1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 Error readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type *> TypeList; 487 /// Track type IDs of contained types. Order is the same as the contained 488 /// types of a Type*. This is used during upgrades of typed pointer IR in 489 /// opaque pointer mode. 490 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 491 DenseMap<Function *, FunctionType *> FunctionTypes; 492 BitcodeReaderValueList ValueList; 493 Optional<MetadataLoader> MDLoader; 494 std::vector<Comdat *> ComdatList; 495 DenseSet<GlobalObject *> ImplicitComdatObjects; 496 SmallVector<Instruction *, 64> InstructionList; 497 498 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 499 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 500 501 struct FunctionOperandInfo { 502 Function *F; 503 unsigned PersonalityFn; 504 unsigned Prefix; 505 unsigned Prologue; 506 }; 507 std::vector<FunctionOperandInfo> FunctionOperands; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto( 582 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 583 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 584 585 static uint64_t decodeSignRotatedValue(uint64_t V); 586 587 /// Materialize any deferred Metadata block. 588 Error materializeMetadata() override; 589 590 void setStripDebugInfo() override; 591 592 private: 593 std::vector<StructType *> IdentifiedStructTypes; 594 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 595 StructType *createIdentifiedStructType(LLVMContext &Context); 596 597 static constexpr unsigned InvalidTypeID = ~0u; 598 /// Placeholder for value type IDs we don't yet determine. 599 static constexpr unsigned TODOTypeID = InvalidTypeID - 1; 600 601 Type *getTypeByID(unsigned ID); 602 Type *getPtrElementTypeByID(unsigned ID); 603 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 604 605 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) { 606 if (Ty && Ty->isMetadataTy()) 607 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 608 return ValueList.getValueFwdRef(ID, Ty, TyID); 609 } 610 611 Metadata *getFnMetadataByID(unsigned ID) { 612 return MDLoader->getMetadataFwdRefOrLoad(ID); 613 } 614 615 BasicBlock *getBasicBlock(unsigned ID) const { 616 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 617 return FunctionBBs[ID]; 618 } 619 620 AttributeList getAttributes(unsigned i) const { 621 if (i-1 < MAttributes.size()) 622 return MAttributes[i-1]; 623 return AttributeList(); 624 } 625 626 /// Read a value/type pair out of the specified record from slot 'Slot'. 627 /// Increment Slot past the number of slots used in the record. Return true on 628 /// failure. 629 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 630 unsigned InstNum, Value *&ResVal, unsigned &TypeID) { 631 if (Slot == Record.size()) return true; 632 unsigned ValNo = (unsigned)Record[Slot++]; 633 // Adjust the ValNo, if it was encoded relative to the InstNum. 634 if (UseRelativeIDs) 635 ValNo = InstNum - ValNo; 636 if (ValNo < InstNum) { 637 // If this is not a forward reference, just return the value we already 638 // have. 639 TypeID = ValueList.getTypeID(ValNo); 640 ResVal = getFnValueByID(ValNo, nullptr, TypeID); 641 return ResVal == nullptr; 642 } 643 if (Slot == Record.size()) 644 return true; 645 646 TypeID = (unsigned)Record[Slot++]; 647 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID); 648 return ResVal == nullptr; 649 } 650 651 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 652 /// past the number of slots used by the value in the record. Return true if 653 /// there is an error. 654 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 655 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 656 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal)) 657 return true; 658 // All values currently take a single record slot. 659 ++Slot; 660 return false; 661 } 662 663 /// Like popValue, but does not increment the Slot number. 664 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 666 ResVal = getValue(Record, Slot, InstNum, Ty, TyID); 667 return ResVal == nullptr; 668 } 669 670 /// Version of getValue that returns ResVal directly, or 0 if there is an 671 /// error. 672 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty, unsigned TyID) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)Record[Slot]; 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty, TyID); 680 } 681 682 /// Like getValue, but decodes signed VBRs. 683 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 684 unsigned InstNum, Type *Ty, unsigned TyID) { 685 if (Slot == Record.size()) return nullptr; 686 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 687 // Adjust the ValNo, if it was encoded relative to the InstNum. 688 if (UseRelativeIDs) 689 ValNo = InstNum - ValNo; 690 return getFnValueByID(ValNo, Ty, TyID); 691 } 692 693 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 694 /// corresponding argument's pointee type. Also upgrades intrinsics that now 695 /// require an elementtype attribute. 696 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 697 698 /// Converts alignment exponent (i.e. power of two (or zero)) to the 699 /// corresponding alignment to use. If alignment is too large, returns 700 /// a corresponding error code. 701 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 702 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 703 Error parseModule( 704 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 705 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 706 707 Error parseComdatRecord(ArrayRef<uint64_t> Record); 708 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 709 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 710 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 711 ArrayRef<uint64_t> Record); 712 713 Error parseAttributeBlock(); 714 Error parseAttributeGroupBlock(); 715 Error parseTypeTable(); 716 Error parseTypeTableBody(); 717 Error parseOperandBundleTags(); 718 Error parseSyncScopeNames(); 719 720 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 721 unsigned NameIndex, Triple &TT); 722 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 723 ArrayRef<uint64_t> Record); 724 Error parseValueSymbolTable(uint64_t Offset = 0); 725 Error parseGlobalValueSymbolTable(); 726 Error parseConstants(); 727 Error rememberAndSkipFunctionBodies(); 728 Error rememberAndSkipFunctionBody(); 729 /// Save the positions of the Metadata blocks and skip parsing the blocks. 730 Error rememberAndSkipMetadata(); 731 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 732 Error parseFunctionBody(Function *F); 733 Error globalCleanup(); 734 Error resolveGlobalAndIndirectSymbolInits(); 735 Error parseUseLists(); 736 Error findFunctionInStream( 737 Function *F, 738 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 739 740 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 741 }; 742 743 /// Class to manage reading and parsing function summary index bitcode 744 /// files/sections. 745 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 746 /// The module index built during parsing. 747 ModuleSummaryIndex &TheIndex; 748 749 /// Indicates whether we have encountered a global value summary section 750 /// yet during parsing. 751 bool SeenGlobalValSummary = false; 752 753 /// Indicates whether we have already parsed the VST, used for error checking. 754 bool SeenValueSymbolTable = false; 755 756 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 757 /// Used to enable on-demand parsing of the VST. 758 uint64_t VSTOffset = 0; 759 760 // Map to save ValueId to ValueInfo association that was recorded in the 761 // ValueSymbolTable. It is used after the VST is parsed to convert 762 // call graph edges read from the function summary from referencing 763 // callees by their ValueId to using the ValueInfo instead, which is how 764 // they are recorded in the summary index being built. 765 // We save a GUID which refers to the same global as the ValueInfo, but 766 // ignoring the linkage, i.e. for values other than local linkage they are 767 // identical. 768 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 769 ValueIdToValueInfoMap; 770 771 /// Map populated during module path string table parsing, from the 772 /// module ID to a string reference owned by the index's module 773 /// path string table, used to correlate with combined index 774 /// summary records. 775 DenseMap<uint64_t, StringRef> ModuleIdMap; 776 777 /// Original source file name recorded in a bitcode record. 778 std::string SourceFileName; 779 780 /// The string identifier given to this module by the client, normally the 781 /// path to the bitcode file. 782 StringRef ModulePath; 783 784 /// For per-module summary indexes, the unique numerical identifier given to 785 /// this module by the client. 786 unsigned ModuleId; 787 788 public: 789 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 790 ModuleSummaryIndex &TheIndex, 791 StringRef ModulePath, unsigned ModuleId); 792 793 Error parseModule(); 794 795 private: 796 void setValueGUID(uint64_t ValueID, StringRef ValueName, 797 GlobalValue::LinkageTypes Linkage, 798 StringRef SourceFileName); 799 Error parseValueSymbolTable( 800 uint64_t Offset, 801 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 802 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 803 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 804 bool IsOldProfileFormat, 805 bool HasProfile, 806 bool HasRelBF); 807 Error parseEntireSummary(unsigned ID); 808 Error parseModuleStringTable(); 809 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 810 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 811 TypeIdCompatibleVtableInfo &TypeId); 812 std::vector<FunctionSummary::ParamAccess> 813 parseParamAccesses(ArrayRef<uint64_t> Record); 814 815 std::pair<ValueInfo, GlobalValue::GUID> 816 getValueInfoFromValueId(unsigned ValueId); 817 818 void addThisModule(); 819 ModuleSummaryIndex::ModuleInfo *getThisModule(); 820 }; 821 822 } // end anonymous namespace 823 824 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 825 Error Err) { 826 if (Err) { 827 std::error_code EC; 828 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 829 EC = EIB.convertToErrorCode(); 830 Ctx.emitError(EIB.message()); 831 }); 832 return EC; 833 } 834 return std::error_code(); 835 } 836 837 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 838 StringRef ProducerIdentification, 839 LLVMContext &Context) 840 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 841 ValueList(Context, this->Stream.SizeInBytes()) { 842 this->ProducerIdentification = std::string(ProducerIdentification); 843 } 844 845 Error BitcodeReader::materializeForwardReferencedFunctions() { 846 if (WillMaterializeAllForwardRefs) 847 return Error::success(); 848 849 // Prevent recursion. 850 WillMaterializeAllForwardRefs = true; 851 852 while (!BasicBlockFwdRefQueue.empty()) { 853 Function *F = BasicBlockFwdRefQueue.front(); 854 BasicBlockFwdRefQueue.pop_front(); 855 assert(F && "Expected valid function"); 856 if (!BasicBlockFwdRefs.count(F)) 857 // Already materialized. 858 continue; 859 860 // Check for a function that isn't materializable to prevent an infinite 861 // loop. When parsing a blockaddress stored in a global variable, there 862 // isn't a trivial way to check if a function will have a body without a 863 // linear search through FunctionsWithBodies, so just check it here. 864 if (!F->isMaterializable()) 865 return error("Never resolved function from blockaddress"); 866 867 // Try to materialize F. 868 if (Error Err = materialize(F)) 869 return Err; 870 } 871 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 872 873 // Reset state. 874 WillMaterializeAllForwardRefs = false; 875 return Error::success(); 876 } 877 878 //===----------------------------------------------------------------------===// 879 // Helper functions to implement forward reference resolution, etc. 880 //===----------------------------------------------------------------------===// 881 882 static bool hasImplicitComdat(size_t Val) { 883 switch (Val) { 884 default: 885 return false; 886 case 1: // Old WeakAnyLinkage 887 case 4: // Old LinkOnceAnyLinkage 888 case 10: // Old WeakODRLinkage 889 case 11: // Old LinkOnceODRLinkage 890 return true; 891 } 892 } 893 894 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 895 switch (Val) { 896 default: // Map unknown/new linkages to external 897 case 0: 898 return GlobalValue::ExternalLinkage; 899 case 2: 900 return GlobalValue::AppendingLinkage; 901 case 3: 902 return GlobalValue::InternalLinkage; 903 case 5: 904 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 905 case 6: 906 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 907 case 7: 908 return GlobalValue::ExternalWeakLinkage; 909 case 8: 910 return GlobalValue::CommonLinkage; 911 case 9: 912 return GlobalValue::PrivateLinkage; 913 case 12: 914 return GlobalValue::AvailableExternallyLinkage; 915 case 13: 916 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 917 case 14: 918 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 919 case 15: 920 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 921 case 1: // Old value with implicit comdat. 922 case 16: 923 return GlobalValue::WeakAnyLinkage; 924 case 10: // Old value with implicit comdat. 925 case 17: 926 return GlobalValue::WeakODRLinkage; 927 case 4: // Old value with implicit comdat. 928 case 18: 929 return GlobalValue::LinkOnceAnyLinkage; 930 case 11: // Old value with implicit comdat. 931 case 19: 932 return GlobalValue::LinkOnceODRLinkage; 933 } 934 } 935 936 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 937 FunctionSummary::FFlags Flags; 938 Flags.ReadNone = RawFlags & 0x1; 939 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 940 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 941 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 942 Flags.NoInline = (RawFlags >> 4) & 0x1; 943 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 944 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 945 Flags.MayThrow = (RawFlags >> 7) & 0x1; 946 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 947 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 948 return Flags; 949 } 950 951 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 952 // 953 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 954 // visibility: [8, 10). 955 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 956 uint64_t Version) { 957 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 958 // like getDecodedLinkage() above. Any future change to the linkage enum and 959 // to getDecodedLinkage() will need to be taken into account here as above. 960 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 961 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 962 RawFlags = RawFlags >> 4; 963 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 964 // The Live flag wasn't introduced until version 3. For dead stripping 965 // to work correctly on earlier versions, we must conservatively treat all 966 // values as live. 967 bool Live = (RawFlags & 0x2) || Version < 3; 968 bool Local = (RawFlags & 0x4); 969 bool AutoHide = (RawFlags & 0x8); 970 971 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 972 Live, Local, AutoHide); 973 } 974 975 // Decode the flags for GlobalVariable in the summary 976 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 977 return GlobalVarSummary::GVarFlags( 978 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 979 (RawFlags & 0x4) ? true : false, 980 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 981 } 982 983 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 984 switch (Val) { 985 default: // Map unknown visibilities to default. 986 case 0: return GlobalValue::DefaultVisibility; 987 case 1: return GlobalValue::HiddenVisibility; 988 case 2: return GlobalValue::ProtectedVisibility; 989 } 990 } 991 992 static GlobalValue::DLLStorageClassTypes 993 getDecodedDLLStorageClass(unsigned Val) { 994 switch (Val) { 995 default: // Map unknown values to default. 996 case 0: return GlobalValue::DefaultStorageClass; 997 case 1: return GlobalValue::DLLImportStorageClass; 998 case 2: return GlobalValue::DLLExportStorageClass; 999 } 1000 } 1001 1002 static bool getDecodedDSOLocal(unsigned Val) { 1003 switch(Val) { 1004 default: // Map unknown values to preemptable. 1005 case 0: return false; 1006 case 1: return true; 1007 } 1008 } 1009 1010 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1011 switch (Val) { 1012 case 0: return GlobalVariable::NotThreadLocal; 1013 default: // Map unknown non-zero value to general dynamic. 1014 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1015 case 2: return GlobalVariable::LocalDynamicTLSModel; 1016 case 3: return GlobalVariable::InitialExecTLSModel; 1017 case 4: return GlobalVariable::LocalExecTLSModel; 1018 } 1019 } 1020 1021 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1022 switch (Val) { 1023 default: // Map unknown to UnnamedAddr::None. 1024 case 0: return GlobalVariable::UnnamedAddr::None; 1025 case 1: return GlobalVariable::UnnamedAddr::Global; 1026 case 2: return GlobalVariable::UnnamedAddr::Local; 1027 } 1028 } 1029 1030 static int getDecodedCastOpcode(unsigned Val) { 1031 switch (Val) { 1032 default: return -1; 1033 case bitc::CAST_TRUNC : return Instruction::Trunc; 1034 case bitc::CAST_ZEXT : return Instruction::ZExt; 1035 case bitc::CAST_SEXT : return Instruction::SExt; 1036 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1037 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1038 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1039 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1040 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1041 case bitc::CAST_FPEXT : return Instruction::FPExt; 1042 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1043 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1044 case bitc::CAST_BITCAST : return Instruction::BitCast; 1045 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1046 } 1047 } 1048 1049 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1050 bool IsFP = Ty->isFPOrFPVectorTy(); 1051 // UnOps are only valid for int/fp or vector of int/fp types 1052 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1053 return -1; 1054 1055 switch (Val) { 1056 default: 1057 return -1; 1058 case bitc::UNOP_FNEG: 1059 return IsFP ? Instruction::FNeg : -1; 1060 } 1061 } 1062 1063 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1064 bool IsFP = Ty->isFPOrFPVectorTy(); 1065 // BinOps are only valid for int/fp or vector of int/fp types 1066 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1067 return -1; 1068 1069 switch (Val) { 1070 default: 1071 return -1; 1072 case bitc::BINOP_ADD: 1073 return IsFP ? Instruction::FAdd : Instruction::Add; 1074 case bitc::BINOP_SUB: 1075 return IsFP ? Instruction::FSub : Instruction::Sub; 1076 case bitc::BINOP_MUL: 1077 return IsFP ? Instruction::FMul : Instruction::Mul; 1078 case bitc::BINOP_UDIV: 1079 return IsFP ? -1 : Instruction::UDiv; 1080 case bitc::BINOP_SDIV: 1081 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1082 case bitc::BINOP_UREM: 1083 return IsFP ? -1 : Instruction::URem; 1084 case bitc::BINOP_SREM: 1085 return IsFP ? Instruction::FRem : Instruction::SRem; 1086 case bitc::BINOP_SHL: 1087 return IsFP ? -1 : Instruction::Shl; 1088 case bitc::BINOP_LSHR: 1089 return IsFP ? -1 : Instruction::LShr; 1090 case bitc::BINOP_ASHR: 1091 return IsFP ? -1 : Instruction::AShr; 1092 case bitc::BINOP_AND: 1093 return IsFP ? -1 : Instruction::And; 1094 case bitc::BINOP_OR: 1095 return IsFP ? -1 : Instruction::Or; 1096 case bitc::BINOP_XOR: 1097 return IsFP ? -1 : Instruction::Xor; 1098 } 1099 } 1100 1101 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1102 switch (Val) { 1103 default: return AtomicRMWInst::BAD_BINOP; 1104 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1105 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1106 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1107 case bitc::RMW_AND: return AtomicRMWInst::And; 1108 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1109 case bitc::RMW_OR: return AtomicRMWInst::Or; 1110 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1111 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1112 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1113 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1114 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1115 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1116 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1117 } 1118 } 1119 1120 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1121 switch (Val) { 1122 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1123 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1124 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1125 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1126 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1127 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1128 default: // Map unknown orderings to sequentially-consistent. 1129 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1130 } 1131 } 1132 1133 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1134 switch (Val) { 1135 default: // Map unknown selection kinds to any. 1136 case bitc::COMDAT_SELECTION_KIND_ANY: 1137 return Comdat::Any; 1138 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1139 return Comdat::ExactMatch; 1140 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1141 return Comdat::Largest; 1142 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1143 return Comdat::NoDeduplicate; 1144 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1145 return Comdat::SameSize; 1146 } 1147 } 1148 1149 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1150 FastMathFlags FMF; 1151 if (0 != (Val & bitc::UnsafeAlgebra)) 1152 FMF.setFast(); 1153 if (0 != (Val & bitc::AllowReassoc)) 1154 FMF.setAllowReassoc(); 1155 if (0 != (Val & bitc::NoNaNs)) 1156 FMF.setNoNaNs(); 1157 if (0 != (Val & bitc::NoInfs)) 1158 FMF.setNoInfs(); 1159 if (0 != (Val & bitc::NoSignedZeros)) 1160 FMF.setNoSignedZeros(); 1161 if (0 != (Val & bitc::AllowReciprocal)) 1162 FMF.setAllowReciprocal(); 1163 if (0 != (Val & bitc::AllowContract)) 1164 FMF.setAllowContract(true); 1165 if (0 != (Val & bitc::ApproxFunc)) 1166 FMF.setApproxFunc(); 1167 return FMF; 1168 } 1169 1170 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1171 switch (Val) { 1172 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1173 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1174 } 1175 } 1176 1177 Type *BitcodeReader::getTypeByID(unsigned ID) { 1178 // The type table size is always specified correctly. 1179 if (ID >= TypeList.size()) 1180 return nullptr; 1181 1182 if (Type *Ty = TypeList[ID]) 1183 return Ty; 1184 1185 // If we have a forward reference, the only possible case is when it is to a 1186 // named struct. Just create a placeholder for now. 1187 return TypeList[ID] = createIdentifiedStructType(Context); 1188 } 1189 1190 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1191 if (ID == TODOTypeID) 1192 return TODOTypeID; 1193 1194 auto It = ContainedTypeIDs.find(ID); 1195 if (It == ContainedTypeIDs.end()) 1196 return InvalidTypeID; 1197 1198 if (Idx >= It->second.size()) 1199 return InvalidTypeID; 1200 1201 return It->second[Idx]; 1202 } 1203 1204 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1205 if (ID >= TypeList.size()) 1206 return nullptr; 1207 1208 Type *Ty = TypeList[ID]; 1209 if (!Ty->isPointerTy()) 1210 return nullptr; 1211 1212 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1213 if (!ElemTy) 1214 return nullptr; 1215 1216 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1217 "Incorrect element type"); 1218 return ElemTy; 1219 } 1220 1221 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1222 StringRef Name) { 1223 auto *Ret = StructType::create(Context, Name); 1224 IdentifiedStructTypes.push_back(Ret); 1225 return Ret; 1226 } 1227 1228 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1229 auto *Ret = StructType::create(Context); 1230 IdentifiedStructTypes.push_back(Ret); 1231 return Ret; 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // Functions for parsing blocks from the bitcode file 1236 //===----------------------------------------------------------------------===// 1237 1238 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1239 switch (Val) { 1240 case Attribute::EndAttrKinds: 1241 case Attribute::EmptyKey: 1242 case Attribute::TombstoneKey: 1243 llvm_unreachable("Synthetic enumerators which should never get here"); 1244 1245 case Attribute::None: return 0; 1246 case Attribute::ZExt: return 1 << 0; 1247 case Attribute::SExt: return 1 << 1; 1248 case Attribute::NoReturn: return 1 << 2; 1249 case Attribute::InReg: return 1 << 3; 1250 case Attribute::StructRet: return 1 << 4; 1251 case Attribute::NoUnwind: return 1 << 5; 1252 case Attribute::NoAlias: return 1 << 6; 1253 case Attribute::ByVal: return 1 << 7; 1254 case Attribute::Nest: return 1 << 8; 1255 case Attribute::ReadNone: return 1 << 9; 1256 case Attribute::ReadOnly: return 1 << 10; 1257 case Attribute::NoInline: return 1 << 11; 1258 case Attribute::AlwaysInline: return 1 << 12; 1259 case Attribute::OptimizeForSize: return 1 << 13; 1260 case Attribute::StackProtect: return 1 << 14; 1261 case Attribute::StackProtectReq: return 1 << 15; 1262 case Attribute::Alignment: return 31 << 16; 1263 case Attribute::NoCapture: return 1 << 21; 1264 case Attribute::NoRedZone: return 1 << 22; 1265 case Attribute::NoImplicitFloat: return 1 << 23; 1266 case Attribute::Naked: return 1 << 24; 1267 case Attribute::InlineHint: return 1 << 25; 1268 case Attribute::StackAlignment: return 7 << 26; 1269 case Attribute::ReturnsTwice: return 1 << 29; 1270 case Attribute::UWTable: return 1 << 30; 1271 case Attribute::NonLazyBind: return 1U << 31; 1272 case Attribute::SanitizeAddress: return 1ULL << 32; 1273 case Attribute::MinSize: return 1ULL << 33; 1274 case Attribute::NoDuplicate: return 1ULL << 34; 1275 case Attribute::StackProtectStrong: return 1ULL << 35; 1276 case Attribute::SanitizeThread: return 1ULL << 36; 1277 case Attribute::SanitizeMemory: return 1ULL << 37; 1278 case Attribute::NoBuiltin: return 1ULL << 38; 1279 case Attribute::Returned: return 1ULL << 39; 1280 case Attribute::Cold: return 1ULL << 40; 1281 case Attribute::Builtin: return 1ULL << 41; 1282 case Attribute::OptimizeNone: return 1ULL << 42; 1283 case Attribute::InAlloca: return 1ULL << 43; 1284 case Attribute::NonNull: return 1ULL << 44; 1285 case Attribute::JumpTable: return 1ULL << 45; 1286 case Attribute::Convergent: return 1ULL << 46; 1287 case Attribute::SafeStack: return 1ULL << 47; 1288 case Attribute::NoRecurse: return 1ULL << 48; 1289 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1290 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1291 case Attribute::SwiftSelf: return 1ULL << 51; 1292 case Attribute::SwiftError: return 1ULL << 52; 1293 case Attribute::WriteOnly: return 1ULL << 53; 1294 case Attribute::Speculatable: return 1ULL << 54; 1295 case Attribute::StrictFP: return 1ULL << 55; 1296 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1297 case Attribute::NoCfCheck: return 1ULL << 57; 1298 case Attribute::OptForFuzzing: return 1ULL << 58; 1299 case Attribute::ShadowCallStack: return 1ULL << 59; 1300 case Attribute::SpeculativeLoadHardening: 1301 return 1ULL << 60; 1302 case Attribute::ImmArg: 1303 return 1ULL << 61; 1304 case Attribute::WillReturn: 1305 return 1ULL << 62; 1306 case Attribute::NoFree: 1307 return 1ULL << 63; 1308 default: 1309 // Other attributes are not supported in the raw format, 1310 // as we ran out of space. 1311 return 0; 1312 } 1313 llvm_unreachable("Unsupported attribute type"); 1314 } 1315 1316 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1317 if (!Val) return; 1318 1319 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1320 I = Attribute::AttrKind(I + 1)) { 1321 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1322 if (I == Attribute::Alignment) 1323 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1324 else if (I == Attribute::StackAlignment) 1325 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1326 else if (Attribute::isTypeAttrKind(I)) 1327 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1328 else 1329 B.addAttribute(I); 1330 } 1331 } 1332 } 1333 1334 /// This fills an AttrBuilder object with the LLVM attributes that have 1335 /// been decoded from the given integer. This function must stay in sync with 1336 /// 'encodeLLVMAttributesForBitcode'. 1337 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1338 uint64_t EncodedAttrs) { 1339 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1340 // the bits above 31 down by 11 bits. 1341 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1342 assert((!Alignment || isPowerOf2_32(Alignment)) && 1343 "Alignment must be a power of two."); 1344 1345 if (Alignment) 1346 B.addAlignmentAttr(Alignment); 1347 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1348 (EncodedAttrs & 0xffff)); 1349 } 1350 1351 Error BitcodeReader::parseAttributeBlock() { 1352 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1353 return Err; 1354 1355 if (!MAttributes.empty()) 1356 return error("Invalid multiple blocks"); 1357 1358 SmallVector<uint64_t, 64> Record; 1359 1360 SmallVector<AttributeList, 8> Attrs; 1361 1362 // Read all the records. 1363 while (true) { 1364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1365 if (!MaybeEntry) 1366 return MaybeEntry.takeError(); 1367 BitstreamEntry Entry = MaybeEntry.get(); 1368 1369 switch (Entry.Kind) { 1370 case BitstreamEntry::SubBlock: // Handled for us already. 