576 return Error("Malformed block record"); 577 578 SmallVector<uint64_t, 64> Record; 579 580 // Read all the records for this value table. 581 SmallString<128> ValueName; 582 while (1) { 583 unsigned Code = Stream.ReadCode(); 584 if (Code == bitc::END_BLOCK) { 585 if (Stream.ReadBlockEnd()) 586 return Error("Error at end of value symbol table block"); 587 return false; 588 } 589 if (Code == bitc::ENTER_SUBBLOCK) { 590 // No known subblocks, always skip them. 591 Stream.ReadSubBlockID(); 592 if (Stream.SkipBlock()) 593 return Error("Malformed block record"); 594 continue; 595 } 596 597 if (Code == bitc::DEFINE_ABBREV) { 598 Stream.ReadAbbrevRecord(); 599 continue; 600 } 601 602 // Read a record. 603 Record.clear(); 604 switch (Stream.ReadRecord(Code, Record)) { 605 default: // Default behavior: unknown type. 606 break; 607 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 608 if (ConvertToString(Record, 1, ValueName)) 609 return Error("Invalid TST_ENTRY record"); 610 unsigned ValueID = Record[0]; 611 if (ValueID >= ValueList.size()) 612 return Error("Invalid Value ID in VST_ENTRY record"); 613 Value *V = ValueList[ValueID]; 614 615 V->setName(&ValueName[0], ValueName.size()); 616 ValueName.clear(); 617 break; 618 } 619 case bitc::VST_CODE_BBENTRY: { 620 if (ConvertToString(Record, 1, ValueName)) 621 return Error("Invalid VST_BBENTRY record"); 622 BasicBlock *BB = getBasicBlock(Record[0]); 623 if (BB == 0) 624 return Error("Invalid BB ID in VST_BBENTRY record"); 625 626 BB->setName(&ValueName[0], ValueName.size()); 627 ValueName.clear(); 628 break; 629 } 630 } 631 } 632 } 633 634 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 635 /// the LSB for dense VBR encoding. 636 static uint64_t DecodeSignRotatedValue(uint64_t V) { 637 if ((V & 1) == 0) 638 return V >> 1; 639 if (V != 1) 640 return -(V >> 1); 641 // There is no such thing as -0 with integers. "-0" really means MININT. 642 return 1ULL << 63; 643 } 644 645 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 646 /// values and aliases that we can. 647 bool BitcodeReader::ResolveGlobalAndAliasInits() { 648 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 649 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 650 651 GlobalInitWorklist.swap(GlobalInits); 652 AliasInitWorklist.swap(AliasInits); 653 654 while (!GlobalInitWorklist.empty()) { 655 unsigned ValID = GlobalInitWorklist.back().second; 656 if (ValID >= ValueList.size()) { 657 // Not ready to resolve this yet, it requires something later in the file. 658 GlobalInits.push_back(GlobalInitWorklist.back()); 659 } else { 660 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 661 GlobalInitWorklist.back().first->setInitializer(C); 662 else 663 return Error("Global variable initializer is not a constant!"); 664 } 665 GlobalInitWorklist.pop_back(); 666 } 667 668 while (!AliasInitWorklist.empty()) { 669 unsigned ValID = AliasInitWorklist.back().second; 670 if (ValID >= ValueList.size()) { 671 AliasInits.push_back(AliasInitWorklist.back()); 672 } else { 673 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 674 AliasInitWorklist.back().first->setAliasee(C); 675 else 676 return Error("Alias initializer is not a constant!"); 677 } 678 AliasInitWorklist.pop_back(); 679 } 680 return false; 681 } 682 683 684 bool BitcodeReader::ParseConstants() { 685 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 686 return Error("Malformed block record"); 687 688 SmallVector<uint64_t, 64> Record; 689 690 // Read all the records for this value table. 691 const Type *CurTy = Type::Int32Ty; 692 unsigned NextCstNo = ValueList.size(); 693 while (1) { 694 unsigned Code = Stream.ReadCode(); 695 if (Code == bitc::END_BLOCK) 696 break; 697 698 if (Code == bitc::ENTER_SUBBLOCK) { 699 // No known subblocks, always skip them. 700 Stream.ReadSubBlockID(); 701 if (Stream.SkipBlock()) 702 return Error("Malformed block record"); 703 continue; 704 } 705 706 if (Code == bitc::DEFINE_ABBREV) { 707 Stream.ReadAbbrevRecord(); 708 continue; 709 } 710 711 // Read a record. 712 Record.clear(); 713 Value *V = 0; 714 switch (Stream.ReadRecord(Code, Record)) { 715 default: // Default behavior: unknown constant 716 case bitc::CST_CODE_UNDEF: // UNDEF 717 V = UndefValue::get(CurTy); 718 break; 719 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 720 if (Record.empty()) 721 return Error("Malformed CST_SETTYPE record"); 722 if (Record[0] >= TypeList.size()) 723 return Error("Invalid Type ID in CST_SETTYPE record"); 724 CurTy = TypeList[Record[0]]; 725 continue; // Skip the ValueList manipulation. 726 case bitc::CST_CODE_NULL: // NULL 727 V = Constant::getNullValue(CurTy); 728 break; 729 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 730 if (!isa<IntegerType>(CurTy) || Record.empty()) 731 return Error("Invalid CST_INTEGER record"); 732 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 733 break; 734 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 735 if (!isa<IntegerType>(CurTy) || Record.empty()) 736 return Error("Invalid WIDE_INTEGER record"); 737 738 unsigned NumWords = Record.size(); 739 SmallVector<uint64_t, 8> Words; 740 Words.resize(NumWords); 741 for (unsigned i = 0; i != NumWords; ++i) 742 Words[i] = DecodeSignRotatedValue(Record[i]); 743 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 744 NumWords, &Words[0])); 745 break; 746 } 747 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 748 if (Record.empty()) 749 return Error("Invalid FLOAT record"); 750 if (CurTy == Type::FloatTy) 751 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 752 else if (CurTy == Type::DoubleTy) 753 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 754 else if (CurTy == Type::X86_FP80Ty) 755 V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0]))); 756 else if (CurTy == Type::FP128Ty) 757 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 758 else if (CurTy == Type::PPC_FP128Ty) 759 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 760 else 761 V = UndefValue::get(CurTy); 762 break; 763 } 764 765 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 766 if (Record.empty()) 767 return Error("Invalid CST_AGGREGATE record"); 768 769 unsigned Size = Record.size(); 770 std::vector<Constant*> Elts; 771 772 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 773 for (unsigned i = 0; i != Size; ++i) 774 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 775 