1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 std::vector<TrackingMDRef> MetadataPtrs; 111 112 LLVMContext &Context; 113 public: 114 BitcodeReaderMetadataList(LLVMContext &C) 115 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 116 117 // vector compatibility methods 118 unsigned size() const { return MetadataPtrs.size(); } 119 void resize(unsigned N) { MetadataPtrs.resize(N); } 120 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 121 void clear() { MetadataPtrs.clear(); } 122 Metadata *back() const { return MetadataPtrs.back(); } 123 void pop_back() { MetadataPtrs.pop_back(); } 124 bool empty() const { return MetadataPtrs.empty(); } 125 126 Metadata *operator[](unsigned i) const { 127 assert(i < MetadataPtrs.size()); 128 return MetadataPtrs[i]; 129 } 130 131 void shrinkTo(unsigned N) { 132 assert(N <= size() && "Invalid shrinkTo request!"); 133 assert(!AnyFwdRefs && "Unexpected forward refs"); 134 MetadataPtrs.resize(N); 135 } 136 137 Metadata *getMetadataFwdRef(unsigned Idx); 138 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 139 void assignValue(Metadata *MD, unsigned Idx); 140 void tryToResolveCycles(); 141 bool hasFwdRefs() const { return AnyFwdRefs; } 142 }; 143 144 class BitcodeReader : public GVMaterializer { 145 LLVMContext &Context; 146 Module *TheModule = nullptr; 147 std::unique_ptr<MemoryBuffer> Buffer; 148 std::unique_ptr<BitstreamReader> StreamFile; 149 BitstreamCursor Stream; 150 // Next offset to start scanning for lazy parsing of function bodies. 151 uint64_t NextUnreadBit = 0; 152 // Last function offset found in the VST. 153 uint64_t LastFunctionBlockBit = 0; 154 bool SeenValueSymbolTable = false; 155 uint64_t VSTOffset = 0; 156 // Contains an arbitrary and optional string identifying the bitcode producer 157 std::string ProducerIdentification; 158 159 std::vector<Type*> TypeList; 160 BitcodeReaderValueList ValueList; 161 BitcodeReaderMetadataList MetadataList; 162 std::vector<Comdat *> ComdatList; 163 SmallVector<Instruction *, 64> InstructionList; 164 165 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 166 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 168 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 169 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 170 171 SmallVector<Instruction*, 64> InstsWithTBAATag; 172 173 bool HasSeenOldLoopTags = false; 174 175 /// The set of attributes by index. Index zero in the file is for null, and 176 /// is thus not represented here. As such all indices are off by one. 177 std::vector<AttributeSet> MAttributes; 178 179 /// The set of attribute groups. 180 std::map<unsigned, AttributeSet> MAttributeGroups; 181 182 /// While parsing a function body, this is a list of the basic blocks for the 183 /// function. 184 std::vector<BasicBlock*> FunctionBBs; 185 186 // When reading the module header, this list is populated with functions that 187 // have bodies later in the file. 188 std::vector<Function*> FunctionsWithBodies; 189 190 // When intrinsic functions are encountered which require upgrading they are 191 // stored here with their replacement function. 192 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 193 UpgradedIntrinsicMap UpgradedIntrinsics; 194 195 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 196 DenseMap<unsigned, unsigned> MDKindMap; 197 198 // Several operations happen after the module header has been read, but 199 // before function bodies are processed. This keeps track of whether 200 // we've done this yet. 201 bool SeenFirstFunctionBody = false; 202 203 /// When function bodies are initially scanned, this map contains info about 204 /// where to find deferred function body in the stream. 205 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 206 207 /// When Metadata block is initially scanned when parsing the module, we may 208 /// choose to defer parsing of the metadata. This vector contains info about 209 /// which Metadata blocks are deferred. 210 std::vector<uint64_t> DeferredMetadataInfo; 211 212 /// These are basic blocks forward-referenced by block addresses. They are 213 /// inserted lazily into functions when they're loaded. The basic block ID is 214 /// its index into the vector. 215 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 216 std::deque<Function *> BasicBlockFwdRefQueue; 217 218 /// Indicates that we are using a new encoding for instruction operands where 219 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 220 /// instruction number, for a more compact encoding. Some instruction 221 /// operands are not relative to the instruction ID: basic block numbers, and 222 /// types. Once the old style function blocks have been phased out, we would 223 /// not need this flag. 224 bool UseRelativeIDs = false; 225 226 /// True if all functions will be materialized, negating the need to process 227 /// (e.g.) blockaddress forward references. 228 bool WillMaterializeAllForwardRefs = false; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 /// Functions that need to be matched with subprograms when upgrading old 236 /// metadata. 237 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 238 239 std::vector<std::string> BundleTags; 240 241 public: 242 std::error_code error(BitcodeError E, const Twine &Message); 243 std::error_code error(BitcodeError E); 244 std::error_code error(const Twine &Message); 245 246 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 247 BitcodeReader(LLVMContext &Context); 248 ~BitcodeReader() override { freeState(); } 249 250 std::error_code materializeForwardReferencedFunctions(); 251 252 void freeState(); 253 254 void releaseBuffer(); 255 256 std::error_code materialize(GlobalValue *GV) override; 257 std::error_code materializeModule() override; 258 std::vector<StructType *> getIdentifiedStructTypes() const override; 259 260 /// \brief Main interface to parsing a bitcode buffer. 261 /// \returns true if an error occurred. 262 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 263 Module *M, 264 bool ShouldLazyLoadMetadata = false); 265 266 /// \brief Cheap mechanism to just extract module triple 267 /// \returns true if an error occurred. 268 ErrorOr<std::string> parseTriple(); 269 270 /// Cheap mechanism to just extract the identification block out of bitcode. 271 ErrorOr<std::string> parseIdentificationBlock(); 272 273 static uint64_t decodeSignRotatedValue(uint64_t V); 274 275 /// Materialize any deferred Metadata block. 276 std::error_code materializeMetadata() override; 277 278 void setStripDebugInfo() override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MetadataList.getMetadataFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndIndirectSymbolInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 401 StringRef Blob, 402 unsigned &NextMetadataNo); 403 std::error_code parseMetadataKinds(); 404 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 405 std::error_code parseMetadataAttachment(Function &F); 406 ErrorOr<std::string> parseModuleTriple(); 407 std::error_code parseUseLists(); 408 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code initStreamFromBuffer(); 410 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 411 std::error_code findFunctionInStream( 412 Function *F, 413 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 414 }; 415 416 /// Class to manage reading and parsing function summary index bitcode 417 /// files/sections. 418 class ModuleSummaryIndexBitcodeReader { 419 DiagnosticHandlerFunction DiagnosticHandler; 420 421 /// Eventually points to the module index built during parsing. 422 ModuleSummaryIndex *TheIndex = nullptr; 423 424 std::unique_ptr<MemoryBuffer> Buffer; 425 std::unique_ptr<BitstreamReader> StreamFile; 426 BitstreamCursor Stream; 427 428 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 429 /// 430 /// If false, the summary section is fully parsed into the index during 431 /// the initial parse. Otherwise, if true, the caller is expected to 432 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 433 /// section is thus parsed lazily. 434 bool IsLazy = false; 435 436 /// Used to indicate whether caller only wants to check for the presence 437 /// of the global value summary bitcode section. All blocks are skipped, 438 /// but the SeenGlobalValSummary boolean is set. 439 bool CheckGlobalValSummaryPresenceOnly = false; 440 441 /// Indicates whether we have encountered a global value summary section 442 /// yet during parsing, used when checking if file contains global value 443 /// summary section. 444 bool SeenGlobalValSummary = false; 445 446 /// Indicates whether we have already parsed the VST, used for error checking. 447 bool SeenValueSymbolTable = false; 448 449 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 450 /// Used to enable on-demand parsing of the VST. 451 uint64_t VSTOffset = 0; 452 453 // Map to save ValueId to GUID association that was recorded in the 454 // ValueSymbolTable. It is used after the VST is parsed to convert 455 // call graph edges read from the function summary from referencing 456 // callees by their ValueId to using the GUID instead, which is how 457 // they are recorded in the summary index being built. 458 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 459 460 /// Map to save the association between summary offset in the VST to the 461 /// GlobalValueInfo object created when parsing it. Used to access the 462 /// info object when parsing the summary section. 463 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 464 465 /// Map populated during module path string table parsing, from the 466 /// module ID to a string reference owned by the index's module 467 /// path string table, used to correlate with combined index 468 /// summary records. 469 DenseMap<uint64_t, StringRef> ModuleIdMap; 470 471 /// Original source file name recorded in a bitcode record. 472 std::string SourceFileName; 473 474 public: 475 std::error_code error(BitcodeError E, const Twine &Message); 476 std::error_code error(BitcodeError E); 477 std::error_code error(const Twine &Message); 478 479 ModuleSummaryIndexBitcodeReader( 480 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 481 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 482 ModuleSummaryIndexBitcodeReader( 483 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 484 bool CheckGlobalValSummaryPresenceOnly = false); 485 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 486 487 void freeState(); 488 489 void releaseBuffer(); 490 491 /// Check if the parser has encountered a summary section. 492 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 493 494 /// \brief Main interface to parsing a bitcode buffer. 495 /// \returns true if an error occurred. 496 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 497 ModuleSummaryIndex *I); 498 499 /// \brief Interface for parsing a summary lazily. 500 std::error_code 501 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 502 ModuleSummaryIndex *I, size_t SummaryOffset); 503 504 private: 505 std::error_code parseModule(); 506 std::error_code parseValueSymbolTable( 507 uint64_t Offset, 508 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 509 std::error_code parseEntireSummary(); 510 std::error_code parseModuleStringTable(); 511 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 512 std::error_code initStreamFromBuffer(); 513 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 514 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 515 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 516 }; 517 } // end anonymous namespace 518 519 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 520 DiagnosticSeverity Severity, 521 const Twine &Msg) 522 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 523 524 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 525 526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 527 std::error_code EC, const Twine &Message) { 528 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 529 DiagnosticHandler(DI); 530 return EC; 531 } 532 533 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 534 std::error_code EC) { 535 return error(DiagnosticHandler, EC, EC.message()); 536 } 537 538 static std::error_code error(LLVMContext &Context, std::error_code EC, 539 const Twine &Message) { 540 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 541 Message); 542 } 543 544 static std::error_code error(LLVMContext &Context, std::error_code EC) { 545 return error(Context, EC, EC.message()); 546 } 547 548 static std::error_code error(LLVMContext &Context, const Twine &Message) { 549 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 550 Message); 551 } 552 553 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 554 if (!ProducerIdentification.empty()) { 555 return ::error(Context, make_error_code(E), 556 Message + " (Producer: '" + ProducerIdentification + 557 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 558 } 559 return ::error(Context, make_error_code(E), Message); 560 } 561 562 std::error_code BitcodeReader::error(const Twine &Message) { 563 if (!ProducerIdentification.empty()) { 564 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 565 Message + " (Producer: '" + ProducerIdentification + 566 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 567 } 568 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 569 Message); 570 } 571 572 std::error_code BitcodeReader::error(BitcodeError E) { 573 return ::error(Context, make_error_code(E)); 574 } 575 576 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 577 : Context(Context), Buffer(Buffer), ValueList(Context), 578 MetadataList(Context) {} 579 580 BitcodeReader::BitcodeReader(LLVMContext &Context) 581 : Context(Context), Buffer(nullptr), ValueList(Context), 582 MetadataList(Context) {} 583 584 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 585 if (WillMaterializeAllForwardRefs) 586 return std::error_code(); 587 588 // Prevent recursion. 589 WillMaterializeAllForwardRefs = true; 590 591 while (!BasicBlockFwdRefQueue.empty()) { 592 Function *F = BasicBlockFwdRefQueue.front(); 593 BasicBlockFwdRefQueue.pop_front(); 594 assert(F && "Expected valid function"); 595 if (!BasicBlockFwdRefs.count(F)) 596 // Already materialized. 597 continue; 598 599 // Check for a function that isn't materializable to prevent an infinite 600 // loop. When parsing a blockaddress stored in a global variable, there 601 // isn't a trivial way to check if a function will have a body without a 602 // linear search through FunctionsWithBodies, so just check it here. 603 if (!F->isMaterializable()) 604 return error("Never resolved function from blockaddress"); 605 606 // Try to materialize F. 607 if (std::error_code EC = materialize(F)) 608 return EC; 609 } 610 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 611 612 // Reset state. 613 WillMaterializeAllForwardRefs = false; 614 return std::error_code(); 615 } 616 617 void BitcodeReader::freeState() { 618 Buffer = nullptr; 619 std::vector<Type*>().swap(TypeList); 620 ValueList.clear(); 621 MetadataList.clear(); 622 std::vector<Comdat *>().swap(ComdatList); 623 624 std::vector<AttributeSet>().swap(MAttributes); 625 std::vector<BasicBlock*>().swap(FunctionBBs); 626 std::vector<Function*>().swap(FunctionsWithBodies); 627 DeferredFunctionInfo.clear(); 628 DeferredMetadataInfo.clear(); 629 MDKindMap.clear(); 630 631 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 632 BasicBlockFwdRefQueue.clear(); 633 } 634 635 //===----------------------------------------------------------------------===// 636 // Helper functions to implement forward reference resolution, etc. 637 //===----------------------------------------------------------------------===// 638 639 /// Convert a string from a record into an std::string, return true on failure. 640 template <typename StrTy> 641 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 642 StrTy &Result) { 643 if (Idx > Record.size()) 644 return true; 645 646 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 647 Result += (char)Record[i]; 648 return false; 649 } 650 651 static bool hasImplicitComdat(size_t Val) { 652 switch (Val) { 653 default: 654 return false; 655 case 1: // Old WeakAnyLinkage 656 case 4: // Old LinkOnceAnyLinkage 657 case 10: // Old WeakODRLinkage 658 case 11: // Old LinkOnceODRLinkage 659 return true; 660 } 661 } 662 663 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 664 switch (Val) { 665 default: // Map unknown/new linkages to external 666 case 0: 667 return GlobalValue::ExternalLinkage; 668 case 2: 669 return GlobalValue::AppendingLinkage; 670 case 3: 671 return GlobalValue::InternalLinkage; 672 case 5: 673 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 674 case 6: 675 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 676 case 7: 677 return GlobalValue::ExternalWeakLinkage; 678 case 8: 679 return GlobalValue::CommonLinkage; 680 case 9: 681 return GlobalValue::PrivateLinkage; 682 case 12: 683 return GlobalValue::AvailableExternallyLinkage; 684 case 13: 685 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 686 case 14: 687 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 688 case 15: 689 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 690 case 1: // Old value with implicit comdat. 691 case 16: 692 return GlobalValue::WeakAnyLinkage; 693 case 10: // Old value with implicit comdat. 694 case 17: 695 return GlobalValue::WeakODRLinkage; 696 case 4: // Old value with implicit comdat. 697 case 18: 698 return GlobalValue::LinkOnceAnyLinkage; 699 case 11: // Old value with implicit comdat. 700 case 19: 701 return GlobalValue::LinkOnceODRLinkage; 702 } 703 } 704 705 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 706 switch (Val) { 707 default: // Map unknown visibilities to default. 708 case 0: return GlobalValue::DefaultVisibility; 709 case 1: return GlobalValue::HiddenVisibility; 710 case 2: return GlobalValue::ProtectedVisibility; 711 } 712 } 713 714 static GlobalValue::DLLStorageClassTypes 715 getDecodedDLLStorageClass(unsigned Val) { 716 switch (Val) { 717 default: // Map unknown values to default. 718 case 0: return GlobalValue::DefaultStorageClass; 719 case 1: return GlobalValue::DLLImportStorageClass; 720 case 2: return GlobalValue::DLLExportStorageClass; 721 } 722 } 723 724 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 725 switch (Val) { 726 case 0: return GlobalVariable::NotThreadLocal; 727 default: // Map unknown non-zero value to general dynamic. 728 case 1: return GlobalVariable::GeneralDynamicTLSModel; 729 case 2: return GlobalVariable::LocalDynamicTLSModel; 730 case 3: return GlobalVariable::InitialExecTLSModel; 731 case 4: return GlobalVariable::LocalExecTLSModel; 732 } 733 } 734 735 static int getDecodedCastOpcode(unsigned Val) { 736 switch (Val) { 737 default: return -1; 738 case bitc::CAST_TRUNC : return Instruction::Trunc; 739 case bitc::CAST_ZEXT : return Instruction::ZExt; 740 case bitc::CAST_SEXT : return Instruction::SExt; 741 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 742 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 743 case bitc::CAST_UITOFP : return Instruction::UIToFP; 744 case bitc::CAST_SITOFP : return Instruction::SIToFP; 745 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 746 case bitc::CAST_FPEXT : return Instruction::FPExt; 747 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 748 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 749 case bitc::CAST_BITCAST : return Instruction::BitCast; 750 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 751 } 752 } 753 754 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 755 bool IsFP = Ty->isFPOrFPVectorTy(); 756 // BinOps are only valid for int/fp or vector of int/fp types 757 if (!IsFP && !Ty->isIntOrIntVectorTy()) 758 return -1; 759 760 switch (Val) { 761 default: 762 return -1; 763 case bitc::BINOP_ADD: 764 return IsFP ? Instruction::FAdd : Instruction::Add; 765 case bitc::BINOP_SUB: 766 return IsFP ? Instruction::FSub : Instruction::Sub; 767 case bitc::BINOP_MUL: 768 return IsFP ? Instruction::FMul : Instruction::Mul; 769 case bitc::BINOP_UDIV: 770 return IsFP ? -1 : Instruction::UDiv; 771 case bitc::BINOP_SDIV: 772 return IsFP ? Instruction::FDiv : Instruction::SDiv; 773 case bitc::BINOP_UREM: 774 return IsFP ? -1 : Instruction::URem; 775 case bitc::BINOP_SREM: 776 return IsFP ? Instruction::FRem : Instruction::SRem; 777 case bitc::BINOP_SHL: 778 return IsFP ? -1 : Instruction::Shl; 779 case bitc::BINOP_LSHR: 780 return IsFP ? -1 : Instruction::LShr; 781 case bitc::BINOP_ASHR: 782 return IsFP ? -1 : Instruction::AShr; 783 case bitc::BINOP_AND: 784 return IsFP ? -1 : Instruction::And; 785 case bitc::BINOP_OR: 786 return IsFP ? -1 : Instruction::Or; 787 case bitc::BINOP_XOR: 788 return IsFP ? -1 : Instruction::Xor; 789 } 790 } 791 792 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 793 switch (Val) { 794 default: return AtomicRMWInst::BAD_BINOP; 795 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 796 case bitc::RMW_ADD: return AtomicRMWInst::Add; 797 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 798 case bitc::RMW_AND: return AtomicRMWInst::And; 799 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 800 case bitc::RMW_OR: return AtomicRMWInst::Or; 801 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 802 case bitc::RMW_MAX: return AtomicRMWInst::Max; 803 case bitc::RMW_MIN: return AtomicRMWInst::Min; 804 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 805 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 806 } 807 } 808 809 static AtomicOrdering getDecodedOrdering(unsigned Val) { 810 switch (Val) { 811 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 812 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 813 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 814 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 815 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 816 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 817 default: // Map unknown orderings to sequentially-consistent. 818 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 819 } 820 } 821 822 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 823 switch (Val) { 824 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 825 default: // Map unknown scopes to cross-thread. 826 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 827 } 828 } 829 830 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown selection kinds to any. 833 case bitc::COMDAT_SELECTION_KIND_ANY: 834 return Comdat::Any; 835 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 836 return Comdat::ExactMatch; 837 case bitc::COMDAT_SELECTION_KIND_LARGEST: 838 return Comdat::Largest; 839 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 840 return Comdat::NoDuplicates; 841 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 842 return Comdat::SameSize; 843 } 844 } 845 846 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 847 FastMathFlags FMF; 848 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 849 FMF.setUnsafeAlgebra(); 850 if (0 != (Val & FastMathFlags::NoNaNs)) 851 FMF.setNoNaNs(); 852 if (0 != (Val & FastMathFlags::NoInfs)) 853 FMF.setNoInfs(); 854 if (0 != (Val & FastMathFlags::NoSignedZeros)) 855 FMF.setNoSignedZeros(); 856 if (0 != (Val & FastMathFlags::AllowReciprocal)) 857 FMF.setAllowReciprocal(); 858 return FMF; 859 } 860 861 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 862 switch (Val) { 863 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 864 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 865 } 866 } 867 868 namespace llvm { 869 namespace { 870 /// \brief A class for maintaining the slot number definition 871 /// as a placeholder for the actual definition for forward constants defs. 872 class ConstantPlaceHolder : public ConstantExpr { 873 void operator=(const ConstantPlaceHolder &) = delete; 874 875 public: 876 // allocate space for exactly one operand 877 void *operator new(size_t s) { return User::operator new(s, 1); } 878 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 879 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 880 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 881 } 882 883 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 884 static bool classof(const Value *V) { 885 return isa<ConstantExpr>(V) && 886 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 887 } 888 889 /// Provide fast operand accessors 890 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 891 }; 892 } // end anonymous namespace 893 894 // FIXME: can we inherit this from ConstantExpr? 