1371 case BitstreamEntry::Error: 1372 return error("Malformed block"); 1373 case BitstreamEntry::EndBlock: 1374 return Error::success(); 1375 case BitstreamEntry::Record: 1376 // The interesting case. 1377 break; 1378 } 1379 1380 // Read a record. 1381 Record.clear(); 1382 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1383 if (!MaybeRecord) 1384 return MaybeRecord.takeError(); 1385 switch (MaybeRecord.get()) { 1386 default: // Default behavior: ignore. 1387 break; 1388 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1389 // Deprecated, but still needed to read old bitcode files. 1390 if (Record.size() & 1) 1391 return error("Invalid record"); 1392 1393 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1394 AttrBuilder B(Context); 1395 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1396 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1397 } 1398 1399 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1400 Attrs.clear(); 1401 break; 1402 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1403 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1404 Attrs.push_back(MAttributeGroups[Record[i]]); 1405 1406 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1407 Attrs.clear(); 1408 break; 1409 } 1410 } 1411 } 1412 1413 // Returns Attribute::None on unrecognized codes. 1414 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1415 switch (Code) { 1416 default: 1417 return Attribute::None; 1418 case bitc::ATTR_KIND_ALIGNMENT: 1419 return Attribute::Alignment; 1420 case bitc::ATTR_KIND_ALWAYS_INLINE: 1421 return Attribute::AlwaysInline; 1422 case bitc::ATTR_KIND_ARGMEMONLY: 1423 return Attribute::ArgMemOnly; 1424 case bitc::ATTR_KIND_BUILTIN: 1425 return Attribute::Builtin; 1426 case bitc::ATTR_KIND_BY_VAL: 1427 return Attribute::ByVal; 1428 case bitc::ATTR_KIND_IN_ALLOCA: 1429 return Attribute::InAlloca; 1430 case bitc::ATTR_KIND_COLD: 1431 return Attribute::Cold; 1432 case bitc::ATTR_KIND_CONVERGENT: 1433 return Attribute::Convergent; 1434 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1435 return Attribute::DisableSanitizerInstrumentation; 1436 case bitc::ATTR_KIND_ELEMENTTYPE: 1437 return Attribute::ElementType; 1438 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1439 return Attribute::InaccessibleMemOnly; 1440 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1441 return Attribute::InaccessibleMemOrArgMemOnly; 1442 case bitc::ATTR_KIND_INLINE_HINT: 1443 return Attribute::InlineHint; 1444 case bitc::ATTR_KIND_IN_REG: 1445 return Attribute::InReg; 1446 case bitc::ATTR_KIND_JUMP_TABLE: 1447 return Attribute::JumpTable; 1448 case bitc::ATTR_KIND_MIN_SIZE: 1449 return Attribute::MinSize; 1450 case bitc::ATTR_KIND_NAKED: 1451 return Attribute::Naked; 1452 case bitc::ATTR_KIND_NEST: 1453 return Attribute::Nest; 1454 case bitc::ATTR_KIND_NO_ALIAS: 1455 return Attribute::NoAlias; 1456 case bitc::ATTR_KIND_NO_BUILTIN: 1457 return Attribute::NoBuiltin; 1458 case bitc::ATTR_KIND_NO_CALLBACK: 1459 return Attribute::NoCallback; 1460 case bitc::ATTR_KIND_NO_CAPTURE: 1461 return Attribute::NoCapture; 1462 case bitc::ATTR_KIND_NO_DUPLICATE: 1463 return Attribute::NoDuplicate; 1464 case bitc::ATTR_KIND_NOFREE: 1465 return Attribute::NoFree; 1466 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1467 return Attribute::NoImplicitFloat; 1468 case bitc::ATTR_KIND_NO_INLINE: 1469 return Attribute::NoInline; 1470 case bitc::ATTR_KIND_NO_RECURSE: 1471 return Attribute::NoRecurse; 1472 case bitc::ATTR_KIND_NO_MERGE: 1473 return Attribute::NoMerge; 1474 case bitc::ATTR_KIND_NON_LAZY_BIND: 1475 return Attribute::NonLazyBind; 1476 case bitc::ATTR_KIND_NON_NULL: 1477 return Attribute::NonNull; 1478 case bitc::ATTR_KIND_DEREFERENCEABLE: 1479 return Attribute::Dereferenceable; 1480 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1481 return Attribute::DereferenceableOrNull; 1482 case bitc::ATTR_KIND_ALLOC_SIZE: 1483 return Attribute::AllocSize; 1484 case bitc::ATTR_KIND_NO_RED_ZONE: 1485 return Attribute::NoRedZone; 1486 case bitc::ATTR_KIND_NO_RETURN: 1487 return Attribute::NoReturn; 1488 case bitc::ATTR_KIND_NOSYNC: 1489 return Attribute::NoSync; 1490 case bitc::ATTR_KIND_NOCF_CHECK: 1491 return Attribute::NoCfCheck; 1492 case bitc::ATTR_KIND_NO_PROFILE: 1493 return Attribute::NoProfile; 1494 case bitc::ATTR_KIND_NO_UNWIND: 1495 return Attribute::NoUnwind; 1496 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1497 return Attribute::NoSanitizeCoverage; 1498 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1499 return Attribute::NullPointerIsValid; 1500 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1501 return Attribute::OptForFuzzing; 1502 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1503 return Attribute::OptimizeForSize; 1504 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1505 return Attribute::OptimizeNone; 1506 case bitc::ATTR_KIND_READ_NONE: 1507 return Attribute::ReadNone; 1508 case bitc::ATTR_KIND_READ_ONLY: 1509 return Attribute::ReadOnly; 1510 case bitc::ATTR_KIND_RETURNED: 1511 return Attribute::Returned; 1512 case bitc::ATTR_KIND_RETURNS_TWICE: 1513 return Attribute::ReturnsTwice; 1514 case bitc::ATTR_KIND_S_EXT: 1515 return Attribute::SExt; 1516 case bitc::ATTR_KIND_SPECULATABLE: 1517 return Attribute::Speculatable; 1518 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1519 return Attribute::StackAlignment; 1520 case bitc::ATTR_KIND_STACK_PROTECT: 1521 return Attribute::StackProtect; 1522 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1523 return Attribute::StackProtectReq; 1524 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1525 return Attribute::StackProtectStrong; 1526 case bitc::ATTR_KIND_SAFESTACK: 1527 return Attribute::SafeStack; 1528 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1529 return Attribute::ShadowCallStack; 1530 case bitc::ATTR_KIND_STRICT_FP: 1531 return Attribute::StrictFP; 1532 case bitc::ATTR_KIND_STRUCT_RET: 1533 return Attribute::StructRet; 1534 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1535 return Attribute::SanitizeAddress; 1536 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1537 return Attribute::SanitizeHWAddress; 1538 case bitc::ATTR_KIND_SANITIZE_THREAD: 1539 return Attribute::SanitizeThread; 1540 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1541 return Attribute::SanitizeMemory; 1542 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1543 return Attribute::SpeculativeLoadHardening; 1544 case bitc::ATTR_KIND_SWIFT_ERROR: 1545 return Attribute::SwiftError; 1546 case bitc::ATTR_KIND_SWIFT_SELF: 1547 return Attribute::SwiftSelf; 1548 case bitc::ATTR_KIND_SWIFT_ASYNC: 1549 return Attribute::SwiftAsync; 1550 case bitc::ATTR_KIND_UW_TABLE: 1551 return Attribute::UWTable; 1552 case bitc::ATTR_KIND_VSCALE_RANGE: 1553 return Attribute::VScaleRange; 1554 case bitc::ATTR_KIND_WILLRETURN: 1555 return Attribute::WillReturn; 1556 case bitc::ATTR_KIND_WRITEONLY: 1557 return Attribute::WriteOnly; 1558 case bitc::ATTR_KIND_Z_EXT: 1559 return Attribute::ZExt; 1560 case bitc::ATTR_KIND_IMMARG: 1561 return Attribute::ImmArg; 1562 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1563 return Attribute::SanitizeMemTag; 1564 case bitc::ATTR_KIND_PREALLOCATED: 1565 return Attribute::Preallocated; 1566 case bitc::ATTR_KIND_NOUNDEF: 1567 return Attribute::NoUndef; 1568 case bitc::ATTR_KIND_BYREF: 1569 return Attribute::ByRef; 1570 case bitc::ATTR_KIND_MUSTPROGRESS: 1571 return Attribute::MustProgress; 1572 case bitc::ATTR_KIND_HOT: 1573 return Attribute::Hot; 1574 } 1575 } 1576 1577 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1578 MaybeAlign &Alignment) { 1579 // Note: Alignment in bitcode files is incremented by 1, so that zero 1580 // can be used for default alignment. 1581 if (Exponent > Value::MaxAlignmentExponent + 1) 1582 return error("Invalid alignment value"); 1583 Alignment = decodeMaybeAlign(Exponent); 1584 return Error::success(); 1585 } 1586 1587 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1588 *Kind = getAttrFromCode(Code); 1589 if (*Kind == Attribute::None) 1590 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1591 return Error::success(); 1592 } 1593 1594 Error BitcodeReader::parseAttributeGroupBlock() { 1595 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1596 return Err; 1597 1598 if (!MAttributeGroups.empty()) 1599 return error("Invalid multiple blocks"); 1600 1601 SmallVector<uint64_t, 64> Record; 1602 1603 // Read all the records. 1604 while (true) { 1605 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1606 if (!MaybeEntry) 1607 return MaybeEntry.takeError(); 1608 BitstreamEntry Entry = MaybeEntry.get(); 1609 1610 switch (Entry.Kind) { 1611 case BitstreamEntry::SubBlock: // Handled for us already. 1612 case BitstreamEntry::Error: 1613 return error("Malformed block"); 1614 case BitstreamEntry::EndBlock: 1615 return Error::success(); 1616 case BitstreamEntry::Record: 1617 // The interesting case. 1618 break; 1619 } 1620 1621 // Read a record. 1622 Record.clear(); 1623 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1624 if (!MaybeRecord) 1625 return MaybeRecord.takeError(); 1626 switch (MaybeRecord.get()) { 1627 default: // Default behavior: ignore. 1628 break; 1629 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1630 if (Record.size() < 3) 1631 return error("Invalid record"); 1632 1633 uint64_t GrpID = Record[0]; 1634 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1635 1636 AttrBuilder B(Context); 1637 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1638 if (Record[i] == 0) { // Enum attribute 1639 Attribute::AttrKind Kind; 1640 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1641 return Err; 1642 1643 // Upgrade old-style byval attribute to one with a type, even if it's 1644 // nullptr. We will have to insert the real type when we associate 1645 // this AttributeList with a function. 1646 if (Kind == Attribute::ByVal) 1647 B.addByValAttr(nullptr); 1648 else if (Kind == Attribute::StructRet) 1649 B.addStructRetAttr(nullptr); 1650 else if (Kind == Attribute::InAlloca) 1651 B.addInAllocaAttr(nullptr); 1652 else if (Kind == Attribute::UWTable) 1653 B.addUWTableAttr(UWTableKind::Default); 1654 else if (Attribute::isEnumAttrKind(Kind)) 1655 B.addAttribute(Kind); 1656 else 1657 return error("Not an enum attribute"); 1658 } else if (Record[i] == 1) { // Integer attribute 1659 Attribute::AttrKind Kind; 1660 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1661 return Err; 1662 if (!Attribute::isIntAttrKind(Kind)) 1663 return error("Not an int attribute"); 1664 if (Kind == Attribute::Alignment) 1665 B.addAlignmentAttr(Record[++i]); 1666 else if (Kind == Attribute::StackAlignment) 1667 B.addStackAlignmentAttr(Record[++i]); 1668 else if (Kind == Attribute::Dereferenceable) 1669 B.addDereferenceableAttr(Record[++i]); 1670 else if (Kind == Attribute::DereferenceableOrNull) 1671 B.addDereferenceableOrNullAttr(Record[++i]); 1672 else if (Kind == Attribute::AllocSize) 1673 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1674 else if (Kind == Attribute::VScaleRange) 1675 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1676 else if (Kind == Attribute::UWTable) 1677 B.addUWTableAttr(UWTableKind(Record[++i])); 1678 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1679 bool HasValue = (Record[i++] == 4); 1680 SmallString<64> KindStr; 1681 SmallString<64> ValStr; 1682 1683 while (Record[i] != 0 && i != e) 1684 KindStr += Record[i++]; 1685 assert(Record[i] == 0 && "Kind string not null terminated"); 1686 1687 if (HasValue) { 1688 // Has a value associated with it. 1689 ++i; // Skip the '0' that terminates the "kind" string. 1690 while (Record[i] != 0 && i != e) 1691 ValStr += Record[i++]; 1692 assert(Record[i] == 0 && "Value string not null terminated"); 1693 } 1694 1695 B.addAttribute(KindStr.str(), ValStr.str()); 1696 } else if (Record[i] == 5 || Record[i] == 6) { 1697 bool HasType = Record[i] == 6; 1698 Attribute::AttrKind Kind; 1699 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1700 return Err; 1701 if (!Attribute::isTypeAttrKind(Kind)) 1702 return error("Not a type attribute"); 1703 1704 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1705 } else { 1706 return error("Invalid attribute group entry"); 1707 } 1708 } 1709 1710 UpgradeAttributes(B); 1711 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1712 break; 1713 } 1714 } 1715 } 1716 } 1717 1718 Error BitcodeReader::parseTypeTable() { 1719 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1720 return Err; 1721 1722 return parseTypeTableBody(); 1723 } 1724 1725 Error BitcodeReader::parseTypeTableBody() { 1726 if (!TypeList.empty()) 1727 return error("Invalid multiple blocks"); 1728 1729 SmallVector<uint64_t, 64> Record; 1730 unsigned NumRecords = 0; 1731 1732 SmallString<64> TypeName; 1733 1734 // Read all the records for this type table. 1735 while (true) { 1736 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1737 if (!MaybeEntry) 1738 return MaybeEntry.takeError(); 1739 BitstreamEntry Entry = MaybeEntry.get(); 1740 1741 switch (Entry.Kind) { 1742 case BitstreamEntry::SubBlock: // Handled for us already. 1743 case BitstreamEntry::Error: 1744 return error("Malformed block"); 1745 case BitstreamEntry::EndBlock: 1746 if (NumRecords != TypeList.size()) 1747 return error("Malformed block"); 1748 return Error::success(); 1749 case BitstreamEntry::Record: 1750 // The interesting case. 1751 break; 1752 } 1753 1754 // Read a record. 1755 Record.clear(); 1756 Type *ResultTy = nullptr; 1757 SmallVector<unsigned> ContainedIDs; 1758 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1759 if (!MaybeRecord) 1760 return MaybeRecord.takeError(); 1761 switch (MaybeRecord.get()) { 1762 default: 1763 return error("Invalid value"); 1764 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1765 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1766 // type list. This allows us to reserve space. 1767 if (Record.empty()) 1768 return error("Invalid record"); 1769 TypeList.resize(Record[0]); 1770 continue; 1771 case bitc::TYPE_CODE_VOID: // VOID 1772 ResultTy = Type::getVoidTy(Context); 1773 break; 1774 case bitc::TYPE_CODE_HALF: // HALF 1775 ResultTy = Type::getHalfTy(Context); 1776 break; 1777 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1778 ResultTy = Type::getBFloatTy(Context); 1779 break; 1780 case bitc::TYPE_CODE_FLOAT: // FLOAT 1781 ResultTy = Type::getFloatTy(Context); 1782 break; 1783 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1784 ResultTy = Type::getDoubleTy(Context); 1785 break; 1786 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1787 ResultTy = Type::getX86_FP80Ty(Context); 1788 break; 1789 case bitc::TYPE_CODE_FP128: // FP128 1790 ResultTy = Type::getFP128Ty(Context); 1791 break; 1792 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1793 ResultTy = Type::getPPC_FP128Ty(Context); 1794 break; 1795 case bitc::TYPE_CODE_LABEL: // LABEL 1796 ResultTy = Type::getLabelTy(Context); 1797 break; 1798 case bitc::TYPE_CODE_METADATA: // METADATA 1799 ResultTy = Type::getMetadataTy(Context); 1800 break; 1801 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1802 ResultTy = Type::getX86_MMXTy(Context); 1803 break; 1804 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1805 ResultTy = Type::getX86_AMXTy(Context); 1806 break; 1807 case bitc::TYPE_CODE_TOKEN: // TOKEN 1808 ResultTy = Type::getTokenTy(Context); 1809 break; 1810 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1811 if (Record.empty()) 1812 return error("Invalid record"); 1813 1814 uint64_t NumBits = Record[0]; 1815 if (NumBits < IntegerType::MIN_INT_BITS || 1816 NumBits > IntegerType::MAX_INT_BITS) 1817 return error("Bitwidth for integer type out of range"); 1818 ResultTy = IntegerType::get(Context, NumBits); 1819 break; 1820 } 1821 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1822 // [pointee type, address space] 1823 if (Record.empty()) 1824 return error("Invalid record"); 1825 unsigned AddressSpace = 0; 1826 if (Record.size() == 2) 1827 AddressSpace = Record[1]; 1828 ResultTy = getTypeByID(Record[0]); 1829 if (!ResultTy || 1830 !PointerType::isValidElementType(ResultTy)) 1831 return error("Invalid type"); 1832 ContainedIDs.push_back(Record[0]); 1833 ResultTy = PointerType::get(ResultTy, AddressSpace); 1834 break; 1835 } 1836 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1837 if (Record.size() != 1) 1838 return error("Invalid record"); 1839 if (Context.supportsTypedPointers()) 1840 return error( 1841 "Opaque pointers are only supported in -opaque-pointers mode"); 1842 unsigned AddressSpace = Record[0]; 1843 ResultTy = PointerType::get(Context, AddressSpace); 1844 break; 1845 } 1846 case bitc::TYPE_CODE_FUNCTION_OLD: { 1847 // Deprecated, but still needed to read old bitcode files. 1848 // FUNCTION: [vararg, attrid, retty, paramty x N] 1849 if (Record.size() < 3) 1850 return error("Invalid record"); 1851 SmallVector<Type*, 8> ArgTys; 1852 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1853 if (Type *T = getTypeByID(Record[i])) 1854 ArgTys.push_back(T); 1855 else 1856 break; 1857 } 1858 1859 ResultTy = getTypeByID(Record[2]); 1860 if (!ResultTy || ArgTys.size() < Record.size()-3) 1861 return error("Invalid type"); 1862 1863 ContainedIDs.append(Record.begin() + 2, Record.end()); 1864 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1865 break; 1866 } 1867 case bitc::TYPE_CODE_FUNCTION: { 1868 // FUNCTION: [vararg, retty, paramty x N] 1869 if (Record.size() < 2) 1870 return error("Invalid record"); 1871 SmallVector<Type*, 8> ArgTys; 1872 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1873 if (Type *T = getTypeByID(Record[i])) { 1874 if (!FunctionType::isValidArgumentType(T)) 1875 return error("Invalid function argument type"); 1876 ArgTys.push_back(T); 1877 } 1878 else 1879 break; 1880 } 1881 1882 ResultTy = getTypeByID(Record[1]); 1883 if (!ResultTy || ArgTys.size() < Record.size()-2) 1884 return error("Invalid type"); 1885 1886 ContainedIDs.append(Record.begin() + 1, Record.end()); 1887 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1888 break; 1889 } 1890 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1891 if (Record.empty()) 1892 return error("Invalid record"); 1893 SmallVector<Type*, 8> EltTys; 1894 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1895 if (Type *T = getTypeByID(Record[i])) 1896 EltTys.push_back(T); 1897 else 1898 break; 1899 } 1900 if (EltTys.size() != Record.size()-1) 1901 return error("Invalid type"); 1902 ContainedIDs.append(Record.begin() + 1, Record.end()); 1903 ResultTy = StructType::get(Context, EltTys, Record[0]); 1904 break; 1905 } 1906 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1907 if (convertToString(Record, 0, TypeName)) 1908 return error("Invalid record"); 1909 continue; 1910 1911 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1912 if (Record.empty()) 1913 return error("Invalid record"); 1914 1915 if (NumRecords >= TypeList.size()) 1916 return error("Invalid TYPE table"); 1917 1918 // Check to see if this was forward referenced, if so fill in the temp. 1919 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1920 if (Res) { 1921 Res->setName(TypeName); 1922 TypeList[NumRecords] = nullptr; 1923 } else // Otherwise, create a new struct. 1924 Res = createIdentifiedStructType(Context, TypeName); 1925 TypeName.clear(); 1926 1927 SmallVector<Type*, 8> EltTys; 1928 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1929 if (Type *T = getTypeByID(Record[i])) 1930 EltTys.push_back(T); 1931 else 1932 break; 1933 } 1934 if (EltTys.size() != Record.size()-1) 1935 return error("Invalid record"); 1936 Res->setBody(EltTys, Record[0]); 1937 ContainedIDs.append(Record.begin() + 1, Record.end()); 1938 ResultTy = Res; 1939 break; 1940 } 1941 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1942 if (Record.size() != 1) 1943 return error("Invalid record"); 1944 1945 if (NumRecords >= TypeList.size()) 1946 return error("Invalid TYPE table"); 1947 1948 // Check to see if this was forward referenced, if so fill in the temp. 1949 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1950 if (Res) { 1951 Res->setName(TypeName); 1952 TypeList[NumRecords] = nullptr; 1953 } else // Otherwise, create a new struct with no body. 1954 Res = createIdentifiedStructType(Context, TypeName); 1955 TypeName.clear(); 1956 ResultTy = Res; 1957 break; 1958 } 1959 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1960 if (Record.size() < 2) 1961 return error("Invalid record"); 1962 ResultTy = getTypeByID(Record[1]); 1963 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1964 return error("Invalid type"); 1965 ContainedIDs.push_back(Record[1]); 1966 ResultTy = ArrayType::get(ResultTy, Record[0]); 1967 break; 1968 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1969 // [numelts, eltty, scalable] 1970 if (Record.size() < 2) 1971 return error("Invalid record"); 1972 if (Record[0] == 0) 1973 return error("Invalid vector length"); 1974 ResultTy = getTypeByID(Record[1]); 1975 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1976 return error("Invalid type"); 1977 bool Scalable = Record.size() > 2 ? Record[2] : false; 1978 ContainedIDs.push_back(Record[1]); 1979 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1980 break; 1981 } 1982 1983 if (NumRecords >= TypeList.size()) 1984 return error("Invalid TYPE table"); 1985 if (TypeList[NumRecords]) 1986 return error( 1987 "Invalid TYPE table: Only named structs can be forward referenced"); 1988 assert(ResultTy && "Didn't read a type?"); 1989 TypeList[NumRecords] = ResultTy; 1990 if (!ContainedIDs.empty()) 1991 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 1992 ++NumRecords; 1993 } 1994 } 1995 1996 Error BitcodeReader::parseOperandBundleTags() { 1997 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1998 return Err; 1999 2000 if (!BundleTags.empty()) 2001 return error("Invalid multiple blocks"); 2002 2003 SmallVector<uint64_t, 64> Record; 2004 2005 while (true) { 2006 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2007 if (!MaybeEntry) 2008 return MaybeEntry.takeError(); 2009 BitstreamEntry Entry = MaybeEntry.get(); 2010 2011 switch (Entry.Kind) { 2012 case BitstreamEntry::SubBlock: // Handled for us already. 2013 case BitstreamEntry::Error: 2014 return error("Malformed block"); 2015 case BitstreamEntry::EndBlock: 2016 return Error::success(); 2017 case BitstreamEntry::Record: 2018 // The interesting case. 2019 break; 2020 } 2021 2022 // Tags are implicitly mapped to integers by their order. 2023 2024 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2025 if (!MaybeRecord) 2026 return MaybeRecord.takeError(); 2027 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2028 return error("Invalid record"); 2029 2030 // OPERAND_BUNDLE_TAG: [strchr x N] 2031 BundleTags.emplace_back(); 2032 if (convertToString(Record, 0, BundleTags.back())) 2033 return error("Invalid record"); 2034 Record.clear(); 2035 } 2036 } 2037 2038 Error BitcodeReader::parseSyncScopeNames() { 2039 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2040 return Err; 2041 2042 if (!SSIDs.empty()) 2043 return error("Invalid multiple synchronization scope names blocks"); 2044 2045 SmallVector<uint64_t, 64> Record; 2046 while (true) { 2047 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2048 if (!MaybeEntry) 2049 return MaybeEntry.takeError(); 2050 BitstreamEntry Entry = MaybeEntry.get(); 2051 2052 switch (Entry.Kind) { 2053 case BitstreamEntry::SubBlock: // Handled for us already. 2054 case BitstreamEntry::Error: 2055 return error("Malformed block"); 2056 case BitstreamEntry::EndBlock: 2057 if (SSIDs.empty()) 2058 return error("Invalid empty synchronization scope names block"); 2059 return Error::success(); 2060 case BitstreamEntry::Record: 2061 // The interesting case. 2062 break; 2063 } 2064 2065 // Synchronization scope names are implicitly mapped to synchronization 2066 // scope IDs by their order. 2067 2068 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2069 if (!MaybeRecord) 2070 return MaybeRecord.takeError(); 2071 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2072 return error("Invalid record"); 2073 2074 SmallString<16> SSN; 2075 if (convertToString(Record, 0, SSN)) 2076 return error("Invalid record"); 2077 2078 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2079 Record.clear(); 2080 } 2081 } 2082 2083 /// Associate a value with its name from the given index in the provided record. 2084 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2085 unsigned NameIndex, Triple &TT) { 2086 SmallString<128> ValueName; 2087 if (convertToString(Record, NameIndex, ValueName)) 2088 return error("Invalid record"); 2089 unsigned ValueID = Record[0]; 2090 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2091 return error("Invalid record"); 2092 Value *V = ValueList[ValueID]; 2093 2094 StringRef NameStr(ValueName.data(), ValueName.size()); 2095 if (NameStr.find_first_of(0) != StringRef::npos) 2096 return error("Invalid value name"); 2097 V->setName(NameStr); 2098 auto *GO = dyn_cast<GlobalObject>(V); 2099 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2100 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2101 return V; 2102 } 2103 2104 /// Helper to note and return the current location, and jump to the given 2105 /// offset. 2106 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2107 BitstreamCursor &Stream) { 2108 // Save the current parsing location so we can jump back at the end 2109 // of the VST read. 2110 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2111 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2112 return std::move(JumpFailed); 2113 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2114 if (!MaybeEntry) 2115 return MaybeEntry.takeError(); 2116 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2117 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2118 return error("Expected value symbol table subblock"); 2119 return CurrentBit; 2120 } 2121 2122 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2123 Function *F, 2124 ArrayRef<uint64_t> Record) { 2125 // Note that we subtract 1 here because the offset is relative to one word 2126 // before the start of the identification or module block, which was 2127 // historically always the start of the regular bitcode header. 2128 uint64_t FuncWordOffset = Record[1] - 1; 2129 uint64_t FuncBitOffset = FuncWordOffset * 32; 2130 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2131 // Set the LastFunctionBlockBit to point to the last function block. 2132 // Later when parsing is resumed after function materialization, 2133 // we can simply skip that last function block. 2134 if (FuncBitOffset > LastFunctionBlockBit) 2135 LastFunctionBlockBit = FuncBitOffset; 2136 } 2137 2138 /// Read a new-style GlobalValue symbol table. 2139 Error BitcodeReader::parseGlobalValueSymbolTable() { 2140 unsigned FuncBitcodeOffsetDelta = 2141 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2142 2143 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2144 return Err; 2145 2146 SmallVector<uint64_t, 64> Record; 2147 while (true) { 2148 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2149 if (!MaybeEntry) 2150 return MaybeEntry.takeError(); 2151 BitstreamEntry Entry = MaybeEntry.get(); 2152 2153 switch (Entry.Kind) { 2154 case BitstreamEntry::SubBlock: 2155 case BitstreamEntry::Error: 2156 return error("Malformed block"); 2157 case BitstreamEntry::EndBlock: 2158 return Error::success(); 2159 case BitstreamEntry::Record: 2160 break; 2161 } 2162 2163 Record.clear(); 2164 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2165 if (!MaybeRecord) 2166 return MaybeRecord.takeError(); 2167 switch (MaybeRecord.get()) { 2168 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2169 unsigned ValueID = Record[0]; 2170 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2171 return error("Invalid value reference in symbol table"); 2172 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2173 cast<Function>(ValueList[ValueID]), Record); 2174 break; 2175 } 2176 } 2177 } 2178 } 2179 2180 /// Parse the value symbol table at either the current parsing location or 2181 /// at the given bit offset if provided. 2182 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2183 uint64_t CurrentBit; 2184 // Pass in the Offset to distinguish between calling for the module-level 2185 // VST (where we want to jump to the VST offset) and the function-level 2186 // VST (where we don't). 2187 if (Offset > 0) { 2188 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2189 if (!MaybeCurrentBit) 2190 return MaybeCurrentBit.takeError(); 2191 CurrentBit = MaybeCurrentBit.get(); 2192 // If this module uses a string table, read this as a module-level VST. 2193 if (UseStrtab) { 2194 if (Error Err = parseGlobalValueSymbolTable()) 2195 return Err; 2196 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2197 return JumpFailed; 2198 return Error::success(); 2199 } 2200 // Otherwise, the VST will be in a similar format to a function-level VST, 2201 // and will contain symbol names. 