STy->getElementType(i))); 776 V = ConstantStruct::get(STy, Elts); 777 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 778 const Type *EltTy = ATy->getElementType(); 779 for (unsigned i = 0; i != Size; ++i) 780 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 781 V = ConstantArray::get(ATy, Elts); 782 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 783 const Type *EltTy = VTy->getElementType(); 784 for (unsigned i = 0; i != Size; ++i) 785 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 786 V = ConstantVector::get(Elts); 787 } else { 788 V = UndefValue::get(CurTy); 789 } 790 break; 791 } 792 case bitc::CST_CODE_STRING: { // STRING: [values] 793 if (Record.empty()) 794 return Error("Invalid CST_AGGREGATE record"); 795 796 const ArrayType *ATy = cast<ArrayType>(CurTy); 797 const Type *EltTy = ATy->getElementType(); 798 799 unsigned Size = Record.size(); 800 std::vector<Constant*> Elts; 801 for (unsigned i = 0; i != Size; ++i) 802 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 803 V = ConstantArray::get(ATy, Elts); 804 break; 805 } 806 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 807 if (Record.empty()) 808 return Error("Invalid CST_AGGREGATE record"); 809 810 const ArrayType *ATy = cast<ArrayType>(CurTy); 811 const Type *EltTy = ATy->getElementType(); 812 813 unsigned Size = Record.size(); 814 std::vector<Constant*> Elts; 815 for (unsigned i = 0; i != Size; ++i) 816 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 817 Elts.push_back(Constant::getNullValue(EltTy)); 818 V = ConstantArray::get(ATy, Elts); 819 break; 820 } 821 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 822 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 823 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 824 if (Opc < 0) { 825 V = UndefValue::get(CurTy); // Unknown binop. 826 } else { 827 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 828 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 829 V = ConstantExpr::get(Opc, LHS, RHS); 830 } 831 break; 832 } 833 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 834 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 835 int Opc = GetDecodedCastOpcode(Record[0]); 836 if (Opc < 0) { 837 V = UndefValue::get(CurTy); // Unknown cast. 838 } else { 839 const Type *OpTy = getTypeByID(Record[1]); 840 if (!OpTy) return Error("Invalid CE_CAST record"); 841 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 842 V = ConstantExpr::getCast(Opc, Op, CurTy); 843 } 844 break; 845 } 846 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 847 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 848 SmallVector<Constant*, 16> Elts; 849 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 850 const Type *ElTy = getTypeByID(Record[i]); 851 if (!ElTy) return Error("Invalid CE_GEP record"); 852 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 853 } 854 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 855 break; 856 } 857 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 858 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 859 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 860 Type::Int1Ty), 861 ValueList.getConstantFwdRef(Record[1],CurTy), 862 ValueList.getConstantFwdRef(Record[2],CurTy)); 863 break; 864 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 865 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 866 const VectorType *OpTy = 867 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 868 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 869 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 870 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 871 OpTy->getElementType()); 872 V = ConstantExpr::getExtractElement(Op0, Op1); 873 break; 874 } 875 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 876 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 877 if (Record.size() < 3 || OpTy == 0) 878 return Error("Invalid CE_INSERTELT record"); 879 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 880 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 881 OpTy->getElementType()); 882 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 883 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 884 break; 885 } 886 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 887 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 888 if (Record.size() < 3 || OpTy == 0) 889 return Error("Invalid CE_INSERTELT record"); 890 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 891 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 892 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 893 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 894 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 895 break; 896 } 897 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 898 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 899 const Type *OpTy = getTypeByID(Record[0]); 900 if (OpTy == 0) return Error("Invalid CE_CMP record"); 901 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 902 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 903 904 if (OpTy->isFloatingPoint()) 905 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 906 else if (!isa<VectorType>(OpTy)) 907 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 908 else if (OpTy->isFPOrFPVector()) 909 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 910 else 911 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 912 break; 913 } 914 case bitc::CST_CODE_INLINEASM: { 915 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 916 std::string AsmStr, ConstrStr; 917 bool HasSideEffects = Record[0]; 918 unsigned AsmStrSize = Record[1]; 919 if (2+AsmStrSize >= Record.size()) 920 return Error("Invalid INLINEASM record"); 921 unsigned ConstStrSize = Record[2+AsmStrSize]; 922 if (3+AsmStrSize+ConstStrSize > Record.size()) 923 return Error("Invalid INLINEASM record"); 924 925 for (unsigned i = 0; i != AsmStrSize; ++i) 926 AsmStr += (char)Record[2+i]; 927 for (unsigned i = 0; i != ConstStrSize; ++i) 928 ConstrStr += (char)Record[3+AsmStrSize+i]; 929 const PointerType *PTy = cast<PointerType>(CurTy); 930 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 931 AsmStr, ConstrStr, HasSideEffects); 932 break; 933 } 934 } 935 936 ValueList.AssignValue(V, NextCstNo); 937 ++NextCstNo; 938 } 939 940 if (NextCstNo != ValueList.size()) 941 return Error("Invalid constant reference!"); 942 943 if (Stream.ReadBlockEnd()) 944 return Error("Error at end of constants block"); 945 946 // Once all the constants have been read, go through and resolve forward 947 // references. 