xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision ba3380026aff2a1738c19c739fe04e1caf5964bf)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Error E = Stream.advance().moveInto(Entry))
184       return std::move(E);
185 
186     switch (Entry.Kind) {
187     default:
188     case BitstreamEntry::Error:
189       return error("Malformed block");
190     case BitstreamEntry::EndBlock:
191       return ProducerIdentification;
192     case BitstreamEntry::Record:
193       // The interesting case.
194       break;
195     }
196 
197     // Read a record.
198     Record.clear();
199     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
200     if (!MaybeBitCode)
201       return MaybeBitCode.takeError();
202     switch (MaybeBitCode.get()) {
203     default: // Default behavior: reject
204       return error("Invalid value");
205     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
206       convertToString(Record, 0, ProducerIdentification);
207       break;
208     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
209       unsigned epoch = (unsigned)Record[0];
210       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
211         return error(
212           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
213           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
214       }
215     }
216     }
217   }
218 }
219 
220 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
221   // We expect a number of well-defined blocks, though we don't necessarily
222   // need to understand them all.
223   while (true) {
224     if (Stream.AtEndOfStream())
225       return "";
226 
227     BitstreamEntry Entry;
228     if (Error E = Stream.advance().moveInto(Entry))
229       return std::move(E);
230 
231     switch (Entry.Kind) {
232     case BitstreamEntry::EndBlock:
233     case BitstreamEntry::Error:
234       return error("Malformed block");
235 
236     case BitstreamEntry::SubBlock:
237       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
238         return readIdentificationBlock(Stream);
239 
240       // Ignore other sub-blocks.
241       if (Error Err = Stream.SkipBlock())
242         return std::move(Err);
243       continue;
244     case BitstreamEntry::Record:
245       if (Error E = Stream.skipRecord(Entry.ID).takeError())
246         return std::move(E);
247       continue;
248     }
249   }
250 }
251 
252 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
253   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
254     return std::move(Err);
255 
256   SmallVector<uint64_t, 64> Record;
257   // Read all the records for this module.
258 
259   while (true) {
260     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
261     if (!MaybeEntry)
262       return MaybeEntry.takeError();
263     BitstreamEntry Entry = MaybeEntry.get();
264 
265     switch (Entry.Kind) {
266     case BitstreamEntry::SubBlock: // Handled for us already.
267     case BitstreamEntry::Error:
268       return error("Malformed block");
269     case BitstreamEntry::EndBlock:
270       return false;
271     case BitstreamEntry::Record:
272       // The interesting case.
273       break;
274     }
275 
276     // Read a record.
277     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
278     if (!MaybeRecord)
279       return MaybeRecord.takeError();
280     switch (MaybeRecord.get()) {
281     default:
282       break; // Default behavior, ignore unknown content.
283     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
284       std::string S;
285       if (convertToString(Record, 0, S))
286         return error("Invalid section name record");
287       // Check for the i386 and other (x86_64, ARM) conventions
288       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
289           S.find("__OBJC,__category") != std::string::npos)
290         return true;
291       break;
292     }
293     }
294     Record.clear();
295   }
296   llvm_unreachable("Exit infinite loop");
297 }
298 
299 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
300   // We expect a number of well-defined blocks, though we don't necessarily
301   // need to understand them all.
302   while (true) {
303     BitstreamEntry Entry;
304     if (Error E = Stream.advance().moveInto(Entry))
305       return std::move(E);
306 
307     switch (Entry.Kind) {
308     case BitstreamEntry::Error:
309       return error("Malformed block");
310     case BitstreamEntry::EndBlock:
311       return false;
312 
313     case BitstreamEntry::SubBlock:
314       if (Entry.ID == bitc::MODULE_BLOCK_ID)
315         return hasObjCCategoryInModule(Stream);
316 
317       // Ignore other sub-blocks.
318       if (Error Err = Stream.SkipBlock())
319         return std::move(Err);
320       continue;
321 
322     case BitstreamEntry::Record:
323       if (Error E = Stream.skipRecord(Entry.ID).takeError())
324         return std::move(E);
325       continue;
326     }
327   }
328 }
329 
330 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
331   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
332     return std::move(Err);
333 
334   SmallVector<uint64_t, 64> Record;
335 
336   std::string Triple;
337 
338   // Read all the records for this module.
339   while (true) {
340     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
341     if (!MaybeEntry)
342       return MaybeEntry.takeError();
343     BitstreamEntry Entry = MaybeEntry.get();
344 
345     switch (Entry.Kind) {
346     case BitstreamEntry::SubBlock: // Handled for us already.
347     case BitstreamEntry::Error:
348       return error("Malformed block");
349     case BitstreamEntry::EndBlock:
350       return Triple;
351     case BitstreamEntry::Record:
352       // The interesting case.
353       break;
354     }
355 
356     // Read a record.
357     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
358     if (!MaybeRecord)
359       return MaybeRecord.takeError();
360     switch (MaybeRecord.get()) {
361     default: break;  // Default behavior, ignore unknown content.
362     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
363       std::string S;
364       if (convertToString(Record, 0, S))
365         return error("Invalid triple record");
366       Triple = S;
367       break;
368     }
369     }
370     Record.clear();
371   }
372   llvm_unreachable("Exit infinite loop");
373 }
374 
375 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
376   // We expect a number of well-defined blocks, though we don't necessarily
377   // need to understand them all.
378   while (true) {
379     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
380     if (!MaybeEntry)
381       return MaybeEntry.takeError();
382     BitstreamEntry Entry = MaybeEntry.get();
383 
384     switch (Entry.Kind) {
385     case BitstreamEntry::Error:
386       return error("Malformed block");
387     case BitstreamEntry::EndBlock:
388       return "";
389 
390     case BitstreamEntry::SubBlock:
391       if (Entry.ID == bitc::MODULE_BLOCK_ID)
392         return readModuleTriple(Stream);
393 
394       // Ignore other sub-blocks.
395       if (Error Err = Stream.SkipBlock())
396         return std::move(Err);
397       continue;
398 
399     case BitstreamEntry::Record:
400       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
401         continue;
402       else
403         return Skipped.takeError();
404     }
405   }
406 }
407 
408 namespace {
409 
410 class BitcodeReaderBase {
411 protected:
412   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
413       : Stream(std::move(Stream)), Strtab(Strtab) {
414     this->Stream.setBlockInfo(&BlockInfo);
415   }
416 
417   BitstreamBlockInfo BlockInfo;
418   BitstreamCursor Stream;
419   StringRef Strtab;
420 
421   /// In version 2 of the bitcode we store names of global values and comdats in
422   /// a string table rather than in the VST.
423   bool UseStrtab = false;
424 
425   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
426 
427   /// If this module uses a string table, pop the reference to the string table
428   /// and return the referenced string and the rest of the record. Otherwise
429   /// just return the record itself.
430   std::pair<StringRef, ArrayRef<uint64_t>>
431   readNameFromStrtab(ArrayRef<uint64_t> Record);
432 
433   Error readBlockInfo();
434 
435   // Contains an arbitrary and optional string identifying the bitcode producer
436   std::string ProducerIdentification;
437 
438   Error error(const Twine &Message);
439 };
440 
441 } // end anonymous namespace
442 
443 Error BitcodeReaderBase::error(const Twine &Message) {
444   std::string FullMsg = Message.str();
445   if (!ProducerIdentification.empty())
446     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
447                LLVM_VERSION_STRING "')";
448   return ::error(FullMsg);
449 }
450 
451 Expected<unsigned>
452 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
453   if (Record.empty())
454     return error("Invalid version record");
455   unsigned ModuleVersion = Record[0];
456   if (ModuleVersion > 2)
457     return error("Invalid value");
458   UseStrtab = ModuleVersion >= 2;
459   return ModuleVersion;
460 }
461 
462 std::pair<StringRef, ArrayRef<uint64_t>>
463 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
464   if (!UseStrtab)
465     return {"", Record};
466   // Invalid reference. Let the caller complain about the record being empty.
467   if (Record[0] + Record[1] > Strtab.size())
468     return {"", {}};
469   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
470 }
471 
472 namespace {
473 
474 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
475   LLVMContext &Context;
476   Module *TheModule = nullptr;
477   // Next offset to start scanning for lazy parsing of function bodies.
478   uint64_t NextUnreadBit = 0;
479   // Last function offset found in the VST.
480   uint64_t LastFunctionBlockBit = 0;
481   bool SeenValueSymbolTable = false;
482   uint64_t VSTOffset = 0;
483 
484   std::vector<std::string> SectionTable;
485   std::vector<std::string> GCTable;
486 
487   std::vector<Type *> TypeList;
488   /// Track type IDs of contained types. Order is the same as the contained
489   /// types of a Type*. This is used during upgrades of typed pointer IR in
490   /// opaque pointer mode.
491   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
492   /// In some cases, we need to create a type ID for a type that was not
493   /// explicitly encoded in the bitcode, or we don't know about at the current
494   /// point. For example, a global may explicitly encode the value type ID, but
495   /// not have a type ID for the pointer to value type, for which we create a
496   /// virtual type ID instead. This map stores the new type ID that was created
497   /// for the given pair of Type and contained type ID.
498   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
499   DenseMap<Function *, unsigned> FunctionTypeIDs;
500   BitcodeReaderValueList ValueList;
501   Optional<MetadataLoader> MDLoader;
502   std::vector<Comdat *> ComdatList;
503   DenseSet<GlobalObject *> ImplicitComdatObjects;
504   SmallVector<Instruction *, 64> InstructionList;
505 
506   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
507   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
508 
509   struct FunctionOperandInfo {
510     Function *F;
511     unsigned PersonalityFn;
512     unsigned Prefix;
513     unsigned Prologue;
514   };
515   std::vector<FunctionOperandInfo> FunctionOperands;
516 
517   /// The set of attributes by index.  Index zero in the file is for null, and
518   /// is thus not represented here.  As such all indices are off by one.
519   std::vector<AttributeList> MAttributes;
520 
521   /// The set of attribute groups.
522   std::map<unsigned, AttributeList> MAttributeGroups;
523 
524   /// While parsing a function body, this is a list of the basic blocks for the
525   /// function.
526   std::vector<BasicBlock*> FunctionBBs;
527 
528   // When reading the module header, this list is populated with functions that
529   // have bodies later in the file.
530   std::vector<Function*> FunctionsWithBodies;
531 
532   // When intrinsic functions are encountered which require upgrading they are
533   // stored here with their replacement function.
534   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
535   UpdatedIntrinsicMap UpgradedIntrinsics;
536   // Intrinsics which were remangled because of types rename
537   UpdatedIntrinsicMap RemangledIntrinsics;
538 
539   // Several operations happen after the module header has been read, but
540   // before function bodies are processed. This keeps track of whether
541   // we've done this yet.
542   bool SeenFirstFunctionBody = false;
543 
544   /// When function bodies are initially scanned, this map contains info about
545   /// where to find deferred function body in the stream.
546   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
547 
548   /// When Metadata block is initially scanned when parsing the module, we may
549   /// choose to defer parsing of the metadata. This vector contains info about
550   /// which Metadata blocks are deferred.
551   std::vector<uint64_t> DeferredMetadataInfo;
552 
553   /// These are basic blocks forward-referenced by block addresses.  They are
554   /// inserted lazily into functions when they're loaded.  The basic block ID is
555   /// its index into the vector.
556   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
557   std::deque<Function *> BasicBlockFwdRefQueue;
558 
559   /// Indicates that we are using a new encoding for instruction operands where
560   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
561   /// instruction number, for a more compact encoding.  Some instruction
562   /// operands are not relative to the instruction ID: basic block numbers, and
563   /// types. Once the old style function blocks have been phased out, we would
564   /// not need this flag.
565   bool UseRelativeIDs = false;
566 
567   /// True if all functions will be materialized, negating the need to process
568   /// (e.g.) blockaddress forward references.
569   bool WillMaterializeAllForwardRefs = false;
570 
571   bool StripDebugInfo = false;
572   TBAAVerifier TBAAVerifyHelper;
573 
574   std::vector<std::string> BundleTags;
575   SmallVector<SyncScope::ID, 8> SSIDs;
576 
577 public:
578   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
579                 StringRef ProducerIdentification, LLVMContext &Context);
580 
581   Error materializeForwardReferencedFunctions();
582 
583   Error materialize(GlobalValue *GV) override;
584   Error materializeModule() override;
585   std::vector<StructType *> getIdentifiedStructTypes() const override;
586 
587   /// Main interface to parsing a bitcode buffer.
588   /// \returns true if an error occurred.
589   Error parseBitcodeInto(
590       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
591       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
592 
593   static uint64_t decodeSignRotatedValue(uint64_t V);
594 
595   /// Materialize any deferred Metadata block.
596   Error materializeMetadata() override;
597 
598   void setStripDebugInfo() override;
599 
600 private:
601   std::vector<StructType *> IdentifiedStructTypes;
602   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
603   StructType *createIdentifiedStructType(LLVMContext &Context);
604 
605   static constexpr unsigned InvalidTypeID = ~0u;
606 
607   Type *getTypeByID(unsigned ID);
608   Type *getPtrElementTypeByID(unsigned ID);
609   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
610   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
611 
612   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) {
613     if (Ty && Ty->isMetadataTy())
614       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
615     return ValueList.getValueFwdRef(ID, Ty, TyID);
616   }
617 
618   Metadata *getFnMetadataByID(unsigned ID) {
619     return MDLoader->getMetadataFwdRefOrLoad(ID);
620   }
621 
622   BasicBlock *getBasicBlock(unsigned ID) const {
623     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
624     return FunctionBBs[ID];
625   }
626 
627   AttributeList getAttributes(unsigned i) const {
628     if (i-1 < MAttributes.size())
629       return MAttributes[i-1];
630     return AttributeList();
631   }
632 
633   /// Read a value/type pair out of the specified record from slot 'Slot'.
634   /// Increment Slot past the number of slots used in the record. Return true on
635   /// failure.
636   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
637                         unsigned InstNum, Value *&ResVal, unsigned &TypeID) {
638     if (Slot == Record.size()) return true;
639     unsigned ValNo = (unsigned)Record[Slot++];
640     // Adjust the ValNo, if it was encoded relative to the InstNum.
641     if (UseRelativeIDs)
642       ValNo = InstNum - ValNo;
643     if (ValNo < InstNum) {
644       // If this is not a forward reference, just return the value we already
645       // have.
646       TypeID = ValueList.getTypeID(ValNo);
647       ResVal = getFnValueByID(ValNo, nullptr, TypeID);
648       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
649              "Incorrect type ID stored for value");
650       return ResVal == nullptr;
651     }
652     if (Slot == Record.size())
653       return true;
654 
655     TypeID = (unsigned)Record[Slot++];
656     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID);
657     return ResVal == nullptr;
658   }
659 
660   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
661   /// past the number of slots used by the value in the record. Return true if
662   /// there is an error.
663   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
664                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) {
665     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal))
666       return true;
667     // All values currently take a single record slot.
668     ++Slot;
669     return false;
670   }
671 
672   /// Like popValue, but does not increment the Slot number.
673   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
674                 unsigned InstNum, Type *Ty, unsigned TyID,  Value *&ResVal) {
675     ResVal = getValue(Record, Slot, InstNum, Ty, TyID);
676     return ResVal == nullptr;
677   }
678 
679   /// Version of getValue that returns ResVal directly, or 0 if there is an
680   /// error.
681   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
682                   unsigned InstNum, Type *Ty, unsigned TyID) {
683     if (Slot == Record.size()) return nullptr;
684     unsigned ValNo = (unsigned)Record[Slot];
685     // Adjust the ValNo, if it was encoded relative to the InstNum.
686     if (UseRelativeIDs)
687       ValNo = InstNum - ValNo;
688     return getFnValueByID(ValNo, Ty, TyID);
689   }
690 
691   /// Like getValue, but decodes signed VBRs.
692   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
693                         unsigned InstNum, Type *Ty, unsigned TyID) {
694     if (Slot == Record.size()) return nullptr;
695     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
696     // Adjust the ValNo, if it was encoded relative to the InstNum.
697     if (UseRelativeIDs)
698       ValNo = InstNum - ValNo;
699     return getFnValueByID(ValNo, Ty, TyID);
700   }
701 
702   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
703   /// corresponding argument's pointee type. Also upgrades intrinsics that now
704   /// require an elementtype attribute.
705   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
706 
707   /// Converts alignment exponent (i.e. power of two (or zero)) to the
708   /// corresponding alignment to use. If alignment is too large, returns
709   /// a corresponding error code.
710   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
711   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
712   Error parseModule(
713       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
714       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
715 
716   Error parseComdatRecord(ArrayRef<uint64_t> Record);
717   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
718   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
719   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
720                                         ArrayRef<uint64_t> Record);
721 
722   Error parseAttributeBlock();
723   Error parseAttributeGroupBlock();
724   Error parseTypeTable();
725   Error parseTypeTableBody();
726   Error parseOperandBundleTags();
727   Error parseSyncScopeNames();
728 
729   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
730                                 unsigned NameIndex, Triple &TT);
731   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
732                                ArrayRef<uint64_t> Record);
733   Error parseValueSymbolTable(uint64_t Offset = 0);
734   Error parseGlobalValueSymbolTable();
735   Error parseConstants();
736   Error rememberAndSkipFunctionBodies();
737   Error rememberAndSkipFunctionBody();
738   /// Save the positions of the Metadata blocks and skip parsing the blocks.
739   Error rememberAndSkipMetadata();
740   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
741   Error parseFunctionBody(Function *F);
742   Error globalCleanup();
743   Error resolveGlobalAndIndirectSymbolInits();
744   Error parseUseLists();
745   Error findFunctionInStream(
746       Function *F,
747       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
748 
749   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
750 };
751 
752 /// Class to manage reading and parsing function summary index bitcode
753 /// files/sections.
754 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
755   /// The module index built during parsing.
756   ModuleSummaryIndex &TheIndex;
757 
758   /// Indicates whether we have encountered a global value summary section
759   /// yet during parsing.
760   bool SeenGlobalValSummary = false;
761 
762   /// Indicates whether we have already parsed the VST, used for error checking.
763   bool SeenValueSymbolTable = false;
764 
765   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
766   /// Used to enable on-demand parsing of the VST.
767   uint64_t VSTOffset = 0;
768 
769   // Map to save ValueId to ValueInfo association that was recorded in the
770   // ValueSymbolTable. It is used after the VST is parsed to convert
771   // call graph edges read from the function summary from referencing
772   // callees by their ValueId to using the ValueInfo instead, which is how
773   // they are recorded in the summary index being built.
774   // We save a GUID which refers to the same global as the ValueInfo, but
775   // ignoring the linkage, i.e. for values other than local linkage they are
776   // identical.
777   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
778       ValueIdToValueInfoMap;
779 
780   /// Map populated during module path string table parsing, from the
781   /// module ID to a string reference owned by the index's module
782   /// path string table, used to correlate with combined index
783   /// summary records.
784   DenseMap<uint64_t, StringRef> ModuleIdMap;
785 
786   /// Original source file name recorded in a bitcode record.
787   std::string SourceFileName;
788 
789   /// The string identifier given to this module by the client, normally the
790   /// path to the bitcode file.
791   StringRef ModulePath;
792 
793   /// For per-module summary indexes, the unique numerical identifier given to
794   /// this module by the client.
795   unsigned ModuleId;
796 
797 public:
798   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
799                                   ModuleSummaryIndex &TheIndex,
800                                   StringRef ModulePath, unsigned ModuleId);
801 
802   Error parseModule();
803 
804 private:
805   void setValueGUID(uint64_t ValueID, StringRef ValueName,
806                     GlobalValue::LinkageTypes Linkage,
807                     StringRef SourceFileName);
808   Error parseValueSymbolTable(
809       uint64_t Offset,
810       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
811   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
812   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
813                                                     bool IsOldProfileFormat,
814                                                     bool HasProfile,
815                                                     bool HasRelBF);
816   Error parseEntireSummary(unsigned ID);
817   Error parseModuleStringTable();
818   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
819   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
820                                        TypeIdCompatibleVtableInfo &TypeId);
821   std::vector<FunctionSummary::ParamAccess>
822   parseParamAccesses(ArrayRef<uint64_t> Record);
823 
824   std::pair<ValueInfo, GlobalValue::GUID>
825   getValueInfoFromValueId(unsigned ValueId);
826 
827   void addThisModule();
828   ModuleSummaryIndex::ModuleInfo *getThisModule();
829 };
830 
831 } // end anonymous namespace
832 
833 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
834                                                     Error Err) {
835   if (Err) {
836     std::error_code EC;
837     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
838       EC = EIB.convertToErrorCode();
839       Ctx.emitError(EIB.message());
840     });
841     return EC;
842   }
843   return std::error_code();
844 }
845 
846 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
847                              StringRef ProducerIdentification,
848                              LLVMContext &Context)
849     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
850       ValueList(Context, this->Stream.SizeInBytes()) {
851   this->ProducerIdentification = std::string(ProducerIdentification);
852 }
853 
854 Error BitcodeReader::materializeForwardReferencedFunctions() {
855   if (WillMaterializeAllForwardRefs)
856     return Error::success();
857 
858   // Prevent recursion.
859   WillMaterializeAllForwardRefs = true;
860 
861   while (!BasicBlockFwdRefQueue.empty()) {
862     Function *F = BasicBlockFwdRefQueue.front();
863     BasicBlockFwdRefQueue.pop_front();
864     assert(F && "Expected valid function");
865     if (!BasicBlockFwdRefs.count(F))
866       // Already materialized.
867       continue;
868 
869     // Check for a function that isn't materializable to prevent an infinite
870     // loop.  When parsing a blockaddress stored in a global variable, there
871     // isn't a trivial way to check if a function will have a body without a
872     // linear search through FunctionsWithBodies, so just check it here.
873     if (!F->isMaterializable())
874       return error("Never resolved function from blockaddress");
875 
876     // Try to materialize F.
877     if (Error Err = materialize(F))
878       return Err;
879   }
880   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
881 
882   // Reset state.
883   WillMaterializeAllForwardRefs = false;
884   return Error::success();
885 }
886 
887 //===----------------------------------------------------------------------===//
888 //  Helper functions to implement forward reference resolution, etc.
889 //===----------------------------------------------------------------------===//
890 
891 static bool hasImplicitComdat(size_t Val) {
892   switch (Val) {
893   default:
894     return false;
895   case 1:  // Old WeakAnyLinkage
896   case 4:  // Old LinkOnceAnyLinkage
897   case 10: // Old WeakODRLinkage
898   case 11: // Old LinkOnceODRLinkage
899     return true;
900   }
901 }
902 
903 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
904   switch (Val) {
905   default: // Map unknown/new linkages to external
906   case 0:
907     return GlobalValue::ExternalLinkage;
908   case 2:
909     return GlobalValue::AppendingLinkage;
910   case 3:
911     return GlobalValue::InternalLinkage;
912   case 5:
913     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
914   case 6:
915     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
916   case 7:
917     return GlobalValue::ExternalWeakLinkage;
918   case 8:
919     return GlobalValue::CommonLinkage;
920   case 9:
921     return GlobalValue::PrivateLinkage;
922   case 12:
923     return GlobalValue::AvailableExternallyLinkage;
924   case 13:
925     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
926   case 14:
927     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
928   case 15:
929     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
930   case 1: // Old value with implicit comdat.
931   case 16:
932     return GlobalValue::WeakAnyLinkage;
933   case 10: // Old value with implicit comdat.
934   case 17:
935     return GlobalValue::WeakODRLinkage;
936   case 4: // Old value with implicit comdat.
937   case 18:
938     return GlobalValue::LinkOnceAnyLinkage;
939   case 11: // Old value with implicit comdat.
940   case 19:
941     return GlobalValue::LinkOnceODRLinkage;
942   }
943 }
944 
945 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
946   FunctionSummary::FFlags Flags;
947   Flags.ReadNone = RawFlags & 0x1;
948   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
949   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
950   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
951   Flags.NoInline = (RawFlags >> 4) & 0x1;
952   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
953   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
954   Flags.MayThrow = (RawFlags >> 7) & 0x1;
955   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
956   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
957   return Flags;
958 }
959 
960 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
961 //
962 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
963 // visibility: [8, 10).
964 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
965                                                             uint64_t Version) {
966   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
967   // like getDecodedLinkage() above. Any future change to the linkage enum and
968   // to getDecodedLinkage() will need to be taken into account here as above.
969   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
970   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
971   RawFlags = RawFlags >> 4;
972   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
973   // The Live flag wasn't introduced until version 3. For dead stripping
974   // to work correctly on earlier versions, we must conservatively treat all
975   // values as live.
976   bool Live = (RawFlags & 0x2) || Version < 3;
977   bool Local = (RawFlags & 0x4);
978   bool AutoHide = (RawFlags & 0x8);
979 
980   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
981                                      Live, Local, AutoHide);
982 }
983 
984 // Decode the flags for GlobalVariable in the summary
985 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
986   return GlobalVarSummary::GVarFlags(
987       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
988       (RawFlags & 0x4) ? true : false,
989       (GlobalObject::VCallVisibility)(RawFlags >> 3));
990 }
991 
992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
993   switch (Val) {
994   default: // Map unknown visibilities to default.
995   case 0: return GlobalValue::DefaultVisibility;
996   case 1: return GlobalValue::HiddenVisibility;
997   case 2: return GlobalValue::ProtectedVisibility;
998   }
999 }
1000 
1001 static GlobalValue::DLLStorageClassTypes
1002 getDecodedDLLStorageClass(unsigned Val) {
1003   switch (Val) {
1004   default: // Map unknown values to default.
1005   case 0: return GlobalValue::DefaultStorageClass;
1006   case 1: return GlobalValue::DLLImportStorageClass;
1007   case 2: return GlobalValue::DLLExportStorageClass;
1008   }
1009 }
1010 
1011 static bool getDecodedDSOLocal(unsigned Val) {
1012   switch(Val) {
1013   default: // Map unknown values to preemptable.
1014   case 0:  return false;
1015   case 1:  return true;
1016   }
1017 }
1018 
1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1020   switch (Val) {
1021     case 0: return GlobalVariable::NotThreadLocal;
1022     default: // Map unknown non-zero value to general dynamic.
1023     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1024     case 2: return GlobalVariable::LocalDynamicTLSModel;
1025     case 3: return GlobalVariable::InitialExecTLSModel;
1026     case 4: return GlobalVariable::LocalExecTLSModel;
1027   }
1028 }
1029 
1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1031   switch (Val) {
1032     default: // Map unknown to UnnamedAddr::None.
1033     case 0: return GlobalVariable::UnnamedAddr::None;
1034     case 1: return GlobalVariable::UnnamedAddr::Global;
1035     case 2: return GlobalVariable::UnnamedAddr::Local;
1036   }
1037 }
1038 
1039 static int getDecodedCastOpcode(unsigned Val) {
1040   switch (Val) {
1041   default: return -1;
1042   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1043   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1044   case bitc::CAST_SEXT    : return Instruction::SExt;
1045   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1046   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1047   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1048   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1049   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1050   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1051   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1052   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1053   case bitc::CAST_BITCAST : return Instruction::BitCast;
1054   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1055   }
1056 }
1057 
1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1059   bool IsFP = Ty->isFPOrFPVectorTy();
1060   // UnOps are only valid for int/fp or vector of int/fp types
1061   if (!IsFP && !Ty->isIntOrIntVectorTy())
1062     return -1;
1063 
1064   switch (Val) {
1065   default:
1066     return -1;
1067   case bitc::UNOP_FNEG:
1068     return IsFP ? Instruction::FNeg : -1;
1069   }
1070 }
1071 
1072 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1073   bool IsFP = Ty->isFPOrFPVectorTy();
1074   // BinOps are only valid for int/fp or vector of int/fp types
1075   if (!IsFP && !Ty->isIntOrIntVectorTy())
1076     return -1;
1077 
1078   switch (Val) {
1079   default:
1080     return -1;
1081   case bitc::BINOP_ADD:
1082     return IsFP ? Instruction::FAdd : Instruction::Add;
1083   case bitc::BINOP_SUB:
1084     return IsFP ? Instruction::FSub : Instruction::Sub;
1085   case bitc::BINOP_MUL:
1086     return IsFP ? Instruction::FMul : Instruction::Mul;
1087   case bitc::BINOP_UDIV:
1088     return IsFP ? -1 : Instruction::UDiv;
1089   case bitc::BINOP_SDIV:
1090     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1091   case bitc::BINOP_UREM:
1092     return IsFP ? -1 : Instruction::URem;
1093   case bitc::BINOP_SREM:
1094     return IsFP ? Instruction::FRem : Instruction::SRem;
1095   case bitc::BINOP_SHL:
1096     return IsFP ? -1 : Instruction::Shl;
1097   case bitc::BINOP_LSHR:
1098     return IsFP ? -1 : Instruction::LShr;
1099   case bitc::BINOP_ASHR:
1100     return IsFP ? -1 : Instruction::AShr;
1101   case bitc::BINOP_AND:
1102     return IsFP ? -1 : Instruction::And;
1103   case bitc::BINOP_OR:
1104     return IsFP ? -1 : Instruction::Or;
1105   case bitc::BINOP_XOR:
1106     return IsFP ? -1 : Instruction::Xor;
1107   }
1108 }
1109 
1110 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1111   switch (Val) {
1112   default: return AtomicRMWInst::BAD_BINOP;
1113   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1114   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1115   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1116   case bitc::RMW_AND: return AtomicRMWInst::And;
1117   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1118   case bitc::RMW_OR: return AtomicRMWInst::Or;
1119   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1120   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1121   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1122   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1123   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1124   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1125   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1126   }
1127 }
1128 
1129 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1130   switch (Val) {
1131   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1132   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1133   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1134   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1135   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1136   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1137   default: // Map unknown orderings to sequentially-consistent.