2202 } 2203 2204 // Compute the delta between the bitcode indices in the VST (the word offset 2205 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2206 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2207 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2208 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2209 // just before entering the VST subblock because: 1) the EnterSubBlock 2210 // changes the AbbrevID width; 2) the VST block is nested within the same 2211 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2212 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2213 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2214 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2215 unsigned FuncBitcodeOffsetDelta = 2216 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2217 2218 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2219 return Err; 2220 2221 SmallVector<uint64_t, 64> Record; 2222 2223 Triple TT(TheModule->getTargetTriple()); 2224 2225 // Read all the records for this value table. 2226 SmallString<128> ValueName; 2227 2228 while (true) { 2229 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2230 if (!MaybeEntry) 2231 return MaybeEntry.takeError(); 2232 BitstreamEntry Entry = MaybeEntry.get(); 2233 2234 switch (Entry.Kind) { 2235 case BitstreamEntry::SubBlock: // Handled for us already. 2236 case BitstreamEntry::Error: 2237 return error("Malformed block"); 2238 case BitstreamEntry::EndBlock: 2239 if (Offset > 0) 2240 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2241 return JumpFailed; 2242 return Error::success(); 2243 case BitstreamEntry::Record: 2244 // The interesting case. 2245 break; 2246 } 2247 2248 // Read a record. 2249 Record.clear(); 2250 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2251 if (!MaybeRecord) 2252 return MaybeRecord.takeError(); 2253 switch (MaybeRecord.get()) { 2254 default: // Default behavior: unknown type. 2255 break; 2256 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2257 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2258 if (Error Err = ValOrErr.takeError()) 2259 return Err; 2260 ValOrErr.get(); 2261 break; 2262 } 2263 case bitc::VST_CODE_FNENTRY: { 2264 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2265 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2266 if (Error Err = ValOrErr.takeError()) 2267 return Err; 2268 Value *V = ValOrErr.get(); 2269 2270 // Ignore function offsets emitted for aliases of functions in older 2271 // versions of LLVM. 2272 if (auto *F = dyn_cast<Function>(V)) 2273 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2274 break; 2275 } 2276 case bitc::VST_CODE_BBENTRY: { 2277 if (convertToString(Record, 1, ValueName)) 2278 return error("Invalid record"); 2279 BasicBlock *BB = getBasicBlock(Record[0]); 2280 if (!BB) 2281 return error("Invalid record"); 2282 2283 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2284 ValueName.clear(); 2285 break; 2286 } 2287 } 2288 } 2289 } 2290 2291 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2292 /// encoding. 2293 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2294 if ((V & 1) == 0) 2295 return V >> 1; 2296 if (V != 1) 2297 return -(V >> 1); 2298 // There is no such thing as -0 with integers. "-0" really means MININT. 2299 return 1ULL << 63; 2300 } 2301 2302 /// Resolve all of the initializers for global values and aliases that we can. 2303 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2304 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2305 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2306 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2307 2308 GlobalInitWorklist.swap(GlobalInits); 2309 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2310 FunctionOperandWorklist.swap(FunctionOperands); 2311 2312 while (!GlobalInitWorklist.empty()) { 2313 unsigned ValID = GlobalInitWorklist.back().second; 2314 if (ValID >= ValueList.size()) { 2315 // Not ready to resolve this yet, it requires something later in the file. 2316 GlobalInits.push_back(GlobalInitWorklist.back()); 2317 } else { 2318 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2319 GlobalInitWorklist.back().first->setInitializer(C); 2320 else 2321 return error("Expected a constant"); 2322 } 2323 GlobalInitWorklist.pop_back(); 2324 } 2325 2326 while (!IndirectSymbolInitWorklist.empty()) { 2327 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2328 if (ValID >= ValueList.size()) { 2329 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2330 } else { 2331 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2332 if (!C) 2333 return error("Expected a constant"); 2334 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2335 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2336 if (C->getType() != GV->getType()) 2337 return error("Alias and aliasee types don't match"); 2338 GA->setAliasee(C); 2339 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2340 Type *ResolverFTy = 2341 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2342 // Transparently fix up the type for compatiblity with older bitcode 2343 GI->setResolver( 2344 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2345 } else { 2346 return error("Expected an alias or an ifunc"); 2347 } 2348 } 2349 IndirectSymbolInitWorklist.pop_back(); 2350 } 2351 2352 while (!FunctionOperandWorklist.empty()) { 2353 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2354 if (Info.PersonalityFn) { 2355 unsigned ValID = Info.PersonalityFn - 1; 2356 if (ValID < ValueList.size()) { 2357 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2358 Info.F->setPersonalityFn(C); 2359 else 2360 return error("Expected a constant"); 2361 Info.PersonalityFn = 0; 2362 } 2363 } 2364 if (Info.Prefix) { 2365 unsigned ValID = Info.Prefix - 1; 2366 if (ValID < ValueList.size()) { 2367 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2368 Info.F->setPrefixData(C); 2369 else 2370 return error("Expected a constant"); 2371 Info.Prefix = 0; 2372 } 2373 } 2374 if (Info.Prologue) { 2375 unsigned ValID = Info.Prologue - 1; 2376 if (ValID < ValueList.size()) { 2377 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2378 Info.F->setPrologueData(C); 2379 else 2380 return error("Expected a constant"); 2381 Info.Prologue = 0; 2382 } 2383 } 2384 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2385 FunctionOperands.push_back(Info); 2386 FunctionOperandWorklist.pop_back(); 2387 } 2388 2389 return Error::success(); 2390 } 2391 2392 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2393 SmallVector<uint64_t, 8> Words(Vals.size()); 2394 transform(Vals, Words.begin(), 2395 BitcodeReader::decodeSignRotatedValue); 2396 2397 return APInt(TypeBits, Words); 2398 } 2399 2400 Error BitcodeReader::parseConstants() { 2401 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2402 return Err; 2403 2404 SmallVector<uint64_t, 64> Record; 2405 2406 // Read all the records for this value table. 2407 unsigned CurTyID = TODOTypeID; 2408 Type *CurTy = Type::getInt32Ty(Context); 2409 Type *CurElemTy = nullptr; 2410 unsigned NextCstNo = ValueList.size(); 2411 2412 struct DelayedShufTy { 2413 VectorType *OpTy; 2414 unsigned OpTyID; 2415 VectorType *RTy; 2416 uint64_t Op0Idx; 2417 uint64_t Op1Idx; 2418 uint64_t Op2Idx; 2419 unsigned CstNo; 2420 }; 2421 std::vector<DelayedShufTy> DelayedShuffles; 2422 struct DelayedSelTy { 2423 Type *OpTy; 2424 unsigned OpTyID; 2425 uint64_t Op0Idx; 2426 uint64_t Op1Idx; 2427 uint64_t Op2Idx; 2428 unsigned CstNo; 2429 }; 2430 std::vector<DelayedSelTy> DelayedSelectors; 2431 2432 while (true) { 2433 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2434 if (!MaybeEntry) 2435 return MaybeEntry.takeError(); 2436 BitstreamEntry Entry = MaybeEntry.get(); 2437 2438 switch (Entry.Kind) { 2439 case BitstreamEntry::SubBlock: // Handled for us already. 2440 case BitstreamEntry::Error: 2441 return error("Malformed block"); 2442 case BitstreamEntry::EndBlock: 2443 // Once all the constants have been read, go through and resolve forward 2444 // references. 2445 // 2446 // We have to treat shuffles specially because they don't have three 2447 // operands anymore. We need to convert the shuffle mask into an array, 2448 // and we can't convert a forward reference. 2449 for (auto &DelayedShuffle : DelayedShuffles) { 2450 VectorType *OpTy = DelayedShuffle.OpTy; 2451 unsigned OpTyID = DelayedShuffle.OpTyID; 2452 VectorType *RTy = DelayedShuffle.RTy; 2453 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2454 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2455 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2456 uint64_t CstNo = DelayedShuffle.CstNo; 2457 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID); 2458 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2459 Type *ShufTy = 2460 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2461 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy, TODOTypeID); 2462 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2463 return error("Invalid shufflevector operands"); 2464 SmallVector<int, 16> Mask; 2465 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2466 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2467 ValueList.assignValue(CstNo, V, TODOTypeID); 2468 } 2469 for (auto &DelayedSelector : DelayedSelectors) { 2470 Type *OpTy = DelayedSelector.OpTy; 2471 unsigned OpTyID = DelayedSelector.OpTyID; 2472 Type *SelectorTy = Type::getInt1Ty(Context); 2473 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2474 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2475 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2476 uint64_t CstNo = DelayedSelector.CstNo; 2477 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2478 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID); 2479 // The selector might be an i1 or an <n x i1> 2480 // Get the type from the ValueList before getting a forward ref. 2481 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2482 Value *V = ValueList[Op0Idx]; 2483 assert(V); 2484 if (SelectorTy != V->getType()) 2485 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2486 } 2487 Constant *Op0 = 2488 ValueList.getConstantFwdRef(Op0Idx, SelectorTy, TODOTypeID); 2489 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2490 ValueList.assignValue(CstNo, V, TODOTypeID); 2491 } 2492 2493 if (NextCstNo != ValueList.size()) 2494 return error("Invalid constant reference"); 2495 2496 ValueList.resolveConstantForwardRefs(); 2497 return Error::success(); 2498 case BitstreamEntry::Record: 2499 // The interesting case. 2500 break; 2501 } 2502 2503 // Read a record. 2504 Record.clear(); 2505 Type *VoidType = Type::getVoidTy(Context); 2506 Value *V = nullptr; 2507 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2508 if (!MaybeBitCode) 2509 return MaybeBitCode.takeError(); 2510 switch (unsigned BitCode = MaybeBitCode.get()) { 2511 default: // Default behavior: unknown constant 2512 case bitc::CST_CODE_UNDEF: // UNDEF 2513 V = UndefValue::get(CurTy); 2514 break; 2515 case bitc::CST_CODE_POISON: // POISON 2516 V = PoisonValue::get(CurTy); 2517 break; 2518 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2519 if (Record.empty()) 2520 return error("Invalid record"); 2521 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2522 return error("Invalid record"); 2523 if (TypeList[Record[0]] == VoidType) 2524 return error("Invalid constant type"); 2525 CurTyID = Record[0]; 2526 CurTy = TypeList[CurTyID]; 2527 CurElemTy = getPtrElementTypeByID(CurTyID); 2528 continue; // Skip the ValueList manipulation. 2529 case bitc::CST_CODE_NULL: // NULL 2530 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2531 return error("Invalid type for a constant null value"); 2532 V = Constant::getNullValue(CurTy); 2533 break; 2534 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2535 if (!CurTy->isIntegerTy() || Record.empty()) 2536 return error("Invalid record"); 2537 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2538 break; 2539 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2540 if (!CurTy->isIntegerTy() || Record.empty()) 2541 return error("Invalid record"); 2542 2543 APInt VInt = 2544 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2545 V = ConstantInt::get(Context, VInt); 2546 2547 break; 2548 } 2549 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2550 if (Record.empty()) 2551 return error("Invalid record"); 2552 if (CurTy->isHalfTy()) 2553 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2554 APInt(16, (uint16_t)Record[0]))); 2555 else if (CurTy->isBFloatTy()) 2556 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2557 APInt(16, (uint32_t)Record[0]))); 2558 else if (CurTy->isFloatTy()) 2559 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2560 APInt(32, (uint32_t)Record[0]))); 2561 else if (CurTy->isDoubleTy()) 2562 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2563 APInt(64, Record[0]))); 2564 else if (CurTy->isX86_FP80Ty()) { 2565 // Bits are not stored the same way as a normal i80 APInt, compensate. 2566 uint64_t Rearrange[2]; 2567 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2568 Rearrange[1] = Record[0] >> 48; 2569 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2570 APInt(80, Rearrange))); 2571 } else if (CurTy->isFP128Ty()) 2572 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2573 APInt(128, Record))); 2574 else if (CurTy->isPPC_FP128Ty()) 2575 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2576 APInt(128, Record))); 2577 else 2578 V = UndefValue::get(CurTy); 2579 break; 2580 } 2581 2582 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2583 if (Record.empty()) 2584 return error("Invalid record"); 2585 2586 unsigned Size = Record.size(); 2587 SmallVector<Constant*, 16> Elts; 2588 2589 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2590 for (unsigned i = 0; i != Size; ++i) 2591 Elts.push_back(ValueList.getConstantFwdRef( 2592 Record[i], STy->getElementType(i), 2593 getContainedTypeID(CurTyID, i))); 2594 V = ConstantStruct::get(STy, Elts); 2595 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2596 Type *EltTy = ATy->getElementType(); 2597 unsigned EltTyID = getContainedTypeID(CurTyID); 2598 for (unsigned i = 0; i != Size; ++i) 2599 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2600 EltTyID)); 2601 V = ConstantArray::get(ATy, Elts); 2602 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2603 Type *EltTy = VTy->getElementType(); 2604 unsigned EltTyID = getContainedTypeID(CurTyID); 2605 for (unsigned i = 0; i != Size; ++i) 2606 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2607 EltTyID)); 2608 V = ConstantVector::get(Elts); 2609 } else { 2610 V = UndefValue::get(CurTy); 2611 } 2612 break; 2613 } 2614 case bitc::CST_CODE_STRING: // STRING: [values] 2615 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2616 if (Record.empty()) 2617 return error("Invalid record"); 2618 2619 SmallString<16> Elts(Record.begin(), Record.end()); 2620 V = ConstantDataArray::getString(Context, Elts, 2621 BitCode == bitc::CST_CODE_CSTRING); 2622 break; 2623 } 2624 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2625 if (Record.empty()) 2626 return error("Invalid record"); 2627 2628 Type *EltTy; 2629 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2630 EltTy = Array->getElementType(); 2631 else 2632 EltTy = cast<VectorType>(CurTy)->getElementType(); 2633 if (EltTy->isIntegerTy(8)) { 2634 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2635 if (isa<VectorType>(CurTy)) 2636 V = ConstantDataVector::get(Context, Elts); 2637 else 2638 V = ConstantDataArray::get(Context, Elts); 2639 } else if (EltTy->isIntegerTy(16)) { 2640 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2641 if (isa<VectorType>(CurTy)) 2642 V = ConstantDataVector::get(Context, Elts); 2643 else 2644 V = ConstantDataArray::get(Context, Elts); 2645 } else if (EltTy->isIntegerTy(32)) { 2646 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2647 if (isa<VectorType>(CurTy)) 2648 V = ConstantDataVector::get(Context, Elts); 2649 else 2650 V = ConstantDataArray::get(Context, Elts); 2651 } else if (EltTy->isIntegerTy(64)) { 2652 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2653 if (isa<VectorType>(CurTy)) 2654 V = ConstantDataVector::get(Context, Elts); 2655 else 2656 V = ConstantDataArray::get(Context, Elts); 2657 } else if (EltTy->isHalfTy()) { 2658 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2659 if (isa<VectorType>(CurTy)) 2660 V = ConstantDataVector::getFP(EltTy, Elts); 2661 else 2662 V = ConstantDataArray::getFP(EltTy, Elts); 2663 } else if (EltTy->isBFloatTy()) { 2664 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2665 if (isa<VectorType>(CurTy)) 2666 V = ConstantDataVector::getFP(EltTy, Elts); 2667 else 2668 V = ConstantDataArray::getFP(EltTy, Elts); 2669 } else if (EltTy->isFloatTy()) { 2670 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2671 if (isa<VectorType>(CurTy)) 2672 V = ConstantDataVector::getFP(EltTy, Elts); 2673 else 2674 V = ConstantDataArray::getFP(EltTy, Elts); 2675 } else if (EltTy->isDoubleTy()) { 2676 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2677 if (isa<VectorType>(CurTy)) 2678 V = ConstantDataVector::getFP(EltTy, Elts); 2679 else 2680 V = ConstantDataArray::getFP(EltTy, Elts); 2681 } else { 2682 return error("Invalid type for value"); 2683 } 2684 break; 2685 } 2686 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2687 if (Record.size() < 2) 2688 return error("Invalid record"); 2689 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2690 if (Opc < 0) { 2691 V = UndefValue::get(CurTy); // Unknown unop. 2692 } else { 2693 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2694 unsigned Flags = 0; 2695 V = ConstantExpr::get(Opc, LHS, Flags); 2696 } 2697 break; 2698 } 2699 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2700 if (Record.size() < 3) 2701 return error("Invalid record"); 2702 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2703 if (Opc < 0) { 2704 V = UndefValue::get(CurTy); // Unknown binop. 2705 } else { 2706 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2707 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID); 2708 unsigned Flags = 0; 2709 if (Record.size() >= 4) { 2710 if (Opc == Instruction::Add || 2711 Opc == Instruction::Sub || 2712 Opc == Instruction::Mul || 2713 Opc == Instruction::Shl) { 2714 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2715 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2716 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2717 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2718 } else if (Opc == Instruction::SDiv || 2719 Opc == Instruction::UDiv || 2720 Opc == Instruction::LShr || 2721 Opc == Instruction::AShr) { 2722 if (Record[3] & (1 << bitc::PEO_EXACT)) 2723 Flags |= SDivOperator::IsExact; 2724 } 2725 } 2726 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2727 } 2728 break; 2729 } 2730 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2731 if (Record.size() < 3) 2732 return error("Invalid record"); 2733 int Opc = getDecodedCastOpcode(Record[0]); 2734 if (Opc < 0) { 2735 V = UndefValue::get(CurTy); // Unknown cast. 2736 } else { 2737 unsigned OpTyID = Record[1]; 2738 Type *OpTy = getTypeByID(OpTyID); 2739 if (!OpTy) 2740 return error("Invalid record"); 2741 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2742 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2743 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2744 } 2745 break; 2746 } 2747 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2748 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2749 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2750 // operands] 2751 if (Record.size() < 2) 2752 return error("Constant GEP record must have at least two elements"); 2753 unsigned OpNum = 0; 2754 Type *PointeeType = nullptr; 2755 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2756 Record.size() % 2) 2757 PointeeType = getTypeByID(Record[OpNum++]); 2758 2759 bool InBounds = false; 2760 Optional<unsigned> InRangeIndex; 2761 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2762 uint64_t Op = Record[OpNum++]; 2763 InBounds = Op & 1; 2764 InRangeIndex = Op >> 1; 2765 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2766 InBounds = true; 2767 2768 SmallVector<Constant*, 16> Elts; 2769 unsigned BaseTypeID = Record[OpNum]; 2770 while (OpNum != Record.size()) { 2771 unsigned ElTyID = Record[OpNum++]; 2772 Type *ElTy = getTypeByID(ElTyID); 2773 if (!ElTy) 2774 return error("Invalid record"); 2775 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy, 2776 ElTyID)); 2777 } 2778 2779 if (Elts.size() < 1) 2780 return error("Invalid gep with no operands"); 2781 2782 Type *BaseType = getTypeByID(BaseTypeID); 2783 if (isa<VectorType>(BaseType)) { 2784 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 2785 BaseType = getTypeByID(BaseTypeID); 2786 } 2787 2788 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 2789 if (!OrigPtrTy) 2790 return error("GEP base operand must be pointer or vector of pointer"); 2791 2792 if (!PointeeType) { 2793 PointeeType = getPtrElementTypeByID(BaseTypeID); 2794 if (!PointeeType) 2795 return error("Missing element type for old-style constant GEP"); 2796 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2797 return error("Explicit gep operator type does not match pointee type " 2798 "of pointer operand"); 2799 2800 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2801 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2802 InBounds, InRangeIndex); 2803 break; 2804 } 2805 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2806 if (Record.size() < 3) 2807 return error("Invalid record"); 2808 2809 DelayedSelectors.push_back( 2810 {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo}); 2811 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID); 2812 ++NextCstNo; 2813 continue; 2814 } 2815 case bitc::CST_CODE_CE_EXTRACTELT 2816 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2817 if (Record.size() < 3) 2818 return error("Invalid record"); 2819 unsigned OpTyID = Record[0]; 2820 VectorType *OpTy = 2821 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 2822 if (!OpTy) 2823 return error("Invalid record"); 2824 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2825 Constant *Op1 = nullptr; 2826 if (Record.size() == 4) { 2827 unsigned IdxTyID = Record[2]; 2828 Type *IdxTy = getTypeByID(IdxTyID); 2829 if (!IdxTy) 2830 return error("Invalid record"); 2831 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2832 } else { 2833 // Deprecated, but still needed to read old bitcode files. 2834 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2835 TODOTypeID); 2836 } 2837 if (!Op1) 2838 return error("Invalid record"); 2839 V = ConstantExpr::getExtractElement(Op0, Op1); 2840 break; 2841 } 2842 case bitc::CST_CODE_CE_INSERTELT 2843 : { // CE_INSERTELT: [opval, opval, opty, opval] 2844 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2845 if (Record.size() < 3 || !OpTy) 2846 return error("Invalid record"); 2847 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID); 2848 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2849 OpTy->getElementType(), 2850 getContainedTypeID(CurTyID)); 2851 Constant *Op2 = nullptr; 2852 if (Record.size() == 4) { 2853 unsigned IdxTyID = Record[2]; 2854 Type *IdxTy = getTypeByID(IdxTyID); 2855 if (!IdxTy) 2856 return error("Invalid record"); 2857 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2858 } else { 2859 // Deprecated, but still needed to read old bitcode files. 2860 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2861 TODOTypeID); 2862 } 2863 if (!Op2) 2864 return error("Invalid record"); 2865 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2866 break; 2867 } 2868 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2869 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2870 if (Record.size() < 3 || !OpTy) 2871 return error("Invalid record"); 2872 DelayedShuffles.push_back( 2873 {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2874 ++NextCstNo; 2875 continue; 2876 } 2877 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2878 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2879 VectorType *OpTy = 2880 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2881 if (Record.size() < 4 || !RTy || !OpTy) 2882 return error("Invalid record"); 2883 DelayedShuffles.push_back( 2884 {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2885 ++NextCstNo; 2886 continue; 2887 } 2888 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2889 if (Record.size() < 4) 2890 return error("Invalid record"); 2891 unsigned OpTyID = Record[0]; 2892 Type *OpTy = getTypeByID(OpTyID); 2893 if (!OpTy) 2894 return error("Invalid record"); 2895 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2896 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2897 2898 if (OpTy->isFPOrFPVectorTy()) 2899 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2900 else 2901 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2902 break; 2903 } 2904 // This maintains backward compatibility, pre-asm dialect keywords. 2905 // Deprecated, but still needed to read old bitcode files. 2906 case bitc::CST_CODE_INLINEASM_OLD: { 2907 if (Record.size() < 2) 2908 return error("Invalid record"); 2909 std::string AsmStr, ConstrStr; 2910 bool HasSideEffects = Record[0] & 1; 2911 bool IsAlignStack = Record[0] >> 1; 2912 unsigned AsmStrSize = Record[1]; 2913 if (2+AsmStrSize >= Record.size()) 2914 return error("Invalid record"); 2915 unsigned ConstStrSize = Record[2+AsmStrSize]; 2916 if (3+AsmStrSize+ConstStrSize > Record.size()) 2917 return error("Invalid record"); 2918 2919 for (unsigned i = 0; i != AsmStrSize; ++i) 2920 AsmStr += (char)Record[2+i]; 2921 for (unsigned i = 0; i != ConstStrSize; ++i) 2922 ConstrStr += (char)Record[3+AsmStrSize+i]; 2923 UpgradeInlineAsmString(&AsmStr); 2924 if (!CurElemTy) 2925 return error("Missing element type for old-style inlineasm"); 2926 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2927 HasSideEffects, IsAlignStack); 2928 break; 2929 } 2930 // This version adds support for the asm dialect keywords (e.g., 2931 // inteldialect). 2932 case bitc::CST_CODE_INLINEASM_OLD2: { 2933 if (Record.size() < 2) 2934 return error("Invalid record"); 2935 std::string AsmStr, ConstrStr; 2936 bool HasSideEffects = Record[0] & 1; 2937 bool IsAlignStack = (Record[0] >> 1) & 1; 2938 unsigned AsmDialect = Record[0] >> 2; 2939 unsigned AsmStrSize = Record[1]; 2940 if (2+AsmStrSize >= Record.size()) 2941 return error("Invalid record"); 2942 unsigned ConstStrSize = Record[2+AsmStrSize]; 2943 if (3+AsmStrSize+ConstStrSize > Record.size()) 2944 return error("Invalid record"); 2945 2946 for (unsigned i = 0; i != AsmStrSize; ++i) 2947 AsmStr += (char)Record[2+i]; 2948 for (unsigned i = 0; i != ConstStrSize; ++i) 2949 ConstrStr += (char)Record[3+AsmStrSize+i]; 2950 UpgradeInlineAsmString(&AsmStr); 2951 if (!CurElemTy) 2952 return error("Missing element type for old-style inlineasm"); 2953 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2954 HasSideEffects, IsAlignStack, 2955 InlineAsm::AsmDialect(AsmDialect)); 2956 break; 2957 } 2958 // This version adds support for the unwind keyword. 2959 case bitc::CST_CODE_INLINEASM_OLD3: { 2960 if (Record.size() < 2) 2961 return error("Invalid record"); 2962 unsigned OpNum = 0; 2963 std::string AsmStr, ConstrStr; 2964 bool HasSideEffects = Record[OpNum] & 1; 2965 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2966 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2967 bool CanThrow = (Record[OpNum] >> 3) & 1; 2968 ++OpNum; 2969 unsigned AsmStrSize = Record[OpNum]; 2970 ++OpNum; 2971 if (OpNum + AsmStrSize >= Record.size()) 2972 return error("Invalid record"); 2973 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2974 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2975 return error("Invalid record"); 2976 2977 for (unsigned i = 0; i != AsmStrSize; ++i) 2978 AsmStr += (char)Record[OpNum + i]; 2979 ++OpNum; 2980 for (unsigned i = 0; i != ConstStrSize; ++i) 2981 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2982 UpgradeInlineAsmString(&AsmStr); 2983 if (!CurElemTy) 2984 return error("Missing element type for old-style inlineasm"); 2985 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2986 HasSideEffects, IsAlignStack, 2987 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2988 break; 2989 } 2990 // This version adds explicit function type. 2991 case bitc::CST_CODE_INLINEASM: { 2992 if (Record.size() < 3) 2993 return error("Invalid record"); 2994 unsigned OpNum = 0; 2995 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2996 ++OpNum; 2997 if (!FnTy) 2998 return error("Invalid record"); 2999 std::string AsmStr, ConstrStr; 3000 bool HasSideEffects = Record[OpNum] & 1; 3001 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3002 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3003 bool CanThrow = (Record[OpNum] >> 3) & 1; 3004 ++OpNum; 3005 unsigned AsmStrSize = Record[OpNum]; 3006 ++OpNum; 3007 if (OpNum + AsmStrSize >= Record.size()) 3008 return error("Invalid record"); 3009 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3010 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3011 return error("Invalid record"); 3012 3013 for (unsigned i = 0; i != AsmStrSize; ++i) 3014 AsmStr += (char)Record[OpNum + i]; 3015 ++OpNum; 3016 for (unsigned i = 0; i != ConstStrSize; ++i) 3017 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3018 UpgradeInlineAsmString(&AsmStr); 3019 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3020 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3021 break; 3022 } 3023 case bitc::CST_CODE_BLOCKADDRESS:{ 3024 if (Record.size() < 3) 3025 return error("Invalid record"); 3026 unsigned FnTyID = Record[0]; 3027 Type *FnTy = getTypeByID(FnTyID); 3028 if (!FnTy) 3029 return error("Invalid record"); 3030 Function *Fn = dyn_cast_or_null<Function>( 3031 ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID)); 3032 if (!Fn) 3033 return error("Invalid record"); 3034 3035 // If the function is already parsed we can insert the block address right 3036 // away. 3037 BasicBlock *BB; 3038 unsigned BBID = Record[2]; 3039 if (!BBID) 3040 // Invalid reference to entry block. 