948 ValueList.ResolveConstantForwardRefs(); 949 return false; 950 } 951 952 /// RememberAndSkipFunctionBody - When we see the block for a function body, 953 /// remember where it is and then skip it. This lets us lazily deserialize the 954 /// functions. 955 bool BitcodeReader::RememberAndSkipFunctionBody() { 956 // Get the function we are talking about. 957 if (FunctionsWithBodies.empty()) 958 return Error("Insufficient function protos"); 959 960 Function *Fn = FunctionsWithBodies.back(); 961 FunctionsWithBodies.pop_back(); 962 963 // Save the current stream state. 964 uint64_t CurBit = Stream.GetCurrentBitNo(); 965 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 966 967 // Set the functions linkage to GhostLinkage so we know it is lazily 968 // deserialized. 969 Fn->setLinkage(GlobalValue::GhostLinkage); 970 971 // Skip over the function block for now. 972 if (Stream.SkipBlock()) 973 return Error("Malformed block record"); 974 return false; 975 } 976 977 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 978 // Reject multiple MODULE_BLOCK's in a single bitstream. 979 if (TheModule) 980 return Error("Multiple MODULE_BLOCKs in same stream"); 981 982 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 983 return Error("Malformed block record"); 984 985 // Otherwise, create the module. 986 TheModule = new Module(ModuleID); 987 988 SmallVector<uint64_t, 64> Record; 989 std::vector<std::string> SectionTable; 990 std::vector<std::string> GCTable; 991 992 // Read all the records for this module. 993 while (!Stream.AtEndOfStream()) { 994 unsigned Code = Stream.ReadCode(); 995 if (Code == bitc::END_BLOCK) { 996 if (Stream.ReadBlockEnd()) 997 return Error("Error at end of module block"); 998 999 // Patch the initializers for globals and aliases up. 1000 ResolveGlobalAndAliasInits(); 1001 if (!GlobalInits.empty() || !AliasInits.empty()) 1002 return Error("Malformed global initializer set"); 1003 if (!FunctionsWithBodies.empty()) 1004 return Error("Too few function bodies found"); 1005 1006 // Look for intrinsic functions which need to be upgraded at some point 1007 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1008 FI != FE; ++FI) { 1009 Function* NewFn; 1010 if (UpgradeIntrinsicFunction(FI, NewFn)) 1011 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1012 } 1013 1014 // Force deallocation of memory for these vectors to favor the client that 1015 // want lazy deserialization. 1016 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1017 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1018 std::vector<Function*>().swap(FunctionsWithBodies); 1019 return false; 1020 } 1021 1022 if (Code == bitc::ENTER_SUBBLOCK) { 1023 switch (Stream.ReadSubBlockID()) { 1024 default: // Skip unknown content. 1025 if (Stream.SkipBlock()) 1026 return Error("Malformed block record"); 1027 break; 1028 case bitc::BLOCKINFO_BLOCK_ID: 1029 if (Stream.ReadBlockInfoBlock()) 1030 return Error("Malformed BlockInfoBlock"); 1031 break; 1032 case bitc::PARAMATTR_BLOCK_ID: 1033 if (ParseParamAttrBlock()) 1034 return true; 1035 break; 1036 case bitc::TYPE_BLOCK_ID: 1037 if (ParseTypeTable()) 1038 return true; 1039 break; 1040 case bitc::TYPE_SYMTAB_BLOCK_ID: 1041 if (ParseTypeSymbolTable()) 1042 return true; 1043 break; 1044 case bitc::VALUE_SYMTAB_BLOCK_ID: 1045 if (ParseValueSymbolTable()) 1046 return true; 1047 break; 1048 case bitc::CONSTANTS_BLOCK_ID: 1049 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1050 return true; 1051 break; 1052 case bitc::FUNCTION_BLOCK_ID: 1053 // If this is the first function body we've seen, reverse the 1054 // FunctionsWithBodies list. 1055 if (!HasReversedFunctionsWithBodies) { 1056 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1057 HasReversedFunctionsWithBodies = true; 1058 } 1059 1060 if (RememberAndSkipFunctionBody()) 1061 return true; 1062 break; 1063 } 1064 continue; 1065 } 1066 1067 if (Code == bitc::DEFINE_ABBREV) { 1068 Stream.ReadAbbrevRecord(); 1069 continue; 1070 } 1071 1072 // Read a record. 1073 switch (Stream.ReadRecord(Code, Record)) { 1074 default: break; // Default behavior, ignore unknown content. 1075 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1076 if (Record.size() < 1) 1077 return Error("Malformed MODULE_CODE_VERSION"); 1078 // Only version #0 is supported so far. 1079 if (Record[0] != 0) 1080 return Error("Unknown bitstream version!"); 1081 break; 1082 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1083 std::string S; 1084 if (ConvertToString(Record, 0, S)) 1085 return Error("Invalid MODULE_CODE_TRIPLE record"); 1086 TheModule->setTargetTriple(S); 1087 break; 1088 } 1089 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1090 std::string S; 1091 if (ConvertToString(Record, 0, S)) 1092 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1093 TheModule->setDataLayout(S); 1094 break; 1095 } 1096 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1097 std::string S; 1098 if (ConvertToString(Record, 0, S)) 1099 return Error("Invalid MODULE_CODE_ASM record"); 1100 TheModule->setModuleInlineAsm(S); 1101 break; 1102 } 1103 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1104 std::string S; 1105 if (ConvertToString(Record, 0, S)) 1106 return Error("Invalid MODULE_CODE_DEPLIB record"); 1107 TheModule->addLibrary(S); 1108 break; 1109 } 1110 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1111 std::string S; 1112 if (ConvertToString(Record, 0, S)) 1113 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1114 SectionTable.push_back(S); 1115 break; 1116 } 1117 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1118 std::string S; 1119 if (ConvertToString(Record, 0, S)) 1120 return Error("Invalid MODULE_CODE_GCNAME record"); 1121 GCTable.push_back(S); 1122 break; 1123 } 1124 // GLOBALVAR: [pointer type, isconst, initid, 1125 // linkage, alignment, section, visibility, threadlocal] 1126 case bitc::MODULE_CODE_GLOBALVAR: { 1127 if (Record.size() < 6) 1128 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1129 const Type *Ty = getTypeByID(Record[0]); 1130 if (!isa<PointerType>(Ty)) 1131 return Error("Global not a pointer type!"); 1132 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1133 Ty = cast<PointerType>(Ty)->getElementType(); 1134 