1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_STRING: { 1456 std::string String(Record.begin(), Record.end()); 1457 llvm::UpgradeMDStringConstant(String); 1458 Metadata *MD = MDString::get(Context, String); 1459 MDValueList.AssignValue(MD, NextMDValueNo++); 1460 break; 1461 } 1462 case bitc::METADATA_KIND: { 1463 if (Record.size() < 2) 1464 return Error("Invalid record"); 1465 1466 unsigned Kind = Record[0]; 1467 SmallString<8> Name(Record.begin()+1, Record.end()); 1468 1469 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1470 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1471 return Error("Conflicting METADATA_KIND records"); 1472 break; 1473 } 1474 } 1475 } 1476 #undef GET_OR_DISTINCT 1477 } 1478 1479 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1480 /// the LSB for dense VBR encoding. 1481 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1482 if ((V & 1) == 0) 1483 return V >> 1; 1484 if (V != 1) 1485 return -(V >> 1); 1486 // There is no such thing as -0 with integers. "-0" really means MININT. 1487 return 1ULL << 63; 1488 } 1489 1490 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1491 /// values and aliases that we can. 1492 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1493 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1494 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1495 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1496 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1497 1498 GlobalInitWorklist.swap(GlobalInits); 1499 AliasInitWorklist.swap(AliasInits); 1500 FunctionPrefixWorklist.swap(FunctionPrefixes); 1501 FunctionPrologueWorklist.swap(FunctionPrologues); 1502 1503 while (!GlobalInitWorklist.empty()) { 1504 unsigned ValID = GlobalInitWorklist.back().second; 1505 if (ValID >= ValueList.size()) { 1506 // Not ready to resolve this yet, it requires something later in the file. 1507 GlobalInits.push_back(GlobalInitWorklist.back()); 1508 } else { 1509 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1510 GlobalInitWorklist.back().first->setInitializer(C); 1511 else 1512 return Error("Expected a constant"); 1513 } 1514 GlobalInitWorklist.pop_back(); 1515 } 1516 1517 while (!AliasInitWorklist.empty()) { 1518 unsigned ValID = AliasInitWorklist.back().second; 1519 if (ValID >= ValueList.size()) { 1520 AliasInits.push_back(AliasInitWorklist.back()); 1521 } else { 1522 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1523 AliasInitWorklist.back().first->setAliasee(C); 1524 else 1525 return Error("Expected a constant"); 1526 } 1527 AliasInitWorklist.pop_back(); 1528 } 1529 1530 while (!FunctionPrefixWorklist.empty()) { 1531 unsigned ValID = FunctionPrefixWorklist.back().second; 1532 if (ValID >= ValueList.size()) { 1533 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1534 } else { 1535 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1536 FunctionPrefixWorklist.back().first->setPrefixData(C); 1537 else 1538 return Error("Expected a constant"); 1539 } 1540 FunctionPrefixWorklist.pop_back(); 1541 } 1542 1543 while (!FunctionPrologueWorklist.empty()) { 1544 unsigned ValID = FunctionPrologueWorklist.back().second; 1545 if (ValID >= ValueList.size()) { 1546 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1547 } else { 1548 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1549 FunctionPrologueWorklist.back().first->setPrologueData(C); 1550 else 1551 return Error("Expected a constant"); 1552 } 1553 FunctionPrologueWorklist.pop_back(); 1554 } 1555 1556 return std::error_code(); 1557 } 1558 1559 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1560 SmallVector<uint64_t, 8> Words(Vals.size()); 1561 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1562 BitcodeReader::decodeSignRotatedValue); 1563 1564 return APInt(TypeBits, Words); 1565 } 1566 1567 std::error_code BitcodeReader::ParseConstants() { 1568 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1569 return Error("Invalid record"); 1570 1571 SmallVector<uint64_t, 64> Record; 1572 1573 // Read all the records for this value table. 1574 Type *CurTy = Type::getInt32Ty(Context); 1575 unsigned NextCstNo = ValueList.size(); 1576 while (1) { 1577 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1578 1579 switch (Entry.Kind) { 1580 case BitstreamEntry::SubBlock: // Handled for us already. 1581 case BitstreamEntry::Error: 1582 return Error("Malformed block"); 1583 case BitstreamEntry::EndBlock: 1584 if (NextCstNo != ValueList.size()) 1585 return Error("Invalid ronstant reference"); 1586 1587 // Once all the constants have been read, go through and resolve forward 1588 // references. 1589 ValueList.ResolveConstantForwardRefs(); 1590 return std::error_code(); 1591 case BitstreamEntry::Record: 1592 // The interesting case. 1593 break; 1594 } 1595 1596 // Read a record. 1597 Record.clear(); 1598 Value *V = nullptr; 1599 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1600 switch (BitCode) { 1601 default: // Default behavior: unknown constant 1602 case bitc::CST_CODE_UNDEF: // UNDEF 1603 V = UndefValue::get(CurTy); 1604 break; 1605 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1606 if (Record.empty()) 1607 return Error("Invalid record"); 1608 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1609 return Error("Invalid record"); 1610 CurTy = TypeList[Record[0]]; 1611 continue; // Skip the ValueList manipulation. 1612 case bitc::CST_CODE_NULL: // NULL 1613 V = Constant::getNullValue(CurTy); 1614 break; 1615 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1616 if (!CurTy->isIntegerTy() || Record.empty()) 1617 return Error("Invalid record"); 1618 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1619 break; 1620 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1621 if (!CurTy->isIntegerTy() || Record.empty()) 1622 return Error("Invalid record"); 1623 1624 APInt VInt = ReadWideAPInt(Record, 1625 cast<IntegerType>(CurTy)->getBitWidth()); 1626 V = ConstantInt::get(Context, VInt); 1627 1628 break; 1629 } 1630 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1631 if (Record.empty()) 1632 return Error("Invalid record"); 1633 if (CurTy->isHalfTy()) 1634 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1635 APInt(16, (uint16_t)Record[0]))); 1636 else if (CurTy->isFloatTy()) 1637 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1638 APInt(32, (uint32_t)Record[0]))); 1639 else if (CurTy->isDoubleTy()) 1640 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1641 APInt(64, Record[0]))); 1642 else if (CurTy->isX86_FP80Ty()) { 1643 // Bits are not stored the same way as a normal i80 APInt, compensate. 1644 uint64_t Rearrange[2]; 1645 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1646 Rearrange[1] = Record[0] >> 48; 1647 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1648 APInt(80, Rearrange))); 1649 } else if (CurTy->isFP128Ty()) 1650 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1651 APInt(128, Record))); 1652 else if (CurTy->isPPC_FP128Ty()) 1653 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1654 APInt(128, Record))); 1655 else 1656 V = UndefValue::get(CurTy); 1657 break; 1658 } 1659 1660 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1661 if (Record.empty()) 1662 return Error("Invalid record"); 1663 1664 unsigned Size = Record.size(); 1665 SmallVector<Constant*, 16> Elts; 1666 1667 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1668 for (unsigned i = 0; i != Size; ++i) 1669 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1670 STy->getElementType(i))); 1671 V = ConstantStruct::get(STy, Elts); 1672 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1673 Type *EltTy = ATy->getElementType(); 1674 for (unsigned i = 0; i != Size; ++i) 1675 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1676 V = ConstantArray::get(ATy, Elts); 1677 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1678 Type *EltTy = VTy->getElementType(); 1679 for (unsigned i = 0; i != Size; ++i) 1680 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1681 V = ConstantVector::get(Elts); 1682 } else { 1683 V = UndefValue::get(CurTy); 1684 } 1685 break; 1686 } 1687 case bitc::CST_CODE_STRING: // STRING: [values] 1688 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1689 if (Record.empty()) 1690 return Error("Invalid record"); 1691 1692 SmallString<16> Elts(Record.begin(), Record.end()); 1693 V = ConstantDataArray::getString(Context, Elts, 1694 BitCode == bitc::CST_CODE_CSTRING); 1695 break; 1696 } 1697 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1698 if (Record.empty()) 1699 return Error("Invalid record"); 1700 1701 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1702 unsigned Size = Record.size(); 1703 1704 if (EltTy->isIntegerTy(8)) { 1705 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1706 if (isa<VectorType>(CurTy)) 1707 V = ConstantDataVector::get(Context, Elts); 1708 else 1709 V = ConstantDataArray::get(Context, Elts); 1710 } else if (EltTy->isIntegerTy(16)) { 1711 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1712 if (isa<VectorType>(CurTy)) 1713 V = ConstantDataVector::get(Context, Elts); 1714 else 1715 V = ConstantDataArray::get(Context, Elts); 1716 } else if (EltTy->isIntegerTy(32)) { 1717 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1718 if (isa<VectorType>(CurTy)) 1719 V = ConstantDataVector::get(Context, Elts); 1720 else 1721 V = ConstantDataArray::get(Context, Elts); 1722 } else if (EltTy->isIntegerTy(64)) { 1723 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1724 if (isa<VectorType>(CurTy)) 1725 V = ConstantDataVector::get(Context, Elts); 1726 else 1727 V = ConstantDataArray::get(Context, Elts); 1728 } else if (EltTy->isFloatTy()) { 1729 SmallVector<float, 16> Elts(Size); 1730 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1731 if (isa<VectorType>(CurTy)) 1732 V = ConstantDataVector::get(Context, Elts); 1733 else 1734 V = ConstantDataArray::get(Context, Elts); 1735 } else if (EltTy->isDoubleTy()) { 1736 SmallVector<double, 16> Elts(Size); 1737 std::transform(Record.begin(), Record.end(), Elts.begin(), 1738 BitsToDouble); 1739 if (isa<VectorType>(CurTy)) 1740 V = ConstantDataVector::get(Context, Elts); 1741 else 1742 V = ConstantDataArray::get(Context, Elts); 1743 } else { 1744 return Error("Invalid type for value"); 1745 } 1746 break; 1747 } 1748 1749 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1750 if (Record.size() < 3) 1751 return Error("Invalid record"); 1752 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1753 if (Opc < 0) { 1754 V = UndefValue::get(CurTy); // Unknown binop. 