3041 return error("Invalid ID"); 3042 if (!Fn->empty()) { 3043 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3044 for (size_t I = 0, E = BBID; I != E; ++I) { 3045 if (BBI == BBE) 3046 return error("Invalid ID"); 3047 ++BBI; 3048 } 3049 BB = &*BBI; 3050 } else { 3051 // Otherwise insert a placeholder and remember it so it can be inserted 3052 // when the function is parsed. 3053 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3054 if (FwdBBs.empty()) 3055 BasicBlockFwdRefQueue.push_back(Fn); 3056 if (FwdBBs.size() < BBID + 1) 3057 FwdBBs.resize(BBID + 1); 3058 if (!FwdBBs[BBID]) 3059 FwdBBs[BBID] = BasicBlock::Create(Context); 3060 BB = FwdBBs[BBID]; 3061 } 3062 V = BlockAddress::get(Fn, BB); 3063 break; 3064 } 3065 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3066 if (Record.size() < 2) 3067 return error("Invalid record"); 3068 unsigned GVTyID = Record[0]; 3069 Type *GVTy = getTypeByID(GVTyID); 3070 if (!GVTy) 3071 return error("Invalid record"); 3072 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3073 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3074 if (!GV) 3075 return error("Invalid record"); 3076 3077 V = DSOLocalEquivalent::get(GV); 3078 break; 3079 } 3080 case bitc::CST_CODE_NO_CFI_VALUE: { 3081 if (Record.size() < 2) 3082 return error("Invalid record"); 3083 unsigned GVTyID = Record[0]; 3084 Type *GVTy = getTypeByID(GVTyID); 3085 if (!GVTy) 3086 return error("Invalid record"); 3087 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3088 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3089 if (!GV) 3090 return error("Invalid record"); 3091 V = NoCFIValue::get(GV); 3092 break; 3093 } 3094 } 3095 3096 ValueList.assignValue(NextCstNo, V, CurTyID); 3097 ++NextCstNo; 3098 } 3099 } 3100 3101 Error BitcodeReader::parseUseLists() { 3102 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3103 return Err; 3104 3105 // Read all the records. 3106 SmallVector<uint64_t, 64> Record; 3107 3108 while (true) { 3109 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3110 if (!MaybeEntry) 3111 return MaybeEntry.takeError(); 3112 BitstreamEntry Entry = MaybeEntry.get(); 3113 3114 switch (Entry.Kind) { 3115 case BitstreamEntry::SubBlock: // Handled for us already. 3116 case BitstreamEntry::Error: 3117 return error("Malformed block"); 3118 case BitstreamEntry::EndBlock: 3119 return Error::success(); 3120 case BitstreamEntry::Record: 3121 // The interesting case. 3122 break; 3123 } 3124 3125 // Read a use list record. 3126 Record.clear(); 3127 bool IsBB = false; 3128 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3129 if (!MaybeRecord) 3130 return MaybeRecord.takeError(); 3131 switch (MaybeRecord.get()) { 3132 default: // Default behavior: unknown type. 3133 break; 3134 case bitc::USELIST_CODE_BB: 3135 IsBB = true; 3136 LLVM_FALLTHROUGH; 3137 case bitc::USELIST_CODE_DEFAULT: { 3138 unsigned RecordLength = Record.size(); 3139 if (RecordLength < 3) 3140 // Records should have at least an ID and two indexes. 3141 return error("Invalid record"); 3142 unsigned ID = Record.pop_back_val(); 3143 3144 Value *V; 3145 if (IsBB) { 3146 assert(ID < FunctionBBs.size() && "Basic block not found"); 3147 V = FunctionBBs[ID]; 3148 } else 3149 V = ValueList[ID]; 3150 unsigned NumUses = 0; 3151 SmallDenseMap<const Use *, unsigned, 16> Order; 3152 for (const Use &U : V->materialized_uses()) { 3153 if (++NumUses > Record.size()) 3154 break; 3155 Order[&U] = Record[NumUses - 1]; 3156 } 3157 if (Order.size() != Record.size() || NumUses > Record.size()) 3158 // Mismatches can happen if the functions are being materialized lazily 3159 // (out-of-order), or a value has been upgraded. 3160 break; 3161 3162 V->sortUseList([&](const Use &L, const Use &R) { 3163 return Order.lookup(&L) < Order.lookup(&R); 3164 }); 3165 break; 3166 } 3167 } 3168 } 3169 } 3170 3171 /// When we see the block for metadata, remember where it is and then skip it. 3172 /// This lets us lazily deserialize the metadata. 3173 Error BitcodeReader::rememberAndSkipMetadata() { 3174 // Save the current stream state. 3175 uint64_t CurBit = Stream.GetCurrentBitNo(); 3176 DeferredMetadataInfo.push_back(CurBit); 3177 3178 // Skip over the block for now. 3179 if (Error Err = Stream.SkipBlock()) 3180 return Err; 3181 return Error::success(); 3182 } 3183 3184 Error BitcodeReader::materializeMetadata() { 3185 for (uint64_t BitPos : DeferredMetadataInfo) { 3186 // Move the bit stream to the saved position. 3187 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3188 return JumpFailed; 3189 if (Error Err = MDLoader->parseModuleMetadata()) 3190 return Err; 3191 } 3192 3193 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3194 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3195 // multiple times. 3196 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3197 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3198 NamedMDNode *LinkerOpts = 3199 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3200 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3201 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3202 } 3203 } 3204 3205 DeferredMetadataInfo.clear(); 3206 return Error::success(); 3207 } 3208 3209 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3210 3211 /// When we see the block for a function body, remember where it is and then 3212 /// skip it. This lets us lazily deserialize the functions. 3213 Error BitcodeReader::rememberAndSkipFunctionBody() { 3214 // Get the function we are talking about. 3215 if (FunctionsWithBodies.empty()) 3216 return error("Insufficient function protos"); 3217 3218 Function *Fn = FunctionsWithBodies.back(); 3219 FunctionsWithBodies.pop_back(); 3220 3221 // Save the current stream state. 3222 uint64_t CurBit = Stream.GetCurrentBitNo(); 3223 assert( 3224 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3225 "Mismatch between VST and scanned function offsets"); 3226 DeferredFunctionInfo[Fn] = CurBit; 3227 3228 // Skip over the function block for now. 3229 if (Error Err = Stream.SkipBlock()) 3230 return Err; 3231 return Error::success(); 3232 } 3233 3234 Error BitcodeReader::globalCleanup() { 3235 // Patch the initializers for globals and aliases up. 3236 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3237 return Err; 3238 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3239 return error("Malformed global initializer set"); 3240 3241 // Look for intrinsic functions which need to be upgraded at some point 3242 // and functions that need to have their function attributes upgraded. 3243 for (Function &F : *TheModule) { 3244 MDLoader->upgradeDebugIntrinsics(F); 3245 Function *NewFn; 3246 if (UpgradeIntrinsicFunction(&F, NewFn)) 3247 UpgradedIntrinsics[&F] = NewFn; 3248 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3249 // Some types could be renamed during loading if several modules are 3250 // loaded in the same LLVMContext (LTO scenario). In this case we should 3251 // remangle intrinsics names as well. 3252 RemangledIntrinsics[&F] = Remangled.getValue(); 3253 // Look for functions that rely on old function attribute behavior. 3254 UpgradeFunctionAttributes(F); 3255 } 3256 3257 // Look for global variables which need to be renamed. 3258 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3259 for (GlobalVariable &GV : TheModule->globals()) 3260 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3261 UpgradedVariables.emplace_back(&GV, Upgraded); 3262 for (auto &Pair : UpgradedVariables) { 3263 Pair.first->eraseFromParent(); 3264 TheModule->getGlobalList().push_back(Pair.second); 3265 } 3266 3267 // Force deallocation of memory for these vectors to favor the client that 3268 // want lazy deserialization. 3269 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3270 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3271 return Error::success(); 3272 } 3273 3274 /// Support for lazy parsing of function bodies. This is required if we 3275 /// either have an old bitcode file without a VST forward declaration record, 3276 /// or if we have an anonymous function being materialized, since anonymous 3277 /// functions do not have a name and are therefore not in the VST. 3278 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3279 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3280 return JumpFailed; 3281 3282 if (Stream.AtEndOfStream()) 3283 return error("Could not find function in stream"); 3284 3285 if (!SeenFirstFunctionBody) 3286 return error("Trying to materialize functions before seeing function blocks"); 3287 3288 // An old bitcode file with the symbol table at the end would have 3289 // finished the parse greedily. 3290 assert(SeenValueSymbolTable); 3291 3292 SmallVector<uint64_t, 64> Record; 3293 3294 while (true) { 3295 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3296 if (!MaybeEntry) 3297 return MaybeEntry.takeError(); 3298 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3299 3300 switch (Entry.Kind) { 3301 default: 3302 return error("Expect SubBlock"); 3303 case BitstreamEntry::SubBlock: 3304 switch (Entry.ID) { 3305 default: 3306 return error("Expect function block"); 3307 case bitc::FUNCTION_BLOCK_ID: 3308 if (Error Err = rememberAndSkipFunctionBody()) 3309 return Err; 3310 NextUnreadBit = Stream.GetCurrentBitNo(); 3311 return Error::success(); 3312 } 3313 } 3314 } 3315 } 3316 3317 Error BitcodeReaderBase::readBlockInfo() { 3318 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3319 Stream.ReadBlockInfoBlock(); 3320 if (!MaybeNewBlockInfo) 3321 return MaybeNewBlockInfo.takeError(); 3322 Optional<BitstreamBlockInfo> NewBlockInfo = 3323 std::move(MaybeNewBlockInfo.get()); 3324 if (!NewBlockInfo) 3325 return error("Malformed block"); 3326 BlockInfo = std::move(*NewBlockInfo); 3327 return Error::success(); 3328 } 3329 3330 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3331 // v1: [selection_kind, name] 3332 // v2: [strtab_offset, strtab_size, selection_kind] 3333 StringRef Name; 3334 std::tie(Name, Record) = readNameFromStrtab(Record); 3335 3336 if (Record.empty()) 3337 return error("Invalid record"); 3338 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3339 std::string OldFormatName; 3340 if (!UseStrtab) { 3341 if (Record.size() < 2) 3342 return error("Invalid record"); 3343 unsigned ComdatNameSize = Record[1]; 3344 if (ComdatNameSize > Record.size() - 2) 3345 return error("Comdat name size too large"); 3346 OldFormatName.reserve(ComdatNameSize); 3347 for (unsigned i = 0; i != ComdatNameSize; ++i) 3348 OldFormatName += (char)Record[2 + i]; 3349 Name = OldFormatName; 3350 } 3351 Comdat *C = TheModule->getOrInsertComdat(Name); 3352 C->setSelectionKind(SK); 3353 ComdatList.push_back(C); 3354 return Error::success(); 3355 } 3356 3357 static void inferDSOLocal(GlobalValue *GV) { 3358 // infer dso_local from linkage and visibility if it is not encoded. 3359 if (GV->hasLocalLinkage() || 3360 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3361 GV->setDSOLocal(true); 3362 } 3363 3364 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3365 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3366 // visibility, threadlocal, unnamed_addr, externally_initialized, 3367 // dllstorageclass, comdat, attributes, preemption specifier, 3368 // partition strtab offset, partition strtab size] (name in VST) 3369 // v2: [strtab_offset, strtab_size, v1] 3370 StringRef Name; 3371 std::tie(Name, Record) = readNameFromStrtab(Record); 3372 3373 if (Record.size() < 6) 3374 return error("Invalid record"); 3375 unsigned TyID = Record[0]; 3376 Type *Ty = getTypeByID(TyID); 3377 if (!Ty) 3378 return error("Invalid record"); 3379 bool isConstant = Record[1] & 1; 3380 bool explicitType = Record[1] & 2; 3381 unsigned AddressSpace; 3382 if (explicitType) { 3383 AddressSpace = Record[1] >> 2; 3384 } else { 3385 if (!Ty->isPointerTy()) 3386 return error("Invalid type for value"); 3387 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3388 Ty = getPtrElementTypeByID(Record[0]); 3389 if (!Ty) 3390 return error("Missing element type for old-style global"); 3391 } 3392 3393 uint64_t RawLinkage = Record[3]; 3394 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3395 MaybeAlign Alignment; 3396 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3397 return Err; 3398 std::string Section; 3399 if (Record[5]) { 3400 if (Record[5] - 1 >= SectionTable.size()) 3401 return error("Invalid ID"); 3402 Section = SectionTable[Record[5] - 1]; 3403 } 3404 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3405 // Local linkage must have default visibility. 3406 // auto-upgrade `hidden` and `protected` for old bitcode. 3407 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3408 Visibility = getDecodedVisibility(Record[6]); 3409 3410 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3411 if (Record.size() > 7) 3412 TLM = getDecodedThreadLocalMode(Record[7]); 3413 3414 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3415 if (Record.size() > 8) 3416 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3417 3418 bool ExternallyInitialized = false; 3419 if (Record.size() > 9) 3420 ExternallyInitialized = Record[9]; 3421 3422 GlobalVariable *NewGV = 3423 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3424 nullptr, TLM, AddressSpace, ExternallyInitialized); 3425 NewGV->setAlignment(Alignment); 3426 if (!Section.empty()) 3427 NewGV->setSection(Section); 3428 NewGV->setVisibility(Visibility); 3429 NewGV->setUnnamedAddr(UnnamedAddr); 3430 3431 if (Record.size() > 10) 3432 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3433 else 3434 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3435 3436 ValueList.push_back(NewGV, TyID); 3437 3438 // Remember which value to use for the global initializer. 3439 if (unsigned InitID = Record[2]) 3440 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3441 3442 if (Record.size() > 11) { 3443 if (unsigned ComdatID = Record[11]) { 3444 if (ComdatID > ComdatList.size()) 3445 return error("Invalid global variable comdat ID"); 3446 NewGV->setComdat(ComdatList[ComdatID - 1]); 3447 } 3448 } else if (hasImplicitComdat(RawLinkage)) { 3449 ImplicitComdatObjects.insert(NewGV); 3450 } 3451 3452 if (Record.size() > 12) { 3453 auto AS = getAttributes(Record[12]).getFnAttrs(); 3454 NewGV->setAttributes(AS); 3455 } 3456 3457 if (Record.size() > 13) { 3458 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3459 } 3460 inferDSOLocal(NewGV); 3461 3462 // Check whether we have enough values to read a partition name. 3463 if (Record.size() > 15) 3464 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3465 3466 return Error::success(); 3467 } 3468 3469 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3470 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3471 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3472 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3473 // v2: [strtab_offset, strtab_size, v1] 3474 StringRef Name; 3475 std::tie(Name, Record) = readNameFromStrtab(Record); 3476 3477 if (Record.size() < 8) 3478 return error("Invalid record"); 3479 unsigned FTyID = Record[0]; 3480 Type *FTy = getTypeByID(FTyID); 3481 if (!FTy) 3482 return error("Invalid record"); 3483 if (isa<PointerType>(FTy)) { 3484 FTyID = getContainedTypeID(FTyID, 0); 3485 FTy = getTypeByID(FTyID); 3486 if (!FTy) 3487 return error("Missing element type for old-style function"); 3488 } 3489 3490 if (!isa<FunctionType>(FTy)) 3491 return error("Invalid type for value"); 3492 auto CC = static_cast<CallingConv::ID>(Record[1]); 3493 if (CC & ~CallingConv::MaxID) 3494 return error("Invalid calling convention ID"); 3495 3496 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3497 if (Record.size() > 16) 3498 AddrSpace = Record[16]; 3499 3500 Function *Func = 3501 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3502 AddrSpace, Name, TheModule); 3503 3504 assert(Func->getFunctionType() == FTy && 3505 "Incorrect fully specified type provided for function"); 3506 FunctionTypes[Func] = cast<FunctionType>(FTy); 3507 3508 Func->setCallingConv(CC); 3509 bool isProto = Record[2]; 3510 uint64_t RawLinkage = Record[3]; 3511 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3512 Func->setAttributes(getAttributes(Record[4])); 3513 3514 // Upgrade any old-style byval or sret without a type by propagating the 3515 // argument's pointee type. There should be no opaque pointers where the byval 3516 // type is implicit. 3517 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3518 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3519 Attribute::InAlloca}) { 3520 if (!Func->hasParamAttribute(i, Kind)) 3521 continue; 3522 3523 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3524 continue; 3525 3526 Func->removeParamAttr(i, Kind); 3527 3528 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3529 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3530 if (!PtrEltTy) 3531 return error("Missing param element type for attribute upgrade"); 3532 3533 Attribute NewAttr; 3534 switch (Kind) { 3535 case Attribute::ByVal: 3536 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3537 break; 3538 case Attribute::StructRet: 3539 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3540 break; 3541 case Attribute::InAlloca: 3542 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3543 break; 3544 default: 3545 llvm_unreachable("not an upgraded type attribute"); 3546 } 3547 3548 Func->addParamAttr(i, NewAttr); 3549 } 3550 } 3551 3552 MaybeAlign Alignment; 3553 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3554 return Err; 3555 Func->setAlignment(Alignment); 3556 if (Record[6]) { 3557 if (Record[6] - 1 >= SectionTable.size()) 3558 return error("Invalid ID"); 3559 Func->setSection(SectionTable[Record[6] - 1]); 3560 } 3561 // Local linkage must have default visibility. 3562 // auto-upgrade `hidden` and `protected` for old bitcode. 3563 if (!Func->hasLocalLinkage()) 3564 Func->setVisibility(getDecodedVisibility(Record[7])); 3565 if (Record.size() > 8 && Record[8]) { 3566 if (Record[8] - 1 >= GCTable.size()) 3567 return error("Invalid ID"); 3568 Func->setGC(GCTable[Record[8] - 1]); 3569 } 3570 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3571 if (Record.size() > 9) 3572 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3573 Func->setUnnamedAddr(UnnamedAddr); 3574 3575 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3576 if (Record.size() > 10) 3577 OperandInfo.Prologue = Record[10]; 3578 3579 if (Record.size() > 11) 3580 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3581 else 3582 upgradeDLLImportExportLinkage(Func, RawLinkage); 3583 3584 if (Record.size() > 12) { 3585 if (unsigned ComdatID = Record[12]) { 3586 if (ComdatID > ComdatList.size()) 3587 return error("Invalid function comdat ID"); 3588 Func->setComdat(ComdatList[ComdatID - 1]); 3589 } 3590 } else if (hasImplicitComdat(RawLinkage)) { 3591 ImplicitComdatObjects.insert(Func); 3592 } 3593 3594 if (Record.size() > 13) 3595 OperandInfo.Prefix = Record[13]; 3596 3597 if (Record.size() > 14) 3598 OperandInfo.PersonalityFn = Record[14]; 3599 3600 if (Record.size() > 15) { 3601 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3602 } 3603 inferDSOLocal(Func); 3604 3605 // Record[16] is the address space number. 3606 3607 // Check whether we have enough values to read a partition name. Also make 3608 // sure Strtab has enough values. 3609 if (Record.size() > 18 && Strtab.data() && 3610 Record[17] + Record[18] <= Strtab.size()) { 3611 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3612 } 3613 3614 ValueList.push_back(Func, TODOTypeID); 3615 3616 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3617 FunctionOperands.push_back(OperandInfo); 3618 3619 // If this is a function with a body, remember the prototype we are 3620 // creating now, so that we can match up the body with them later. 3621 if (!isProto) { 3622 Func->setIsMaterializable(true); 3623 FunctionsWithBodies.push_back(Func); 3624 DeferredFunctionInfo[Func] = 0; 3625 } 3626 return Error::success(); 3627 } 3628 3629 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3630 unsigned BitCode, ArrayRef<uint64_t> Record) { 3631 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3632 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3633 // dllstorageclass, threadlocal, unnamed_addr, 3634 // preemption specifier] (name in VST) 3635 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3636 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3637 // preemption specifier] (name in VST) 3638 // v2: [strtab_offset, strtab_size, v1] 3639 StringRef Name; 3640 std::tie(Name, Record) = readNameFromStrtab(Record); 3641 3642 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3643 if (Record.size() < (3 + (unsigned)NewRecord)) 3644 return error("Invalid record"); 3645 unsigned OpNum = 0; 3646 unsigned TypeID = Record[OpNum++]; 3647 Type *Ty = getTypeByID(TypeID); 3648 if (!Ty) 3649 return error("Invalid record"); 3650 3651 unsigned AddrSpace; 3652 if (!NewRecord) { 3653 auto *PTy = dyn_cast<PointerType>(Ty); 3654 if (!PTy) 3655 return error("Invalid type for value"); 3656 AddrSpace = PTy->getAddressSpace(); 3657 Ty = getPtrElementTypeByID(TypeID); 3658 if (!Ty) 3659 return error("Missing element type for old-style indirect symbol"); 3660 } else { 3661 AddrSpace = Record[OpNum++]; 3662 } 3663 3664 auto Val = Record[OpNum++]; 3665 auto Linkage = Record[OpNum++]; 3666 GlobalValue *NewGA; 3667 if (BitCode == bitc::MODULE_CODE_ALIAS || 3668 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3669 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3670 TheModule); 3671 else 3672 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3673 nullptr, TheModule); 3674 3675 // Local linkage must have default visibility. 3676 // auto-upgrade `hidden` and `protected` for old bitcode. 3677 if (OpNum != Record.size()) { 3678 auto VisInd = OpNum++; 3679 if (!NewGA->hasLocalLinkage()) 3680 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3681 } 3682 if (BitCode == bitc::MODULE_CODE_ALIAS || 3683 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3684 if (OpNum != Record.size()) 3685 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3686 else 3687 upgradeDLLImportExportLinkage(NewGA, Linkage); 3688 if (OpNum != Record.size()) 3689 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3690 if (OpNum != Record.size()) 3691 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3692 } 3693 if (OpNum != Record.size()) 3694 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3695 inferDSOLocal(NewGA); 3696 3697 // Check whether we have enough values to read a partition name. 3698 if (OpNum + 1 < Record.size()) { 3699 NewGA->setPartition( 3700 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3701 OpNum += 2; 3702 } 3703 3704 ValueList.push_back(NewGA, TypeID); 3705 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3706 return Error::success(); 3707 } 3708 3709 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3710 bool ShouldLazyLoadMetadata, 3711 DataLayoutCallbackTy DataLayoutCallback) { 3712 if (ResumeBit) { 3713 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3714 return JumpFailed; 3715 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3716 return Err; 3717 3718 SmallVector<uint64_t, 64> Record; 3719 3720 // Parts of bitcode parsing depend on the datalayout. Make sure we 3721 // finalize the datalayout before we run any of that code. 3722 bool ResolvedDataLayout = false; 3723 auto ResolveDataLayout = [&] { 3724 if (ResolvedDataLayout) 3725 return; 3726 3727 // datalayout and triple can't be parsed after this point. 3728 ResolvedDataLayout = true; 3729 3730 // Upgrade data layout string. 3731 std::string DL = llvm::UpgradeDataLayoutString( 3732 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3733 TheModule->setDataLayout(DL); 3734 3735 if (auto LayoutOverride = 3736 DataLayoutCallback(TheModule->getTargetTriple())) 3737 TheModule->setDataLayout(*LayoutOverride); 3738 }; 3739 3740 // Read all the records for this module. 3741 while (true) { 3742 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3743 if (!MaybeEntry) 3744 return MaybeEntry.takeError(); 3745 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3746 3747 switch (Entry.Kind) { 3748 case BitstreamEntry::Error: 3749 return error("Malformed block"); 3750 case BitstreamEntry::EndBlock: 3751 ResolveDataLayout(); 3752 return globalCleanup(); 3753 3754 case BitstreamEntry::SubBlock: 3755 switch (Entry.ID) { 3756 default: // Skip unknown content. 3757 if (Error Err = Stream.SkipBlock()) 3758 return Err; 3759 break; 3760 case bitc::BLOCKINFO_BLOCK_ID: 3761 if (Error Err = readBlockInfo()) 3762 return Err; 3763 break; 3764 case bitc::PARAMATTR_BLOCK_ID: 3765 if (Error Err = parseAttributeBlock()) 3766 return Err; 3767 break; 3768 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3769 if (Error Err = parseAttributeGroupBlock()) 3770 return Err; 3771 break; 3772 case bitc::TYPE_BLOCK_ID_NEW: 3773 if (Error Err = parseTypeTable()) 3774 return Err; 3775 break; 3776 case bitc::VALUE_SYMTAB_BLOCK_ID: 3777 if (!SeenValueSymbolTable) { 3778 // Either this is an old form VST without function index and an 3779 // associated VST forward declaration record (which would have caused 3780 // the VST to be jumped to and parsed before it was encountered 3781 // normally in the stream), or there were no function blocks to 3782 // trigger an earlier parsing of the VST. 3783 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3784 if (Error Err = parseValueSymbolTable()) 3785 return Err; 3786 SeenValueSymbolTable = true; 3787 } else { 3788 // We must have had a VST forward declaration record, which caused 3789 // the parser to jump to and parse the VST earlier. 3790 assert(VSTOffset > 0); 3791 if (Error Err = Stream.SkipBlock()) 3792 return Err; 3793 } 3794 break; 3795 case bitc::CONSTANTS_BLOCK_ID: 3796 if (Error Err = parseConstants()) 3797 return Err; 3798 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3799 return Err; 3800 break; 3801 case bitc::METADATA_BLOCK_ID: 3802 if (ShouldLazyLoadMetadata) { 3803 if (Error Err = rememberAndSkipMetadata()) 3804 return Err; 3805 break; 3806 } 3807 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3808 if (Error Err = MDLoader->parseModuleMetadata()) 3809 return Err; 3810 break; 3811 case bitc::METADATA_KIND_BLOCK_ID: 3812 if (Error Err = MDLoader->parseMetadataKinds()) 3813 return Err; 3814 break; 3815 case bitc::FUNCTION_BLOCK_ID: 3816 ResolveDataLayout(); 3817 3818 // If this is the first function body we've seen, reverse the 3819 // FunctionsWithBodies list. 3820 if (!SeenFirstFunctionBody) { 3821 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3822 if (Error Err = globalCleanup()) 3823 return Err; 3824 SeenFirstFunctionBody = true; 3825 } 3826 3827 if (VSTOffset > 0) { 3828 // If we have a VST forward declaration record, make sure we 3829 // parse the VST now if we haven't already. It is needed to 3830 // set up the DeferredFunctionInfo vector for lazy reading. 3831 if (!SeenValueSymbolTable) { 3832 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3833 return Err; 3834 SeenValueSymbolTable = true; 3835 // Fall through so that we record the NextUnreadBit below. 3836 // This is necessary in case we have an anonymous function that 3837 // is later materialized. Since it will not have a VST entry we 3838 // need to fall back to the lazy parse to find its offset. 3839 } else { 3840 // If we have a VST forward declaration record, but have already 3841 // parsed the VST (just above, when the first function body was 3842 // encountered here), then we are resuming the parse after 3843 // materializing functions. The ResumeBit points to the 3844 // start of the last function block recorded in the 3845 // DeferredFunctionInfo map. Skip it. 3846 if (Error Err = Stream.SkipBlock()) 3847 return Err; 3848 continue; 3849 } 3850 } 3851 3852 // Support older bitcode files that did not have the function 3853 // index in the VST, nor a VST forward declaration record, as 3854 // well as anonymous functions that do not have VST entries. 3855 // Build the DeferredFunctionInfo vector on the fly. 3856 if (Error Err = rememberAndSkipFunctionBody()) 3857 return Err; 3858 3859 // Suspend parsing when we reach the function bodies. Subsequent 3860 // materialization calls will resume it when necessary. If the bitcode 3861 // file is old, the symbol table will be at the end instead and will not 3862 // have been seen yet. In this case, just finish the parse now. 3863 if (SeenValueSymbolTable) { 3864 NextUnreadBit = Stream.GetCurrentBitNo(); 3865 // After the VST has been parsed, we need to make sure intrinsic name 3866 // are auto-upgraded. 3867 return globalCleanup(); 3868 } 3869 break; 3870 case bitc::USELIST_BLOCK_ID: 3871 if (Error Err = parseUseLists()) 3872 return Err; 3873 break; 3874 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3875 if (Error Err = parseOperandBundleTags()) 3876 return Err; 3877 break; 3878 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3879 if (Error Err = parseSyncScopeNames()) 3880 return Err; 3881 break; 3882 } 3883 continue; 3884 3885 case BitstreamEntry::Record: 3886 // The interesting case. 3887 break; 3888 } 3889 3890 // Read a record. 3891 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3892 if (!MaybeBitCode) 3893 return MaybeBitCode.takeError(); 3894 switch (unsigned BitCode = MaybeBitCode.get()) { 3895 default: break; // Default behavior, ignore unknown content. 