1135 bool isConstant = Record[1]; 1136 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1137 unsigned Alignment = (1 << Record[4]) >> 1; 1138 std::string Section; 1139 if (Record[5]) { 1140 if (Record[5]-1 >= SectionTable.size()) 1141 return Error("Invalid section ID"); 1142 Section = SectionTable[Record[5]-1]; 1143 } 1144 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1145 if (Record.size() > 6) 1146 Visibility = GetDecodedVisibility(Record[6]); 1147 bool isThreadLocal = false; 1148 if (Record.size() > 7) 1149 isThreadLocal = Record[7]; 1150 1151 GlobalVariable *NewGV = 1152 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1153 isThreadLocal, AddressSpace); 1154 NewGV->setAlignment(Alignment); 1155 if (!Section.empty()) 1156 NewGV->setSection(Section); 1157 NewGV->setVisibility(Visibility); 1158 NewGV->setThreadLocal(isThreadLocal); 1159 1160 ValueList.push_back(NewGV); 1161 1162 // Remember which value to use for the global initializer. 1163 if (unsigned InitID = Record[2]) 1164 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1165 break; 1166 } 1167 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1168 // alignment, section, visibility, gc] 1169 case bitc::MODULE_CODE_FUNCTION: { 1170 if (Record.size() < 8) 1171 return Error("Invalid MODULE_CODE_FUNCTION record"); 1172 const Type *Ty = getTypeByID(Record[0]); 1173 if (!isa<PointerType>(Ty)) 1174 return Error("Function not a pointer type!"); 1175 const FunctionType *FTy = 1176 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1177 if (!FTy) 1178 return Error("Function not a pointer to function type!"); 1179 1180 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1181 "", TheModule); 1182 1183 Func->setCallingConv(Record[1]); 1184 bool isProto = Record[2]; 1185 Func->setLinkage(GetDecodedLinkage(Record[3])); 1186 Func->setParamAttrs(getParamAttrs(Record[4])); 1187 1188 Func->setAlignment((1 << Record[5]) >> 1); 1189 if (Record[6]) { 1190 if (Record[6]-1 >= SectionTable.size()) 1191 return Error("Invalid section ID"); 1192 Func->setSection(SectionTable[Record[6]-1]); 1193 } 1194 Func->setVisibility(GetDecodedVisibility(Record[7])); 1195 if (Record.size() > 8 && Record[8]) { 1196 if (Record[8]-1 > GCTable.size()) 1197 return Error("Invalid GC ID"); 1198 Func->setGC(GCTable[Record[8]-1].c_str()); 1199 } 1200 if (!isProto && Record.size() > 9 && Record[9]) { 1201 Func->setNotes(Record[9]); 1202 } 1203 1204 ValueList.push_back(Func); 1205 1206 // If this is a function with a body, remember the prototype we are 1207 // creating now, so that we can match up the body with them later. 1208 if (!isProto) 1209 FunctionsWithBodies.push_back(Func); 1210 break; 1211 } 1212 // ALIAS: [alias type, aliasee val#, linkage] 1213 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1214 case bitc::MODULE_CODE_ALIAS: { 1215 if (Record.size() < 3) 1216 return Error("Invalid MODULE_ALIAS record"); 1217 const Type *Ty = getTypeByID(Record[0]); 1218 if (!isa<PointerType>(Ty)) 1219 return Error("Function not a pointer type!"); 1220 1221 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1222 "", 0, TheModule); 1223 // Old bitcode files didn't have visibility field. 1224 if (Record.size() > 3) 1225 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1226 ValueList.push_back(NewGA); 1227 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1228 break; 1229 } 1230 /// MODULE_CODE_PURGEVALS: [numvals] 1231 case bitc::MODULE_CODE_PURGEVALS: 1232 // Trim down the value list to the specified size. 1233 if (Record.size() < 1 || Record[0] > ValueList.size()) 1234 return Error("Invalid MODULE_PURGEVALS record"); 1235 ValueList.shrinkTo(Record[0]); 1236 break; 1237 } 1238 Record.clear(); 1239 } 1240 1241 return Error("Premature end of bitstream"); 1242 } 1243 1244 /// SkipWrapperHeader - Some systems wrap bc files with a special header for 1245 /// padding or other reasons. The format of this header is: 1246 /// 1247 /// struct bc_header { 1248 /// uint32_t Magic; // 0x0B17C0DE 1249 /// uint32_t Version; // Version, currently always 0. 1250 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1251 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1252 /// ... potentially other gunk ... 1253 /// }; 1254 /// 1255 /// This function is called when we find a file with a matching magic number. 1256 /// In this case, skip down to the subsection of the file that is actually a BC 1257 /// file. 1258 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) { 1259 enum { 1260 KnownHeaderSize = 4*4, // Size of header we read. 1261 OffsetField = 2*4, // Offset in bytes to Offset field. 1262 SizeField = 3*4 // Offset in bytes to Size field. 1263 }; 1264 1265 1266 // Must contain the header! 1267 if (BufEnd-BufPtr < KnownHeaderSize) return true; 1268 1269 unsigned Offset = ( BufPtr[OffsetField ] | 1270 (BufPtr[OffsetField+1] << 8) | 1271 (BufPtr[OffsetField+2] << 16) | 1272 (BufPtr[OffsetField+3] << 24)); 1273 unsigned Size = ( BufPtr[SizeField ] | 1274 (BufPtr[SizeField +1] << 8) | 1275 (BufPtr[SizeField +2] << 16) | 1276 (BufPtr[SizeField +3] << 24)); 1277 1278 // Verify that Offset+Size fits in the file. 1279 if (Offset+Size > unsigned(BufEnd-BufPtr)) 1280 return true; 1281 BufPtr += Offset; 1282 BufEnd = BufPtr+Size; 1283 return false; 1284 } 1285 1286 bool BitcodeReader::ParseBitcode() { 1287 TheModule = 0; 1288 1289 if (Buffer->getBufferSize() & 3) 1290 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1291 1292 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1293 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1294 1295 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1296 // The magic number is 0x0B17C0DE stored in little endian. 1297 if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && 1298 BufPtr[2] == 0x17 && BufPtr[3] == 0x0B) 1299 if (SkipWrapperHeader(BufPtr, BufEnd)) 1300 return Error("Invalid bitcode wrapper header"); 1301 1302 Stream.init(BufPtr, BufEnd); 1303 1304 // Sniff for the signature. 