895 template <> 896 struct OperandTraits<ConstantPlaceHolder> : 897 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 898 }; 899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 900 } // end namespace llvm 901 902 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 903 if (Idx == size()) { 904 push_back(V); 905 return; 906 } 907 908 if (Idx >= size()) 909 resize(Idx+1); 910 911 WeakVH &OldV = ValuePtrs[Idx]; 912 if (!OldV) { 913 OldV = V; 914 return; 915 } 916 917 // Handle constants and non-constants (e.g. instrs) differently for 918 // efficiency. 919 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 920 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 921 OldV = V; 922 } else { 923 // If there was a forward reference to this value, replace it. 924 Value *PrevVal = OldV; 925 OldV->replaceAllUsesWith(V); 926 delete PrevVal; 927 } 928 } 929 930 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 931 Type *Ty) { 932 if (Idx >= size()) 933 resize(Idx + 1); 934 935 if (Value *V = ValuePtrs[Idx]) { 936 if (Ty != V->getType()) 937 report_fatal_error("Type mismatch in constant table!"); 938 return cast<Constant>(V); 939 } 940 941 // Create and return a placeholder, which will later be RAUW'd. 942 Constant *C = new ConstantPlaceHolder(Ty, Context); 943 ValuePtrs[Idx] = C; 944 return C; 945 } 946 947 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 948 // Bail out for a clearly invalid value. This would make us call resize(0) 949 if (Idx == UINT_MAX) 950 return nullptr; 951 952 if (Idx >= size()) 953 resize(Idx + 1); 954 955 if (Value *V = ValuePtrs[Idx]) { 956 // If the types don't match, it's invalid. 957 if (Ty && Ty != V->getType()) 958 return nullptr; 959 return V; 960 } 961 962 // No type specified, must be invalid reference. 963 if (!Ty) return nullptr; 964 965 // Create and return a placeholder, which will later be RAUW'd. 966 Value *V = new Argument(Ty); 967 ValuePtrs[Idx] = V; 968 return V; 969 } 970 971 /// Once all constants are read, this method bulk resolves any forward 972 /// references. The idea behind this is that we sometimes get constants (such 973 /// as large arrays) which reference *many* forward ref constants. Replacing 974 /// each of these causes a lot of thrashing when building/reuniquing the 975 /// constant. Instead of doing this, we look at all the uses and rewrite all 976 /// the place holders at once for any constant that uses a placeholder. 977 void BitcodeReaderValueList::resolveConstantForwardRefs() { 978 // Sort the values by-pointer so that they are efficient to look up with a 979 // binary search. 980 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 981 982 SmallVector<Constant*, 64> NewOps; 983 984 while (!ResolveConstants.empty()) { 985 Value *RealVal = operator[](ResolveConstants.back().second); 986 Constant *Placeholder = ResolveConstants.back().first; 987 ResolveConstants.pop_back(); 988 989 // Loop over all users of the placeholder, updating them to reference the 990 // new value. If they reference more than one placeholder, update them all 991 // at once. 992 while (!Placeholder->use_empty()) { 993 auto UI = Placeholder->user_begin(); 994 User *U = *UI; 995 996 // If the using object isn't uniqued, just update the operands. This 997 // handles instructions and initializers for global variables. 998 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 999 UI.getUse().set(RealVal); 1000 continue; 1001 } 1002 1003 // Otherwise, we have a constant that uses the placeholder. Replace that 1004 // constant with a new constant that has *all* placeholder uses updated. 1005 Constant *UserC = cast<Constant>(U); 1006 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1007 I != E; ++I) { 1008 Value *NewOp; 1009 if (!isa<ConstantPlaceHolder>(*I)) { 1010 // Not a placeholder reference. 1011 NewOp = *I; 1012 } else if (*I == Placeholder) { 1013 // Common case is that it just references this one placeholder. 1014 NewOp = RealVal; 1015 } else { 1016 // Otherwise, look up the placeholder in ResolveConstants. 1017 ResolveConstantsTy::iterator It = 1018 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1019 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1020 0)); 1021 assert(It != ResolveConstants.end() && It->first == *I); 1022 NewOp = operator[](It->second); 1023 } 1024 1025 NewOps.push_back(cast<Constant>(NewOp)); 1026 } 1027 1028 // Make the new constant. 1029 Constant *NewC; 1030 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1031 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1032 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1033 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1034 } else if (isa<ConstantVector>(UserC)) { 1035 NewC = ConstantVector::get(NewOps); 1036 } else { 1037 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1038 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1039 } 1040 1041 UserC->replaceAllUsesWith(NewC); 1042 UserC->destroyConstant(); 1043 NewOps.clear(); 1044 } 1045 1046 // Update all ValueHandles, they should be the only users at this point. 1047 Placeholder->replaceAllUsesWith(RealVal); 1048 delete Placeholder; 1049 } 1050 } 1051 1052 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1053 if (Idx == size()) { 1054 push_back(MD); 1055 return; 1056 } 1057 1058 if (Idx >= size()) 1059 resize(Idx+1); 1060 1061 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1062 if (!OldMD) { 1063 OldMD.reset(MD); 1064 return; 1065 } 1066 1067 // If there was a forward reference to this value, replace it. 1068 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1069 PrevMD->replaceAllUsesWith(MD); 1070 --NumFwdRefs; 1071 } 1072 1073 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1074 if (Idx >= size()) 1075 resize(Idx + 1); 1076 1077 if (Metadata *MD = MetadataPtrs[Idx]) 1078 return MD; 1079 1080 // Track forward refs to be resolved later. 1081 if (AnyFwdRefs) { 1082 MinFwdRef = std::min(MinFwdRef, Idx); 1083 MaxFwdRef = std::max(MaxFwdRef, Idx); 1084 } else { 1085 AnyFwdRefs = true; 1086 MinFwdRef = MaxFwdRef = Idx; 1087 } 1088 ++NumFwdRefs; 1089 1090 // Create and return a placeholder, which will later be RAUW'd. 1091 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1092 MetadataPtrs[Idx].reset(MD); 1093 return MD; 1094 } 1095 1096 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1097 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1098 } 1099 1100 void BitcodeReaderMetadataList::tryToResolveCycles() { 1101 if (!AnyFwdRefs) 1102 // Nothing to do. 1103 return; 1104 1105 if (NumFwdRefs) 1106 // Still forward references... can't resolve cycles. 1107 return; 1108 1109 // Resolve any cycles. 1110 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1111 auto &MD = MetadataPtrs[I]; 1112 auto *N = dyn_cast_or_null<MDNode>(MD); 1113 if (!N) 1114 continue; 1115 1116 assert(!N->isTemporary() && "Unexpected forward reference"); 1117 N->resolveCycles(); 1118 } 1119 1120 // Make sure we return early again until there's another forward ref. 1121 AnyFwdRefs = false; 1122 } 1123 1124 Type *BitcodeReader::getTypeByID(unsigned ID) { 1125 // The type table size is always specified correctly. 1126 if (ID >= TypeList.size()) 1127 return nullptr; 1128 1129 if (Type *Ty = TypeList[ID]) 1130 return Ty; 1131 1132 // If we have a forward reference, the only possible case is when it is to a 1133 // named struct. Just create a placeholder for now. 1134 return TypeList[ID] = createIdentifiedStructType(Context); 1135 } 1136 1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1138 StringRef Name) { 1139 auto *Ret = StructType::create(Context, Name); 1140 IdentifiedStructTypes.push_back(Ret); 1141 return Ret; 1142 } 1143 1144 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1145 auto *Ret = StructType::create(Context); 1146 IdentifiedStructTypes.push_back(Ret); 1147 return Ret; 1148 } 1149 1150 //===----------------------------------------------------------------------===// 1151 // Functions for parsing blocks from the bitcode file 1152 //===----------------------------------------------------------------------===// 1153 1154 1155 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1156 /// been decoded from the given integer. This function must stay in sync with 1157 /// 'encodeLLVMAttributesForBitcode'. 1158 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1159 uint64_t EncodedAttrs) { 1160 // FIXME: Remove in 4.0. 1161 1162 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1163 // the bits above 31 down by 11 bits. 1164 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1165 assert((!Alignment || isPowerOf2_32(Alignment)) && 1166 "Alignment must be a power of two."); 1167 1168 if (Alignment) 1169 B.addAlignmentAttr(Alignment); 1170 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1171 (EncodedAttrs & 0xffff)); 1172 } 1173 1174 std::error_code BitcodeReader::parseAttributeBlock() { 1175 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1176 return error("Invalid record"); 1177 1178 if (!MAttributes.empty()) 1179 return error("Invalid multiple blocks"); 1180 1181 SmallVector<uint64_t, 64> Record; 1182 1183 SmallVector<AttributeSet, 8> Attrs; 1184 1185 // Read all the records. 1186 while (1) { 1187 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1188 1189 switch (Entry.Kind) { 1190 case BitstreamEntry::SubBlock: // Handled for us already. 1191 case BitstreamEntry::Error: 1192 return error("Malformed block"); 1193 case BitstreamEntry::EndBlock: 1194 return std::error_code(); 1195 case BitstreamEntry::Record: 1196 // The interesting case. 1197 break; 1198 } 1199 1200 // Read a record. 1201 Record.clear(); 1202 switch (Stream.readRecord(Entry.ID, Record)) { 1203 default: // Default behavior: ignore. 1204 break; 1205 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1206 // FIXME: Remove in 4.0. 1207 if (Record.size() & 1) 1208 return error("Invalid record"); 1209 1210 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1211 AttrBuilder B; 1212 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1213 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1214 } 1215 1216 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1217 Attrs.clear(); 1218 break; 1219 } 1220 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1221 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1222 Attrs.push_back(MAttributeGroups[Record[i]]); 1223 1224 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1225 Attrs.clear(); 1226 break; 1227 } 1228 } 1229 } 1230 } 1231 1232 // Returns Attribute::None on unrecognized codes. 1233 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1234 switch (Code) { 1235 default: 1236 return Attribute::None; 1237 case bitc::ATTR_KIND_ALIGNMENT: 1238 return Attribute::Alignment; 1239 case bitc::ATTR_KIND_ALWAYS_INLINE: 1240 return Attribute::AlwaysInline; 1241 case bitc::ATTR_KIND_ARGMEMONLY: 1242 return Attribute::ArgMemOnly; 1243 case bitc::ATTR_KIND_BUILTIN: 1244 return Attribute::Builtin; 1245 case bitc::ATTR_KIND_BY_VAL: 1246 return Attribute::ByVal; 1247 case bitc::ATTR_KIND_IN_ALLOCA: 1248 return Attribute::InAlloca; 1249 case bitc::ATTR_KIND_COLD: 1250 return Attribute::Cold; 1251 case bitc::ATTR_KIND_CONVERGENT: 1252 return Attribute::Convergent; 1253 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1254 return Attribute::InaccessibleMemOnly; 1255 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1256 return Attribute::InaccessibleMemOrArgMemOnly; 1257 case bitc::ATTR_KIND_INLINE_HINT: 1258 return Attribute::InlineHint; 1259 case bitc::ATTR_KIND_IN_REG: 1260 return Attribute::InReg; 1261 case bitc::ATTR_KIND_JUMP_TABLE: 1262 return Attribute::JumpTable; 1263 case bitc::ATTR_KIND_MIN_SIZE: 1264 return Attribute::MinSize; 1265 case bitc::ATTR_KIND_NAKED: 1266 return Attribute::Naked; 1267 case bitc::ATTR_KIND_NEST: 1268 return Attribute::Nest; 1269 case bitc::ATTR_KIND_NO_ALIAS: 1270 return Attribute::NoAlias; 1271 case bitc::ATTR_KIND_NO_BUILTIN: 1272 return Attribute::NoBuiltin; 1273 case bitc::ATTR_KIND_NO_CAPTURE: 1274 return Attribute::NoCapture; 1275 case bitc::ATTR_KIND_NO_DUPLICATE: 1276 return Attribute::NoDuplicate; 1277 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1278 return Attribute::NoImplicitFloat; 1279 case bitc::ATTR_KIND_NO_INLINE: 1280 return Attribute::NoInline; 1281 case bitc::ATTR_KIND_NO_RECURSE: 1282 return Attribute::NoRecurse; 1283 case bitc::ATTR_KIND_NON_LAZY_BIND: 1284 return Attribute::NonLazyBind; 1285 case bitc::ATTR_KIND_NON_NULL: 1286 return Attribute::NonNull; 1287 case bitc::ATTR_KIND_DEREFERENCEABLE: 1288 return Attribute::Dereferenceable; 1289 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1290 return Attribute::DereferenceableOrNull; 1291 case bitc::ATTR_KIND_ALLOC_SIZE: 1292 return Attribute::AllocSize; 1293 case bitc::ATTR_KIND_NO_RED_ZONE: 1294 return Attribute::NoRedZone; 1295 case bitc::ATTR_KIND_NO_RETURN: 1296 return Attribute::NoReturn; 1297 case bitc::ATTR_KIND_NO_UNWIND: 1298 return Attribute::NoUnwind; 1299 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1300 return Attribute::OptimizeForSize; 1301 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1302 return Attribute::OptimizeNone; 1303 case bitc::ATTR_KIND_READ_NONE: 1304 return Attribute::ReadNone; 1305 case bitc::ATTR_KIND_READ_ONLY: 1306 return Attribute::ReadOnly; 1307 case bitc::ATTR_KIND_RETURNED: 1308 return Attribute::Returned; 1309 case bitc::ATTR_KIND_RETURNS_TWICE: 1310 return Attribute::ReturnsTwice; 1311 case bitc::ATTR_KIND_S_EXT: 1312 return Attribute::SExt; 1313 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1314 return Attribute::StackAlignment; 1315 case bitc::ATTR_KIND_STACK_PROTECT: 1316 return Attribute::StackProtect; 1317 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1318 return Attribute::StackProtectReq; 1319 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1320 return Attribute::StackProtectStrong; 1321 case bitc::ATTR_KIND_SAFESTACK: 1322 return Attribute::SafeStack; 1323 case bitc::ATTR_KIND_STRUCT_RET: 1324 return Attribute::StructRet; 1325 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1326 return Attribute::SanitizeAddress; 1327 case bitc::ATTR_KIND_SANITIZE_THREAD: 1328 return Attribute::SanitizeThread; 1329 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1330 return Attribute::SanitizeMemory; 1331 case bitc::ATTR_KIND_SWIFT_ERROR: 1332 return Attribute::SwiftError; 1333 case bitc::ATTR_KIND_SWIFT_SELF: 1334 return Attribute::SwiftSelf; 1335 case bitc::ATTR_KIND_UW_TABLE: 1336 return Attribute::UWTable; 1337 case bitc::ATTR_KIND_Z_EXT: 1338 return Attribute::ZExt; 1339 } 1340 } 1341 1342 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1343 unsigned &Alignment) { 1344 // Note: Alignment in bitcode files is incremented by 1, so that zero 1345 // can be used for default alignment. 1346 if (Exponent > Value::MaxAlignmentExponent + 1) 1347 return error("Invalid alignment value"); 1348 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1349 return std::error_code(); 1350 } 1351 1352 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1353 Attribute::AttrKind *Kind) { 1354 *Kind = getAttrFromCode(Code); 1355 if (*Kind == Attribute::None) 1356 return error(BitcodeError::CorruptedBitcode, 1357 "Unknown attribute kind (" + Twine(Code) + ")"); 1358 return std::error_code(); 1359 } 1360 1361 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1362 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1363 return error("Invalid record"); 1364 1365 if (!MAttributeGroups.empty()) 1366 return error("Invalid multiple blocks"); 1367 1368 SmallVector<uint64_t, 64> Record; 1369 1370 // Read all the records. 1371 while (1) { 1372 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1373 1374 switch (Entry.Kind) { 1375 case BitstreamEntry::SubBlock: // Handled for us already. 1376 case BitstreamEntry::Error: 1377 return error("Malformed block"); 1378 case BitstreamEntry::EndBlock: 1379 return std::error_code(); 1380 case BitstreamEntry::Record: 1381 // The interesting case. 1382 break; 1383 } 1384 1385 // Read a record. 1386 Record.clear(); 1387 switch (Stream.readRecord(Entry.ID, Record)) { 1388 default: // Default behavior: ignore. 1389 break; 1390 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1391 if (Record.size() < 3) 1392 return error("Invalid record"); 1393 1394 uint64_t GrpID = Record[0]; 1395 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1396 1397 AttrBuilder B; 1398 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1399 if (Record[i] == 0) { // Enum attribute 1400 Attribute::AttrKind Kind; 1401 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1402 return EC; 1403 1404 B.addAttribute(Kind); 1405 } else if (Record[i] == 1) { // Integer attribute 1406 Attribute::AttrKind Kind; 1407 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1408 return EC; 1409 if (Kind == Attribute::Alignment) 1410 B.addAlignmentAttr(Record[++i]); 1411 else if (Kind == Attribute::StackAlignment) 1412 B.addStackAlignmentAttr(Record[++i]); 1413 else if (Kind == Attribute::Dereferenceable) 1414 B.addDereferenceableAttr(Record[++i]); 1415 else if (Kind == Attribute::DereferenceableOrNull) 1416 B.addDereferenceableOrNullAttr(Record[++i]); 1417 else if (Kind == Attribute::AllocSize) 1418 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1419 } else { // String attribute 1420 assert((Record[i] == 3 || Record[i] == 4) && 1421 "Invalid attribute group entry"); 1422 bool HasValue = (Record[i++] == 4); 1423 SmallString<64> KindStr; 1424 SmallString<64> ValStr; 1425 1426 while (Record[i] != 0 && i != e) 1427 KindStr += Record[i++]; 1428 assert(Record[i] == 0 && "Kind string not null terminated"); 1429 1430 if (HasValue) { 1431 // Has a value associated with it. 1432 ++i; // Skip the '0' that terminates the "kind" string. 1433 while (Record[i] != 0 && i != e) 1434 ValStr += Record[i++]; 1435 assert(Record[i] == 0 && "Value string not null terminated"); 1436 } 1437 1438 B.addAttribute(KindStr.str(), ValStr.str()); 1439 } 1440 } 1441 1442 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1443 break; 1444 } 1445 } 1446 } 1447 } 1448 1449 std::error_code BitcodeReader::parseTypeTable() { 1450 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1451 return error("Invalid record"); 1452 1453 return parseTypeTableBody(); 1454 } 1455 1456 std::error_code BitcodeReader::parseTypeTableBody() { 1457 if (!TypeList.empty()) 1458 return error("Invalid multiple blocks"); 1459 1460 SmallVector<uint64_t, 64> Record; 1461 unsigned NumRecords = 0; 1462 1463 SmallString<64> TypeName; 1464 1465 // Read all the records for this type table. 1466 while (1) { 1467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1468 1469 switch (Entry.Kind) { 1470 case BitstreamEntry::SubBlock: // Handled for us already. 1471 case BitstreamEntry::Error: 1472 return error("Malformed block"); 1473 case BitstreamEntry::EndBlock: 1474 if (NumRecords != TypeList.size()) 1475 return error("Malformed block"); 1476 return std::error_code(); 1477 case BitstreamEntry::Record: 1478 // The interesting case. 1479 break; 1480 } 1481 1482 // Read a record. 1483 Record.clear(); 1484 Type *ResultTy = nullptr; 1485 switch (Stream.readRecord(Entry.ID, Record)) { 1486 default: 1487 return error("Invalid value"); 1488 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1489 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1490 // type list. This allows us to reserve space. 1491 if (Record.size() < 1) 1492 return error("Invalid record"); 1493 TypeList.resize(Record[0]); 1494 continue; 1495 case bitc::TYPE_CODE_VOID: // VOID 1496 ResultTy = Type::getVoidTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_HALF: // HALF 1499 ResultTy = Type::getHalfTy(Context); 1500 break; 1501 case bitc::TYPE_CODE_FLOAT: // FLOAT 1502 ResultTy = Type::getFloatTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1505 ResultTy = Type::getDoubleTy(Context); 1506 break; 1507 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1508 ResultTy = Type::getX86_FP80Ty(Context); 1509 break; 1510 case bitc::TYPE_CODE_FP128: // FP128 1511 ResultTy = Type::getFP128Ty(Context); 1512 break; 1513 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1514 ResultTy = Type::getPPC_FP128Ty(Context); 1515 break; 1516 case bitc::TYPE_CODE_LABEL: // LABEL 1517 ResultTy = Type::getLabelTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_METADATA: // METADATA 1520 ResultTy = Type::getMetadataTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1523 ResultTy = Type::getX86_MMXTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_TOKEN: // TOKEN 1526 ResultTy = Type::getTokenTy(Context); 1527 break; 1528 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1529 if (Record.size() < 1) 1530 return error("Invalid record"); 1531 1532 uint64_t NumBits = Record[0]; 1533 if (NumBits < IntegerType::MIN_INT_BITS || 1534 NumBits > IntegerType::MAX_INT_BITS) 1535 return error("Bitwidth for integer type out of range"); 1536 ResultTy = IntegerType::get(Context, NumBits); 1537 break; 1538 } 1539 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1540 // [pointee type, address space] 1541 if (Record.size() < 1) 1542 return error("Invalid record"); 1543 unsigned AddressSpace = 0; 1544 if (Record.size() == 2) 1545 AddressSpace = Record[1]; 1546 ResultTy = getTypeByID(Record[0]); 1547 if (!ResultTy || 1548 !PointerType::isValidElementType(ResultTy)) 1549 return error("Invalid type"); 1550 ResultTy = PointerType::get(ResultTy, AddressSpace); 1551 break; 1552 } 1553 case bitc::TYPE_CODE_FUNCTION_OLD: { 1554 // FIXME: attrid is dead, remove it in LLVM 4.0 1555 // FUNCTION: [vararg, attrid, retty, paramty x N] 1556 if (Record.size() < 3) 1557 return error("Invalid record"); 1558 SmallVector<Type*, 8> ArgTys; 1559 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1560 if (Type *T = getTypeByID(Record[i])) 1561 ArgTys.push_back(T); 1562 else 1563 break; 1564 } 1565 1566 ResultTy = getTypeByID(Record[2]); 1567 if (!ResultTy || ArgTys.size() < Record.size()-3) 1568 return error("Invalid type"); 1569 1570 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1571 break; 1572 } 1573 case bitc::TYPE_CODE_FUNCTION: { 1574 // FUNCTION: [vararg, retty, paramty x N] 1575 if (Record.size() < 2) 1576 return error("Invalid record"); 1577 SmallVector<Type*, 8> ArgTys; 1578 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1579 if (Type *T = getTypeByID(Record[i])) { 1580 if (!FunctionType::isValidArgumentType(T)) 1581 return error("Invalid function argument type"); 1582 ArgTys.push_back(T); 1583 } 1584 else 1585 break; 1586 } 1587 1588 ResultTy = getTypeByID(Record[1]); 1589 if (!ResultTy || ArgTys.size() < Record.size()-2) 1590 return error("Invalid type"); 1591 1592 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1593 break; 1594 } 1595 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1596 if (Record.size() < 1) 1597 return error("Invalid record"); 1598 SmallVector<Type*, 8> EltTys; 1599 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1600 if (Type *T = getTypeByID(Record[i])) 1601 EltTys.push_back(T); 1602 else 1603 break; 1604 } 1605 if (EltTys.size() != Record.size()-1) 1606 return error("Invalid type"); 1607 ResultTy = StructType::get(Context, EltTys, Record[0]); 1608 break; 1609 } 1610 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1611 if (convertToString(Record, 0, TypeName)) 1612 return error("Invalid record"); 1613 continue; 1614 1615 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1616 if (Record.size() < 1) 1617 return error("Invalid record"); 1618 1619 if (NumRecords >= TypeList.size()) 1620 return error("Invalid TYPE table"); 1621 1622 // Check to see if this was forward referenced, if so fill in the temp. 1623 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1624 if (Res) { 1625 Res->setName(TypeName); 1626 TypeList[NumRecords] = nullptr; 1627 } else // Otherwise, create a new struct. 