3896 case bitc::MODULE_CODE_VERSION: { 3897 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3898 if (!VersionOrErr) 3899 return VersionOrErr.takeError(); 3900 UseRelativeIDs = *VersionOrErr >= 1; 3901 break; 3902 } 3903 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3904 if (ResolvedDataLayout) 3905 return error("target triple too late in module"); 3906 std::string S; 3907 if (convertToString(Record, 0, S)) 3908 return error("Invalid record"); 3909 TheModule->setTargetTriple(S); 3910 break; 3911 } 3912 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3913 if (ResolvedDataLayout) 3914 return error("datalayout too late in module"); 3915 std::string S; 3916 if (convertToString(Record, 0, S)) 3917 return error("Invalid record"); 3918 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3919 if (!MaybeDL) 3920 return MaybeDL.takeError(); 3921 TheModule->setDataLayout(MaybeDL.get()); 3922 break; 3923 } 3924 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3925 std::string S; 3926 if (convertToString(Record, 0, S)) 3927 return error("Invalid record"); 3928 TheModule->setModuleInlineAsm(S); 3929 break; 3930 } 3931 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3932 // Deprecated, but still needed to read old bitcode files. 3933 std::string S; 3934 if (convertToString(Record, 0, S)) 3935 return error("Invalid record"); 3936 // Ignore value. 3937 break; 3938 } 3939 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3940 std::string S; 3941 if (convertToString(Record, 0, S)) 3942 return error("Invalid record"); 3943 SectionTable.push_back(S); 3944 break; 3945 } 3946 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3947 std::string S; 3948 if (convertToString(Record, 0, S)) 3949 return error("Invalid record"); 3950 GCTable.push_back(S); 3951 break; 3952 } 3953 case bitc::MODULE_CODE_COMDAT: 3954 if (Error Err = parseComdatRecord(Record)) 3955 return Err; 3956 break; 3957 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 3958 // written by ThinLinkBitcodeWriter. See 3959 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 3960 // record 3961 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 3962 case bitc::MODULE_CODE_GLOBALVAR: 3963 if (Error Err = parseGlobalVarRecord(Record)) 3964 return Err; 3965 break; 3966 case bitc::MODULE_CODE_FUNCTION: 3967 ResolveDataLayout(); 3968 if (Error Err = parseFunctionRecord(Record)) 3969 return Err; 3970 break; 3971 case bitc::MODULE_CODE_IFUNC: 3972 case bitc::MODULE_CODE_ALIAS: 3973 case bitc::MODULE_CODE_ALIAS_OLD: 3974 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3975 return Err; 3976 break; 3977 /// MODULE_CODE_VSTOFFSET: [offset] 3978 case bitc::MODULE_CODE_VSTOFFSET: 3979 if (Record.empty()) 3980 return error("Invalid record"); 3981 // Note that we subtract 1 here because the offset is relative to one word 3982 // before the start of the identification or module block, which was 3983 // historically always the start of the regular bitcode header. 3984 VSTOffset = Record[0] - 1; 3985 break; 3986 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3987 case bitc::MODULE_CODE_SOURCE_FILENAME: 3988 SmallString<128> ValueName; 3989 if (convertToString(Record, 0, ValueName)) 3990 return error("Invalid record"); 3991 TheModule->setSourceFileName(ValueName); 3992 break; 3993 } 3994 Record.clear(); 3995 } 3996 } 3997 3998 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3999 bool IsImporting, 4000 DataLayoutCallbackTy DataLayoutCallback) { 4001 TheModule = M; 4002 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4003 [&](unsigned ID) { return getTypeByID(ID); }); 4004 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4005 } 4006 4007 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4008 if (!isa<PointerType>(PtrType)) 4009 return error("Load/Store operand is not a pointer type"); 4010 4011 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4012 return error("Explicit load/store type does not match pointee " 4013 "type of pointer operand"); 4014 if (!PointerType::isLoadableOrStorableType(ValType)) 4015 return error("Cannot load/store from pointer"); 4016 return Error::success(); 4017 } 4018 4019 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 4020 ArrayRef<Type *> ArgsTys) { 4021 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4022 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4023 Attribute::InAlloca}) { 4024 if (!CB->paramHasAttr(i, Kind) || 4025 CB->getParamAttr(i, Kind).getValueAsType()) 4026 continue; 4027 4028 CB->removeParamAttr(i, Kind); 4029 4030 Type *PtrEltTy = ArgsTys[i]->getPointerElementType(); 4031 Attribute NewAttr; 4032 switch (Kind) { 4033 case Attribute::ByVal: 4034 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4035 break; 4036 case Attribute::StructRet: 4037 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4038 break; 4039 case Attribute::InAlloca: 4040 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4041 break; 4042 default: 4043 llvm_unreachable("not an upgraded type attribute"); 4044 } 4045 4046 CB->addParamAttr(i, NewAttr); 4047 } 4048 } 4049 4050 if (CB->isInlineAsm()) { 4051 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4052 unsigned ArgNo = 0; 4053 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4054 if (!CI.hasArg()) 4055 continue; 4056 4057 if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) { 4058 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType(); 4059 CB->addParamAttr( 4060 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 4061 } 4062 4063 ArgNo++; 4064 } 4065 } 4066 4067 switch (CB->getIntrinsicID()) { 4068 case Intrinsic::preserve_array_access_index: 4069 case Intrinsic::preserve_struct_access_index: 4070 if (!CB->getAttributes().getParamElementType(0)) { 4071 Type *ElTy = ArgsTys[0]->getPointerElementType(); 4072 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4073 CB->addParamAttr(0, NewAttr); 4074 } 4075 break; 4076 default: 4077 break; 4078 } 4079 } 4080 4081 /// Lazily parse the specified function body block. 4082 Error BitcodeReader::parseFunctionBody(Function *F) { 4083 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4084 return Err; 4085 4086 // Unexpected unresolved metadata when parsing function. 4087 if (MDLoader->hasFwdRefs()) 4088 return error("Invalid function metadata: incoming forward references"); 4089 4090 InstructionList.clear(); 4091 unsigned ModuleValueListSize = ValueList.size(); 4092 unsigned ModuleMDLoaderSize = MDLoader->size(); 4093 4094 // Add all the function arguments to the value table. 4095 #ifndef NDEBUG 4096 unsigned ArgNo = 0; 4097 FunctionType *FTy = FunctionTypes[F]; 4098 #endif 4099 for (Argument &I : F->args()) { 4100 assert(I.getType() == FTy->getParamType(ArgNo++) && 4101 "Incorrect fully specified type for Function Argument"); 4102 ValueList.push_back(&I, TODOTypeID); 4103 } 4104 unsigned NextValueNo = ValueList.size(); 4105 BasicBlock *CurBB = nullptr; 4106 unsigned CurBBNo = 0; 4107 4108 DebugLoc LastLoc; 4109 auto getLastInstruction = [&]() -> Instruction * { 4110 if (CurBB && !CurBB->empty()) 4111 return &CurBB->back(); 4112 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4113 !FunctionBBs[CurBBNo - 1]->empty()) 4114 return &FunctionBBs[CurBBNo - 1]->back(); 4115 return nullptr; 4116 }; 4117 4118 std::vector<OperandBundleDef> OperandBundles; 4119 4120 // Read all the records. 4121 SmallVector<uint64_t, 64> Record; 4122 4123 while (true) { 4124 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4125 if (!MaybeEntry) 4126 return MaybeEntry.takeError(); 4127 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4128 4129 switch (Entry.Kind) { 4130 case BitstreamEntry::Error: 4131 return error("Malformed block"); 4132 case BitstreamEntry::EndBlock: 4133 goto OutOfRecordLoop; 4134 4135 case BitstreamEntry::SubBlock: 4136 switch (Entry.ID) { 4137 default: // Skip unknown content. 4138 if (Error Err = Stream.SkipBlock()) 4139 return Err; 4140 break; 4141 case bitc::CONSTANTS_BLOCK_ID: 4142 if (Error Err = parseConstants()) 4143 return Err; 4144 NextValueNo = ValueList.size(); 4145 break; 4146 case bitc::VALUE_SYMTAB_BLOCK_ID: 4147 if (Error Err = parseValueSymbolTable()) 4148 return Err; 4149 break; 4150 case bitc::METADATA_ATTACHMENT_ID: 4151 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4152 return Err; 4153 break; 4154 case bitc::METADATA_BLOCK_ID: 4155 assert(DeferredMetadataInfo.empty() && 4156 "Must read all module-level metadata before function-level"); 4157 if (Error Err = MDLoader->parseFunctionMetadata()) 4158 return Err; 4159 break; 4160 case bitc::USELIST_BLOCK_ID: 4161 if (Error Err = parseUseLists()) 4162 return Err; 4163 break; 4164 } 4165 continue; 4166 4167 case BitstreamEntry::Record: 4168 // The interesting case. 4169 break; 4170 } 4171 4172 // Read a record. 4173 Record.clear(); 4174 Instruction *I = nullptr; 4175 unsigned ResTypeID = InvalidTypeID; 4176 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4177 if (!MaybeBitCode) 4178 return MaybeBitCode.takeError(); 4179 switch (unsigned BitCode = MaybeBitCode.get()) { 4180 default: // Default behavior: reject 4181 return error("Invalid value"); 4182 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4183 if (Record.empty() || Record[0] == 0) 4184 return error("Invalid record"); 4185 // Create all the basic blocks for the function. 4186 FunctionBBs.resize(Record[0]); 4187 4188 // See if anything took the address of blocks in this function. 4189 auto BBFRI = BasicBlockFwdRefs.find(F); 4190 if (BBFRI == BasicBlockFwdRefs.end()) { 4191 for (BasicBlock *&BB : FunctionBBs) 4192 BB = BasicBlock::Create(Context, "", F); 4193 } else { 4194 auto &BBRefs = BBFRI->second; 4195 // Check for invalid basic block references. 4196 if (BBRefs.size() > FunctionBBs.size()) 4197 return error("Invalid ID"); 4198 assert(!BBRefs.empty() && "Unexpected empty array"); 4199 assert(!BBRefs.front() && "Invalid reference to entry block"); 4200 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4201 ++I) 4202 if (I < RE && BBRefs[I]) { 4203 BBRefs[I]->insertInto(F); 4204 FunctionBBs[I] = BBRefs[I]; 4205 } else { 4206 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4207 } 4208 4209 // Erase from the table. 4210 BasicBlockFwdRefs.erase(BBFRI); 4211 } 4212 4213 CurBB = FunctionBBs[0]; 4214 continue; 4215 } 4216 4217 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4218 // This record indicates that the last instruction is at the same 4219 // location as the previous instruction with a location. 4220 I = getLastInstruction(); 4221 4222 if (!I) 4223 return error("Invalid record"); 4224 I->setDebugLoc(LastLoc); 4225 I = nullptr; 4226 continue; 4227 4228 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4229 I = getLastInstruction(); 4230 if (!I || Record.size() < 4) 4231 return error("Invalid record"); 4232 4233 unsigned Line = Record[0], Col = Record[1]; 4234 unsigned ScopeID = Record[2], IAID = Record[3]; 4235 bool isImplicitCode = Record.size() == 5 && Record[4]; 4236 4237 MDNode *Scope = nullptr, *IA = nullptr; 4238 if (ScopeID) { 4239 Scope = dyn_cast_or_null<MDNode>( 4240 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4241 if (!Scope) 4242 return error("Invalid record"); 4243 } 4244 if (IAID) { 4245 IA = dyn_cast_or_null<MDNode>( 4246 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4247 if (!IA) 4248 return error("Invalid record"); 4249 } 4250 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4251 isImplicitCode); 4252 I->setDebugLoc(LastLoc); 4253 I = nullptr; 4254 continue; 4255 } 4256 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4257 unsigned OpNum = 0; 4258 Value *LHS; 4259 unsigned TypeID; 4260 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4261 OpNum+1 > Record.size()) 4262 return error("Invalid record"); 4263 4264 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4265 if (Opc == -1) 4266 return error("Invalid record"); 4267 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4268 ResTypeID = TypeID; 4269 InstructionList.push_back(I); 4270 if (OpNum < Record.size()) { 4271 if (isa<FPMathOperator>(I)) { 4272 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4273 if (FMF.any()) 4274 I->setFastMathFlags(FMF); 4275 } 4276 } 4277 break; 4278 } 4279 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4280 unsigned OpNum = 0; 4281 Value *LHS, *RHS; 4282 unsigned TypeID; 4283 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4284 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) || 4285 OpNum+1 > Record.size()) 4286 return error("Invalid record"); 4287 4288 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4289 if (Opc == -1) 4290 return error("Invalid record"); 4291 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4292 ResTypeID = TypeID; 4293 InstructionList.push_back(I); 4294 if (OpNum < Record.size()) { 4295 if (Opc == Instruction::Add || 4296 Opc == Instruction::Sub || 4297 Opc == Instruction::Mul || 4298 Opc == Instruction::Shl) { 4299 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4300 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4301 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4302 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4303 } else if (Opc == Instruction::SDiv || 4304 Opc == Instruction::UDiv || 4305 Opc == Instruction::LShr || 4306 Opc == Instruction::AShr) { 4307 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4308 cast<BinaryOperator>(I)->setIsExact(true); 4309 } else if (isa<FPMathOperator>(I)) { 4310 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4311 if (FMF.any()) 4312 I->setFastMathFlags(FMF); 4313 } 4314 4315 } 4316 break; 4317 } 4318 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4319 unsigned OpNum = 0; 4320 Value *Op; 4321 unsigned OpTypeID; 4322 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 4323 OpNum+2 != Record.size()) 4324 return error("Invalid record"); 4325 4326 ResTypeID = Record[OpNum]; 4327 Type *ResTy = getTypeByID(ResTypeID); 4328 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4329 if (Opc == -1 || !ResTy) 4330 return error("Invalid record"); 4331 Instruction *Temp = nullptr; 4332 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4333 if (Temp) { 4334 InstructionList.push_back(Temp); 4335 assert(CurBB && "No current BB?"); 4336 CurBB->getInstList().push_back(Temp); 4337 } 4338 } else { 4339 auto CastOp = (Instruction::CastOps)Opc; 4340 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4341 return error("Invalid cast"); 4342 I = CastInst::Create(CastOp, Op, ResTy); 4343 } 4344 InstructionList.push_back(I); 4345 break; 4346 } 4347 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4348 case bitc::FUNC_CODE_INST_GEP_OLD: 4349 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4350 unsigned OpNum = 0; 4351 4352 Type *Ty; 4353 bool InBounds; 4354 4355 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4356 InBounds = Record[OpNum++]; 4357 Ty = getTypeByID(Record[OpNum++]); 4358 } else { 4359 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4360 Ty = nullptr; 4361 } 4362 4363 Value *BasePtr; 4364 unsigned BasePtrTypeID; 4365 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID)) 4366 return error("Invalid record"); 4367 4368 if (!Ty) { 4369 Ty = BasePtr->getType()->getScalarType()->getPointerElementType(); 4370 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4371 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4372 return error( 4373 "Explicit gep type does not match pointee type of pointer operand"); 4374 } 4375 4376 SmallVector<Value*, 16> GEPIdx; 4377 while (OpNum != Record.size()) { 4378 Value *Op; 4379 unsigned OpTypeID; 4380 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4381 return error("Invalid record"); 4382 GEPIdx.push_back(Op); 4383 } 4384 4385 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4386 ResTypeID = TODOTypeID; 4387 4388 InstructionList.push_back(I); 4389 if (InBounds) 4390 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4391 break; 4392 } 4393 4394 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4395 // EXTRACTVAL: [opty, opval, n x indices] 4396 unsigned OpNum = 0; 4397 Value *Agg; 4398 unsigned AggTypeID; 4399 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4400 return error("Invalid record"); 4401 Type *Ty = Agg->getType(); 4402 4403 unsigned RecSize = Record.size(); 4404 if (OpNum == RecSize) 4405 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4406 4407 SmallVector<unsigned, 4> EXTRACTVALIdx; 4408 ResTypeID = AggTypeID; 4409 for (; OpNum != RecSize; ++OpNum) { 4410 bool IsArray = Ty->isArrayTy(); 4411 bool IsStruct = Ty->isStructTy(); 4412 uint64_t Index = Record[OpNum]; 4413 4414 if (!IsStruct && !IsArray) 4415 return error("EXTRACTVAL: Invalid type"); 4416 if ((unsigned)Index != Index) 4417 return error("Invalid value"); 4418 if (IsStruct && Index >= Ty->getStructNumElements()) 4419 return error("EXTRACTVAL: Invalid struct index"); 4420 if (IsArray && Index >= Ty->getArrayNumElements()) 4421 return error("EXTRACTVAL: Invalid array index"); 4422 EXTRACTVALIdx.push_back((unsigned)Index); 4423 4424 if (IsStruct) { 4425 Ty = Ty->getStructElementType(Index); 4426 ResTypeID = getContainedTypeID(ResTypeID, Index); 4427 } else { 4428 Ty = Ty->getArrayElementType(); 4429 ResTypeID = getContainedTypeID(ResTypeID); 4430 } 4431 } 4432 4433 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4434 InstructionList.push_back(I); 4435 break; 4436 } 4437 4438 case bitc::FUNC_CODE_INST_INSERTVAL: { 4439 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4440 unsigned OpNum = 0; 4441 Value *Agg; 4442 unsigned AggTypeID; 4443 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4444 return error("Invalid record"); 4445 Value *Val; 4446 unsigned ValTypeID; 4447 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 4448 return error("Invalid record"); 4449 4450 unsigned RecSize = Record.size(); 4451 if (OpNum == RecSize) 4452 return error("INSERTVAL: Invalid instruction with 0 indices"); 4453 4454 SmallVector<unsigned, 4> INSERTVALIdx; 4455 Type *CurTy = Agg->getType(); 4456 for (; OpNum != RecSize; ++OpNum) { 4457 bool IsArray = CurTy->isArrayTy(); 4458 bool IsStruct = CurTy->isStructTy(); 4459 uint64_t Index = Record[OpNum]; 4460 4461 if (!IsStruct && !IsArray) 4462 return error("INSERTVAL: Invalid type"); 4463 if ((unsigned)Index != Index) 4464 return error("Invalid value"); 4465 if (IsStruct && Index >= CurTy->getStructNumElements()) 4466 return error("INSERTVAL: Invalid struct index"); 4467 if (IsArray && Index >= CurTy->getArrayNumElements()) 4468 return error("INSERTVAL: Invalid array index"); 4469 4470 INSERTVALIdx.push_back((unsigned)Index); 4471 if (IsStruct) 4472 CurTy = CurTy->getStructElementType(Index); 4473 else 4474 CurTy = CurTy->getArrayElementType(); 4475 } 4476 4477 if (CurTy != Val->getType()) 4478 return error("Inserted value type doesn't match aggregate type"); 4479 4480 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4481 ResTypeID = AggTypeID; 4482 InstructionList.push_back(I); 4483 break; 4484 } 4485 4486 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4487 // obsolete form of select 4488 // handles select i1 ... in old bitcode 4489 unsigned OpNum = 0; 4490 Value *TrueVal, *FalseVal, *Cond; 4491 unsigned TypeID; 4492 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) || 4493 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4494 FalseVal) || 4495 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), 4496 TODOTypeID, Cond)) 4497 return error("Invalid record"); 4498 4499 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4500 ResTypeID = TypeID; 4501 InstructionList.push_back(I); 4502 break; 4503 } 4504 4505 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4506 // new form of select 4507 // handles select i1 or select [N x i1] 4508 unsigned OpNum = 0; 4509 Value *TrueVal, *FalseVal, *Cond; 4510 unsigned ValTypeID, CondTypeID; 4511 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) || 4512 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4513 FalseVal) || 4514 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID)) 4515 return error("Invalid record"); 4516 4517 // select condition can be either i1 or [N x i1] 4518 if (VectorType* vector_type = 4519 dyn_cast<VectorType>(Cond->getType())) { 4520 // expect <n x i1> 4521 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4522 return error("Invalid type for value"); 4523 } else { 4524 // expect i1 4525 if (Cond->getType() != Type::getInt1Ty(Context)) 4526 return error("Invalid type for value"); 4527 } 4528 4529 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4530 ResTypeID = ValTypeID; 4531 InstructionList.push_back(I); 4532 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4533 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4534 if (FMF.any()) 4535 I->setFastMathFlags(FMF); 4536 } 4537 break; 4538 } 4539 4540 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4541 unsigned OpNum = 0; 4542 Value *Vec, *Idx; 4543 unsigned VecTypeID, IdxTypeID; 4544 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) || 4545 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4546 return error("Invalid record"); 4547 if (!Vec->getType()->isVectorTy()) 4548 return error("Invalid type for value"); 4549 I = ExtractElementInst::Create(Vec, Idx); 4550 ResTypeID = getContainedTypeID(VecTypeID); 4551 InstructionList.push_back(I); 4552 break; 4553 } 4554 4555 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4556 unsigned OpNum = 0; 4557 Value *Vec, *Elt, *Idx; 4558 unsigned VecTypeID, IdxTypeID; 4559 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID)) 4560 return error("Invalid record"); 4561 if (!Vec->getType()->isVectorTy()) 4562 return error("Invalid type for value"); 4563 if (popValue(Record, OpNum, NextValueNo, 4564 cast<VectorType>(Vec->getType())->getElementType(), 4565 getContainedTypeID(VecTypeID), Elt) || 4566 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4567 return error("Invalid record"); 4568 I = InsertElementInst::Create(Vec, Elt, Idx); 4569 ResTypeID = VecTypeID; 4570 InstructionList.push_back(I); 4571 break; 4572 } 4573 4574 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4575 unsigned OpNum = 0; 4576 Value *Vec1, *Vec2, *Mask; 4577 unsigned Vec1TypeID; 4578 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) || 4579 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 4580 Vec2)) 4581 return error("Invalid record"); 4582 4583 unsigned MaskTypeID; 4584 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID)) 4585 return error("Invalid record"); 4586 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4587 return error("Invalid type for value"); 4588 4589 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4590 ResTypeID = TODOTypeID; 4591 InstructionList.push_back(I); 4592 break; 4593 } 4594 4595 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4596 // Old form of ICmp/FCmp returning bool 4597 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4598 // both legal on vectors but had different behaviour. 4599 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4600 // FCmp/ICmp returning bool or vector of bool 4601 4602 unsigned OpNum = 0; 4603 Value *LHS, *RHS; 4604 unsigned LHSTypeID; 4605 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) || 4606 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS)) 4607 return error("Invalid record"); 4608 4609 if (OpNum >= Record.size()) 4610 return error( 4611 "Invalid record: operand number exceeded available operands"); 4612 4613 unsigned PredVal = Record[OpNum]; 4614 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4615 FastMathFlags FMF; 4616 if (IsFP && Record.size() > OpNum+1) 4617 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4618 4619 if (OpNum+1 != Record.size()) 4620 return error("Invalid record"); 4621 4622 if (LHS->getType()->isFPOrFPVectorTy()) 4623 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4624 else 4625 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4626 ResTypeID = TODOTypeID; 4627 4628 if (FMF.any()) 4629 I->setFastMathFlags(FMF); 4630 InstructionList.push_back(I); 4631 break; 4632 } 4633 4634 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4635 { 4636 unsigned Size = Record.size(); 4637 if (Size == 0) { 4638 I = ReturnInst::Create(Context); 4639 InstructionList.push_back(I); 4640 break; 4641 } 4642 4643 unsigned OpNum = 0; 4644 Value *Op = nullptr; 4645 unsigned OpTypeID; 4646 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4647 return error("Invalid record"); 4648 if (OpNum != Record.size()) 4649 return error("Invalid record"); 4650 4651 I = ReturnInst::Create(Context, Op); 4652 InstructionList.push_back(I); 4653 break; 4654 } 4655 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4656 if (Record.size() != 1 && Record.size() != 3) 4657 return error("Invalid record"); 4658 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4659 if (!TrueDest) 4660 return error("Invalid record"); 4661 4662 if (Record.size() == 1) { 4663 I = BranchInst::Create(TrueDest); 4664 InstructionList.push_back(I); 4665 } 4666 else { 4667 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4668 Value *Cond = getValue(Record, 2, NextValueNo, 4669 Type::getInt1Ty(Context), TODOTypeID); 4670 if (!FalseDest || !Cond) 4671 return error("Invalid record"); 4672 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4673 InstructionList.push_back(I); 4674 } 4675 break; 4676 } 4677 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4678 if (Record.size() != 1 && Record.size() != 2) 4679 return error("Invalid record"); 4680 unsigned Idx = 0; 4681 Value *CleanupPad = getValue( 4682 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4683 if (!CleanupPad) 4684 return error("Invalid record"); 4685 BasicBlock *UnwindDest = nullptr; 4686 if (Record.size() == 2) { 4687 UnwindDest = getBasicBlock(Record[Idx++]); 4688 if (!UnwindDest) 4689 return error("Invalid record"); 4690 } 4691 4692 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4693 InstructionList.push_back(I); 4694 break; 4695 } 4696 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4697 if (Record.size() != 2) 4698 return error("Invalid record"); 4699 unsigned Idx = 0; 4700 Value *CatchPad = getValue( 4701 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4702 if (!CatchPad) 4703 return error("Invalid record"); 4704 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4705 if (!BB) 4706 return error("Invalid record"); 4707 4708 I = CatchReturnInst::Create(CatchPad, BB); 4709 InstructionList.push_back(I); 4710 break; 4711 } 4712 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4713 // We must have, at minimum, the outer scope and the number of arguments. 4714 if (Record.size() < 2) 4715 return error("Invalid record"); 4716 4717 unsigned Idx = 0; 4718 4719 Value *ParentPad = getValue( 4720 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4721 4722 unsigned NumHandlers = Record[Idx++]; 4723 4724 SmallVector<BasicBlock *, 2> Handlers; 4725 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4726 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4727 if (!BB) 4728 return error("Invalid record"); 4729 Handlers.push_back(BB); 4730 } 4731 4732 BasicBlock *UnwindDest = nullptr; 4733 if (Idx + 1 == Record.size()) { 4734 UnwindDest = getBasicBlock(Record[Idx++]); 4735 if (!UnwindDest) 4736 return error("Invalid record"); 4737 } 4738 4739 if (Record.size() != Idx) 4740 return error("Invalid record"); 4741 4742 auto *CatchSwitch = 4743 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4744 for (BasicBlock *Handler : Handlers) 4745 CatchSwitch->addHandler(Handler); 4746 I = CatchSwitch; 4747 ResTypeID = TODOTypeID; 4748 InstructionList.push_back(I); 4749 break; 4750 } 4751 case bitc::FUNC_CODE_INST_CATCHPAD: 4752 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4753 // We must have, at minimum, the outer scope and the number of arguments. 4754 if (Record.size() < 2) 4755 return error("Invalid record"); 4756 4757 unsigned Idx = 0; 4758 4759 Value *ParentPad = getValue( 4760 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4761 4762 unsigned NumArgOperands = Record[Idx++]; 4763 4764 SmallVector<Value *, 2> Args; 4765 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4766 Value *Val; 4767 unsigned ValTypeID; 4768 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4769 return error("Invalid record"); 4770 Args.push_back(Val); 4771 } 4772 4773 if (Record.size() != Idx) 4774 return error("Invalid record"); 4775 4776 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4777 I = CleanupPadInst::Create(ParentPad, Args); 4778 else 4779 I = CatchPadInst::Create(ParentPad, Args); 4780 ResTypeID = TODOTypeID; 4781 InstructionList.push_back(I); 4782 break; 4783 } 4784 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4785 // Check magic 4786 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4787 // "New" SwitchInst format with case ranges. The changes to write this 4788 // format were reverted but we still recognize bitcode that uses it. 4789 // Hopefully someday we will have support for case ranges and can use 4790 // this format again. 4791 4792 unsigned OpTyID = Record[1]; 4793 Type *OpTy = getTypeByID(OpTyID); 4794 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4795 4796 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID); 4797 BasicBlock *Default = getBasicBlock(Record[3]); 4798 if (!OpTy || !Cond || !Default) 4799 return error("Invalid record"); 4800 4801 unsigned NumCases = Record[4]; 4802 4803 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4804 InstructionList.push_back(SI); 4805 4806 unsigned CurIdx = 5; 4807 for (unsigned i = 0; i != NumCases; ++i) { 4808 SmallVector<ConstantInt*, 1> CaseVals; 4809 unsigned NumItems = Record[CurIdx++]; 4810 for (unsigned ci = 0; ci != NumItems; ++ci) { 4811 bool isSingleNumber = Record[CurIdx++]; 4812 4813 APInt Low; 4814 unsigned ActiveWords = 1; 4815 if (ValueBitWidth > 64) 4816 ActiveWords = Record[CurIdx++]; 4817 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4818 ValueBitWidth); 4819 CurIdx += ActiveWords; 4820 4821 if (!isSingleNumber) { 4822 ActiveWords = 1; 4823 if (ValueBitWidth > 64) 4824 ActiveWords = Record[CurIdx++]; 4825 APInt High = readWideAPInt( 4826 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4827 CurIdx += ActiveWords; 4828 4829 // FIXME: It is not clear whether values in the range should be 4830 // compared as signed or unsigned values. The partially 4831 // implemented changes that used this format in the past used 4832 // unsigned comparisons. 