1755 } else { 1756 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1757 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1758 unsigned Flags = 0; 1759 if (Record.size() >= 4) { 1760 if (Opc == Instruction::Add || 1761 Opc == Instruction::Sub || 1762 Opc == Instruction::Mul || 1763 Opc == Instruction::Shl) { 1764 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1765 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1766 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1767 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1768 } else if (Opc == Instruction::SDiv || 1769 Opc == Instruction::UDiv || 1770 Opc == Instruction::LShr || 1771 Opc == Instruction::AShr) { 1772 if (Record[3] & (1 << bitc::PEO_EXACT)) 1773 Flags |= SDivOperator::IsExact; 1774 } 1775 } 1776 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1777 } 1778 break; 1779 } 1780 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1781 if (Record.size() < 3) 1782 return Error("Invalid record"); 1783 int Opc = GetDecodedCastOpcode(Record[0]); 1784 if (Opc < 0) { 1785 V = UndefValue::get(CurTy); // Unknown cast. 1786 } else { 1787 Type *OpTy = getTypeByID(Record[1]); 1788 if (!OpTy) 1789 return Error("Invalid record"); 1790 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1791 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1792 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1793 } 1794 break; 1795 } 1796 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1797 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1798 if (Record.size() & 1) 1799 return Error("Invalid record"); 1800 SmallVector<Constant*, 16> Elts; 1801 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1802 Type *ElTy = getTypeByID(Record[i]); 1803 if (!ElTy) 1804 return Error("Invalid record"); 1805 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1806 } 1807 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1808 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1809 BitCode == 1810 bitc::CST_CODE_CE_INBOUNDS_GEP); 1811 break; 1812 } 1813 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1814 if (Record.size() < 3) 1815 return Error("Invalid record"); 1816 1817 Type *SelectorTy = Type::getInt1Ty(Context); 1818 1819 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1820 // vector. Otherwise, it must be a single bit. 1821 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1822 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1823 VTy->getNumElements()); 1824 1825 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1826 SelectorTy), 1827 ValueList.getConstantFwdRef(Record[1],CurTy), 1828 ValueList.getConstantFwdRef(Record[2],CurTy)); 1829 break; 1830 } 1831 case bitc::CST_CODE_CE_EXTRACTELT 1832 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1833 if (Record.size() < 3) 1834 return Error("Invalid record"); 1835 VectorType *OpTy = 1836 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1837 if (!OpTy) 1838 return Error("Invalid record"); 1839 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1840 Constant *Op1 = nullptr; 1841 if (Record.size() == 4) { 1842 Type *IdxTy = getTypeByID(Record[2]); 1843 if (!IdxTy) 1844 return Error("Invalid record"); 1845 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1846 } else // TODO: Remove with llvm 4.0 1847 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1848 if (!Op1) 1849 return Error("Invalid record"); 1850 V = ConstantExpr::getExtractElement(Op0, Op1); 1851 break; 1852 } 1853 case bitc::CST_CODE_CE_INSERTELT 1854 : { // CE_INSERTELT: [opval, opval, opty, opval] 1855 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1856 if (Record.size() < 3 || !OpTy) 1857 return Error("Invalid record"); 1858 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1859 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1860 OpTy->getElementType()); 1861 Constant *Op2 = nullptr; 1862 if (Record.size() == 4) { 1863 Type *IdxTy = getTypeByID(Record[2]); 1864 if (!IdxTy) 1865 return Error("Invalid record"); 1866 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1867 } else // TODO: Remove with llvm 4.0 1868 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1869 if (!Op2) 1870 return Error("Invalid record"); 1871 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1872 break; 1873 } 1874 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1875 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1876 if (Record.size() < 3 || !OpTy) 1877 return Error("Invalid record"); 1878 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1879 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1880 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1881 OpTy->getNumElements()); 1882 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1883 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1884 break; 1885 } 1886 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1887 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1888 VectorType *OpTy = 1889 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1890 if (Record.size() < 4 || !RTy || !OpTy) 1891 return Error("Invalid record"); 1892 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1893 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1894 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1895 RTy->getNumElements()); 1896 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1897 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1898 break; 1899 } 1900 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1901 if (Record.size() < 4) 1902 return Error("Invalid record"); 1903 Type *OpTy = getTypeByID(Record[0]); 1904 if (!OpTy) 1905 return Error("Invalid record"); 1906 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1907 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1908 1909 if (OpTy->isFPOrFPVectorTy()) 1910 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1911 else 1912 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1913 break; 1914 } 1915 // This maintains backward compatibility, pre-asm dialect keywords. 1916 // FIXME: Remove with the 4.0 release. 1917 case bitc::CST_CODE_INLINEASM_OLD: { 1918 if (Record.size() < 2) 1919 return Error("Invalid record"); 1920 std::string AsmStr, ConstrStr; 1921 bool HasSideEffects = Record[0] & 1; 1922 bool IsAlignStack = Record[0] >> 1; 1923 unsigned AsmStrSize = Record[1]; 1924 if (2+AsmStrSize >= Record.size()) 1925 return Error("Invalid record"); 1926 unsigned ConstStrSize = Record[2+AsmStrSize]; 1927 if (3+AsmStrSize+ConstStrSize > Record.size()) 1928 return Error("Invalid record"); 1929 1930 for (unsigned i = 0; i != AsmStrSize; ++i) 1931 AsmStr += (char)Record[2+i]; 1932 for (unsigned i = 0; i != ConstStrSize; ++i) 1933 ConstrStr += (char)Record[3+AsmStrSize+i]; 1934 PointerType *PTy = cast<PointerType>(CurTy); 1935 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1936 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1937 break; 1938 } 1939 // This version adds support for the asm dialect keywords (e.g., 1940 // inteldialect). 1941 case bitc::CST_CODE_INLINEASM: { 1942 if (Record.size() < 2) 1943 return Error("Invalid record"); 1944 std::string AsmStr, ConstrStr; 1945 bool HasSideEffects = Record[0] & 1; 1946 bool IsAlignStack = (Record[0] >> 1) & 1; 1947 unsigned AsmDialect = Record[0] >> 2; 1948 unsigned AsmStrSize = Record[1]; 1949 if (2+AsmStrSize >= Record.size()) 1950 return Error("Invalid record"); 1951 unsigned ConstStrSize = Record[2+AsmStrSize]; 1952 if (3+AsmStrSize+ConstStrSize > Record.size()) 1953 return Error("Invalid record"); 1954 1955 for (unsigned i = 0; i != AsmStrSize; ++i) 1956 AsmStr += (char)Record[2+i]; 1957 for (unsigned i = 0; i != ConstStrSize; ++i) 1958 ConstrStr += (char)Record[3+AsmStrSize+i]; 1959 PointerType *PTy = cast<PointerType>(CurTy); 1960 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1961 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1962 InlineAsm::AsmDialect(AsmDialect)); 1963 break; 1964 } 1965 case bitc::CST_CODE_BLOCKADDRESS:{ 1966 if (Record.size() < 3) 1967 return Error("Invalid record"); 1968 Type *FnTy = getTypeByID(Record[0]); 1969 if (!FnTy) 1970 return Error("Invalid record"); 1971 Function *Fn = 1972 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1973 if (!Fn) 1974 return Error("Invalid record"); 1975 1976 // Don't let Fn get dematerialized. 1977 BlockAddressesTaken.insert(Fn); 1978 1979 // If the function is already parsed we can insert the block address right 1980 // away. 1981 BasicBlock *BB; 1982 unsigned BBID = Record[2]; 1983 if (!BBID) 1984 // Invalid reference to entry block. 1985 return Error("Invalid ID"); 1986 if (!Fn->empty()) { 1987 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1988 for (size_t I = 0, E = BBID; I != E; ++I) { 1989 if (BBI == BBE) 1990 return Error("Invalid ID"); 1991 ++BBI; 1992 } 1993 BB = BBI; 1994 } else { 1995 // Otherwise insert a placeholder and remember it so it can be inserted 1996 // when the function is parsed. 1997 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1998 if (FwdBBs.empty()) 1999 BasicBlockFwdRefQueue.push_back(Fn); 2000 if (FwdBBs.size() < BBID + 1) 2001 FwdBBs.resize(BBID + 1); 2002 if (!FwdBBs[BBID]) 2003 FwdBBs[BBID] = BasicBlock::Create(Context); 2004 BB = FwdBBs[BBID]; 2005 } 2006 V = BlockAddress::get(Fn, BB); 2007 break; 2008 } 2009 } 2010 2011 ValueList.AssignValue(V, NextCstNo); 2012 ++NextCstNo; 2013 } 2014 } 2015 2016 std::error_code BitcodeReader::ParseUseLists() { 2017 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2018 return Error("Invalid record"); 2019 2020 // Read all the records. 2021 SmallVector<uint64_t, 64> Record; 2022 while (1) { 2023 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2024 2025 switch (Entry.Kind) { 2026 case BitstreamEntry::SubBlock: // Handled for us already. 2027 case BitstreamEntry::Error: 2028 return Error("Malformed block"); 2029 case BitstreamEntry::EndBlock: 2030 return std::error_code(); 2031 case BitstreamEntry::Record: 2032 // The interesting case. 2033 break; 2034 } 2035 2036 // Read a use list record. 2037 Record.clear(); 2038 bool IsBB = false; 2039 switch (Stream.readRecord(Entry.ID, Record)) { 2040 default: // Default behavior: unknown type. 2041 break; 2042 case bitc::USELIST_CODE_BB: 2043 IsBB = true; 2044 // fallthrough 2045 case bitc::USELIST_CODE_DEFAULT: { 2046 unsigned RecordLength = Record.size(); 2047 if (RecordLength < 3) 2048 // Records should have at least an ID and two indexes. 