1628 Res = createIdentifiedStructType(Context, TypeName); 1629 TypeName.clear(); 1630 1631 SmallVector<Type*, 8> EltTys; 1632 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1633 if (Type *T = getTypeByID(Record[i])) 1634 EltTys.push_back(T); 1635 else 1636 break; 1637 } 1638 if (EltTys.size() != Record.size()-1) 1639 return error("Invalid record"); 1640 Res->setBody(EltTys, Record[0]); 1641 ResultTy = Res; 1642 break; 1643 } 1644 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1645 if (Record.size() != 1) 1646 return error("Invalid record"); 1647 1648 if (NumRecords >= TypeList.size()) 1649 return error("Invalid TYPE table"); 1650 1651 // Check to see if this was forward referenced, if so fill in the temp. 1652 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1653 if (Res) { 1654 Res->setName(TypeName); 1655 TypeList[NumRecords] = nullptr; 1656 } else // Otherwise, create a new struct with no body. 1657 Res = createIdentifiedStructType(Context, TypeName); 1658 TypeName.clear(); 1659 ResultTy = Res; 1660 break; 1661 } 1662 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1663 if (Record.size() < 2) 1664 return error("Invalid record"); 1665 ResultTy = getTypeByID(Record[1]); 1666 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1667 return error("Invalid type"); 1668 ResultTy = ArrayType::get(ResultTy, Record[0]); 1669 break; 1670 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1671 if (Record.size() < 2) 1672 return error("Invalid record"); 1673 if (Record[0] == 0) 1674 return error("Invalid vector length"); 1675 ResultTy = getTypeByID(Record[1]); 1676 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1677 return error("Invalid type"); 1678 ResultTy = VectorType::get(ResultTy, Record[0]); 1679 break; 1680 } 1681 1682 if (NumRecords >= TypeList.size()) 1683 return error("Invalid TYPE table"); 1684 if (TypeList[NumRecords]) 1685 return error( 1686 "Invalid TYPE table: Only named structs can be forward referenced"); 1687 assert(ResultTy && "Didn't read a type?"); 1688 TypeList[NumRecords++] = ResultTy; 1689 } 1690 } 1691 1692 std::error_code BitcodeReader::parseOperandBundleTags() { 1693 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1694 return error("Invalid record"); 1695 1696 if (!BundleTags.empty()) 1697 return error("Invalid multiple blocks"); 1698 1699 SmallVector<uint64_t, 64> Record; 1700 1701 while (1) { 1702 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1703 1704 switch (Entry.Kind) { 1705 case BitstreamEntry::SubBlock: // Handled for us already. 1706 case BitstreamEntry::Error: 1707 return error("Malformed block"); 1708 case BitstreamEntry::EndBlock: 1709 return std::error_code(); 1710 case BitstreamEntry::Record: 1711 // The interesting case. 1712 break; 1713 } 1714 1715 // Tags are implicitly mapped to integers by their order. 1716 1717 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1718 return error("Invalid record"); 1719 1720 // OPERAND_BUNDLE_TAG: [strchr x N] 1721 BundleTags.emplace_back(); 1722 if (convertToString(Record, 0, BundleTags.back())) 1723 return error("Invalid record"); 1724 Record.clear(); 1725 } 1726 } 1727 1728 /// Associate a value with its name from the given index in the provided record. 1729 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1730 unsigned NameIndex, Triple &TT) { 1731 SmallString<128> ValueName; 1732 if (convertToString(Record, NameIndex, ValueName)) 1733 return error("Invalid record"); 1734 unsigned ValueID = Record[0]; 1735 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1736 return error("Invalid record"); 1737 Value *V = ValueList[ValueID]; 1738 1739 StringRef NameStr(ValueName.data(), ValueName.size()); 1740 if (NameStr.find_first_of(0) != StringRef::npos) 1741 return error("Invalid value name"); 1742 V->setName(NameStr); 1743 auto *GO = dyn_cast<GlobalObject>(V); 1744 if (GO) { 1745 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1746 if (TT.isOSBinFormatMachO()) 1747 GO->setComdat(nullptr); 1748 else 1749 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1750 } 1751 } 1752 return V; 1753 } 1754 1755 /// Helper to note and return the current location, and jump to the given 1756 /// offset. 1757 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1758 BitstreamCursor &Stream) { 1759 // Save the current parsing location so we can jump back at the end 1760 // of the VST read. 1761 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1762 Stream.JumpToBit(Offset * 32); 1763 #ifndef NDEBUG 1764 // Do some checking if we are in debug mode. 1765 BitstreamEntry Entry = Stream.advance(); 1766 assert(Entry.Kind == BitstreamEntry::SubBlock); 1767 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1768 #else 1769 // In NDEBUG mode ignore the output so we don't get an unused variable 1770 // warning. 1771 Stream.advance(); 1772 #endif 1773 return CurrentBit; 1774 } 1775 1776 /// Parse the value symbol table at either the current parsing location or 1777 /// at the given bit offset if provided. 1778 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1779 uint64_t CurrentBit; 1780 // Pass in the Offset to distinguish between calling for the module-level 1781 // VST (where we want to jump to the VST offset) and the function-level 1782 // VST (where we don't). 1783 if (Offset > 0) 1784 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1785 1786 // Compute the delta between the bitcode indices in the VST (the word offset 1787 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1788 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1789 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1790 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1791 // just before entering the VST subblock because: 1) the EnterSubBlock 1792 // changes the AbbrevID width; 2) the VST block is nested within the same 1793 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1794 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1795 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1796 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1797 unsigned FuncBitcodeOffsetDelta = 1798 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1799 1800 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1801 return error("Invalid record"); 1802 1803 SmallVector<uint64_t, 64> Record; 1804 1805 Triple TT(TheModule->getTargetTriple()); 1806 1807 // Read all the records for this value table. 1808 SmallString<128> ValueName; 1809 while (1) { 1810 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1811 1812 switch (Entry.Kind) { 1813 case BitstreamEntry::SubBlock: // Handled for us already. 1814 case BitstreamEntry::Error: 1815 return error("Malformed block"); 1816 case BitstreamEntry::EndBlock: 1817 if (Offset > 0) 1818 Stream.JumpToBit(CurrentBit); 1819 return std::error_code(); 1820 case BitstreamEntry::Record: 1821 // The interesting case. 1822 break; 1823 } 1824 1825 // Read a record. 1826 Record.clear(); 1827 switch (Stream.readRecord(Entry.ID, Record)) { 1828 default: // Default behavior: unknown type. 1829 break; 1830 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1831 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1832 if (std::error_code EC = ValOrErr.getError()) 1833 return EC; 1834 ValOrErr.get(); 1835 break; 1836 } 1837 case bitc::VST_CODE_FNENTRY: { 1838 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1839 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1840 if (std::error_code EC = ValOrErr.getError()) 1841 return EC; 1842 Value *V = ValOrErr.get(); 1843 1844 auto *GO = dyn_cast<GlobalObject>(V); 1845 if (!GO) { 1846 // If this is an alias, need to get the actual Function object 1847 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1848 auto *GA = dyn_cast<GlobalAlias>(V); 1849 if (GA) 1850 GO = GA->getBaseObject(); 1851 assert(GO); 1852 } 1853 1854 uint64_t FuncWordOffset = Record[1]; 1855 Function *F = dyn_cast<Function>(GO); 1856 assert(F); 1857 uint64_t FuncBitOffset = FuncWordOffset * 32; 1858 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1859 // Set the LastFunctionBlockBit to point to the last function block. 1860 // Later when parsing is resumed after function materialization, 1861 // we can simply skip that last function block. 1862 if (FuncBitOffset > LastFunctionBlockBit) 1863 LastFunctionBlockBit = FuncBitOffset; 1864 break; 1865 } 1866 case bitc::VST_CODE_BBENTRY: { 1867 if (convertToString(Record, 1, ValueName)) 1868 return error("Invalid record"); 1869 BasicBlock *BB = getBasicBlock(Record[0]); 1870 if (!BB) 1871 return error("Invalid record"); 1872 1873 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1874 ValueName.clear(); 1875 break; 1876 } 1877 } 1878 } 1879 } 1880 1881 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1882 std::error_code 1883 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1884 if (Record.size() < 2) 1885 return error("Invalid record"); 1886 1887 unsigned Kind = Record[0]; 1888 SmallString<8> Name(Record.begin() + 1, Record.end()); 1889 1890 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1891 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1892 return error("Conflicting METADATA_KIND records"); 1893 return std::error_code(); 1894 } 1895 1896 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1897 1898 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1899 StringRef Blob, 1900 unsigned &NextMetadataNo) { 1901 // All the MDStrings in the block are emitted together in a single 1902 // record. The strings are concatenated and stored in a blob along with 1903 // their sizes. 1904 if (Record.size() != 2) 1905 return error("Invalid record: metadata strings layout"); 1906 1907 unsigned NumStrings = Record[0]; 1908 unsigned StringsOffset = Record[1]; 1909 if (!NumStrings) 1910 return error("Invalid record: metadata strings with no strings"); 1911 if (StringsOffset > Blob.size()) 1912 return error("Invalid record: metadata strings corrupt offset"); 1913 1914 StringRef Lengths = Blob.slice(0, StringsOffset); 1915 SimpleBitstreamCursor R(*StreamFile); 1916 R.jumpToPointer(Lengths.begin()); 1917 1918 // Ensure that Blob doesn't get invalidated, even if this is reading from 1919 // a StreamingMemoryObject with corrupt data. 1920 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1921 1922 StringRef Strings = Blob.drop_front(StringsOffset); 1923 do { 1924 if (R.AtEndOfStream()) 1925 return error("Invalid record: metadata strings bad length"); 1926 1927 unsigned Size = R.ReadVBR(6); 1928 if (Strings.size() < Size) 1929 return error("Invalid record: metadata strings truncated chars"); 1930 1931 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1932 NextMetadataNo++); 1933 Strings = Strings.drop_front(Size); 1934 } while (--NumStrings); 1935 1936 return std::error_code(); 1937 } 1938 1939 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1940 /// module level metadata. 1941 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1942 IsMetadataMaterialized = true; 1943 unsigned NextMetadataNo = MetadataList.size(); 1944 1945 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1946 return error("Invalid metadata: fwd refs into function blocks"); 1947 1948 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1949 return error("Invalid record"); 1950 1951 SmallVector<uint64_t, 64> Record; 1952 1953 auto getMD = [&](unsigned ID) -> Metadata * { 1954 return MetadataList.getMetadataFwdRef(ID); 1955 }; 1956 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1957 if (ID) 1958 return getMD(ID - 1); 1959 return nullptr; 1960 }; 1961 auto getMDString = [&](unsigned ID) -> MDString *{ 1962 // This requires that the ID is not really a forward reference. In 1963 // particular, the MDString must already have been resolved. 1964 return cast_or_null<MDString>(getMDOrNull(ID)); 1965 }; 1966 1967 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1968 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1969 1970 // Read all the records. 1971 while (1) { 1972 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1973 1974 switch (Entry.Kind) { 1975 case BitstreamEntry::SubBlock: // Handled for us already. 1976 case BitstreamEntry::Error: 1977 return error("Malformed block"); 1978 case BitstreamEntry::EndBlock: 1979 MetadataList.tryToResolveCycles(); 1980 return std::error_code(); 1981 case BitstreamEntry::Record: 1982 // The interesting case. 1983 break; 1984 } 1985 1986 // Read a record. 1987 Record.clear(); 1988 StringRef Blob; 1989 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1990 bool IsDistinct = false; 1991 switch (Code) { 1992 default: // Default behavior: ignore. 1993 break; 1994 case bitc::METADATA_NAME: { 1995 // Read name of the named metadata. 1996 SmallString<8> Name(Record.begin(), Record.end()); 1997 Record.clear(); 1998 Code = Stream.ReadCode(); 1999 2000 unsigned NextBitCode = Stream.readRecord(Code, Record); 2001 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2002 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2003 2004 // Read named metadata elements. 2005 unsigned Size = Record.size(); 2006 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2007 for (unsigned i = 0; i != Size; ++i) { 2008 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2009 if (!MD) 2010 return error("Invalid record"); 2011 NMD->addOperand(MD); 2012 } 2013 break; 2014 } 2015 case bitc::METADATA_OLD_FN_NODE: { 2016 // FIXME: Remove in 4.0. 2017 // This is a LocalAsMetadata record, the only type of function-local 2018 // metadata. 2019 if (Record.size() % 2 == 1) 2020 return error("Invalid record"); 2021 2022 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2023 // to be legal, but there's no upgrade path. 2024 auto dropRecord = [&] { 2025 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2026 }; 2027 if (Record.size() != 2) { 2028 dropRecord(); 2029 break; 2030 } 2031 2032 Type *Ty = getTypeByID(Record[0]); 2033 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2034 dropRecord(); 2035 break; 2036 } 2037 2038 MetadataList.assignValue( 2039 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2040 NextMetadataNo++); 2041 break; 2042 } 2043 case bitc::METADATA_OLD_NODE: { 2044 // FIXME: Remove in 4.0. 2045 if (Record.size() % 2 == 1) 2046 return error("Invalid record"); 2047 2048 unsigned Size = Record.size(); 2049 SmallVector<Metadata *, 8> Elts; 2050 for (unsigned i = 0; i != Size; i += 2) { 2051 Type *Ty = getTypeByID(Record[i]); 2052 if (!Ty) 2053 return error("Invalid record"); 2054 if (Ty->isMetadataTy()) 2055 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2056 else if (!Ty->isVoidTy()) { 2057 auto *MD = 2058 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2059 assert(isa<ConstantAsMetadata>(MD) && 2060 "Expected non-function-local metadata"); 2061 Elts.push_back(MD); 2062 } else 2063 Elts.push_back(nullptr); 2064 } 2065 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2066 break; 2067 } 2068 case bitc::METADATA_VALUE: { 2069 if (Record.size() != 2) 2070 return error("Invalid record"); 2071 2072 Type *Ty = getTypeByID(Record[0]); 2073 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2074 return error("Invalid record"); 2075 2076 MetadataList.assignValue( 2077 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2078 NextMetadataNo++); 2079 break; 2080 } 2081 case bitc::METADATA_DISTINCT_NODE: 2082 IsDistinct = true; 2083 // fallthrough... 2084 case bitc::METADATA_NODE: { 2085 SmallVector<Metadata *, 8> Elts; 2086 Elts.reserve(Record.size()); 2087 for (unsigned ID : Record) 2088 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2089 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2090 : MDNode::get(Context, Elts), 2091 NextMetadataNo++); 2092 break; 2093 } 2094 case bitc::METADATA_LOCATION: { 2095 if (Record.size() != 5) 2096 return error("Invalid record"); 2097 2098 unsigned Line = Record[1]; 2099 unsigned Column = Record[2]; 2100 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2101 if (!Scope) 2102 return error("Invalid record"); 2103 Metadata *InlinedAt = 2104 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2105 MetadataList.assignValue( 2106 GET_OR_DISTINCT(DILocation, Record[0], 2107 (Context, Line, Column, Scope, InlinedAt)), 2108 NextMetadataNo++); 2109 break; 2110 } 2111 case bitc::METADATA_GENERIC_DEBUG: { 2112 if (Record.size() < 4) 2113 return error("Invalid record"); 2114 2115 unsigned Tag = Record[1]; 2116 unsigned Version = Record[2]; 2117 2118 if (Tag >= 1u << 16 || Version != 0) 2119 return error("Invalid record"); 2120 2121 auto *Header = getMDString(Record[3]); 2122 SmallVector<Metadata *, 8> DwarfOps; 2123 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2124 DwarfOps.push_back(Record[I] 2125 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2126 : nullptr); 2127 MetadataList.assignValue( 2128 GET_OR_DISTINCT(GenericDINode, Record[0], 2129 (Context, Tag, Header, DwarfOps)), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBRANGE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT(DISubrange, Record[0], 2139 (Context, Record[1], unrotateSign(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 case bitc::METADATA_ENUMERATOR: { 2144 if (Record.size() != 3) 2145 return error("Invalid record"); 2146 2147 MetadataList.assignValue( 2148 GET_OR_DISTINCT( 2149 DIEnumerator, Record[0], 2150 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2151 NextMetadataNo++); 2152 break; 2153 } 2154 case bitc::METADATA_BASIC_TYPE: { 2155 if (Record.size() != 6) 2156 return error("Invalid record"); 2157 2158 MetadataList.assignValue( 2159 GET_OR_DISTINCT(DIBasicType, Record[0], 2160 (Context, Record[1], getMDString(Record[2]), 2161 Record[3], Record[4], Record[5])), 2162 NextMetadataNo++); 2163 break; 2164 } 2165 case bitc::METADATA_DERIVED_TYPE: { 2166 if (Record.size() != 12) 2167 return error("Invalid record"); 2168 2169 MetadataList.assignValue( 2170 GET_OR_DISTINCT(DIDerivedType, Record[0], 2171 (Context, Record[1], getMDString(Record[2]), 2172 getMDOrNull(Record[3]), Record[4], 2173 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2174 Record[7], Record[8], Record[9], Record[10], 2175 getMDOrNull(Record[11]))), 2176 NextMetadataNo++); 2177 break; 2178 } 2179 case bitc::METADATA_COMPOSITE_TYPE: { 2180 if (Record.size() != 16) 2181 return error("Invalid record"); 2182 2183 MetadataList.assignValue( 2184 GET_OR_DISTINCT(DICompositeType, Record[0], 2185 (Context, Record[1], getMDString(Record[2]), 2186 getMDOrNull(Record[3]), Record[4], 2187 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2188 Record[7], Record[8], Record[9], Record[10], 2189 getMDOrNull(Record[11]), Record[12], 2190 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2191 getMDString(Record[15]))), 2192 NextMetadataNo++); 2193 break; 2194 } 2195 case bitc::METADATA_SUBROUTINE_TYPE: { 2196 if (Record.size() != 3) 2197 return error("Invalid record"); 2198 2199 MetadataList.assignValue( 2200 GET_OR_DISTINCT(DISubroutineType, Record[0], 2201 (Context, Record[1], getMDOrNull(Record[2]))), 2202 NextMetadataNo++); 2203 break; 2204 } 2205 2206 case bitc::METADATA_MODULE: { 2207 if (Record.size() != 6) 2208 return error("Invalid record"); 2209 2210 MetadataList.assignValue( 2211 GET_OR_DISTINCT(DIModule, Record[0], 2212 (Context, getMDOrNull(Record[1]), 2213 getMDString(Record[2]), getMDString(Record[3]), 2214 getMDString(Record[4]), getMDString(Record[5]))), 2215 NextMetadataNo++); 2216 break; 2217 } 2218 2219 case bitc::METADATA_FILE: { 2220 if (Record.size() != 3) 2221 return error("Invalid record"); 2222 2223 MetadataList.assignValue( 2224 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2225 getMDString(Record[2]))), 2226 NextMetadataNo++); 2227 break; 2228 } 2229 case bitc::METADATA_COMPILE_UNIT: { 2230 if (Record.size() < 14 || Record.size() > 16) 2231 return error("Invalid record"); 2232 2233 // Ignore Record[0], which indicates whether this compile unit is 2234 // distinct. It's always distinct. 2235 MetadataList.assignValue( 2236 DICompileUnit::getDistinct( 2237 Context, Record[1], getMDOrNull(Record[2]), 2238 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2239 Record[6], getMDString(Record[7]), Record[8], 2240 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2241 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2242 getMDOrNull(Record[13]), 2243 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2244 Record.size() <= 14 ? 0 : Record[14]), 2245 NextMetadataNo++); 2246 break; 2247 } 2248 case bitc::METADATA_SUBPROGRAM: { 2249 if (Record.size() != 18 && Record.size() != 19) 2250 return error("Invalid record"); 2251 2252 bool HasFn = Record.size() == 19; 2253 DISubprogram *SP = GET_OR_DISTINCT( 2254 DISubprogram, 2255 Record[0] || Record[8], // All definitions should be distinct. 2256 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2257 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2258 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2259 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2260 Record[14], getMDOrNull(Record[15 + HasFn]), 2261 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2262 MetadataList.assignValue(SP, NextMetadataNo++); 2263 2264 // Upgrade sp->function mapping to function->sp mapping. 2265 if (HasFn && Record[15]) { 2266 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2267 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2268 if (F->isMaterializable()) 2269 // Defer until materialized; unmaterialized functions may not have 2270 // metadata. 