1138   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1139   }
1140 }
1141 
1142 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1143   switch (Val) {
1144   default: // Map unknown selection kinds to any.
1145   case bitc::COMDAT_SELECTION_KIND_ANY:
1146     return Comdat::Any;
1147   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1148     return Comdat::ExactMatch;
1149   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1150     return Comdat::Largest;
1151   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1152     return Comdat::NoDeduplicate;
1153   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1154     return Comdat::SameSize;
1155   }
1156 }
1157 
1158 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1159   FastMathFlags FMF;
1160   if (0 != (Val & bitc::UnsafeAlgebra))
1161     FMF.setFast();
1162   if (0 != (Val & bitc::AllowReassoc))
1163     FMF.setAllowReassoc();
1164   if (0 != (Val & bitc::NoNaNs))
1165     FMF.setNoNaNs();
1166   if (0 != (Val & bitc::NoInfs))
1167     FMF.setNoInfs();
1168   if (0 != (Val & bitc::NoSignedZeros))
1169     FMF.setNoSignedZeros();
1170   if (0 != (Val & bitc::AllowReciprocal))
1171     FMF.setAllowReciprocal();
1172   if (0 != (Val & bitc::AllowContract))
1173     FMF.setAllowContract(true);
1174   if (0 != (Val & bitc::ApproxFunc))
1175     FMF.setApproxFunc();
1176   return FMF;
1177 }
1178 
1179 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1180   switch (Val) {
1181   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1182   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1183   }
1184 }
1185 
1186 Type *BitcodeReader::getTypeByID(unsigned ID) {
1187   // The type table size is always specified correctly.
1188   if (ID >= TypeList.size())
1189     return nullptr;
1190 
1191   if (Type *Ty = TypeList[ID])
1192     return Ty;
1193 
1194   // If we have a forward reference, the only possible case is when it is to a
1195   // named struct.  Just create a placeholder for now.
1196   return TypeList[ID] = createIdentifiedStructType(Context);
1197 }
1198 
1199 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1200   auto It = ContainedTypeIDs.find(ID);
1201   if (It == ContainedTypeIDs.end())
1202     return InvalidTypeID;
1203 
1204   if (Idx >= It->second.size())
1205     return InvalidTypeID;
1206 
1207   return It->second[Idx];
1208 }
1209 
1210 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1211   if (ID >= TypeList.size())
1212     return nullptr;
1213 
1214   Type *Ty = TypeList[ID];
1215   if (!Ty->isPointerTy())
1216     return nullptr;
1217 
1218   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1219   if (!ElemTy)
1220     return nullptr;
1221 
1222   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1223          "Incorrect element type");
1224   return ElemTy;
1225 }
1226 
1227 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1228                                          ArrayRef<unsigned> ChildTypeIDs) {
1229   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1230   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1231   auto It = VirtualTypeIDs.find(CacheKey);
1232   if (It != VirtualTypeIDs.end()) {
1233     // The cmpxchg return value is the only place we need more than one
1234     // contained type ID, however the second one will always be the same (i1),
1235     // so we don't need to include it in the cache key. This asserts that the
1236     // contained types are indeed as expected and there are no collisions.
1237     assert((ChildTypeIDs.empty() ||
1238             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1239            "Incorrect cached contained type IDs");
1240     return It->second;
1241   }
1242 
1243 #ifndef NDEBUG
1244   if (!Ty->isOpaquePointerTy()) {
1245     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1246            "Wrong number of contained types");
1247     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1248       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1249              "Incorrect contained type ID");
1250     }
1251   }
1252 #endif
1253 
1254   unsigned TypeID = TypeList.size();
1255   TypeList.push_back(Ty);
1256   if (!ChildTypeIDs.empty())
1257     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1258   VirtualTypeIDs.insert({CacheKey, TypeID});
1259   return TypeID;
1260 }
1261 
1262 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1263                                                       StringRef Name) {
1264   auto *Ret = StructType::create(Context, Name);
1265   IdentifiedStructTypes.push_back(Ret);
1266   return Ret;
1267 }
1268 
1269 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1270   auto *Ret = StructType::create(Context);
1271   IdentifiedStructTypes.push_back(Ret);
1272   return Ret;
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 //  Functions for parsing blocks from the bitcode file
1277 //===----------------------------------------------------------------------===//
1278 
1279 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1280   switch (Val) {
1281   case Attribute::EndAttrKinds:
1282   case Attribute::EmptyKey:
1283   case Attribute::TombstoneKey:
1284     llvm_unreachable("Synthetic enumerators which should never get here");
1285 
1286   case Attribute::None:            return 0;
1287   case Attribute::ZExt:            return 1 << 0;
1288   case Attribute::SExt:            return 1 << 1;
1289   case Attribute::NoReturn:        return 1 << 2;
1290   case Attribute::InReg:           return 1 << 3;
1291   case Attribute::StructRet:       return 1 << 4;
1292   case Attribute::NoUnwind:        return 1 << 5;
1293   case Attribute::NoAlias:         return 1 << 6;
1294   case Attribute::ByVal:           return 1 << 7;
1295   case Attribute::Nest:            return 1 << 8;
1296   case Attribute::ReadNone:        return 1 << 9;
1297   case Attribute::ReadOnly:        return 1 << 10;
1298   case Attribute::NoInline:        return 1 << 11;
1299   case Attribute::AlwaysInline:    return 1 << 12;
1300   case Attribute::OptimizeForSize: return 1 << 13;
1301   case Attribute::StackProtect:    return 1 << 14;
1302   case Attribute::StackProtectReq: return 1 << 15;
1303   case Attribute::Alignment:       return 31 << 16;
1304   case Attribute::NoCapture:       return 1 << 21;
1305   case Attribute::NoRedZone:       return 1 << 22;
1306   case Attribute::NoImplicitFloat: return 1 << 23;
1307   case Attribute::Naked:           return 1 << 24;
1308   case Attribute::InlineHint:      return 1 << 25;
1309   case Attribute::StackAlignment:  return 7 << 26;
1310   case Attribute::ReturnsTwice:    return 1 << 29;
1311   case Attribute::UWTable:         return 1 << 30;
1312   case Attribute::NonLazyBind:     return 1U << 31;
1313   case Attribute::SanitizeAddress: return 1ULL << 32;
1314   case Attribute::MinSize:         return 1ULL << 33;
1315   case Attribute::NoDuplicate:     return 1ULL << 34;
1316   case Attribute::StackProtectStrong: return 1ULL << 35;
1317   case Attribute::SanitizeThread:  return 1ULL << 36;
1318   case Attribute::SanitizeMemory:  return 1ULL << 37;
1319   case Attribute::NoBuiltin:       return 1ULL << 38;
1320   case Attribute::Returned:        return 1ULL << 39;
1321   case Attribute::Cold:            return 1ULL << 40;
1322   case Attribute::Builtin:         return 1ULL << 41;
1323   case Attribute::OptimizeNone:    return 1ULL << 42;
1324   case Attribute::InAlloca:        return 1ULL << 43;
1325   case Attribute::NonNull:         return 1ULL << 44;
1326   case Attribute::JumpTable:       return 1ULL << 45;
1327   case Attribute::Convergent:      return 1ULL << 46;
1328   case Attribute::SafeStack:       return 1ULL << 47;
1329   case Attribute::NoRecurse:       return 1ULL << 48;
1330   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1331   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1332   case Attribute::SwiftSelf:       return 1ULL << 51;
1333   case Attribute::SwiftError:      return 1ULL << 52;
1334   case Attribute::WriteOnly:       return 1ULL << 53;
1335   case Attribute::Speculatable:    return 1ULL << 54;
1336   case Attribute::StrictFP:        return 1ULL << 55;
1337   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1338   case Attribute::NoCfCheck:       return 1ULL << 57;
1339   case Attribute::OptForFuzzing:   return 1ULL << 58;
1340   case Attribute::ShadowCallStack: return 1ULL << 59;
1341   case Attribute::SpeculativeLoadHardening:
1342     return 1ULL << 60;
1343   case Attribute::ImmArg:
1344     return 1ULL << 61;
1345   case Attribute::WillReturn:
1346     return 1ULL << 62;
1347   case Attribute::NoFree:
1348     return 1ULL << 63;
1349   default:
1350     // Other attributes are not supported in the raw format,
1351     // as we ran out of space.
1352     return 0;
1353   }
1354   llvm_unreachable("Unsupported attribute type");
1355 }
1356 
1357 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1358   if (!Val) return;
1359 
1360   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1361        I = Attribute::AttrKind(I + 1)) {
1362     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1363       if (I == Attribute::Alignment)
1364         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1365       else if (I == Attribute::StackAlignment)
1366         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1367       else if (Attribute::isTypeAttrKind(I))
1368         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1369       else
1370         B.addAttribute(I);
1371     }
1372   }
1373 }
1374 
1375 /// This fills an AttrBuilder object with the LLVM attributes that have
1376 /// been decoded from the given integer. This function must stay in sync with
1377 /// 'encodeLLVMAttributesForBitcode'.
1378 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1379                                            uint64_t EncodedAttrs) {
1380   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1381   // the bits above 31 down by 11 bits.
1382   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1383   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1384          "Alignment must be a power of two.");
1385 
1386   if (Alignment)
1387     B.addAlignmentAttr(Alignment);
1388   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1389                           (EncodedAttrs & 0xffff));
1390 }
1391 
1392 Error BitcodeReader::parseAttributeBlock() {
1393   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1394     return Err;
1395 
1396   if (!MAttributes.empty())
1397     return error("Invalid multiple blocks");
1398 
1399   SmallVector<uint64_t, 64> Record;
1400 
1401   SmallVector<AttributeList, 8> Attrs;
1402 
1403   // Read all the records.
1404   while (true) {
1405     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1406     if (!MaybeEntry)
1407       return MaybeEntry.takeError();
1408     BitstreamEntry Entry = MaybeEntry.get();
1409 
1410     switch (Entry.Kind) {
1411     case BitstreamEntry::SubBlock: // Handled for us already.
1412     case BitstreamEntry::Error:
1413       return error("Malformed block");
1414     case BitstreamEntry::EndBlock:
1415       return Error::success();
1416     case BitstreamEntry::Record:
1417       // The interesting case.
1418       break;
1419     }
1420 
1421     // Read a record.
1422     Record.clear();
1423     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1424     if (!MaybeRecord)
1425       return MaybeRecord.takeError();
1426     switch (MaybeRecord.get()) {
1427     default:  // Default behavior: ignore.
1428       break;
1429     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1430       // Deprecated, but still needed to read old bitcode files.
1431       if (Record.size() & 1)
1432         return error("Invalid parameter attribute record");
1433 
1434       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1435         AttrBuilder B(Context);
1436         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1437         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1438       }
1439 
1440       MAttributes.push_back(AttributeList::get(Context, Attrs));
1441       Attrs.clear();
1442       break;
1443     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1444       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1445         Attrs.push_back(MAttributeGroups[Record[i]]);
1446 
1447       MAttributes.push_back(AttributeList::get(Context, Attrs));
1448       Attrs.clear();
1449       break;
1450     }
1451   }
1452 }
1453 
1454 // Returns Attribute::None on unrecognized codes.
1455 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1456   switch (Code) {
1457   default:
1458     return Attribute::None;
1459   case bitc::ATTR_KIND_ALIGNMENT:
1460     return Attribute::Alignment;
1461   case bitc::ATTR_KIND_ALWAYS_INLINE:
1462     return Attribute::AlwaysInline;
1463   case bitc::ATTR_KIND_ARGMEMONLY:
1464     return Attribute::ArgMemOnly;
1465   case bitc::ATTR_KIND_BUILTIN:
1466     return Attribute::Builtin;
1467   case bitc::ATTR_KIND_BY_VAL:
1468     return Attribute::ByVal;
1469   case bitc::ATTR_KIND_IN_ALLOCA:
1470     return Attribute::InAlloca;
1471   case bitc::ATTR_KIND_COLD:
1472     return Attribute::Cold;
1473   case bitc::ATTR_KIND_CONVERGENT:
1474     return Attribute::Convergent;
1475   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1476     return Attribute::DisableSanitizerInstrumentation;
1477   case bitc::ATTR_KIND_ELEMENTTYPE:
1478     return Attribute::ElementType;
1479   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1480     return Attribute::InaccessibleMemOnly;
1481   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1482     return Attribute::InaccessibleMemOrArgMemOnly;
1483   case bitc::ATTR_KIND_INLINE_HINT:
1484     return Attribute::InlineHint;
1485   case bitc::ATTR_KIND_IN_REG:
1486     return Attribute::InReg;
1487   case bitc::ATTR_KIND_JUMP_TABLE:
1488     return Attribute::JumpTable;
1489   case bitc::ATTR_KIND_MIN_SIZE:
1490     return Attribute::MinSize;
1491   case bitc::ATTR_KIND_NAKED:
1492     return Attribute::Naked;
1493   case bitc::ATTR_KIND_NEST:
1494     return Attribute::Nest;
1495   case bitc::ATTR_KIND_NO_ALIAS:
1496     return Attribute::NoAlias;
1497   case bitc::ATTR_KIND_NO_BUILTIN:
1498     return Attribute::NoBuiltin;
1499   case bitc::ATTR_KIND_NO_CALLBACK:
1500     return Attribute::NoCallback;
1501   case bitc::ATTR_KIND_NO_CAPTURE:
1502     return Attribute::NoCapture;
1503   case bitc::ATTR_KIND_NO_DUPLICATE:
1504     return Attribute::NoDuplicate;
1505   case bitc::ATTR_KIND_NOFREE:
1506     return Attribute::NoFree;
1507   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1508     return Attribute::NoImplicitFloat;
1509   case bitc::ATTR_KIND_NO_INLINE:
1510     return Attribute::NoInline;
1511   case bitc::ATTR_KIND_NO_RECURSE:
1512     return Attribute::NoRecurse;
1513   case bitc::ATTR_KIND_NO_MERGE:
1514     return Attribute::NoMerge;
1515   case bitc::ATTR_KIND_NON_LAZY_BIND:
1516     return Attribute::NonLazyBind;
1517   case bitc::ATTR_KIND_NON_NULL:
1518     return Attribute::NonNull;
1519   case bitc::ATTR_KIND_DEREFERENCEABLE:
1520     return Attribute::Dereferenceable;
1521   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1522     return Attribute::DereferenceableOrNull;
1523   case bitc::ATTR_KIND_ALLOC_ALIGN:
1524     return Attribute::AllocAlign;
1525   case bitc::ATTR_KIND_ALLOC_SIZE:
1526     return Attribute::AllocSize;
1527   case bitc::ATTR_KIND_NO_RED_ZONE:
1528     return Attribute::NoRedZone;
1529   case bitc::ATTR_KIND_NO_RETURN:
1530     return Attribute::NoReturn;
1531   case bitc::ATTR_KIND_NOSYNC:
1532     return Attribute::NoSync;
1533   case bitc::ATTR_KIND_NOCF_CHECK:
1534     return Attribute::NoCfCheck;
1535   case bitc::ATTR_KIND_NO_PROFILE:
1536     return Attribute::NoProfile;
1537   case bitc::ATTR_KIND_NO_UNWIND:
1538     return Attribute::NoUnwind;
1539   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1540     return Attribute::NoSanitizeBounds;
1541   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1542     return Attribute::NoSanitizeCoverage;
1543   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1544     return Attribute::NullPointerIsValid;
1545   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1546     return Attribute::OptForFuzzing;
1547   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1548     return Attribute::OptimizeForSize;
1549   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1550     return Attribute::OptimizeNone;
1551   case bitc::ATTR_KIND_READ_NONE:
1552     return Attribute::ReadNone;
1553   case bitc::ATTR_KIND_READ_ONLY:
1554     return Attribute::ReadOnly;
1555   case bitc::ATTR_KIND_RETURNED:
1556     return Attribute::Returned;
1557   case bitc::ATTR_KIND_RETURNS_TWICE:
1558     return Attribute::ReturnsTwice;
1559   case bitc::ATTR_KIND_S_EXT:
1560     return Attribute::SExt;
1561   case bitc::ATTR_KIND_SPECULATABLE:
1562     return Attribute::Speculatable;
1563   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1564     return Attribute::StackAlignment;
1565   case bitc::ATTR_KIND_STACK_PROTECT:
1566     return Attribute::StackProtect;
1567   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1568     return Attribute::StackProtectReq;
1569   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1570     return Attribute::StackProtectStrong;
1571   case bitc::ATTR_KIND_SAFESTACK:
1572     return Attribute::SafeStack;
1573   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1574     return Attribute::ShadowCallStack;
1575   case bitc::ATTR_KIND_STRICT_FP:
1576     return Attribute::StrictFP;
1577   case bitc::ATTR_KIND_STRUCT_RET:
1578     return Attribute::StructRet;
1579   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1580     return Attribute::SanitizeAddress;
1581   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1582     return Attribute::SanitizeHWAddress;
1583   case bitc::ATTR_KIND_SANITIZE_THREAD:
1584     return Attribute::SanitizeThread;
1585   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1586     return Attribute::SanitizeMemory;
1587   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1588     return Attribute::SpeculativeLoadHardening;
1589   case bitc::ATTR_KIND_SWIFT_ERROR:
1590     return Attribute::SwiftError;
1591   case bitc::ATTR_KIND_SWIFT_SELF:
1592     return Attribute::SwiftSelf;
1593   case bitc::ATTR_KIND_SWIFT_ASYNC:
1594     return Attribute::SwiftAsync;
1595   case bitc::ATTR_KIND_UW_TABLE:
1596     return Attribute::UWTable;
1597   case bitc::ATTR_KIND_VSCALE_RANGE:
1598     return Attribute::VScaleRange;
1599   case bitc::ATTR_KIND_WILLRETURN:
1600     return Attribute::WillReturn;
1601   case bitc::ATTR_KIND_WRITEONLY:
1602     return Attribute::WriteOnly;
1603   case bitc::ATTR_KIND_Z_EXT:
1604     return Attribute::ZExt;
1605   case bitc::ATTR_KIND_IMMARG:
1606     return Attribute::ImmArg;
1607   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1608     return Attribute::SanitizeMemTag;
1609   case bitc::ATTR_KIND_PREALLOCATED:
1610     return Attribute::Preallocated;
1611   case bitc::ATTR_KIND_NOUNDEF:
1612     return Attribute::NoUndef;
1613   case bitc::ATTR_KIND_BYREF:
1614     return Attribute::ByRef;
1615   case bitc::ATTR_KIND_MUSTPROGRESS:
1616     return Attribute::MustProgress;
1617   case bitc::ATTR_KIND_HOT:
1618     return Attribute::Hot;
1619   }
1620 }
1621 
1622 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1623                                          MaybeAlign &Alignment) {
1624   // Note: Alignment in bitcode files is incremented by 1, so that zero
1625   // can be used for default alignment.
1626   if (Exponent > Value::MaxAlignmentExponent + 1)
1627     return error("Invalid alignment value");
1628   Alignment = decodeMaybeAlign(Exponent);
1629   return Error::success();
1630 }
1631 
1632 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1633   *Kind = getAttrFromCode(Code);
1634   if (*Kind == Attribute::None)
1635     return error("Unknown attribute kind (" + Twine(Code) + ")");
1636   return Error::success();
1637 }
1638 
1639 Error BitcodeReader::parseAttributeGroupBlock() {
1640   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1641     return Err;
1642 
1643   if (!MAttributeGroups.empty())
1644     return error("Invalid multiple blocks");
1645 
1646   SmallVector<uint64_t, 64> Record;
1647 
1648   // Read all the records.
1649   while (true) {
1650     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1651     if (!MaybeEntry)
1652       return MaybeEntry.takeError();
1653     BitstreamEntry Entry = MaybeEntry.get();
1654 
1655     switch (Entry.Kind) {
1656     case BitstreamEntry::SubBlock: // Handled for us already.
1657     case BitstreamEntry::Error:
1658       return error("Malformed block");
1659     case BitstreamEntry::EndBlock:
1660       return Error::success();
1661     case BitstreamEntry::Record:
1662       // The interesting case.
1663       break;
1664     }
1665 
1666     // Read a record.
1667     Record.clear();
1668     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1669     if (!MaybeRecord)
1670       return MaybeRecord.takeError();
1671     switch (MaybeRecord.get()) {
1672     default:  // Default behavior: ignore.
1673       break;
1674     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1675       if (Record.size() < 3)
1676         return error("Invalid grp record");
1677 
1678       uint64_t GrpID = Record[0];
1679       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1680 
1681       AttrBuilder B(Context);
1682       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1683         if (Record[i] == 0) {        // Enum attribute
1684           Attribute::AttrKind Kind;
1685           if (Error Err = parseAttrKind(Record[++i], &Kind))
1686             return Err;
1687 
1688           // Upgrade old-style byval attribute to one with a type, even if it's
1689           // nullptr. We will have to insert the real type when we associate
1690           // this AttributeList with a function.
1691           if (Kind == Attribute::ByVal)
1692             B.addByValAttr(nullptr);
1693           else if (Kind == Attribute::StructRet)
1694             B.addStructRetAttr(nullptr);
1695           else if (Kind == Attribute::InAlloca)
1696             B.addInAllocaAttr(nullptr);
1697           else if (Kind == Attribute::UWTable)
1698             B.addUWTableAttr(UWTableKind::Default);
1699           else if (Attribute::isEnumAttrKind(Kind))
1700             B.addAttribute(Kind);
1701           else
1702             return error("Not an enum attribute");
1703         } else if (Record[i] == 1) { // Integer attribute
1704           Attribute::AttrKind Kind;
1705           if (Error Err = parseAttrKind(Record[++i], &Kind))
1706             return Err;
1707           if (!Attribute::isIntAttrKind(Kind))
1708             return error("Not an int attribute");
1709           if (Kind == Attribute::Alignment)
1710             B.addAlignmentAttr(Record[++i]);
1711           else if (Kind == Attribute::StackAlignment)
1712             B.addStackAlignmentAttr(Record[++i]);
1713           else if (Kind == Attribute::Dereferenceable)
1714             B.addDereferenceableAttr(Record[++i]);
1715           else if (Kind == Attribute::DereferenceableOrNull)
1716             B.addDereferenceableOrNullAttr(Record[++i]);
1717           else if (Kind == Attribute::AllocSize)
1718             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1719           else if (Kind == Attribute::VScaleRange)
1720             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1721           else if (Kind == Attribute::UWTable)
1722             B.addUWTableAttr(UWTableKind(Record[++i]));
1723         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1724           bool HasValue = (Record[i++] == 4);
1725           SmallString<64> KindStr;
1726           SmallString<64> ValStr;
1727 
1728           while (Record[i] != 0 && i != e)
1729             KindStr += Record[i++];
1730           assert(Record[i] == 0 && "Kind string not null terminated");
1731 
1732           if (HasValue) {
1733             // Has a value associated with it.
1734             ++i; // Skip the '0' that terminates the "kind" string.
1735             while (Record[i] != 0 && i != e)
1736               ValStr += Record[i++];
1737             assert(Record[i] == 0 && "Value string not null terminated");
1738           }
1739 
1740           B.addAttribute(KindStr.str(), ValStr.str());
1741         } else if (Record[i] == 5 || Record[i] == 6) {
1742           bool HasType = Record[i] == 6;
1743           Attribute::AttrKind Kind;
1744           if (Error Err = parseAttrKind(Record[++i], &Kind))
1745             return Err;
1746           if (!Attribute::isTypeAttrKind(Kind))
1747             return error("Not a type attribute");
1748 
1749           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1750         } else {
1751           return error("Invalid attribute group entry");
1752         }
1753       }
1754 
1755       UpgradeAttributes(B);
1756       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1757       break;
1758     }
1759     }
1760   }
1761 }
1762 
1763 Error BitcodeReader::parseTypeTable() {
1764   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1765     return Err;
1766 
1767   return parseTypeTableBody();
1768 }
1769 
1770 Error BitcodeReader::parseTypeTableBody() {
1771   if (!TypeList.empty())
1772     return error("Invalid multiple blocks");
1773 
1774   SmallVector<uint64_t, 64> Record;
1775   unsigned NumRecords = 0;
1776 
1777   SmallString<64> TypeName;
1778 
1779   // Read all the records for this type table.
1780   while (true) {
1781     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1782     if (!MaybeEntry)
1783       return MaybeEntry.takeError();
1784     BitstreamEntry Entry = MaybeEntry.get();
1785 
1786     switch (Entry.Kind) {
1787     case BitstreamEntry::SubBlock: // Handled for us already.
1788     case BitstreamEntry::Error:
1789       return error("Malformed block");
1790     case BitstreamEntry::EndBlock:
1791       if (NumRecords != TypeList.size())
1792         return error("Malformed block");
1793       return Error::success();
1794     case BitstreamEntry::Record:
1795       // The interesting case.
1796       break;
1797     }
1798 
1799     // Read a record.
1800     Record.clear();
1801     Type *ResultTy = nullptr;
1802     SmallVector<unsigned> ContainedIDs;
1803     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1804     if (!MaybeRecord)
1805       return MaybeRecord.takeError();
1806     switch (MaybeRecord.get()) {
1807     default:
1808       return error("Invalid value");
1809     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1810       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1811       // type list.  This allows us to reserve space.
1812       if (Record.empty())
1813         return error("Invalid numentry record");
1814       TypeList.resize(Record[0]);
1815       continue;
1816     case bitc::TYPE_CODE_VOID:      // VOID
1817       ResultTy = Type::getVoidTy(Context);
1818       break;
1819     case bitc::TYPE_CODE_HALF:     // HALF
1820       ResultTy = Type::getHalfTy(Context);
1821       break;
1822     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1823       ResultTy = Type::getBFloatTy(Context);
1824       break;
1825     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1826       ResultTy = Type::getFloatTy(Context);
1827       break;
1828     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1829       ResultTy = Type::getDoubleTy(Context);
1830       break;
1831     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1832       ResultTy = Type::getX86_FP80Ty(Context);
1833       break;
1834     case bitc::TYPE_CODE_FP128:     // FP128
1835       ResultTy = Type::getFP128Ty(Context);
1836       break;
1837     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1838       ResultTy = Type::getPPC_FP128Ty(Context);
1839       break;
1840     case bitc::TYPE_CODE_LABEL:     // LABEL
1841       ResultTy = Type::getLabelTy(Context);
1842       break;
1843     case bitc::TYPE_CODE_METADATA:  // METADATA
1844       ResultTy = Type::getMetadataTy(Context);
1845       break;
1846     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1847       ResultTy = Type::getX86_MMXTy(Context);
1848       break;
1849     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1850       ResultTy = Type::getX86_AMXTy(Context);
1851       break;
1852     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1853       ResultTy = Type::getTokenTy(Context);
1854       break;
1855     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1856       if (Record.empty())
1857         return error("Invalid integer record");
1858 
1859       uint64_t NumBits = Record[0];
1860       if (NumBits < IntegerType::MIN_INT_BITS ||
1861           NumBits > IntegerType::MAX_INT_BITS)
1862         return error("Bitwidth for integer type out of range");
1863       ResultTy = IntegerType::get(Context, NumBits);
1864       break;
1865     }
1866     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1867                                     //          [pointee type, address space]
1868       if (Record.empty())
1869         return error("Invalid pointer record");
1870       unsigned AddressSpace = 0;
1871       if (Record.size() == 2)
1872         AddressSpace = Record[1];
1873       ResultTy = getTypeByID(Record[0]);
1874       if (!ResultTy ||
1875           !PointerType::isValidElementType(ResultTy))
1876         return error("Invalid type");
1877       ContainedIDs.push_back(Record[0]);
1878       ResultTy = PointerType::get(ResultTy, AddressSpace);
1879       break;
1880     }
1881     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1882       if (Record.size() != 1)
1883         return error("Invalid opaque pointer record");
1884       if (Context.supportsTypedPointers())
1885         return error(
1886             "Opaque pointers are only supported in -opaque-pointers mode");
1887       unsigned AddressSpace = Record[0];
1888       ResultTy = PointerType::get(Context, AddressSpace);
1889       break;
1890     }
1891     case bitc::TYPE_CODE_FUNCTION_OLD: {
1892       // Deprecated, but still needed to read old bitcode files.
1893       // FUNCTION: [vararg, attrid, retty, paramty x N]
1894       if (Record.size() < 3)
1895         return error("Invalid function record");
1896       SmallVector<Type*, 8> ArgTys;
1897       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1898         if (Type *T = getTypeByID(Record[i]))
1899           ArgTys.push_back(T);
1900         else
1901           break;
1902       }
1903 
1904       ResultTy = getTypeByID(Record[2]);
1905       if (!ResultTy || ArgTys.size() < Record.size()-3)
1906         return error("Invalid type");
1907 
1908       ContainedIDs.append(Record.begin() + 2, Record.end());
1909       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1910       break;
1911     }
1912     case bitc::TYPE_CODE_FUNCTION: {
1913       // FUNCTION: [vararg, retty, paramty x N]
1914       if (Record.size() < 2)
1915         return error("Invalid function record");
1916       SmallVector<Type*, 8> ArgTys;
1917       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1918         if (Type *T = getTypeByID(Record[i])) {
1919           if (!FunctionType::isValidArgumentType(T))
1920             return error("Invalid function argument type");
1921           ArgTys.push_back(T);
1922         }
1923         else
1924           break;
1925       }
1926 
1927       ResultTy = getTypeByID(Record[1]);
1928       if (!ResultTy || ArgTys.size() < Record.size()-2)
1929         return error("Invalid type");
1930 
1931       ContainedIDs.append(Record.begin() + 1, Record.end());
1932       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1933       break;
1934     }
1935     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1936       if (Record.empty())
1937         return error("Invalid anon struct record");
1938       SmallVector<Type*, 8> EltTys;
1939       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1940         if (Type *T = getTypeByID(Record[i]))
1941           EltTys.push_back(T);
1942         else
1943           break;
1944       }
1945       if (EltTys.size() != Record.size()-1)
1946         return error("Invalid type");
1947       ContainedIDs.append(Record.begin() + 1, Record.end());
1948       ResultTy = StructType::get(Context, EltTys, Record[0]);
1949       break;
1950     }
1951     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1952       if (convertToString(Record, 0, TypeName))
1953         return error("Invalid struct name record");
1954       continue;
1955 
1956     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1957       if (Record.empty())
1958         return error("Invalid named struct record");
1959 
1960       if (NumRecords >= TypeList.size())
1961         return error("Invalid TYPE table");
1962 
1963       // Check to see if this was forward referenced, if so fill in the temp.