2049 return Error("Invalid record"); 2050 unsigned ID = Record.back(); 2051 Record.pop_back(); 2052 2053 Value *V; 2054 if (IsBB) { 2055 assert(ID < FunctionBBs.size() && "Basic block not found"); 2056 V = FunctionBBs[ID]; 2057 } else 2058 V = ValueList[ID]; 2059 unsigned NumUses = 0; 2060 SmallDenseMap<const Use *, unsigned, 16> Order; 2061 for (const Use &U : V->uses()) { 2062 if (++NumUses > Record.size()) 2063 break; 2064 Order[&U] = Record[NumUses - 1]; 2065 } 2066 if (Order.size() != Record.size() || NumUses > Record.size()) 2067 // Mismatches can happen if the functions are being materialized lazily 2068 // (out-of-order), or a value has been upgraded. 2069 break; 2070 2071 V->sortUseList([&](const Use &L, const Use &R) { 2072 return Order.lookup(&L) < Order.lookup(&R); 2073 }); 2074 break; 2075 } 2076 } 2077 } 2078 } 2079 2080 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2081 /// remember where it is and then skip it. This lets us lazily deserialize the 2082 /// functions. 2083 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2084 // Get the function we are talking about. 2085 if (FunctionsWithBodies.empty()) 2086 return Error("Insufficient function protos"); 2087 2088 Function *Fn = FunctionsWithBodies.back(); 2089 FunctionsWithBodies.pop_back(); 2090 2091 // Save the current stream state. 2092 uint64_t CurBit = Stream.GetCurrentBitNo(); 2093 DeferredFunctionInfo[Fn] = CurBit; 2094 2095 // Skip over the function block for now. 2096 if (Stream.SkipBlock()) 2097 return Error("Invalid record"); 2098 return std::error_code(); 2099 } 2100 2101 std::error_code BitcodeReader::GlobalCleanup() { 2102 // Patch the initializers for globals and aliases up. 2103 ResolveGlobalAndAliasInits(); 2104 if (!GlobalInits.empty() || !AliasInits.empty()) 2105 return Error("Malformed global initializer set"); 2106 2107 // Look for intrinsic functions which need to be upgraded at some point 2108 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2109 FI != FE; ++FI) { 2110 Function *NewFn; 2111 if (UpgradeIntrinsicFunction(FI, NewFn)) 2112 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2113 } 2114 2115 // Look for global variables which need to be renamed. 2116 for (Module::global_iterator 2117 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2118 GI != GE;) { 2119 GlobalVariable *GV = GI++; 2120 UpgradeGlobalVariable(GV); 2121 } 2122 2123 // Force deallocation of memory for these vectors to favor the client that 2124 // want lazy deserialization. 2125 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2126 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2127 return std::error_code(); 2128 } 2129 2130 std::error_code BitcodeReader::ParseModule(bool Resume) { 2131 if (Resume) 2132 Stream.JumpToBit(NextUnreadBit); 2133 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2134 return Error("Invalid record"); 2135 2136 SmallVector<uint64_t, 64> Record; 2137 std::vector<std::string> SectionTable; 2138 std::vector<std::string> GCTable; 2139 2140 // Read all the records for this module. 2141 while (1) { 2142 BitstreamEntry Entry = Stream.advance(); 2143 2144 switch (Entry.Kind) { 2145 case BitstreamEntry::Error: 2146 return Error("Malformed block"); 2147 case BitstreamEntry::EndBlock: 2148 return GlobalCleanup(); 2149 2150 case BitstreamEntry::SubBlock: 2151 switch (Entry.ID) { 2152 default: // Skip unknown content. 2153 if (Stream.SkipBlock()) 2154 return Error("Invalid record"); 2155 break; 2156 case bitc::BLOCKINFO_BLOCK_ID: 2157 if (Stream.ReadBlockInfoBlock()) 2158 return Error("Malformed block"); 2159 break; 2160 case bitc::PARAMATTR_BLOCK_ID: 2161 if (std::error_code EC = ParseAttributeBlock()) 2162 return EC; 2163 break; 2164 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2165 if (std::error_code EC = ParseAttributeGroupBlock()) 2166 return EC; 2167 break; 2168 case bitc::TYPE_BLOCK_ID_NEW: 2169 if (std::error_code EC = ParseTypeTable()) 2170 return EC; 2171 break; 2172 case bitc::VALUE_SYMTAB_BLOCK_ID: 2173 if (std::error_code EC = ParseValueSymbolTable()) 2174 return EC; 2175 SeenValueSymbolTable = true; 2176 break; 2177 case bitc::CONSTANTS_BLOCK_ID: 2178 if (std::error_code EC = ParseConstants()) 2179 return EC; 2180 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2181 return EC; 2182 break; 2183 case bitc::METADATA_BLOCK_ID: 2184 if (std::error_code EC = ParseMetadata()) 2185 return EC; 2186 break; 2187 case bitc::FUNCTION_BLOCK_ID: 2188 // If this is the first function body we've seen, reverse the 2189 // FunctionsWithBodies list. 2190 if (!SeenFirstFunctionBody) { 2191 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2192 if (std::error_code EC = GlobalCleanup()) 2193 return EC; 2194 SeenFirstFunctionBody = true; 2195 } 2196 2197 if (std::error_code EC = RememberAndSkipFunctionBody()) 2198 return EC; 2199 // For streaming bitcode, suspend parsing when we reach the function 2200 // bodies. Subsequent materialization calls will resume it when 2201 // necessary. For streaming, the function bodies must be at the end of 2202 // the bitcode. If the bitcode file is old, the symbol table will be 2203 // at the end instead and will not have been seen yet. In this case, 2204 // just finish the parse now. 2205 if (LazyStreamer && SeenValueSymbolTable) { 2206 NextUnreadBit = Stream.GetCurrentBitNo(); 2207 return std::error_code(); 2208 } 2209 break; 2210 case bitc::USELIST_BLOCK_ID: 2211 if (std::error_code EC = ParseUseLists()) 2212 return EC; 2213 break; 2214 } 2215 continue; 2216 2217 case BitstreamEntry::Record: 2218 // The interesting case. 2219 break; 2220 } 2221 2222 2223 // Read a record. 2224 switch (Stream.readRecord(Entry.ID, Record)) { 2225 default: break; // Default behavior, ignore unknown content. 2226 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2227 if (Record.size() < 1) 2228 return Error("Invalid record"); 2229 // Only version #0 and #1 are supported so far. 2230 unsigned module_version = Record[0]; 2231 switch (module_version) { 2232 default: 2233 return Error("Invalid value"); 2234 case 0: 2235 UseRelativeIDs = false; 2236 break; 2237 case 1: 2238 UseRelativeIDs = true; 2239 break; 2240 } 2241 break; 2242 } 2243 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2244 std::string S; 2245 if (ConvertToString(Record, 0, S)) 2246 return Error("Invalid record"); 2247 TheModule->setTargetTriple(S); 2248 break; 2249 } 2250 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2251 std::string S; 2252 if (ConvertToString(Record, 0, S)) 2253 return Error("Invalid record"); 2254 TheModule->setDataLayout(S); 2255 break; 2256 } 2257 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2258 std::string S; 2259 if (ConvertToString(Record, 0, S)) 2260 return Error("Invalid record"); 2261 TheModule->setModuleInlineAsm(S); 2262 break; 2263 } 2264 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2265 // FIXME: Remove in 4.0. 2266 std::string S; 2267 if (ConvertToString(Record, 0, S)) 2268 return Error("Invalid record"); 2269 // Ignore value. 2270 break; 2271 } 2272 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2273 std::string S; 2274 if (ConvertToString(Record, 0, S)) 2275 return Error("Invalid record"); 2276 SectionTable.push_back(S); 2277 break; 2278 } 2279 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2280 std::string S; 2281 if (ConvertToString(Record, 0, S)) 2282 return Error("Invalid record"); 2283 GCTable.push_back(S); 2284 break; 2285 } 2286 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2287 if (Record.size() < 2) 2288 return Error("Invalid record"); 2289 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2290 unsigned ComdatNameSize = Record[1]; 2291 std::string ComdatName; 2292 ComdatName.reserve(ComdatNameSize); 2293 for (unsigned i = 0; i != ComdatNameSize; ++i) 2294 ComdatName += (char)Record[2 + i]; 2295 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2296 C->setSelectionKind(SK); 2297 ComdatList.push_back(C); 2298 break; 2299 } 2300 // GLOBALVAR: [pointer type, isconst, initid, 2301 // linkage, alignment, section, visibility, threadlocal, 2302 // unnamed_addr, externally_initialized, dllstorageclass, 2303 // comdat] 2304 case bitc::MODULE_CODE_GLOBALVAR: { 2305 if (Record.size() < 6) 2306 return Error("Invalid record"); 2307 Type *Ty = getTypeByID(Record[0]); 2308 if (!Ty) 2309 return Error("Invalid record"); 2310 if (!Ty->isPointerTy()) 2311 return Error("Invalid type for value"); 2312 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2313 Ty = cast<PointerType>(Ty)->getElementType(); 2314 2315 bool isConstant = Record[1]; 2316 uint64_t RawLinkage = Record[3]; 2317 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2318 unsigned Alignment = (1 << Record[4]) >> 1; 2319 std::string Section; 2320 if (Record[5]) { 2321 if (Record[5]-1 >= SectionTable.size()) 2322 return Error("Invalid ID"); 2323 Section = SectionTable[Record[5]-1]; 2324 } 2325 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2326 // Local linkage must have default visibility. 2327 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2328 // FIXME: Change to an error if non-default in 4.0. 2329 Visibility = GetDecodedVisibility(Record[6]); 2330 2331 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2332 if (Record.size() > 7) 2333 TLM = GetDecodedThreadLocalMode(Record[7]); 2334 2335 bool UnnamedAddr = false; 2336 if (Record.size() > 8) 2337 UnnamedAddr = Record[8]; 2338 2339 bool ExternallyInitialized = false; 2340 if (Record.size() > 9) 2341 ExternallyInitialized = Record[9]; 2342 2343 GlobalVariable *NewGV = 2344 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2345 TLM, AddressSpace, ExternallyInitialized); 2346 NewGV->setAlignment(Alignment); 2347 if (!Section.empty()) 2348 NewGV->setSection(Section); 2349 NewGV->setVisibility(Visibility); 2350 NewGV->setUnnamedAddr(UnnamedAddr); 2351 2352 if (Record.size() > 10) 2353 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2354 else 2355 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2356 2357 ValueList.push_back(NewGV); 2358 2359 // Remember which value to use for the global initializer. 