2271 FunctionsWithSPs[F] = SP; 2272 else if (!F->empty()) 2273 F->setSubprogram(SP); 2274 } 2275 } 2276 break; 2277 } 2278 case bitc::METADATA_LEXICAL_BLOCK: { 2279 if (Record.size() != 5) 2280 return error("Invalid record"); 2281 2282 MetadataList.assignValue( 2283 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2284 (Context, getMDOrNull(Record[1]), 2285 getMDOrNull(Record[2]), Record[3], Record[4])), 2286 NextMetadataNo++); 2287 break; 2288 } 2289 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2290 if (Record.size() != 4) 2291 return error("Invalid record"); 2292 2293 MetadataList.assignValue( 2294 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2295 (Context, getMDOrNull(Record[1]), 2296 getMDOrNull(Record[2]), Record[3])), 2297 NextMetadataNo++); 2298 break; 2299 } 2300 case bitc::METADATA_NAMESPACE: { 2301 if (Record.size() != 5) 2302 return error("Invalid record"); 2303 2304 MetadataList.assignValue( 2305 GET_OR_DISTINCT(DINamespace, Record[0], 2306 (Context, getMDOrNull(Record[1]), 2307 getMDOrNull(Record[2]), getMDString(Record[3]), 2308 Record[4])), 2309 NextMetadataNo++); 2310 break; 2311 } 2312 case bitc::METADATA_MACRO: { 2313 if (Record.size() != 5) 2314 return error("Invalid record"); 2315 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DIMacro, Record[0], 2318 (Context, Record[1], Record[2], 2319 getMDString(Record[3]), getMDString(Record[4]))), 2320 NextMetadataNo++); 2321 break; 2322 } 2323 case bitc::METADATA_MACRO_FILE: { 2324 if (Record.size() != 5) 2325 return error("Invalid record"); 2326 2327 MetadataList.assignValue( 2328 GET_OR_DISTINCT(DIMacroFile, Record[0], 2329 (Context, Record[1], Record[2], 2330 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2331 NextMetadataNo++); 2332 break; 2333 } 2334 case bitc::METADATA_TEMPLATE_TYPE: { 2335 if (Record.size() != 3) 2336 return error("Invalid record"); 2337 2338 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2339 Record[0], 2340 (Context, getMDString(Record[1]), 2341 getMDOrNull(Record[2]))), 2342 NextMetadataNo++); 2343 break; 2344 } 2345 case bitc::METADATA_TEMPLATE_VALUE: { 2346 if (Record.size() != 5) 2347 return error("Invalid record"); 2348 2349 MetadataList.assignValue( 2350 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2351 (Context, Record[1], getMDString(Record[2]), 2352 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2353 NextMetadataNo++); 2354 break; 2355 } 2356 case bitc::METADATA_GLOBAL_VAR: { 2357 if (Record.size() != 11) 2358 return error("Invalid record"); 2359 2360 MetadataList.assignValue( 2361 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2362 (Context, getMDOrNull(Record[1]), 2363 getMDString(Record[2]), getMDString(Record[3]), 2364 getMDOrNull(Record[4]), Record[5], 2365 getMDOrNull(Record[6]), Record[7], Record[8], 2366 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2367 NextMetadataNo++); 2368 break; 2369 } 2370 case bitc::METADATA_LOCAL_VAR: { 2371 // 10th field is for the obseleted 'inlinedAt:' field. 2372 if (Record.size() < 8 || Record.size() > 10) 2373 return error("Invalid record"); 2374 2375 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2376 // DW_TAG_arg_variable. 2377 bool HasTag = Record.size() > 8; 2378 MetadataList.assignValue( 2379 GET_OR_DISTINCT(DILocalVariable, Record[0], 2380 (Context, getMDOrNull(Record[1 + HasTag]), 2381 getMDString(Record[2 + HasTag]), 2382 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2383 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2384 Record[7 + HasTag])), 2385 NextMetadataNo++); 2386 break; 2387 } 2388 case bitc::METADATA_EXPRESSION: { 2389 if (Record.size() < 1) 2390 return error("Invalid record"); 2391 2392 MetadataList.assignValue( 2393 GET_OR_DISTINCT(DIExpression, Record[0], 2394 (Context, makeArrayRef(Record).slice(1))), 2395 NextMetadataNo++); 2396 break; 2397 } 2398 case bitc::METADATA_OBJC_PROPERTY: { 2399 if (Record.size() != 8) 2400 return error("Invalid record"); 2401 2402 MetadataList.assignValue( 2403 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2404 (Context, getMDString(Record[1]), 2405 getMDOrNull(Record[2]), Record[3], 2406 getMDString(Record[4]), getMDString(Record[5]), 2407 Record[6], getMDOrNull(Record[7]))), 2408 NextMetadataNo++); 2409 break; 2410 } 2411 case bitc::METADATA_IMPORTED_ENTITY: { 2412 if (Record.size() != 6) 2413 return error("Invalid record"); 2414 2415 MetadataList.assignValue( 2416 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2417 (Context, Record[1], getMDOrNull(Record[2]), 2418 getMDOrNull(Record[3]), Record[4], 2419 getMDString(Record[5]))), 2420 NextMetadataNo++); 2421 break; 2422 } 2423 case bitc::METADATA_STRING_OLD: { 2424 std::string String(Record.begin(), Record.end()); 2425 2426 // Test for upgrading !llvm.loop. 2427 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2428 2429 Metadata *MD = MDString::get(Context, String); 2430 MetadataList.assignValue(MD, NextMetadataNo++); 2431 break; 2432 } 2433 case bitc::METADATA_STRINGS: 2434 if (std::error_code EC = 2435 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2436 return EC; 2437 break; 2438 case bitc::METADATA_KIND: { 2439 // Support older bitcode files that had METADATA_KIND records in a 2440 // block with METADATA_BLOCK_ID. 2441 if (std::error_code EC = parseMetadataKindRecord(Record)) 2442 return EC; 2443 break; 2444 } 2445 } 2446 } 2447 #undef GET_OR_DISTINCT 2448 } 2449 2450 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2451 std::error_code BitcodeReader::parseMetadataKinds() { 2452 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2453 return error("Invalid record"); 2454 2455 SmallVector<uint64_t, 64> Record; 2456 2457 // Read all the records. 2458 while (1) { 2459 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2460 2461 switch (Entry.Kind) { 2462 case BitstreamEntry::SubBlock: // Handled for us already. 2463 case BitstreamEntry::Error: 2464 return error("Malformed block"); 2465 case BitstreamEntry::EndBlock: 2466 return std::error_code(); 2467 case BitstreamEntry::Record: 2468 // The interesting case. 2469 break; 2470 } 2471 2472 // Read a record. 2473 Record.clear(); 2474 unsigned Code = Stream.readRecord(Entry.ID, Record); 2475 switch (Code) { 2476 default: // Default behavior: ignore. 2477 break; 2478 case bitc::METADATA_KIND: { 2479 if (std::error_code EC = parseMetadataKindRecord(Record)) 2480 return EC; 2481 break; 2482 } 2483 } 2484 } 2485 } 2486 2487 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2488 /// encoding. 2489 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2490 if ((V & 1) == 0) 2491 return V >> 1; 2492 if (V != 1) 2493 return -(V >> 1); 2494 // There is no such thing as -0 with integers. "-0" really means MININT. 2495 return 1ULL << 63; 2496 } 2497 2498 /// Resolve all of the initializers for global values and aliases that we can. 2499 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2500 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2501 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2502 IndirectSymbolInitWorklist; 2503 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2504 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2505 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2506 2507 GlobalInitWorklist.swap(GlobalInits); 2508 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2509 FunctionPrefixWorklist.swap(FunctionPrefixes); 2510 FunctionPrologueWorklist.swap(FunctionPrologues); 2511 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2512 2513 while (!GlobalInitWorklist.empty()) { 2514 unsigned ValID = GlobalInitWorklist.back().second; 2515 if (ValID >= ValueList.size()) { 2516 // Not ready to resolve this yet, it requires something later in the file. 2517 GlobalInits.push_back(GlobalInitWorklist.back()); 2518 } else { 2519 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2520 GlobalInitWorklist.back().first->setInitializer(C); 2521 else 2522 return error("Expected a constant"); 2523 } 2524 GlobalInitWorklist.pop_back(); 2525 } 2526 2527 while (!IndirectSymbolInitWorklist.empty()) { 2528 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2529 if (ValID >= ValueList.size()) { 2530 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2531 } else { 2532 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2533 if (!C) 2534 return error("Expected a constant"); 2535 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2536 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2537 return error("Alias and aliasee types don't match"); 2538 GIS->setIndirectSymbol(C); 2539 } 2540 IndirectSymbolInitWorklist.pop_back(); 2541 } 2542 2543 while (!FunctionPrefixWorklist.empty()) { 2544 unsigned ValID = FunctionPrefixWorklist.back().second; 2545 if (ValID >= ValueList.size()) { 2546 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2547 } else { 2548 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2549 FunctionPrefixWorklist.back().first->setPrefixData(C); 2550 else 2551 return error("Expected a constant"); 2552 } 2553 FunctionPrefixWorklist.pop_back(); 2554 } 2555 2556 while (!FunctionPrologueWorklist.empty()) { 2557 unsigned ValID = FunctionPrologueWorklist.back().second; 2558 if (ValID >= ValueList.size()) { 2559 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2560 } else { 2561 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2562 FunctionPrologueWorklist.back().first->setPrologueData(C); 2563 else 2564 return error("Expected a constant"); 2565 } 2566 FunctionPrologueWorklist.pop_back(); 2567 } 2568 2569 while (!FunctionPersonalityFnWorklist.empty()) { 2570 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2571 if (ValID >= ValueList.size()) { 2572 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2573 } else { 2574 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2575 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2576 else 2577 return error("Expected a constant"); 2578 } 2579 FunctionPersonalityFnWorklist.pop_back(); 2580 } 2581 2582 return std::error_code(); 2583 } 2584 2585 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2586 SmallVector<uint64_t, 8> Words(Vals.size()); 2587 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2588 BitcodeReader::decodeSignRotatedValue); 2589 2590 return APInt(TypeBits, Words); 2591 } 2592 2593 std::error_code BitcodeReader::parseConstants() { 2594 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2595 return error("Invalid record"); 2596 2597 SmallVector<uint64_t, 64> Record; 2598 2599 // Read all the records for this value table. 2600 Type *CurTy = Type::getInt32Ty(Context); 2601 unsigned NextCstNo = ValueList.size(); 2602 while (1) { 2603 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2604 2605 switch (Entry.Kind) { 2606 case BitstreamEntry::SubBlock: // Handled for us already. 2607 case BitstreamEntry::Error: 2608 return error("Malformed block"); 2609 case BitstreamEntry::EndBlock: 2610 if (NextCstNo != ValueList.size()) 2611 return error("Invalid constant reference"); 2612 2613 // Once all the constants have been read, go through and resolve forward 2614 // references. 2615 ValueList.resolveConstantForwardRefs(); 2616 return std::error_code(); 2617 case BitstreamEntry::Record: 2618 // The interesting case. 2619 break; 2620 } 2621 2622 // Read a record. 2623 Record.clear(); 2624 Value *V = nullptr; 2625 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2626 switch (BitCode) { 2627 default: // Default behavior: unknown constant 2628 case bitc::CST_CODE_UNDEF: // UNDEF 2629 V = UndefValue::get(CurTy); 2630 break; 2631 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2632 if (Record.empty()) 2633 return error("Invalid record"); 2634 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2635 return error("Invalid record"); 2636 CurTy = TypeList[Record[0]]; 2637 continue; // Skip the ValueList manipulation. 2638 case bitc::CST_CODE_NULL: // NULL 2639 V = Constant::getNullValue(CurTy); 2640 break; 2641 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2642 if (!CurTy->isIntegerTy() || Record.empty()) 2643 return error("Invalid record"); 2644 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2645 break; 2646 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2647 if (!CurTy->isIntegerTy() || Record.empty()) 2648 return error("Invalid record"); 2649 2650 APInt VInt = 2651 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2652 V = ConstantInt::get(Context, VInt); 2653 2654 break; 2655 } 2656 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2657 if (Record.empty()) 2658 return error("Invalid record"); 2659 if (CurTy->isHalfTy()) 2660 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2661 APInt(16, (uint16_t)Record[0]))); 2662 else if (CurTy->isFloatTy()) 2663 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2664 APInt(32, (uint32_t)Record[0]))); 2665 else if (CurTy->isDoubleTy()) 2666 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2667 APInt(64, Record[0]))); 2668 else if (CurTy->isX86_FP80Ty()) { 2669 // Bits are not stored the same way as a normal i80 APInt, compensate. 2670 uint64_t Rearrange[2]; 2671 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2672 Rearrange[1] = Record[0] >> 48; 2673 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2674 APInt(80, Rearrange))); 2675 } else if (CurTy->isFP128Ty()) 2676 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2677 APInt(128, Record))); 2678 else if (CurTy->isPPC_FP128Ty()) 2679 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2680 APInt(128, Record))); 2681 else 2682 V = UndefValue::get(CurTy); 2683 break; 2684 } 2685 2686 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2687 if (Record.empty()) 2688 return error("Invalid record"); 2689 2690 unsigned Size = Record.size(); 2691 SmallVector<Constant*, 16> Elts; 2692 2693 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2694 for (unsigned i = 0; i != Size; ++i) 2695 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2696 STy->getElementType(i))); 2697 V = ConstantStruct::get(STy, Elts); 2698 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2699 Type *EltTy = ATy->getElementType(); 2700 for (unsigned i = 0; i != Size; ++i) 2701 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2702 V = ConstantArray::get(ATy, Elts); 2703 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2704 Type *EltTy = VTy->getElementType(); 2705 for (unsigned i = 0; i != Size; ++i) 2706 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2707 V = ConstantVector::get(Elts); 2708 } else { 2709 V = UndefValue::get(CurTy); 2710 } 2711 break; 2712 } 2713 case bitc::CST_CODE_STRING: // STRING: [values] 2714 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2715 if (Record.empty()) 2716 return error("Invalid record"); 2717 2718 SmallString<16> Elts(Record.begin(), Record.end()); 2719 V = ConstantDataArray::getString(Context, Elts, 2720 BitCode == bitc::CST_CODE_CSTRING); 2721 break; 2722 } 2723 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2724 if (Record.empty()) 2725 return error("Invalid record"); 2726 2727 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2728 if (EltTy->isIntegerTy(8)) { 2729 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2730 if (isa<VectorType>(CurTy)) 2731 V = ConstantDataVector::get(Context, Elts); 2732 else 2733 V = ConstantDataArray::get(Context, Elts); 2734 } else if (EltTy->isIntegerTy(16)) { 2735 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2736 if (isa<VectorType>(CurTy)) 2737 V = ConstantDataVector::get(Context, Elts); 2738 else 2739 V = ConstantDataArray::get(Context, Elts); 2740 } else if (EltTy->isIntegerTy(32)) { 2741 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2742 if (isa<VectorType>(CurTy)) 2743 V = ConstantDataVector::get(Context, Elts); 2744 else 2745 V = ConstantDataArray::get(Context, Elts); 2746 } else if (EltTy->isIntegerTy(64)) { 2747 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2748 if (isa<VectorType>(CurTy)) 2749 V = ConstantDataVector::get(Context, Elts); 2750 else 2751 V = ConstantDataArray::get(Context, Elts); 2752 } else if (EltTy->isHalfTy()) { 2753 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2754 if (isa<VectorType>(CurTy)) 2755 V = ConstantDataVector::getFP(Context, Elts); 2756 else 2757 V = ConstantDataArray::getFP(Context, Elts); 2758 } else if (EltTy->isFloatTy()) { 2759 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2760 if (isa<VectorType>(CurTy)) 2761 V = ConstantDataVector::getFP(Context, Elts); 2762 else 2763 V = ConstantDataArray::getFP(Context, Elts); 2764 } else if (EltTy->isDoubleTy()) { 2765 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2766 if (isa<VectorType>(CurTy)) 2767 V = ConstantDataVector::getFP(Context, Elts); 2768 else 2769 V = ConstantDataArray::getFP(Context, Elts); 2770 } else { 2771 return error("Invalid type for value"); 2772 } 2773 break; 2774 } 2775 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2776 if (Record.size() < 3) 2777 return error("Invalid record"); 2778 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2779 if (Opc < 0) { 2780 V = UndefValue::get(CurTy); // Unknown binop. 2781 } else { 2782 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2783 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2784 unsigned Flags = 0; 2785 if (Record.size() >= 4) { 2786 if (Opc == Instruction::Add || 2787 Opc == Instruction::Sub || 2788 Opc == Instruction::Mul || 2789 Opc == Instruction::Shl) { 2790 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2791 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2792 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2793 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2794 } else if (Opc == Instruction::SDiv || 2795 Opc == Instruction::UDiv || 2796 Opc == Instruction::LShr || 2797 Opc == Instruction::AShr) { 2798 if (Record[3] & (1 << bitc::PEO_EXACT)) 2799 Flags |= SDivOperator::IsExact; 2800 } 2801 } 2802 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2803 } 2804 break; 2805 } 2806 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2807 if (Record.size() < 3) 2808 return error("Invalid record"); 2809 int Opc = getDecodedCastOpcode(Record[0]); 2810 if (Opc < 0) { 2811 V = UndefValue::get(CurTy); // Unknown cast. 2812 } else { 2813 Type *OpTy = getTypeByID(Record[1]); 2814 if (!OpTy) 2815 return error("Invalid record"); 2816 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2817 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2818 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2819 } 2820 break; 2821 } 2822 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2823 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2824 unsigned OpNum = 0; 2825 Type *PointeeType = nullptr; 2826 if (Record.size() % 2) 2827 PointeeType = getTypeByID(Record[OpNum++]); 2828 SmallVector<Constant*, 16> Elts; 2829 while (OpNum != Record.size()) { 2830 Type *ElTy = getTypeByID(Record[OpNum++]); 2831 if (!ElTy) 2832 return error("Invalid record"); 2833 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2834 } 2835 2836 if (PointeeType && 2837 PointeeType != 2838 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2839 ->getElementType()) 2840 return error("Explicit gep operator type does not match pointee type " 2841 "of pointer operand"); 2842 2843 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2844 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2845 BitCode == 2846 bitc::CST_CODE_CE_INBOUNDS_GEP); 2847 break; 2848 } 2849 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2850 if (Record.size() < 3) 2851 return error("Invalid record"); 2852 2853 Type *SelectorTy = Type::getInt1Ty(Context); 2854 2855 // The selector might be an i1 or an <n x i1> 2856 // Get the type from the ValueList before getting a forward ref. 2857 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2858 if (Value *V = ValueList[Record[0]]) 2859 if (SelectorTy != V->getType()) 2860 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2861 2862 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2863 SelectorTy), 2864 ValueList.getConstantFwdRef(Record[1],CurTy), 2865 ValueList.getConstantFwdRef(Record[2],CurTy)); 2866 break; 2867 } 2868 case bitc::CST_CODE_CE_EXTRACTELT 2869 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2870 if (Record.size() < 3) 2871 return error("Invalid record"); 2872 VectorType *OpTy = 2873 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2874 if (!OpTy) 2875 return error("Invalid record"); 2876 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2877 Constant *Op1 = nullptr; 2878 if (Record.size() == 4) { 2879 Type *IdxTy = getTypeByID(Record[2]); 2880 if (!IdxTy) 2881 return error("Invalid record"); 2882 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2883 } else // TODO: Remove with llvm 4.0 2884 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2885 if (!Op1) 2886 return error("Invalid record"); 2887 V = ConstantExpr::getExtractElement(Op0, Op1); 2888 break; 2889 } 2890 case bitc::CST_CODE_CE_INSERTELT 2891 : { // CE_INSERTELT: [opval, opval, opty, opval] 2892 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2893 if (Record.size() < 3 || !OpTy) 2894 return error("Invalid record"); 2895 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2896 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2897 OpTy->getElementType()); 2898 Constant *Op2 = nullptr; 2899 if (Record.size() == 4) { 2900 Type *IdxTy = getTypeByID(Record[2]); 2901 if (!IdxTy) 2902 return error("Invalid record"); 2903 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2904 } else // TODO: Remove with llvm 4.0 2905 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2906 if (!Op2) 2907 return error("Invalid record"); 2908 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2909 break; 2910 } 2911 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2912 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2913 if (Record.size() < 3 || !OpTy) 2914 return error("Invalid record"); 2915 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2916 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2917 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2918 OpTy->getNumElements()); 2919 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2920 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2921 break; 2922 } 2923 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2924 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2925 VectorType *OpTy = 2926 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2927 if (Record.size() < 4 || !RTy || !OpTy) 2928 return error("Invalid record"); 2929 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2930 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2931 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2932 RTy->getNumElements()); 2933 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2934 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2935 break; 2936 } 2937 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2938 if (Record.size() < 4) 2939 return error("Invalid record"); 2940 Type *OpTy = getTypeByID(Record[0]); 2941 if (!OpTy) 2942 return error("Invalid record"); 2943 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2944 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2945 2946 if (OpTy->isFPOrFPVectorTy()) 2947 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2948 else 2949 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2950 break; 2951 } 2952 // This maintains backward compatibility, pre-asm dialect keywords. 2953 // FIXME: Remove with the 4.0 release. 2954 case bitc::CST_CODE_INLINEASM_OLD: { 2955 if (Record.size() < 2) 2956 return error("Invalid record"); 2957 std::string AsmStr, ConstrStr; 2958 bool HasSideEffects = Record[0] & 1; 2959 bool IsAlignStack = Record[0] >> 1; 2960 unsigned AsmStrSize = Record[1]; 2961 if (2+AsmStrSize >= Record.size()) 2962 return error("Invalid record"); 2963 unsigned ConstStrSize = Record[2+AsmStrSize]; 2964 if (3+AsmStrSize+ConstStrSize > Record.size()) 2965 return error("Invalid record"); 2966 2967 for (unsigned i = 0; i != AsmStrSize; ++i) 2968 AsmStr += (char)Record[2+i]; 2969 for (unsigned i = 0; i != ConstStrSize; ++i) 2970 ConstrStr += (char)Record[3+AsmStrSize+i]; 2971 PointerType *PTy = cast<PointerType>(CurTy); 2972 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2973 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2974 break; 2975 } 2976 // This version adds support for the asm dialect keywords (e.g., 2977 // inteldialect). 