4833 for ( ; Low.ule(High); ++Low) 4834 CaseVals.push_back(ConstantInt::get(Context, Low)); 4835 } else 4836 CaseVals.push_back(ConstantInt::get(Context, Low)); 4837 } 4838 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4839 for (ConstantInt *Cst : CaseVals) 4840 SI->addCase(Cst, DestBB); 4841 } 4842 I = SI; 4843 break; 4844 } 4845 4846 // Old SwitchInst format without case ranges. 4847 4848 if (Record.size() < 3 || (Record.size() & 1) == 0) 4849 return error("Invalid record"); 4850 unsigned OpTyID = Record[0]; 4851 Type *OpTy = getTypeByID(OpTyID); 4852 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4853 BasicBlock *Default = getBasicBlock(Record[2]); 4854 if (!OpTy || !Cond || !Default) 4855 return error("Invalid record"); 4856 unsigned NumCases = (Record.size()-3)/2; 4857 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4858 InstructionList.push_back(SI); 4859 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4860 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 4861 getFnValueByID(Record[3+i*2], OpTy, OpTyID)); 4862 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4863 if (!CaseVal || !DestBB) { 4864 delete SI; 4865 return error("Invalid record"); 4866 } 4867 SI->addCase(CaseVal, DestBB); 4868 } 4869 I = SI; 4870 break; 4871 } 4872 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4873 if (Record.size() < 2) 4874 return error("Invalid record"); 4875 unsigned OpTyID = Record[0]; 4876 Type *OpTy = getTypeByID(OpTyID); 4877 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4878 if (!OpTy || !Address) 4879 return error("Invalid record"); 4880 unsigned NumDests = Record.size()-2; 4881 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4882 InstructionList.push_back(IBI); 4883 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4884 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4885 IBI->addDestination(DestBB); 4886 } else { 4887 delete IBI; 4888 return error("Invalid record"); 4889 } 4890 } 4891 I = IBI; 4892 break; 4893 } 4894 4895 case bitc::FUNC_CODE_INST_INVOKE: { 4896 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4897 if (Record.size() < 4) 4898 return error("Invalid record"); 4899 unsigned OpNum = 0; 4900 AttributeList PAL = getAttributes(Record[OpNum++]); 4901 unsigned CCInfo = Record[OpNum++]; 4902 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4903 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4904 4905 FunctionType *FTy = nullptr; 4906 if ((CCInfo >> 13) & 1) { 4907 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4908 if (!FTy) 4909 return error("Explicit invoke type is not a function type"); 4910 } 4911 4912 Value *Callee; 4913 unsigned CalleeTypeID; 4914 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 4915 return error("Invalid record"); 4916 4917 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4918 if (!CalleeTy) 4919 return error("Callee is not a pointer"); 4920 if (!FTy) { 4921 FTy = 4922 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4923 if (!FTy) 4924 return error("Callee is not of pointer to function type"); 4925 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4926 return error("Explicit invoke type does not match pointee type of " 4927 "callee operand"); 4928 if (Record.size() < FTy->getNumParams() + OpNum) 4929 return error("Insufficient operands to call"); 4930 4931 SmallVector<Value*, 16> Ops; 4932 SmallVector<Type *, 16> ArgsTys; 4933 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4934 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4935 FTy->getParamType(i), TODOTypeID)); 4936 ArgsTys.push_back(FTy->getParamType(i)); 4937 if (!Ops.back()) 4938 return error("Invalid record"); 4939 } 4940 4941 if (!FTy->isVarArg()) { 4942 if (Record.size() != OpNum) 4943 return error("Invalid record"); 4944 } else { 4945 // Read type/value pairs for varargs params. 4946 while (OpNum != Record.size()) { 4947 Value *Op; 4948 unsigned OpTypeID; 4949 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4950 return error("Invalid record"); 4951 Ops.push_back(Op); 4952 ArgsTys.push_back(Op->getType()); 4953 } 4954 } 4955 4956 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4957 OperandBundles); 4958 ResTypeID = TODOTypeID; 4959 OperandBundles.clear(); 4960 InstructionList.push_back(I); 4961 cast<InvokeInst>(I)->setCallingConv( 4962 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4963 cast<InvokeInst>(I)->setAttributes(PAL); 4964 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4965 4966 break; 4967 } 4968 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4969 unsigned Idx = 0; 4970 Value *Val = nullptr; 4971 unsigned ValTypeID; 4972 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4973 return error("Invalid record"); 4974 I = ResumeInst::Create(Val); 4975 InstructionList.push_back(I); 4976 break; 4977 } 4978 case bitc::FUNC_CODE_INST_CALLBR: { 4979 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4980 unsigned OpNum = 0; 4981 AttributeList PAL = getAttributes(Record[OpNum++]); 4982 unsigned CCInfo = Record[OpNum++]; 4983 4984 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4985 unsigned NumIndirectDests = Record[OpNum++]; 4986 SmallVector<BasicBlock *, 16> IndirectDests; 4987 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4988 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4989 4990 FunctionType *FTy = nullptr; 4991 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4992 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4993 if (!FTy) 4994 return error("Explicit call type is not a function type"); 4995 } 4996 4997 Value *Callee; 4998 unsigned CalleeTypeID; 4999 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5000 return error("Invalid record"); 5001 5002 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5003 if (!OpTy) 5004 return error("Callee is not a pointer type"); 5005 if (!FTy) { 5006 FTy = 5007 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5008 if (!FTy) 5009 return error("Callee is not of pointer to function type"); 5010 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5011 return error("Explicit call type does not match pointee type of " 5012 "callee operand"); 5013 if (Record.size() < FTy->getNumParams() + OpNum) 5014 return error("Insufficient operands to call"); 5015 5016 SmallVector<Value*, 16> Args; 5017 SmallVector<Type *, 16> ArgsTys; 5018 // Read the fixed params. 5019 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5020 Value *Arg; 5021 if (FTy->getParamType(i)->isLabelTy()) 5022 Arg = getBasicBlock(Record[OpNum]); 5023 else 5024 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5025 TODOTypeID); 5026 if (!Arg) 5027 return error("Invalid record"); 5028 Args.push_back(Arg); 5029 ArgsTys.push_back(Arg->getType()); 5030 } 5031 5032 // Read type/value pairs for varargs params. 5033 if (!FTy->isVarArg()) { 5034 if (OpNum != Record.size()) 5035 return error("Invalid record"); 5036 } else { 5037 while (OpNum != Record.size()) { 5038 Value *Op; 5039 unsigned OpTypeID; 5040 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5041 return error("Invalid record"); 5042 Args.push_back(Op); 5043 ArgsTys.push_back(Op->getType()); 5044 } 5045 } 5046 5047 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5048 OperandBundles); 5049 ResTypeID = TODOTypeID; 5050 OperandBundles.clear(); 5051 InstructionList.push_back(I); 5052 cast<CallBrInst>(I)->setCallingConv( 5053 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5054 cast<CallBrInst>(I)->setAttributes(PAL); 5055 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5056 break; 5057 } 5058 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5059 I = new UnreachableInst(Context); 5060 InstructionList.push_back(I); 5061 break; 5062 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5063 if (Record.empty()) 5064 return error("Invalid record"); 5065 // The first record specifies the type. 5066 unsigned TyID = Record[0]; 5067 Type *Ty = getTypeByID(TyID); 5068 if (!Ty) 5069 return error("Invalid record"); 5070 5071 // Phi arguments are pairs of records of [value, basic block]. 5072 // There is an optional final record for fast-math-flags if this phi has a 5073 // floating-point type. 5074 size_t NumArgs = (Record.size() - 1) / 2; 5075 PHINode *PN = PHINode::Create(Ty, NumArgs); 5076 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 5077 return error("Invalid record"); 5078 InstructionList.push_back(PN); 5079 5080 for (unsigned i = 0; i != NumArgs; i++) { 5081 Value *V; 5082 // With the new function encoding, it is possible that operands have 5083 // negative IDs (for forward references). Use a signed VBR 5084 // representation to keep the encoding small. 5085 if (UseRelativeIDs) 5086 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5087 else 5088 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5089 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5090 if (!V || !BB) 5091 return error("Invalid record"); 5092 PN->addIncoming(V, BB); 5093 } 5094 I = PN; 5095 ResTypeID = TyID; 5096 5097 // If there are an even number of records, the final record must be FMF. 5098 if (Record.size() % 2 == 0) { 5099 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5100 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5101 if (FMF.any()) 5102 I->setFastMathFlags(FMF); 5103 } 5104 5105 break; 5106 } 5107 5108 case bitc::FUNC_CODE_INST_LANDINGPAD: 5109 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5110 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5111 unsigned Idx = 0; 5112 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5113 if (Record.size() < 3) 5114 return error("Invalid record"); 5115 } else { 5116 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5117 if (Record.size() < 4) 5118 return error("Invalid record"); 5119 } 5120 ResTypeID = Record[Idx++]; 5121 Type *Ty = getTypeByID(ResTypeID); 5122 if (!Ty) 5123 return error("Invalid record"); 5124 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5125 Value *PersFn = nullptr; 5126 unsigned PersFnTypeID; 5127 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID)) 5128 return error("Invalid record"); 5129 5130 if (!F->hasPersonalityFn()) 5131 F->setPersonalityFn(cast<Constant>(PersFn)); 5132 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5133 return error("Personality function mismatch"); 5134 } 5135 5136 bool IsCleanup = !!Record[Idx++]; 5137 unsigned NumClauses = Record[Idx++]; 5138 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5139 LP->setCleanup(IsCleanup); 5140 for (unsigned J = 0; J != NumClauses; ++J) { 5141 LandingPadInst::ClauseType CT = 5142 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5143 Value *Val; 5144 unsigned ValTypeID; 5145 5146 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) { 5147 delete LP; 5148 return error("Invalid record"); 5149 } 5150 5151 assert((CT != LandingPadInst::Catch || 5152 !isa<ArrayType>(Val->getType())) && 5153 "Catch clause has a invalid type!"); 5154 assert((CT != LandingPadInst::Filter || 5155 isa<ArrayType>(Val->getType())) && 5156 "Filter clause has invalid type!"); 5157 LP->addClause(cast<Constant>(Val)); 5158 } 5159 5160 I = LP; 5161 InstructionList.push_back(I); 5162 break; 5163 } 5164 5165 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5166 if (Record.size() != 4) 5167 return error("Invalid record"); 5168 using APV = AllocaPackedValues; 5169 const uint64_t Rec = Record[3]; 5170 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5171 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5172 Type *Ty = getTypeByID(Record[0]); 5173 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5174 Ty = getPtrElementTypeByID(Record[0]); 5175 if (!Ty) 5176 return error("Missing element type for old-style alloca"); 5177 } 5178 unsigned OpTyID = Record[1]; 5179 Type *OpTy = getTypeByID(OpTyID); 5180 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID); 5181 MaybeAlign Align; 5182 uint64_t AlignExp = 5183 Bitfield::get<APV::AlignLower>(Rec) | 5184 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5185 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5186 return Err; 5187 } 5188 if (!Ty || !Size) 5189 return error("Invalid record"); 5190 5191 // FIXME: Make this an optional field. 5192 const DataLayout &DL = TheModule->getDataLayout(); 5193 unsigned AS = DL.getAllocaAddrSpace(); 5194 5195 SmallPtrSet<Type *, 4> Visited; 5196 if (!Align && !Ty->isSized(&Visited)) 5197 return error("alloca of unsized type"); 5198 if (!Align) 5199 Align = DL.getPrefTypeAlign(Ty); 5200 5201 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5202 AI->setUsedWithInAlloca(InAlloca); 5203 AI->setSwiftError(SwiftError); 5204 I = AI; 5205 ResTypeID = TODOTypeID; 5206 InstructionList.push_back(I); 5207 break; 5208 } 5209 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5210 unsigned OpNum = 0; 5211 Value *Op; 5212 unsigned OpTypeID; 5213 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5214 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5215 return error("Invalid record"); 5216 5217 if (!isa<PointerType>(Op->getType())) 5218 return error("Load operand is not a pointer type"); 5219 5220 Type *Ty = nullptr; 5221 if (OpNum + 3 == Record.size()) { 5222 ResTypeID = Record[OpNum++]; 5223 Ty = getTypeByID(ResTypeID); 5224 } else { 5225 ResTypeID = getContainedTypeID(OpTypeID); 5226 Ty = Op->getType()->getPointerElementType(); 5227 } 5228 5229 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5230 return Err; 5231 5232 MaybeAlign Align; 5233 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5234 return Err; 5235 SmallPtrSet<Type *, 4> Visited; 5236 if (!Align && !Ty->isSized(&Visited)) 5237 return error("load of unsized type"); 5238 if (!Align) 5239 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5240 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5241 InstructionList.push_back(I); 5242 break; 5243 } 5244 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5245 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5246 unsigned OpNum = 0; 5247 Value *Op; 5248 unsigned OpTypeID; 5249 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5250 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5251 return error("Invalid record"); 5252 5253 if (!isa<PointerType>(Op->getType())) 5254 return error("Load operand is not a pointer type"); 5255 5256 Type *Ty = nullptr; 5257 if (OpNum + 5 == Record.size()) { 5258 ResTypeID = Record[OpNum++]; 5259 Ty = getTypeByID(ResTypeID); 5260 } else { 5261 ResTypeID = getContainedTypeID(OpTypeID); 5262 Ty = Op->getType()->getPointerElementType(); 5263 } 5264 5265 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5266 return Err; 5267 5268 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5269 if (Ordering == AtomicOrdering::NotAtomic || 5270 Ordering == AtomicOrdering::Release || 5271 Ordering == AtomicOrdering::AcquireRelease) 5272 return error("Invalid record"); 5273 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5274 return error("Invalid record"); 5275 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5276 5277 MaybeAlign Align; 5278 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5279 return Err; 5280 if (!Align) 5281 return error("Alignment missing from atomic load"); 5282 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5283 InstructionList.push_back(I); 5284 break; 5285 } 5286 case bitc::FUNC_CODE_INST_STORE: 5287 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5288 unsigned OpNum = 0; 5289 Value *Val, *Ptr; 5290 unsigned PtrTypeID, ValTypeID; 5291 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5292 (BitCode == bitc::FUNC_CODE_INST_STORE 5293 ? getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID) 5294 : popValue(Record, OpNum, NextValueNo, 5295 Ptr->getType()->getPointerElementType(), 5296 getContainedTypeID(PtrTypeID), Val)) || 5297 OpNum + 2 != Record.size()) 5298 return error("Invalid record"); 5299 5300 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5301 return Err; 5302 MaybeAlign Align; 5303 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5304 return Err; 5305 SmallPtrSet<Type *, 4> Visited; 5306 if (!Align && !Val->getType()->isSized(&Visited)) 5307 return error("store of unsized type"); 5308 if (!Align) 5309 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5310 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5311 InstructionList.push_back(I); 5312 break; 5313 } 5314 case bitc::FUNC_CODE_INST_STOREATOMIC: 5315 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5316 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5317 unsigned OpNum = 0; 5318 Value *Val, *Ptr; 5319 unsigned PtrTypeID, ValTypeID; 5320 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5321 !isa<PointerType>(Ptr->getType()) || 5322 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5323 ? getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID) 5324 : popValue(Record, OpNum, NextValueNo, 5325 Ptr->getType()->getPointerElementType(), 5326 getContainedTypeID(PtrTypeID), Val)) || 5327 OpNum + 4 != Record.size()) 5328 return error("Invalid record"); 5329 5330 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5331 return Err; 5332 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5333 if (Ordering == AtomicOrdering::NotAtomic || 5334 Ordering == AtomicOrdering::Acquire || 5335 Ordering == AtomicOrdering::AcquireRelease) 5336 return error("Invalid record"); 5337 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5338 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5339 return error("Invalid record"); 5340 5341 MaybeAlign Align; 5342 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5343 return Err; 5344 if (!Align) 5345 return error("Alignment missing from atomic store"); 5346 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5347 InstructionList.push_back(I); 5348 break; 5349 } 5350 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5351 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5352 // failure_ordering?, weak?] 5353 const size_t NumRecords = Record.size(); 5354 unsigned OpNum = 0; 5355 Value *Ptr = nullptr; 5356 unsigned PtrTypeID; 5357 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5358 return error("Invalid record"); 5359 5360 if (!isa<PointerType>(Ptr->getType())) 5361 return error("Cmpxchg operand is not a pointer type"); 5362 5363 Value *Cmp = nullptr; 5364 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5365 if (popValue(Record, OpNum, NextValueNo, 5366 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5367 CmpTypeID, Cmp)) 5368 return error("Invalid record"); 5369 5370 Value *New = nullptr; 5371 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5372 New) || 5373 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5374 return error("Invalid record"); 5375 5376 const AtomicOrdering SuccessOrdering = 5377 getDecodedOrdering(Record[OpNum + 1]); 5378 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5379 SuccessOrdering == AtomicOrdering::Unordered) 5380 return error("Invalid record"); 5381 5382 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5383 5384 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5385 return Err; 5386 5387 const AtomicOrdering FailureOrdering = 5388 NumRecords < 7 5389 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5390 : getDecodedOrdering(Record[OpNum + 3]); 5391 5392 if (FailureOrdering == AtomicOrdering::NotAtomic || 5393 FailureOrdering == AtomicOrdering::Unordered) 5394 return error("Invalid record"); 5395 5396 const Align Alignment( 5397 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5398 5399 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5400 FailureOrdering, SSID); 5401 ResTypeID = TODOTypeID; 5402 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5403 5404 if (NumRecords < 8) { 5405 // Before weak cmpxchgs existed, the instruction simply returned the 5406 // value loaded from memory, so bitcode files from that era will be 5407 // expecting the first component of a modern cmpxchg. 5408 CurBB->getInstList().push_back(I); 5409 I = ExtractValueInst::Create(I, 0); 5410 ResTypeID = TODOTypeID; 5411 } else { 5412 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5413 } 5414 5415 InstructionList.push_back(I); 5416 break; 5417 } 5418 case bitc::FUNC_CODE_INST_CMPXCHG: { 5419 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5420 // failure_ordering, weak, align?] 5421 const size_t NumRecords = Record.size(); 5422 unsigned OpNum = 0; 5423 Value *Ptr = nullptr; 5424 unsigned PtrTypeID; 5425 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5426 return error("Invalid record"); 5427 5428 if (!isa<PointerType>(Ptr->getType())) 5429 return error("Cmpxchg operand is not a pointer type"); 5430 5431 Value *Cmp = nullptr; 5432 unsigned CmpTypeID; 5433 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID)) 5434 return error("Invalid record"); 5435 5436 Value *Val = nullptr; 5437 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val)) 5438 return error("Invalid record"); 5439 5440 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5441 return error("Invalid record"); 5442 5443 const bool IsVol = Record[OpNum]; 5444 5445 const AtomicOrdering SuccessOrdering = 5446 getDecodedOrdering(Record[OpNum + 1]); 5447 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5448 return error("Invalid cmpxchg success ordering"); 5449 5450 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5451 5452 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5453 return Err; 5454 5455 const AtomicOrdering FailureOrdering = 5456 getDecodedOrdering(Record[OpNum + 3]); 5457 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5458 return error("Invalid cmpxchg failure ordering"); 5459 5460 const bool IsWeak = Record[OpNum + 4]; 5461 5462 MaybeAlign Alignment; 5463 5464 if (NumRecords == (OpNum + 6)) { 5465 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5466 return Err; 5467 } 5468 if (!Alignment) 5469 Alignment = 5470 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5471 5472 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5473 FailureOrdering, SSID); 5474 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5475 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5476 ResTypeID = TODOTypeID; 5477 5478 InstructionList.push_back(I); 5479 break; 5480 } 5481 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5482 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5483 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5484 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5485 const size_t NumRecords = Record.size(); 5486 unsigned OpNum = 0; 5487 5488 Value *Ptr = nullptr; 5489 unsigned PtrTypeID; 5490 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5491 return error("Invalid record"); 5492 5493 if (!isa<PointerType>(Ptr->getType())) 5494 return error("Invalid record"); 5495 5496 Value *Val = nullptr; 5497 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5498 if (popValue(Record, OpNum, NextValueNo, 5499 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5500 getContainedTypeID(PtrTypeID), Val)) 5501 return error("Invalid record"); 5502 } else { 5503 unsigned ValTypeID; 5504 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5505 return error("Invalid record"); 5506 } 5507 5508 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5509 return error("Invalid record"); 5510 5511 const AtomicRMWInst::BinOp Operation = 5512 getDecodedRMWOperation(Record[OpNum]); 5513 if (Operation < AtomicRMWInst::FIRST_BINOP || 5514 Operation > AtomicRMWInst::LAST_BINOP) 5515 return error("Invalid record"); 5516 5517 const bool IsVol = Record[OpNum + 1]; 5518 5519 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5520 if (Ordering == AtomicOrdering::NotAtomic || 5521 Ordering == AtomicOrdering::Unordered) 5522 return error("Invalid record"); 5523 5524 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5525 5526 MaybeAlign Alignment; 5527 5528 if (NumRecords == (OpNum + 5)) { 5529 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5530 return Err; 5531 } 5532 5533 if (!Alignment) 5534 Alignment = 5535 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5536 5537 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5538 ResTypeID = TODOTypeID; 5539 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5540 5541 InstructionList.push_back(I); 5542 break; 5543 } 5544 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5545 if (2 != Record.size()) 5546 return error("Invalid record"); 5547 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5548 if (Ordering == AtomicOrdering::NotAtomic || 5549 Ordering == AtomicOrdering::Unordered || 5550 Ordering == AtomicOrdering::Monotonic) 5551 return error("Invalid record"); 5552 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5553 I = new FenceInst(Context, Ordering, SSID); 5554 InstructionList.push_back(I); 5555 break; 5556 } 5557 case bitc::FUNC_CODE_INST_CALL: { 5558 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5559 if (Record.size() < 3) 5560 return error("Invalid record"); 5561 5562 unsigned OpNum = 0; 5563 AttributeList PAL = getAttributes(Record[OpNum++]); 5564 unsigned CCInfo = Record[OpNum++]; 5565 5566 FastMathFlags FMF; 5567 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5568 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5569 if (!FMF.any()) 5570 return error("Fast math flags indicator set for call with no FMF"); 5571 } 5572 5573 FunctionType *FTy = nullptr; 5574 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5575 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5576 if (!FTy) 5577 return error("Explicit call type is not a function type"); 5578 } 5579 5580 Value *Callee; 5581 unsigned CalleeTypeID; 5582 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5583 return error("Invalid record"); 5584 5585 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5586 if (!OpTy) 5587 return error("Callee is not a pointer type"); 5588 if (!FTy) { 5589 FTy = 5590 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5591 if (!FTy) 5592 return error("Callee is not of pointer to function type"); 5593 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5594 return error("Explicit call type does not match pointee type of " 5595 "callee operand"); 5596 if (Record.size() < FTy->getNumParams() + OpNum) 5597 return error("Insufficient operands to call"); 5598 5599 SmallVector<Value*, 16> Args; 5600 SmallVector<Type *, 16> ArgsTys; 5601 // Read the fixed params. 5602 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5603 if (FTy->getParamType(i)->isLabelTy()) 5604 Args.push_back(getBasicBlock(Record[OpNum])); 5605 else 5606 Args.push_back(getValue(Record, OpNum, NextValueNo, 5607 FTy->getParamType(i), TODOTypeID)); 5608 ArgsTys.push_back(FTy->getParamType(i)); 5609 if (!Args.back()) 5610 return error("Invalid record"); 5611 } 5612 5613 // Read type/value pairs for varargs params. 5614 if (!FTy->isVarArg()) { 5615 if (OpNum != Record.size()) 5616 return error("Invalid record"); 5617 } else { 5618 while (OpNum != Record.size()) { 5619 Value *Op; 5620 unsigned OpTypeID; 5621 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5622 return error("Invalid record"); 5623 Args.push_back(Op); 5624 ArgsTys.push_back(Op->getType()); 5625 } 5626 } 5627 5628 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5629 ResTypeID = TODOTypeID; 5630 OperandBundles.clear(); 5631 InstructionList.push_back(I); 5632 cast<CallInst>(I)->setCallingConv( 5633 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5634 CallInst::TailCallKind TCK = CallInst::TCK_None; 5635 if (CCInfo & 1 << bitc::CALL_TAIL) 5636 TCK = CallInst::TCK_Tail; 5637 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5638 TCK = CallInst::TCK_MustTail; 5639 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5640 TCK = CallInst::TCK_NoTail; 5641 cast<CallInst>(I)->setTailCallKind(TCK); 5642 cast<CallInst>(I)->setAttributes(PAL); 5643 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5644 if (FMF.any()) { 5645 if (!isa<FPMathOperator>(I)) 5646 return error("Fast-math-flags specified for call without " 5647 "floating-point scalar or vector return type"); 5648 I->setFastMathFlags(FMF); 5649 } 5650 break; 5651 } 5652 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5653 if (Record.size() < 3) 5654 return error("Invalid record"); 5655 unsigned OpTyID = Record[0]; 5656 Type *OpTy = getTypeByID(OpTyID); 5657 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5658 ResTypeID = Record[2]; 5659 Type *ResTy = getTypeByID(ResTypeID); 5660 if (!OpTy || !Op || !ResTy) 5661 return error("Invalid record"); 5662 I = new VAArgInst(Op, ResTy); 5663 InstructionList.push_back(I); 5664 break; 5665 } 5666 5667 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5668 // A call or an invoke can be optionally prefixed with some variable 5669 // number of operand bundle blocks. These blocks are read into 5670 // OperandBundles and consumed at the next call or invoke instruction. 