2360 if (unsigned InitID = Record[2]) 2361 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2362 2363 if (Record.size() > 11) { 2364 if (unsigned ComdatID = Record[11]) { 2365 assert(ComdatID <= ComdatList.size()); 2366 NewGV->setComdat(ComdatList[ComdatID - 1]); 2367 } 2368 } else if (hasImplicitComdat(RawLinkage)) { 2369 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2370 } 2371 break; 2372 } 2373 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2374 // alignment, section, visibility, gc, unnamed_addr, 2375 // prologuedata, dllstorageclass, comdat, prefixdata] 2376 case bitc::MODULE_CODE_FUNCTION: { 2377 if (Record.size() < 8) 2378 return Error("Invalid record"); 2379 Type *Ty = getTypeByID(Record[0]); 2380 if (!Ty) 2381 return Error("Invalid record"); 2382 if (!Ty->isPointerTy()) 2383 return Error("Invalid type for value"); 2384 FunctionType *FTy = 2385 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2386 if (!FTy) 2387 return Error("Invalid type for value"); 2388 2389 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2390 "", TheModule); 2391 2392 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2393 bool isProto = Record[2]; 2394 uint64_t RawLinkage = Record[3]; 2395 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2396 Func->setAttributes(getAttributes(Record[4])); 2397 2398 Func->setAlignment((1 << Record[5]) >> 1); 2399 if (Record[6]) { 2400 if (Record[6]-1 >= SectionTable.size()) 2401 return Error("Invalid ID"); 2402 Func->setSection(SectionTable[Record[6]-1]); 2403 } 2404 // Local linkage must have default visibility. 2405 if (!Func->hasLocalLinkage()) 2406 // FIXME: Change to an error if non-default in 4.0. 2407 Func->setVisibility(GetDecodedVisibility(Record[7])); 2408 if (Record.size() > 8 && Record[8]) { 2409 if (Record[8]-1 > GCTable.size()) 2410 return Error("Invalid ID"); 2411 Func->setGC(GCTable[Record[8]-1].c_str()); 2412 } 2413 bool UnnamedAddr = false; 2414 if (Record.size() > 9) 2415 UnnamedAddr = Record[9]; 2416 Func->setUnnamedAddr(UnnamedAddr); 2417 if (Record.size() > 10 && Record[10] != 0) 2418 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2419 2420 if (Record.size() > 11) 2421 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2422 else 2423 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2424 2425 if (Record.size() > 12) { 2426 if (unsigned ComdatID = Record[12]) { 2427 assert(ComdatID <= ComdatList.size()); 2428 Func->setComdat(ComdatList[ComdatID - 1]); 2429 } 2430 } else if (hasImplicitComdat(RawLinkage)) { 2431 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2432 } 2433 2434 if (Record.size() > 13 && Record[13] != 0) 2435 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2436 2437 ValueList.push_back(Func); 2438 2439 // If this is a function with a body, remember the prototype we are 2440 // creating now, so that we can match up the body with them later. 2441 if (!isProto) { 2442 Func->setIsMaterializable(true); 2443 FunctionsWithBodies.push_back(Func); 2444 if (LazyStreamer) 2445 DeferredFunctionInfo[Func] = 0; 2446 } 2447 break; 2448 } 2449 // ALIAS: [alias type, aliasee val#, linkage] 2450 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2451 case bitc::MODULE_CODE_ALIAS: { 2452 if (Record.size() < 3) 2453 return Error("Invalid record"); 2454 Type *Ty = getTypeByID(Record[0]); 2455 if (!Ty) 2456 return Error("Invalid record"); 2457 auto *PTy = dyn_cast<PointerType>(Ty); 2458 if (!PTy) 2459 return Error("Invalid type for value"); 2460 2461 auto *NewGA = 2462 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2463 getDecodedLinkage(Record[2]), "", TheModule); 2464 // Old bitcode files didn't have visibility field. 2465 // Local linkage must have default visibility. 2466 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2467 // FIXME: Change to an error if non-default in 4.0. 2468 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2469 if (Record.size() > 4) 2470 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2471 else 2472 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2473 if (Record.size() > 5) 2474 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2475 if (Record.size() > 6) 2476 NewGA->setUnnamedAddr(Record[6]); 2477 ValueList.push_back(NewGA); 2478 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2479 break; 2480 } 2481 /// MODULE_CODE_PURGEVALS: [numvals] 2482 case bitc::MODULE_CODE_PURGEVALS: 2483 // Trim down the value list to the specified size. 2484 if (Record.size() < 1 || Record[0] > ValueList.size()) 2485 return Error("Invalid record"); 2486 ValueList.shrinkTo(Record[0]); 2487 break; 2488 } 2489 Record.clear(); 2490 } 2491 } 2492 2493 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2494 TheModule = nullptr; 2495 2496 if (std::error_code EC = InitStream()) 2497 return EC; 2498 2499 // Sniff for the signature. 2500 if (Stream.Read(8) != 'B' || 2501 Stream.Read(8) != 'C' || 2502 Stream.Read(4) != 0x0 || 2503 Stream.Read(4) != 0xC || 2504 Stream.Read(4) != 0xE || 2505 Stream.Read(4) != 0xD) 2506 return Error("Invalid bitcode signature"); 2507 2508 // We expect a number of well-defined blocks, though we don't necessarily 2509 // need to understand them all. 2510 while (1) { 2511 if (Stream.AtEndOfStream()) 2512 return std::error_code(); 2513 2514 BitstreamEntry Entry = 2515 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2516 2517 switch (Entry.Kind) { 2518 case BitstreamEntry::Error: 2519 return Error("Malformed block"); 2520 case BitstreamEntry::EndBlock: 2521 return std::error_code(); 2522 2523 case BitstreamEntry::SubBlock: 2524 switch (Entry.ID) { 2525 case bitc::BLOCKINFO_BLOCK_ID: 2526 if (Stream.ReadBlockInfoBlock()) 2527 return Error("Malformed block"); 2528 break; 2529 case bitc::MODULE_BLOCK_ID: 2530 // Reject multiple MODULE_BLOCK's in a single bitstream. 2531 if (TheModule) 2532 return Error("Invalid multiple blocks"); 2533 TheModule = M; 2534 if (std::error_code EC = ParseModule(false)) 2535 return EC; 2536 if (LazyStreamer) 2537 return std::error_code(); 2538 break; 2539 default: 2540 if (Stream.SkipBlock()) 2541 return Error("Invalid record"); 2542 break; 2543 } 2544 continue; 2545 case BitstreamEntry::Record: 2546 // There should be no records in the top-level of blocks. 2547 2548 // The ranlib in Xcode 4 will align archive members by appending newlines 2549 // to the end of them. If this file size is a multiple of 4 but not 8, we 2550 // have to read and ignore these final 4 bytes :-( 2551 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2552 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2553 Stream.AtEndOfStream()) 2554 return std::error_code(); 2555 2556 return Error("Invalid record"); 2557 } 2558 } 2559 } 2560 2561 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2562 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2563 return Error("Invalid record"); 2564 2565 SmallVector<uint64_t, 64> Record; 2566 2567 std::string Triple; 2568 // Read all the records for this module. 2569 while (1) { 2570 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2571 2572 switch (Entry.Kind) { 2573 case BitstreamEntry::SubBlock: // Handled for us already. 2574 case BitstreamEntry::Error: 2575 return Error("Malformed block"); 2576 case BitstreamEntry::EndBlock: 2577 return Triple; 2578 case BitstreamEntry::Record: 2579 // The interesting case. 2580 break; 2581 } 2582 2583 // Read a record. 2584 switch (Stream.readRecord(Entry.ID, Record)) { 2585 default: break; // Default behavior, ignore unknown content. 2586 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2587 std::string S; 2588 if (ConvertToString(Record, 0, S)) 2589 return Error("Invalid record"); 2590 Triple = S; 2591 break; 2592 } 2593 } 2594 Record.clear(); 2595 } 2596 llvm_unreachable("Exit infinite loop"); 2597 } 2598 2599 ErrorOr<std::string> BitcodeReader::parseTriple() { 2600 if (std::error_code EC = InitStream()) 2601 return EC; 2602 2603 // Sniff for the signature. 2604 if (Stream.Read(8) != 'B' || 2605 Stream.Read(8) != 'C' || 2606 Stream.Read(4) != 0x0 || 2607 Stream.Read(4) != 0xC || 2608 Stream.Read(4) != 0xE || 2609 Stream.Read(4) != 0xD) 2610 return Error("Invalid bitcode signature"); 2611 2612 // We expect a number of well-defined blocks, though we don't necessarily 2613 // need to understand them all. 2614 while (1) { 2615 BitstreamEntry Entry = Stream.advance(); 2616 2617 switch (Entry.Kind) { 2618 case BitstreamEntry::Error: 2619 return Error("Malformed block"); 2620 case BitstreamEntry::EndBlock: 2621 return std::error_code(); 2622 2623 case BitstreamEntry::SubBlock: 2624 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2625 return parseModuleTriple(); 2626 2627 // Ignore other sub-blocks. 2628 if (Stream.SkipBlock()) 2629 return Error("Malformed block"); 2630 continue; 2631 2632 case BitstreamEntry::Record: 2633 Stream.skipRecord(Entry.ID); 2634 continue; 2635 } 2636 } 2637 } 2638 2639 /// ParseMetadataAttachment - Parse metadata attachments. 2640 std::error_code BitcodeReader::ParseMetadataAttachment() { 2641 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2642 return Error("Invalid record"); 2643 2644 SmallVector<uint64_t, 64> Record; 2645 while (1) { 2646 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2647 2648 switch (Entry.Kind) { 2649 case BitstreamEntry::SubBlock: // Handled for us already. 2650 case BitstreamEntry::Error: 2651 return Error("Malformed block"); 2652 case BitstreamEntry::EndBlock: 2653 return std::error_code(); 2654 case BitstreamEntry::Record: 2655 // The interesting case. 2656 break; 2657 } 2658 2659 // Read a metadata attachment record. 2660 Record.clear(); 2661 switch (Stream.readRecord(Entry.ID, Record)) { 2662 default: // Default behavior: ignore. 2663 break; 2664 case bitc::METADATA_ATTACHMENT: { 2665 unsigned RecordLength = Record.size(); 2666 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2667 return Error("Invalid record"); 2668 Instruction *Inst = InstructionList[Record[0]]; 2669 for (unsigned i = 1; i != RecordLength; i = i+2) { 2670 unsigned Kind = Record[i]; 2671 DenseMap<unsigned, unsigned>::iterator I = 2672 MDKindMap.find(Kind); 2673 if (I == MDKindMap.end()) 2674 return Error("Invalid ID"); 2675 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2676 if (isa<LocalAsMetadata>(Node)) 2677 // Drop the attachment. This used to be legal, but there's no 2678 // upgrade path. 2679 break; 2680 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2681 if (I->second == LLVMContext::MD_tbaa) 2682 InstsWithTBAATag.push_back(Inst); 2683 } 2684 break; 2685 } 2686 } 2687 } 2688 } 2689 2690 /// ParseFunctionBody - Lazily parse the specified function body block. 2691 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2692 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2693 return Error("Invalid record"); 2694 2695 InstructionList.clear(); 2696 unsigned ModuleValueListSize = ValueList.size(); 2697 unsigned ModuleMDValueListSize = MDValueList.size(); 2698 2699 // Add all the function arguments to the value table. 