2978 case bitc::CST_CODE_INLINEASM: { 2979 if (Record.size() < 2) 2980 return error("Invalid record"); 2981 std::string AsmStr, ConstrStr; 2982 bool HasSideEffects = Record[0] & 1; 2983 bool IsAlignStack = (Record[0] >> 1) & 1; 2984 unsigned AsmDialect = Record[0] >> 2; 2985 unsigned AsmStrSize = Record[1]; 2986 if (2+AsmStrSize >= Record.size()) 2987 return error("Invalid record"); 2988 unsigned ConstStrSize = Record[2+AsmStrSize]; 2989 if (3+AsmStrSize+ConstStrSize > Record.size()) 2990 return error("Invalid record"); 2991 2992 for (unsigned i = 0; i != AsmStrSize; ++i) 2993 AsmStr += (char)Record[2+i]; 2994 for (unsigned i = 0; i != ConstStrSize; ++i) 2995 ConstrStr += (char)Record[3+AsmStrSize+i]; 2996 PointerType *PTy = cast<PointerType>(CurTy); 2997 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2998 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2999 InlineAsm::AsmDialect(AsmDialect)); 3000 break; 3001 } 3002 case bitc::CST_CODE_BLOCKADDRESS:{ 3003 if (Record.size() < 3) 3004 return error("Invalid record"); 3005 Type *FnTy = getTypeByID(Record[0]); 3006 if (!FnTy) 3007 return error("Invalid record"); 3008 Function *Fn = 3009 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3010 if (!Fn) 3011 return error("Invalid record"); 3012 3013 // If the function is already parsed we can insert the block address right 3014 // away. 3015 BasicBlock *BB; 3016 unsigned BBID = Record[2]; 3017 if (!BBID) 3018 // Invalid reference to entry block. 3019 return error("Invalid ID"); 3020 if (!Fn->empty()) { 3021 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3022 for (size_t I = 0, E = BBID; I != E; ++I) { 3023 if (BBI == BBE) 3024 return error("Invalid ID"); 3025 ++BBI; 3026 } 3027 BB = &*BBI; 3028 } else { 3029 // Otherwise insert a placeholder and remember it so it can be inserted 3030 // when the function is parsed. 3031 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3032 if (FwdBBs.empty()) 3033 BasicBlockFwdRefQueue.push_back(Fn); 3034 if (FwdBBs.size() < BBID + 1) 3035 FwdBBs.resize(BBID + 1); 3036 if (!FwdBBs[BBID]) 3037 FwdBBs[BBID] = BasicBlock::Create(Context); 3038 BB = FwdBBs[BBID]; 3039 } 3040 V = BlockAddress::get(Fn, BB); 3041 break; 3042 } 3043 } 3044 3045 ValueList.assignValue(V, NextCstNo); 3046 ++NextCstNo; 3047 } 3048 } 3049 3050 std::error_code BitcodeReader::parseUseLists() { 3051 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3052 return error("Invalid record"); 3053 3054 // Read all the records. 3055 SmallVector<uint64_t, 64> Record; 3056 while (1) { 3057 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3058 3059 switch (Entry.Kind) { 3060 case BitstreamEntry::SubBlock: // Handled for us already. 3061 case BitstreamEntry::Error: 3062 return error("Malformed block"); 3063 case BitstreamEntry::EndBlock: 3064 return std::error_code(); 3065 case BitstreamEntry::Record: 3066 // The interesting case. 3067 break; 3068 } 3069 3070 // Read a use list record. 3071 Record.clear(); 3072 bool IsBB = false; 3073 switch (Stream.readRecord(Entry.ID, Record)) { 3074 default: // Default behavior: unknown type. 3075 break; 3076 case bitc::USELIST_CODE_BB: 3077 IsBB = true; 3078 // fallthrough 3079 case bitc::USELIST_CODE_DEFAULT: { 3080 unsigned RecordLength = Record.size(); 3081 if (RecordLength < 3) 3082 // Records should have at least an ID and two indexes. 3083 return error("Invalid record"); 3084 unsigned ID = Record.back(); 3085 Record.pop_back(); 3086 3087 Value *V; 3088 if (IsBB) { 3089 assert(ID < FunctionBBs.size() && "Basic block not found"); 3090 V = FunctionBBs[ID]; 3091 } else 3092 V = ValueList[ID]; 3093 unsigned NumUses = 0; 3094 SmallDenseMap<const Use *, unsigned, 16> Order; 3095 for (const Use &U : V->materialized_uses()) { 3096 if (++NumUses > Record.size()) 3097 break; 3098 Order[&U] = Record[NumUses - 1]; 3099 } 3100 if (Order.size() != Record.size() || NumUses > Record.size()) 3101 // Mismatches can happen if the functions are being materialized lazily 3102 // (out-of-order), or a value has been upgraded. 3103 break; 3104 3105 V->sortUseList([&](const Use &L, const Use &R) { 3106 return Order.lookup(&L) < Order.lookup(&R); 3107 }); 3108 break; 3109 } 3110 } 3111 } 3112 } 3113 3114 /// When we see the block for metadata, remember where it is and then skip it. 3115 /// This lets us lazily deserialize the metadata. 3116 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3117 // Save the current stream state. 3118 uint64_t CurBit = Stream.GetCurrentBitNo(); 3119 DeferredMetadataInfo.push_back(CurBit); 3120 3121 // Skip over the block for now. 3122 if (Stream.SkipBlock()) 3123 return error("Invalid record"); 3124 return std::error_code(); 3125 } 3126 3127 std::error_code BitcodeReader::materializeMetadata() { 3128 for (uint64_t BitPos : DeferredMetadataInfo) { 3129 // Move the bit stream to the saved position. 3130 Stream.JumpToBit(BitPos); 3131 if (std::error_code EC = parseMetadata(true)) 3132 return EC; 3133 } 3134 DeferredMetadataInfo.clear(); 3135 return std::error_code(); 3136 } 3137 3138 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3139 3140 /// When we see the block for a function body, remember where it is and then 3141 /// skip it. This lets us lazily deserialize the functions. 3142 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3143 // Get the function we are talking about. 3144 if (FunctionsWithBodies.empty()) 3145 return error("Insufficient function protos"); 3146 3147 Function *Fn = FunctionsWithBodies.back(); 3148 FunctionsWithBodies.pop_back(); 3149 3150 // Save the current stream state. 3151 uint64_t CurBit = Stream.GetCurrentBitNo(); 3152 assert( 3153 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3154 "Mismatch between VST and scanned function offsets"); 3155 DeferredFunctionInfo[Fn] = CurBit; 3156 3157 // Skip over the function block for now. 3158 if (Stream.SkipBlock()) 3159 return error("Invalid record"); 3160 return std::error_code(); 3161 } 3162 3163 std::error_code BitcodeReader::globalCleanup() { 3164 // Patch the initializers for globals and aliases up. 3165 resolveGlobalAndIndirectSymbolInits(); 3166 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3167 return error("Malformed global initializer set"); 3168 3169 // Look for intrinsic functions which need to be upgraded at some point 3170 for (Function &F : *TheModule) { 3171 Function *NewFn; 3172 if (UpgradeIntrinsicFunction(&F, NewFn)) 3173 UpgradedIntrinsics[&F] = NewFn; 3174 } 3175 3176 // Look for global variables which need to be renamed. 3177 for (GlobalVariable &GV : TheModule->globals()) 3178 UpgradeGlobalVariable(&GV); 3179 3180 // Force deallocation of memory for these vectors to favor the client that 3181 // want lazy deserialization. 3182 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3183 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3184 IndirectSymbolInits); 3185 return std::error_code(); 3186 } 3187 3188 /// Support for lazy parsing of function bodies. This is required if we 3189 /// either have an old bitcode file without a VST forward declaration record, 3190 /// or if we have an anonymous function being materialized, since anonymous 3191 /// functions do not have a name and are therefore not in the VST. 3192 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3193 Stream.JumpToBit(NextUnreadBit); 3194 3195 if (Stream.AtEndOfStream()) 3196 return error("Could not find function in stream"); 3197 3198 if (!SeenFirstFunctionBody) 3199 return error("Trying to materialize functions before seeing function blocks"); 3200 3201 // An old bitcode file with the symbol table at the end would have 3202 // finished the parse greedily. 3203 assert(SeenValueSymbolTable); 3204 3205 SmallVector<uint64_t, 64> Record; 3206 3207 while (1) { 3208 BitstreamEntry Entry = Stream.advance(); 3209 switch (Entry.Kind) { 3210 default: 3211 return error("Expect SubBlock"); 3212 case BitstreamEntry::SubBlock: 3213 switch (Entry.ID) { 3214 default: 3215 return error("Expect function block"); 3216 case bitc::FUNCTION_BLOCK_ID: 3217 if (std::error_code EC = rememberAndSkipFunctionBody()) 3218 return EC; 3219 NextUnreadBit = Stream.GetCurrentBitNo(); 3220 return std::error_code(); 3221 } 3222 } 3223 } 3224 } 3225 3226 std::error_code BitcodeReader::parseBitcodeVersion() { 3227 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3228 return error("Invalid record"); 3229 3230 // Read all the records. 3231 SmallVector<uint64_t, 64> Record; 3232 while (1) { 3233 BitstreamEntry Entry = Stream.advance(); 3234 3235 switch (Entry.Kind) { 3236 default: 3237 case BitstreamEntry::Error: 3238 return error("Malformed block"); 3239 case BitstreamEntry::EndBlock: 3240 return std::error_code(); 3241 case BitstreamEntry::Record: 3242 // The interesting case. 3243 break; 3244 } 3245 3246 // Read a record. 3247 Record.clear(); 3248 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3249 switch (BitCode) { 3250 default: // Default behavior: reject 3251 return error("Invalid value"); 3252 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3253 // N] 3254 convertToString(Record, 0, ProducerIdentification); 3255 break; 3256 } 3257 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3258 unsigned epoch = (unsigned)Record[0]; 3259 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3260 return error( 3261 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3262 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3263 } 3264 } 3265 } 3266 } 3267 } 3268 3269 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3270 bool ShouldLazyLoadMetadata) { 3271 if (ResumeBit) 3272 Stream.JumpToBit(ResumeBit); 3273 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3274 return error("Invalid record"); 3275 3276 SmallVector<uint64_t, 64> Record; 3277 std::vector<std::string> SectionTable; 3278 std::vector<std::string> GCTable; 3279 3280 // Read all the records for this module. 3281 while (1) { 3282 BitstreamEntry Entry = Stream.advance(); 3283 3284 switch (Entry.Kind) { 3285 case BitstreamEntry::Error: 3286 return error("Malformed block"); 3287 case BitstreamEntry::EndBlock: 3288 return globalCleanup(); 3289 3290 case BitstreamEntry::SubBlock: 3291 switch (Entry.ID) { 3292 default: // Skip unknown content. 3293 if (Stream.SkipBlock()) 3294 return error("Invalid record"); 3295 break; 3296 case bitc::BLOCKINFO_BLOCK_ID: 3297 if (Stream.ReadBlockInfoBlock()) 3298 return error("Malformed block"); 3299 break; 3300 case bitc::PARAMATTR_BLOCK_ID: 3301 if (std::error_code EC = parseAttributeBlock()) 3302 return EC; 3303 break; 3304 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3305 if (std::error_code EC = parseAttributeGroupBlock()) 3306 return EC; 3307 break; 3308 case bitc::TYPE_BLOCK_ID_NEW: 3309 if (std::error_code EC = parseTypeTable()) 3310 return EC; 3311 break; 3312 case bitc::VALUE_SYMTAB_BLOCK_ID: 3313 if (!SeenValueSymbolTable) { 3314 // Either this is an old form VST without function index and an 3315 // associated VST forward declaration record (which would have caused 3316 // the VST to be jumped to and parsed before it was encountered 3317 // normally in the stream), or there were no function blocks to 3318 // trigger an earlier parsing of the VST. 3319 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3320 if (std::error_code EC = parseValueSymbolTable()) 3321 return EC; 3322 SeenValueSymbolTable = true; 3323 } else { 3324 // We must have had a VST forward declaration record, which caused 3325 // the parser to jump to and parse the VST earlier. 3326 assert(VSTOffset > 0); 3327 if (Stream.SkipBlock()) 3328 return error("Invalid record"); 3329 } 3330 break; 3331 case bitc::CONSTANTS_BLOCK_ID: 3332 if (std::error_code EC = parseConstants()) 3333 return EC; 3334 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3335 return EC; 3336 break; 3337 case bitc::METADATA_BLOCK_ID: 3338 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3339 if (std::error_code EC = rememberAndSkipMetadata()) 3340 return EC; 3341 break; 3342 } 3343 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3344 if (std::error_code EC = parseMetadata(true)) 3345 return EC; 3346 break; 3347 case bitc::METADATA_KIND_BLOCK_ID: 3348 if (std::error_code EC = parseMetadataKinds()) 3349 return EC; 3350 break; 3351 case bitc::FUNCTION_BLOCK_ID: 3352 // If this is the first function body we've seen, reverse the 3353 // FunctionsWithBodies list. 3354 if (!SeenFirstFunctionBody) { 3355 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3356 if (std::error_code EC = globalCleanup()) 3357 return EC; 3358 SeenFirstFunctionBody = true; 3359 } 3360 3361 if (VSTOffset > 0) { 3362 // If we have a VST forward declaration record, make sure we 3363 // parse the VST now if we haven't already. It is needed to 3364 // set up the DeferredFunctionInfo vector for lazy reading. 3365 if (!SeenValueSymbolTable) { 3366 if (std::error_code EC = 3367 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3368 return EC; 3369 SeenValueSymbolTable = true; 3370 // Fall through so that we record the NextUnreadBit below. 3371 // This is necessary in case we have an anonymous function that 3372 // is later materialized. Since it will not have a VST entry we 3373 // need to fall back to the lazy parse to find its offset. 3374 } else { 3375 // If we have a VST forward declaration record, but have already 3376 // parsed the VST (just above, when the first function body was 3377 // encountered here), then we are resuming the parse after 3378 // materializing functions. The ResumeBit points to the 3379 // start of the last function block recorded in the 3380 // DeferredFunctionInfo map. Skip it. 3381 if (Stream.SkipBlock()) 3382 return error("Invalid record"); 3383 continue; 3384 } 3385 } 3386 3387 // Support older bitcode files that did not have the function 3388 // index in the VST, nor a VST forward declaration record, as 3389 // well as anonymous functions that do not have VST entries. 3390 // Build the DeferredFunctionInfo vector on the fly. 3391 if (std::error_code EC = rememberAndSkipFunctionBody()) 3392 return EC; 3393 3394 // Suspend parsing when we reach the function bodies. Subsequent 3395 // materialization calls will resume it when necessary. If the bitcode 3396 // file is old, the symbol table will be at the end instead and will not 3397 // have been seen yet. In this case, just finish the parse now. 3398 if (SeenValueSymbolTable) { 3399 NextUnreadBit = Stream.GetCurrentBitNo(); 3400 return std::error_code(); 3401 } 3402 break; 3403 case bitc::USELIST_BLOCK_ID: 3404 if (std::error_code EC = parseUseLists()) 3405 return EC; 3406 break; 3407 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3408 if (std::error_code EC = parseOperandBundleTags()) 3409 return EC; 3410 break; 3411 } 3412 continue; 3413 3414 case BitstreamEntry::Record: 3415 // The interesting case. 3416 break; 3417 } 3418 3419 // Read a record. 3420 auto BitCode = Stream.readRecord(Entry.ID, Record); 3421 switch (BitCode) { 3422 default: break; // Default behavior, ignore unknown content. 3423 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3424 if (Record.size() < 1) 3425 return error("Invalid record"); 3426 // Only version #0 and #1 are supported so far. 3427 unsigned module_version = Record[0]; 3428 switch (module_version) { 3429 default: 3430 return error("Invalid value"); 3431 case 0: 3432 UseRelativeIDs = false; 3433 break; 3434 case 1: 3435 UseRelativeIDs = true; 3436 break; 3437 } 3438 break; 3439 } 3440 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3441 std::string S; 3442 if (convertToString(Record, 0, S)) 3443 return error("Invalid record"); 3444 TheModule->setTargetTriple(S); 3445 break; 3446 } 3447 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3448 std::string S; 3449 if (convertToString(Record, 0, S)) 3450 return error("Invalid record"); 3451 TheModule->setDataLayout(S); 3452 break; 3453 } 3454 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3455 std::string S; 3456 if (convertToString(Record, 0, S)) 3457 return error("Invalid record"); 3458 TheModule->setModuleInlineAsm(S); 3459 break; 3460 } 3461 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3462 // FIXME: Remove in 4.0. 3463 std::string S; 3464 if (convertToString(Record, 0, S)) 3465 return error("Invalid record"); 3466 // Ignore value. 3467 break; 3468 } 3469 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3470 std::string S; 3471 if (convertToString(Record, 0, S)) 3472 return error("Invalid record"); 3473 SectionTable.push_back(S); 3474 break; 3475 } 3476 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3477 std::string S; 3478 if (convertToString(Record, 0, S)) 3479 return error("Invalid record"); 3480 GCTable.push_back(S); 3481 break; 3482 } 3483 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3484 if (Record.size() < 2) 3485 return error("Invalid record"); 3486 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3487 unsigned ComdatNameSize = Record[1]; 3488 std::string ComdatName; 3489 ComdatName.reserve(ComdatNameSize); 3490 for (unsigned i = 0; i != ComdatNameSize; ++i) 3491 ComdatName += (char)Record[2 + i]; 3492 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3493 C->setSelectionKind(SK); 3494 ComdatList.push_back(C); 3495 break; 3496 } 3497 // GLOBALVAR: [pointer type, isconst, initid, 3498 // linkage, alignment, section, visibility, threadlocal, 3499 // unnamed_addr, externally_initialized, dllstorageclass, 3500 // comdat] 3501 case bitc::MODULE_CODE_GLOBALVAR: { 3502 if (Record.size() < 6) 3503 return error("Invalid record"); 3504 Type *Ty = getTypeByID(Record[0]); 3505 if (!Ty) 3506 return error("Invalid record"); 3507 bool isConstant = Record[1] & 1; 3508 bool explicitType = Record[1] & 2; 3509 unsigned AddressSpace; 3510 if (explicitType) { 3511 AddressSpace = Record[1] >> 2; 3512 } else { 3513 if (!Ty->isPointerTy()) 3514 return error("Invalid type for value"); 3515 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3516 Ty = cast<PointerType>(Ty)->getElementType(); 3517 } 3518 3519 uint64_t RawLinkage = Record[3]; 3520 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3521 unsigned Alignment; 3522 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3523 return EC; 3524 std::string Section; 3525 if (Record[5]) { 3526 if (Record[5]-1 >= SectionTable.size()) 3527 return error("Invalid ID"); 3528 Section = SectionTable[Record[5]-1]; 3529 } 3530 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3531 // Local linkage must have default visibility. 3532 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3533 // FIXME: Change to an error if non-default in 4.0. 3534 Visibility = getDecodedVisibility(Record[6]); 3535 3536 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3537 if (Record.size() > 7) 3538 TLM = getDecodedThreadLocalMode(Record[7]); 3539 3540 bool UnnamedAddr = false; 3541 if (Record.size() > 8) 3542 UnnamedAddr = Record[8]; 3543 3544 bool ExternallyInitialized = false; 3545 if (Record.size() > 9) 3546 ExternallyInitialized = Record[9]; 3547 3548 GlobalVariable *NewGV = 3549 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3550 TLM, AddressSpace, ExternallyInitialized); 3551 NewGV->setAlignment(Alignment); 3552 if (!Section.empty()) 3553 NewGV->setSection(Section); 3554 NewGV->setVisibility(Visibility); 3555 NewGV->setUnnamedAddr(UnnamedAddr); 3556 3557 if (Record.size() > 10) 3558 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3559 else 3560 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3561 3562 ValueList.push_back(NewGV); 3563 3564 // Remember which value to use for the global initializer. 3565 if (unsigned InitID = Record[2]) 3566 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3567 3568 if (Record.size() > 11) { 3569 if (unsigned ComdatID = Record[11]) { 3570 if (ComdatID > ComdatList.size()) 3571 return error("Invalid global variable comdat ID"); 3572 NewGV->setComdat(ComdatList[ComdatID - 1]); 3573 } 3574 } else if (hasImplicitComdat(RawLinkage)) { 3575 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3576 } 3577 break; 3578 } 3579 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3580 // alignment, section, visibility, gc, unnamed_addr, 3581 // prologuedata, dllstorageclass, comdat, prefixdata] 3582 case bitc::MODULE_CODE_FUNCTION: { 3583 if (Record.size() < 8) 3584 return error("Invalid record"); 3585 Type *Ty = getTypeByID(Record[0]); 3586 if (!Ty) 3587 return error("Invalid record"); 3588 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3589 Ty = PTy->getElementType(); 3590 auto *FTy = dyn_cast<FunctionType>(Ty); 3591 if (!FTy) 3592 return error("Invalid type for value"); 3593 auto CC = static_cast<CallingConv::ID>(Record[1]); 3594 if (CC & ~CallingConv::MaxID) 3595 return error("Invalid calling convention ID"); 3596 3597 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3598 "", TheModule); 3599 3600 Func->setCallingConv(CC); 3601 bool isProto = Record[2]; 3602 uint64_t RawLinkage = Record[3]; 3603 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3604 Func->setAttributes(getAttributes(Record[4])); 3605 3606 unsigned Alignment; 3607 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3608 return EC; 3609 Func->setAlignment(Alignment); 3610 if (Record[6]) { 3611 if (Record[6]-1 >= SectionTable.size()) 3612 return error("Invalid ID"); 3613 Func->setSection(SectionTable[Record[6]-1]); 3614 } 3615 // Local linkage must have default visibility. 3616 if (!Func->hasLocalLinkage()) 3617 // FIXME: Change to an error if non-default in 4.0. 3618 Func->setVisibility(getDecodedVisibility(Record[7])); 3619 if (Record.size() > 8 && Record[8]) { 3620 if (Record[8]-1 >= GCTable.size()) 3621 return error("Invalid ID"); 3622 Func->setGC(GCTable[Record[8]-1].c_str()); 3623 } 3624 bool UnnamedAddr = false; 3625 if (Record.size() > 9) 3626 UnnamedAddr = Record[9]; 3627 Func->setUnnamedAddr(UnnamedAddr); 3628 if (Record.size() > 10 && Record[10] != 0) 3629 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3630 3631 if (Record.size() > 11) 3632 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3633 else 3634 upgradeDLLImportExportLinkage(Func, RawLinkage); 3635 3636 if (Record.size() > 12) { 3637 if (unsigned ComdatID = Record[12]) { 3638 if (ComdatID > ComdatList.size()) 3639 return error("Invalid function comdat ID"); 3640 Func->setComdat(ComdatList[ComdatID - 1]); 3641 } 3642 } else if (hasImplicitComdat(RawLinkage)) { 3643 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3644 } 3645 3646 if (Record.size() > 13 && Record[13] != 0) 3647 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3648 3649 if (Record.size() > 14 && Record[14] != 0) 3650 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3651 3652 ValueList.push_back(Func); 3653 3654 // If this is a function with a body, remember the prototype we are 3655 // creating now, so that we can match up the body with them later. 