1305 if (Stream.Read(8) != 'B' || 1306 Stream.Read(8) != 'C' || 1307 Stream.Read(4) != 0x0 || 1308 Stream.Read(4) != 0xC || 1309 Stream.Read(4) != 0xE || 1310 Stream.Read(4) != 0xD) 1311 return Error("Invalid bitcode signature"); 1312 1313 // We expect a number of well-defined blocks, though we don't necessarily 1314 // need to understand them all. 1315 while (!Stream.AtEndOfStream()) { 1316 unsigned Code = Stream.ReadCode(); 1317 1318 if (Code != bitc::ENTER_SUBBLOCK) 1319 return Error("Invalid record at top-level"); 1320 1321 unsigned BlockID = Stream.ReadSubBlockID(); 1322 1323 // We only know the MODULE subblock ID. 1324 switch (BlockID) { 1325 case bitc::BLOCKINFO_BLOCK_ID: 1326 if (Stream.ReadBlockInfoBlock()) 1327 return Error("Malformed BlockInfoBlock"); 1328 break; 1329 case bitc::MODULE_BLOCK_ID: 1330 if (ParseModule(Buffer->getBufferIdentifier())) 1331 return true; 1332 break; 1333 default: 1334 if (Stream.SkipBlock()) 1335 return Error("Malformed block record"); 1336 break; 1337 } 1338 } 1339 1340 return false; 1341 } 1342 1343 1344 /// ParseFunctionBody - Lazily parse the specified function body block. 1345 bool BitcodeReader::ParseFunctionBody(Function *F) { 1346 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1347 return Error("Malformed block record"); 1348 1349 unsigned ModuleValueListSize = ValueList.size(); 1350 1351 // Add all the function arguments to the value table. 1352 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1353 ValueList.push_back(I); 1354 1355 unsigned NextValueNo = ValueList.size(); 1356 BasicBlock *CurBB = 0; 1357 unsigned CurBBNo = 0; 1358 1359 // Read all the records. 1360 SmallVector<uint64_t, 64> Record; 1361 while (1) { 1362 unsigned Code = Stream.ReadCode(); 1363 if (Code == bitc::END_BLOCK) { 1364 if (Stream.ReadBlockEnd()) 1365 return Error("Error at end of function block"); 1366 break; 1367 } 1368 1369 if (Code == bitc::ENTER_SUBBLOCK) { 1370 switch (Stream.ReadSubBlockID()) { 1371 default: // Skip unknown content. 1372 if (Stream.SkipBlock()) 1373 return Error("Malformed block record"); 1374 break; 1375 case bitc::CONSTANTS_BLOCK_ID: 1376 if (ParseConstants()) return true; 1377 NextValueNo = ValueList.size(); 1378 break; 1379 case bitc::VALUE_SYMTAB_BLOCK_ID: 1380 if (ParseValueSymbolTable()) return true; 1381 break; 1382 } 1383 continue; 1384 } 1385 1386 if (Code == bitc::DEFINE_ABBREV) { 1387 Stream.ReadAbbrevRecord(); 1388 continue; 1389 } 1390 1391 // Read a record. 1392 Record.clear(); 1393 Instruction *I = 0; 1394 switch (Stream.ReadRecord(Code, Record)) { 1395 default: // Default behavior: reject 1396 return Error("Unknown instruction"); 1397 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1398 if (Record.size() < 1 || Record[0] == 0) 1399 return Error("Invalid DECLAREBLOCKS record"); 1400 // Create all the basic blocks for the function. 1401 FunctionBBs.resize(Record[0]); 1402 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1403 FunctionBBs[i] = BasicBlock::Create("", F); 1404 CurBB = FunctionBBs[0]; 1405 continue; 1406 1407 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1408 unsigned OpNum = 0; 1409 Value *LHS, *RHS; 1410 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1411 getValue(Record, OpNum, LHS->getType(), RHS) || 1412 OpNum+1 != Record.size()) 1413 return Error("Invalid BINOP record"); 1414 1415 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1416 if (Opc == -1) return Error("Invalid BINOP record"); 1417 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1418 break; 1419 } 1420 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1421 unsigned OpNum = 0; 1422 Value *Op; 1423 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1424 OpNum+2 != Record.size()) 1425 return Error("Invalid CAST record"); 1426 1427 const Type *ResTy = getTypeByID(Record[OpNum]); 1428 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1429 if (Opc == -1 || ResTy == 0) 1430 return Error("Invalid CAST record"); 1431 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1432 break; 1433 } 1434 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1435 unsigned OpNum = 0; 1436 Value *BasePtr; 1437 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1438 return Error("Invalid GEP record"); 1439 1440 SmallVector<Value*, 16> GEPIdx; 1441 while (OpNum != Record.size()) { 1442 Value *Op; 1443 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1444 return Error("Invalid GEP record"); 1445 GEPIdx.push_back(Op); 1446 } 1447 1448 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1449 break; 1450 } 1451 1452 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1453 // EXTRACTVAL: [opty, opval, n x indices] 1454 unsigned OpNum = 0; 1455 Value *Agg; 1456 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1457 return Error("Invalid EXTRACTVAL record"); 1458 1459 SmallVector<unsigned, 4> EXTRACTVALIdx; 1460 for (unsigned RecSize = Record.size(); 1461 OpNum != RecSize; ++OpNum) { 1462 uint64_t Index = Record[OpNum]; 1463 if ((unsigned)Index != Index) 1464 return Error("Invalid EXTRACTVAL index"); 1465 EXTRACTVALIdx.push_back((unsigned)Index); 1466 } 1467 1468 I = ExtractValueInst::Create(Agg, 1469 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1470 break; 1471 } 1472 1473 case bitc::FUNC_CODE_INST_INSERTVAL: { 1474 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1475 unsigned OpNum = 0; 1476 Value *Agg; 1477 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1478 return Error("Invalid INSERTVAL record"); 1479 Value *Val; 1480 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1481 return Error("Invalid INSERTVAL record"); 1482 1483 SmallVector<unsigned, 4> INSERTVALIdx; 1484 for (unsigned RecSize = Record.size(); 1485 OpNum != RecSize; ++OpNum) { 1486 uint64_t Index = Record[OpNum]; 1487 if ((unsigned)Index != Index) 1488 return Error("Invalid INSERTVAL index"); 1489 INSERTVALIdx.push_back((unsigned)Index); 1490 } 1491 1492 I = InsertValueInst::Create(Agg, Val, 1493 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1494 break; 1495 } 1496 1497 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1498 // obsolete form of select 1499 // handles select i1 ... in old bitcode 1500 unsigned OpNum = 0; 1501 Value *TrueVal, *FalseVal, *Cond; 1502 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1503 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1504 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1505 return Error("Invalid SELECT record"); 1506 1507 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1508 break; 1509 } 1510 1511 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1512 // new form of select 1513 // handles select i1 or select [N x i1] 1514 unsigned OpNum = 0; 1515 Value *TrueVal, *FalseVal, *Cond; 1516 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1517 