2700 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2701 ValueList.push_back(I); 2702 2703 unsigned NextValueNo = ValueList.size(); 2704 BasicBlock *CurBB = nullptr; 2705 unsigned CurBBNo = 0; 2706 2707 DebugLoc LastLoc; 2708 auto getLastInstruction = [&]() -> Instruction * { 2709 if (CurBB && !CurBB->empty()) 2710 return &CurBB->back(); 2711 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2712 !FunctionBBs[CurBBNo - 1]->empty()) 2713 return &FunctionBBs[CurBBNo - 1]->back(); 2714 return nullptr; 2715 }; 2716 2717 // Read all the records. 2718 SmallVector<uint64_t, 64> Record; 2719 while (1) { 2720 BitstreamEntry Entry = Stream.advance(); 2721 2722 switch (Entry.Kind) { 2723 case BitstreamEntry::Error: 2724 return Error("Malformed block"); 2725 case BitstreamEntry::EndBlock: 2726 goto OutOfRecordLoop; 2727 2728 case BitstreamEntry::SubBlock: 2729 switch (Entry.ID) { 2730 default: // Skip unknown content. 2731 if (Stream.SkipBlock()) 2732 return Error("Invalid record"); 2733 break; 2734 case bitc::CONSTANTS_BLOCK_ID: 2735 if (std::error_code EC = ParseConstants()) 2736 return EC; 2737 NextValueNo = ValueList.size(); 2738 break; 2739 case bitc::VALUE_SYMTAB_BLOCK_ID: 2740 if (std::error_code EC = ParseValueSymbolTable()) 2741 return EC; 2742 break; 2743 case bitc::METADATA_ATTACHMENT_ID: 2744 if (std::error_code EC = ParseMetadataAttachment()) 2745 return EC; 2746 break; 2747 case bitc::METADATA_BLOCK_ID: 2748 if (std::error_code EC = ParseMetadata()) 2749 return EC; 2750 break; 2751 case bitc::USELIST_BLOCK_ID: 2752 if (std::error_code EC = ParseUseLists()) 2753 return EC; 2754 break; 2755 } 2756 continue; 2757 2758 case BitstreamEntry::Record: 2759 // The interesting case. 2760 break; 2761 } 2762 2763 // Read a record. 2764 Record.clear(); 2765 Instruction *I = nullptr; 2766 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2767 switch (BitCode) { 2768 default: // Default behavior: reject 2769 return Error("Invalid value"); 2770 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2771 if (Record.size() < 1 || Record[0] == 0) 2772 return Error("Invalid record"); 2773 // Create all the basic blocks for the function. 2774 FunctionBBs.resize(Record[0]); 2775 2776 // See if anything took the address of blocks in this function. 2777 auto BBFRI = BasicBlockFwdRefs.find(F); 2778 if (BBFRI == BasicBlockFwdRefs.end()) { 2779 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2780 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2781 } else { 2782 auto &BBRefs = BBFRI->second; 2783 // Check for invalid basic block references. 2784 if (BBRefs.size() > FunctionBBs.size()) 2785 return Error("Invalid ID"); 2786 assert(!BBRefs.empty() && "Unexpected empty array"); 2787 assert(!BBRefs.front() && "Invalid reference to entry block"); 2788 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2789 ++I) 2790 if (I < RE && BBRefs[I]) { 2791 BBRefs[I]->insertInto(F); 2792 FunctionBBs[I] = BBRefs[I]; 2793 } else { 2794 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2795 } 2796 2797 // Erase from the table. 2798 BasicBlockFwdRefs.erase(BBFRI); 2799 } 2800 2801 CurBB = FunctionBBs[0]; 2802 continue; 2803 } 2804 2805 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2806 // This record indicates that the last instruction is at the same 2807 // location as the previous instruction with a location. 2808 I = getLastInstruction(); 2809 2810 if (!I) 2811 return Error("Invalid record"); 2812 I->setDebugLoc(LastLoc); 2813 I = nullptr; 2814 continue; 2815 2816 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2817 I = getLastInstruction(); 2818 if (!I || Record.size() < 4) 2819 return Error("Invalid record"); 2820 2821 unsigned Line = Record[0], Col = Record[1]; 2822 unsigned ScopeID = Record[2], IAID = Record[3]; 2823 2824 MDNode *Scope = nullptr, *IA = nullptr; 2825 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2826 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2827 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2828 I->setDebugLoc(LastLoc); 2829 I = nullptr; 2830 continue; 2831 } 2832 2833 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2834 unsigned OpNum = 0; 2835 Value *LHS, *RHS; 2836 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2837 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2838 OpNum+1 > Record.size()) 2839 return Error("Invalid record"); 2840 2841 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2842 if (Opc == -1) 2843 return Error("Invalid record"); 2844 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2845 InstructionList.push_back(I); 2846 if (OpNum < Record.size()) { 2847 if (Opc == Instruction::Add || 2848 Opc == Instruction::Sub || 2849 Opc == Instruction::Mul || 2850 Opc == Instruction::Shl) { 2851 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2852 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2853 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2854 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2855 } else if (Opc == Instruction::SDiv || 2856 Opc == Instruction::UDiv || 2857 Opc == Instruction::LShr || 2858 Opc == Instruction::AShr) { 2859 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2860 cast<BinaryOperator>(I)->setIsExact(true); 2861 } else if (isa<FPMathOperator>(I)) { 2862 FastMathFlags FMF; 2863 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2864 FMF.setUnsafeAlgebra(); 2865 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2866 FMF.setNoNaNs(); 2867 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2868 FMF.setNoInfs(); 2869 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2870 FMF.setNoSignedZeros(); 2871 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2872 FMF.setAllowReciprocal(); 2873 if (FMF.any()) 2874 I->setFastMathFlags(FMF); 2875 } 2876 2877 } 2878 break; 2879 } 2880 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2881 unsigned OpNum = 0; 2882 Value *Op; 2883 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2884 OpNum+2 != Record.size()) 2885 return Error("Invalid record"); 2886 2887 Type *ResTy = getTypeByID(Record[OpNum]); 2888 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2889 if (Opc == -1 || !ResTy) 2890 return Error("Invalid record"); 2891 Instruction *Temp = nullptr; 2892 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2893 if (Temp) { 2894 InstructionList.push_back(Temp); 2895 CurBB->getInstList().push_back(Temp); 2896 } 2897 } else { 2898 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2899 } 2900 InstructionList.push_back(I); 2901 break; 2902 } 2903 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2904 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2905 unsigned OpNum = 0; 2906 Value *BasePtr; 2907 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2908 return Error("Invalid record"); 2909 2910 SmallVector<Value*, 16> GEPIdx; 2911 while (OpNum != Record.size()) { 2912 Value *Op; 2913 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2914 return Error("Invalid record"); 2915 GEPIdx.push_back(Op); 2916 } 2917 2918 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2919 InstructionList.push_back(I); 2920 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2921 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2922 break; 2923 } 2924 2925 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2926 // EXTRACTVAL: [opty, opval, n x indices] 2927 unsigned OpNum = 0; 2928 Value *Agg; 2929 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2930 return Error("Invalid record"); 2931 2932 SmallVector<unsigned, 4> EXTRACTVALIdx; 2933 for (unsigned RecSize = Record.size(); 2934 OpNum != RecSize; ++OpNum) { 2935 uint64_t Index = Record[OpNum]; 2936 if ((unsigned)Index != Index) 2937 return Error("Invalid value"); 2938 EXTRACTVALIdx.push_back((unsigned)Index); 2939 } 2940 2941 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2942 InstructionList.push_back(I); 2943 break; 2944 } 2945 2946 case bitc::FUNC_CODE_INST_INSERTVAL: { 2947 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2948 unsigned OpNum = 0; 2949 Value *Agg; 2950 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2951 return Error("Invalid record"); 2952 Value *Val; 2953 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2954 return Error("Invalid record"); 2955 2956 SmallVector<unsigned, 4> INSERTVALIdx; 2957 for (unsigned RecSize = Record.size(); 2958 OpNum != RecSize; ++OpNum) { 2959 uint64_t Index = Record[OpNum]; 2960 if ((unsigned)Index != Index) 2961 return Error("Invalid value"); 2962 INSERTVALIdx.push_back((unsigned)Index); 2963 } 2964 2965 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2966 InstructionList.push_back(I); 2967 break; 2968 } 2969 2970 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2971 // obsolete form of select 2972 // handles select i1 ... in old bitcode 2973 unsigned OpNum = 0; 2974 Value *TrueVal, *FalseVal, *Cond; 2975 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2976 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2977 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2978 return Error("Invalid record"); 2979 2980 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2981 InstructionList.push_back(I); 2982 break; 2983 } 2984 2985 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2986 // new form of select 2987 // handles select i1 or select [N x i1] 2988 unsigned OpNum = 0; 2989 Value *TrueVal, *FalseVal, *Cond; 2990 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2991 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2992 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2993 return Error("Invalid record"); 2994 2995 // select condition can be either i1 or [N x i1] 2996 if (VectorType* vector_type = 2997 dyn_cast<VectorType>(Cond->getType())) { 2998 // expect <n x i1> 2999 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3000 return Error("Invalid type for value"); 3001 } else { 3002 // expect i1 3003 if (Cond->getType() != Type::getInt1Ty(Context)) 3004 return Error("Invalid type for value"); 3005 } 3006 3007 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3008 InstructionList.push_back(I); 3009 break; 3010 } 3011 3012 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3013 unsigned OpNum = 0; 3014 Value *Vec, *Idx; 3015 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3016 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3017 return Error("Invalid record"); 3018 I = ExtractElementInst::Create(Vec, Idx); 3019 InstructionList.push_back(I); 3020 break; 3021 } 3022 3023 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3024 unsigned OpNum = 0; 3025 Value *Vec, *Elt, *Idx; 3026 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3027 popValue(Record, OpNum, NextValueNo, 3028 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3029 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3030 return Error("Invalid record"); 3031 I = InsertElementInst::Create(Vec, Elt, Idx); 3032 InstructionList.push_back(I); 3033 break; 3034 } 3035 3036 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3037 unsigned OpNum = 0; 3038 Value *Vec1, *Vec2, *Mask; 3039 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3040 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3041 return Error("Invalid record"); 3042 3043 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3044 return Error("Invalid record"); 3045 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3046 InstructionList.push_back(I); 3047 break; 3048 } 3049 3050 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3051 // Old form of ICmp/FCmp returning bool 3052 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3053 // both legal on vectors but had different behaviour. 