3656 if (!isProto) { 3657 Func->setIsMaterializable(true); 3658 FunctionsWithBodies.push_back(Func); 3659 DeferredFunctionInfo[Func] = 0; 3660 } 3661 break; 3662 } 3663 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3664 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3665 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3666 case bitc::MODULE_CODE_IFUNC: 3667 case bitc::MODULE_CODE_ALIAS: 3668 case bitc::MODULE_CODE_ALIAS_OLD: { 3669 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3670 if (Record.size() < (3 + (unsigned)NewRecord)) 3671 return error("Invalid record"); 3672 unsigned OpNum = 0; 3673 Type *Ty = getTypeByID(Record[OpNum++]); 3674 if (!Ty) 3675 return error("Invalid record"); 3676 3677 unsigned AddrSpace; 3678 if (!NewRecord) { 3679 auto *PTy = dyn_cast<PointerType>(Ty); 3680 if (!PTy) 3681 return error("Invalid type for value"); 3682 Ty = PTy->getElementType(); 3683 AddrSpace = PTy->getAddressSpace(); 3684 } else { 3685 AddrSpace = Record[OpNum++]; 3686 } 3687 3688 auto Val = Record[OpNum++]; 3689 auto Linkage = Record[OpNum++]; 3690 GlobalIndirectSymbol *NewGA; 3691 if (BitCode == bitc::MODULE_CODE_ALIAS || 3692 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3693 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3694 "", TheModule); 3695 else 3696 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3697 "", nullptr, TheModule); 3698 // Old bitcode files didn't have visibility field. 3699 // Local linkage must have default visibility. 3700 if (OpNum != Record.size()) { 3701 auto VisInd = OpNum++; 3702 if (!NewGA->hasLocalLinkage()) 3703 // FIXME: Change to an error if non-default in 4.0. 3704 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3705 } 3706 if (OpNum != Record.size()) 3707 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3708 else 3709 upgradeDLLImportExportLinkage(NewGA, Linkage); 3710 if (OpNum != Record.size()) 3711 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3712 if (OpNum != Record.size()) 3713 NewGA->setUnnamedAddr(Record[OpNum++]); 3714 ValueList.push_back(NewGA); 3715 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3716 break; 3717 } 3718 /// MODULE_CODE_PURGEVALS: [numvals] 3719 case bitc::MODULE_CODE_PURGEVALS: 3720 // Trim down the value list to the specified size. 3721 if (Record.size() < 1 || Record[0] > ValueList.size()) 3722 return error("Invalid record"); 3723 ValueList.shrinkTo(Record[0]); 3724 break; 3725 /// MODULE_CODE_VSTOFFSET: [offset] 3726 case bitc::MODULE_CODE_VSTOFFSET: 3727 if (Record.size() < 1) 3728 return error("Invalid record"); 3729 VSTOffset = Record[0]; 3730 break; 3731 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3732 case bitc::MODULE_CODE_SOURCE_FILENAME: 3733 SmallString<128> ValueName; 3734 if (convertToString(Record, 0, ValueName)) 3735 return error("Invalid record"); 3736 TheModule->setSourceFileName(ValueName); 3737 break; 3738 } 3739 Record.clear(); 3740 } 3741 } 3742 3743 /// Helper to read the header common to all bitcode files. 3744 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3745 // Sniff for the signature. 3746 if (Stream.Read(8) != 'B' || 3747 Stream.Read(8) != 'C' || 3748 Stream.Read(4) != 0x0 || 3749 Stream.Read(4) != 0xC || 3750 Stream.Read(4) != 0xE || 3751 Stream.Read(4) != 0xD) 3752 return false; 3753 return true; 3754 } 3755 3756 std::error_code 3757 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3758 Module *M, bool ShouldLazyLoadMetadata) { 3759 TheModule = M; 3760 3761 if (std::error_code EC = initStream(std::move(Streamer))) 3762 return EC; 3763 3764 // Sniff for the signature. 3765 if (!hasValidBitcodeHeader(Stream)) 3766 return error("Invalid bitcode signature"); 3767 3768 // We expect a number of well-defined blocks, though we don't necessarily 3769 // need to understand them all. 3770 while (1) { 3771 if (Stream.AtEndOfStream()) { 3772 // We didn't really read a proper Module. 3773 return error("Malformed IR file"); 3774 } 3775 3776 BitstreamEntry Entry = 3777 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3778 3779 if (Entry.Kind != BitstreamEntry::SubBlock) 3780 return error("Malformed block"); 3781 3782 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3783 parseBitcodeVersion(); 3784 continue; 3785 } 3786 3787 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3788 return parseModule(0, ShouldLazyLoadMetadata); 3789 3790 if (Stream.SkipBlock()) 3791 return error("Invalid record"); 3792 } 3793 } 3794 3795 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3796 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3797 return error("Invalid record"); 3798 3799 SmallVector<uint64_t, 64> Record; 3800 3801 std::string Triple; 3802 // Read all the records for this module. 3803 while (1) { 3804 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3805 3806 switch (Entry.Kind) { 3807 case BitstreamEntry::SubBlock: // Handled for us already. 3808 case BitstreamEntry::Error: 3809 return error("Malformed block"); 3810 case BitstreamEntry::EndBlock: 3811 return Triple; 3812 case BitstreamEntry::Record: 3813 // The interesting case. 3814 break; 3815 } 3816 3817 // Read a record. 3818 switch (Stream.readRecord(Entry.ID, Record)) { 3819 default: break; // Default behavior, ignore unknown content. 3820 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3821 std::string S; 3822 if (convertToString(Record, 0, S)) 3823 return error("Invalid record"); 3824 Triple = S; 3825 break; 3826 } 3827 } 3828 Record.clear(); 3829 } 3830 llvm_unreachable("Exit infinite loop"); 3831 } 3832 3833 ErrorOr<std::string> BitcodeReader::parseTriple() { 3834 if (std::error_code EC = initStream(nullptr)) 3835 return EC; 3836 3837 // Sniff for the signature. 3838 if (!hasValidBitcodeHeader(Stream)) 3839 return error("Invalid bitcode signature"); 3840 3841 // We expect a number of well-defined blocks, though we don't necessarily 3842 // need to understand them all. 3843 while (1) { 3844 BitstreamEntry Entry = Stream.advance(); 3845 3846 switch (Entry.Kind) { 3847 case BitstreamEntry::Error: 3848 return error("Malformed block"); 3849 case BitstreamEntry::EndBlock: 3850 return std::error_code(); 3851 3852 case BitstreamEntry::SubBlock: 3853 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3854 return parseModuleTriple(); 3855 3856 // Ignore other sub-blocks. 3857 if (Stream.SkipBlock()) 3858 return error("Malformed block"); 3859 continue; 3860 3861 case BitstreamEntry::Record: 3862 Stream.skipRecord(Entry.ID); 3863 continue; 3864 } 3865 } 3866 } 3867 3868 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3869 if (std::error_code EC = initStream(nullptr)) 3870 return EC; 3871 3872 // Sniff for the signature. 3873 if (!hasValidBitcodeHeader(Stream)) 3874 return error("Invalid bitcode signature"); 3875 3876 // We expect a number of well-defined blocks, though we don't necessarily 3877 // need to understand them all. 3878 while (1) { 3879 BitstreamEntry Entry = Stream.advance(); 3880 switch (Entry.Kind) { 3881 case BitstreamEntry::Error: 3882 return error("Malformed block"); 3883 case BitstreamEntry::EndBlock: 3884 return std::error_code(); 3885 3886 case BitstreamEntry::SubBlock: 3887 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3888 if (std::error_code EC = parseBitcodeVersion()) 3889 return EC; 3890 return ProducerIdentification; 3891 } 3892 // Ignore other sub-blocks. 3893 if (Stream.SkipBlock()) 3894 return error("Malformed block"); 3895 continue; 3896 case BitstreamEntry::Record: 3897 Stream.skipRecord(Entry.ID); 3898 continue; 3899 } 3900 } 3901 } 3902 3903 /// Parse metadata attachments. 3904 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3905 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3906 return error("Invalid record"); 3907 3908 SmallVector<uint64_t, 64> Record; 3909 while (1) { 3910 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3911 3912 switch (Entry.Kind) { 3913 case BitstreamEntry::SubBlock: // Handled for us already. 3914 case BitstreamEntry::Error: 3915 return error("Malformed block"); 3916 case BitstreamEntry::EndBlock: 3917 return std::error_code(); 3918 case BitstreamEntry::Record: 3919 // The interesting case. 3920 break; 3921 } 3922 3923 // Read a metadata attachment record. 3924 Record.clear(); 3925 switch (Stream.readRecord(Entry.ID, Record)) { 3926 default: // Default behavior: ignore. 3927 break; 3928 case bitc::METADATA_ATTACHMENT: { 3929 unsigned RecordLength = Record.size(); 3930 if (Record.empty()) 3931 return error("Invalid record"); 3932 if (RecordLength % 2 == 0) { 3933 // A function attachment. 3934 for (unsigned I = 0; I != RecordLength; I += 2) { 3935 auto K = MDKindMap.find(Record[I]); 3936 if (K == MDKindMap.end()) 3937 return error("Invalid ID"); 3938 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3939 if (!MD) 3940 return error("Invalid metadata attachment"); 3941 F.setMetadata(K->second, MD); 3942 } 3943 continue; 3944 } 3945 3946 // An instruction attachment. 3947 Instruction *Inst = InstructionList[Record[0]]; 3948 for (unsigned i = 1; i != RecordLength; i = i+2) { 3949 unsigned Kind = Record[i]; 3950 DenseMap<unsigned, unsigned>::iterator I = 3951 MDKindMap.find(Kind); 3952 if (I == MDKindMap.end()) 3953 return error("Invalid ID"); 3954 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3955 if (isa<LocalAsMetadata>(Node)) 3956 // Drop the attachment. This used to be legal, but there's no 3957 // upgrade path. 3958 break; 3959 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3960 if (!MD) 3961 return error("Invalid metadata attachment"); 3962 3963 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3964 MD = upgradeInstructionLoopAttachment(*MD); 3965 3966 Inst->setMetadata(I->second, MD); 3967 if (I->second == LLVMContext::MD_tbaa) { 3968 InstsWithTBAATag.push_back(Inst); 3969 continue; 3970 } 3971 } 3972 break; 3973 } 3974 } 3975 } 3976 } 3977 3978 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3979 LLVMContext &Context = PtrType->getContext(); 3980 if (!isa<PointerType>(PtrType)) 3981 return error(Context, "Load/Store operand is not a pointer type"); 3982 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3983 3984 if (ValType && ValType != ElemType) 3985 return error(Context, "Explicit load/store type does not match pointee " 3986 "type of pointer operand"); 3987 if (!PointerType::isLoadableOrStorableType(ElemType)) 3988 return error(Context, "Cannot load/store from pointer"); 3989 return std::error_code(); 3990 } 3991 3992 /// Lazily parse the specified function body block. 3993 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3994 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3995 return error("Invalid record"); 3996 3997 // Unexpected unresolved metadata when parsing function. 3998 if (MetadataList.hasFwdRefs()) 3999 return error("Invalid function metadata: incoming forward references"); 4000 4001 InstructionList.clear(); 4002 unsigned ModuleValueListSize = ValueList.size(); 4003 unsigned ModuleMetadataListSize = MetadataList.size(); 4004 4005 // Add all the function arguments to the value table. 4006 for (Argument &I : F->args()) 4007 ValueList.push_back(&I); 4008 4009 unsigned NextValueNo = ValueList.size(); 4010 BasicBlock *CurBB = nullptr; 4011 unsigned CurBBNo = 0; 4012 4013 DebugLoc LastLoc; 4014 auto getLastInstruction = [&]() -> Instruction * { 4015 if (CurBB && !CurBB->empty()) 4016 return &CurBB->back(); 4017 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4018 !FunctionBBs[CurBBNo - 1]->empty()) 4019 return &FunctionBBs[CurBBNo - 1]->back(); 4020 return nullptr; 4021 }; 4022 4023 std::vector<OperandBundleDef> OperandBundles; 4024 4025 // Read all the records. 4026 SmallVector<uint64_t, 64> Record; 4027 while (1) { 4028 BitstreamEntry Entry = Stream.advance(); 4029 4030 switch (Entry.Kind) { 4031 case BitstreamEntry::Error: 4032 return error("Malformed block"); 4033 case BitstreamEntry::EndBlock: 4034 goto OutOfRecordLoop; 4035 4036 case BitstreamEntry::SubBlock: 4037 switch (Entry.ID) { 4038 default: // Skip unknown content. 4039 if (Stream.SkipBlock()) 4040 return error("Invalid record"); 4041 break; 4042 case bitc::CONSTANTS_BLOCK_ID: 4043 if (std::error_code EC = parseConstants()) 4044 return EC; 4045 NextValueNo = ValueList.size(); 4046 break; 4047 case bitc::VALUE_SYMTAB_BLOCK_ID: 4048 if (std::error_code EC = parseValueSymbolTable()) 4049 return EC; 4050 break; 4051 case bitc::METADATA_ATTACHMENT_ID: 4052 if (std::error_code EC = parseMetadataAttachment(*F)) 4053 return EC; 4054 break; 4055 case bitc::METADATA_BLOCK_ID: 4056 if (std::error_code EC = parseMetadata()) 4057 return EC; 4058 break; 4059 case bitc::USELIST_BLOCK_ID: 4060 if (std::error_code EC = parseUseLists()) 4061 return EC; 4062 break; 4063 } 4064 continue; 4065 4066 case BitstreamEntry::Record: 4067 // The interesting case. 4068 break; 4069 } 4070 4071 // Read a record. 4072 Record.clear(); 4073 Instruction *I = nullptr; 4074 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4075 switch (BitCode) { 4076 default: // Default behavior: reject 4077 return error("Invalid value"); 4078 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4079 if (Record.size() < 1 || Record[0] == 0) 4080 return error("Invalid record"); 4081 // Create all the basic blocks for the function. 4082 FunctionBBs.resize(Record[0]); 4083 4084 // See if anything took the address of blocks in this function. 4085 auto BBFRI = BasicBlockFwdRefs.find(F); 4086 if (BBFRI == BasicBlockFwdRefs.end()) { 4087 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4088 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4089 } else { 4090 auto &BBRefs = BBFRI->second; 4091 // Check for invalid basic block references. 4092 if (BBRefs.size() > FunctionBBs.size()) 4093 return error("Invalid ID"); 4094 assert(!BBRefs.empty() && "Unexpected empty array"); 4095 assert(!BBRefs.front() && "Invalid reference to entry block"); 4096 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4097 ++I) 4098 if (I < RE && BBRefs[I]) { 4099 BBRefs[I]->insertInto(F); 4100 FunctionBBs[I] = BBRefs[I]; 4101 } else { 4102 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4103 } 4104 4105 // Erase from the table. 4106 BasicBlockFwdRefs.erase(BBFRI); 4107 } 4108 4109 CurBB = FunctionBBs[0]; 4110 continue; 4111 } 4112 4113 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4114 // This record indicates that the last instruction is at the same 4115 // location as the previous instruction with a location. 4116 I = getLastInstruction(); 4117 4118 if (!I) 4119 return error("Invalid record"); 4120 I->setDebugLoc(LastLoc); 4121 I = nullptr; 4122 continue; 4123 4124 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4125 I = getLastInstruction(); 4126 if (!I || Record.size() < 4) 4127 return error("Invalid record"); 4128 4129 unsigned Line = Record[0], Col = Record[1]; 4130 unsigned ScopeID = Record[2], IAID = Record[3]; 4131 4132 MDNode *Scope = nullptr, *IA = nullptr; 4133 if (ScopeID) { 4134 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4135 if (!Scope) 4136 return error("Invalid record"); 4137 } 4138 if (IAID) { 4139 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4140 if (!IA) 4141 return error("Invalid record"); 4142 } 4143 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4144 I->setDebugLoc(LastLoc); 4145 I = nullptr; 4146 continue; 4147 } 4148 4149 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4150 unsigned OpNum = 0; 4151 Value *LHS, *RHS; 4152 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4153 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4154 OpNum+1 > Record.size()) 4155 return error("Invalid record"); 4156 4157 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4158 if (Opc == -1) 4159 return error("Invalid record"); 4160 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4161 InstructionList.push_back(I); 4162 if (OpNum < Record.size()) { 4163 if (Opc == Instruction::Add || 4164 Opc == Instruction::Sub || 4165 Opc == Instruction::Mul || 4166 Opc == Instruction::Shl) { 4167 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4168 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4169 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4170 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4171 } else if (Opc == Instruction::SDiv || 4172 Opc == Instruction::UDiv || 4173 Opc == Instruction::LShr || 4174 Opc == Instruction::AShr) { 4175 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4176 cast<BinaryOperator>(I)->setIsExact(true); 4177 } else if (isa<FPMathOperator>(I)) { 4178 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4179 if (FMF.any()) 4180 I->setFastMathFlags(FMF); 4181 } 4182 4183 } 4184 break; 4185 } 4186 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4187 unsigned OpNum = 0; 4188 Value *Op; 4189 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4190 OpNum+2 != Record.size()) 4191 return error("Invalid record"); 4192 4193 Type *ResTy = getTypeByID(Record[OpNum]); 4194 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4195 if (Opc == -1 || !ResTy) 4196 return error("Invalid record"); 4197 Instruction *Temp = nullptr; 4198 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4199 if (Temp) { 4200 InstructionList.push_back(Temp); 4201 CurBB->getInstList().push_back(Temp); 4202 } 4203 } else { 4204 auto CastOp = (Instruction::CastOps)Opc; 4205 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4206 return error("Invalid cast"); 4207 I = CastInst::Create(CastOp, Op, ResTy); 4208 } 4209 InstructionList.push_back(I); 4210 break; 4211 } 4212 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4213 case bitc::FUNC_CODE_INST_GEP_OLD: 4214 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4215 unsigned OpNum = 0; 4216 4217 Type *Ty; 4218 bool InBounds; 4219 4220 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4221 InBounds = Record[OpNum++]; 4222 Ty = getTypeByID(Record[OpNum++]); 4223 } else { 4224 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4225 Ty = nullptr; 4226 } 4227 4228 Value *BasePtr; 4229 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4230 return error("Invalid record"); 4231 4232 if (!Ty) 4233 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4234 ->getElementType(); 4235 else if (Ty != 4236 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4237 ->getElementType()) 4238 return error( 4239 "Explicit gep type does not match pointee type of pointer operand"); 4240 4241 SmallVector<Value*, 16> GEPIdx; 4242 while (OpNum != Record.size()) { 4243 Value *Op; 4244 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4245 return error("Invalid record"); 4246 GEPIdx.push_back(Op); 4247 } 4248 4249 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4250 4251 InstructionList.push_back(I); 4252 if (InBounds) 4253 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4254 break; 4255 } 4256 4257 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4258 // EXTRACTVAL: [opty, opval, n x indices] 4259 unsigned OpNum = 0; 4260 Value *Agg; 4261 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4262 return error("Invalid record"); 4263 4264 unsigned RecSize = Record.size(); 4265 if (OpNum == RecSize) 4266 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4267 4268 SmallVector<unsigned, 4> EXTRACTVALIdx; 4269 Type *CurTy = Agg->getType(); 4270 for (; OpNum != RecSize; ++OpNum) { 4271 bool IsArray = CurTy->isArrayTy(); 4272 bool IsStruct = CurTy->isStructTy(); 4273 uint64_t Index = Record[OpNum]; 4274 4275 if (!IsStruct && !IsArray) 4276 return error("EXTRACTVAL: Invalid type"); 4277 if ((unsigned)Index != Index) 4278 return error("Invalid value"); 4279 if (IsStruct && Index >= CurTy->subtypes().size()) 4280 return error("EXTRACTVAL: Invalid struct index"); 4281 if (IsArray && Index >= CurTy->getArrayNumElements()) 4282 return error("EXTRACTVAL: Invalid array index"); 4283 EXTRACTVALIdx.push_back((unsigned)Index); 4284 4285 if (IsStruct) 4286 CurTy = CurTy->subtypes()[Index]; 4287 else 4288 CurTy = CurTy->subtypes()[0]; 4289 } 4290 4291 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4292 InstructionList.push_back(I); 4293 break; 4294 } 4295 4296 case bitc::FUNC_CODE_INST_INSERTVAL: { 4297 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4298 unsigned OpNum = 0; 4299 Value *Agg; 4300 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4301 return error("Invalid record"); 4302 Value *Val; 4303 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4304 return error("Invalid record"); 4305 4306 unsigned RecSize = Record.size(); 4307 if (OpNum == RecSize) 4308 return error("INSERTVAL: Invalid instruction with 0 indices"); 4309 4310 SmallVector<unsigned, 4> INSERTVALIdx; 4311 Type *CurTy = Agg->getType(); 4312 for (; OpNum != RecSize; ++OpNum) { 4313 bool IsArray = CurTy->isArrayTy(); 4314 bool IsStruct = CurTy->isStructTy(); 4315 uint64_t Index = Record[OpNum]; 4316 4317 if (!IsStruct && !IsArray) 4318 return error("INSERTVAL: Invalid type"); 4319 if ((unsigned)Index != Index) 4320 return error("Invalid value"); 4321 if (IsStruct && Index >= CurTy->subtypes().size()) 4322 return error("INSERTVAL: Invalid struct index"); 4323 if (IsArray && Index >= CurTy->getArrayNumElements()) 4324 return error("INSERTVAL: Invalid array index"); 4325 4326 INSERTVALIdx.push_back((unsigned)Index); 4327 if (IsStruct) 4328 CurTy = CurTy->subtypes()[Index]; 4329 else 4330 CurTy = CurTy->subtypes()[0]; 4331 } 4332 4333 if (CurTy != Val->getType()) 4334 return error("Inserted value type doesn't match aggregate type"); 4335 4336 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4337 InstructionList.push_back(I); 4338 break; 4339 } 4340 4341 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4342 // obsolete form of select 4343 // handles select i1 ... in old bitcode 4344 unsigned OpNum = 0; 4345 Value *TrueVal, *FalseVal, *Cond; 4346 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4347 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4348 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4349 return error("Invalid record"); 4350 4351 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4352 InstructionList.push_back(I); 4353 break; 4354 } 4355 4356 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4357 // new form of select 4358 // handles select i1 or select [N x i1] 4359 unsigned OpNum = 0; 4360 Value *TrueVal, *FalseVal, *Cond; 4361 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4362 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4363 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4364 return error("Invalid record"); 4365 4366 // select condition can be either i1 or [N x i1] 4367 if (VectorType* vector_type = 4368 dyn_cast<VectorType>(Cond->getType())) { 4369 // expect <n x i1> 4370 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4371 return error("Invalid type for value"); 4372 } else { 4373 // expect i1 4374 if (Cond->getType() != Type::getInt1Ty(Context)) 4375 return error("Invalid type for value"); 4376 } 4377 4378 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4379 InstructionList.push_back(I); 4380 break; 4381 } 4382 4383 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4384 unsigned OpNum = 0; 4385 Value *Vec, *Idx; 4386 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4387 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4388 return error("Invalid record"); 4389 if (!Vec->getType()->isVectorTy()) 4390 return error("Invalid type for value"); 4391 I = ExtractElementInst::Create(Vec, Idx); 4392 InstructionList.push_back(I); 4393 break; 4394 } 4395 4396 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4397 unsigned OpNum = 0; 4398 Value *Vec, *Elt, *Idx; 4399 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4400 return error("Invalid record"); 4401 if (!Vec->getType()->isVectorTy()) 4402 return error("Invalid type for value"); 4403 if (popValue(Record, OpNum, NextValueNo, 4404 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4405 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4406 return error("Invalid record"); 4407 I = InsertElementInst::Create(Vec, Elt, Idx); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4413 unsigned OpNum = 0; 4414 Value *Vec1, *Vec2, *Mask; 4415 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4416 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4417 return error("Invalid record"); 4418 4419 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4420 return error("Invalid record"); 4421 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4422 return error("Invalid type for value"); 4423 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4424 InstructionList.push_back(I); 4425 break; 4426 } 4427 4428 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4429 // Old form of ICmp/FCmp returning bool 4430 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4431 // both legal on vectors but had different behaviour. 