1964       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1965       if (Res) {
1966         Res->setName(TypeName);
1967         TypeList[NumRecords] = nullptr;
1968       } else  // Otherwise, create a new struct.
1969         Res = createIdentifiedStructType(Context, TypeName);
1970       TypeName.clear();
1971 
1972       SmallVector<Type*, 8> EltTys;
1973       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1974         if (Type *T = getTypeByID(Record[i]))
1975           EltTys.push_back(T);
1976         else
1977           break;
1978       }
1979       if (EltTys.size() != Record.size()-1)
1980         return error("Invalid named struct record");
1981       Res->setBody(EltTys, Record[0]);
1982       ContainedIDs.append(Record.begin() + 1, Record.end());
1983       ResultTy = Res;
1984       break;
1985     }
1986     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1987       if (Record.size() != 1)
1988         return error("Invalid opaque type record");
1989 
1990       if (NumRecords >= TypeList.size())
1991         return error("Invalid TYPE table");
1992 
1993       // Check to see if this was forward referenced, if so fill in the temp.
1994       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1995       if (Res) {
1996         Res->setName(TypeName);
1997         TypeList[NumRecords] = nullptr;
1998       } else  // Otherwise, create a new struct with no body.
1999         Res = createIdentifiedStructType(Context, TypeName);
2000       TypeName.clear();
2001       ResultTy = Res;
2002       break;
2003     }
2004     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2005       if (Record.size() < 2)
2006         return error("Invalid array type record");
2007       ResultTy = getTypeByID(Record[1]);
2008       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2009         return error("Invalid type");
2010       ContainedIDs.push_back(Record[1]);
2011       ResultTy = ArrayType::get(ResultTy, Record[0]);
2012       break;
2013     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2014                                     //         [numelts, eltty, scalable]
2015       if (Record.size() < 2)
2016         return error("Invalid vector type record");
2017       if (Record[0] == 0)
2018         return error("Invalid vector length");
2019       ResultTy = getTypeByID(Record[1]);
2020       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2021         return error("Invalid type");
2022       bool Scalable = Record.size() > 2 ? Record[2] : false;
2023       ContainedIDs.push_back(Record[1]);
2024       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2025       break;
2026     }
2027 
2028     if (NumRecords >= TypeList.size())
2029       return error("Invalid TYPE table");
2030     if (TypeList[NumRecords])
2031       return error(
2032           "Invalid TYPE table: Only named structs can be forward referenced");
2033     assert(ResultTy && "Didn't read a type?");
2034     TypeList[NumRecords] = ResultTy;
2035     if (!ContainedIDs.empty())
2036       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2037     ++NumRecords;
2038   }
2039 }
2040 
2041 Error BitcodeReader::parseOperandBundleTags() {
2042   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2043     return Err;
2044 
2045   if (!BundleTags.empty())
2046     return error("Invalid multiple blocks");
2047 
2048   SmallVector<uint64_t, 64> Record;
2049 
2050   while (true) {
2051     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2052     if (!MaybeEntry)
2053       return MaybeEntry.takeError();
2054     BitstreamEntry Entry = MaybeEntry.get();
2055 
2056     switch (Entry.Kind) {
2057     case BitstreamEntry::SubBlock: // Handled for us already.
2058     case BitstreamEntry::Error:
2059       return error("Malformed block");
2060     case BitstreamEntry::EndBlock:
2061       return Error::success();
2062     case BitstreamEntry::Record:
2063       // The interesting case.
2064       break;
2065     }
2066 
2067     // Tags are implicitly mapped to integers by their order.
2068 
2069     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2070     if (!MaybeRecord)
2071       return MaybeRecord.takeError();
2072     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2073       return error("Invalid operand bundle record");
2074 
2075     // OPERAND_BUNDLE_TAG: [strchr x N]
2076     BundleTags.emplace_back();
2077     if (convertToString(Record, 0, BundleTags.back()))
2078       return error("Invalid operand bundle record");
2079     Record.clear();
2080   }
2081 }
2082 
2083 Error BitcodeReader::parseSyncScopeNames() {
2084   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2085     return Err;
2086 
2087   if (!SSIDs.empty())
2088     return error("Invalid multiple synchronization scope names blocks");
2089 
2090   SmallVector<uint64_t, 64> Record;
2091   while (true) {
2092     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2093     if (!MaybeEntry)
2094       return MaybeEntry.takeError();
2095     BitstreamEntry Entry = MaybeEntry.get();
2096 
2097     switch (Entry.Kind) {
2098     case BitstreamEntry::SubBlock: // Handled for us already.
2099     case BitstreamEntry::Error:
2100       return error("Malformed block");
2101     case BitstreamEntry::EndBlock:
2102       if (SSIDs.empty())
2103         return error("Invalid empty synchronization scope names block");
2104       return Error::success();
2105     case BitstreamEntry::Record:
2106       // The interesting case.
2107       break;
2108     }
2109 
2110     // Synchronization scope names are implicitly mapped to synchronization
2111     // scope IDs by their order.
2112 
2113     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2114     if (!MaybeRecord)
2115       return MaybeRecord.takeError();
2116     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2117       return error("Invalid sync scope record");
2118 
2119     SmallString<16> SSN;
2120     if (convertToString(Record, 0, SSN))
2121       return error("Invalid sync scope record");
2122 
2123     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2124     Record.clear();
2125   }
2126 }
2127 
2128 /// Associate a value with its name from the given index in the provided record.
2129 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2130                                              unsigned NameIndex, Triple &TT) {
2131   SmallString<128> ValueName;
2132   if (convertToString(Record, NameIndex, ValueName))
2133     return error("Invalid record");
2134   unsigned ValueID = Record[0];
2135   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2136     return error("Invalid record");
2137   Value *V = ValueList[ValueID];
2138 
2139   StringRef NameStr(ValueName.data(), ValueName.size());
2140   if (NameStr.find_first_of(0) != StringRef::npos)
2141     return error("Invalid value name");
2142   V->setName(NameStr);
2143   auto *GO = dyn_cast<GlobalObject>(V);
2144   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2145     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2146   return V;
2147 }
2148 
2149 /// Helper to note and return the current location, and jump to the given
2150 /// offset.
2151 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2152                                                  BitstreamCursor &Stream) {
2153   // Save the current parsing location so we can jump back at the end
2154   // of the VST read.
2155   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2156   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2157     return std::move(JumpFailed);
2158   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2159   if (!MaybeEntry)
2160     return MaybeEntry.takeError();
2161   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2162       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2163     return error("Expected value symbol table subblock");
2164   return CurrentBit;
2165 }
2166 
2167 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2168                                             Function *F,
2169                                             ArrayRef<uint64_t> Record) {
2170   // Note that we subtract 1 here because the offset is relative to one word
2171   // before the start of the identification or module block, which was
2172   // historically always the start of the regular bitcode header.
2173   uint64_t FuncWordOffset = Record[1] - 1;
2174   uint64_t FuncBitOffset = FuncWordOffset * 32;
2175   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2176   // Set the LastFunctionBlockBit to point to the last function block.
2177   // Later when parsing is resumed after function materialization,
2178   // we can simply skip that last function block.
2179   if (FuncBitOffset > LastFunctionBlockBit)
2180     LastFunctionBlockBit = FuncBitOffset;
2181 }
2182 
2183 /// Read a new-style GlobalValue symbol table.
2184 Error BitcodeReader::parseGlobalValueSymbolTable() {
2185   unsigned FuncBitcodeOffsetDelta =
2186       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2187 
2188   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2189     return Err;
2190 
2191   SmallVector<uint64_t, 64> Record;
2192   while (true) {
2193     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2194     if (!MaybeEntry)
2195       return MaybeEntry.takeError();
2196     BitstreamEntry Entry = MaybeEntry.get();
2197 
2198     switch (Entry.Kind) {
2199     case BitstreamEntry::SubBlock:
2200     case BitstreamEntry::Error:
2201       return error("Malformed block");
2202     case BitstreamEntry::EndBlock:
2203       return Error::success();
2204     case BitstreamEntry::Record:
2205       break;
2206     }
2207 
2208     Record.clear();
2209     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2210     if (!MaybeRecord)
2211       return MaybeRecord.takeError();
2212     switch (MaybeRecord.get()) {
2213     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2214       unsigned ValueID = Record[0];
2215       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2216         return error("Invalid value reference in symbol table");
2217       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2218                               cast<Function>(ValueList[ValueID]), Record);
2219       break;
2220     }
2221     }
2222   }
2223 }
2224 
2225 /// Parse the value symbol table at either the current parsing location or
2226 /// at the given bit offset if provided.
2227 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2228   uint64_t CurrentBit;
2229   // Pass in the Offset to distinguish between calling for the module-level
2230   // VST (where we want to jump to the VST offset) and the function-level
2231   // VST (where we don't).
2232   if (Offset > 0) {
2233     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2234     if (!MaybeCurrentBit)
2235       return MaybeCurrentBit.takeError();
2236     CurrentBit = MaybeCurrentBit.get();
2237     // If this module uses a string table, read this as a module-level VST.
2238     if (UseStrtab) {
2239       if (Error Err = parseGlobalValueSymbolTable())
2240         return Err;
2241       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2242         return JumpFailed;
2243       return Error::success();
2244     }
2245     // Otherwise, the VST will be in a similar format to a function-level VST,
2246     // and will contain symbol names.
2247   }
2248 
2249   // Compute the delta between the bitcode indices in the VST (the word offset
2250   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2251   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2252   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2253   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2254   // just before entering the VST subblock because: 1) the EnterSubBlock
2255   // changes the AbbrevID width; 2) the VST block is nested within the same
2256   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2257   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2258   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2259   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2260   unsigned FuncBitcodeOffsetDelta =
2261       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2262 
2263   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2264     return Err;
2265 
2266   SmallVector<uint64_t, 64> Record;
2267 
2268   Triple TT(TheModule->getTargetTriple());
2269 
2270   // Read all the records for this value table.
2271   SmallString<128> ValueName;
2272 
2273   while (true) {
2274     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2275     if (!MaybeEntry)
2276       return MaybeEntry.takeError();
2277     BitstreamEntry Entry = MaybeEntry.get();
2278 
2279     switch (Entry.Kind) {
2280     case BitstreamEntry::SubBlock: // Handled for us already.
2281     case BitstreamEntry::Error:
2282       return error("Malformed block");
2283     case BitstreamEntry::EndBlock:
2284       if (Offset > 0)
2285         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2286           return JumpFailed;
2287       return Error::success();
2288     case BitstreamEntry::Record:
2289       // The interesting case.
2290       break;
2291     }
2292 
2293     // Read a record.
2294     Record.clear();
2295     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2296     if (!MaybeRecord)
2297       return MaybeRecord.takeError();
2298     switch (MaybeRecord.get()) {
2299     default:  // Default behavior: unknown type.
2300       break;
2301     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2302       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2303       if (Error Err = ValOrErr.takeError())
2304         return Err;
2305       ValOrErr.get();
2306       break;
2307     }
2308     case bitc::VST_CODE_FNENTRY: {
2309       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2310       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2311       if (Error Err = ValOrErr.takeError())
2312         return Err;
2313       Value *V = ValOrErr.get();
2314 
2315       // Ignore function offsets emitted for aliases of functions in older
2316       // versions of LLVM.
2317       if (auto *F = dyn_cast<Function>(V))
2318         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2319       break;
2320     }
2321     case bitc::VST_CODE_BBENTRY: {
2322       if (convertToString(Record, 1, ValueName))
2323         return error("Invalid bbentry record");
2324       BasicBlock *BB = getBasicBlock(Record[0]);
2325       if (!BB)
2326         return error("Invalid bbentry record");
2327 
2328       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2329       ValueName.clear();
2330       break;
2331     }
2332     }
2333   }
2334 }
2335 
2336 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2337 /// encoding.
2338 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2339   if ((V & 1) == 0)
2340     return V >> 1;
2341   if (V != 1)
2342     return -(V >> 1);
2343   // There is no such thing as -0 with integers.  "-0" really means MININT.
2344   return 1ULL << 63;
2345 }
2346 
2347 /// Resolve all of the initializers for global values and aliases that we can.
2348 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2349   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2350   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2351   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2352 
2353   GlobalInitWorklist.swap(GlobalInits);
2354   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2355   FunctionOperandWorklist.swap(FunctionOperands);
2356 
2357   while (!GlobalInitWorklist.empty()) {
2358     unsigned ValID = GlobalInitWorklist.back().second;
2359     if (ValID >= ValueList.size()) {
2360       // Not ready to resolve this yet, it requires something later in the file.
2361       GlobalInits.push_back(GlobalInitWorklist.back());
2362     } else {
2363       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2364         GlobalInitWorklist.back().first->setInitializer(C);
2365       else
2366         return error("Expected a constant");
2367     }
2368     GlobalInitWorklist.pop_back();
2369   }
2370 
2371   while (!IndirectSymbolInitWorklist.empty()) {
2372     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2373     if (ValID >= ValueList.size()) {
2374       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2375     } else {
2376       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2377       if (!C)
2378         return error("Expected a constant");
2379       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2380       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2381         if (C->getType() != GV->getType())
2382           return error("Alias and aliasee types don't match");
2383         GA->setAliasee(C);
2384       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2385         Type *ResolverFTy =
2386             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2387         // Transparently fix up the type for compatiblity with older bitcode
2388         GI->setResolver(
2389             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2390       } else {
2391         return error("Expected an alias or an ifunc");
2392       }
2393     }
2394     IndirectSymbolInitWorklist.pop_back();
2395   }
2396 
2397   while (!FunctionOperandWorklist.empty()) {
2398     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2399     if (Info.PersonalityFn) {
2400       unsigned ValID = Info.PersonalityFn - 1;
2401       if (ValID < ValueList.size()) {
2402         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2403           Info.F->setPersonalityFn(C);
2404         else
2405           return error("Expected a constant");
2406         Info.PersonalityFn = 0;
2407       }
2408     }
2409     if (Info.Prefix) {
2410       unsigned ValID = Info.Prefix - 1;
2411       if (ValID < ValueList.size()) {
2412         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2413           Info.F->setPrefixData(C);
2414         else
2415           return error("Expected a constant");
2416         Info.Prefix = 0;
2417       }
2418     }
2419     if (Info.Prologue) {
2420       unsigned ValID = Info.Prologue - 1;
2421       if (ValID < ValueList.size()) {
2422         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2423           Info.F->setPrologueData(C);
2424         else
2425           return error("Expected a constant");
2426         Info.Prologue = 0;
2427       }
2428     }
2429     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2430       FunctionOperands.push_back(Info);
2431     FunctionOperandWorklist.pop_back();
2432   }
2433 
2434   return Error::success();
2435 }
2436 
2437 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2438   SmallVector<uint64_t, 8> Words(Vals.size());
2439   transform(Vals, Words.begin(),
2440                  BitcodeReader::decodeSignRotatedValue);
2441 
2442   return APInt(TypeBits, Words);
2443 }
2444 
2445 Error BitcodeReader::parseConstants() {
2446   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2447     return Err;
2448 
2449   SmallVector<uint64_t, 64> Record;
2450 
2451   // Read all the records for this value table.
2452   Type *CurTy = Type::getInt32Ty(Context);
2453   unsigned Int32TyID = getVirtualTypeID(CurTy);
2454   unsigned CurTyID = Int32TyID;
2455   Type *CurElemTy = nullptr;
2456   unsigned NextCstNo = ValueList.size();
2457 
2458   struct DelayedShufTy {
2459     VectorType *OpTy;
2460     unsigned OpTyID;
2461     VectorType *RTy;
2462     uint64_t Op0Idx;
2463     uint64_t Op1Idx;
2464     uint64_t Op2Idx;
2465     unsigned CstNo;
2466   };
2467   std::vector<DelayedShufTy> DelayedShuffles;
2468   struct DelayedSelTy {
2469     Type *OpTy;
2470     unsigned OpTyID;
2471     uint64_t Op0Idx;
2472     uint64_t Op1Idx;
2473     uint64_t Op2Idx;
2474     unsigned CstNo;
2475   };
2476   std::vector<DelayedSelTy> DelayedSelectors;
2477 
2478   while (true) {
2479     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2480     if (!MaybeEntry)
2481       return MaybeEntry.takeError();
2482     BitstreamEntry Entry = MaybeEntry.get();
2483 
2484     switch (Entry.Kind) {
2485     case BitstreamEntry::SubBlock: // Handled for us already.
2486     case BitstreamEntry::Error:
2487       return error("Malformed block");
2488     case BitstreamEntry::EndBlock:
2489       // Once all the constants have been read, go through and resolve forward
2490       // references.
2491       //
2492       // We have to treat shuffles specially because they don't have three
2493       // operands anymore.  We need to convert the shuffle mask into an array,
2494       // and we can't convert a forward reference.
2495       for (auto &DelayedShuffle : DelayedShuffles) {
2496         VectorType *OpTy = DelayedShuffle.OpTy;
2497         unsigned OpTyID = DelayedShuffle.OpTyID;
2498         VectorType *RTy = DelayedShuffle.RTy;
2499         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2500         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2501         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2502         uint64_t CstNo = DelayedShuffle.CstNo;
2503         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID);
2504         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2505         Type *ShufTy =
2506             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2507         Constant *Op2 = ValueList.getConstantFwdRef(
2508             Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID));
2509         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2510           return error("Invalid shufflevector operands");
2511         SmallVector<int, 16> Mask;
2512         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2513         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2514         ValueList.assignValue(
2515             CstNo, V,
2516             getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID)));
2517       }
2518       for (auto &DelayedSelector : DelayedSelectors) {
2519         Type *OpTy = DelayedSelector.OpTy;
2520         unsigned OpTyID = DelayedSelector.OpTyID;
2521         Type *SelectorTy = Type::getInt1Ty(Context);
2522         unsigned SelectorTyID = getVirtualTypeID(SelectorTy);
2523         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2524         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2525         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2526         uint64_t CstNo = DelayedSelector.CstNo;
2527         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2528         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID);
2529         // The selector might be an i1 or an <n x i1>
2530         // Get the type from the ValueList before getting a forward ref.
2531         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2532           Value *V = ValueList[Op0Idx];
2533           assert(V);
2534           if (SelectorTy != V->getType()) {
2535             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2536             SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID);
2537           }
2538         }
2539         Constant *Op0 =
2540             ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID);
2541         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2542         ValueList.assignValue(CstNo, V, OpTyID);
2543       }
2544 
2545       if (NextCstNo != ValueList.size())
2546         return error("Invalid constant reference");
2547 
2548       ValueList.resolveConstantForwardRefs();
2549       return Error::success();
2550     case BitstreamEntry::Record:
2551       // The interesting case.
2552       break;
2553     }
2554 
2555     // Read a record.
2556     Record.clear();
2557     Type *VoidType = Type::getVoidTy(Context);
2558     Value *V = nullptr;
2559     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2560     if (!MaybeBitCode)
2561       return MaybeBitCode.takeError();
2562     switch (unsigned BitCode = MaybeBitCode.get()) {
2563     default:  // Default behavior: unknown constant
2564     case bitc::CST_CODE_UNDEF:     // UNDEF
2565       V = UndefValue::get(CurTy);
2566       break;
2567     case bitc::CST_CODE_POISON:    // POISON
2568       V = PoisonValue::get(CurTy);
2569       break;
2570     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2571       if (Record.empty())
2572         return error("Invalid settype record");
2573       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2574         return error("Invalid settype record");
2575       if (TypeList[Record[0]] == VoidType)
2576         return error("Invalid constant type");
2577       CurTyID = Record[0];
2578       CurTy = TypeList[CurTyID];
2579       CurElemTy = getPtrElementTypeByID(CurTyID);
2580       continue;  // Skip the ValueList manipulation.
2581     case bitc::CST_CODE_NULL:      // NULL
2582       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2583         return error("Invalid type for a constant null value");
2584       V = Constant::getNullValue(CurTy);
2585       break;
2586     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2587       if (!CurTy->isIntegerTy() || Record.empty())
2588         return error("Invalid integer const record");
2589       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2590       break;
2591     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2592       if (!CurTy->isIntegerTy() || Record.empty())
2593         return error("Invalid wide integer const record");
2594 
2595       APInt VInt =
2596           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2597       V = ConstantInt::get(Context, VInt);
2598 
2599       break;
2600     }
2601     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2602       if (Record.empty())
2603         return error("Invalid float const record");
2604       if (CurTy->isHalfTy())
2605         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2606                                              APInt(16, (uint16_t)Record[0])));
2607       else if (CurTy->isBFloatTy())
2608         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2609                                              APInt(16, (uint32_t)Record[0])));
2610       else if (CurTy->isFloatTy())
2611         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2612                                              APInt(32, (uint32_t)Record[0])));
2613       else if (CurTy->isDoubleTy())
2614         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2615                                              APInt(64, Record[0])));
2616       else if (CurTy->isX86_FP80Ty()) {
2617         // Bits are not stored the same way as a normal i80 APInt, compensate.
2618         uint64_t Rearrange[2];
2619         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2620         Rearrange[1] = Record[0] >> 48;
2621         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2622                                              APInt(80, Rearrange)));
2623       } else if (CurTy->isFP128Ty())
2624         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2625                                              APInt(128, Record)));
2626       else if (CurTy->isPPC_FP128Ty())
2627         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2628                                              APInt(128, Record)));
2629       else
2630         V = UndefValue::get(CurTy);
2631       break;
2632     }
2633 
2634     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2635       if (Record.empty())
2636         return error("Invalid aggregate record");
2637 
2638       unsigned Size = Record.size();
2639       SmallVector<Constant*, 16> Elts;
2640 
2641       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2642         for (unsigned i = 0; i != Size; ++i)
2643           Elts.push_back(ValueList.getConstantFwdRef(
2644               Record[i], STy->getElementType(i),
2645               getContainedTypeID(CurTyID, i)));
2646         V = ConstantStruct::get(STy, Elts);
2647       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2648         Type *EltTy = ATy->getElementType();
2649         unsigned EltTyID = getContainedTypeID(CurTyID);
2650         for (unsigned i = 0; i != Size; ++i)
2651           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2652                                                      EltTyID));
2653         V = ConstantArray::get(ATy, Elts);
2654       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2655         Type *EltTy = VTy->getElementType();
2656         unsigned EltTyID = getContainedTypeID(CurTyID);
2657         for (unsigned i = 0; i != Size; ++i)
2658           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2659                                                      EltTyID));
2660         V = ConstantVector::get(Elts);
2661       } else {
2662         V = UndefValue::get(CurTy);
2663       }
2664       break;
2665     }
2666     case bitc::CST_CODE_STRING:    // STRING: [values]
2667     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2668       if (Record.empty())
2669         return error("Invalid string record");
2670 
2671       SmallString<16> Elts(Record.begin(), Record.end());
2672       V = ConstantDataArray::getString(Context, Elts,
2673                                        BitCode == bitc::CST_CODE_CSTRING);
2674       break;
2675     }
2676     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2677       if (Record.empty())
2678         return error("Invalid data record");
2679 
2680       Type *EltTy;
2681       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2682         EltTy = Array->getElementType();
2683       else
2684         EltTy = cast<VectorType>(CurTy)->getElementType();
2685       if (EltTy->isIntegerTy(8)) {
2686         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2687         if (isa<VectorType>(CurTy))
2688           V = ConstantDataVector::get(Context, Elts);
2689         else
2690           V = ConstantDataArray::get(Context, Elts);
2691       } else if (EltTy->isIntegerTy(16)) {
2692         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2693         if (isa<VectorType>(CurTy))
2694           V = ConstantDataVector::get(Context, Elts);
2695         else
2696           V = ConstantDataArray::get(Context, Elts);
2697       } else if (EltTy->isIntegerTy(32)) {
2698         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2699         if (isa<VectorType>(CurTy))
2700           V = ConstantDataVector::get(Context, Elts);
2701         else
2702           V = ConstantDataArray::get(Context, Elts);
2703       } else if (EltTy->isIntegerTy(64)) {
2704         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2705         if (isa<VectorType>(CurTy))
2706           V = ConstantDataVector::get(Context, Elts);
2707         else
2708           V = ConstantDataArray::get(Context, Elts);
2709       } else if (EltTy->isHalfTy()) {
2710         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2711         if (isa<VectorType>(CurTy))
2712           V = ConstantDataVector::getFP(EltTy, Elts);
2713         else
2714           V = ConstantDataArray::getFP(EltTy, Elts);
2715       } else if (EltTy->isBFloatTy()) {
2716         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2717         if (isa<VectorType>(CurTy))
2718           V = ConstantDataVector::getFP(EltTy, Elts);
2719         else
2720           V = ConstantDataArray::getFP(EltTy, Elts);
2721       } else if (EltTy->isFloatTy()) {
2722         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2723         if (isa<VectorType>(CurTy))
2724           V = ConstantDataVector::getFP(EltTy, Elts);
2725         else
2726           V = ConstantDataArray::getFP(EltTy, Elts);
2727       } else if (EltTy->isDoubleTy()) {
2728         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2729         if (isa<VectorType>(CurTy))
2730           V = ConstantDataVector::getFP(EltTy, Elts);
2731         else
2732           V = ConstantDataArray::getFP(EltTy, Elts);
2733       } else {
2734         return error("Invalid type for value");
2735       }
2736       break;
2737     }
2738     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2739       if (Record.size() < 2)
2740         return error("Invalid unary op constexpr record");
2741       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2742       if (Opc < 0) {
2743         V = UndefValue::get(CurTy);  // Unknown unop.
2744       } else {
2745         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2746         unsigned Flags = 0;
2747         V = ConstantExpr::get(Opc, LHS, Flags);
2748       }
2749       break;
2750     }
2751     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2752       if (Record.size() < 3)
2753         return error("Invalid binary op constexpr record");
2754       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2755       if (Opc < 0) {
2756         V = UndefValue::get(CurTy);  // Unknown binop.
2757       } else {
2758         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2759         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID);
2760         unsigned Flags = 0;
2761         if (Record.size() >= 4) {
2762           if (Opc == Instruction::Add ||
2763               Opc == Instruction::Sub ||
2764               Opc == Instruction::Mul ||
2765               Opc == Instruction::Shl) {
2766             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2767               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2768             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2769               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2770           } else if (Opc == Instruction::SDiv ||
2771                      Opc == Instruction::UDiv ||
2772                      Opc == Instruction::LShr ||
2773                      Opc == Instruction::AShr) {
2774             if (Record[3] & (1 << bitc::PEO_EXACT))
2775               Flags |= SDivOperator::IsExact;
2776           }
2777         }
2778         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2779       }
2780       break;
2781     }
2782     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2783       if (Record.size() < 3)
2784         return error("Invalid cast constexpr record");
2785       int Opc = getDecodedCastOpcode(Record[0]);
2786       if (Opc < 0) {
2787         V = UndefValue::get(CurTy);  // Unknown cast.
2788       } else {
2789         unsigned OpTyID = Record[1];
2790         Type *OpTy = getTypeByID(OpTyID);
2791         if (!OpTy)
2792           return error("Invalid cast constexpr record");
2793         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2794         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2795         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2796       }
2797       break;
2798     }
2799     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2800     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2801     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2802                                                      // operands]
2803       if (Record.size() < 2)
2804         return error("Constant GEP record must have at least two elements");
2805       unsigned OpNum = 0;
2806       Type *PointeeType = nullptr;
2807       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2808           Record.size() % 2)
2809         PointeeType = getTypeByID(Record[OpNum++]);
2810 
2811       bool InBounds = false;
2812       Optional<unsigned> InRangeIndex;
2813       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2814         uint64_t Op = Record[OpNum++];
2815         InBounds = Op & 1;
2816         InRangeIndex = Op >> 1;
2817       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2818         InBounds = true;
2819 
2820       SmallVector<Constant*, 16> Elts;
2821       unsigned BaseTypeID = Record[OpNum];
2822       while (OpNum != Record.size()) {
2823         unsigned ElTyID = Record[OpNum++];
2824         Type *ElTy = getTypeByID(ElTyID);
2825         if (!ElTy)
2826           return error("Invalid getelementptr constexpr record");
2827         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy,
2828                                                    ElTyID));
2829       }
2830 
2831       if (Elts.size() < 1)
2832         return error("Invalid gep with no operands");
2833 
2834       Type *BaseType = getTypeByID(BaseTypeID);
2835       if (isa<VectorType>(BaseType)) {
2836         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
2837         BaseType = getTypeByID(BaseTypeID);
2838       }
2839 
2840       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
2841       if (!OrigPtrTy)
2842         return error("GEP base operand must be pointer or vector of pointer");
2843 
2844       if (!PointeeType) {
2845         PointeeType = getPtrElementTypeByID(BaseTypeID);
2846         if (!PointeeType)
2847           return error("Missing element type for old-style constant GEP");
2848       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2849         return error("Explicit gep operator type does not match pointee type "
2850                      "of pointer operand");
2851 
2852       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2853       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2854                                          InBounds, InRangeIndex);
2855       break;
2856     }
2857     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2858       if (Record.size() < 3)
2859         return error("Invalid select constexpr record");
2860 
2861       DelayedSelectors.push_back(
2862           {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo});
2863       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID);
2864       ++NextCstNo;
2865       continue;
2866     }
2867     case bitc::CST_CODE_CE_EXTRACTELT
2868         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2869       if (Record.size() < 3)
2870         return error("Invalid extractelement constexpr record");
2871       unsigned OpTyID = Record[0];
2872       VectorType *OpTy =
2873         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
2874       if (!OpTy)
2875         return error("Invalid extractelement constexpr record");
2876       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2877       Constant *Op1 = nullptr;
2878       if (Record.size() == 4) {
2879         unsigned IdxTyID = Record[2];
2880         Type *IdxTy = getTypeByID(IdxTyID);
2881         if (!IdxTy)
2882           return error("Invalid extractelement constexpr record");
2883         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2884       } else {
2885         // Deprecated, but still needed to read old bitcode files.