3054 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3055 // FCmp/ICmp returning bool or vector of bool 3056 3057 unsigned OpNum = 0; 3058 Value *LHS, *RHS; 3059 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3060 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3061 OpNum+1 != Record.size()) 3062 return Error("Invalid record"); 3063 3064 if (LHS->getType()->isFPOrFPVectorTy()) 3065 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3066 else 3067 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3068 InstructionList.push_back(I); 3069 break; 3070 } 3071 3072 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3073 { 3074 unsigned Size = Record.size(); 3075 if (Size == 0) { 3076 I = ReturnInst::Create(Context); 3077 InstructionList.push_back(I); 3078 break; 3079 } 3080 3081 unsigned OpNum = 0; 3082 Value *Op = nullptr; 3083 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3084 return Error("Invalid record"); 3085 if (OpNum != Record.size()) 3086 return Error("Invalid record"); 3087 3088 I = ReturnInst::Create(Context, Op); 3089 InstructionList.push_back(I); 3090 break; 3091 } 3092 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3093 if (Record.size() != 1 && Record.size() != 3) 3094 return Error("Invalid record"); 3095 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3096 if (!TrueDest) 3097 return Error("Invalid record"); 3098 3099 if (Record.size() == 1) { 3100 I = BranchInst::Create(TrueDest); 3101 InstructionList.push_back(I); 3102 } 3103 else { 3104 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3105 Value *Cond = getValue(Record, 2, NextValueNo, 3106 Type::getInt1Ty(Context)); 3107 if (!FalseDest || !Cond) 3108 return Error("Invalid record"); 3109 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3110 InstructionList.push_back(I); 3111 } 3112 break; 3113 } 3114 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3115 // Check magic 3116 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3117 // "New" SwitchInst format with case ranges. The changes to write this 3118 // format were reverted but we still recognize bitcode that uses it. 3119 // Hopefully someday we will have support for case ranges and can use 3120 // this format again. 3121 3122 Type *OpTy = getTypeByID(Record[1]); 3123 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3124 3125 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3126 BasicBlock *Default = getBasicBlock(Record[3]); 3127 if (!OpTy || !Cond || !Default) 3128 return Error("Invalid record"); 3129 3130 unsigned NumCases = Record[4]; 3131 3132 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3133 InstructionList.push_back(SI); 3134 3135 unsigned CurIdx = 5; 3136 for (unsigned i = 0; i != NumCases; ++i) { 3137 SmallVector<ConstantInt*, 1> CaseVals; 3138 unsigned NumItems = Record[CurIdx++]; 3139 for (unsigned ci = 0; ci != NumItems; ++ci) { 3140 bool isSingleNumber = Record[CurIdx++]; 3141 3142 APInt Low; 3143 unsigned ActiveWords = 1; 3144 if (ValueBitWidth > 64) 3145 ActiveWords = Record[CurIdx++]; 3146 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3147 ValueBitWidth); 3148 CurIdx += ActiveWords; 3149 3150 if (!isSingleNumber) { 3151 ActiveWords = 1; 3152 if (ValueBitWidth > 64) 3153 ActiveWords = Record[CurIdx++]; 3154 APInt High = 3155 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3156 ValueBitWidth); 3157 CurIdx += ActiveWords; 3158 3159 // FIXME: It is not clear whether values in the range should be 3160 // compared as signed or unsigned values. The partially 3161 // implemented changes that used this format in the past used 3162 // unsigned comparisons. 3163 for ( ; Low.ule(High); ++Low) 3164 CaseVals.push_back(ConstantInt::get(Context, Low)); 3165 } else 3166 CaseVals.push_back(ConstantInt::get(Context, Low)); 3167 } 3168 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3169 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3170 cve = CaseVals.end(); cvi != cve; ++cvi) 3171 SI->addCase(*cvi, DestBB); 3172 } 3173 I = SI; 3174 break; 3175 } 3176 3177 // Old SwitchInst format without case ranges. 3178 3179 if (Record.size() < 3 || (Record.size() & 1) == 0) 3180 return Error("Invalid record"); 3181 Type *OpTy = getTypeByID(Record[0]); 3182 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3183 BasicBlock *Default = getBasicBlock(Record[2]); 3184 if (!OpTy || !Cond || !Default) 3185 return Error("Invalid record"); 3186 unsigned NumCases = (Record.size()-3)/2; 3187 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3188 InstructionList.push_back(SI); 3189 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3190 ConstantInt *CaseVal = 3191 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3192 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3193 if (!CaseVal || !DestBB) { 3194 delete SI; 3195 return Error("Invalid record"); 3196 } 3197 SI->addCase(CaseVal, DestBB); 3198 } 3199 I = SI; 3200 break; 3201 } 3202 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3203 if (Record.size() < 2) 3204 return Error("Invalid record"); 3205 Type *OpTy = getTypeByID(Record[0]); 3206 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3207 if (!OpTy || !Address) 3208 return Error("Invalid record"); 3209 unsigned NumDests = Record.size()-2; 3210 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3211 InstructionList.push_back(IBI); 3212 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3213 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3214 IBI->addDestination(DestBB); 3215 } else { 3216 delete IBI; 3217 return Error("Invalid record"); 3218 } 3219 } 3220 I = IBI; 3221 break; 3222 } 3223 3224 case bitc::FUNC_CODE_INST_INVOKE: { 3225 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3226 if (Record.size() < 4) 3227 return Error("Invalid record"); 3228 AttributeSet PAL = getAttributes(Record[0]); 3229 unsigned CCInfo = Record[1]; 3230 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3231 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3232 3233 unsigned OpNum = 4; 3234 Value *Callee; 3235 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3236 return Error("Invalid record"); 3237 3238 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3239 FunctionType *FTy = !CalleeTy ? nullptr : 3240 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3241 3242 // Check that the right number of fixed parameters are here. 3243 if (!FTy || !NormalBB || !UnwindBB || 3244 Record.size() < OpNum+FTy->getNumParams()) 3245 return Error("Invalid record"); 3246 3247 SmallVector<Value*, 16> Ops; 3248 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3249 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3250 FTy->getParamType(i))); 3251 if (!Ops.back()) 3252 return Error("Invalid record"); 3253 } 3254 3255 if (!FTy->isVarArg()) { 3256 if (Record.size() != OpNum) 3257 return Error("Invalid record"); 3258 } else { 3259 // Read type/value pairs for varargs params. 3260 while (OpNum != Record.size()) { 3261 Value *Op; 3262 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3263 return Error("Invalid record"); 3264 Ops.push_back(Op); 3265 } 3266 } 3267 3268 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3269 InstructionList.push_back(I); 3270 cast<InvokeInst>(I)->setCallingConv( 3271 static_cast<CallingConv::ID>(CCInfo)); 3272 cast<InvokeInst>(I)->setAttributes(PAL); 3273 break; 3274 } 3275 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3276 unsigned Idx = 0; 3277 Value *Val = nullptr; 3278 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3279 return Error("Invalid record"); 3280 I = ResumeInst::Create(Val); 3281 InstructionList.push_back(I); 3282 break; 3283 } 3284 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3285 I = new UnreachableInst(Context); 3286 InstructionList.push_back(I); 3287 break; 3288 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3289 if (Record.size() < 1 || ((Record.size()-1)&1)) 3290 return Error("Invalid record"); 3291 Type *Ty = getTypeByID(Record[0]); 3292 if (!Ty) 3293 return Error("Invalid record"); 3294 3295 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3296 InstructionList.push_back(PN); 3297 3298 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3299 Value *V; 3300 // With the new function encoding, it is possible that operands have 3301 // negative IDs (for forward references). Use a signed VBR 3302 // representation to keep the encoding small. 