4432 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4433 // FCmp/ICmp returning bool or vector of bool 4434 4435 unsigned OpNum = 0; 4436 Value *LHS, *RHS; 4437 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4438 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4439 return error("Invalid record"); 4440 4441 unsigned PredVal = Record[OpNum]; 4442 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4443 FastMathFlags FMF; 4444 if (IsFP && Record.size() > OpNum+1) 4445 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4446 4447 if (OpNum+1 != Record.size()) 4448 return error("Invalid record"); 4449 4450 if (LHS->getType()->isFPOrFPVectorTy()) 4451 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4452 else 4453 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4454 4455 if (FMF.any()) 4456 I->setFastMathFlags(FMF); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 4461 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4462 { 4463 unsigned Size = Record.size(); 4464 if (Size == 0) { 4465 I = ReturnInst::Create(Context); 4466 InstructionList.push_back(I); 4467 break; 4468 } 4469 4470 unsigned OpNum = 0; 4471 Value *Op = nullptr; 4472 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4473 return error("Invalid record"); 4474 if (OpNum != Record.size()) 4475 return error("Invalid record"); 4476 4477 I = ReturnInst::Create(Context, Op); 4478 InstructionList.push_back(I); 4479 break; 4480 } 4481 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4482 if (Record.size() != 1 && Record.size() != 3) 4483 return error("Invalid record"); 4484 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4485 if (!TrueDest) 4486 return error("Invalid record"); 4487 4488 if (Record.size() == 1) { 4489 I = BranchInst::Create(TrueDest); 4490 InstructionList.push_back(I); 4491 } 4492 else { 4493 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4494 Value *Cond = getValue(Record, 2, NextValueNo, 4495 Type::getInt1Ty(Context)); 4496 if (!FalseDest || !Cond) 4497 return error("Invalid record"); 4498 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4499 InstructionList.push_back(I); 4500 } 4501 break; 4502 } 4503 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4504 if (Record.size() != 1 && Record.size() != 2) 4505 return error("Invalid record"); 4506 unsigned Idx = 0; 4507 Value *CleanupPad = 4508 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4509 if (!CleanupPad) 4510 return error("Invalid record"); 4511 BasicBlock *UnwindDest = nullptr; 4512 if (Record.size() == 2) { 4513 UnwindDest = getBasicBlock(Record[Idx++]); 4514 if (!UnwindDest) 4515 return error("Invalid record"); 4516 } 4517 4518 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4519 InstructionList.push_back(I); 4520 break; 4521 } 4522 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4523 if (Record.size() != 2) 4524 return error("Invalid record"); 4525 unsigned Idx = 0; 4526 Value *CatchPad = 4527 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4528 if (!CatchPad) 4529 return error("Invalid record"); 4530 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4531 if (!BB) 4532 return error("Invalid record"); 4533 4534 I = CatchReturnInst::Create(CatchPad, BB); 4535 InstructionList.push_back(I); 4536 break; 4537 } 4538 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4539 // We must have, at minimum, the outer scope and the number of arguments. 4540 if (Record.size() < 2) 4541 return error("Invalid record"); 4542 4543 unsigned Idx = 0; 4544 4545 Value *ParentPad = 4546 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4547 4548 unsigned NumHandlers = Record[Idx++]; 4549 4550 SmallVector<BasicBlock *, 2> Handlers; 4551 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4552 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4553 if (!BB) 4554 return error("Invalid record"); 4555 Handlers.push_back(BB); 4556 } 4557 4558 BasicBlock *UnwindDest = nullptr; 4559 if (Idx + 1 == Record.size()) { 4560 UnwindDest = getBasicBlock(Record[Idx++]); 4561 if (!UnwindDest) 4562 return error("Invalid record"); 4563 } 4564 4565 if (Record.size() != Idx) 4566 return error("Invalid record"); 4567 4568 auto *CatchSwitch = 4569 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4570 for (BasicBlock *Handler : Handlers) 4571 CatchSwitch->addHandler(Handler); 4572 I = CatchSwitch; 4573 InstructionList.push_back(I); 4574 break; 4575 } 4576 case bitc::FUNC_CODE_INST_CATCHPAD: 4577 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4578 // We must have, at minimum, the outer scope and the number of arguments. 4579 if (Record.size() < 2) 4580 return error("Invalid record"); 4581 4582 unsigned Idx = 0; 4583 4584 Value *ParentPad = 4585 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4586 4587 unsigned NumArgOperands = Record[Idx++]; 4588 4589 SmallVector<Value *, 2> Args; 4590 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4591 Value *Val; 4592 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4593 return error("Invalid record"); 4594 Args.push_back(Val); 4595 } 4596 4597 if (Record.size() != Idx) 4598 return error("Invalid record"); 4599 4600 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4601 I = CleanupPadInst::Create(ParentPad, Args); 4602 else 4603 I = CatchPadInst::Create(ParentPad, Args); 4604 InstructionList.push_back(I); 4605 break; 4606 } 4607 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4608 // Check magic 4609 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4610 // "New" SwitchInst format with case ranges. The changes to write this 4611 // format were reverted but we still recognize bitcode that uses it. 4612 // Hopefully someday we will have support for case ranges and can use 4613 // this format again. 4614 4615 Type *OpTy = getTypeByID(Record[1]); 4616 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4617 4618 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4619 BasicBlock *Default = getBasicBlock(Record[3]); 4620 if (!OpTy || !Cond || !Default) 4621 return error("Invalid record"); 4622 4623 unsigned NumCases = Record[4]; 4624 4625 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4626 InstructionList.push_back(SI); 4627 4628 unsigned CurIdx = 5; 4629 for (unsigned i = 0; i != NumCases; ++i) { 4630 SmallVector<ConstantInt*, 1> CaseVals; 4631 unsigned NumItems = Record[CurIdx++]; 4632 for (unsigned ci = 0; ci != NumItems; ++ci) { 4633 bool isSingleNumber = Record[CurIdx++]; 4634 4635 APInt Low; 4636 unsigned ActiveWords = 1; 4637 if (ValueBitWidth > 64) 4638 ActiveWords = Record[CurIdx++]; 4639 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4640 ValueBitWidth); 4641 CurIdx += ActiveWords; 4642 4643 if (!isSingleNumber) { 4644 ActiveWords = 1; 4645 if (ValueBitWidth > 64) 4646 ActiveWords = Record[CurIdx++]; 4647 APInt High = readWideAPInt( 4648 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4649 CurIdx += ActiveWords; 4650 4651 // FIXME: It is not clear whether values in the range should be 4652 // compared as signed or unsigned values. The partially 4653 // implemented changes that used this format in the past used 4654 // unsigned comparisons. 4655 for ( ; Low.ule(High); ++Low) 4656 CaseVals.push_back(ConstantInt::get(Context, Low)); 4657 } else 4658 CaseVals.push_back(ConstantInt::get(Context, Low)); 4659 } 4660 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4661 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4662 cve = CaseVals.end(); cvi != cve; ++cvi) 4663 SI->addCase(*cvi, DestBB); 4664 } 4665 I = SI; 4666 break; 4667 } 4668 4669 // Old SwitchInst format without case ranges. 4670 4671 if (Record.size() < 3 || (Record.size() & 1) == 0) 4672 return error("Invalid record"); 4673 Type *OpTy = getTypeByID(Record[0]); 4674 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4675 BasicBlock *Default = getBasicBlock(Record[2]); 4676 if (!OpTy || !Cond || !Default) 4677 return error("Invalid record"); 4678 unsigned NumCases = (Record.size()-3)/2; 4679 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4680 InstructionList.push_back(SI); 4681 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4682 ConstantInt *CaseVal = 4683 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4684 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4685 if (!CaseVal || !DestBB) { 4686 delete SI; 4687 return error("Invalid record"); 4688 } 4689 SI->addCase(CaseVal, DestBB); 4690 } 4691 I = SI; 4692 break; 4693 } 4694 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4695 if (Record.size() < 2) 4696 return error("Invalid record"); 4697 Type *OpTy = getTypeByID(Record[0]); 4698 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4699 if (!OpTy || !Address) 4700 return error("Invalid record"); 4701 unsigned NumDests = Record.size()-2; 4702 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4703 InstructionList.push_back(IBI); 4704 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4705 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4706 IBI->addDestination(DestBB); 4707 } else { 4708 delete IBI; 4709 return error("Invalid record"); 4710 } 4711 } 4712 I = IBI; 4713 break; 4714 } 4715 4716 case bitc::FUNC_CODE_INST_INVOKE: { 4717 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4718 if (Record.size() < 4) 4719 return error("Invalid record"); 4720 unsigned OpNum = 0; 4721 AttributeSet PAL = getAttributes(Record[OpNum++]); 4722 unsigned CCInfo = Record[OpNum++]; 4723 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4724 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4725 4726 FunctionType *FTy = nullptr; 4727 if (CCInfo >> 13 & 1 && 4728 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4729 return error("Explicit invoke type is not a function type"); 4730 4731 Value *Callee; 4732 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4733 return error("Invalid record"); 4734 4735 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4736 if (!CalleeTy) 4737 return error("Callee is not a pointer"); 4738 if (!FTy) { 4739 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4740 if (!FTy) 4741 return error("Callee is not of pointer to function type"); 4742 } else if (CalleeTy->getElementType() != FTy) 4743 return error("Explicit invoke type does not match pointee type of " 4744 "callee operand"); 4745 if (Record.size() < FTy->getNumParams() + OpNum) 4746 return error("Insufficient operands to call"); 4747 4748 SmallVector<Value*, 16> Ops; 4749 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4750 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4751 FTy->getParamType(i))); 4752 if (!Ops.back()) 4753 return error("Invalid record"); 4754 } 4755 4756 if (!FTy->isVarArg()) { 4757 if (Record.size() != OpNum) 4758 return error("Invalid record"); 4759 } else { 4760 // Read type/value pairs for varargs params. 4761 while (OpNum != Record.size()) { 4762 Value *Op; 4763 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4764 return error("Invalid record"); 4765 Ops.push_back(Op); 4766 } 4767 } 4768 4769 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4770 OperandBundles.clear(); 4771 InstructionList.push_back(I); 4772 cast<InvokeInst>(I)->setCallingConv( 4773 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4774 cast<InvokeInst>(I)->setAttributes(PAL); 4775 break; 4776 } 4777 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4778 unsigned Idx = 0; 4779 Value *Val = nullptr; 4780 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4781 return error("Invalid record"); 4782 I = ResumeInst::Create(Val); 4783 InstructionList.push_back(I); 4784 break; 4785 } 4786 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4787 I = new UnreachableInst(Context); 4788 InstructionList.push_back(I); 4789 break; 4790 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4791 if (Record.size() < 1 || ((Record.size()-1)&1)) 4792 return error("Invalid record"); 4793 Type *Ty = getTypeByID(Record[0]); 4794 if (!Ty) 4795 return error("Invalid record"); 4796 4797 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4798 InstructionList.push_back(PN); 4799 4800 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4801 Value *V; 4802 // With the new function encoding, it is possible that operands have 4803 // negative IDs (for forward references). Use a signed VBR 4804 // representation to keep the encoding small. 4805 if (UseRelativeIDs) 4806 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4807 else 4808 V = getValue(Record, 1+i, NextValueNo, Ty); 4809 BasicBlock *BB = getBasicBlock(Record[2+i]); 4810 if (!V || !BB) 4811 return error("Invalid record"); 4812 PN->addIncoming(V, BB); 4813 } 4814 I = PN; 4815 break; 4816 } 4817 4818 case bitc::FUNC_CODE_INST_LANDINGPAD: 4819 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4820 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4821 unsigned Idx = 0; 4822 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4823 if (Record.size() < 3) 4824 return error("Invalid record"); 4825 } else { 4826 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4827 if (Record.size() < 4) 4828 return error("Invalid record"); 4829 } 4830 Type *Ty = getTypeByID(Record[Idx++]); 4831 if (!Ty) 4832 return error("Invalid record"); 4833 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4834 Value *PersFn = nullptr; 4835 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4836 return error("Invalid record"); 4837 4838 if (!F->hasPersonalityFn()) 4839 F->setPersonalityFn(cast<Constant>(PersFn)); 4840 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4841 return error("Personality function mismatch"); 4842 } 4843 4844 bool IsCleanup = !!Record[Idx++]; 4845 unsigned NumClauses = Record[Idx++]; 4846 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4847 LP->setCleanup(IsCleanup); 4848 for (unsigned J = 0; J != NumClauses; ++J) { 4849 LandingPadInst::ClauseType CT = 4850 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4851 Value *Val; 4852 4853 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4854 delete LP; 4855 return error("Invalid record"); 4856 } 4857 4858 assert((CT != LandingPadInst::Catch || 4859 !isa<ArrayType>(Val->getType())) && 4860 "Catch clause has a invalid type!"); 4861 assert((CT != LandingPadInst::Filter || 4862 isa<ArrayType>(Val->getType())) && 4863 "Filter clause has invalid type!"); 4864 LP->addClause(cast<Constant>(Val)); 4865 } 4866 4867 I = LP; 4868 InstructionList.push_back(I); 4869 break; 4870 } 4871 4872 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4873 if (Record.size() != 4) 4874 return error("Invalid record"); 4875 uint64_t AlignRecord = Record[3]; 4876 const uint64_t InAllocaMask = uint64_t(1) << 5; 4877 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4878 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4879 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4880 SwiftErrorMask; 4881 bool InAlloca = AlignRecord & InAllocaMask; 4882 bool SwiftError = AlignRecord & SwiftErrorMask; 4883 Type *Ty = getTypeByID(Record[0]); 4884 if ((AlignRecord & ExplicitTypeMask) == 0) { 4885 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4886 if (!PTy) 4887 return error("Old-style alloca with a non-pointer type"); 4888 Ty = PTy->getElementType(); 4889 } 4890 Type *OpTy = getTypeByID(Record[1]); 4891 Value *Size = getFnValueByID(Record[2], OpTy); 4892 unsigned Align; 4893 if (std::error_code EC = 4894 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4895 return EC; 4896 } 4897 if (!Ty || !Size) 4898 return error("Invalid record"); 4899 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4900 AI->setUsedWithInAlloca(InAlloca); 4901 AI->setSwiftError(SwiftError); 4902 I = AI; 4903 InstructionList.push_back(I); 4904 break; 4905 } 4906 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4907 unsigned OpNum = 0; 4908 Value *Op; 4909 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4910 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4911 return error("Invalid record"); 4912 4913 Type *Ty = nullptr; 4914 if (OpNum + 3 == Record.size()) 4915 Ty = getTypeByID(Record[OpNum++]); 4916 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4917 return EC; 4918 if (!Ty) 4919 Ty = cast<PointerType>(Op->getType())->getElementType(); 4920 4921 unsigned Align; 4922 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4923 return EC; 4924 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4925 4926 InstructionList.push_back(I); 4927 break; 4928 } 4929 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4930 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4931 unsigned OpNum = 0; 4932 Value *Op; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4934 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4935 return error("Invalid record"); 4936 4937 Type *Ty = nullptr; 4938 if (OpNum + 5 == Record.size()) 4939 Ty = getTypeByID(Record[OpNum++]); 4940 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4941 return EC; 4942 if (!Ty) 4943 Ty = cast<PointerType>(Op->getType())->getElementType(); 4944 4945 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4946 if (Ordering == AtomicOrdering::NotAtomic || 4947 Ordering == AtomicOrdering::Release || 4948 Ordering == AtomicOrdering::AcquireRelease) 4949 return error("Invalid record"); 4950 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4951 return error("Invalid record"); 4952 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4953 4954 unsigned Align; 4955 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4956 return EC; 4957 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4958 4959 InstructionList.push_back(I); 4960 break; 4961 } 4962 case bitc::FUNC_CODE_INST_STORE: 4963 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4964 unsigned OpNum = 0; 4965 Value *Val, *Ptr; 4966 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4967 (BitCode == bitc::FUNC_CODE_INST_STORE 4968 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4969 : popValue(Record, OpNum, NextValueNo, 4970 cast<PointerType>(Ptr->getType())->getElementType(), 4971 Val)) || 4972 OpNum + 2 != Record.size()) 4973 return error("Invalid record"); 4974 4975 if (std::error_code EC = 4976 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4977 return EC; 4978 unsigned Align; 4979 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4980 return EC; 4981 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4982 InstructionList.push_back(I); 4983 break; 4984 } 4985 case bitc::FUNC_CODE_INST_STOREATOMIC: 4986 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4987 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4988 unsigned OpNum = 0; 4989 Value *Val, *Ptr; 4990 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4991 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4992 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4993 : popValue(Record, OpNum, NextValueNo, 4994 cast<PointerType>(Ptr->getType())->getElementType(), 4995 Val)) || 4996 OpNum + 4 != Record.size()) 4997 return error("Invalid record"); 4998 4999 if (std::error_code EC = 5000 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5001 return EC; 5002 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5003 if (Ordering == AtomicOrdering::NotAtomic || 5004 Ordering == AtomicOrdering::Acquire || 5005 Ordering == AtomicOrdering::AcquireRelease) 5006 return error("Invalid record"); 5007 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5008 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5009 return error("Invalid record"); 5010 5011 unsigned Align; 5012 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5013 return EC; 5014 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5015 InstructionList.push_back(I); 5016 break; 5017 } 5018 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5019 case bitc::FUNC_CODE_INST_CMPXCHG: { 5020 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5021 // failureordering?, isweak?] 5022 unsigned OpNum = 0; 5023 Value *Ptr, *Cmp, *New; 5024 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5025 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5026 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5027 : popValue(Record, OpNum, NextValueNo, 5028 cast<PointerType>(Ptr->getType())->getElementType(), 5029 Cmp)) || 5030 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5031 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5032 return error("Invalid record"); 5033 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5034 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5035 SuccessOrdering == AtomicOrdering::Unordered) 5036 return error("Invalid record"); 5037 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5038 5039 if (std::error_code EC = 5040 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5041 return EC; 5042 AtomicOrdering FailureOrdering; 5043 if (Record.size() < 7) 5044 FailureOrdering = 5045 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5046 else 5047 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5048 5049 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5050 SynchScope); 5051 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5052 5053 if (Record.size() < 8) { 5054 // Before weak cmpxchgs existed, the instruction simply returned the 5055 // value loaded from memory, so bitcode files from that era will be 5056 // expecting the first component of a modern cmpxchg. 5057 CurBB->getInstList().push_back(I); 5058 I = ExtractValueInst::Create(I, 0); 5059 } else { 5060 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5061 } 5062 5063 InstructionList.push_back(I); 5064 break; 5065 } 5066 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5067 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5068 unsigned OpNum = 0; 5069 Value *Ptr, *Val; 5070 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5071 popValue(Record, OpNum, NextValueNo, 5072 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5073 OpNum+4 != Record.size()) 5074 return error("Invalid record"); 5075 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5076 if (Operation < AtomicRMWInst::FIRST_BINOP || 5077 Operation > AtomicRMWInst::LAST_BINOP) 5078 return error("Invalid record"); 5079 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5080 if (Ordering == AtomicOrdering::NotAtomic || 5081 Ordering == AtomicOrdering::Unordered) 5082 return error("Invalid record"); 5083 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5084 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5085 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5086 InstructionList.push_back(I); 5087 break; 5088 } 5089 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5090 if (2 != Record.size()) 5091 return error("Invalid record"); 5092 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5093 if (Ordering == AtomicOrdering::NotAtomic || 5094 Ordering == AtomicOrdering::Unordered || 5095 Ordering == AtomicOrdering::Monotonic) 5096 return error("Invalid record"); 5097 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5098 I = new FenceInst(Context, Ordering, SynchScope); 5099 InstructionList.push_back(I); 5100 break; 5101 } 5102 case bitc::FUNC_CODE_INST_CALL: { 5103 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5104 if (Record.size() < 3) 5105 return error("Invalid record"); 5106 5107 unsigned OpNum = 0; 5108 AttributeSet PAL = getAttributes(Record[OpNum++]); 5109 unsigned CCInfo = Record[OpNum++]; 5110 5111 FastMathFlags FMF; 5112 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5113 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5114 if (!FMF.any()) 5115 return error("Fast math flags indicator set for call with no FMF"); 5116 } 5117 5118 FunctionType *FTy = nullptr; 5119 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5120 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5121 return error("Explicit call type is not a function type"); 5122 5123 Value *Callee; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5125 return error("Invalid record"); 5126 5127 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5128 if (!OpTy) 5129 return error("Callee is not a pointer type"); 5130 if (!FTy) { 5131 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5132 if (!FTy) 5133 return error("Callee is not of pointer to function type"); 5134 } else if (OpTy->getElementType() != FTy) 5135 return error("Explicit call type does not match pointee type of " 5136 "callee operand"); 5137 if (Record.size() < FTy->getNumParams() + OpNum) 5138 return error("Insufficient operands to call"); 5139 5140 SmallVector<Value*, 16> Args; 5141 // Read the fixed params. 