2886         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2887                                           Int32TyID);
2888       }
2889       if (!Op1)
2890         return error("Invalid extractelement constexpr record");
2891       V = ConstantExpr::getExtractElement(Op0, Op1);
2892       break;
2893     }
2894     case bitc::CST_CODE_CE_INSERTELT
2895         : { // CE_INSERTELT: [opval, opval, opty, opval]
2896       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2897       if (Record.size() < 3 || !OpTy)
2898         return error("Invalid insertelement constexpr record");
2899       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID);
2900       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2901                                                   OpTy->getElementType(),
2902                                                   getContainedTypeID(CurTyID));
2903       Constant *Op2 = nullptr;
2904       if (Record.size() == 4) {
2905         unsigned IdxTyID = Record[2];
2906         Type *IdxTy = getTypeByID(IdxTyID);
2907         if (!IdxTy)
2908           return error("Invalid insertelement constexpr record");
2909         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2910       } else {
2911         // Deprecated, but still needed to read old bitcode files.
2912         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2913                                           Int32TyID);
2914       }
2915       if (!Op2)
2916         return error("Invalid insertelement constexpr record");
2917       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2918       break;
2919     }
2920     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2921       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2922       if (Record.size() < 3 || !OpTy)
2923         return error("Invalid shufflevector constexpr record");
2924       DelayedShuffles.push_back(
2925           {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2926       ++NextCstNo;
2927       continue;
2928     }
2929     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2930       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2931       VectorType *OpTy =
2932         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2933       if (Record.size() < 4 || !RTy || !OpTy)
2934         return error("Invalid shufflevector constexpr record");
2935       DelayedShuffles.push_back(
2936           {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo});
2937       ++NextCstNo;
2938       continue;
2939     }
2940     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2941       if (Record.size() < 4)
2942         return error("Invalid cmp constexpt record");
2943       unsigned OpTyID = Record[0];
2944       Type *OpTy = getTypeByID(OpTyID);
2945       if (!OpTy)
2946         return error("Invalid cmp constexpr record");
2947       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2948       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2949 
2950       if (OpTy->isFPOrFPVectorTy())
2951         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2952       else
2953         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2954       break;
2955     }
2956     // This maintains backward compatibility, pre-asm dialect keywords.
2957     // Deprecated, but still needed to read old bitcode files.
2958     case bitc::CST_CODE_INLINEASM_OLD: {
2959       if (Record.size() < 2)
2960         return error("Invalid inlineasm record");
2961       std::string AsmStr, ConstrStr;
2962       bool HasSideEffects = Record[0] & 1;
2963       bool IsAlignStack = Record[0] >> 1;
2964       unsigned AsmStrSize = Record[1];
2965       if (2+AsmStrSize >= Record.size())
2966         return error("Invalid inlineasm record");
2967       unsigned ConstStrSize = Record[2+AsmStrSize];
2968       if (3+AsmStrSize+ConstStrSize > Record.size())
2969         return error("Invalid inlineasm record");
2970 
2971       for (unsigned i = 0; i != AsmStrSize; ++i)
2972         AsmStr += (char)Record[2+i];
2973       for (unsigned i = 0; i != ConstStrSize; ++i)
2974         ConstrStr += (char)Record[3+AsmStrSize+i];
2975       UpgradeInlineAsmString(&AsmStr);
2976       if (!CurElemTy)
2977         return error("Missing element type for old-style inlineasm");
2978       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
2979                          HasSideEffects, IsAlignStack);
2980       break;
2981     }
2982     // This version adds support for the asm dialect keywords (e.g.,
2983     // inteldialect).
2984     case bitc::CST_CODE_INLINEASM_OLD2: {
2985       if (Record.size() < 2)
2986         return error("Invalid inlineasm record");
2987       std::string AsmStr, ConstrStr;
2988       bool HasSideEffects = Record[0] & 1;
2989       bool IsAlignStack = (Record[0] >> 1) & 1;
2990       unsigned AsmDialect = Record[0] >> 2;
2991       unsigned AsmStrSize = Record[1];
2992       if (2+AsmStrSize >= Record.size())
2993         return error("Invalid inlineasm record");
2994       unsigned ConstStrSize = Record[2+AsmStrSize];
2995       if (3+AsmStrSize+ConstStrSize > Record.size())
2996         return error("Invalid inlineasm record");
2997 
2998       for (unsigned i = 0; i != AsmStrSize; ++i)
2999         AsmStr += (char)Record[2+i];
3000       for (unsigned i = 0; i != ConstStrSize; ++i)
3001         ConstrStr += (char)Record[3+AsmStrSize+i];
3002       UpgradeInlineAsmString(&AsmStr);
3003       if (!CurElemTy)
3004         return error("Missing element type for old-style inlineasm");
3005       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3006                          HasSideEffects, IsAlignStack,
3007                          InlineAsm::AsmDialect(AsmDialect));
3008       break;
3009     }
3010     // This version adds support for the unwind keyword.
3011     case bitc::CST_CODE_INLINEASM_OLD3: {
3012       if (Record.size() < 2)
3013         return error("Invalid inlineasm record");
3014       unsigned OpNum = 0;
3015       std::string AsmStr, ConstrStr;
3016       bool HasSideEffects = Record[OpNum] & 1;
3017       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3018       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3019       bool CanThrow = (Record[OpNum] >> 3) & 1;
3020       ++OpNum;
3021       unsigned AsmStrSize = Record[OpNum];
3022       ++OpNum;
3023       if (OpNum + AsmStrSize >= Record.size())
3024         return error("Invalid inlineasm record");
3025       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3026       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3027         return error("Invalid inlineasm record");
3028 
3029       for (unsigned i = 0; i != AsmStrSize; ++i)
3030         AsmStr += (char)Record[OpNum + i];
3031       ++OpNum;
3032       for (unsigned i = 0; i != ConstStrSize; ++i)
3033         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3034       UpgradeInlineAsmString(&AsmStr);
3035       if (!CurElemTy)
3036         return error("Missing element type for old-style inlineasm");
3037       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3038                          HasSideEffects, IsAlignStack,
3039                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3040       break;
3041     }
3042     // This version adds explicit function type.
3043     case bitc::CST_CODE_INLINEASM: {
3044       if (Record.size() < 3)
3045         return error("Invalid inlineasm record");
3046       unsigned OpNum = 0;
3047       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3048       ++OpNum;
3049       if (!FnTy)
3050         return error("Invalid inlineasm record");
3051       std::string AsmStr, ConstrStr;
3052       bool HasSideEffects = Record[OpNum] & 1;
3053       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3054       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3055       bool CanThrow = (Record[OpNum] >> 3) & 1;
3056       ++OpNum;
3057       unsigned AsmStrSize = Record[OpNum];
3058       ++OpNum;
3059       if (OpNum + AsmStrSize >= Record.size())
3060         return error("Invalid inlineasm record");
3061       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3062       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3063         return error("Invalid inlineasm record");
3064 
3065       for (unsigned i = 0; i != AsmStrSize; ++i)
3066         AsmStr += (char)Record[OpNum + i];
3067       ++OpNum;
3068       for (unsigned i = 0; i != ConstStrSize; ++i)
3069         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3070       UpgradeInlineAsmString(&AsmStr);
3071       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3072                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3073       break;
3074     }
3075     case bitc::CST_CODE_BLOCKADDRESS:{
3076       if (Record.size() < 3)
3077         return error("Invalid blockaddress record");
3078       unsigned FnTyID = Record[0];
3079       Type *FnTy = getTypeByID(FnTyID);
3080       if (!FnTy)
3081         return error("Invalid blockaddress record");
3082       Function *Fn = dyn_cast_or_null<Function>(
3083           ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID));
3084       if (!Fn)
3085         return error("Invalid blockaddress record");
3086 
3087       // If the function is already parsed we can insert the block address right
3088       // away.
3089       BasicBlock *BB;
3090       unsigned BBID = Record[2];
3091       if (!BBID)
3092         // Invalid reference to entry block.
3093         return error("Invalid ID");
3094       if (!Fn->empty()) {
3095         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3096         for (size_t I = 0, E = BBID; I != E; ++I) {
3097           if (BBI == BBE)
3098             return error("Invalid ID");
3099           ++BBI;
3100         }
3101         BB = &*BBI;
3102       } else {
3103         // Otherwise insert a placeholder and remember it so it can be inserted
3104         // when the function is parsed.
3105         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3106         if (FwdBBs.empty())
3107           BasicBlockFwdRefQueue.push_back(Fn);
3108         if (FwdBBs.size() < BBID + 1)
3109           FwdBBs.resize(BBID + 1);
3110         if (!FwdBBs[BBID])
3111           FwdBBs[BBID] = BasicBlock::Create(Context);
3112         BB = FwdBBs[BBID];
3113       }
3114       V = BlockAddress::get(Fn, BB);
3115       break;
3116     }
3117     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3118       if (Record.size() < 2)
3119         return error("Invalid dso_local record");
3120       unsigned GVTyID = Record[0];
3121       Type *GVTy = getTypeByID(GVTyID);
3122       if (!GVTy)
3123         return error("Invalid dso_local record");
3124       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3125           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3126       if (!GV)
3127         return error("Invalid dso_local record");
3128 
3129       V = DSOLocalEquivalent::get(GV);
3130       break;
3131     }
3132     case bitc::CST_CODE_NO_CFI_VALUE: {
3133       if (Record.size() < 2)
3134         return error("Invalid no_cfi record");
3135       unsigned GVTyID = Record[0];
3136       Type *GVTy = getTypeByID(GVTyID);
3137       if (!GVTy)
3138         return error("Invalid no_cfi record");
3139       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3140           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3141       if (!GV)
3142         return error("Invalid no_cfi record");
3143       V = NoCFIValue::get(GV);
3144       break;
3145     }
3146     }
3147 
3148     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3149     ValueList.assignValue(NextCstNo, V, CurTyID);
3150     ++NextCstNo;
3151   }
3152 }
3153 
3154 Error BitcodeReader::parseUseLists() {
3155   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3156     return Err;
3157 
3158   // Read all the records.
3159   SmallVector<uint64_t, 64> Record;
3160 
3161   while (true) {
3162     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3163     if (!MaybeEntry)
3164       return MaybeEntry.takeError();
3165     BitstreamEntry Entry = MaybeEntry.get();
3166 
3167     switch (Entry.Kind) {
3168     case BitstreamEntry::SubBlock: // Handled for us already.
3169     case BitstreamEntry::Error:
3170       return error("Malformed block");
3171     case BitstreamEntry::EndBlock:
3172       return Error::success();
3173     case BitstreamEntry::Record:
3174       // The interesting case.
3175       break;
3176     }
3177 
3178     // Read a use list record.
3179     Record.clear();
3180     bool IsBB = false;
3181     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3182     if (!MaybeRecord)
3183       return MaybeRecord.takeError();
3184     switch (MaybeRecord.get()) {
3185     default:  // Default behavior: unknown type.
3186       break;
3187     case bitc::USELIST_CODE_BB:
3188       IsBB = true;
3189       LLVM_FALLTHROUGH;
3190     case bitc::USELIST_CODE_DEFAULT: {
3191       unsigned RecordLength = Record.size();
3192       if (RecordLength < 3)
3193         // Records should have at least an ID and two indexes.
3194         return error("Invalid record");
3195       unsigned ID = Record.pop_back_val();
3196 
3197       Value *V;
3198       if (IsBB) {
3199         assert(ID < FunctionBBs.size() && "Basic block not found");
3200         V = FunctionBBs[ID];
3201       } else
3202         V = ValueList[ID];
3203       unsigned NumUses = 0;
3204       SmallDenseMap<const Use *, unsigned, 16> Order;
3205       for (const Use &U : V->materialized_uses()) {
3206         if (++NumUses > Record.size())
3207           break;
3208         Order[&U] = Record[NumUses - 1];
3209       }
3210       if (Order.size() != Record.size() || NumUses > Record.size())
3211         // Mismatches can happen if the functions are being materialized lazily
3212         // (out-of-order), or a value has been upgraded.
3213         break;
3214 
3215       V->sortUseList([&](const Use &L, const Use &R) {
3216         return Order.lookup(&L) < Order.lookup(&R);
3217       });
3218       break;
3219     }
3220     }
3221   }
3222 }
3223 
3224 /// When we see the block for metadata, remember where it is and then skip it.
3225 /// This lets us lazily deserialize the metadata.
3226 Error BitcodeReader::rememberAndSkipMetadata() {
3227   // Save the current stream state.
3228   uint64_t CurBit = Stream.GetCurrentBitNo();
3229   DeferredMetadataInfo.push_back(CurBit);
3230 
3231   // Skip over the block for now.
3232   if (Error Err = Stream.SkipBlock())
3233     return Err;
3234   return Error::success();
3235 }
3236 
3237 Error BitcodeReader::materializeMetadata() {
3238   for (uint64_t BitPos : DeferredMetadataInfo) {
3239     // Move the bit stream to the saved position.
3240     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3241       return JumpFailed;
3242     if (Error Err = MDLoader->parseModuleMetadata())
3243       return Err;
3244   }
3245 
3246   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3247   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3248   // multiple times.
3249   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3250     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3251       NamedMDNode *LinkerOpts =
3252           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3253       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3254         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3255     }
3256   }
3257 
3258   DeferredMetadataInfo.clear();
3259   return Error::success();
3260 }
3261 
3262 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3263 
3264 /// When we see the block for a function body, remember where it is and then
3265 /// skip it.  This lets us lazily deserialize the functions.
3266 Error BitcodeReader::rememberAndSkipFunctionBody() {
3267   // Get the function we are talking about.
3268   if (FunctionsWithBodies.empty())
3269     return error("Insufficient function protos");
3270 
3271   Function *Fn = FunctionsWithBodies.back();
3272   FunctionsWithBodies.pop_back();
3273 
3274   // Save the current stream state.
3275   uint64_t CurBit = Stream.GetCurrentBitNo();
3276   assert(
3277       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3278       "Mismatch between VST and scanned function offsets");
3279   DeferredFunctionInfo[Fn] = CurBit;
3280 
3281   // Skip over the function block for now.
3282   if (Error Err = Stream.SkipBlock())
3283     return Err;
3284   return Error::success();
3285 }
3286 
3287 Error BitcodeReader::globalCleanup() {
3288   // Patch the initializers for globals and aliases up.
3289   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3290     return Err;
3291   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3292     return error("Malformed global initializer set");
3293 
3294   // Look for intrinsic functions which need to be upgraded at some point
3295   // and functions that need to have their function attributes upgraded.
3296   for (Function &F : *TheModule) {
3297     MDLoader->upgradeDebugIntrinsics(F);
3298     Function *NewFn;
3299     if (UpgradeIntrinsicFunction(&F, NewFn))
3300       UpgradedIntrinsics[&F] = NewFn;
3301     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3302       // Some types could be renamed during loading if several modules are
3303       // loaded in the same LLVMContext (LTO scenario). In this case we should
3304       // remangle intrinsics names as well.
3305       RemangledIntrinsics[&F] = Remangled.getValue();
3306     // Look for functions that rely on old function attribute behavior.
3307     UpgradeFunctionAttributes(F);
3308   }
3309 
3310   // Look for global variables which need to be renamed.
3311   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3312   for (GlobalVariable &GV : TheModule->globals())
3313     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3314       UpgradedVariables.emplace_back(&GV, Upgraded);
3315   for (auto &Pair : UpgradedVariables) {
3316     Pair.first->eraseFromParent();
3317     TheModule->getGlobalList().push_back(Pair.second);
3318   }
3319 
3320   // Force deallocation of memory for these vectors to favor the client that
3321   // want lazy deserialization.
3322   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3323   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3324   return Error::success();
3325 }
3326 
3327 /// Support for lazy parsing of function bodies. This is required if we
3328 /// either have an old bitcode file without a VST forward declaration record,
3329 /// or if we have an anonymous function being materialized, since anonymous
3330 /// functions do not have a name and are therefore not in the VST.
3331 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3332   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3333     return JumpFailed;
3334 
3335   if (Stream.AtEndOfStream())
3336     return error("Could not find function in stream");
3337 
3338   if (!SeenFirstFunctionBody)
3339     return error("Trying to materialize functions before seeing function blocks");
3340 
3341   // An old bitcode file with the symbol table at the end would have
3342   // finished the parse greedily.
3343   assert(SeenValueSymbolTable);
3344 
3345   SmallVector<uint64_t, 64> Record;
3346 
3347   while (true) {
3348     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3349     if (!MaybeEntry)
3350       return MaybeEntry.takeError();
3351     llvm::BitstreamEntry Entry = MaybeEntry.get();
3352 
3353     switch (Entry.Kind) {
3354     default:
3355       return error("Expect SubBlock");
3356     case BitstreamEntry::SubBlock:
3357       switch (Entry.ID) {
3358       default:
3359         return error("Expect function block");
3360       case bitc::FUNCTION_BLOCK_ID:
3361         if (Error Err = rememberAndSkipFunctionBody())
3362           return Err;
3363         NextUnreadBit = Stream.GetCurrentBitNo();
3364         return Error::success();
3365       }
3366     }
3367   }
3368 }
3369 
3370 Error BitcodeReaderBase::readBlockInfo() {
3371   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3372       Stream.ReadBlockInfoBlock();
3373   if (!MaybeNewBlockInfo)
3374     return MaybeNewBlockInfo.takeError();
3375   Optional<BitstreamBlockInfo> NewBlockInfo =
3376       std::move(MaybeNewBlockInfo.get());
3377   if (!NewBlockInfo)
3378     return error("Malformed block");
3379   BlockInfo = std::move(*NewBlockInfo);
3380   return Error::success();
3381 }
3382 
3383 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3384   // v1: [selection_kind, name]
3385   // v2: [strtab_offset, strtab_size, selection_kind]
3386   StringRef Name;
3387   std::tie(Name, Record) = readNameFromStrtab(Record);
3388 
3389   if (Record.empty())
3390     return error("Invalid record");
3391   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3392   std::string OldFormatName;
3393   if (!UseStrtab) {
3394     if (Record.size() < 2)
3395       return error("Invalid record");
3396     unsigned ComdatNameSize = Record[1];
3397     if (ComdatNameSize > Record.size() - 2)
3398       return error("Comdat name size too large");
3399     OldFormatName.reserve(ComdatNameSize);
3400     for (unsigned i = 0; i != ComdatNameSize; ++i)
3401       OldFormatName += (char)Record[2 + i];
3402     Name = OldFormatName;
3403   }
3404   Comdat *C = TheModule->getOrInsertComdat(Name);
3405   C->setSelectionKind(SK);
3406   ComdatList.push_back(C);
3407   return Error::success();
3408 }
3409 
3410 static void inferDSOLocal(GlobalValue *GV) {
3411   // infer dso_local from linkage and visibility if it is not encoded.
3412   if (GV->hasLocalLinkage() ||
3413       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3414     GV->setDSOLocal(true);
3415 }
3416 
3417 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3418   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3419   // visibility, threadlocal, unnamed_addr, externally_initialized,
3420   // dllstorageclass, comdat, attributes, preemption specifier,
3421   // partition strtab offset, partition strtab size] (name in VST)
3422   // v2: [strtab_offset, strtab_size, v1]
3423   StringRef Name;
3424   std::tie(Name, Record) = readNameFromStrtab(Record);
3425 
3426   if (Record.size() < 6)
3427     return error("Invalid record");
3428   unsigned TyID = Record[0];
3429   Type *Ty = getTypeByID(TyID);
3430   if (!Ty)
3431     return error("Invalid record");
3432   bool isConstant = Record[1] & 1;
3433   bool explicitType = Record[1] & 2;
3434   unsigned AddressSpace;
3435   if (explicitType) {
3436     AddressSpace = Record[1] >> 2;
3437   } else {
3438     if (!Ty->isPointerTy())
3439       return error("Invalid type for value");
3440     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3441     TyID = getContainedTypeID(TyID);
3442     Ty = getTypeByID(TyID);
3443     if (!Ty)
3444       return error("Missing element type for old-style global");
3445   }
3446 
3447   uint64_t RawLinkage = Record[3];
3448   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3449   MaybeAlign Alignment;
3450   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3451     return Err;
3452   std::string Section;
3453   if (Record[5]) {
3454     if (Record[5] - 1 >= SectionTable.size())
3455       return error("Invalid ID");
3456     Section = SectionTable[Record[5] - 1];
3457   }
3458   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3459   // Local linkage must have default visibility.
3460   // auto-upgrade `hidden` and `protected` for old bitcode.
3461   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3462     Visibility = getDecodedVisibility(Record[6]);
3463 
3464   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3465   if (Record.size() > 7)
3466     TLM = getDecodedThreadLocalMode(Record[7]);
3467 
3468   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3469   if (Record.size() > 8)
3470     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3471 
3472   bool ExternallyInitialized = false;
3473   if (Record.size() > 9)
3474     ExternallyInitialized = Record[9];
3475 
3476   GlobalVariable *NewGV =
3477       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3478                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3479   NewGV->setAlignment(Alignment);
3480   if (!Section.empty())
3481     NewGV->setSection(Section);
3482   NewGV->setVisibility(Visibility);
3483   NewGV->setUnnamedAddr(UnnamedAddr);
3484 
3485   if (Record.size() > 10)
3486     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3487   else
3488     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3489 
3490   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3491 
3492   // Remember which value to use for the global initializer.
3493   if (unsigned InitID = Record[2])
3494     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3495 
3496   if (Record.size() > 11) {
3497     if (unsigned ComdatID = Record[11]) {
3498       if (ComdatID > ComdatList.size())
3499         return error("Invalid global variable comdat ID");
3500       NewGV->setComdat(ComdatList[ComdatID - 1]);
3501     }
3502   } else if (hasImplicitComdat(RawLinkage)) {
3503     ImplicitComdatObjects.insert(NewGV);
3504   }
3505 
3506   if (Record.size() > 12) {
3507     auto AS = getAttributes(Record[12]).getFnAttrs();
3508     NewGV->setAttributes(AS);
3509   }
3510 
3511   if (Record.size() > 13) {
3512     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3513   }
3514   inferDSOLocal(NewGV);
3515 
3516   // Check whether we have enough values to read a partition name.
3517   if (Record.size() > 15)
3518     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3519 
3520   return Error::success();
3521 }
3522 
3523 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3524   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3525   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3526   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3527   // v2: [strtab_offset, strtab_size, v1]
3528   StringRef Name;
3529   std::tie(Name, Record) = readNameFromStrtab(Record);
3530 
3531   if (Record.size() < 8)
3532     return error("Invalid record");
3533   unsigned FTyID = Record[0];
3534   Type *FTy = getTypeByID(FTyID);
3535   if (!FTy)
3536     return error("Invalid record");
3537   if (isa<PointerType>(FTy)) {
3538     FTyID = getContainedTypeID(FTyID, 0);
3539     FTy = getTypeByID(FTyID);
3540     if (!FTy)
3541       return error("Missing element type for old-style function");
3542   }
3543 
3544   if (!isa<FunctionType>(FTy))
3545     return error("Invalid type for value");
3546   auto CC = static_cast<CallingConv::ID>(Record[1]);
3547   if (CC & ~CallingConv::MaxID)
3548     return error("Invalid calling convention ID");
3549 
3550   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3551   if (Record.size() > 16)
3552     AddrSpace = Record[16];
3553 
3554   Function *Func =
3555       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3556                        AddrSpace, Name, TheModule);
3557 
3558   assert(Func->getFunctionType() == FTy &&
3559          "Incorrect fully specified type provided for function");
3560   FunctionTypeIDs[Func] = FTyID;
3561 
3562   Func->setCallingConv(CC);
3563   bool isProto = Record[2];
3564   uint64_t RawLinkage = Record[3];
3565   Func->setLinkage(getDecodedLinkage(RawLinkage));
3566   Func->setAttributes(getAttributes(Record[4]));
3567 
3568   // Upgrade any old-style byval or sret without a type by propagating the
3569   // argument's pointee type. There should be no opaque pointers where the byval
3570   // type is implicit.
3571   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3572     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3573                                      Attribute::InAlloca}) {
3574       if (!Func->hasParamAttribute(i, Kind))
3575         continue;
3576 
3577       if (Func->getParamAttribute(i, Kind).getValueAsType())
3578         continue;
3579 
3580       Func->removeParamAttr(i, Kind);
3581 
3582       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3583       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3584       if (!PtrEltTy)
3585         return error("Missing param element type for attribute upgrade");
3586 
3587       Attribute NewAttr;
3588       switch (Kind) {
3589       case Attribute::ByVal:
3590         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3591         break;
3592       case Attribute::StructRet:
3593         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3594         break;
3595       case Attribute::InAlloca:
3596         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3597         break;
3598       default:
3599         llvm_unreachable("not an upgraded type attribute");
3600       }
3601 
3602       Func->addParamAttr(i, NewAttr);
3603     }
3604   }
3605 
3606   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3607       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3608     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3609     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3610     if (!ByValTy)
3611       return error("Missing param element type for x86_intrcc upgrade");
3612     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3613     Func->addParamAttr(0, NewAttr);
3614   }
3615 
3616   MaybeAlign Alignment;
3617   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3618     return Err;
3619   Func->setAlignment(Alignment);
3620   if (Record[6]) {
3621     if (Record[6] - 1 >= SectionTable.size())
3622       return error("Invalid ID");
3623     Func->setSection(SectionTable[Record[6] - 1]);
3624   }
3625   // Local linkage must have default visibility.
3626   // auto-upgrade `hidden` and `protected` for old bitcode.
3627   if (!Func->hasLocalLinkage())
3628     Func->setVisibility(getDecodedVisibility(Record[7]));
3629   if (Record.size() > 8 && Record[8]) {
3630     if (Record[8] - 1 >= GCTable.size())
3631       return error("Invalid ID");
3632     Func->setGC(GCTable[Record[8] - 1]);
3633   }
3634   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3635   if (Record.size() > 9)
3636     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3637   Func->setUnnamedAddr(UnnamedAddr);
3638 
3639   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3640   if (Record.size() > 10)
3641     OperandInfo.Prologue = Record[10];
3642 
3643   if (Record.size() > 11)
3644     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3645   else
3646     upgradeDLLImportExportLinkage(Func, RawLinkage);
3647 
3648   if (Record.size() > 12) {
3649     if (unsigned ComdatID = Record[12]) {
3650       if (ComdatID > ComdatList.size())
3651         return error("Invalid function comdat ID");
3652       Func->setComdat(ComdatList[ComdatID - 1]);
3653     }
3654   } else if (hasImplicitComdat(RawLinkage)) {
3655     ImplicitComdatObjects.insert(Func);
3656   }
3657 
3658   if (Record.size() > 13)
3659     OperandInfo.Prefix = Record[13];
3660 
3661   if (Record.size() > 14)
3662     OperandInfo.PersonalityFn = Record[14];
3663 
3664   if (Record.size() > 15) {
3665     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3666   }
3667   inferDSOLocal(Func);
3668 
3669   // Record[16] is the address space number.
3670 
3671   // Check whether we have enough values to read a partition name. Also make
3672   // sure Strtab has enough values.
3673   if (Record.size() > 18 && Strtab.data() &&
3674       Record[17] + Record[18] <= Strtab.size()) {
3675     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3676   }
3677 
3678   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3679 
3680   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3681     FunctionOperands.push_back(OperandInfo);
3682 
3683   // If this is a function with a body, remember the prototype we are
3684   // creating now, so that we can match up the body with them later.
3685   if (!isProto) {
3686     Func->setIsMaterializable(true);
3687     FunctionsWithBodies.push_back(Func);
3688     DeferredFunctionInfo[Func] = 0;
3689   }
3690   return Error::success();
3691 }
3692 
3693 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3694     unsigned BitCode, ArrayRef<uint64_t> Record) {
3695   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3696   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3697   // dllstorageclass, threadlocal, unnamed_addr,
3698   // preemption specifier] (name in VST)
3699   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3700   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3701   // preemption specifier] (name in VST)
3702   // v2: [strtab_offset, strtab_size, v1]
3703   StringRef Name;
3704   std::tie(Name, Record) = readNameFromStrtab(Record);
3705 
3706   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3707   if (Record.size() < (3 + (unsigned)NewRecord))
3708     return error("Invalid record");
3709   unsigned OpNum = 0;
3710   unsigned TypeID = Record[OpNum++];
3711   Type *Ty = getTypeByID(TypeID);
3712   if (!Ty)
3713     return error("Invalid record");
3714 
3715   unsigned AddrSpace;
3716   if (!NewRecord) {
3717     auto *PTy = dyn_cast<PointerType>(Ty);
3718     if (!PTy)
3719       return error("Invalid type for value");
3720     AddrSpace = PTy->getAddressSpace();
3721     TypeID = getContainedTypeID(TypeID);
3722     Ty = getTypeByID(TypeID);
3723     if (!Ty)
3724       return error("Missing element type for old-style indirect symbol");
3725   } else {
3726     AddrSpace = Record[OpNum++];
3727   }
3728 
3729   auto Val = Record[OpNum++];
3730   auto Linkage = Record[OpNum++];
3731   GlobalValue *NewGA;
3732   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3733       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3734     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3735                                 TheModule);
3736   else
3737     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3738                                 nullptr, TheModule);
3739 
3740   // Local linkage must have default visibility.