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1518 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1519 return Error("Invalid SELECT record"); 1520 1521 // select condition can be either i1 or [N x i1] 1522 if (const VectorType* vector_type = 1523 dyn_cast<const VectorType>(Cond->getType())) { 1524 // expect <n x i1> 1525 if (vector_type->getElementType() != Type::Int1Ty) 1526 return Error("Invalid SELECT condition type"); 1527 } else { 1528 // expect i1 1529 if (Cond->getType() != Type::Int1Ty) 1530 return Error("Invalid SELECT condition type"); 1531 } 1532 1533 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1534 break; 1535 } 1536 1537 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1538 unsigned OpNum = 0; 1539 Value *Vec, *Idx; 1540 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1541 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1542 return Error("Invalid EXTRACTELT record"); 1543 I = new ExtractElementInst(Vec, Idx); 1544 break; 1545 } 1546 1547 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1548 unsigned OpNum = 0; 1549 Value *Vec, *Elt, *Idx; 1550 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1551 getValue(Record, OpNum, 1552 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1553 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1554 return Error("Invalid INSERTELT record"); 1555 I = InsertElementInst::Create(Vec, Elt, Idx); 1556 break; 1557 } 1558 1559 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1560 unsigned OpNum = 0; 1561 Value *Vec1, *Vec2, *Mask; 1562 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1563 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1564 return Error("Invalid SHUFFLEVEC record"); 1565 1566 const Type *MaskTy = 1567 VectorType::get(Type::Int32Ty, 1568 cast<VectorType>(Vec1->getType())->getNumElements()); 1569 1570 if (getValue(Record, OpNum, MaskTy, Mask)) 1571 return Error("Invalid SHUFFLEVEC record"); 1572 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1573 break; 1574 } 1575 1576 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1577 // VFCmp/VICmp 1578 // or old form of ICmp/FCmp returning bool 1579 unsigned OpNum = 0; 1580 Value *LHS, *RHS; 1581 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1582 getValue(Record, OpNum, LHS->getType(), RHS) || 1583 OpNum+1 != Record.size()) 1584 return Error("Invalid CMP record"); 1585 1586 if (LHS->getType()->isFloatingPoint()) 1587 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1588 else if (!isa<VectorType>(LHS->getType())) 1589 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1590 else if (LHS->getType()->isFPOrFPVector()) 1591 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1592 else 1593 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1594 break; 1595 } 1596 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1597 // Fcmp/ICmp returning bool or vector of bool 1598 unsigned OpNum = 0; 1599 Value *LHS, *RHS; 1600 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1601 getValue(Record, OpNum, LHS->getType(), RHS) || 1602 OpNum+1 != Record.size()) 1603 return Error("Invalid CMP2 record"); 1604 1605 if (LHS->getType()->isFPOrFPVector()) 1606 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1607 else 1608 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1609 break; 1610 } 1611 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1612 if (Record.size() != 2) 1613 return Error("Invalid GETRESULT record"); 1614 unsigned OpNum = 0; 1615 Value *Op; 1616 getValueTypePair(Record, OpNum, NextValueNo, Op); 1617 unsigned Index = Record[1]; 1618 I = ExtractValueInst::Create(Op, Index); 1619 break; 1620 } 1621 1622 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1623 { 1624 unsigned Size = Record.size(); 1625 if (Size == 0) { 1626 I = ReturnInst::Create(); 1627 break; 1628 } 1629 1630 unsigned OpNum = 0; 1631 SmallVector<Value *,4> Vs; 1632 do { 1633 Value *Op = NULL; 1634 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1635 return Error("Invalid RET record"); 1636 Vs.push_back(Op); 1637 } while(OpNum != Record.size()); 1638 1639 const Type *ReturnType = F->getReturnType(); 1640 if (Vs.size() > 1 || 1641 (isa<StructType>(ReturnType) && 1642 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1643 Value *RV = UndefValue::get(ReturnType); 1644 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1645 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1646 CurBB->getInstList().push_back(I); 1647 ValueList.AssignValue(I, NextValueNo++); 1648 RV = I; 1649 } 1650 I = ReturnInst::Create(RV); 1651 break; 1652 } 1653 1654 I = ReturnInst::Create(Vs[0]); 1655 break; 1656 } 1657 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1658 if (Record.size() != 1 && Record.size() != 3) 1659 return Error("Invalid BR record"); 1660 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1661 if (TrueDest == 0) 1662 return Error("Invalid BR record"); 1663 1664 if (Record.size() == 1) 1665 I = BranchInst::Create(TrueDest); 1666 else { 1667 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1668 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1669 if (FalseDest == 0 || Cond == 0) 1670 return Error("Invalid BR record"); 1671 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1672 } 1673 break; 1674 } 1675 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1676 if (Record.size() < 3 || (Record.size() & 1) == 0) 1677 return Error("Invalid SWITCH record"); 1678 const Type *OpTy = getTypeByID(Record[0]); 1679 Value *Cond = getFnValueByID(Record[1], OpTy); 1680 BasicBlock *Default = getBasicBlock(Record[2]); 1681 if (OpTy == 0 || Cond == 0 || Default == 0) 1682 return Error("Invalid SWITCH record"); 1683 unsigned NumCases = (Record.size()-3)/2; 1684 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1685 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1686 ConstantInt *CaseVal = 1687 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1688 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1689 if (CaseVal == 0 || DestBB == 0) { 1690 delete SI; 1691 return Error("Invalid SWITCH record!"); 1692 } 1693 SI->addCase(CaseVal, DestBB); 1694 } 1695 I = SI; 1696 break; 1697 } 1698 1699 case bitc::FUNC_CODE_INST_INVOKE: { 1700 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1701 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1702 PAListPtr PAL = getParamAttrs(Record[0]); 1703 unsigned CCInfo = Record[1]; 1704 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1705 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1706 1707 unsigned OpNum = 4; 1708 Value *Callee; 1709 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1710 return Error("Invalid INVOKE record"); 1711 1712 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1713 const FunctionType *FTy = !CalleeTy ? 