5671 5672 if (Record.empty() || Record[0] >= BundleTags.size()) 5673 return error("Invalid record"); 5674 5675 std::vector<Value *> Inputs; 5676 5677 unsigned OpNum = 1; 5678 while (OpNum != Record.size()) { 5679 Value *Op; 5680 unsigned OpTypeID; 5681 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5682 return error("Invalid record"); 5683 Inputs.push_back(Op); 5684 } 5685 5686 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5687 continue; 5688 } 5689 5690 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5691 unsigned OpNum = 0; 5692 Value *Op = nullptr; 5693 unsigned OpTypeID; 5694 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5695 return error("Invalid record"); 5696 if (OpNum != Record.size()) 5697 return error("Invalid record"); 5698 5699 I = new FreezeInst(Op); 5700 ResTypeID = OpTypeID; 5701 InstructionList.push_back(I); 5702 break; 5703 } 5704 } 5705 5706 // Add instruction to end of current BB. If there is no current BB, reject 5707 // this file. 5708 if (!CurBB) { 5709 I->deleteValue(); 5710 return error("Invalid instruction with no BB"); 5711 } 5712 if (!OperandBundles.empty()) { 5713 I->deleteValue(); 5714 return error("Operand bundles found with no consumer"); 5715 } 5716 CurBB->getInstList().push_back(I); 5717 5718 // If this was a terminator instruction, move to the next block. 5719 if (I->isTerminator()) { 5720 ++CurBBNo; 5721 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5722 } 5723 5724 // Non-void values get registered in the value table for future use. 5725 if (!I->getType()->isVoidTy()) { 5726 assert(ResTypeID != InvalidTypeID && "Should have ID for non-void type"); 5727 ValueList.assignValue(NextValueNo++, I, ResTypeID); 5728 } 5729 } 5730 5731 OutOfRecordLoop: 5732 5733 if (!OperandBundles.empty()) 5734 return error("Operand bundles found with no consumer"); 5735 5736 // Check the function list for unresolved values. 5737 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5738 if (!A->getParent()) { 5739 // We found at least one unresolved value. Nuke them all to avoid leaks. 5740 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5741 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5742 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5743 delete A; 5744 } 5745 } 5746 return error("Never resolved value found in function"); 5747 } 5748 } 5749 5750 // Unexpected unresolved metadata about to be dropped. 5751 if (MDLoader->hasFwdRefs()) 5752 return error("Invalid function metadata: outgoing forward refs"); 5753 5754 // Trim the value list down to the size it was before we parsed this function. 5755 ValueList.shrinkTo(ModuleValueListSize); 5756 MDLoader->shrinkTo(ModuleMDLoaderSize); 5757 std::vector<BasicBlock*>().swap(FunctionBBs); 5758 return Error::success(); 5759 } 5760 5761 /// Find the function body in the bitcode stream 5762 Error BitcodeReader::findFunctionInStream( 5763 Function *F, 5764 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5765 while (DeferredFunctionInfoIterator->second == 0) { 5766 // This is the fallback handling for the old format bitcode that 5767 // didn't contain the function index in the VST, or when we have 5768 // an anonymous function which would not have a VST entry. 5769 // Assert that we have one of those two cases. 5770 assert(VSTOffset == 0 || !F->hasName()); 5771 // Parse the next body in the stream and set its position in the 5772 // DeferredFunctionInfo map. 5773 if (Error Err = rememberAndSkipFunctionBodies()) 5774 return Err; 5775 } 5776 return Error::success(); 5777 } 5778 5779 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5780 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5781 return SyncScope::ID(Val); 5782 if (Val >= SSIDs.size()) 5783 return SyncScope::System; // Map unknown synchronization scopes to system. 5784 return SSIDs[Val]; 5785 } 5786 5787 //===----------------------------------------------------------------------===// 5788 // GVMaterializer implementation 5789 //===----------------------------------------------------------------------===// 5790 5791 Error BitcodeReader::materialize(GlobalValue *GV) { 5792 Function *F = dyn_cast<Function>(GV); 5793 // If it's not a function or is already material, ignore the request. 5794 if (!F || !F->isMaterializable()) 5795 return Error::success(); 5796 5797 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5798 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5799 // If its position is recorded as 0, its body is somewhere in the stream 5800 // but we haven't seen it yet. 5801 if (DFII->second == 0) 5802 if (Error Err = findFunctionInStream(F, DFII)) 5803 return Err; 5804 5805 // Materialize metadata before parsing any function bodies. 5806 if (Error Err = materializeMetadata()) 5807 return Err; 5808 5809 // Move the bit stream to the saved position of the deferred function body. 5810 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5811 return JumpFailed; 5812 if (Error Err = parseFunctionBody(F)) 5813 return Err; 5814 F->setIsMaterializable(false); 5815 5816 if (StripDebugInfo) 5817 stripDebugInfo(*F); 5818 5819 // Upgrade any old intrinsic calls in the function. 5820 for (auto &I : UpgradedIntrinsics) { 5821 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5822 if (CallInst *CI = dyn_cast<CallInst>(U)) 5823 UpgradeIntrinsicCall(CI, I.second); 5824 } 5825 5826 // Update calls to the remangled intrinsics 5827 for (auto &I : RemangledIntrinsics) 5828 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5829 // Don't expect any other users than call sites 5830 cast<CallBase>(U)->setCalledFunction(I.second); 5831 5832 // Finish fn->subprogram upgrade for materialized functions. 5833 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5834 F->setSubprogram(SP); 5835 5836 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5837 if (!MDLoader->isStrippingTBAA()) { 5838 for (auto &I : instructions(F)) { 5839 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5840 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5841 continue; 5842 MDLoader->setStripTBAA(true); 5843 stripTBAA(F->getParent()); 5844 } 5845 } 5846 5847 for (auto &I : instructions(F)) { 5848 // "Upgrade" older incorrect branch weights by dropping them. 5849 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5850 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5851 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5852 StringRef ProfName = MDS->getString(); 5853 // Check consistency of !prof branch_weights metadata. 5854 if (!ProfName.equals("branch_weights")) 5855 continue; 5856 unsigned ExpectedNumOperands = 0; 5857 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5858 ExpectedNumOperands = BI->getNumSuccessors(); 5859 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5860 ExpectedNumOperands = SI->getNumSuccessors(); 5861 else if (isa<CallInst>(&I)) 5862 ExpectedNumOperands = 1; 5863 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5864 ExpectedNumOperands = IBI->getNumDestinations(); 5865 else if (isa<SelectInst>(&I)) 5866 ExpectedNumOperands = 2; 5867 else 5868 continue; // ignore and continue. 5869 5870 // If branch weight doesn't match, just strip branch weight. 5871 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5872 I.setMetadata(LLVMContext::MD_prof, nullptr); 5873 } 5874 } 5875 5876 // Remove incompatible attributes on function calls. 5877 if (auto *CI = dyn_cast<CallBase>(&I)) { 5878 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5879 CI->getFunctionType()->getReturnType())); 5880 5881 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5882 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5883 CI->getArgOperand(ArgNo)->getType())); 5884 } 5885 } 5886 5887 // Look for functions that rely on old function attribute behavior. 5888 UpgradeFunctionAttributes(*F); 5889 5890 // Bring in any functions that this function forward-referenced via 5891 // blockaddresses. 5892 return materializeForwardReferencedFunctions(); 5893 } 5894 5895 Error BitcodeReader::materializeModule() { 5896 if (Error Err = materializeMetadata()) 5897 return Err; 5898 5899 // Promise to materialize all forward references. 5900 WillMaterializeAllForwardRefs = true; 5901 5902 // Iterate over the module, deserializing any functions that are still on 5903 // disk. 5904 for (Function &F : *TheModule) { 5905 if (Error Err = materialize(&F)) 5906 return Err; 5907 } 5908 // At this point, if there are any function bodies, parse the rest of 5909 // the bits in the module past the last function block we have recorded 5910 // through either lazy scanning or the VST. 5911 if (LastFunctionBlockBit || NextUnreadBit) 5912 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5913 ? LastFunctionBlockBit 5914 : NextUnreadBit)) 5915 return Err; 5916 5917 // Check that all block address forward references got resolved (as we 5918 // promised above). 5919 if (!BasicBlockFwdRefs.empty()) 5920 return error("Never resolved function from blockaddress"); 5921 5922 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5923 // delete the old functions to clean up. We can't do this unless the entire 5924 // module is materialized because there could always be another function body 5925 // with calls to the old function. 5926 for (auto &I : UpgradedIntrinsics) { 5927 for (auto *U : I.first->users()) { 5928 if (CallInst *CI = dyn_cast<CallInst>(U)) 5929 UpgradeIntrinsicCall(CI, I.second); 5930 } 5931 if (!I.first->use_empty()) 5932 I.first->replaceAllUsesWith(I.second); 5933 I.first->eraseFromParent(); 5934 } 5935 UpgradedIntrinsics.clear(); 5936 // Do the same for remangled intrinsics 5937 for (auto &I : RemangledIntrinsics) { 5938 I.first->replaceAllUsesWith(I.second); 5939 I.first->eraseFromParent(); 5940 } 5941 RemangledIntrinsics.clear(); 5942 5943 UpgradeDebugInfo(*TheModule); 5944 5945 UpgradeModuleFlags(*TheModule); 5946 5947 UpgradeARCRuntime(*TheModule); 5948 5949 return Error::success(); 5950 } 5951 5952 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5953 return IdentifiedStructTypes; 5954 } 5955 5956 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5957 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5958 StringRef ModulePath, unsigned ModuleId) 5959 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5960 ModulePath(ModulePath), ModuleId(ModuleId) {} 5961 5962 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5963 TheIndex.addModule(ModulePath, ModuleId); 5964 } 5965 5966 ModuleSummaryIndex::ModuleInfo * 5967 ModuleSummaryIndexBitcodeReader::getThisModule() { 5968 return TheIndex.getModule(ModulePath); 5969 } 5970 5971 std::pair<ValueInfo, GlobalValue::GUID> 5972 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5973 auto VGI = ValueIdToValueInfoMap[ValueId]; 5974 assert(VGI.first); 5975 return VGI; 5976 } 5977 5978 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5979 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5980 StringRef SourceFileName) { 5981 std::string GlobalId = 5982 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5983 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5984 auto OriginalNameID = ValueGUID; 5985 if (GlobalValue::isLocalLinkage(Linkage)) 5986 OriginalNameID = GlobalValue::getGUID(ValueName); 5987 if (PrintSummaryGUIDs) 5988 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5989 << ValueName << "\n"; 5990 5991 // UseStrtab is false for legacy summary formats and value names are 5992 // created on stack. In that case we save the name in a string saver in 5993 // the index so that the value name can be recorded. 5994 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5995 TheIndex.getOrInsertValueInfo( 5996 ValueGUID, 5997 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5998 OriginalNameID); 5999 } 6000 6001 // Specialized value symbol table parser used when reading module index 6002 // blocks where we don't actually create global values. The parsed information 6003 // is saved in the bitcode reader for use when later parsing summaries. 6004 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6005 uint64_t Offset, 6006 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6007 // With a strtab the VST is not required to parse the summary. 6008 if (UseStrtab) 6009 return Error::success(); 6010 6011 assert(Offset > 0 && "Expected non-zero VST offset"); 6012 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6013 if (!MaybeCurrentBit) 6014 return MaybeCurrentBit.takeError(); 6015 uint64_t CurrentBit = MaybeCurrentBit.get(); 6016 6017 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6018 return Err; 6019 6020 SmallVector<uint64_t, 64> Record; 6021 6022 // Read all the records for this value table. 6023 SmallString<128> ValueName; 6024 6025 while (true) { 6026 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6027 if (!MaybeEntry) 6028 return MaybeEntry.takeError(); 6029 BitstreamEntry Entry = MaybeEntry.get(); 6030 6031 switch (Entry.Kind) { 6032 case BitstreamEntry::SubBlock: // Handled for us already. 6033 case BitstreamEntry::Error: 6034 return error("Malformed block"); 6035 case BitstreamEntry::EndBlock: 6036 // Done parsing VST, jump back to wherever we came from. 6037 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6038 return JumpFailed; 6039 return Error::success(); 6040 case BitstreamEntry::Record: 6041 // The interesting case. 6042 break; 6043 } 6044 6045 // Read a record. 6046 Record.clear(); 6047 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6048 if (!MaybeRecord) 6049 return MaybeRecord.takeError(); 6050 switch (MaybeRecord.get()) { 6051 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6052 break; 6053 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6054 if (convertToString(Record, 1, ValueName)) 6055 return error("Invalid record"); 6056 unsigned ValueID = Record[0]; 6057 assert(!SourceFileName.empty()); 6058 auto VLI = ValueIdToLinkageMap.find(ValueID); 6059 assert(VLI != ValueIdToLinkageMap.end() && 6060 "No linkage found for VST entry?"); 6061 auto Linkage = VLI->second; 6062 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6063 ValueName.clear(); 6064 break; 6065 } 6066 case bitc::VST_CODE_FNENTRY: { 6067 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6068 if (convertToString(Record, 2, ValueName)) 6069 return error("Invalid record"); 6070 unsigned ValueID = Record[0]; 6071 assert(!SourceFileName.empty()); 6072 auto VLI = ValueIdToLinkageMap.find(ValueID); 6073 assert(VLI != ValueIdToLinkageMap.end() && 6074 "No linkage found for VST entry?"); 6075 auto Linkage = VLI->second; 6076 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6077 ValueName.clear(); 6078 break; 6079 } 6080 case bitc::VST_CODE_COMBINED_ENTRY: { 6081 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6082 unsigned ValueID = Record[0]; 6083 GlobalValue::GUID RefGUID = Record[1]; 6084 // The "original name", which is the second value of the pair will be 6085 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6086 ValueIdToValueInfoMap[ValueID] = 6087 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6088 break; 6089 } 6090 } 6091 } 6092 } 6093 6094 // Parse just the blocks needed for building the index out of the module. 6095 // At the end of this routine the module Index is populated with a map 6096 // from global value id to GlobalValueSummary objects. 6097 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6098 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6099 return Err; 6100 6101 SmallVector<uint64_t, 64> Record; 6102 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6103 unsigned ValueId = 0; 6104 6105 // Read the index for this module. 6106 while (true) { 6107 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6108 if (!MaybeEntry) 6109 return MaybeEntry.takeError(); 6110 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6111 6112 switch (Entry.Kind) { 6113 case BitstreamEntry::Error: 6114 return error("Malformed block"); 6115 case BitstreamEntry::EndBlock: 6116 return Error::success(); 6117 6118 case BitstreamEntry::SubBlock: 6119 switch (Entry.ID) { 6120 default: // Skip unknown content. 6121 if (Error Err = Stream.SkipBlock()) 6122 return Err; 6123 break; 6124 case bitc::BLOCKINFO_BLOCK_ID: 6125 // Need to parse these to get abbrev ids (e.g. for VST) 6126 if (Error Err = readBlockInfo()) 6127 return Err; 6128 break; 6129 case bitc::VALUE_SYMTAB_BLOCK_ID: 6130 // Should have been parsed earlier via VSTOffset, unless there 6131 // is no summary section. 6132 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6133 !SeenGlobalValSummary) && 6134 "Expected early VST parse via VSTOffset record"); 6135 if (Error Err = Stream.SkipBlock()) 6136 return Err; 6137 break; 6138 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6139 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6140 // Add the module if it is a per-module index (has a source file name). 6141 if (!SourceFileName.empty()) 6142 addThisModule(); 6143 assert(!SeenValueSymbolTable && 6144 "Already read VST when parsing summary block?"); 6145 // We might not have a VST if there were no values in the 6146 // summary. An empty summary block generated when we are 6147 // performing ThinLTO compiles so we don't later invoke 6148 // the regular LTO process on them. 6149 if (VSTOffset > 0) { 6150 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6151 return Err; 6152 SeenValueSymbolTable = true; 6153 } 6154 SeenGlobalValSummary = true; 6155 if (Error Err = parseEntireSummary(Entry.ID)) 6156 return Err; 6157 break; 6158 case bitc::MODULE_STRTAB_BLOCK_ID: 6159 if (Error Err = parseModuleStringTable()) 6160 return Err; 6161 break; 6162 } 6163 continue; 6164 6165 case BitstreamEntry::Record: { 6166 Record.clear(); 6167 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6168 if (!MaybeBitCode) 6169 return MaybeBitCode.takeError(); 6170 switch (MaybeBitCode.get()) { 6171 default: 6172 break; // Default behavior, ignore unknown content. 6173 case bitc::MODULE_CODE_VERSION: { 6174 if (Error Err = parseVersionRecord(Record).takeError()) 6175 return Err; 6176 break; 6177 } 6178 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6179 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6180 SmallString<128> ValueName; 6181 if (convertToString(Record, 0, ValueName)) 6182 return error("Invalid record"); 6183 SourceFileName = ValueName.c_str(); 6184 break; 6185 } 6186 /// MODULE_CODE_HASH: [5*i32] 6187 case bitc::MODULE_CODE_HASH: { 6188 if (Record.size() != 5) 6189 return error("Invalid hash length " + Twine(Record.size()).str()); 6190 auto &Hash = getThisModule()->second.second; 6191 int Pos = 0; 6192 for (auto &Val : Record) { 6193 assert(!(Val >> 32) && "Unexpected high bits set"); 6194 Hash[Pos++] = Val; 6195 } 6196 break; 6197 } 6198 /// MODULE_CODE_VSTOFFSET: [offset] 6199 case bitc::MODULE_CODE_VSTOFFSET: 6200 if (Record.empty()) 6201 return error("Invalid record"); 6202 // Note that we subtract 1 here because the offset is relative to one 6203 // word before the start of the identification or module block, which 6204 // was historically always the start of the regular bitcode header. 6205 VSTOffset = Record[0] - 1; 6206 break; 6207 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6208 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6209 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6210 // v2: [strtab offset, strtab size, v1] 6211 case bitc::MODULE_CODE_GLOBALVAR: 6212 case bitc::MODULE_CODE_FUNCTION: 6213 case bitc::MODULE_CODE_ALIAS: { 6214 StringRef Name; 6215 ArrayRef<uint64_t> GVRecord; 6216 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6217 if (GVRecord.size() <= 3) 6218 return error("Invalid record"); 6219 uint64_t RawLinkage = GVRecord[3]; 6220 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6221 if (!UseStrtab) { 6222 ValueIdToLinkageMap[ValueId++] = Linkage; 6223 break; 6224 } 6225 6226 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6227 break; 6228 } 6229 } 6230 } 6231 continue; 6232 } 6233 } 6234 } 6235 6236 std::vector<ValueInfo> 6237 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6238 std::vector<ValueInfo> Ret; 6239 Ret.reserve(Record.size()); 6240 for (uint64_t RefValueId : Record) 6241 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6242 return Ret; 6243 } 6244 6245 std::vector<FunctionSummary::EdgeTy> 6246 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6247 bool IsOldProfileFormat, 6248 bool HasProfile, bool HasRelBF) { 6249 std::vector<FunctionSummary::EdgeTy> Ret; 6250 Ret.reserve(Record.size()); 6251 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6252 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6253 uint64_t RelBF = 0; 6254 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6255 if (IsOldProfileFormat) { 6256 I += 1; // Skip old callsitecount field 6257 if (HasProfile) 6258 I += 1; // Skip old profilecount field 6259 } else if (HasProfile) 6260 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6261 else if (HasRelBF) 6262 RelBF = Record[++I]; 6263 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6264 } 6265 return Ret; 6266 } 6267 6268 static void 6269 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6270 WholeProgramDevirtResolution &Wpd) { 6271 uint64_t ArgNum = Record[Slot++]; 6272 WholeProgramDevirtResolution::ByArg &B = 6273 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6274 Slot += ArgNum; 6275 6276 B.TheKind = 6277 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6278 B.Info = Record[Slot++]; 6279 B.Byte = Record[Slot++]; 6280 B.Bit = Record[Slot++]; 6281 } 6282 6283 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6284 StringRef Strtab, size_t &Slot, 6285 TypeIdSummary &TypeId) { 6286 uint64_t Id = Record[Slot++]; 6287 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6288 6289 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6290 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6291 static_cast<size_t>(Record[Slot + 1])}; 6292 Slot += 2; 6293 6294 uint64_t ResByArgNum = Record[Slot++]; 6295 for (uint64_t I = 0; I != ResByArgNum; ++I) 6296 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6297 } 6298 6299 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6300 StringRef Strtab, 6301 ModuleSummaryIndex &TheIndex) { 6302 size_t Slot = 0; 6303 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6304 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6305 Slot += 2; 6306 6307 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6308 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6309 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6310 TypeId.TTRes.SizeM1 = Record[Slot++]; 6311 TypeId.TTRes.BitMask = Record[Slot++]; 6312 TypeId.TTRes.InlineBits = Record[Slot++]; 6313 6314 while (Slot < Record.size()) 6315 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6316 } 6317 6318 std::vector<FunctionSummary::ParamAccess> 6319 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6320 auto ReadRange = [&]() { 6321 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6322 BitcodeReader::decodeSignRotatedValue(Record.front())); 6323 Record = Record.drop_front(); 6324 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6325 BitcodeReader::decodeSignRotatedValue(Record.front())); 6326 Record = Record.drop_front(); 6327 ConstantRange Range{Lower, Upper}; 6328 assert(!Range.isFullSet()); 6329 assert(!Range.isUpperSignWrapped()); 6330 return Range; 6331 }; 6332 6333 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6334 while (!Record.empty()) { 6335 PendingParamAccesses.emplace_back(); 6336 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6337 ParamAccess.ParamNo = Record.front(); 6338 Record = Record.drop_front(); 6339 ParamAccess.Use = ReadRange(); 6340 ParamAccess.Calls.resize(Record.front()); 6341 Record = Record.drop_front(); 6342 for (auto &Call : ParamAccess.Calls) { 6343 Call.ParamNo = Record.front(); 6344 Record = Record.drop_front(); 6345 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6346 Record = Record.drop_front(); 6347 Call.Offsets = ReadRange(); 6348 } 6349 } 6350 return PendingParamAccesses; 6351 } 6352 6353 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6354 ArrayRef<uint64_t> Record, size_t &Slot, 6355 TypeIdCompatibleVtableInfo &TypeId) { 6356 uint64_t Offset = Record[Slot++]; 6357 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6358 TypeId.push_back({Offset, Callee}); 6359 } 6360 6361 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6362 ArrayRef<uint64_t> Record) { 6363 size_t Slot = 0; 6364 TypeIdCompatibleVtableInfo &TypeId = 6365 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6366 {Strtab.data() + Record[Slot], 6367 static_cast<size_t>(Record[Slot + 1])}); 6368 Slot += 2; 6369 6370 while (Slot < Record.size()) 6371 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6372 } 6373 6374 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6375 unsigned WOCnt) { 6376 // Readonly and writeonly refs are in the end of the refs list. 6377 assert(ROCnt + WOCnt <= Refs.size()); 6378 unsigned FirstWORef = Refs.size() - WOCnt; 6379 unsigned RefNo = FirstWORef - ROCnt; 6380 for (; RefNo < FirstWORef; ++RefNo) 6381 Refs[RefNo].setReadOnly(); 6382 for (; RefNo < Refs.size(); ++RefNo) 6383 Refs[RefNo].setWriteOnly(); 6384 } 6385 6386 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6387 // objects in the index. 6388 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6389 if (Error Err = Stream.EnterSubBlock(ID)) 6390 return Err; 6391 SmallVector<uint64_t, 64> Record; 6392 6393 // Parse version 6394 { 6395 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6396 if (!MaybeEntry) 6397 return MaybeEntry.takeError(); 6398 BitstreamEntry Entry = MaybeEntry.get(); 6399 6400 if (Entry.Kind != BitstreamEntry::Record) 6401 return error("Invalid Summary Block: record for version expected"); 6402 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6403 if (!MaybeRecord) 6404 return MaybeRecord.takeError(); 6405 if (MaybeRecord.get() != bitc::FS_VERSION) 6406 return error("Invalid Summary Block: version expected"); 6407 } 6408 const uint64_t Version = Record[0]; 6409 const bool IsOldProfileFormat = Version == 1; 6410 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6411 return error("Invalid summary version " + Twine(Version) + 6412 ". Version should be in the range [1-" + 6413 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6414 "]."); 6415 Record.clear(); 6416 6417 // Keep around the last seen summary to be used when we see an optional 6418 // "OriginalName" attachement. 6419 GlobalValueSummary *LastSeenSummary = nullptr; 6420 GlobalValue::GUID LastSeenGUID = 0; 6421 6422 // We can expect to see any number of type ID information records before 6423 // each function summary records; these variables store the information 6424 // collected so far so that it can be used to create the summary object. 6425 std::vector<GlobalValue::GUID> PendingTypeTests; 6426 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6427 PendingTypeCheckedLoadVCalls; 6428 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6429 PendingTypeCheckedLoadConstVCalls; 6430 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6431 6432 while (true) { 6433 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6434 if (!MaybeEntry) 6435 return MaybeEntry.takeError(); 6436 BitstreamEntry Entry = MaybeEntry.get(); 6437 6438 switch (Entry.Kind) { 6439 case BitstreamEntry::SubBlock: // Handled for us already. 6440 case BitstreamEntry::Error: 6441 return error("Malformed block"); 6442 case BitstreamEntry::EndBlock: 6443 return Error::success(); 6444 case BitstreamEntry::Record: 6445 // The interesting case. 6446 break; 6447 } 6448 6449 // Read a record. The record format depends on whether this 6450 // is a per-module index or a combined index file. In the per-module 6451 // case the records contain the associated value's ID for correlation 6452 // with VST entries. In the combined index the correlation is done 6453 // via the bitcode offset of the summary records (which were saved 6454 // in the combined index VST entries). The records also contain 6455 // information used for ThinLTO renaming and importing. 6456 Record.clear(); 6457 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6458 if (!MaybeBitCode) 6459 return MaybeBitCode.takeError(); 6460 switch (unsigned BitCode = MaybeBitCode.get()) { 6461 default: // Default behavior: ignore. 6462 break; 6463 case bitc::FS_FLAGS: { // [flags] 6464 TheIndex.setFlags(Record[0]); 6465 break; 6466 } 6467 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6468 uint64_t ValueID = Record[0]; 6469 GlobalValue::GUID RefGUID = Record[1]; 6470 ValueIdToValueInfoMap[ValueID] = 6471 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6472 break; 6473 } 6474 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6475 // numrefs x valueid, n x (valueid)] 6476 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6477 // numrefs x valueid, 6478 // n x (valueid, hotness)] 6479 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6480 // numrefs x valueid, 6481 // n x (valueid, relblockfreq)] 6482 case bitc::FS_PERMODULE: 6483 case bitc::FS_PERMODULE_RELBF: 6484 case bitc::FS_PERMODULE_PROFILE: { 6485 unsigned ValueID = Record[0]; 6486 uint64_t RawFlags = Record[1]; 6487 unsigned InstCount = Record[2]; 6488 uint64_t RawFunFlags = 0; 6489 unsigned NumRefs = Record[3]; 6490 unsigned NumRORefs = 0, NumWORefs = 0; 6491 int RefListStartIndex = 4; 6492 if (Version >= 4) { 6493 RawFunFlags = Record[3]; 6494 NumRefs = Record[4]; 6495 RefListStartIndex = 5; 6496 if (Version >= 5) { 6497 NumRORefs = Record[5]; 6498 RefListStartIndex = 6; 6499 if (Version >= 7) { 6500 NumWORefs = Record[6]; 6501 RefListStartIndex = 7; 6502 } 6503 } 6504 } 6505 6506 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6507 // The module path string ref set in the summary must be owned by the 6508 // index's module string table. Since we don't have a module path 6509 // string table section in the per-module index, we create a single 6510 // module path string table entry with an empty (0) ID to take 6511 // ownership. 