3741   // auto-upgrade `hidden` and `protected` for old bitcode.
3742   if (OpNum != Record.size()) {
3743     auto VisInd = OpNum++;
3744     if (!NewGA->hasLocalLinkage())
3745       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3746   }
3747   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3748       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3749     if (OpNum != Record.size())
3750       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3751     else
3752       upgradeDLLImportExportLinkage(NewGA, Linkage);
3753     if (OpNum != Record.size())
3754       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3755     if (OpNum != Record.size())
3756       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3757   }
3758   if (OpNum != Record.size())
3759     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3760   inferDSOLocal(NewGA);
3761 
3762   // Check whether we have enough values to read a partition name.
3763   if (OpNum + 1 < Record.size()) {
3764     NewGA->setPartition(
3765         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3766     OpNum += 2;
3767   }
3768 
3769   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
3770   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3771   return Error::success();
3772 }
3773 
3774 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3775                                  bool ShouldLazyLoadMetadata,
3776                                  DataLayoutCallbackTy DataLayoutCallback) {
3777   if (ResumeBit) {
3778     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3779       return JumpFailed;
3780   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3781     return Err;
3782 
3783   SmallVector<uint64_t, 64> Record;
3784 
3785   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3786   // finalize the datalayout before we run any of that code.
3787   bool ResolvedDataLayout = false;
3788   auto ResolveDataLayout = [&] {
3789     if (ResolvedDataLayout)
3790       return;
3791 
3792     // datalayout and triple can't be parsed after this point.
3793     ResolvedDataLayout = true;
3794 
3795     // Upgrade data layout string.
3796     std::string DL = llvm::UpgradeDataLayoutString(
3797         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3798     TheModule->setDataLayout(DL);
3799 
3800     if (auto LayoutOverride =
3801             DataLayoutCallback(TheModule->getTargetTriple()))
3802       TheModule->setDataLayout(*LayoutOverride);
3803   };
3804 
3805   // Read all the records for this module.
3806   while (true) {
3807     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3808     if (!MaybeEntry)
3809       return MaybeEntry.takeError();
3810     llvm::BitstreamEntry Entry = MaybeEntry.get();
3811 
3812     switch (Entry.Kind) {
3813     case BitstreamEntry::Error:
3814       return error("Malformed block");
3815     case BitstreamEntry::EndBlock:
3816       ResolveDataLayout();
3817       return globalCleanup();
3818 
3819     case BitstreamEntry::SubBlock:
3820       switch (Entry.ID) {
3821       default:  // Skip unknown content.
3822         if (Error Err = Stream.SkipBlock())
3823           return Err;
3824         break;
3825       case bitc::BLOCKINFO_BLOCK_ID:
3826         if (Error Err = readBlockInfo())
3827           return Err;
3828         break;
3829       case bitc::PARAMATTR_BLOCK_ID:
3830         if (Error Err = parseAttributeBlock())
3831           return Err;
3832         break;
3833       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3834         if (Error Err = parseAttributeGroupBlock())
3835           return Err;
3836         break;
3837       case bitc::TYPE_BLOCK_ID_NEW:
3838         if (Error Err = parseTypeTable())
3839           return Err;
3840         break;
3841       case bitc::VALUE_SYMTAB_BLOCK_ID:
3842         if (!SeenValueSymbolTable) {
3843           // Either this is an old form VST without function index and an
3844           // associated VST forward declaration record (which would have caused
3845           // the VST to be jumped to and parsed before it was encountered
3846           // normally in the stream), or there were no function blocks to
3847           // trigger an earlier parsing of the VST.
3848           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3849           if (Error Err = parseValueSymbolTable())
3850             return Err;
3851           SeenValueSymbolTable = true;
3852         } else {
3853           // We must have had a VST forward declaration record, which caused
3854           // the parser to jump to and parse the VST earlier.
3855           assert(VSTOffset > 0);
3856           if (Error Err = Stream.SkipBlock())
3857             return Err;
3858         }
3859         break;
3860       case bitc::CONSTANTS_BLOCK_ID:
3861         if (Error Err = parseConstants())
3862           return Err;
3863         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3864           return Err;
3865         break;
3866       case bitc::METADATA_BLOCK_ID:
3867         if (ShouldLazyLoadMetadata) {
3868           if (Error Err = rememberAndSkipMetadata())
3869             return Err;
3870           break;
3871         }
3872         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3873         if (Error Err = MDLoader->parseModuleMetadata())
3874           return Err;
3875         break;
3876       case bitc::METADATA_KIND_BLOCK_ID:
3877         if (Error Err = MDLoader->parseMetadataKinds())
3878           return Err;
3879         break;
3880       case bitc::FUNCTION_BLOCK_ID:
3881         ResolveDataLayout();
3882 
3883         // If this is the first function body we've seen, reverse the
3884         // FunctionsWithBodies list.
3885         if (!SeenFirstFunctionBody) {
3886           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3887           if (Error Err = globalCleanup())
3888             return Err;
3889           SeenFirstFunctionBody = true;
3890         }
3891 
3892         if (VSTOffset > 0) {
3893           // If we have a VST forward declaration record, make sure we
3894           // parse the VST now if we haven't already. It is needed to
3895           // set up the DeferredFunctionInfo vector for lazy reading.
3896           if (!SeenValueSymbolTable) {
3897             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3898               return Err;
3899             SeenValueSymbolTable = true;
3900             // Fall through so that we record the NextUnreadBit below.
3901             // This is necessary in case we have an anonymous function that
3902             // is later materialized. Since it will not have a VST entry we
3903             // need to fall back to the lazy parse to find its offset.
3904           } else {
3905             // If we have a VST forward declaration record, but have already
3906             // parsed the VST (just above, when the first function body was
3907             // encountered here), then we are resuming the parse after
3908             // materializing functions. The ResumeBit points to the
3909             // start of the last function block recorded in the
3910             // DeferredFunctionInfo map. Skip it.
3911             if (Error Err = Stream.SkipBlock())
3912               return Err;
3913             continue;
3914           }
3915         }
3916 
3917         // Support older bitcode files that did not have the function
3918         // index in the VST, nor a VST forward declaration record, as
3919         // well as anonymous functions that do not have VST entries.
3920         // Build the DeferredFunctionInfo vector on the fly.
3921         if (Error Err = rememberAndSkipFunctionBody())
3922           return Err;
3923 
3924         // Suspend parsing when we reach the function bodies. Subsequent
3925         // materialization calls will resume it when necessary. If the bitcode
3926         // file is old, the symbol table will be at the end instead and will not
3927         // have been seen yet. In this case, just finish the parse now.
3928         if (SeenValueSymbolTable) {
3929           NextUnreadBit = Stream.GetCurrentBitNo();
3930           // After the VST has been parsed, we need to make sure intrinsic name
3931           // are auto-upgraded.
3932           return globalCleanup();
3933         }
3934         break;
3935       case bitc::USELIST_BLOCK_ID:
3936         if (Error Err = parseUseLists())
3937           return Err;
3938         break;
3939       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3940         if (Error Err = parseOperandBundleTags())
3941           return Err;
3942         break;
3943       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3944         if (Error Err = parseSyncScopeNames())
3945           return Err;
3946         break;
3947       }
3948       continue;
3949 
3950     case BitstreamEntry::Record:
3951       // The interesting case.
3952       break;
3953     }
3954 
3955     // Read a record.
3956     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3957     if (!MaybeBitCode)
3958       return MaybeBitCode.takeError();
3959     switch (unsigned BitCode = MaybeBitCode.get()) {
3960     default: break;  // Default behavior, ignore unknown content.
3961     case bitc::MODULE_CODE_VERSION: {
3962       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3963       if (!VersionOrErr)
3964         return VersionOrErr.takeError();
3965       UseRelativeIDs = *VersionOrErr >= 1;
3966       break;
3967     }
3968     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3969       if (ResolvedDataLayout)
3970         return error("target triple too late in module");
3971       std::string S;
3972       if (convertToString(Record, 0, S))
3973         return error("Invalid record");
3974       TheModule->setTargetTriple(S);
3975       break;
3976     }
3977     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3978       if (ResolvedDataLayout)
3979         return error("datalayout too late in module");
3980       std::string S;
3981       if (convertToString(Record, 0, S))
3982         return error("Invalid record");
3983       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3984       if (!MaybeDL)
3985         return MaybeDL.takeError();
3986       TheModule->setDataLayout(MaybeDL.get());
3987       break;
3988     }
3989     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3990       std::string S;
3991       if (convertToString(Record, 0, S))
3992         return error("Invalid record");
3993       TheModule->setModuleInlineAsm(S);
3994       break;
3995     }
3996     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3997       // Deprecated, but still needed to read old bitcode files.
3998       std::string S;
3999       if (convertToString(Record, 0, S))
4000         return error("Invalid record");
4001       // Ignore value.
4002       break;
4003     }
4004     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4005       std::string S;
4006       if (convertToString(Record, 0, S))
4007         return error("Invalid record");
4008       SectionTable.push_back(S);
4009       break;
4010     }
4011     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4012       std::string S;
4013       if (convertToString(Record, 0, S))
4014         return error("Invalid record");
4015       GCTable.push_back(S);
4016       break;
4017     }
4018     case bitc::MODULE_CODE_COMDAT:
4019       if (Error Err = parseComdatRecord(Record))
4020         return Err;
4021       break;
4022     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4023     // written by ThinLinkBitcodeWriter. See
4024     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4025     // record
4026     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4027     case bitc::MODULE_CODE_GLOBALVAR:
4028       if (Error Err = parseGlobalVarRecord(Record))
4029         return Err;
4030       break;
4031     case bitc::MODULE_CODE_FUNCTION:
4032       ResolveDataLayout();
4033       if (Error Err = parseFunctionRecord(Record))
4034         return Err;
4035       break;
4036     case bitc::MODULE_CODE_IFUNC:
4037     case bitc::MODULE_CODE_ALIAS:
4038     case bitc::MODULE_CODE_ALIAS_OLD:
4039       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4040         return Err;
4041       break;
4042     /// MODULE_CODE_VSTOFFSET: [offset]
4043     case bitc::MODULE_CODE_VSTOFFSET:
4044       if (Record.empty())
4045         return error("Invalid record");
4046       // Note that we subtract 1 here because the offset is relative to one word
4047       // before the start of the identification or module block, which was
4048       // historically always the start of the regular bitcode header.
4049       VSTOffset = Record[0] - 1;
4050       break;
4051     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4052     case bitc::MODULE_CODE_SOURCE_FILENAME:
4053       SmallString<128> ValueName;
4054       if (convertToString(Record, 0, ValueName))
4055         return error("Invalid record");
4056       TheModule->setSourceFileName(ValueName);
4057       break;
4058     }
4059     Record.clear();
4060   }
4061 }
4062 
4063 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4064                                       bool IsImporting,
4065                                       DataLayoutCallbackTy DataLayoutCallback) {
4066   TheModule = M;
4067   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4068                             [&](unsigned ID) { return getTypeByID(ID); });
4069   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4070 }
4071 
4072 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4073   if (!isa<PointerType>(PtrType))
4074     return error("Load/Store operand is not a pointer type");
4075 
4076   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4077     return error("Explicit load/store type does not match pointee "
4078                  "type of pointer operand");
4079   if (!PointerType::isLoadableOrStorableType(ValType))
4080     return error("Cannot load/store from pointer");
4081   return Error::success();
4082 }
4083 
4084 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4085                                              ArrayRef<unsigned> ArgTyIDs) {
4086   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4087     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4088                                      Attribute::InAlloca}) {
4089       if (!CB->paramHasAttr(i, Kind) ||
4090           CB->getParamAttr(i, Kind).getValueAsType())
4091         continue;
4092 
4093       CB->removeParamAttr(i, Kind);
4094 
4095       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4096       if (!PtrEltTy)
4097         return error("Missing element type for typed attribute upgrade");
4098 
4099       Attribute NewAttr;
4100       switch (Kind) {
4101       case Attribute::ByVal:
4102         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4103         break;
4104       case Attribute::StructRet:
4105         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4106         break;
4107       case Attribute::InAlloca:
4108         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4109         break;
4110       default:
4111         llvm_unreachable("not an upgraded type attribute");
4112       }
4113 
4114       CB->addParamAttr(i, NewAttr);
4115     }
4116   }
4117 
4118   if (CB->isInlineAsm()) {
4119     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4120     unsigned ArgNo = 0;
4121     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4122       if (!CI.hasArg())
4123         continue;
4124 
4125       if (CI.isIndirect && !CB->getParamElementType(ArgNo)) {
4126         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4127         if (!ElemTy)
4128           return error("Missing element type for inline asm upgrade");
4129         CB->addParamAttr(
4130             ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
4131       }
4132 
4133       ArgNo++;
4134     }
4135   }
4136 
4137   switch (CB->getIntrinsicID()) {
4138   case Intrinsic::preserve_array_access_index:
4139   case Intrinsic::preserve_struct_access_index:
4140     if (!CB->getParamElementType(0)) {
4141       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[0]);
4142       if (!ElTy)
4143         return error("Missing element type for elementtype upgrade");
4144       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4145       CB->addParamAttr(0, NewAttr);
4146     }
4147     break;
4148   default:
4149     break;
4150   }
4151 
4152   return Error::success();
4153 }
4154 
4155 /// Lazily parse the specified function body block.
4156 Error BitcodeReader::parseFunctionBody(Function *F) {
4157   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4158     return Err;
4159 
4160   // Unexpected unresolved metadata when parsing function.
4161   if (MDLoader->hasFwdRefs())
4162     return error("Invalid function metadata: incoming forward references");
4163 
4164   InstructionList.clear();
4165   unsigned ModuleValueListSize = ValueList.size();
4166   unsigned ModuleMDLoaderSize = MDLoader->size();
4167 
4168   // Add all the function arguments to the value table.
4169   unsigned ArgNo = 0;
4170   unsigned FTyID = FunctionTypeIDs[F];
4171   for (Argument &I : F->args()) {
4172     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4173     assert(I.getType() == getTypeByID(ArgTyID) &&
4174            "Incorrect fully specified type for Function Argument");
4175     ValueList.push_back(&I, ArgTyID);
4176     ++ArgNo;
4177   }
4178   unsigned NextValueNo = ValueList.size();
4179   BasicBlock *CurBB = nullptr;
4180   unsigned CurBBNo = 0;
4181 
4182   DebugLoc LastLoc;
4183   auto getLastInstruction = [&]() -> Instruction * {
4184     if (CurBB && !CurBB->empty())
4185       return &CurBB->back();
4186     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4187              !FunctionBBs[CurBBNo - 1]->empty())
4188       return &FunctionBBs[CurBBNo - 1]->back();
4189     return nullptr;
4190   };
4191 
4192   std::vector<OperandBundleDef> OperandBundles;
4193 
4194   // Read all the records.
4195   SmallVector<uint64_t, 64> Record;
4196 
4197   while (true) {
4198     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4199     if (!MaybeEntry)
4200       return MaybeEntry.takeError();
4201     llvm::BitstreamEntry Entry = MaybeEntry.get();
4202 
4203     switch (Entry.Kind) {
4204     case BitstreamEntry::Error:
4205       return error("Malformed block");
4206     case BitstreamEntry::EndBlock:
4207       goto OutOfRecordLoop;
4208 
4209     case BitstreamEntry::SubBlock:
4210       switch (Entry.ID) {
4211       default:  // Skip unknown content.
4212         if (Error Err = Stream.SkipBlock())
4213           return Err;
4214         break;
4215       case bitc::CONSTANTS_BLOCK_ID:
4216         if (Error Err = parseConstants())
4217           return Err;
4218         NextValueNo = ValueList.size();
4219         break;
4220       case bitc::VALUE_SYMTAB_BLOCK_ID:
4221         if (Error Err = parseValueSymbolTable())
4222           return Err;
4223         break;
4224       case bitc::METADATA_ATTACHMENT_ID:
4225         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4226           return Err;
4227         break;
4228       case bitc::METADATA_BLOCK_ID:
4229         assert(DeferredMetadataInfo.empty() &&
4230                "Must read all module-level metadata before function-level");
4231         if (Error Err = MDLoader->parseFunctionMetadata())
4232           return Err;
4233         break;
4234       case bitc::USELIST_BLOCK_ID:
4235         if (Error Err = parseUseLists())
4236           return Err;
4237         break;
4238       }
4239       continue;
4240 
4241     case BitstreamEntry::Record:
4242       // The interesting case.
4243       break;
4244     }
4245 
4246     // Read a record.
4247     Record.clear();
4248     Instruction *I = nullptr;
4249     unsigned ResTypeID = InvalidTypeID;
4250     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4251     if (!MaybeBitCode)
4252       return MaybeBitCode.takeError();
4253     switch (unsigned BitCode = MaybeBitCode.get()) {
4254     default: // Default behavior: reject
4255       return error("Invalid value");
4256     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4257       if (Record.empty() || Record[0] == 0)
4258         return error("Invalid record");
4259       // Create all the basic blocks for the function.
4260       FunctionBBs.resize(Record[0]);
4261 
4262       // See if anything took the address of blocks in this function.
4263       auto BBFRI = BasicBlockFwdRefs.find(F);
4264       if (BBFRI == BasicBlockFwdRefs.end()) {
4265         for (BasicBlock *&BB : FunctionBBs)
4266           BB = BasicBlock::Create(Context, "", F);
4267       } else {
4268         auto &BBRefs = BBFRI->second;
4269         // Check for invalid basic block references.
4270         if (BBRefs.size() > FunctionBBs.size())
4271           return error("Invalid ID");
4272         assert(!BBRefs.empty() && "Unexpected empty array");
4273         assert(!BBRefs.front() && "Invalid reference to entry block");
4274         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4275              ++I)
4276           if (I < RE && BBRefs[I]) {
4277             BBRefs[I]->insertInto(F);
4278             FunctionBBs[I] = BBRefs[I];
4279           } else {
4280             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4281           }
4282 
4283         // Erase from the table.
4284         BasicBlockFwdRefs.erase(BBFRI);
4285       }
4286 
4287       CurBB = FunctionBBs[0];
4288       continue;
4289     }
4290 
4291     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4292       // This record indicates that the last instruction is at the same
4293       // location as the previous instruction with a location.
4294       I = getLastInstruction();
4295 
4296       if (!I)
4297         return error("Invalid record");
4298       I->setDebugLoc(LastLoc);
4299       I = nullptr;
4300       continue;
4301 
4302     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4303       I = getLastInstruction();
4304       if (!I || Record.size() < 4)
4305         return error("Invalid record");
4306 
4307       unsigned Line = Record[0], Col = Record[1];
4308       unsigned ScopeID = Record[2], IAID = Record[3];
4309       bool isImplicitCode = Record.size() == 5 && Record[4];
4310 
4311       MDNode *Scope = nullptr, *IA = nullptr;
4312       if (ScopeID) {
4313         Scope = dyn_cast_or_null<MDNode>(
4314             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4315         if (!Scope)
4316           return error("Invalid record");
4317       }
4318       if (IAID) {
4319         IA = dyn_cast_or_null<MDNode>(
4320             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4321         if (!IA)
4322           return error("Invalid record");
4323       }
4324       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4325                                 isImplicitCode);
4326       I->setDebugLoc(LastLoc);
4327       I = nullptr;
4328       continue;
4329     }
4330     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4331       unsigned OpNum = 0;
4332       Value *LHS;
4333       unsigned TypeID;
4334       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4335           OpNum+1 > Record.size())
4336         return error("Invalid record");
4337 
4338       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4339       if (Opc == -1)
4340         return error("Invalid record");
4341       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4342       ResTypeID = TypeID;
4343       InstructionList.push_back(I);
4344       if (OpNum < Record.size()) {
4345         if (isa<FPMathOperator>(I)) {
4346           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4347           if (FMF.any())
4348             I->setFastMathFlags(FMF);
4349         }
4350       }
4351       break;
4352     }
4353     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4354       unsigned OpNum = 0;
4355       Value *LHS, *RHS;
4356       unsigned TypeID;
4357       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4358           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) ||
4359           OpNum+1 > Record.size())
4360         return error("Invalid record");
4361 
4362       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4363       if (Opc == -1)
4364         return error("Invalid record");
4365       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4366       ResTypeID = TypeID;
4367       InstructionList.push_back(I);
4368       if (OpNum < Record.size()) {
4369         if (Opc == Instruction::Add ||
4370             Opc == Instruction::Sub ||
4371             Opc == Instruction::Mul ||
4372             Opc == Instruction::Shl) {
4373           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4374             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4375           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4376             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4377         } else if (Opc == Instruction::SDiv ||
4378                    Opc == Instruction::UDiv ||
4379                    Opc == Instruction::LShr ||
4380                    Opc == Instruction::AShr) {
4381           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4382             cast<BinaryOperator>(I)->setIsExact(true);
4383         } else if (isa<FPMathOperator>(I)) {
4384           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4385           if (FMF.any())
4386             I->setFastMathFlags(FMF);
4387         }
4388 
4389       }
4390       break;
4391     }
4392     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4393       unsigned OpNum = 0;
4394       Value *Op;
4395       unsigned OpTypeID;
4396       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
4397           OpNum+2 != Record.size())
4398         return error("Invalid record");
4399 
4400       ResTypeID = Record[OpNum];
4401       Type *ResTy = getTypeByID(ResTypeID);
4402       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4403       if (Opc == -1 || !ResTy)
4404         return error("Invalid record");
4405       Instruction *Temp = nullptr;
4406       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4407         if (Temp) {
4408           InstructionList.push_back(Temp);
4409           assert(CurBB && "No current BB?");
4410           CurBB->getInstList().push_back(Temp);
4411         }
4412       } else {
4413         auto CastOp = (Instruction::CastOps)Opc;
4414         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4415           return error("Invalid cast");
4416         I = CastInst::Create(CastOp, Op, ResTy);
4417       }
4418       InstructionList.push_back(I);
4419       break;
4420     }
4421     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4422     case bitc::FUNC_CODE_INST_GEP_OLD:
4423     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4424       unsigned OpNum = 0;
4425 
4426       unsigned TyID;
4427       Type *Ty;
4428       bool InBounds;
4429 
4430       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4431         InBounds = Record[OpNum++];
4432         TyID = Record[OpNum++];
4433         Ty = getTypeByID(TyID);
4434       } else {
4435         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4436         TyID = InvalidTypeID;
4437         Ty = nullptr;
4438       }
4439 
4440       Value *BasePtr;
4441       unsigned BasePtrTypeID;
4442       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID))
4443         return error("Invalid record");
4444 
4445       if (!Ty) {
4446         TyID = getContainedTypeID(BasePtrTypeID);
4447         if (BasePtr->getType()->isVectorTy())
4448           TyID = getContainedTypeID(TyID);
4449         Ty = getTypeByID(TyID);
4450       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4451                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4452         return error(
4453             "Explicit gep type does not match pointee type of pointer operand");
4454       }
4455 
4456       SmallVector<Value*, 16> GEPIdx;
4457       while (OpNum != Record.size()) {
4458         Value *Op;
4459         unsigned OpTypeID;
4460         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4461           return error("Invalid record");
4462         GEPIdx.push_back(Op);
4463       }
4464 
4465       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4466 
4467       ResTypeID = TyID;
4468       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4469         auto GTI = std::next(gep_type_begin(I));
4470         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4471           unsigned SubType = 0;
4472           if (GTI.isStruct()) {
4473             ConstantInt *IdxC =
4474                 Idx->getType()->isVectorTy()
4475                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4476                     : cast<ConstantInt>(Idx);
4477             SubType = IdxC->getZExtValue();
4478           }
4479           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4480           ++GTI;
4481         }
4482       }
4483 
4484       // At this point ResTypeID is the result element type. We need a pointer
4485       // or vector of pointer to it.
4486       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4487       if (I->getType()->isVectorTy())
4488         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4489 
4490       InstructionList.push_back(I);
4491       if (InBounds)
4492         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4493       break;
4494     }
4495 
4496     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4497                                        // EXTRACTVAL: [opty, opval, n x indices]
4498       unsigned OpNum = 0;
4499       Value *Agg;
4500       unsigned AggTypeID;
4501       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4502         return error("Invalid record");
4503       Type *Ty = Agg->getType();
4504 
4505       unsigned RecSize = Record.size();
4506       if (OpNum == RecSize)
4507         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4508 
4509       SmallVector<unsigned, 4> EXTRACTVALIdx;
4510       ResTypeID = AggTypeID;
4511       for (; OpNum != RecSize; ++OpNum) {
4512         bool IsArray = Ty->isArrayTy();
4513         bool IsStruct = Ty->isStructTy();
4514         uint64_t Index = Record[OpNum];
4515 
4516         if (!IsStruct && !IsArray)
4517           return error("EXTRACTVAL: Invalid type");
4518         if ((unsigned)Index != Index)
4519           return error("Invalid value");
4520         if (IsStruct && Index >= Ty->getStructNumElements())
4521           return error("EXTRACTVAL: Invalid struct index");
4522         if (IsArray && Index >= Ty->getArrayNumElements())
4523           return error("EXTRACTVAL: Invalid array index");
4524         EXTRACTVALIdx.push_back((unsigned)Index);
4525 
4526         if (IsStruct) {
4527           Ty = Ty->getStructElementType(Index);
4528           ResTypeID = getContainedTypeID(ResTypeID, Index);
4529         } else {
4530           Ty = Ty->getArrayElementType();
4531           ResTypeID = getContainedTypeID(ResTypeID);
4532         }
4533       }
4534 
4535       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4536       InstructionList.push_back(I);
4537       break;
4538     }
4539 
4540     case bitc::FUNC_CODE_INST_INSERTVAL: {
4541                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4542       unsigned OpNum = 0;
4543       Value *Agg;
4544       unsigned AggTypeID;
4545       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4546         return error("Invalid record");
4547       Value *Val;
4548       unsigned ValTypeID;
4549       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
4550         return error("Invalid record");
4551 
4552       unsigned RecSize = Record.size();
4553       if (OpNum == RecSize)
4554         return error("INSERTVAL: Invalid instruction with 0 indices");
4555 
4556       SmallVector<unsigned, 4> INSERTVALIdx;
4557       Type *CurTy = Agg->getType();
4558       for (; OpNum != RecSize; ++OpNum) {
4559         bool IsArray = CurTy->isArrayTy();
4560         bool IsStruct = CurTy->isStructTy();
4561         uint64_t Index = Record[OpNum];
4562 
4563         if (!IsStruct && !IsArray)
4564           return error("INSERTVAL: Invalid type");
4565         if ((unsigned)Index != Index)
4566           return error("Invalid value");
4567         if (IsStruct && Index >= CurTy->getStructNumElements())
4568           return error("INSERTVAL: Invalid struct index");
4569         if (IsArray && Index >= CurTy->getArrayNumElements())
4570           return error("INSERTVAL: Invalid array index");
4571 
4572         INSERTVALIdx.push_back((unsigned)Index);
4573         if (IsStruct)
4574           CurTy = CurTy->getStructElementType(Index);
4575         else
4576           CurTy = CurTy->getArrayElementType();
4577       }
4578 
4579       if (CurTy != Val->getType())
4580         return error("Inserted value type doesn't match aggregate type");
4581 
4582       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4583       ResTypeID = AggTypeID;
4584       InstructionList.push_back(I);
4585       break;
4586     }
4587 
4588     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4589       // obsolete form of select
4590       // handles select i1 ... in old bitcode
4591       unsigned OpNum = 0;
4592       Value *TrueVal, *FalseVal, *Cond;
4593       unsigned TypeID;
4594       Type *CondType = Type::getInt1Ty(Context);
4595       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) ||
4596           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4597                    FalseVal) ||
4598           popValue(Record, OpNum, NextValueNo, CondType,
4599                    getVirtualTypeID(CondType), Cond))
4600         return error("Invalid record");
4601 
4602       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4603       ResTypeID = TypeID;
4604       InstructionList.push_back(I);
4605       break;
4606     }
4607 
4608     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4609       // new form of select
4610       // handles select i1 or select [N x i1]
4611       unsigned OpNum = 0;
4612       Value *TrueVal, *FalseVal, *Cond;
4613       unsigned ValTypeID, CondTypeID;
4614       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) ||
4615           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4616                    FalseVal) ||
4617           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID))
4618         return error("Invalid record");
4619 
4620       // select condition can be either i1 or [N x i1]
4621       if (VectorType* vector_type =
4622           dyn_cast<VectorType>(Cond->getType())) {
4623         // expect <n x i1>
4624         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4625           return error("Invalid type for value");
4626       } else {
4627         // expect i1
4628         if (Cond->getType() != Type::getInt1Ty(Context))
4629           return error("Invalid type for value");
4630       }
4631 
4632       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4633       ResTypeID = ValTypeID;
4634       InstructionList.push_back(I);
4635       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4636         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4637         if (FMF.any())
4638           I->setFastMathFlags(FMF);
4639       }
4640       break;
4641     }
4642 
4643     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4644       unsigned OpNum = 0;
4645       Value *Vec, *Idx;
4646       unsigned VecTypeID, IdxTypeID;
4647       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) ||
4648           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4649         return error("Invalid record");
4650       if (!Vec->getType()->isVectorTy())
4651         return error("Invalid type for value");
4652       I = ExtractElementInst::Create(Vec, Idx);
4653       ResTypeID = getContainedTypeID(VecTypeID);
4654       InstructionList.push_back(I);
4655       break;
4656     }
4657 
4658     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4659       unsigned OpNum = 0;
4660       Value *Vec, *Elt, *Idx;
4661       unsigned VecTypeID, IdxTypeID;
4662       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID))
4663         return error("Invalid record");
4664       if (!Vec->getType()->isVectorTy())
4665         return error("Invalid type for value");
4666       if (popValue(Record, OpNum, NextValueNo,
4667                    cast<VectorType>(Vec->getType())->getElementType(),
4668                    getContainedTypeID(VecTypeID), Elt) ||
4669           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4670         return error("Invalid record");
4671       I = InsertElementInst::Create(Vec, Elt, Idx);
4672       ResTypeID = VecTypeID;
4673       InstructionList.push_back(I);
4674       break;
4675     }
4676 
4677     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4678       unsigned OpNum = 0;
4679       Value *Vec1, *Vec2, *Mask;
4680       unsigned Vec1TypeID;
4681       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) ||
4682           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
4683                    Vec2))
4684         return error("Invalid record");
4685 
4686       unsigned MaskTypeID;
4687       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID))
4688         return error("Invalid record");
4689       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4690         return error("Invalid type for value");
4691 
4692       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4693       ResTypeID =
4694           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
4695       InstructionList.push_back(I);
4696       break;
4697     }
4698 
4699     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4700       // Old form of ICmp/FCmp returning bool
4701       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4702       // both legal on vectors but had different behaviour.