3303 if (UseRelativeIDs) 3304 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3305 else 3306 V = getValue(Record, 1+i, NextValueNo, Ty); 3307 BasicBlock *BB = getBasicBlock(Record[2+i]); 3308 if (!V || !BB) 3309 return Error("Invalid record"); 3310 PN->addIncoming(V, BB); 3311 } 3312 I = PN; 3313 break; 3314 } 3315 3316 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3317 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3318 unsigned Idx = 0; 3319 if (Record.size() < 4) 3320 return Error("Invalid record"); 3321 Type *Ty = getTypeByID(Record[Idx++]); 3322 if (!Ty) 3323 return Error("Invalid record"); 3324 Value *PersFn = nullptr; 3325 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3326 return Error("Invalid record"); 3327 3328 bool IsCleanup = !!Record[Idx++]; 3329 unsigned NumClauses = Record[Idx++]; 3330 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3331 LP->setCleanup(IsCleanup); 3332 for (unsigned J = 0; J != NumClauses; ++J) { 3333 LandingPadInst::ClauseType CT = 3334 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3335 Value *Val; 3336 3337 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3338 delete LP; 3339 return Error("Invalid record"); 3340 } 3341 3342 assert((CT != LandingPadInst::Catch || 3343 !isa<ArrayType>(Val->getType())) && 3344 "Catch clause has a invalid type!"); 3345 assert((CT != LandingPadInst::Filter || 3346 isa<ArrayType>(Val->getType())) && 3347 "Filter clause has invalid type!"); 3348 LP->addClause(cast<Constant>(Val)); 3349 } 3350 3351 I = LP; 3352 InstructionList.push_back(I); 3353 break; 3354 } 3355 3356 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3357 if (Record.size() != 4) 3358 return Error("Invalid record"); 3359 PointerType *Ty = 3360 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3361 Type *OpTy = getTypeByID(Record[1]); 3362 Value *Size = getFnValueByID(Record[2], OpTy); 3363 unsigned AlignRecord = Record[3]; 3364 bool InAlloca = AlignRecord & (1 << 5); 3365 unsigned Align = AlignRecord & ((1 << 5) - 1); 3366 if (!Ty || !Size) 3367 return Error("Invalid record"); 3368 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3369 AI->setUsedWithInAlloca(InAlloca); 3370 I = AI; 3371 InstructionList.push_back(I); 3372 break; 3373 } 3374 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3375 unsigned OpNum = 0; 3376 Value *Op; 3377 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3378 OpNum+2 != Record.size()) 3379 return Error("Invalid record"); 3380 3381 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3382 InstructionList.push_back(I); 3383 break; 3384 } 3385 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3386 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3387 unsigned OpNum = 0; 3388 Value *Op; 3389 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3390 OpNum+4 != Record.size()) 3391 return Error("Invalid record"); 3392 3393 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3394 if (Ordering == NotAtomic || Ordering == Release || 3395 Ordering == AcquireRelease) 3396 return Error("Invalid record"); 3397 if (Ordering != NotAtomic && Record[OpNum] == 0) 3398 return Error("Invalid record"); 3399 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3400 3401 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3402 Ordering, SynchScope); 3403 InstructionList.push_back(I); 3404 break; 3405 } 3406 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3407 unsigned OpNum = 0; 3408 Value *Val, *Ptr; 3409 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3410 popValue(Record, OpNum, NextValueNo, 3411 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3412 OpNum+2 != Record.size()) 3413 return Error("Invalid record"); 3414 3415 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3416 InstructionList.push_back(I); 3417 break; 3418 } 3419 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3420 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3421 unsigned OpNum = 0; 3422 Value *Val, *Ptr; 3423 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3424 popValue(Record, OpNum, NextValueNo, 3425 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3426 OpNum+4 != Record.size()) 3427 return Error("Invalid record"); 3428 3429 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3430 if (Ordering == NotAtomic || Ordering == Acquire || 3431 Ordering == AcquireRelease) 3432 return Error("Invalid record"); 3433 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3434 if (Ordering != NotAtomic && Record[OpNum] == 0) 3435 return Error("Invalid record"); 3436 3437 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3438 Ordering, SynchScope); 3439 InstructionList.push_back(I); 3440 break; 3441 } 3442 case bitc::FUNC_CODE_INST_CMPXCHG: { 3443 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3444 // failureordering?, isweak?] 3445 unsigned OpNum = 0; 3446 Value *Ptr, *Cmp, *New; 3447 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3448 popValue(Record, OpNum, NextValueNo, 3449 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3450 popValue(Record, OpNum, NextValueNo, 3451 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3452 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3453 return Error("Invalid record"); 3454 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3455 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3456 return Error("Invalid record"); 3457 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3458 3459 AtomicOrdering FailureOrdering; 3460 if (Record.size() < 7) 3461 FailureOrdering = 3462 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3463 else 3464 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3465 3466 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3467 SynchScope); 3468 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3469 3470 if (Record.size() < 8) { 3471 // Before weak cmpxchgs existed, the instruction simply returned the 3472 // value loaded from memory, so bitcode files from that era will be 3473 // expecting the first component of a modern cmpxchg. 3474 CurBB->getInstList().push_back(I); 3475 I = ExtractValueInst::Create(I, 0); 3476 } else { 3477 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3478 } 3479 3480 InstructionList.push_back(I); 3481 break; 3482 } 3483 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3484 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3485 unsigned OpNum = 0; 3486 Value *Ptr, *Val; 3487 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3488 popValue(Record, OpNum, NextValueNo, 3489 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3490 OpNum+4 != Record.size()) 3491 return Error("Invalid record"); 3492 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3493 if (Operation < AtomicRMWInst::FIRST_BINOP || 3494 Operation > AtomicRMWInst::LAST_BINOP) 3495 return Error("Invalid record"); 3496 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3497 if (Ordering == NotAtomic || Ordering == Unordered) 3498 return Error("Invalid record"); 3499 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3500 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3501 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3502 InstructionList.push_back(I); 3503 break; 3504 } 3505 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3506 if (2 != Record.size()) 3507 return Error("Invalid record"); 3508 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3509 if (Ordering == NotAtomic || Ordering == Unordered || 3510 Ordering == Monotonic) 3511 return Error("Invalid record"); 3512 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3513 I = new FenceInst(Context, Ordering, SynchScope); 3514 InstructionList.push_back(I); 3515 break; 3516 } 3517 case bitc::FUNC_CODE_INST_CALL: { 3518 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3519 if (Record.size() < 3) 3520 return Error("Invalid record"); 3521 3522 AttributeSet PAL = getAttributes(Record[0]); 3523 unsigned CCInfo = Record[1]; 3524 3525 unsigned OpNum = 2; 3526 Value *Callee; 3527 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3528 return Error("Invalid record"); 3529 3530 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3531 FunctionType *FTy = nullptr; 3532 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3533 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3534 return Error("Invalid record"); 3535 3536 SmallVector<Value*, 16> Args; 3537 // Read the fixed params. 3538 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3539 if (FTy->getParamType(i)->isLabelTy()) 3540 Args.push_back(getBasicBlock(Record[OpNum])); 3541 else 3542 Args.push_back(getValue(Record, OpNum, NextValueNo, 3543 FTy->getParamType(i))); 3544 if (!Args.back()) 3545 return Error("Invalid record"); 3546 } 3547 3548 // Read type/value pairs for varargs params. 3549 if (!FTy->isVarArg()) { 3550 if (OpNum != Record.size()) 3551 return Error("Invalid record"); 3552 } else { 3553 while (OpNum != Record.size()) { 3554 Value *Op; 3555 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3556 return Error("Invalid record"); 3557 Args.push_back(Op); 3558 } 3559 } 3560 3561 I = CallInst::Create(Callee, Args); 3562 InstructionList.push_back(I); 3563 cast<CallInst>(I)->setCallingConv( 3564 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3565 CallInst::TailCallKind TCK = CallInst::TCK_None; 3566 if (CCInfo & 1) 3567 TCK = CallInst::TCK_Tail; 3568 if (CCInfo & (1 << 14)) 3569 TCK = CallInst::TCK_MustTail; 3570 cast<CallInst>(I)->setTailCallKind(TCK); 3571 cast<CallInst>(I)->setAttributes(PAL); 3572 break; 3573 } 3574 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3575 if (Record.size() < 3) 3576 return Error("Invalid record"); 3577 Type *OpTy = getTypeByID(Record[0]); 3578 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3579 Type *ResTy = getTypeByID(Record[2]); 3580 if (!OpTy || !Op || !ResTy) 3581 return Error("Invalid record"); 3582 I = new VAArgInst(Op, ResTy); 3583 InstructionList.push_back(I); 3584 break; 3585 } 3586 } 3587 3588 // Add instruction to end of current BB. If there is no current BB, reject 3589 // this file. 3590 if (!CurBB) { 3591 delete I; 3592 return Error("Invalid instruction with no BB"); 3593 } 3594 CurBB->getInstList().push_back(I); 3595 3596 // If this was a terminator instruction, move to the next block. 3597 if (isa<TerminatorInst>(I)) { 3598 ++CurBBNo; 3599 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3600 } 3601 3602 // Non-void values get registered in the value table for future use. 3603 if (I && !I->getType()->isVoidTy()) 3604 ValueList.AssignValue(I, NextValueNo++); 3605 } 3606 3607 OutOfRecordLoop: 3608 3609 // Check the function list for unresolved values. 3610 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3611 if (!A->getParent()) { 3612 // We found at least one unresolved value. Nuke them all to avoid leaks. 3613 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3614 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3615 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3616 delete A; 3617 } 3618 } 3619 return Error("Never resolved value found in function"); 3620 } 3621 } 3622 3623 // FIXME: Check for unresolved forward-declared metadata references 3624 // and clean up leaks. 3625 3626 // Trim the value list down to the size it was before we parsed this function. 