6512 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6513 assert(Record.size() >= RefListStartIndex + NumRefs && 6514 "Record size inconsistent with number of references"); 6515 std::vector<ValueInfo> Refs = makeRefList( 6516 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6517 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6518 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6519 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6520 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6521 IsOldProfileFormat, HasProfile, HasRelBF); 6522 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6523 auto FS = std::make_unique<FunctionSummary>( 6524 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6525 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6526 std::move(PendingTypeTestAssumeVCalls), 6527 std::move(PendingTypeCheckedLoadVCalls), 6528 std::move(PendingTypeTestAssumeConstVCalls), 6529 std::move(PendingTypeCheckedLoadConstVCalls), 6530 std::move(PendingParamAccesses)); 6531 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6532 FS->setModulePath(getThisModule()->first()); 6533 FS->setOriginalName(VIAndOriginalGUID.second); 6534 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6535 break; 6536 } 6537 // FS_ALIAS: [valueid, flags, valueid] 6538 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6539 // they expect all aliasee summaries to be available. 6540 case bitc::FS_ALIAS: { 6541 unsigned ValueID = Record[0]; 6542 uint64_t RawFlags = Record[1]; 6543 unsigned AliaseeID = Record[2]; 6544 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6545 auto AS = std::make_unique<AliasSummary>(Flags); 6546 // The module path string ref set in the summary must be owned by the 6547 // index's module string table. Since we don't have a module path 6548 // string table section in the per-module index, we create a single 6549 // module path string table entry with an empty (0) ID to take 6550 // ownership. 6551 AS->setModulePath(getThisModule()->first()); 6552 6553 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6554 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6555 if (!AliaseeInModule) 6556 return error("Alias expects aliasee summary to be parsed"); 6557 AS->setAliasee(AliaseeVI, AliaseeInModule); 6558 6559 auto GUID = getValueInfoFromValueId(ValueID); 6560 AS->setOriginalName(GUID.second); 6561 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6562 break; 6563 } 6564 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6565 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6566 unsigned ValueID = Record[0]; 6567 uint64_t RawFlags = Record[1]; 6568 unsigned RefArrayStart = 2; 6569 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6570 /* WriteOnly */ false, 6571 /* Constant */ false, 6572 GlobalObject::VCallVisibilityPublic); 6573 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6574 if (Version >= 5) { 6575 GVF = getDecodedGVarFlags(Record[2]); 6576 RefArrayStart = 3; 6577 } 6578 std::vector<ValueInfo> Refs = 6579 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6580 auto FS = 6581 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6582 FS->setModulePath(getThisModule()->first()); 6583 auto GUID = getValueInfoFromValueId(ValueID); 6584 FS->setOriginalName(GUID.second); 6585 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6586 break; 6587 } 6588 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6589 // numrefs, numrefs x valueid, 6590 // n x (valueid, offset)] 6591 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6592 unsigned ValueID = Record[0]; 6593 uint64_t RawFlags = Record[1]; 6594 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6595 unsigned NumRefs = Record[3]; 6596 unsigned RefListStartIndex = 4; 6597 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6598 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6599 std::vector<ValueInfo> Refs = makeRefList( 6600 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6601 VTableFuncList VTableFuncs; 6602 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6603 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6604 uint64_t Offset = Record[++I]; 6605 VTableFuncs.push_back({Callee, Offset}); 6606 } 6607 auto VS = 6608 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6609 VS->setModulePath(getThisModule()->first()); 6610 VS->setVTableFuncs(VTableFuncs); 6611 auto GUID = getValueInfoFromValueId(ValueID); 6612 VS->setOriginalName(GUID.second); 6613 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6614 break; 6615 } 6616 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6617 // numrefs x valueid, n x (valueid)] 6618 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6619 // numrefs x valueid, n x (valueid, hotness)] 6620 case bitc::FS_COMBINED: 6621 case bitc::FS_COMBINED_PROFILE: { 6622 unsigned ValueID = Record[0]; 6623 uint64_t ModuleId = Record[1]; 6624 uint64_t RawFlags = Record[2]; 6625 unsigned InstCount = Record[3]; 6626 uint64_t RawFunFlags = 0; 6627 uint64_t EntryCount = 0; 6628 unsigned NumRefs = Record[4]; 6629 unsigned NumRORefs = 0, NumWORefs = 0; 6630 int RefListStartIndex = 5; 6631 6632 if (Version >= 4) { 6633 RawFunFlags = Record[4]; 6634 RefListStartIndex = 6; 6635 size_t NumRefsIndex = 5; 6636 if (Version >= 5) { 6637 unsigned NumRORefsOffset = 1; 6638 RefListStartIndex = 7; 6639 if (Version >= 6) { 6640 NumRefsIndex = 6; 6641 EntryCount = Record[5]; 6642 RefListStartIndex = 8; 6643 if (Version >= 7) { 6644 RefListStartIndex = 9; 6645 NumWORefs = Record[8]; 6646 NumRORefsOffset = 2; 6647 } 6648 } 6649 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6650 } 6651 NumRefs = Record[NumRefsIndex]; 6652 } 6653 6654 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6655 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6656 assert(Record.size() >= RefListStartIndex + NumRefs && 6657 "Record size inconsistent with number of references"); 6658 std::vector<ValueInfo> Refs = makeRefList( 6659 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6660 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6661 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6662 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6663 IsOldProfileFormat, HasProfile, false); 6664 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6665 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6666 auto FS = std::make_unique<FunctionSummary>( 6667 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6668 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6669 std::move(PendingTypeTestAssumeVCalls), 6670 std::move(PendingTypeCheckedLoadVCalls), 6671 std::move(PendingTypeTestAssumeConstVCalls), 6672 std::move(PendingTypeCheckedLoadConstVCalls), 6673 std::move(PendingParamAccesses)); 6674 LastSeenSummary = FS.get(); 6675 LastSeenGUID = VI.getGUID(); 6676 FS->setModulePath(ModuleIdMap[ModuleId]); 6677 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6678 break; 6679 } 6680 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6681 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6682 // they expect all aliasee summaries to be available. 6683 case bitc::FS_COMBINED_ALIAS: { 6684 unsigned ValueID = Record[0]; 6685 uint64_t ModuleId = Record[1]; 6686 uint64_t RawFlags = Record[2]; 6687 unsigned AliaseeValueId = Record[3]; 6688 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6689 auto AS = std::make_unique<AliasSummary>(Flags); 6690 LastSeenSummary = AS.get(); 6691 AS->setModulePath(ModuleIdMap[ModuleId]); 6692 6693 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6694 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6695 AS->setAliasee(AliaseeVI, AliaseeInModule); 6696 6697 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6698 LastSeenGUID = VI.getGUID(); 6699 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6700 break; 6701 } 6702 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6703 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6704 unsigned ValueID = Record[0]; 6705 uint64_t ModuleId = Record[1]; 6706 uint64_t RawFlags = Record[2]; 6707 unsigned RefArrayStart = 3; 6708 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6709 /* WriteOnly */ false, 6710 /* Constant */ false, 6711 GlobalObject::VCallVisibilityPublic); 6712 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6713 if (Version >= 5) { 6714 GVF = getDecodedGVarFlags(Record[3]); 6715 RefArrayStart = 4; 6716 } 6717 std::vector<ValueInfo> Refs = 6718 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6719 auto FS = 6720 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6721 LastSeenSummary = FS.get(); 6722 FS->setModulePath(ModuleIdMap[ModuleId]); 6723 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6724 LastSeenGUID = VI.getGUID(); 6725 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6726 break; 6727 } 6728 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6729 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6730 uint64_t OriginalName = Record[0]; 6731 if (!LastSeenSummary) 6732 return error("Name attachment that does not follow a combined record"); 6733 LastSeenSummary->setOriginalName(OriginalName); 6734 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6735 // Reset the LastSeenSummary 6736 LastSeenSummary = nullptr; 6737 LastSeenGUID = 0; 6738 break; 6739 } 6740 case bitc::FS_TYPE_TESTS: 6741 assert(PendingTypeTests.empty()); 6742 llvm::append_range(PendingTypeTests, Record); 6743 break; 6744 6745 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6746 assert(PendingTypeTestAssumeVCalls.empty()); 6747 for (unsigned I = 0; I != Record.size(); I += 2) 6748 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6749 break; 6750 6751 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6752 assert(PendingTypeCheckedLoadVCalls.empty()); 6753 for (unsigned I = 0; I != Record.size(); I += 2) 6754 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6755 break; 6756 6757 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6758 PendingTypeTestAssumeConstVCalls.push_back( 6759 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6760 break; 6761 6762 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6763 PendingTypeCheckedLoadConstVCalls.push_back( 6764 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6765 break; 6766 6767 case bitc::FS_CFI_FUNCTION_DEFS: { 6768 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6769 for (unsigned I = 0; I != Record.size(); I += 2) 6770 CfiFunctionDefs.insert( 6771 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6772 break; 6773 } 6774 6775 case bitc::FS_CFI_FUNCTION_DECLS: { 6776 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6777 for (unsigned I = 0; I != Record.size(); I += 2) 6778 CfiFunctionDecls.insert( 6779 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6780 break; 6781 } 6782 6783 case bitc::FS_TYPE_ID: 6784 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6785 break; 6786 6787 case bitc::FS_TYPE_ID_METADATA: 6788 parseTypeIdCompatibleVtableSummaryRecord(Record); 6789 break; 6790 6791 case bitc::FS_BLOCK_COUNT: 6792 TheIndex.addBlockCount(Record[0]); 6793 break; 6794 6795 case bitc::FS_PARAM_ACCESS: { 6796 PendingParamAccesses = parseParamAccesses(Record); 6797 break; 6798 } 6799 } 6800 } 6801 llvm_unreachable("Exit infinite loop"); 6802 } 6803 6804 // Parse the module string table block into the Index. 6805 // This populates the ModulePathStringTable map in the index. 6806 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6807 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6808 return Err; 6809 6810 SmallVector<uint64_t, 64> Record; 6811 6812 SmallString<128> ModulePath; 6813 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6814 6815 while (true) { 6816 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6817 if (!MaybeEntry) 6818 return MaybeEntry.takeError(); 6819 BitstreamEntry Entry = MaybeEntry.get(); 6820 6821 switch (Entry.Kind) { 6822 case BitstreamEntry::SubBlock: // Handled for us already. 6823 case BitstreamEntry::Error: 6824 return error("Malformed block"); 6825 case BitstreamEntry::EndBlock: 6826 return Error::success(); 6827 case BitstreamEntry::Record: 6828 // The interesting case. 6829 break; 6830 } 6831 6832 Record.clear(); 6833 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6834 if (!MaybeRecord) 6835 return MaybeRecord.takeError(); 6836 switch (MaybeRecord.get()) { 6837 default: // Default behavior: ignore. 6838 break; 6839 case bitc::MST_CODE_ENTRY: { 6840 // MST_ENTRY: [modid, namechar x N] 6841 uint64_t ModuleId = Record[0]; 6842 6843 if (convertToString(Record, 1, ModulePath)) 6844 return error("Invalid record"); 6845 6846 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6847 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6848 6849 ModulePath.clear(); 6850 break; 6851 } 6852 /// MST_CODE_HASH: [5*i32] 6853 case bitc::MST_CODE_HASH: { 6854 if (Record.size() != 5) 6855 return error("Invalid hash length " + Twine(Record.size()).str()); 6856 if (!LastSeenModule) 6857 return error("Invalid hash that does not follow a module path"); 6858 int Pos = 0; 6859 for (auto &Val : Record) { 6860 assert(!(Val >> 32) && "Unexpected high bits set"); 6861 LastSeenModule->second.second[Pos++] = Val; 6862 } 6863 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6864 LastSeenModule = nullptr; 6865 break; 6866 } 6867 } 6868 } 6869 llvm_unreachable("Exit infinite loop"); 6870 } 6871 6872 namespace { 6873 6874 // FIXME: This class is only here to support the transition to llvm::Error. It 6875 // will be removed once this transition is complete. Clients should prefer to 6876 // deal with the Error value directly, rather than converting to error_code. 6877 class BitcodeErrorCategoryType : public std::error_category { 6878 const char *name() const noexcept override { 6879 return "llvm.bitcode"; 6880 } 6881 6882 std::string message(int IE) const override { 6883 BitcodeError E = static_cast<BitcodeError>(IE); 6884 switch (E) { 6885 case BitcodeError::CorruptedBitcode: 6886 return "Corrupted bitcode"; 6887 } 6888 llvm_unreachable("Unknown error type!"); 6889 } 6890 }; 6891 6892 } // end anonymous namespace 6893 6894 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6895 6896 const std::error_category &llvm::BitcodeErrorCategory() { 6897 return *ErrorCategory; 6898 } 6899 6900 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6901 unsigned Block, unsigned RecordID) { 6902 if (Error Err = Stream.EnterSubBlock(Block)) 6903 return std::move(Err); 6904 6905 StringRef Strtab; 6906 while (true) { 6907 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6908 if (!MaybeEntry) 6909 return MaybeEntry.takeError(); 6910 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6911 6912 switch (Entry.Kind) { 6913 case BitstreamEntry::EndBlock: 6914 return Strtab; 6915 6916 case BitstreamEntry::Error: 6917 return error("Malformed block"); 6918 6919 case BitstreamEntry::SubBlock: 6920 if (Error Err = Stream.SkipBlock()) 6921 return std::move(Err); 6922 break; 6923 6924 case BitstreamEntry::Record: 6925 StringRef Blob; 6926 SmallVector<uint64_t, 1> Record; 6927 Expected<unsigned> MaybeRecord = 6928 Stream.readRecord(Entry.ID, Record, &Blob); 6929 if (!MaybeRecord) 6930 return MaybeRecord.takeError(); 6931 if (MaybeRecord.get() == RecordID) 6932 Strtab = Blob; 6933 break; 6934 } 6935 } 6936 } 6937 6938 //===----------------------------------------------------------------------===// 6939 // External interface 6940 //===----------------------------------------------------------------------===// 6941 6942 Expected<std::vector<BitcodeModule>> 6943 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6944 auto FOrErr = getBitcodeFileContents(Buffer); 6945 if (!FOrErr) 6946 return FOrErr.takeError(); 6947 return std::move(FOrErr->Mods); 6948 } 6949 6950 Expected<BitcodeFileContents> 6951 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6952 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6953 if (!StreamOrErr) 6954 return StreamOrErr.takeError(); 6955 BitstreamCursor &Stream = *StreamOrErr; 6956 6957 BitcodeFileContents F; 6958 while (true) { 6959 uint64_t BCBegin = Stream.getCurrentByteNo(); 6960 6961 // We may be consuming bitcode from a client that leaves garbage at the end 6962 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6963 // the end that there cannot possibly be another module, stop looking. 6964 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6965 return F; 6966 6967 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6968 if (!MaybeEntry) 6969 return MaybeEntry.takeError(); 6970 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6971 6972 switch (Entry.Kind) { 6973 case BitstreamEntry::EndBlock: 6974 case BitstreamEntry::Error: 6975 return error("Malformed block"); 6976 6977 case BitstreamEntry::SubBlock: { 6978 uint64_t IdentificationBit = -1ull; 6979 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6980 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6981 if (Error Err = Stream.SkipBlock()) 6982 return std::move(Err); 6983 6984 { 6985 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6986 if (!MaybeEntry) 6987 return MaybeEntry.takeError(); 6988 Entry = MaybeEntry.get(); 6989 } 6990 6991 if (Entry.Kind != BitstreamEntry::SubBlock || 6992 Entry.ID != bitc::MODULE_BLOCK_ID) 6993 return error("Malformed block"); 6994 } 6995 6996 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6997 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6998 if (Error Err = Stream.SkipBlock()) 6999 return std::move(Err); 7000 7001 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7002 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7003 Buffer.getBufferIdentifier(), IdentificationBit, 7004 ModuleBit}); 7005 continue; 7006 } 7007 7008 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7009 Expected<StringRef> Strtab = 7010 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7011 if (!Strtab) 7012 return Strtab.takeError(); 7013 // This string table is used by every preceding bitcode module that does 7014 // not have its own string table. A bitcode file may have multiple 7015 // string tables if it was created by binary concatenation, for example 7016 // with "llvm-cat -b". 7017 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7018 if (!I.Strtab.empty()) 7019 break; 7020 I.Strtab = *Strtab; 7021 } 7022 // Similarly, the string table is used by every preceding symbol table; 7023 // normally there will be just one unless the bitcode file was created 7024 // by binary concatenation. 7025 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7026 F.StrtabForSymtab = *Strtab; 7027 continue; 7028 } 7029 7030 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7031 Expected<StringRef> SymtabOrErr = 7032 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7033 if (!SymtabOrErr) 7034 return SymtabOrErr.takeError(); 7035 7036 // We can expect the bitcode file to have multiple symbol tables if it 7037 // was created by binary concatenation. In that case we silently 7038 // ignore any subsequent symbol tables, which is fine because this is a 7039 // low level function. The client is expected to notice that the number 7040 // of modules in the symbol table does not match the number of modules 7041 // in the input file and regenerate the symbol table. 7042 if (F.Symtab.empty()) 7043 F.Symtab = *SymtabOrErr; 7044 continue; 7045 } 7046 7047 if (Error Err = Stream.SkipBlock()) 7048 return std::move(Err); 7049 continue; 7050 } 7051 case BitstreamEntry::Record: 7052 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7053 return std::move(E); 7054 continue; 7055 } 7056 } 7057 } 7058 7059 /// Get a lazy one-at-time loading module from bitcode. 7060 /// 7061 /// This isn't always used in a lazy context. In particular, it's also used by 7062 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7063 /// in forward-referenced functions from block address references. 7064 /// 7065 /// \param[in] MaterializeAll Set to \c true if we should materialize 7066 /// everything. 7067 Expected<std::unique_ptr<Module>> 7068 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7069 bool ShouldLazyLoadMetadata, bool IsImporting, 7070 DataLayoutCallbackTy DataLayoutCallback) { 7071 BitstreamCursor Stream(Buffer); 7072 7073 std::string ProducerIdentification; 7074 if (IdentificationBit != -1ull) { 7075 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7076 return std::move(JumpFailed); 7077 if (Error E = 7078 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7079 return std::move(E); 7080 } 7081 7082 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7083 return std::move(JumpFailed); 7084 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7085 Context); 7086 7087 std::unique_ptr<Module> M = 7088 std::make_unique<Module>(ModuleIdentifier, Context); 7089 M->setMaterializer(R); 7090 7091 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7092 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7093 IsImporting, DataLayoutCallback)) 7094 return std::move(Err); 7095 7096 if (MaterializeAll) { 7097 // Read in the entire module, and destroy the BitcodeReader. 7098 if (Error Err = M->materializeAll()) 7099 return std::move(Err); 7100 } else { 7101 // Resolve forward references from blockaddresses. 7102 if (Error Err = R->materializeForwardReferencedFunctions()) 7103 return std::move(Err); 7104 } 7105 return std::move(M); 7106 } 7107 7108 Expected<std::unique_ptr<Module>> 7109 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7110 bool IsImporting) { 7111 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7112 [](StringRef) { return None; }); 7113 } 7114 7115 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7116 // We don't use ModuleIdentifier here because the client may need to control the 7117 // module path used in the combined summary (e.g. when reading summaries for 7118 // regular LTO modules). 7119 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7120 StringRef ModulePath, uint64_t ModuleId) { 7121 BitstreamCursor Stream(Buffer); 7122 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7123 return JumpFailed; 7124 7125 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7126 ModulePath, ModuleId); 7127 return R.parseModule(); 7128 } 7129 7130 // Parse the specified bitcode buffer, returning the function info index. 7131 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7132 BitstreamCursor Stream(Buffer); 7133 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7134 return std::move(JumpFailed); 7135 7136 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7137 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7138 ModuleIdentifier, 0); 7139 7140 if (Error Err = R.parseModule()) 7141 return std::move(Err); 7142 7143 return std::move(Index); 7144 } 7145 7146 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7147 unsigned ID) { 7148 if (Error Err = Stream.EnterSubBlock(ID)) 7149 return std::move(Err); 7150 SmallVector<uint64_t, 64> Record; 7151 7152 while (true) { 7153 BitstreamEntry Entry; 7154 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7155 return std::move(E); 7156 7157 switch (Entry.Kind) { 7158 case BitstreamEntry::SubBlock: // Handled for us already. 7159 case BitstreamEntry::Error: 7160 return error("Malformed block"); 7161 case BitstreamEntry::EndBlock: 7162 // If no flags record found, conservatively return true to mimic 7163 // behavior before this flag was added. 7164 return true; 7165 case BitstreamEntry::Record: 7166 // The interesting case. 7167 break; 7168 } 7169 7170 // Look for the FS_FLAGS record. 7171 Record.clear(); 7172 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7173 if (!MaybeBitCode) 7174 return MaybeBitCode.takeError(); 7175 switch (MaybeBitCode.get()) { 7176 default: // Default behavior: ignore. 7177 break; 7178 case bitc::FS_FLAGS: { // [flags] 7179 uint64_t Flags = Record[0]; 7180 // Scan flags. 7181 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7182 7183 return Flags & 0x8; 7184 } 7185 } 7186 } 7187 llvm_unreachable("Exit infinite loop"); 7188 } 7189 7190 // Check if the given bitcode buffer contains a global value summary block. 7191 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7192 BitstreamCursor Stream(Buffer); 7193 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7194 return std::move(JumpFailed); 7195 7196 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7197 return std::move(Err); 7198 7199 while (true) { 7200 llvm::BitstreamEntry Entry; 7201 if (Error E = Stream.advance().moveInto(Entry)) 7202 return std::move(E); 7203 7204 switch (Entry.Kind) { 7205 case BitstreamEntry::Error: 7206 return error("Malformed block"); 7207 case BitstreamEntry::EndBlock: 7208 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7209 /*EnableSplitLTOUnit=*/false}; 7210 7211 case BitstreamEntry::SubBlock: 7212 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7213 Expected<bool> EnableSplitLTOUnit = 7214 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7215 if (!EnableSplitLTOUnit) 7216 return EnableSplitLTOUnit.takeError(); 7217 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7218 *EnableSplitLTOUnit}; 7219 } 7220 7221 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7222 Expected<bool> EnableSplitLTOUnit = 7223 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7224 if (!EnableSplitLTOUnit) 7225 return EnableSplitLTOUnit.takeError(); 7226 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7227 *EnableSplitLTOUnit}; 7228 } 7229 7230 // Ignore other sub-blocks. 7231 if (Error Err = Stream.SkipBlock()) 7232 return std::move(Err); 7233 continue; 7234 7235 case BitstreamEntry::Record: 7236 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7237 continue; 7238 else 7239 return StreamFailed.takeError(); 7240 } 7241 } 7242 } 7243 7244 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7245 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7246 if (!MsOrErr) 7247 return MsOrErr.takeError(); 7248 7249 if (MsOrErr->size() != 1) 7250 return error("Expected a single module"); 7251 7252 return (*MsOrErr)[0]; 7253 } 7254 7255 Expected<std::unique_ptr<Module>> 7256 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7257 bool ShouldLazyLoadMetadata, bool IsImporting) { 7258 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7259 if (!BM) 7260 return BM.takeError(); 7261 7262 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7263 } 7264 7265 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7266 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7267 bool ShouldLazyLoadMetadata, bool IsImporting) { 7268 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7269 IsImporting); 7270 if (MOrErr) 7271 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7272 return MOrErr; 7273 } 7274 7275 Expected<std::unique_ptr<Module>> 7276 BitcodeModule::parseModule(LLVMContext &Context, 7277 DataLayoutCallbackTy DataLayoutCallback) { 7278 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7279 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7280 // written. We must defer until the Module has been fully materialized. 7281 } 7282 7283 Expected<std::unique_ptr<Module>> 7284 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7285 DataLayoutCallbackTy DataLayoutCallback) { 7286 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7287 if (!BM) 7288 return BM.takeError(); 7289 7290 return BM->parseModule(Context, DataLayoutCallback); 7291 } 7292 7293 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7294 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7295 if (!StreamOrErr) 7296 return StreamOrErr.takeError(); 7297 7298 return readTriple(*StreamOrErr); 7299 } 7300 7301 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7302 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7303 if (!StreamOrErr) 7304 return StreamOrErr.takeError(); 7305 7306 return hasObjCCategory(*StreamOrErr); 7307 } 7308 7309 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7310 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7311 if (!StreamOrErr) 7312 return StreamOrErr.takeError(); 7313 7314 return readIdentificationCode(*StreamOrErr); 7315 } 7316 7317 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7318 ModuleSummaryIndex &CombinedIndex, 7319 uint64_t ModuleId) { 7320 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7321 if (!BM) 7322 return BM.takeError(); 7323 7324 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7325 } 7326 7327 Expected<std::unique_ptr<ModuleSummaryIndex>> 7328 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7329 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7330 if (!BM) 7331 return BM.takeError(); 7332 7333 return BM->getSummary(); 7334 } 7335 7336 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7337 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7338 if (!BM) 7339 return BM.takeError(); 7340 7341 return BM->getLTOInfo(); 7342 } 7343 7344 Expected<std::unique_ptr<ModuleSummaryIndex>> 7345 llvm::getModuleSummaryIndexForFile(StringRef Path, 7346 bool IgnoreEmptyThinLTOIndexFile) { 7347 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7348 MemoryBuffer::getFileOrSTDIN(Path); 7349 if (!FileOrErr) 7350 return errorCodeToError(FileOrErr.getError()); 7351 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7352 return nullptr; 7353 return getModuleSummaryIndex(**FileOrErr); 7354 } 7355