4703     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4704       // FCmp/ICmp returning bool or vector of bool
4705 
4706       unsigned OpNum = 0;
4707       Value *LHS, *RHS;
4708       unsigned LHSTypeID;
4709       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) ||
4710           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS))
4711         return error("Invalid record");
4712 
4713       if (OpNum >= Record.size())
4714         return error(
4715             "Invalid record: operand number exceeded available operands");
4716 
4717       unsigned PredVal = Record[OpNum];
4718       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4719       FastMathFlags FMF;
4720       if (IsFP && Record.size() > OpNum+1)
4721         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4722 
4723       if (OpNum+1 != Record.size())
4724         return error("Invalid record");
4725 
4726       if (LHS->getType()->isFPOrFPVectorTy())
4727         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4728       else
4729         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4730 
4731       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
4732       if (LHS->getType()->isVectorTy())
4733         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4734 
4735       if (FMF.any())
4736         I->setFastMathFlags(FMF);
4737       InstructionList.push_back(I);
4738       break;
4739     }
4740 
4741     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4742       {
4743         unsigned Size = Record.size();
4744         if (Size == 0) {
4745           I = ReturnInst::Create(Context);
4746           InstructionList.push_back(I);
4747           break;
4748         }
4749 
4750         unsigned OpNum = 0;
4751         Value *Op = nullptr;
4752         unsigned OpTypeID;
4753         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4754           return error("Invalid record");
4755         if (OpNum != Record.size())
4756           return error("Invalid record");
4757 
4758         I = ReturnInst::Create(Context, Op);
4759         InstructionList.push_back(I);
4760         break;
4761       }
4762     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4763       if (Record.size() != 1 && Record.size() != 3)
4764         return error("Invalid record");
4765       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4766       if (!TrueDest)
4767         return error("Invalid record");
4768 
4769       if (Record.size() == 1) {
4770         I = BranchInst::Create(TrueDest);
4771         InstructionList.push_back(I);
4772       }
4773       else {
4774         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4775         Type *CondType = Type::getInt1Ty(Context);
4776         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
4777                                getVirtualTypeID(CondType));
4778         if (!FalseDest || !Cond)
4779           return error("Invalid record");
4780         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4781         InstructionList.push_back(I);
4782       }
4783       break;
4784     }
4785     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4786       if (Record.size() != 1 && Record.size() != 2)
4787         return error("Invalid record");
4788       unsigned Idx = 0;
4789       Type *TokenTy = Type::getTokenTy(Context);
4790       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4791                                    getVirtualTypeID(TokenTy));
4792       if (!CleanupPad)
4793         return error("Invalid record");
4794       BasicBlock *UnwindDest = nullptr;
4795       if (Record.size() == 2) {
4796         UnwindDest = getBasicBlock(Record[Idx++]);
4797         if (!UnwindDest)
4798           return error("Invalid record");
4799       }
4800 
4801       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4802       InstructionList.push_back(I);
4803       break;
4804     }
4805     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4806       if (Record.size() != 2)
4807         return error("Invalid record");
4808       unsigned Idx = 0;
4809       Type *TokenTy = Type::getTokenTy(Context);
4810       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4811                                  getVirtualTypeID(TokenTy));
4812       if (!CatchPad)
4813         return error("Invalid record");
4814       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4815       if (!BB)
4816         return error("Invalid record");
4817 
4818       I = CatchReturnInst::Create(CatchPad, BB);
4819       InstructionList.push_back(I);
4820       break;
4821     }
4822     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4823       // We must have, at minimum, the outer scope and the number of arguments.
4824       if (Record.size() < 2)
4825         return error("Invalid record");
4826 
4827       unsigned Idx = 0;
4828 
4829       Type *TokenTy = Type::getTokenTy(Context);
4830       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4831                                   getVirtualTypeID(TokenTy));
4832 
4833       unsigned NumHandlers = Record[Idx++];
4834 
4835       SmallVector<BasicBlock *, 2> Handlers;
4836       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4837         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4838         if (!BB)
4839           return error("Invalid record");
4840         Handlers.push_back(BB);
4841       }
4842 
4843       BasicBlock *UnwindDest = nullptr;
4844       if (Idx + 1 == Record.size()) {
4845         UnwindDest = getBasicBlock(Record[Idx++]);
4846         if (!UnwindDest)
4847           return error("Invalid record");
4848       }
4849 
4850       if (Record.size() != Idx)
4851         return error("Invalid record");
4852 
4853       auto *CatchSwitch =
4854           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4855       for (BasicBlock *Handler : Handlers)
4856         CatchSwitch->addHandler(Handler);
4857       I = CatchSwitch;
4858       ResTypeID = getVirtualTypeID(I->getType());
4859       InstructionList.push_back(I);
4860       break;
4861     }
4862     case bitc::FUNC_CODE_INST_CATCHPAD:
4863     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4864       // We must have, at minimum, the outer scope and the number of arguments.
4865       if (Record.size() < 2)
4866         return error("Invalid record");
4867 
4868       unsigned Idx = 0;
4869 
4870       Type *TokenTy = Type::getTokenTy(Context);
4871       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4872                                   getVirtualTypeID(TokenTy));
4873 
4874       unsigned NumArgOperands = Record[Idx++];
4875 
4876       SmallVector<Value *, 2> Args;
4877       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4878         Value *Val;
4879         unsigned ValTypeID;
4880         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
4881           return error("Invalid record");
4882         Args.push_back(Val);
4883       }
4884 
4885       if (Record.size() != Idx)
4886         return error("Invalid record");
4887 
4888       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4889         I = CleanupPadInst::Create(ParentPad, Args);
4890       else
4891         I = CatchPadInst::Create(ParentPad, Args);
4892       ResTypeID = getVirtualTypeID(I->getType());
4893       InstructionList.push_back(I);
4894       break;
4895     }
4896     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4897       // Check magic
4898       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4899         // "New" SwitchInst format with case ranges. The changes to write this
4900         // format were reverted but we still recognize bitcode that uses it.
4901         // Hopefully someday we will have support for case ranges and can use
4902         // this format again.
4903 
4904         unsigned OpTyID = Record[1];
4905         Type *OpTy = getTypeByID(OpTyID);
4906         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4907 
4908         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID);
4909         BasicBlock *Default = getBasicBlock(Record[3]);
4910         if (!OpTy || !Cond || !Default)
4911           return error("Invalid record");
4912 
4913         unsigned NumCases = Record[4];
4914 
4915         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4916         InstructionList.push_back(SI);
4917 
4918         unsigned CurIdx = 5;
4919         for (unsigned i = 0; i != NumCases; ++i) {
4920           SmallVector<ConstantInt*, 1> CaseVals;
4921           unsigned NumItems = Record[CurIdx++];
4922           for (unsigned ci = 0; ci != NumItems; ++ci) {
4923             bool isSingleNumber = Record[CurIdx++];
4924 
4925             APInt Low;
4926             unsigned ActiveWords = 1;
4927             if (ValueBitWidth > 64)
4928               ActiveWords = Record[CurIdx++];
4929             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4930                                 ValueBitWidth);
4931             CurIdx += ActiveWords;
4932 
4933             if (!isSingleNumber) {
4934               ActiveWords = 1;
4935               if (ValueBitWidth > 64)
4936                 ActiveWords = Record[CurIdx++];
4937               APInt High = readWideAPInt(
4938                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4939               CurIdx += ActiveWords;
4940 
4941               // FIXME: It is not clear whether values in the range should be
4942               // compared as signed or unsigned values. The partially
4943               // implemented changes that used this format in the past used
4944               // unsigned comparisons.
4945               for ( ; Low.ule(High); ++Low)
4946                 CaseVals.push_back(ConstantInt::get(Context, Low));
4947             } else
4948               CaseVals.push_back(ConstantInt::get(Context, Low));
4949           }
4950           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4951           for (ConstantInt *Cst : CaseVals)
4952             SI->addCase(Cst, DestBB);
4953         }
4954         I = SI;
4955         break;
4956       }
4957 
4958       // Old SwitchInst format without case ranges.
4959 
4960       if (Record.size() < 3 || (Record.size() & 1) == 0)
4961         return error("Invalid record");
4962       unsigned OpTyID = Record[0];
4963       Type *OpTy = getTypeByID(OpTyID);
4964       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
4965       BasicBlock *Default = getBasicBlock(Record[2]);
4966       if (!OpTy || !Cond || !Default)
4967         return error("Invalid record");
4968       unsigned NumCases = (Record.size()-3)/2;
4969       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4970       InstructionList.push_back(SI);
4971       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4972         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
4973             getFnValueByID(Record[3+i*2], OpTy, OpTyID));
4974         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4975         if (!CaseVal || !DestBB) {
4976           delete SI;
4977           return error("Invalid record");
4978         }
4979         SI->addCase(CaseVal, DestBB);
4980       }
4981       I = SI;
4982       break;
4983     }
4984     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4985       if (Record.size() < 2)
4986         return error("Invalid record");
4987       unsigned OpTyID = Record[0];
4988       Type *OpTy = getTypeByID(OpTyID);
4989       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
4990       if (!OpTy || !Address)
4991         return error("Invalid record");
4992       unsigned NumDests = Record.size()-2;
4993       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4994       InstructionList.push_back(IBI);
4995       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4996         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4997           IBI->addDestination(DestBB);
4998         } else {
4999           delete IBI;
5000           return error("Invalid record");
5001         }
5002       }
5003       I = IBI;
5004       break;
5005     }
5006 
5007     case bitc::FUNC_CODE_INST_INVOKE: {
5008       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5009       if (Record.size() < 4)
5010         return error("Invalid record");
5011       unsigned OpNum = 0;
5012       AttributeList PAL = getAttributes(Record[OpNum++]);
5013       unsigned CCInfo = Record[OpNum++];
5014       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5015       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5016 
5017       unsigned FTyID = InvalidTypeID;
5018       FunctionType *FTy = nullptr;
5019       if ((CCInfo >> 13) & 1) {
5020         FTyID = Record[OpNum++];
5021         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5022         if (!FTy)
5023           return error("Explicit invoke type is not a function type");
5024       }
5025 
5026       Value *Callee;
5027       unsigned CalleeTypeID;
5028       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5029         return error("Invalid record");
5030 
5031       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5032       if (!CalleeTy)
5033         return error("Callee is not a pointer");
5034       if (!FTy) {
5035         FTyID = getContainedTypeID(CalleeTypeID);
5036         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5037         if (!FTy)
5038           return error("Callee is not of pointer to function type");
5039       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5040         return error("Explicit invoke type does not match pointee type of "
5041                      "callee operand");
5042       if (Record.size() < FTy->getNumParams() + OpNum)
5043         return error("Insufficient operands to call");
5044 
5045       SmallVector<Value*, 16> Ops;
5046       SmallVector<unsigned, 16> ArgTyIDs;
5047       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5048         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5049         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5050                                ArgTyID));
5051         ArgTyIDs.push_back(ArgTyID);
5052         if (!Ops.back())
5053           return error("Invalid record");
5054       }
5055 
5056       if (!FTy->isVarArg()) {
5057         if (Record.size() != OpNum)
5058           return error("Invalid record");
5059       } else {
5060         // Read type/value pairs for varargs params.
5061         while (OpNum != Record.size()) {
5062           Value *Op;
5063           unsigned OpTypeID;
5064           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5065             return error("Invalid record");
5066           Ops.push_back(Op);
5067           ArgTyIDs.push_back(OpTypeID);
5068         }
5069       }
5070 
5071       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5072                              OperandBundles);
5073       ResTypeID = getContainedTypeID(FTyID);
5074       OperandBundles.clear();
5075       InstructionList.push_back(I);
5076       cast<InvokeInst>(I)->setCallingConv(
5077           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5078       cast<InvokeInst>(I)->setAttributes(PAL);
5079       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5080         I->deleteValue();
5081         return Err;
5082       }
5083 
5084       break;
5085     }
5086     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5087       unsigned Idx = 0;
5088       Value *Val = nullptr;
5089       unsigned ValTypeID;
5090       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
5091         return error("Invalid record");
5092       I = ResumeInst::Create(Val);
5093       InstructionList.push_back(I);
5094       break;
5095     }
5096     case bitc::FUNC_CODE_INST_CALLBR: {
5097       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5098       unsigned OpNum = 0;
5099       AttributeList PAL = getAttributes(Record[OpNum++]);
5100       unsigned CCInfo = Record[OpNum++];
5101 
5102       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5103       unsigned NumIndirectDests = Record[OpNum++];
5104       SmallVector<BasicBlock *, 16> IndirectDests;
5105       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5106         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5107 
5108       unsigned FTyID = InvalidTypeID;
5109       FunctionType *FTy = nullptr;
5110       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5111         FTyID = Record[OpNum++];
5112         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5113         if (!FTy)
5114           return error("Explicit call type is not a function type");
5115       }
5116 
5117       Value *Callee;
5118       unsigned CalleeTypeID;
5119       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5120         return error("Invalid record");
5121 
5122       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5123       if (!OpTy)
5124         return error("Callee is not a pointer type");
5125       if (!FTy) {
5126         FTyID = getContainedTypeID(CalleeTypeID);
5127         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5128         if (!FTy)
5129           return error("Callee is not of pointer to function type");
5130       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5131         return error("Explicit call type does not match pointee type of "
5132                      "callee operand");
5133       if (Record.size() < FTy->getNumParams() + OpNum)
5134         return error("Insufficient operands to call");
5135 
5136       SmallVector<Value*, 16> Args;
5137       SmallVector<unsigned, 16> ArgTyIDs;
5138       // Read the fixed params.
5139       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5140         Value *Arg;
5141         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5142         if (FTy->getParamType(i)->isLabelTy())
5143           Arg = getBasicBlock(Record[OpNum]);
5144         else
5145           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5146                          ArgTyID);
5147         if (!Arg)
5148           return error("Invalid record");
5149         Args.push_back(Arg);
5150         ArgTyIDs.push_back(ArgTyID);
5151       }
5152 
5153       // Read type/value pairs for varargs params.
5154       if (!FTy->isVarArg()) {
5155         if (OpNum != Record.size())
5156           return error("Invalid record");
5157       } else {
5158         while (OpNum != Record.size()) {
5159           Value *Op;
5160           unsigned OpTypeID;
5161           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5162             return error("Invalid record");
5163           Args.push_back(Op);
5164           ArgTyIDs.push_back(OpTypeID);
5165         }
5166       }
5167 
5168       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5169                              OperandBundles);
5170       ResTypeID = getContainedTypeID(FTyID);
5171       OperandBundles.clear();
5172       InstructionList.push_back(I);
5173       cast<CallBrInst>(I)->setCallingConv(
5174           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5175       cast<CallBrInst>(I)->setAttributes(PAL);
5176       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5177         I->deleteValue();
5178         return Err;
5179       }
5180       break;
5181     }
5182     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5183       I = new UnreachableInst(Context);
5184       InstructionList.push_back(I);
5185       break;
5186     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5187       if (Record.empty())
5188         return error("Invalid phi record");
5189       // The first record specifies the type.
5190       unsigned TyID = Record[0];
5191       Type *Ty = getTypeByID(TyID);
5192       if (!Ty)
5193         return error("Invalid phi record");
5194 
5195       // Phi arguments are pairs of records of [value, basic block].
5196       // There is an optional final record for fast-math-flags if this phi has a
5197       // floating-point type.
5198       size_t NumArgs = (Record.size() - 1) / 2;
5199       PHINode *PN = PHINode::Create(Ty, NumArgs);
5200       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
5201         return error("Invalid phi record");
5202       InstructionList.push_back(PN);
5203 
5204       for (unsigned i = 0; i != NumArgs; i++) {
5205         Value *V;
5206         // With the new function encoding, it is possible that operands have
5207         // negative IDs (for forward references).  Use a signed VBR
5208         // representation to keep the encoding small.
5209         if (UseRelativeIDs)
5210           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5211         else
5212           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5213         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5214         if (!V || !BB)
5215           return error("Invalid phi record");
5216         PN->addIncoming(V, BB);
5217       }
5218       I = PN;
5219       ResTypeID = TyID;
5220 
5221       // If there are an even number of records, the final record must be FMF.
5222       if (Record.size() % 2 == 0) {
5223         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5224         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5225         if (FMF.any())
5226           I->setFastMathFlags(FMF);
5227       }
5228 
5229       break;
5230     }
5231 
5232     case bitc::FUNC_CODE_INST_LANDINGPAD:
5233     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5234       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5235       unsigned Idx = 0;
5236       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5237         if (Record.size() < 3)
5238           return error("Invalid record");
5239       } else {
5240         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5241         if (Record.size() < 4)
5242           return error("Invalid record");
5243       }
5244       ResTypeID = Record[Idx++];
5245       Type *Ty = getTypeByID(ResTypeID);
5246       if (!Ty)
5247         return error("Invalid record");
5248       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5249         Value *PersFn = nullptr;
5250         unsigned PersFnTypeID;
5251         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID))
5252           return error("Invalid record");
5253 
5254         if (!F->hasPersonalityFn())
5255           F->setPersonalityFn(cast<Constant>(PersFn));
5256         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5257           return error("Personality function mismatch");
5258       }
5259 
5260       bool IsCleanup = !!Record[Idx++];
5261       unsigned NumClauses = Record[Idx++];
5262       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5263       LP->setCleanup(IsCleanup);
5264       for (unsigned J = 0; J != NumClauses; ++J) {
5265         LandingPadInst::ClauseType CT =
5266           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5267         Value *Val;
5268         unsigned ValTypeID;
5269 
5270         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) {
5271           delete LP;
5272           return error("Invalid record");
5273         }
5274 
5275         assert((CT != LandingPadInst::Catch ||
5276                 !isa<ArrayType>(Val->getType())) &&
5277                "Catch clause has a invalid type!");
5278         assert((CT != LandingPadInst::Filter ||
5279                 isa<ArrayType>(Val->getType())) &&
5280                "Filter clause has invalid type!");
5281         LP->addClause(cast<Constant>(Val));
5282       }
5283 
5284       I = LP;
5285       InstructionList.push_back(I);
5286       break;
5287     }
5288 
5289     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5290       if (Record.size() != 4)
5291         return error("Invalid record");
5292       using APV = AllocaPackedValues;
5293       const uint64_t Rec = Record[3];
5294       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5295       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5296       unsigned TyID = Record[0];
5297       Type *Ty = getTypeByID(TyID);
5298       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5299         TyID = getContainedTypeID(TyID);
5300         Ty = getTypeByID(TyID);
5301         if (!Ty)
5302           return error("Missing element type for old-style alloca");
5303       }
5304       unsigned OpTyID = Record[1];
5305       Type *OpTy = getTypeByID(OpTyID);
5306       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID);
5307       MaybeAlign Align;
5308       uint64_t AlignExp =
5309           Bitfield::get<APV::AlignLower>(Rec) |
5310           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5311       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5312         return Err;
5313       }
5314       if (!Ty || !Size)
5315         return error("Invalid record");
5316 
5317       // FIXME: Make this an optional field.
5318       const DataLayout &DL = TheModule->getDataLayout();
5319       unsigned AS = DL.getAllocaAddrSpace();
5320 
5321       SmallPtrSet<Type *, 4> Visited;
5322       if (!Align && !Ty->isSized(&Visited))
5323         return error("alloca of unsized type");
5324       if (!Align)
5325         Align = DL.getPrefTypeAlign(Ty);
5326 
5327       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5328       AI->setUsedWithInAlloca(InAlloca);
5329       AI->setSwiftError(SwiftError);
5330       I = AI;
5331       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5332       InstructionList.push_back(I);
5333       break;
5334     }
5335     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5336       unsigned OpNum = 0;
5337       Value *Op;
5338       unsigned OpTypeID;
5339       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5340           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5341         return error("Invalid record");
5342 
5343       if (!isa<PointerType>(Op->getType()))
5344         return error("Load operand is not a pointer type");
5345 
5346       Type *Ty = nullptr;
5347       if (OpNum + 3 == Record.size()) {
5348         ResTypeID = Record[OpNum++];
5349         Ty = getTypeByID(ResTypeID);
5350       } else {
5351         ResTypeID = getContainedTypeID(OpTypeID);
5352         Ty = getTypeByID(ResTypeID);
5353         if (!Ty)
5354           return error("Missing element type for old-style load");
5355       }
5356 
5357       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5358         return Err;
5359 
5360       MaybeAlign Align;
5361       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5362         return Err;
5363       SmallPtrSet<Type *, 4> Visited;
5364       if (!Align && !Ty->isSized(&Visited))
5365         return error("load of unsized type");
5366       if (!Align)
5367         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5368       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5369       InstructionList.push_back(I);
5370       break;
5371     }
5372     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5373        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5374       unsigned OpNum = 0;
5375       Value *Op;
5376       unsigned OpTypeID;
5377       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5378           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5379         return error("Invalid record");
5380 
5381       if (!isa<PointerType>(Op->getType()))
5382         return error("Load operand is not a pointer type");
5383 
5384       Type *Ty = nullptr;
5385       if (OpNum + 5 == Record.size()) {
5386         ResTypeID = Record[OpNum++];
5387         Ty = getTypeByID(ResTypeID);
5388       } else {
5389         ResTypeID = getContainedTypeID(OpTypeID);
5390         Ty = getTypeByID(ResTypeID);
5391         if (!Ty)
5392           return error("Missing element type for old style atomic load");
5393       }
5394 
5395       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5396         return Err;
5397 
5398       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5399       if (Ordering == AtomicOrdering::NotAtomic ||
5400           Ordering == AtomicOrdering::Release ||
5401           Ordering == AtomicOrdering::AcquireRelease)
5402         return error("Invalid record");
5403       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5404         return error("Invalid record");
5405       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5406 
5407       MaybeAlign Align;
5408       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5409         return Err;
5410       if (!Align)
5411         return error("Alignment missing from atomic load");
5412       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5413       InstructionList.push_back(I);
5414       break;
5415     }
5416     case bitc::FUNC_CODE_INST_STORE:
5417     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5418       unsigned OpNum = 0;
5419       Value *Val, *Ptr;
5420       unsigned PtrTypeID, ValTypeID;
5421       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5422         return error("Invalid record");
5423 
5424       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5425         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5426           return error("Invalid record");
5427       } else {
5428         ValTypeID = getContainedTypeID(PtrTypeID);
5429         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5430                      ValTypeID, Val))
5431           return error("Invalid record");
5432       }
5433 
5434       if (OpNum + 2 != Record.size())
5435         return error("Invalid record");
5436 
5437       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5438         return Err;
5439       MaybeAlign Align;
5440       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5441         return Err;
5442       SmallPtrSet<Type *, 4> Visited;
5443       if (!Align && !Val->getType()->isSized(&Visited))
5444         return error("store of unsized type");
5445       if (!Align)
5446         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5447       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5448       InstructionList.push_back(I);
5449       break;
5450     }
5451     case bitc::FUNC_CODE_INST_STOREATOMIC:
5452     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5453       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5454       unsigned OpNum = 0;
5455       Value *Val, *Ptr;
5456       unsigned PtrTypeID, ValTypeID;
5457       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) ||
5458           !isa<PointerType>(Ptr->getType()))
5459         return error("Invalid record");
5460       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5461         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5462           return error("Invalid record");
5463       } else {
5464         ValTypeID = getContainedTypeID(PtrTypeID);
5465         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5466                      ValTypeID, Val))
5467           return error("Invalid record");
5468       }
5469 
5470       if (OpNum + 4 != Record.size())
5471         return error("Invalid record");
5472 
5473       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5474         return Err;
5475       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5476       if (Ordering == AtomicOrdering::NotAtomic ||
5477           Ordering == AtomicOrdering::Acquire ||
5478           Ordering == AtomicOrdering::AcquireRelease)
5479         return error("Invalid record");
5480       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5481       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5482         return error("Invalid record");
5483 
5484       MaybeAlign Align;
5485       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5486         return Err;
5487       if (!Align)
5488         return error("Alignment missing from atomic store");
5489       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5490       InstructionList.push_back(I);
5491       break;
5492     }
5493     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5494       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5495       // failure_ordering?, weak?]
5496       const size_t NumRecords = Record.size();
5497       unsigned OpNum = 0;
5498       Value *Ptr = nullptr;
5499       unsigned PtrTypeID;
5500       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5501         return error("Invalid record");
5502 
5503       if (!isa<PointerType>(Ptr->getType()))
5504         return error("Cmpxchg operand is not a pointer type");
5505 
5506       Value *Cmp = nullptr;
5507       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5508       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5509                    CmpTypeID, Cmp))
5510         return error("Invalid record");
5511 
5512       Value *New = nullptr;
5513       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5514                    New) ||
5515           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5516         return error("Invalid record");
5517 
5518       const AtomicOrdering SuccessOrdering =
5519           getDecodedOrdering(Record[OpNum + 1]);
5520       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5521           SuccessOrdering == AtomicOrdering::Unordered)
5522         return error("Invalid record");
5523 
5524       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5525 
5526       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5527         return Err;
5528 
5529       const AtomicOrdering FailureOrdering =
5530           NumRecords < 7
5531               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5532               : getDecodedOrdering(Record[OpNum + 3]);
5533 
5534       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5535           FailureOrdering == AtomicOrdering::Unordered)
5536         return error("Invalid record");
5537 
5538       const Align Alignment(
5539           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5540 
5541       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5542                                 FailureOrdering, SSID);
5543       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5544 
5545       if (NumRecords < 8) {
5546         // Before weak cmpxchgs existed, the instruction simply returned the
5547         // value loaded from memory, so bitcode files from that era will be
5548         // expecting the first component of a modern cmpxchg.
5549         CurBB->getInstList().push_back(I);
5550         I = ExtractValueInst::Create(I, 0);
5551         ResTypeID = CmpTypeID;
5552       } else {
5553         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5554         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5555         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5556       }
5557 
5558       InstructionList.push_back(I);
5559       break;
5560     }
5561     case bitc::FUNC_CODE_INST_CMPXCHG: {
5562       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5563       // failure_ordering, weak, align?]