0 : 1714 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1715 1716 // Check that the right number of fixed parameters are here. 1717 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1718 Record.size() < OpNum+FTy->getNumParams()) 1719 return Error("Invalid INVOKE record"); 1720 1721 SmallVector<Value*, 16> Ops; 1722 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1723 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1724 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1725 } 1726 1727 if (!FTy->isVarArg()) { 1728 if (Record.size() != OpNum) 1729 return Error("Invalid INVOKE record"); 1730 } else { 1731 // Read type/value pairs for varargs params. 1732 while (OpNum != Record.size()) { 1733 Value *Op; 1734 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1735 return Error("Invalid INVOKE record"); 1736 Ops.push_back(Op); 1737 } 1738 } 1739 1740 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1741 Ops.begin(), Ops.end()); 1742 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1743 cast<InvokeInst>(I)->setParamAttrs(PAL); 1744 break; 1745 } 1746 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1747 I = new UnwindInst(); 1748 break; 1749 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1750 I = new UnreachableInst(); 1751 break; 1752 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1753 if (Record.size() < 1 || ((Record.size()-1)&1)) 1754 return Error("Invalid PHI record"); 1755 const Type *Ty = getTypeByID(Record[0]); 1756 if (!Ty) return Error("Invalid PHI record"); 1757 1758 PHINode *PN = PHINode::Create(Ty); 1759 PN->reserveOperandSpace((Record.size()-1)/2); 1760 1761 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1762 Value *V = getFnValueByID(Record[1+i], Ty); 1763 BasicBlock *BB = getBasicBlock(Record[2+i]); 1764 if (!V || !BB) return Error("Invalid PHI record"); 1765 PN->addIncoming(V, BB); 1766 } 1767 I = PN; 1768 break; 1769 } 1770 1771 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1772 if (Record.size() < 3) 1773 return Error("Invalid MALLOC record"); 1774 const PointerType *Ty = 1775 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1776 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1777 unsigned Align = Record[2]; 1778 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1779 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1780 break; 1781 } 1782 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1783 unsigned OpNum = 0; 1784 Value *Op; 1785 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1786 OpNum != Record.size()) 1787 return Error("Invalid FREE record"); 1788 I = new FreeInst(Op); 1789 break; 1790 } 1791 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1792 if (Record.size() < 3) 1793 return Error("Invalid ALLOCA record"); 1794 const PointerType *Ty = 1795 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1796 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1797 unsigned Align = Record[2]; 1798 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1799 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1800 break; 1801 } 1802 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1803 unsigned OpNum = 0; 1804 Value *Op; 1805 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1806 OpNum+2 != Record.size()) 1807 return Error("Invalid LOAD record"); 1808 1809 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1810 break; 1811 } 1812 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1813 unsigned OpNum = 0; 1814 Value *Val, *Ptr; 1815 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1816 getValue(Record, OpNum, 1817 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1818 OpNum+2 != Record.size()) 1819 return Error("Invalid STORE record"); 1820 1821 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1822 break; 1823 } 1824 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1825 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1826 unsigned OpNum = 0; 1827 Value *Val, *Ptr; 1828 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1829 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1830 OpNum+2 != Record.size()) 1831 return Error("Invalid STORE record"); 1832 1833 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1834 break; 1835 } 1836 case bitc::FUNC_CODE_INST_CALL: { 1837 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1838 if (Record.size() < 3) 1839 return Error("Invalid CALL record"); 1840 1841 PAListPtr PAL = getParamAttrs(Record[0]); 1842 unsigned CCInfo = Record[1]; 1843 1844 unsigned OpNum = 2; 1845 Value *Callee; 1846 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1847 return Error("Invalid CALL record"); 1848 1849 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1850 const FunctionType *FTy = 0; 1851 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1852 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1853 return Error("Invalid CALL record"); 1854 1855 SmallVector<Value*, 16> Args; 1856 // Read the fixed params. 1857 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1858 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1859 Args.push_back(getBasicBlock(Record[OpNum])); 1860 else 1861 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1862 if (Args.back() == 0) return Error("Invalid CALL record"); 1863 } 1864 1865 // Read type/value pairs for varargs params. 1866 if (!FTy->isVarArg()) { 1867 if (OpNum != Record.size()) 1868 return Error("Invalid CALL record"); 1869 } else { 1870 while (OpNum != Record.size()) { 1871 Value *Op; 1872 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1873 return Error("Invalid CALL record"); 1874 Args.push_back(Op); 1875 } 1876 } 1877 1878 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1879 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1880 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1881 cast<CallInst>(I)->setParamAttrs(PAL); 1882 break; 1883 } 1884 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1885 if (Record.size() < 3) 1886 return Error("Invalid VAARG record"); 1887 const Type *OpTy = getTypeByID(Record[0]); 1888 Value *Op = getFnValueByID(Record[1], OpTy); 1889 const Type *ResTy = getTypeByID(Record[2]); 1890 if (!OpTy || !Op || !ResTy) 1891 return Error("Invalid VAARG record"); 1892 I = new VAArgInst(Op, ResTy); 1893 break; 1894 } 1895 } 1896 1897 // Add instruction to end of current BB. If there is no current BB, reject 1898 // this file. 1899 if (CurBB == 0) { 1900 delete I; 1901 return Error("Invalid instruction with no BB"); 1902 } 1903 CurBB->getInstList().push_back(I); 1904 1905 // If this was a terminator instruction, move to the next block. 