3627 ValueList.shrinkTo(ModuleValueListSize); 3628 MDValueList.shrinkTo(ModuleMDValueListSize); 3629 std::vector<BasicBlock*>().swap(FunctionBBs); 3630 return std::error_code(); 3631 } 3632 3633 /// Find the function body in the bitcode stream 3634 std::error_code BitcodeReader::FindFunctionInStream( 3635 Function *F, 3636 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3637 while (DeferredFunctionInfoIterator->second == 0) { 3638 if (Stream.AtEndOfStream()) 3639 return Error("Could not find function in stream"); 3640 // ParseModule will parse the next body in the stream and set its 3641 // position in the DeferredFunctionInfo map. 3642 if (std::error_code EC = ParseModule(true)) 3643 return EC; 3644 } 3645 return std::error_code(); 3646 } 3647 3648 //===----------------------------------------------------------------------===// 3649 // GVMaterializer implementation 3650 //===----------------------------------------------------------------------===// 3651 3652 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3653 3654 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3655 Function *F = dyn_cast<Function>(GV); 3656 // If it's not a function or is already material, ignore the request. 3657 if (!F || !F->isMaterializable()) 3658 return std::error_code(); 3659 3660 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3661 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3662 // If its position is recorded as 0, its body is somewhere in the stream 3663 // but we haven't seen it yet. 3664 if (DFII->second == 0 && LazyStreamer) 3665 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3666 return EC; 3667 3668 // Move the bit stream to the saved position of the deferred function body. 3669 Stream.JumpToBit(DFII->second); 3670 3671 if (std::error_code EC = ParseFunctionBody(F)) 3672 return EC; 3673 F->setIsMaterializable(false); 3674 3675 // Upgrade any old intrinsic calls in the function. 3676 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3677 E = UpgradedIntrinsics.end(); I != E; ++I) { 3678 if (I->first != I->second) { 3679 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3680 UI != UE;) { 3681 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3682 UpgradeIntrinsicCall(CI, I->second); 3683 } 3684 } 3685 } 3686 3687 // Bring in any functions that this function forward-referenced via 3688 // blockaddresses. 3689 return materializeForwardReferencedFunctions(); 3690 } 3691 3692 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3693 const Function *F = dyn_cast<Function>(GV); 3694 if (!F || F->isDeclaration()) 3695 return false; 3696 3697 // Dematerializing F would leave dangling references that wouldn't be 3698 // reconnected on re-materialization. 3699 if (BlockAddressesTaken.count(F)) 3700 return false; 3701 3702 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3703 } 3704 3705 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3706 Function *F = dyn_cast<Function>(GV); 3707 // If this function isn't dematerializable, this is a noop. 3708 if (!F || !isDematerializable(F)) 3709 return; 3710 3711 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3712 3713 // Just forget the function body, we can remat it later. 3714 F->dropAllReferences(); 3715 F->setIsMaterializable(true); 3716 } 3717 3718 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3719 assert(M == TheModule && 3720 "Can only Materialize the Module this BitcodeReader is attached to."); 3721 3722 // Promise to materialize all forward references. 3723 WillMaterializeAllForwardRefs = true; 3724 3725 // Iterate over the module, deserializing any functions that are still on 3726 // disk. 3727 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3728 F != E; ++F) { 3729 if (std::error_code EC = materialize(F)) 3730 return EC; 3731 } 3732 // At this point, if there are any function bodies, the current bit is 3733 // pointing to the END_BLOCK record after them. Now make sure the rest 3734 // of the bits in the module have been read. 3735 if (NextUnreadBit) 3736 ParseModule(true); 3737 3738 // Check that all block address forward references got resolved (as we 3739 // promised above). 3740 if (!BasicBlockFwdRefs.empty()) 3741 return Error("Never resolved function from blockaddress"); 3742 3743 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3744 // delete the old functions to clean up. We can't do this unless the entire 3745 // module is materialized because there could always be another function body 3746 // with calls to the old function. 3747 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3748 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3749 if (I->first != I->second) { 3750 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3751 UI != UE;) { 3752 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3753 UpgradeIntrinsicCall(CI, I->second); 3754 } 3755 if (!I->first->use_empty()) 3756 I->first->replaceAllUsesWith(I->second); 3757 I->first->eraseFromParent(); 3758 } 3759 } 3760 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3761 3762 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3763 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3764 3765 UpgradeDebugInfo(*M); 3766 return std::error_code(); 3767 } 3768 3769 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3770 return IdentifiedStructTypes; 3771 } 3772 3773 std::error_code BitcodeReader::InitStream() { 3774 if (LazyStreamer) 3775 return InitLazyStream(); 3776 return InitStreamFromBuffer(); 3777 } 3778 3779 std::error_code BitcodeReader::InitStreamFromBuffer() { 3780 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3781 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3782 3783 if (Buffer->getBufferSize() & 3) 3784 return Error("Invalid bitcode signature"); 3785 3786 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3787 // The magic number is 0x0B17C0DE stored in little endian. 3788 if (isBitcodeWrapper(BufPtr, BufEnd)) 3789 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3790 return Error("Invalid bitcode wrapper header"); 3791 3792 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3793 Stream.init(&*StreamFile); 3794 3795 return std::error_code(); 3796 } 3797 3798 std::error_code BitcodeReader::InitLazyStream() { 3799 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3800 // see it. 3801 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3802 StreamingMemoryObject &Bytes = *OwnedBytes; 3803 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3804 Stream.init(&*StreamFile); 3805 3806 unsigned char buf[16]; 3807 if (Bytes.readBytes(buf, 16, 0) != 16) 3808 return Error("Invalid bitcode signature"); 3809 3810 if (!isBitcode(buf, buf + 16)) 3811 return Error("Invalid bitcode signature"); 3812 3813 if (isBitcodeWrapper(buf, buf + 4)) { 3814 const unsigned char *bitcodeStart = buf; 3815 const unsigned char *bitcodeEnd = buf + 16; 3816 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3817 Bytes.dropLeadingBytes(bitcodeStart - buf); 3818 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3819 } 3820 return std::error_code(); 3821 } 3822 3823 namespace { 3824 class BitcodeErrorCategoryType : public std::error_category { 3825 const char *name() const LLVM_NOEXCEPT override { 3826 return "llvm.bitcode"; 3827 } 3828 std::string message(int IE) const override { 3829 BitcodeError E = static_cast<BitcodeError>(IE); 3830 switch (E) { 3831 case BitcodeError::InvalidBitcodeSignature: 3832 return "Invalid bitcode signature"; 3833 case BitcodeError::CorruptedBitcode: 3834 return "Corrupted bitcode"; 3835 } 3836 llvm_unreachable("Unknown error type!"); 3837 } 3838 }; 3839 } 3840 3841 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3842 3843 const std::error_category &llvm::BitcodeErrorCategory() { 3844 return *ErrorCategory; 3845 } 3846 3847 //===----------------------------------------------------------------------===// 3848 // External interface 3849 //===----------------------------------------------------------------------===// 3850 3851 /// \brief Get a lazy one-at-time loading module from bitcode. 3852 /// 3853 /// This isn't always used in a lazy context. In particular, it's also used by 3854 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3855 /// in forward-referenced functions from block address references. 3856 /// 3857 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3858 /// materialize everything -- in particular, if this isn't truly lazy. 3859 static ErrorOr<Module *> 3860 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3861 LLVMContext &Context, bool WillMaterializeAll, 3862 DiagnosticHandlerFunction DiagnosticHandler) { 3863 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3864 BitcodeReader *R = 3865 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3866 M->setMaterializer(R); 3867 3868 auto cleanupOnError = [&](std::error_code EC) { 3869 R->releaseBuffer(); // Never take ownership on error. 3870 delete M; // Also deletes R. 3871 return EC; 3872 }; 3873 3874 if (std::error_code EC = R->ParseBitcodeInto(M)) 3875 return cleanupOnError(EC); 3876 3877 if (!WillMaterializeAll) 3878 // Resolve forward references from blockaddresses. 3879 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3880 return cleanupOnError(EC); 3881 3882 Buffer.release(); // The BitcodeReader owns it now. 3883 return M; 3884 } 3885 3886 ErrorOr<Module *> 3887 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3888 LLVMContext &Context, 3889 DiagnosticHandlerFunction DiagnosticHandler) { 3890 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3891 DiagnosticHandler); 3892 } 3893 3894 ErrorOr<std::unique_ptr<Module>> 3895 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3896 LLVMContext &Context, 3897 DiagnosticHandlerFunction DiagnosticHandler) { 3898 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3899 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3900 M->setMaterializer(R); 3901 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3902 return EC; 3903 return std::move(M); 3904 } 3905 3906 ErrorOr<Module *> 3907 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3908 DiagnosticHandlerFunction DiagnosticHandler) { 3909 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3910 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3911 std::move(Buf), Context, true, DiagnosticHandler); 3912 if (!ModuleOrErr) 3913 return ModuleOrErr; 3914 Module *M = ModuleOrErr.get(); 3915 // Read in the entire module, and destroy the BitcodeReader. 3916 if (std::error_code EC = M->materializeAllPermanently()) { 3917 delete M; 3918 return EC; 3919 } 3920 3921 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3922 // written. We must defer until the Module has been fully materialized. 3923 3924 return M; 3925 } 3926 3927 std::string 3928 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3929 DiagnosticHandlerFunction DiagnosticHandler) { 3930 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3931 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3932 DiagnosticHandler); 3933 ErrorOr<std::string> Triple = R->parseTriple(); 3934 if (Triple.getError()) 3935 return ""; 3936 return Triple.get(); 3937 } 3938