5564       const size_t NumRecords = Record.size();
5565       unsigned OpNum = 0;
5566       Value *Ptr = nullptr;
5567       unsigned PtrTypeID;
5568       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5569         return error("Invalid record");
5570 
5571       if (!isa<PointerType>(Ptr->getType()))
5572         return error("Cmpxchg operand is not a pointer type");
5573 
5574       Value *Cmp = nullptr;
5575       unsigned CmpTypeID;
5576       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID))
5577         return error("Invalid record");
5578 
5579       Value *Val = nullptr;
5580       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val))
5581         return error("Invalid record");
5582 
5583       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5584         return error("Invalid record");
5585 
5586       const bool IsVol = Record[OpNum];
5587 
5588       const AtomicOrdering SuccessOrdering =
5589           getDecodedOrdering(Record[OpNum + 1]);
5590       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5591         return error("Invalid cmpxchg success ordering");
5592 
5593       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5594 
5595       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5596         return Err;
5597 
5598       const AtomicOrdering FailureOrdering =
5599           getDecodedOrdering(Record[OpNum + 3]);
5600       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5601         return error("Invalid cmpxchg failure ordering");
5602 
5603       const bool IsWeak = Record[OpNum + 4];
5604 
5605       MaybeAlign Alignment;
5606 
5607       if (NumRecords == (OpNum + 6)) {
5608         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5609           return Err;
5610       }
5611       if (!Alignment)
5612         Alignment =
5613             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5614 
5615       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5616                                 FailureOrdering, SSID);
5617       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5618       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5619 
5620       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5621       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5622 
5623       InstructionList.push_back(I);
5624       break;
5625     }
5626     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5627     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5628       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5629       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5630       const size_t NumRecords = Record.size();
5631       unsigned OpNum = 0;
5632 
5633       Value *Ptr = nullptr;
5634       unsigned PtrTypeID;
5635       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5636         return error("Invalid record");
5637 
5638       if (!isa<PointerType>(Ptr->getType()))
5639         return error("Invalid record");
5640 
5641       Value *Val = nullptr;
5642       unsigned ValTypeID = InvalidTypeID;
5643       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5644         ValTypeID = getContainedTypeID(PtrTypeID);
5645         if (popValue(Record, OpNum, NextValueNo,
5646                      getTypeByID(ValTypeID), ValTypeID, Val))
5647           return error("Invalid record");
5648       } else {
5649         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5650           return error("Invalid record");
5651       }
5652 
5653       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5654         return error("Invalid record");
5655 
5656       const AtomicRMWInst::BinOp Operation =
5657           getDecodedRMWOperation(Record[OpNum]);
5658       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5659           Operation > AtomicRMWInst::LAST_BINOP)
5660         return error("Invalid record");
5661 
5662       const bool IsVol = Record[OpNum + 1];
5663 
5664       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5665       if (Ordering == AtomicOrdering::NotAtomic ||
5666           Ordering == AtomicOrdering::Unordered)
5667         return error("Invalid record");
5668 
5669       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5670 
5671       MaybeAlign Alignment;
5672 
5673       if (NumRecords == (OpNum + 5)) {
5674         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5675           return Err;
5676       }
5677 
5678       if (!Alignment)
5679         Alignment =
5680             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5681 
5682       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5683       ResTypeID = ValTypeID;
5684       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5685 
5686       InstructionList.push_back(I);
5687       break;
5688     }
5689     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5690       if (2 != Record.size())
5691         return error("Invalid record");
5692       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5693       if (Ordering == AtomicOrdering::NotAtomic ||
5694           Ordering == AtomicOrdering::Unordered ||
5695           Ordering == AtomicOrdering::Monotonic)
5696         return error("Invalid record");
5697       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5698       I = new FenceInst(Context, Ordering, SSID);
5699       InstructionList.push_back(I);
5700       break;
5701     }
5702     case bitc::FUNC_CODE_INST_CALL: {
5703       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5704       if (Record.size() < 3)
5705         return error("Invalid record");
5706 
5707       unsigned OpNum = 0;
5708       AttributeList PAL = getAttributes(Record[OpNum++]);
5709       unsigned CCInfo = Record[OpNum++];
5710 
5711       FastMathFlags FMF;
5712       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5713         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5714         if (!FMF.any())
5715           return error("Fast math flags indicator set for call with no FMF");
5716       }
5717 
5718       unsigned FTyID = InvalidTypeID;
5719       FunctionType *FTy = nullptr;
5720       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5721         FTyID = Record[OpNum++];
5722         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5723         if (!FTy)
5724           return error("Explicit call type is not a function type");
5725       }
5726 
5727       Value *Callee;
5728       unsigned CalleeTypeID;
5729       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5730         return error("Invalid record");
5731 
5732       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5733       if (!OpTy)
5734         return error("Callee is not a pointer type");
5735       if (!FTy) {
5736         FTyID = getContainedTypeID(CalleeTypeID);
5737         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5738         if (!FTy)
5739           return error("Callee is not of pointer to function type");
5740       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5741         return error("Explicit call type does not match pointee type of "
5742                      "callee operand");
5743       if (Record.size() < FTy->getNumParams() + OpNum)
5744         return error("Insufficient operands to call");
5745 
5746       SmallVector<Value*, 16> Args;
5747       SmallVector<unsigned, 16> ArgTyIDs;
5748       // Read the fixed params.
5749       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5750         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5751         if (FTy->getParamType(i)->isLabelTy())
5752           Args.push_back(getBasicBlock(Record[OpNum]));
5753         else
5754           Args.push_back(getValue(Record, OpNum, NextValueNo,
5755                                   FTy->getParamType(i), ArgTyID));
5756         ArgTyIDs.push_back(ArgTyID);
5757         if (!Args.back())
5758           return error("Invalid record");
5759       }
5760 
5761       // Read type/value pairs for varargs params.
5762       if (!FTy->isVarArg()) {
5763         if (OpNum != Record.size())
5764           return error("Invalid record");
5765       } else {
5766         while (OpNum != Record.size()) {
5767           Value *Op;
5768           unsigned OpTypeID;
5769           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5770             return error("Invalid record");
5771           Args.push_back(Op);
5772           ArgTyIDs.push_back(OpTypeID);
5773         }
5774       }
5775 
5776       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5777       ResTypeID = getContainedTypeID(FTyID);
5778       OperandBundles.clear();
5779       InstructionList.push_back(I);
5780       cast<CallInst>(I)->setCallingConv(
5781           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5782       CallInst::TailCallKind TCK = CallInst::TCK_None;
5783       if (CCInfo & 1 << bitc::CALL_TAIL)
5784         TCK = CallInst::TCK_Tail;
5785       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5786         TCK = CallInst::TCK_MustTail;
5787       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5788         TCK = CallInst::TCK_NoTail;
5789       cast<CallInst>(I)->setTailCallKind(TCK);
5790       cast<CallInst>(I)->setAttributes(PAL);
5791       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5792         I->deleteValue();
5793         return Err;
5794       }
5795       if (FMF.any()) {
5796         if (!isa<FPMathOperator>(I))
5797           return error("Fast-math-flags specified for call without "
5798                        "floating-point scalar or vector return type");
5799         I->setFastMathFlags(FMF);
5800       }
5801       break;
5802     }
5803     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5804       if (Record.size() < 3)
5805         return error("Invalid record");
5806       unsigned OpTyID = Record[0];
5807       Type *OpTy = getTypeByID(OpTyID);
5808       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5809       ResTypeID = Record[2];
5810       Type *ResTy = getTypeByID(ResTypeID);
5811       if (!OpTy || !Op || !ResTy)
5812         return error("Invalid record");
5813       I = new VAArgInst(Op, ResTy);
5814       InstructionList.push_back(I);
5815       break;
5816     }
5817 
5818     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5819       // A call or an invoke can be optionally prefixed with some variable
5820       // number of operand bundle blocks.  These blocks are read into
5821       // OperandBundles and consumed at the next call or invoke instruction.
5822 
5823       if (Record.empty() || Record[0] >= BundleTags.size())
5824         return error("Invalid record");
5825 
5826       std::vector<Value *> Inputs;
5827 
5828       unsigned OpNum = 1;
5829       while (OpNum != Record.size()) {
5830         Value *Op;
5831         unsigned OpTypeID;
5832         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5833           return error("Invalid record");
5834         Inputs.push_back(Op);
5835       }
5836 
5837       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5838       continue;
5839     }
5840 
5841     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5842       unsigned OpNum = 0;
5843       Value *Op = nullptr;
5844       unsigned OpTypeID;
5845       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5846         return error("Invalid record");
5847       if (OpNum != Record.size())
5848         return error("Invalid record");
5849 
5850       I = new FreezeInst(Op);
5851       ResTypeID = OpTypeID;
5852       InstructionList.push_back(I);
5853       break;
5854     }
5855     }
5856 
5857     // Add instruction to end of current BB.  If there is no current BB, reject
5858     // this file.
5859     if (!CurBB) {
5860       I->deleteValue();
5861       return error("Invalid instruction with no BB");
5862     }
5863     if (!OperandBundles.empty()) {
5864       I->deleteValue();
5865       return error("Operand bundles found with no consumer");
5866     }
5867     CurBB->getInstList().push_back(I);
5868 
5869     // If this was a terminator instruction, move to the next block.
5870     if (I->isTerminator()) {
5871       ++CurBBNo;
5872       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5873     }
5874 
5875     // Non-void values get registered in the value table for future use.
5876     if (!I->getType()->isVoidTy()) {
5877       assert(I->getType() == getTypeByID(ResTypeID) &&
5878              "Incorrect result type ID");
5879       ValueList.assignValue(NextValueNo++, I, ResTypeID);
5880     }
5881   }
5882 
5883 OutOfRecordLoop:
5884 
5885   if (!OperandBundles.empty())
5886     return error("Operand bundles found with no consumer");
5887 
5888   // Check the function list for unresolved values.
5889   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5890     if (!A->getParent()) {
5891       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5892       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5893         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5894           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5895           delete A;
5896         }
5897       }
5898       return error("Never resolved value found in function");
5899     }
5900   }
5901 
5902   // Unexpected unresolved metadata about to be dropped.
5903   if (MDLoader->hasFwdRefs())
5904     return error("Invalid function metadata: outgoing forward refs");
5905 
5906   // Trim the value list down to the size it was before we parsed this function.
5907   ValueList.shrinkTo(ModuleValueListSize);
5908   MDLoader->shrinkTo(ModuleMDLoaderSize);
5909   std::vector<BasicBlock*>().swap(FunctionBBs);
5910   return Error::success();
5911 }
5912 
5913 /// Find the function body in the bitcode stream
5914 Error BitcodeReader::findFunctionInStream(
5915     Function *F,
5916     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5917   while (DeferredFunctionInfoIterator->second == 0) {
5918     // This is the fallback handling for the old format bitcode that
5919     // didn't contain the function index in the VST, or when we have
5920     // an anonymous function which would not have a VST entry.
5921     // Assert that we have one of those two cases.
5922     assert(VSTOffset == 0 || !F->hasName());
5923     // Parse the next body in the stream and set its position in the
5924     // DeferredFunctionInfo map.
5925     if (Error Err = rememberAndSkipFunctionBodies())
5926       return Err;
5927   }
5928   return Error::success();
5929 }
5930 
5931 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5932   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5933     return SyncScope::ID(Val);
5934   if (Val >= SSIDs.size())
5935     return SyncScope::System; // Map unknown synchronization scopes to system.
5936   return SSIDs[Val];
5937 }
5938 
5939 //===----------------------------------------------------------------------===//
5940 // GVMaterializer implementation
5941 //===----------------------------------------------------------------------===//
5942 
5943 Error BitcodeReader::materialize(GlobalValue *GV) {
5944   Function *F = dyn_cast<Function>(GV);
5945   // If it's not a function or is already material, ignore the request.
5946   if (!F || !F->isMaterializable())
5947     return Error::success();
5948 
5949   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5950   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5951   // If its position is recorded as 0, its body is somewhere in the stream
5952   // but we haven't seen it yet.
5953   if (DFII->second == 0)
5954     if (Error Err = findFunctionInStream(F, DFII))
5955       return Err;
5956 
5957   // Materialize metadata before parsing any function bodies.
5958   if (Error Err = materializeMetadata())
5959     return Err;
5960 
5961   // Move the bit stream to the saved position of the deferred function body.
5962   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5963     return JumpFailed;
5964   if (Error Err = parseFunctionBody(F))
5965     return Err;
5966   F->setIsMaterializable(false);
5967 
5968   if (StripDebugInfo)
5969     stripDebugInfo(*F);
5970 
5971   // Upgrade any old intrinsic calls in the function.
5972   for (auto &I : UpgradedIntrinsics) {
5973     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5974       if (CallInst *CI = dyn_cast<CallInst>(U))
5975         UpgradeIntrinsicCall(CI, I.second);
5976   }
5977 
5978   // Update calls to the remangled intrinsics
5979   for (auto &I : RemangledIntrinsics)
5980     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5981       // Don't expect any other users than call sites
5982       cast<CallBase>(U)->setCalledFunction(I.second);
5983 
5984   // Finish fn->subprogram upgrade for materialized functions.
5985   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5986     F->setSubprogram(SP);
5987 
5988   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5989   if (!MDLoader->isStrippingTBAA()) {
5990     for (auto &I : instructions(F)) {
5991       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5992       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5993         continue;
5994       MDLoader->setStripTBAA(true);
5995       stripTBAA(F->getParent());
5996     }
5997   }
5998 
5999   for (auto &I : instructions(F)) {
6000     // "Upgrade" older incorrect branch weights by dropping them.
6001     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6002       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6003         MDString *MDS = cast<MDString>(MD->getOperand(0));
6004         StringRef ProfName = MDS->getString();
6005         // Check consistency of !prof branch_weights metadata.
6006         if (!ProfName.equals("branch_weights"))
6007           continue;
6008         unsigned ExpectedNumOperands = 0;
6009         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6010           ExpectedNumOperands = BI->getNumSuccessors();
6011         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6012           ExpectedNumOperands = SI->getNumSuccessors();
6013         else if (isa<CallInst>(&I))
6014           ExpectedNumOperands = 1;
6015         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6016           ExpectedNumOperands = IBI->getNumDestinations();
6017         else if (isa<SelectInst>(&I))
6018           ExpectedNumOperands = 2;
6019         else
6020           continue; // ignore and continue.
6021 
6022         // If branch weight doesn't match, just strip branch weight.
6023         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6024           I.setMetadata(LLVMContext::MD_prof, nullptr);
6025       }
6026     }
6027 
6028     // Remove incompatible attributes on function calls.
6029     if (auto *CI = dyn_cast<CallBase>(&I)) {
6030       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6031           CI->getFunctionType()->getReturnType()));
6032 
6033       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6034         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6035                                         CI->getArgOperand(ArgNo)->getType()));
6036     }
6037   }
6038 
6039   // Look for functions that rely on old function attribute behavior.
6040   UpgradeFunctionAttributes(*F);
6041 
6042   // Bring in any functions that this function forward-referenced via
6043   // blockaddresses.
6044   return materializeForwardReferencedFunctions();
6045 }
6046 
6047 Error BitcodeReader::materializeModule() {
6048   if (Error Err = materializeMetadata())
6049     return Err;
6050 
6051   // Promise to materialize all forward references.
6052   WillMaterializeAllForwardRefs = true;
6053 
6054   // Iterate over the module, deserializing any functions that are still on
6055   // disk.
6056   for (Function &F : *TheModule) {
6057     if (Error Err = materialize(&F))
6058       return Err;
6059   }
6060   // At this point, if there are any function bodies, parse the rest of
6061   // the bits in the module past the last function block we have recorded
6062   // through either lazy scanning or the VST.
6063   if (LastFunctionBlockBit || NextUnreadBit)
6064     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6065                                     ? LastFunctionBlockBit
6066                                     : NextUnreadBit))
6067       return Err;
6068 
6069   // Check that all block address forward references got resolved (as we
6070   // promised above).
6071   if (!BasicBlockFwdRefs.empty())
6072     return error("Never resolved function from blockaddress");
6073 
6074   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6075   // delete the old functions to clean up. We can't do this unless the entire
6076   // module is materialized because there could always be another function body
6077   // with calls to the old function.
6078   for (auto &I : UpgradedIntrinsics) {
6079     for (auto *U : I.first->users()) {
6080       if (CallInst *CI = dyn_cast<CallInst>(U))
6081         UpgradeIntrinsicCall(CI, I.second);
6082     }
6083     if (!I.first->use_empty())
6084       I.first->replaceAllUsesWith(I.second);
6085     I.first->eraseFromParent();
6086   }
6087   UpgradedIntrinsics.clear();
6088   // Do the same for remangled intrinsics
6089   for (auto &I : RemangledIntrinsics) {
6090     I.first->replaceAllUsesWith(I.second);
6091     I.first->eraseFromParent();
6092   }
6093   RemangledIntrinsics.clear();
6094 
6095   UpgradeDebugInfo(*TheModule);
6096 
6097   UpgradeModuleFlags(*TheModule);
6098 
6099   UpgradeARCRuntime(*TheModule);
6100 
6101   return Error::success();
6102 }
6103 
6104 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6105   return IdentifiedStructTypes;
6106 }
6107 
6108 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6109     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6110     StringRef ModulePath, unsigned ModuleId)
6111     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6112       ModulePath(ModulePath), ModuleId(ModuleId) {}
6113 
6114 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6115   TheIndex.addModule(ModulePath, ModuleId);
6116 }
6117 
6118 ModuleSummaryIndex::ModuleInfo *
6119 ModuleSummaryIndexBitcodeReader::getThisModule() {
6120   return TheIndex.getModule(ModulePath);
6121 }
6122 
6123 std::pair<ValueInfo, GlobalValue::GUID>
6124 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6125   auto VGI = ValueIdToValueInfoMap[ValueId];
6126   assert(VGI.first);
6127   return VGI;
6128 }
6129 
6130 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6131     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6132     StringRef SourceFileName) {
6133   std::string GlobalId =
6134       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6135   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6136   auto OriginalNameID = ValueGUID;
6137   if (GlobalValue::isLocalLinkage(Linkage))
6138     OriginalNameID = GlobalValue::getGUID(ValueName);
6139   if (PrintSummaryGUIDs)
6140     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6141            << ValueName << "\n";
6142 
6143   // UseStrtab is false for legacy summary formats and value names are
6144   // created on stack. In that case we save the name in a string saver in
6145   // the index so that the value name can be recorded.
6146   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6147       TheIndex.getOrInsertValueInfo(
6148           ValueGUID,
6149           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6150       OriginalNameID);
6151 }
6152 
6153 // Specialized value symbol table parser used when reading module index
6154 // blocks where we don't actually create global values. The parsed information
6155 // is saved in the bitcode reader for use when later parsing summaries.
6156 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6157     uint64_t Offset,
6158     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6159   // With a strtab the VST is not required to parse the summary.
6160   if (UseStrtab)
6161     return Error::success();
6162 
6163   assert(Offset > 0 && "Expected non-zero VST offset");
6164   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6165   if (!MaybeCurrentBit)
6166     return MaybeCurrentBit.takeError();
6167   uint64_t CurrentBit = MaybeCurrentBit.get();
6168 
6169   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6170     return Err;
6171 
6172   SmallVector<uint64_t, 64> Record;
6173 
6174   // Read all the records for this value table.
6175   SmallString<128> ValueName;
6176 
6177   while (true) {
6178     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6179     if (!MaybeEntry)
6180       return MaybeEntry.takeError();
6181     BitstreamEntry Entry = MaybeEntry.get();
6182 
6183     switch (Entry.Kind) {
6184     case BitstreamEntry::SubBlock: // Handled for us already.
6185     case BitstreamEntry::Error:
6186       return error("Malformed block");
6187     case BitstreamEntry::EndBlock:
6188       // Done parsing VST, jump back to wherever we came from.
6189       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6190         return JumpFailed;
6191       return Error::success();
6192     case BitstreamEntry::Record:
6193       // The interesting case.
6194       break;
6195     }
6196 
6197     // Read a record.
6198     Record.clear();
6199     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6200     if (!MaybeRecord)
6201       return MaybeRecord.takeError();
6202     switch (MaybeRecord.get()) {
6203     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6204       break;
6205     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6206       if (convertToString(Record, 1, ValueName))
6207         return error("Invalid record");
6208       unsigned ValueID = Record[0];
6209       assert(!SourceFileName.empty());
6210       auto VLI = ValueIdToLinkageMap.find(ValueID);
6211       assert(VLI != ValueIdToLinkageMap.end() &&
6212              "No linkage found for VST entry?");
6213       auto Linkage = VLI->second;
6214       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6215       ValueName.clear();
6216       break;
6217     }
6218     case bitc::VST_CODE_FNENTRY: {
6219       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6220       if (convertToString(Record, 2, ValueName))
6221         return error("Invalid record");
6222       unsigned ValueID = Record[0];
6223       assert(!SourceFileName.empty());
6224       auto VLI = ValueIdToLinkageMap.find(ValueID);
6225       assert(VLI != ValueIdToLinkageMap.end() &&
6226              "No linkage found for VST entry?");
6227       auto Linkage = VLI->second;
6228       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6229       ValueName.clear();
6230       break;
6231     }
6232     case bitc::VST_CODE_COMBINED_ENTRY: {
6233       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6234       unsigned ValueID = Record[0];
6235       GlobalValue::GUID RefGUID = Record[1];
6236       // The "original name", which is the second value of the pair will be
6237       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6238       ValueIdToValueInfoMap[ValueID] =
6239           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6240       break;
6241     }
6242     }
6243   }
6244 }
6245 
6246 // Parse just the blocks needed for building the index out of the module.
6247 // At the end of this routine the module Index is populated with a map
6248 // from global value id to GlobalValueSummary objects.
6249 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6250   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6251     return Err;
6252 
6253   SmallVector<uint64_t, 64> Record;
6254   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6255   unsigned ValueId = 0;
6256 
6257   // Read the index for this module.
6258   while (true) {
6259     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6260     if (!MaybeEntry)
6261       return MaybeEntry.takeError();
6262     llvm::BitstreamEntry Entry = MaybeEntry.get();
6263 
6264     switch (Entry.Kind) {
6265     case BitstreamEntry::Error:
6266       return error("Malformed block");
6267     case BitstreamEntry::EndBlock:
6268       return Error::success();
6269 
6270     case BitstreamEntry::SubBlock:
6271       switch (Entry.ID) {
6272       default: // Skip unknown content.
6273         if (Error Err = Stream.SkipBlock())
6274           return Err;
6275         break;
6276       case bitc::BLOCKINFO_BLOCK_ID:
6277         // Need to parse these to get abbrev ids (e.g. for VST)
6278         if (Error Err = readBlockInfo())
6279           return Err;
6280         break;
6281       case bitc::VALUE_SYMTAB_BLOCK_ID:
6282         // Should have been parsed earlier via VSTOffset, unless there
6283         // is no summary section.
6284         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6285                 !SeenGlobalValSummary) &&
6286                "Expected early VST parse via VSTOffset record");
6287         if (Error Err = Stream.SkipBlock())
6288           return Err;
6289         break;
6290       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6291       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6292         // Add the module if it is a per-module index (has a source file name).
6293         if (!SourceFileName.empty())
6294           addThisModule();
6295         assert(!SeenValueSymbolTable &&
6296                "Already read VST when parsing summary block?");
6297         // We might not have a VST if there were no values in the
6298         // summary. An empty summary block generated when we are
6299         // performing ThinLTO compiles so we don't later invoke
6300         // the regular LTO process on them.
6301         if (VSTOffset > 0) {
6302           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6303             return Err;
6304           SeenValueSymbolTable = true;
6305         }
6306         SeenGlobalValSummary = true;
6307         if (Error Err = parseEntireSummary(Entry.ID))
6308           return Err;
6309         break;
6310       case bitc::MODULE_STRTAB_BLOCK_ID:
6311         if (Error Err = parseModuleStringTable())
6312           return Err;
6313         break;
6314       }
6315       continue;
6316 
6317     case BitstreamEntry::Record: {
6318         Record.clear();
6319         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6320         if (!MaybeBitCode)
6321           return MaybeBitCode.takeError();
6322         switch (MaybeBitCode.get()) {
6323         default:
6324           break; // Default behavior, ignore unknown content.
6325         case bitc::MODULE_CODE_VERSION: {
6326           if (Error Err = parseVersionRecord(Record).takeError())
6327             return Err;
6328           break;
6329         }
6330         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6331         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6332           SmallString<128> ValueName;
6333           if (convertToString(Record, 0, ValueName))
6334             return error("Invalid record");
6335           SourceFileName = ValueName.c_str();
6336           break;
6337         }
6338         /// MODULE_CODE_HASH: [5*i32]
6339         case bitc::MODULE_CODE_HASH: {
6340           if (Record.size() != 5)
6341             return error("Invalid hash length " + Twine(Record.size()).str());
6342           auto &Hash = getThisModule()->second.second;
6343           int Pos = 0;
6344           for (auto &Val : Record) {
6345             assert(!(Val >> 32) && "Unexpected high bits set");
6346             Hash[Pos++] = Val;
6347           }
6348           break;
6349         }
6350         /// MODULE_CODE_VSTOFFSET: [offset]
6351         case bitc::MODULE_CODE_VSTOFFSET:
6352           if (Record.empty())
6353             return error("Invalid record");
6354           // Note that we subtract 1 here because the offset is relative to one
6355           // word before the start of the identification or module block, which
6356           // was historically always the start of the regular bitcode header.
6357           VSTOffset = Record[0] - 1;
6358           break;
6359         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6360         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6361         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6362         // v2: [strtab offset, strtab size, v1]
6363         case bitc::MODULE_CODE_GLOBALVAR:
6364         case bitc::MODULE_CODE_FUNCTION:
6365         case bitc::MODULE_CODE_ALIAS: {
6366           StringRef Name;
6367           ArrayRef<uint64_t> GVRecord;
6368           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6369           if (GVRecord.size() <= 3)
6370             return error("Invalid record");
6371           uint64_t RawLinkage = GVRecord[3];
6372           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6373           if (!UseStrtab) {
6374             ValueIdToLinkageMap[ValueId++] = Linkage;
6375             break;
6376           }
6377 
6378           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6379           break;
6380         }
6381         }
6382       }
6383       continue;
6384     }
6385   }
6386 }
6387 
6388 std::vector<ValueInfo>
6389 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6390   std::vector<ValueInfo> Ret;
6391   Ret.reserve(Record.size());
6392   for (uint64_t RefValueId : Record)
6393     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6394   return Ret;
6395 }
6396 
6397 std::vector<FunctionSummary::EdgeTy>
6398 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6399                                               bool IsOldProfileFormat,
6400                                               bool HasProfile, bool HasRelBF) {
6401   std::vector<FunctionSummary::EdgeTy> Ret;
6402   Ret.reserve(Record.size());
6403   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6404     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6405     uint64_t RelBF = 0;
6406     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6407     if (IsOldProfileFormat) {
6408       I += 1; // Skip old callsitecount field
6409       if (HasProfile)
6410         I += 1; // Skip old profilecount field
6411     } else if (HasProfile)
6412       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6413     else if (HasRelBF)
6414       RelBF = Record[++I];
6415     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6416   }
6417   return Ret;
6418 }
6419 
6420 static void
6421 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6422                                        WholeProgramDevirtResolution &Wpd) {
6423   uint64_t ArgNum = Record[Slot++];
6424   WholeProgramDevirtResolution::ByArg &B =
6425       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6426   Slot += ArgNum;
6427 
6428   B.TheKind =
6429       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6430   B.Info = Record[Slot++];
6431   B.Byte = Record[Slot++];
6432   B.Bit = Record[Slot++];
6433 }
6434 
6435 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6436                                               StringRef Strtab, size_t &Slot,
6437                                               TypeIdSummary &TypeId) {
6438   uint64_t Id = Record[Slot++];
6439   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6440 
6441   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6442   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6443                         static_cast<size_t>(Record[Slot + 1])};
6444   Slot += 2;
6445 
6446   uint64_t ResByArgNum = Record[Slot++];
6447   for (uint64_t I = 0; I != ResByArgNum; ++I)
6448     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6449 }
6450 
6451 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6452                                      StringRef Strtab,
6453                                      ModuleSummaryIndex &TheIndex) {
6454   size_t Slot = 0;
6455   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6456       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6457   Slot += 2;
6458 
6459   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6460   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6461   TypeId.TTRes.AlignLog2 = Record[Slot++];
6462   TypeId.TTRes.SizeM1 = Record[Slot++];
6463   TypeId.TTRes.BitMask = Record[Slot++];
6464   TypeId.TTRes.InlineBits = Record[Slot++];
6465 
6466   while (Slot < Record.size())
6467     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6468 }
6469 
6470 std::vector<FunctionSummary::ParamAccess>
6471 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6472   auto ReadRange = [&]() {
6473     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6474                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6475     Record = Record.drop_front();
6476     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6477                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6478     Record = Record.drop_front();
6479     ConstantRange Range{Lower, Upper};
6480     assert(!Range.isFullSet());
6481     assert(!Range.isUpperSignWrapped());
6482     return Range;
6483   };
6484 
6485   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6486   while (!Record.empty()) {
6487     PendingParamAccesses.emplace_back();
6488     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6489     ParamAccess.ParamNo = Record.front();
6490     Record = Record.drop_front();
6491     ParamAccess.Use = ReadRange();
6492     ParamAccess.Calls.resize(Record.front());
6493     Record = Record.drop_front();
6494     for (auto &Call : ParamAccess.Calls) {
6495       Call.ParamNo = Record.front();
6496       Record = Record.drop_front();
6497       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6498       Record = Record.drop_front();
6499       Call.Offsets = ReadRange();
6500     }
6501   }
6502   return PendingParamAccesses;
6503 }
6504 
6505 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6506     ArrayRef<uint64_t> Record, size_t &Slot,
6507     TypeIdCompatibleVtableInfo &TypeId) {
6508   uint64_t Offset = Record[Slot++];
6509   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6510   TypeId.push_back({Offset, Callee});
6511 }
6512 
6513 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6514     ArrayRef<uint64_t> Record) {
6515   size_t Slot = 0;
6516   TypeIdCompatibleVtableInfo &TypeId =
6517       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6518           {Strtab.data() + Record[Slot],
6519            static_cast<size_t>(Record[Slot + 1])});
6520   Slot += 2;
6521 
6522   while (Slot < Record.size())
6523     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6524 }
6525 
6526 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6527                            unsigned WOCnt) {
6528   // Readonly and writeonly refs are in the end of the refs list.
6529   assert(ROCnt + WOCnt <= Refs.size());
6530   unsigned FirstWORef = Refs.size() - WOCnt;
6531   unsigned RefNo = FirstWORef - ROCnt;
6532   for (; RefNo < FirstWORef; ++RefNo)
6533     Refs[RefNo].setReadOnly();
6534   for (; RefNo < Refs.size(); ++RefNo)
6535     Refs[RefNo].setWriteOnly();
6536 }
6537 
6538 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6539 // objects in the index.
6540 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6541   if (Error Err = Stream.EnterSubBlock(ID))
6542     return Err;
6543   SmallVector<uint64_t, 64> Record;
6544 
6545   // Parse version
6546   {
6547     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6548     if (!MaybeEntry)
6549       return MaybeEntry.takeError();
6550     BitstreamEntry Entry = MaybeEntry.get();
6551 
6552     if (Entry.Kind != BitstreamEntry::Record)
6553       return error("Invalid Summary Block: record for version expected");
6554     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6555     if (!MaybeRecord)
6556       return MaybeRecord.takeError();
6557     if (MaybeRecord.get() != bitc::FS_VERSION)
6558       return error("Invalid Summary Block: version expected");
6559   }
6560   const uint64_t Version = Record[0];
6561   const bool IsOldProfileFormat = Version == 1;
6562   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6563     return error("Invalid summary version " + Twine(Version) +
6564                  ". Version should be in the range [1-" +
6565                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6566                  "].");
6567   Record.clear();
6568 
6569   // Keep around the last seen summary to be used when we see an optional
6570   // "OriginalName" attachement.