1906 if (isa<TerminatorInst>(I)) { 1907 ++CurBBNo; 1908 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1909 } 1910 1911 // Non-void values get registered in the value table for future use. 1912 if (I && I->getType() != Type::VoidTy) 1913 ValueList.AssignValue(I, NextValueNo++); 1914 } 1915 1916 // Check the function list for unresolved values. 1917 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1918 if (A->getParent() == 0) { 1919 // We found at least one unresolved value. Nuke them all to avoid leaks. 1920 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1921 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1922 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1923 delete A; 1924 } 1925 } 1926 return Error("Never resolved value found in function!"); 1927 } 1928 } 1929 1930 // Trim the value list down to the size it was before we parsed this function. 1931 ValueList.shrinkTo(ModuleValueListSize); 1932 std::vector<BasicBlock*>().swap(FunctionBBs); 1933 1934 return false; 1935 } 1936 1937 //===----------------------------------------------------------------------===// 1938 // ModuleProvider implementation 1939 //===----------------------------------------------------------------------===// 1940 1941 1942 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1943 // If it already is material, ignore the request. 1944 if (!F->hasNotBeenReadFromBitcode()) return false; 1945 1946 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 1947 DeferredFunctionInfo.find(F); 1948 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 1949 1950 // Move the bit stream to the saved position of the deferred function body and 1951 // restore the real linkage type for the function. 1952 Stream.JumpToBit(DFII->second.first); 1953 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 1954 1955 if (ParseFunctionBody(F)) { 1956 if (ErrInfo) *ErrInfo = ErrorString; 1957 return true; 1958 } 1959 1960 // Upgrade any old intrinsic calls in the function. 1961 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 1962 E = UpgradedIntrinsics.end(); I != E; ++I) { 1963 if (I->first != I->second) { 1964 for (Value::use_iterator UI = I->first->use_begin(), 1965 UE = I->first->use_end(); UI != UE; ) { 1966 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1967 UpgradeIntrinsicCall(CI, I->second); 1968 } 1969 } 1970 } 1971 1972 return false; 1973 } 1974 1975 void BitcodeReader::dematerializeFunction(Function *F) { 1976 // If this function isn't materialized, or if it is a proto, this is a noop. 1977 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 1978 return; 1979 1980 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 1981 1982 // Just forget the function body, we can remat it later. 1983 F->deleteBody(); 1984 F->setLinkage(GlobalValue::GhostLinkage); 1985 } 1986 1987 1988 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 1989 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 1990 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 1991 ++I) { 1992 Function *F = I->first; 1993 if (F->hasNotBeenReadFromBitcode() && 1994 materializeFunction(F, ErrInfo)) 1995 return 0; 1996 } 1997 1998 // Upgrade any intrinsic calls that slipped through (should not happen!) and 1999 // delete the old functions to clean up. We can't do this unless the entire 2000 // module is materialized because there could always be another function body 2001 // with calls to the old function. 2002 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2003 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2004 if (I->first != I->second) { 2005 for (Value::use_iterator UI = I->first->use_begin(), 2006 UE = I->first->use_end(); UI != UE; ) { 2007 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2008 UpgradeIntrinsicCall(CI, I->second); 2009 } 2010 ValueList.replaceUsesOfWith(I->first, I->second); 2011 I->first->eraseFromParent(); 2012 } 2013 } 2014 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2015 2016 return TheModule; 2017 } 2018 2019 2020 /// This method is provided by the parent ModuleProvde class and overriden 2021 /// here. It simply releases the module from its provided and frees up our 2022 /// state. 2023 /// @brief Release our hold on the generated module 2024 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2025 // Since we're losing control of this Module, we must hand it back complete 2026 Module *M = ModuleProvider::releaseModule(ErrInfo); 2027 FreeState(); 2028 return M; 2029 } 2030 2031 2032 //===----------------------------------------------------------------------===// 2033 // External interface 2034 //===----------------------------------------------------------------------===// 2035 2036 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2037 /// 2038 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2039 std::string *ErrMsg) { 2040 BitcodeReader *R = new BitcodeReader(Buffer); 2041 if (R->ParseBitcode()) { 2042 if (ErrMsg) 2043 *ErrMsg = R->getErrorString(); 2044 2045 // Don't let the BitcodeReader dtor delete 'Buffer'. 2046 R->releaseMemoryBuffer(); 2047 delete R; 2048 return 0; 2049 } 2050 return R; 2051 } 2052 2053 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2054 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2055 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 2056 BitcodeReader *R; 2057 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 2058 if (!R) return 0; 2059 2060 // Read in the entire module. 2061 Module *M = R->materializeModule(ErrMsg); 2062 2063 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2064 // there was an error. 2065 R->releaseMemoryBuffer(); 2066 2067 // If there was no error, tell ModuleProvider not to delete it when its dtor 2068 // is run. 2069 if (M) 2070 M = R->releaseModule(ErrMsg); 2071 2072 delete R; 2073 return M; 2074 } 2075