6571   GlobalValueSummary *LastSeenSummary = nullptr;
6572   GlobalValue::GUID LastSeenGUID = 0;
6573 
6574   // We can expect to see any number of type ID information records before
6575   // each function summary records; these variables store the information
6576   // collected so far so that it can be used to create the summary object.
6577   std::vector<GlobalValue::GUID> PendingTypeTests;
6578   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6579       PendingTypeCheckedLoadVCalls;
6580   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6581       PendingTypeCheckedLoadConstVCalls;
6582   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6583 
6584   while (true) {
6585     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6586     if (!MaybeEntry)
6587       return MaybeEntry.takeError();
6588     BitstreamEntry Entry = MaybeEntry.get();
6589 
6590     switch (Entry.Kind) {
6591     case BitstreamEntry::SubBlock: // Handled for us already.
6592     case BitstreamEntry::Error:
6593       return error("Malformed block");
6594     case BitstreamEntry::EndBlock:
6595       return Error::success();
6596     case BitstreamEntry::Record:
6597       // The interesting case.
6598       break;
6599     }
6600 
6601     // Read a record. The record format depends on whether this
6602     // is a per-module index or a combined index file. In the per-module
6603     // case the records contain the associated value's ID for correlation
6604     // with VST entries. In the combined index the correlation is done
6605     // via the bitcode offset of the summary records (which were saved
6606     // in the combined index VST entries). The records also contain
6607     // information used for ThinLTO renaming and importing.
6608     Record.clear();
6609     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6610     if (!MaybeBitCode)
6611       return MaybeBitCode.takeError();
6612     switch (unsigned BitCode = MaybeBitCode.get()) {
6613     default: // Default behavior: ignore.
6614       break;
6615     case bitc::FS_FLAGS: {  // [flags]
6616       TheIndex.setFlags(Record[0]);
6617       break;
6618     }
6619     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6620       uint64_t ValueID = Record[0];
6621       GlobalValue::GUID RefGUID = Record[1];
6622       ValueIdToValueInfoMap[ValueID] =
6623           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6624       break;
6625     }
6626     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6627     //                numrefs x valueid, n x (valueid)]
6628     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6629     //                        numrefs x valueid,
6630     //                        n x (valueid, hotness)]
6631     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6632     //                      numrefs x valueid,
6633     //                      n x (valueid, relblockfreq)]
6634     case bitc::FS_PERMODULE:
6635     case bitc::FS_PERMODULE_RELBF:
6636     case bitc::FS_PERMODULE_PROFILE: {
6637       unsigned ValueID = Record[0];
6638       uint64_t RawFlags = Record[1];
6639       unsigned InstCount = Record[2];
6640       uint64_t RawFunFlags = 0;
6641       unsigned NumRefs = Record[3];
6642       unsigned NumRORefs = 0, NumWORefs = 0;
6643       int RefListStartIndex = 4;
6644       if (Version >= 4) {
6645         RawFunFlags = Record[3];
6646         NumRefs = Record[4];
6647         RefListStartIndex = 5;
6648         if (Version >= 5) {
6649           NumRORefs = Record[5];
6650           RefListStartIndex = 6;
6651           if (Version >= 7) {
6652             NumWORefs = Record[6];
6653             RefListStartIndex = 7;
6654           }
6655         }
6656       }
6657 
6658       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6659       // The module path string ref set in the summary must be owned by the
6660       // index's module string table. Since we don't have a module path
6661       // string table section in the per-module index, we create a single
6662       // module path string table entry with an empty (0) ID to take
6663       // ownership.
6664       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6665       assert(Record.size() >= RefListStartIndex + NumRefs &&
6666              "Record size inconsistent with number of references");
6667       std::vector<ValueInfo> Refs = makeRefList(
6668           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6669       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6670       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6671       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6672           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6673           IsOldProfileFormat, HasProfile, HasRelBF);
6674       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6675       auto FS = std::make_unique<FunctionSummary>(
6676           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6677           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6678           std::move(PendingTypeTestAssumeVCalls),
6679           std::move(PendingTypeCheckedLoadVCalls),
6680           std::move(PendingTypeTestAssumeConstVCalls),
6681           std::move(PendingTypeCheckedLoadConstVCalls),
6682           std::move(PendingParamAccesses));
6683       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6684       FS->setModulePath(getThisModule()->first());
6685       FS->setOriginalName(VIAndOriginalGUID.second);
6686       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6687       break;
6688     }
6689     // FS_ALIAS: [valueid, flags, valueid]
6690     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6691     // they expect all aliasee summaries to be available.
6692     case bitc::FS_ALIAS: {
6693       unsigned ValueID = Record[0];
6694       uint64_t RawFlags = Record[1];
6695       unsigned AliaseeID = Record[2];
6696       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6697       auto AS = std::make_unique<AliasSummary>(Flags);
6698       // The module path string ref set in the summary must be owned by the
6699       // index's module string table. Since we don't have a module path
6700       // string table section in the per-module index, we create a single
6701       // module path string table entry with an empty (0) ID to take
6702       // ownership.
6703       AS->setModulePath(getThisModule()->first());
6704 
6705       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6706       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6707       if (!AliaseeInModule)
6708         return error("Alias expects aliasee summary to be parsed");
6709       AS->setAliasee(AliaseeVI, AliaseeInModule);
6710 
6711       auto GUID = getValueInfoFromValueId(ValueID);
6712       AS->setOriginalName(GUID.second);
6713       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6714       break;
6715     }
6716     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6717     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6718       unsigned ValueID = Record[0];
6719       uint64_t RawFlags = Record[1];
6720       unsigned RefArrayStart = 2;
6721       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6722                                       /* WriteOnly */ false,
6723                                       /* Constant */ false,
6724                                       GlobalObject::VCallVisibilityPublic);
6725       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6726       if (Version >= 5) {
6727         GVF = getDecodedGVarFlags(Record[2]);
6728         RefArrayStart = 3;
6729       }
6730       std::vector<ValueInfo> Refs =
6731           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6732       auto FS =
6733           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6734       FS->setModulePath(getThisModule()->first());
6735       auto GUID = getValueInfoFromValueId(ValueID);
6736       FS->setOriginalName(GUID.second);
6737       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6738       break;
6739     }
6740     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6741     //                        numrefs, numrefs x valueid,
6742     //                        n x (valueid, offset)]
6743     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6744       unsigned ValueID = Record[0];
6745       uint64_t RawFlags = Record[1];
6746       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6747       unsigned NumRefs = Record[3];
6748       unsigned RefListStartIndex = 4;
6749       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6750       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6751       std::vector<ValueInfo> Refs = makeRefList(
6752           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6753       VTableFuncList VTableFuncs;
6754       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6755         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6756         uint64_t Offset = Record[++I];
6757         VTableFuncs.push_back({Callee, Offset});
6758       }
6759       auto VS =
6760           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6761       VS->setModulePath(getThisModule()->first());
6762       VS->setVTableFuncs(VTableFuncs);
6763       auto GUID = getValueInfoFromValueId(ValueID);
6764       VS->setOriginalName(GUID.second);
6765       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6766       break;
6767     }
6768     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6769     //               numrefs x valueid, n x (valueid)]
6770     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6771     //                       numrefs x valueid, n x (valueid, hotness)]
6772     case bitc::FS_COMBINED:
6773     case bitc::FS_COMBINED_PROFILE: {
6774       unsigned ValueID = Record[0];
6775       uint64_t ModuleId = Record[1];
6776       uint64_t RawFlags = Record[2];
6777       unsigned InstCount = Record[3];
6778       uint64_t RawFunFlags = 0;
6779       uint64_t EntryCount = 0;
6780       unsigned NumRefs = Record[4];
6781       unsigned NumRORefs = 0, NumWORefs = 0;
6782       int RefListStartIndex = 5;
6783 
6784       if (Version >= 4) {
6785         RawFunFlags = Record[4];
6786         RefListStartIndex = 6;
6787         size_t NumRefsIndex = 5;
6788         if (Version >= 5) {
6789           unsigned NumRORefsOffset = 1;
6790           RefListStartIndex = 7;
6791           if (Version >= 6) {
6792             NumRefsIndex = 6;
6793             EntryCount = Record[5];
6794             RefListStartIndex = 8;
6795             if (Version >= 7) {
6796               RefListStartIndex = 9;
6797               NumWORefs = Record[8];
6798               NumRORefsOffset = 2;
6799             }
6800           }
6801           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6802         }
6803         NumRefs = Record[NumRefsIndex];
6804       }
6805 
6806       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6807       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6808       assert(Record.size() >= RefListStartIndex + NumRefs &&
6809              "Record size inconsistent with number of references");
6810       std::vector<ValueInfo> Refs = makeRefList(
6811           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6812       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6813       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6814           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6815           IsOldProfileFormat, HasProfile, false);
6816       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6817       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6818       auto FS = std::make_unique<FunctionSummary>(
6819           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6820           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6821           std::move(PendingTypeTestAssumeVCalls),
6822           std::move(PendingTypeCheckedLoadVCalls),
6823           std::move(PendingTypeTestAssumeConstVCalls),
6824           std::move(PendingTypeCheckedLoadConstVCalls),
6825           std::move(PendingParamAccesses));
6826       LastSeenSummary = FS.get();
6827       LastSeenGUID = VI.getGUID();
6828       FS->setModulePath(ModuleIdMap[ModuleId]);
6829       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6830       break;
6831     }
6832     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6833     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6834     // they expect all aliasee summaries to be available.
6835     case bitc::FS_COMBINED_ALIAS: {
6836       unsigned ValueID = Record[0];
6837       uint64_t ModuleId = Record[1];
6838       uint64_t RawFlags = Record[2];
6839       unsigned AliaseeValueId = Record[3];
6840       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6841       auto AS = std::make_unique<AliasSummary>(Flags);
6842       LastSeenSummary = AS.get();
6843       AS->setModulePath(ModuleIdMap[ModuleId]);
6844 
6845       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6846       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6847       AS->setAliasee(AliaseeVI, AliaseeInModule);
6848 
6849       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6850       LastSeenGUID = VI.getGUID();
6851       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6852       break;
6853     }
6854     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6855     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6856       unsigned ValueID = Record[0];
6857       uint64_t ModuleId = Record[1];
6858       uint64_t RawFlags = Record[2];
6859       unsigned RefArrayStart = 3;
6860       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6861                                       /* WriteOnly */ false,
6862                                       /* Constant */ false,
6863                                       GlobalObject::VCallVisibilityPublic);
6864       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6865       if (Version >= 5) {
6866         GVF = getDecodedGVarFlags(Record[3]);
6867         RefArrayStart = 4;
6868       }
6869       std::vector<ValueInfo> Refs =
6870           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6871       auto FS =
6872           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6873       LastSeenSummary = FS.get();
6874       FS->setModulePath(ModuleIdMap[ModuleId]);
6875       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6876       LastSeenGUID = VI.getGUID();
6877       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6878       break;
6879     }
6880     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6881     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6882       uint64_t OriginalName = Record[0];
6883       if (!LastSeenSummary)
6884         return error("Name attachment that does not follow a combined record");
6885       LastSeenSummary->setOriginalName(OriginalName);
6886       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6887       // Reset the LastSeenSummary
6888       LastSeenSummary = nullptr;
6889       LastSeenGUID = 0;
6890       break;
6891     }
6892     case bitc::FS_TYPE_TESTS:
6893       assert(PendingTypeTests.empty());
6894       llvm::append_range(PendingTypeTests, Record);
6895       break;
6896 
6897     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6898       assert(PendingTypeTestAssumeVCalls.empty());
6899       for (unsigned I = 0; I != Record.size(); I += 2)
6900         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6901       break;
6902 
6903     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6904       assert(PendingTypeCheckedLoadVCalls.empty());
6905       for (unsigned I = 0; I != Record.size(); I += 2)
6906         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6907       break;
6908 
6909     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6910       PendingTypeTestAssumeConstVCalls.push_back(
6911           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6912       break;
6913 
6914     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6915       PendingTypeCheckedLoadConstVCalls.push_back(
6916           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6917       break;
6918 
6919     case bitc::FS_CFI_FUNCTION_DEFS: {
6920       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6921       for (unsigned I = 0; I != Record.size(); I += 2)
6922         CfiFunctionDefs.insert(
6923             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6924       break;
6925     }
6926 
6927     case bitc::FS_CFI_FUNCTION_DECLS: {
6928       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6929       for (unsigned I = 0; I != Record.size(); I += 2)
6930         CfiFunctionDecls.insert(
6931             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6932       break;
6933     }
6934 
6935     case bitc::FS_TYPE_ID:
6936       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6937       break;
6938 
6939     case bitc::FS_TYPE_ID_METADATA:
6940       parseTypeIdCompatibleVtableSummaryRecord(Record);
6941       break;
6942 
6943     case bitc::FS_BLOCK_COUNT:
6944       TheIndex.addBlockCount(Record[0]);
6945       break;
6946 
6947     case bitc::FS_PARAM_ACCESS: {
6948       PendingParamAccesses = parseParamAccesses(Record);
6949       break;
6950     }
6951     }
6952   }
6953   llvm_unreachable("Exit infinite loop");
6954 }
6955 
6956 // Parse the  module string table block into the Index.
6957 // This populates the ModulePathStringTable map in the index.
6958 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6959   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6960     return Err;
6961 
6962   SmallVector<uint64_t, 64> Record;
6963 
6964   SmallString<128> ModulePath;
6965   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6966 
6967   while (true) {
6968     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6969     if (!MaybeEntry)
6970       return MaybeEntry.takeError();
6971     BitstreamEntry Entry = MaybeEntry.get();
6972 
6973     switch (Entry.Kind) {
6974     case BitstreamEntry::SubBlock: // Handled for us already.
6975     case BitstreamEntry::Error:
6976       return error("Malformed block");
6977     case BitstreamEntry::EndBlock:
6978       return Error::success();
6979     case BitstreamEntry::Record:
6980       // The interesting case.
6981       break;
6982     }
6983 
6984     Record.clear();
6985     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6986     if (!MaybeRecord)
6987       return MaybeRecord.takeError();
6988     switch (MaybeRecord.get()) {
6989     default: // Default behavior: ignore.
6990       break;
6991     case bitc::MST_CODE_ENTRY: {
6992       // MST_ENTRY: [modid, namechar x N]
6993       uint64_t ModuleId = Record[0];
6994 
6995       if (convertToString(Record, 1, ModulePath))
6996         return error("Invalid record");
6997 
6998       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6999       ModuleIdMap[ModuleId] = LastSeenModule->first();
7000 
7001       ModulePath.clear();
7002       break;
7003     }
7004     /// MST_CODE_HASH: [5*i32]
7005     case bitc::MST_CODE_HASH: {
7006       if (Record.size() != 5)
7007         return error("Invalid hash length " + Twine(Record.size()).str());
7008       if (!LastSeenModule)
7009         return error("Invalid hash that does not follow a module path");
7010       int Pos = 0;
7011       for (auto &Val : Record) {
7012         assert(!(Val >> 32) && "Unexpected high bits set");
7013         LastSeenModule->second.second[Pos++] = Val;
7014       }
7015       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7016       LastSeenModule = nullptr;
7017       break;
7018     }
7019     }
7020   }
7021   llvm_unreachable("Exit infinite loop");
7022 }
7023 
7024 namespace {
7025 
7026 // FIXME: This class is only here to support the transition to llvm::Error. It
7027 // will be removed once this transition is complete. Clients should prefer to
7028 // deal with the Error value directly, rather than converting to error_code.
7029 class BitcodeErrorCategoryType : public std::error_category {
7030   const char *name() const noexcept override {
7031     return "llvm.bitcode";
7032   }
7033 
7034   std::string message(int IE) const override {
7035     BitcodeError E = static_cast<BitcodeError>(IE);
7036     switch (E) {
7037     case BitcodeError::CorruptedBitcode:
7038       return "Corrupted bitcode";
7039     }
7040     llvm_unreachable("Unknown error type!");
7041   }
7042 };
7043 
7044 } // end anonymous namespace
7045 
7046 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
7047 
7048 const std::error_category &llvm::BitcodeErrorCategory() {
7049   return *ErrorCategory;
7050 }
7051 
7052 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7053                                             unsigned Block, unsigned RecordID) {
7054   if (Error Err = Stream.EnterSubBlock(Block))
7055     return std::move(Err);
7056 
7057   StringRef Strtab;
7058   while (true) {
7059     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7060     if (!MaybeEntry)
7061       return MaybeEntry.takeError();
7062     llvm::BitstreamEntry Entry = MaybeEntry.get();
7063 
7064     switch (Entry.Kind) {
7065     case BitstreamEntry::EndBlock:
7066       return Strtab;
7067 
7068     case BitstreamEntry::Error:
7069       return error("Malformed block");
7070 
7071     case BitstreamEntry::SubBlock:
7072       if (Error Err = Stream.SkipBlock())
7073         return std::move(Err);
7074       break;
7075 
7076     case BitstreamEntry::Record:
7077       StringRef Blob;
7078       SmallVector<uint64_t, 1> Record;
7079       Expected<unsigned> MaybeRecord =
7080           Stream.readRecord(Entry.ID, Record, &Blob);
7081       if (!MaybeRecord)
7082         return MaybeRecord.takeError();
7083       if (MaybeRecord.get() == RecordID)
7084         Strtab = Blob;
7085       break;
7086     }
7087   }
7088 }
7089 
7090 //===----------------------------------------------------------------------===//
7091 // External interface
7092 //===----------------------------------------------------------------------===//
7093 
7094 Expected<std::vector<BitcodeModule>>
7095 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7096   auto FOrErr = getBitcodeFileContents(Buffer);
7097   if (!FOrErr)
7098     return FOrErr.takeError();
7099   return std::move(FOrErr->Mods);
7100 }
7101 
7102 Expected<BitcodeFileContents>
7103 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7104   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7105   if (!StreamOrErr)
7106     return StreamOrErr.takeError();
7107   BitstreamCursor &Stream = *StreamOrErr;
7108 
7109   BitcodeFileContents F;
7110   while (true) {
7111     uint64_t BCBegin = Stream.getCurrentByteNo();
7112 
7113     // We may be consuming bitcode from a client that leaves garbage at the end
7114     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7115     // the end that there cannot possibly be another module, stop looking.
7116     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7117       return F;
7118 
7119     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7120     if (!MaybeEntry)
7121       return MaybeEntry.takeError();
7122     llvm::BitstreamEntry Entry = MaybeEntry.get();
7123 
7124     switch (Entry.Kind) {
7125     case BitstreamEntry::EndBlock:
7126     case BitstreamEntry::Error:
7127       return error("Malformed block");
7128 
7129     case BitstreamEntry::SubBlock: {
7130       uint64_t IdentificationBit = -1ull;
7131       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7132         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7133         if (Error Err = Stream.SkipBlock())
7134           return std::move(Err);
7135 
7136         {
7137           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7138           if (!MaybeEntry)
7139             return MaybeEntry.takeError();
7140           Entry = MaybeEntry.get();
7141         }
7142 
7143         if (Entry.Kind != BitstreamEntry::SubBlock ||
7144             Entry.ID != bitc::MODULE_BLOCK_ID)
7145           return error("Malformed block");
7146       }
7147 
7148       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7149         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7150         if (Error Err = Stream.SkipBlock())
7151           return std::move(Err);
7152 
7153         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7154                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7155                           Buffer.getBufferIdentifier(), IdentificationBit,
7156                           ModuleBit});
7157         continue;
7158       }
7159 
7160       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7161         Expected<StringRef> Strtab =
7162             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7163         if (!Strtab)
7164           return Strtab.takeError();
7165         // This string table is used by every preceding bitcode module that does
7166         // not have its own string table. A bitcode file may have multiple
7167         // string tables if it was created by binary concatenation, for example
7168         // with "llvm-cat -b".
7169         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7170           if (!I.Strtab.empty())
7171             break;
7172           I.Strtab = *Strtab;
7173         }
7174         // Similarly, the string table is used by every preceding symbol table;
7175         // normally there will be just one unless the bitcode file was created
7176         // by binary concatenation.
7177         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7178           F.StrtabForSymtab = *Strtab;
7179         continue;
7180       }
7181 
7182       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7183         Expected<StringRef> SymtabOrErr =
7184             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7185         if (!SymtabOrErr)
7186           return SymtabOrErr.takeError();
7187 
7188         // We can expect the bitcode file to have multiple symbol tables if it
7189         // was created by binary concatenation. In that case we silently
7190         // ignore any subsequent symbol tables, which is fine because this is a
7191         // low level function. The client is expected to notice that the number
7192         // of modules in the symbol table does not match the number of modules
7193         // in the input file and regenerate the symbol table.
7194         if (F.Symtab.empty())
7195           F.Symtab = *SymtabOrErr;
7196         continue;
7197       }
7198 
7199       if (Error Err = Stream.SkipBlock())
7200         return std::move(Err);
7201       continue;
7202     }
7203     case BitstreamEntry::Record:
7204       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7205         return std::move(E);
7206       continue;
7207     }
7208   }
7209 }
7210 
7211 /// Get a lazy one-at-time loading module from bitcode.
7212 ///
7213 /// This isn't always used in a lazy context.  In particular, it's also used by
7214 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7215 /// in forward-referenced functions from block address references.
7216 ///
7217 /// \param[in] MaterializeAll Set to \c true if we should materialize
7218 /// everything.
7219 Expected<std::unique_ptr<Module>>
7220 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7221                              bool ShouldLazyLoadMetadata, bool IsImporting,
7222                              DataLayoutCallbackTy DataLayoutCallback) {
7223   BitstreamCursor Stream(Buffer);
7224 
7225   std::string ProducerIdentification;
7226   if (IdentificationBit != -1ull) {
7227     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7228       return std::move(JumpFailed);
7229     if (Error E =
7230             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7231       return std::move(E);
7232   }
7233 
7234   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7235     return std::move(JumpFailed);
7236   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7237                               Context);
7238 
7239   std::unique_ptr<Module> M =
7240       std::make_unique<Module>(ModuleIdentifier, Context);
7241   M->setMaterializer(R);
7242 
7243   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7244   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7245                                       IsImporting, DataLayoutCallback))
7246     return std::move(Err);
7247 
7248   if (MaterializeAll) {
7249     // Read in the entire module, and destroy the BitcodeReader.
7250     if (Error Err = M->materializeAll())
7251       return std::move(Err);
7252   } else {
7253     // Resolve forward references from blockaddresses.
7254     if (Error Err = R->materializeForwardReferencedFunctions())
7255       return std::move(Err);
7256   }
7257   return std::move(M);
7258 }
7259 
7260 Expected<std::unique_ptr<Module>>
7261 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7262                              bool IsImporting) {
7263   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7264                        [](StringRef) { return None; });
7265 }
7266 
7267 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7268 // We don't use ModuleIdentifier here because the client may need to control the
7269 // module path used in the combined summary (e.g. when reading summaries for
7270 // regular LTO modules).
7271 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7272                                  StringRef ModulePath, uint64_t ModuleId) {
7273   BitstreamCursor Stream(Buffer);
7274   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7275     return JumpFailed;
7276 
7277   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7278                                     ModulePath, ModuleId);
7279   return R.parseModule();
7280 }
7281 
7282 // Parse the specified bitcode buffer, returning the function info index.
7283 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7284   BitstreamCursor Stream(Buffer);
7285   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7286     return std::move(JumpFailed);
7287 
7288   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7289   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7290                                     ModuleIdentifier, 0);
7291 
7292   if (Error Err = R.parseModule())
7293     return std::move(Err);
7294 
7295   return std::move(Index);
7296 }
7297 
7298 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7299                                                 unsigned ID) {
7300   if (Error Err = Stream.EnterSubBlock(ID))
7301     return std::move(Err);
7302   SmallVector<uint64_t, 64> Record;
7303 
7304   while (true) {
7305     BitstreamEntry Entry;
7306     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7307       return std::move(E);
7308 
7309     switch (Entry.Kind) {
7310     case BitstreamEntry::SubBlock: // Handled for us already.
7311     case BitstreamEntry::Error:
7312       return error("Malformed block");
7313     case BitstreamEntry::EndBlock:
7314       // If no flags record found, conservatively return true to mimic
7315       // behavior before this flag was added.
7316       return true;
7317     case BitstreamEntry::Record:
7318       // The interesting case.
7319       break;
7320     }
7321 
7322     // Look for the FS_FLAGS record.
7323     Record.clear();
7324     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7325     if (!MaybeBitCode)
7326       return MaybeBitCode.takeError();
7327     switch (MaybeBitCode.get()) {
7328     default: // Default behavior: ignore.
7329       break;
7330     case bitc::FS_FLAGS: { // [flags]
7331       uint64_t Flags = Record[0];
7332       // Scan flags.
7333       assert(Flags <= 0x7f && "Unexpected bits in flag");
7334 
7335       return Flags & 0x8;
7336     }
7337     }
7338   }
7339   llvm_unreachable("Exit infinite loop");
7340 }
7341 
7342 // Check if the given bitcode buffer contains a global value summary block.
7343 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7344   BitstreamCursor Stream(Buffer);
7345   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7346     return std::move(JumpFailed);
7347 
7348   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7349     return std::move(Err);
7350 
7351   while (true) {
7352     llvm::BitstreamEntry Entry;
7353     if (Error E = Stream.advance().moveInto(Entry))
7354       return std::move(E);
7355 
7356     switch (Entry.Kind) {
7357     case BitstreamEntry::Error:
7358       return error("Malformed block");
7359     case BitstreamEntry::EndBlock:
7360       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7361                             /*EnableSplitLTOUnit=*/false};
7362 
7363     case BitstreamEntry::SubBlock:
7364       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7365         Expected<bool> EnableSplitLTOUnit =
7366             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7367         if (!EnableSplitLTOUnit)
7368           return EnableSplitLTOUnit.takeError();
7369         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7370                               *EnableSplitLTOUnit};
7371       }
7372 
7373       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7374         Expected<bool> EnableSplitLTOUnit =
7375             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7376         if (!EnableSplitLTOUnit)
7377           return EnableSplitLTOUnit.takeError();
7378         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7379                               *EnableSplitLTOUnit};
7380       }
7381 
7382       // Ignore other sub-blocks.
7383       if (Error Err = Stream.SkipBlock())
7384         return std::move(Err);
7385       continue;
7386 
7387     case BitstreamEntry::Record:
7388       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7389         continue;
7390       else
7391         return StreamFailed.takeError();
7392     }
7393   }
7394 }
7395 
7396 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7397   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7398   if (!MsOrErr)
7399     return MsOrErr.takeError();
7400 
7401   if (MsOrErr->size() != 1)
7402     return error("Expected a single module");
7403 
7404   return (*MsOrErr)[0];
7405 }
7406 
7407 Expected<std::unique_ptr<Module>>
7408 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7409                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7410   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7411   if (!BM)
7412     return BM.takeError();
7413 
7414   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7415 }
7416 
7417 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7418     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7419     bool ShouldLazyLoadMetadata, bool IsImporting) {
7420   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7421                                      IsImporting);
7422   if (MOrErr)
7423     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7424   return MOrErr;
7425 }
7426 
7427 Expected<std::unique_ptr<Module>>
7428 BitcodeModule::parseModule(LLVMContext &Context,
7429                            DataLayoutCallbackTy DataLayoutCallback) {
7430   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7431   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7432   // written.  We must defer until the Module has been fully materialized.
7433 }
7434 
7435 Expected<std::unique_ptr<Module>>
7436 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7437                        DataLayoutCallbackTy DataLayoutCallback) {
7438   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7439   if (!BM)
7440     return BM.takeError();
7441 
7442   return BM->parseModule(Context, DataLayoutCallback);
7443 }
7444 
7445 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7446   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7447   if (!StreamOrErr)
7448     return StreamOrErr.takeError();
7449 
7450   return readTriple(*StreamOrErr);
7451 }
7452 
7453 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7454   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7455   if (!StreamOrErr)
7456     return StreamOrErr.takeError();
7457 
7458   return hasObjCCategory(*StreamOrErr);
7459 }
7460 
7461 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7462   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7463   if (!StreamOrErr)
7464     return StreamOrErr.takeError();
7465 
7466   return readIdentificationCode(*StreamOrErr);
7467 }
7468 
7469 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7470                                    ModuleSummaryIndex &CombinedIndex,
7471                                    uint64_t ModuleId) {
7472   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7473   if (!BM)
7474     return BM.takeError();
7475 
7476   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7477 }
7478 
7479 Expected<std::unique_ptr<ModuleSummaryIndex>>
7480 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7481   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7482   if (!BM)
7483     return BM.takeError();
7484 
7485   return BM->getSummary();
7486 }
7487 
7488 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7489   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7490   if (!BM)
7491     return BM.takeError();
7492 
7493   return BM->getLTOInfo();
7494 }
7495 
7496 Expected<std::unique_ptr<ModuleSummaryIndex>>
7497 llvm::getModuleSummaryIndexForFile(StringRef Path,
7498                                    bool IgnoreEmptyThinLTOIndexFile) {
7499   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7500       MemoryBuffer::getFileOrSTDIN(Path);
7501   if (!FileOrErr)
7502     return errorCodeToError(FileOrErr.getError());
7503   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7504     return nullptr;
7505   return getModuleSummaryIndex(**FileOrErr);
7506 }
7507