5142 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5143 if (FTy->getParamType(i)->isLabelTy()) 5144 Args.push_back(getBasicBlock(Record[OpNum])); 5145 else 5146 Args.push_back(getValue(Record, OpNum, NextValueNo, 5147 FTy->getParamType(i))); 5148 if (!Args.back()) 5149 return error("Invalid record"); 5150 } 5151 5152 // Read type/value pairs for varargs params. 5153 if (!FTy->isVarArg()) { 5154 if (OpNum != Record.size()) 5155 return error("Invalid record"); 5156 } else { 5157 while (OpNum != Record.size()) { 5158 Value *Op; 5159 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5160 return error("Invalid record"); 5161 Args.push_back(Op); 5162 } 5163 } 5164 5165 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5166 OperandBundles.clear(); 5167 InstructionList.push_back(I); 5168 cast<CallInst>(I)->setCallingConv( 5169 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5170 CallInst::TailCallKind TCK = CallInst::TCK_None; 5171 if (CCInfo & 1 << bitc::CALL_TAIL) 5172 TCK = CallInst::TCK_Tail; 5173 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5174 TCK = CallInst::TCK_MustTail; 5175 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5176 TCK = CallInst::TCK_NoTail; 5177 cast<CallInst>(I)->setTailCallKind(TCK); 5178 cast<CallInst>(I)->setAttributes(PAL); 5179 if (FMF.any()) { 5180 if (!isa<FPMathOperator>(I)) 5181 return error("Fast-math-flags specified for call without " 5182 "floating-point scalar or vector return type"); 5183 I->setFastMathFlags(FMF); 5184 } 5185 break; 5186 } 5187 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5188 if (Record.size() < 3) 5189 return error("Invalid record"); 5190 Type *OpTy = getTypeByID(Record[0]); 5191 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5192 Type *ResTy = getTypeByID(Record[2]); 5193 if (!OpTy || !Op || !ResTy) 5194 return error("Invalid record"); 5195 I = new VAArgInst(Op, ResTy); 5196 InstructionList.push_back(I); 5197 break; 5198 } 5199 5200 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5201 // A call or an invoke can be optionally prefixed with some variable 5202 // number of operand bundle blocks. These blocks are read into 5203 // OperandBundles and consumed at the next call or invoke instruction. 5204 5205 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5206 return error("Invalid record"); 5207 5208 std::vector<Value *> Inputs; 5209 5210 unsigned OpNum = 1; 5211 while (OpNum != Record.size()) { 5212 Value *Op; 5213 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5214 return error("Invalid record"); 5215 Inputs.push_back(Op); 5216 } 5217 5218 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5219 continue; 5220 } 5221 } 5222 5223 // Add instruction to end of current BB. If there is no current BB, reject 5224 // this file. 5225 if (!CurBB) { 5226 delete I; 5227 return error("Invalid instruction with no BB"); 5228 } 5229 if (!OperandBundles.empty()) { 5230 delete I; 5231 return error("Operand bundles found with no consumer"); 5232 } 5233 CurBB->getInstList().push_back(I); 5234 5235 // If this was a terminator instruction, move to the next block. 5236 if (isa<TerminatorInst>(I)) { 5237 ++CurBBNo; 5238 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5239 } 5240 5241 // Non-void values get registered in the value table for future use. 5242 if (I && !I->getType()->isVoidTy()) 5243 ValueList.assignValue(I, NextValueNo++); 5244 } 5245 5246 OutOfRecordLoop: 5247 5248 if (!OperandBundles.empty()) 5249 return error("Operand bundles found with no consumer"); 5250 5251 // Check the function list for unresolved values. 5252 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5253 if (!A->getParent()) { 5254 // We found at least one unresolved value. Nuke them all to avoid leaks. 5255 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5256 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5257 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5258 delete A; 5259 } 5260 } 5261 return error("Never resolved value found in function"); 5262 } 5263 } 5264 5265 // Unexpected unresolved metadata about to be dropped. 5266 if (MetadataList.hasFwdRefs()) 5267 return error("Invalid function metadata: outgoing forward refs"); 5268 5269 // Trim the value list down to the size it was before we parsed this function. 5270 ValueList.shrinkTo(ModuleValueListSize); 5271 MetadataList.shrinkTo(ModuleMetadataListSize); 5272 std::vector<BasicBlock*>().swap(FunctionBBs); 5273 return std::error_code(); 5274 } 5275 5276 /// Find the function body in the bitcode stream 5277 std::error_code BitcodeReader::findFunctionInStream( 5278 Function *F, 5279 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5280 while (DeferredFunctionInfoIterator->second == 0) { 5281 // This is the fallback handling for the old format bitcode that 5282 // didn't contain the function index in the VST, or when we have 5283 // an anonymous function which would not have a VST entry. 5284 // Assert that we have one of those two cases. 5285 assert(VSTOffset == 0 || !F->hasName()); 5286 // Parse the next body in the stream and set its position in the 5287 // DeferredFunctionInfo map. 5288 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5289 return EC; 5290 } 5291 return std::error_code(); 5292 } 5293 5294 //===----------------------------------------------------------------------===// 5295 // GVMaterializer implementation 5296 //===----------------------------------------------------------------------===// 5297 5298 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5299 5300 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5301 if (std::error_code EC = materializeMetadata()) 5302 return EC; 5303 5304 Function *F = dyn_cast<Function>(GV); 5305 // If it's not a function or is already material, ignore the request. 5306 if (!F || !F->isMaterializable()) 5307 return std::error_code(); 5308 5309 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5310 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5311 // If its position is recorded as 0, its body is somewhere in the stream 5312 // but we haven't seen it yet. 5313 if (DFII->second == 0) 5314 if (std::error_code EC = findFunctionInStream(F, DFII)) 5315 return EC; 5316 5317 // Move the bit stream to the saved position of the deferred function body. 5318 Stream.JumpToBit(DFII->second); 5319 5320 if (std::error_code EC = parseFunctionBody(F)) 5321 return EC; 5322 F->setIsMaterializable(false); 5323 5324 if (StripDebugInfo) 5325 stripDebugInfo(*F); 5326 5327 // Upgrade any old intrinsic calls in the function. 5328 for (auto &I : UpgradedIntrinsics) { 5329 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5330 UI != UE;) { 5331 User *U = *UI; 5332 ++UI; 5333 if (CallInst *CI = dyn_cast<CallInst>(U)) 5334 UpgradeIntrinsicCall(CI, I.second); 5335 } 5336 } 5337 5338 // Finish fn->subprogram upgrade for materialized functions. 5339 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5340 F->setSubprogram(SP); 5341 5342 // Bring in any functions that this function forward-referenced via 5343 // blockaddresses. 5344 return materializeForwardReferencedFunctions(); 5345 } 5346 5347 std::error_code BitcodeReader::materializeModule() { 5348 if (std::error_code EC = materializeMetadata()) 5349 return EC; 5350 5351 // Promise to materialize all forward references. 5352 WillMaterializeAllForwardRefs = true; 5353 5354 // Iterate over the module, deserializing any functions that are still on 5355 // disk. 5356 for (Function &F : *TheModule) { 5357 if (std::error_code EC = materialize(&F)) 5358 return EC; 5359 } 5360 // At this point, if there are any function bodies, parse the rest of 5361 // the bits in the module past the last function block we have recorded 5362 // through either lazy scanning or the VST. 5363 if (LastFunctionBlockBit || NextUnreadBit) 5364 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5365 : NextUnreadBit); 5366 5367 // Check that all block address forward references got resolved (as we 5368 // promised above). 5369 if (!BasicBlockFwdRefs.empty()) 5370 return error("Never resolved function from blockaddress"); 5371 5372 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5373 // to prevent this instructions with TBAA tags should be upgraded first. 5374 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5375 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5376 5377 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5378 // delete the old functions to clean up. We can't do this unless the entire 5379 // module is materialized because there could always be another function body 5380 // with calls to the old function. 5381 for (auto &I : UpgradedIntrinsics) { 5382 for (auto *U : I.first->users()) { 5383 if (CallInst *CI = dyn_cast<CallInst>(U)) 5384 UpgradeIntrinsicCall(CI, I.second); 5385 } 5386 if (!I.first->use_empty()) 5387 I.first->replaceAllUsesWith(I.second); 5388 I.first->eraseFromParent(); 5389 } 5390 UpgradedIntrinsics.clear(); 5391 5392 UpgradeDebugInfo(*TheModule); 5393 return std::error_code(); 5394 } 5395 5396 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5397 return IdentifiedStructTypes; 5398 } 5399 5400 std::error_code 5401 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5402 if (Streamer) 5403 return initLazyStream(std::move(Streamer)); 5404 return initStreamFromBuffer(); 5405 } 5406 5407 std::error_code BitcodeReader::initStreamFromBuffer() { 5408 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5409 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5410 5411 if (Buffer->getBufferSize() & 3) 5412 return error("Invalid bitcode signature"); 5413 5414 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5415 // The magic number is 0x0B17C0DE stored in little endian. 5416 if (isBitcodeWrapper(BufPtr, BufEnd)) 5417 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5418 return error("Invalid bitcode wrapper header"); 5419 5420 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5421 Stream.init(&*StreamFile); 5422 5423 return std::error_code(); 5424 } 5425 5426 std::error_code 5427 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5428 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5429 // see it. 5430 auto OwnedBytes = 5431 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5432 StreamingMemoryObject &Bytes = *OwnedBytes; 5433 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5434 Stream.init(&*StreamFile); 5435 5436 unsigned char buf[16]; 5437 if (Bytes.readBytes(buf, 16, 0) != 16) 5438 return error("Invalid bitcode signature"); 5439 5440 if (!isBitcode(buf, buf + 16)) 5441 return error("Invalid bitcode signature"); 5442 5443 if (isBitcodeWrapper(buf, buf + 4)) { 5444 const unsigned char *bitcodeStart = buf; 5445 const unsigned char *bitcodeEnd = buf + 16; 5446 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5447 Bytes.dropLeadingBytes(bitcodeStart - buf); 5448 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5449 } 5450 return std::error_code(); 5451 } 5452 5453 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5454 const Twine &Message) { 5455 return ::error(DiagnosticHandler, make_error_code(E), Message); 5456 } 5457 5458 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5459 return ::error(DiagnosticHandler, 5460 make_error_code(BitcodeError::CorruptedBitcode), Message); 5461 } 5462 5463 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5464 return ::error(DiagnosticHandler, make_error_code(E)); 5465 } 5466 5467 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5468 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5469 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5470 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5471 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5472 5473 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5474 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5475 bool CheckGlobalValSummaryPresenceOnly) 5476 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5477 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5478 5479 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5480 5481 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5482 5483 GlobalValue::GUID 5484 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5485 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5486 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5487 return VGI->second; 5488 } 5489 5490 GlobalValueInfo * 5491 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5492 auto I = SummaryOffsetToInfoMap.find(Offset); 5493 assert(I != SummaryOffsetToInfoMap.end()); 5494 return I->second; 5495 } 5496 5497 // Specialized value symbol table parser used when reading module index 5498 // blocks where we don't actually create global values. 5499 // At the end of this routine the module index is populated with a map 5500 // from global value name to GlobalValueInfo. The global value info contains 5501 // the function block's bitcode offset (if applicable), or the offset into the 5502 // summary section for the combined index. 5503 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5504 uint64_t Offset, 5505 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5506 assert(Offset > 0 && "Expected non-zero VST offset"); 5507 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5508 5509 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5510 return error("Invalid record"); 5511 5512 SmallVector<uint64_t, 64> Record; 5513 5514 // Read all the records for this value table. 5515 SmallString<128> ValueName; 5516 while (1) { 5517 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5518 5519 switch (Entry.Kind) { 5520 case BitstreamEntry::SubBlock: // Handled for us already. 5521 case BitstreamEntry::Error: 5522 return error("Malformed block"); 5523 case BitstreamEntry::EndBlock: 5524 // Done parsing VST, jump back to wherever we came from. 5525 Stream.JumpToBit(CurrentBit); 5526 return std::error_code(); 5527 case BitstreamEntry::Record: 5528 // The interesting case. 5529 break; 5530 } 5531 5532 // Read a record. 5533 Record.clear(); 5534 switch (Stream.readRecord(Entry.ID, Record)) { 5535 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5536 break; 5537 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5538 if (convertToString(Record, 1, ValueName)) 5539 return error("Invalid record"); 5540 unsigned ValueID = Record[0]; 5541 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5542 llvm::make_unique<GlobalValueInfo>(); 5543 assert(!SourceFileName.empty()); 5544 auto VLI = ValueIdToLinkageMap.find(ValueID); 5545 assert(VLI != ValueIdToLinkageMap.end() && 5546 "No linkage found for VST entry?"); 5547 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5548 ValueName, VLI->second, SourceFileName); 5549 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5550 if (PrintSummaryGUIDs) 5551 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5552 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5553 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5554 ValueName.clear(); 5555 break; 5556 } 5557 case bitc::VST_CODE_FNENTRY: { 5558 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5559 if (convertToString(Record, 2, ValueName)) 5560 return error("Invalid record"); 5561 unsigned ValueID = Record[0]; 5562 uint64_t FuncOffset = Record[1]; 5563 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5564 std::unique_ptr<GlobalValueInfo> FuncInfo = 5565 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5566 assert(!SourceFileName.empty()); 5567 auto VLI = ValueIdToLinkageMap.find(ValueID); 5568 assert(VLI != ValueIdToLinkageMap.end() && 5569 "No linkage found for VST entry?"); 5570 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5571 ValueName, VLI->second, SourceFileName); 5572 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5573 if (PrintSummaryGUIDs) 5574 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5575 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5576 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5577 5578 ValueName.clear(); 5579 break; 5580 } 5581 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5582 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5583 unsigned ValueID = Record[0]; 5584 uint64_t GlobalValSummaryOffset = Record[1]; 5585 GlobalValue::GUID GlobalValGUID = Record[2]; 5586 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5587 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5588 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5589 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5590 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5591 break; 5592 } 5593 case bitc::VST_CODE_COMBINED_ENTRY: { 5594 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5595 unsigned ValueID = Record[0]; 5596 GlobalValue::GUID RefGUID = Record[1]; 5597 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5598 break; 5599 } 5600 } 5601 } 5602 } 5603 5604 // Parse just the blocks needed for building the index out of the module. 5605 // At the end of this routine the module Index is populated with a map 5606 // from global value name to GlobalValueInfo. The global value info contains 5607 // either the parsed summary information (when parsing summaries 5608 // eagerly), or just to the summary record's offset 5609 // if parsing lazily (IsLazy). 5610 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5611 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5612 return error("Invalid record"); 5613 5614 SmallVector<uint64_t, 64> Record; 5615 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5616 unsigned ValueId = 0; 5617 5618 // Read the index for this module. 5619 while (1) { 5620 BitstreamEntry Entry = Stream.advance(); 5621 5622 switch (Entry.Kind) { 5623 case BitstreamEntry::Error: 5624 return error("Malformed block"); 5625 case BitstreamEntry::EndBlock: 5626 return std::error_code(); 5627 5628 case BitstreamEntry::SubBlock: 5629 if (CheckGlobalValSummaryPresenceOnly) { 5630 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5631 SeenGlobalValSummary = true; 5632 // No need to parse the rest since we found the summary. 5633 return std::error_code(); 5634 } 5635 if (Stream.SkipBlock()) 5636 return error("Invalid record"); 5637 continue; 5638 } 5639 switch (Entry.ID) { 5640 default: // Skip unknown content. 5641 if (Stream.SkipBlock()) 5642 return error("Invalid record"); 5643 break; 5644 case bitc::BLOCKINFO_BLOCK_ID: 5645 // Need to parse these to get abbrev ids (e.g. for VST) 5646 if (Stream.ReadBlockInfoBlock()) 5647 return error("Malformed block"); 5648 break; 5649 case bitc::VALUE_SYMTAB_BLOCK_ID: 5650 // Should have been parsed earlier via VSTOffset, unless there 5651 // is no summary section. 5652 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5653 !SeenGlobalValSummary) && 5654 "Expected early VST parse via VSTOffset record"); 5655 if (Stream.SkipBlock()) 5656 return error("Invalid record"); 5657 break; 5658 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5659 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5660 assert(!SeenValueSymbolTable && 5661 "Already read VST when parsing summary block?"); 5662 if (std::error_code EC = 5663 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5664 return EC; 5665 SeenValueSymbolTable = true; 5666 SeenGlobalValSummary = true; 5667 if (IsLazy) { 5668 // Lazy parsing of summary info, skip it. 5669 if (Stream.SkipBlock()) 5670 return error("Invalid record"); 5671 } else if (std::error_code EC = parseEntireSummary()) 5672 return EC; 5673 break; 5674 case bitc::MODULE_STRTAB_BLOCK_ID: 5675 if (std::error_code EC = parseModuleStringTable()) 5676 return EC; 5677 break; 5678 } 5679 continue; 5680 5681 case BitstreamEntry::Record: { 5682 Record.clear(); 5683 auto BitCode = Stream.readRecord(Entry.ID, Record); 5684 switch (BitCode) { 5685 default: 5686 break; // Default behavior, ignore unknown content. 5687 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5688 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5689 SmallString<128> ValueName; 5690 if (convertToString(Record, 0, ValueName)) 5691 return error("Invalid record"); 5692 SourceFileName = ValueName.c_str(); 5693 break; 5694 } 5695 /// MODULE_CODE_HASH: [5*i32] 5696 case bitc::MODULE_CODE_HASH: { 5697 if (Record.size() != 5) 5698 return error("Invalid hash length " + Twine(Record.size()).str()); 5699 if (!TheIndex) 5700 break; 5701 if (TheIndex->modulePaths().empty()) 5702 // Does not have any summary emitted. 5703 break; 5704 if (TheIndex->modulePaths().size() != 1) 5705 return error("Don't expect multiple modules defined?"); 5706 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5707 int Pos = 0; 5708 for (auto &Val : Record) { 5709 assert(!(Val >> 32) && "Unexpected high bits set"); 5710 Hash[Pos++] = Val; 5711 } 5712 break; 5713 } 5714 /// MODULE_CODE_VSTOFFSET: [offset] 5715 case bitc::MODULE_CODE_VSTOFFSET: 5716 if (Record.size() < 1) 5717 return error("Invalid record"); 5718 VSTOffset = Record[0]; 5719 break; 5720 // GLOBALVAR: [pointer type, isconst, initid, 5721 // linkage, alignment, section, visibility, threadlocal, 5722 // unnamed_addr, externally_initialized, dllstorageclass, 5723 // comdat] 5724 case bitc::MODULE_CODE_GLOBALVAR: { 5725 if (Record.size() < 6) 5726 return error("Invalid record"); 5727 uint64_t RawLinkage = Record[3]; 5728 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5729 ValueIdToLinkageMap[ValueId++] = Linkage; 5730 break; 5731 } 5732 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5733 // alignment, section, visibility, gc, unnamed_addr, 5734 // prologuedata, dllstorageclass, comdat, prefixdata] 5735 case bitc::MODULE_CODE_FUNCTION: { 5736 if (Record.size() < 8) 5737 return error("Invalid record"); 5738 uint64_t RawLinkage = Record[3]; 5739 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5740 ValueIdToLinkageMap[ValueId++] = Linkage; 5741 break; 5742 } 5743 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5744 // dllstorageclass] 5745 case bitc::MODULE_CODE_ALIAS: { 5746 if (Record.size() < 6) 5747 return error("Invalid record"); 5748 uint64_t RawLinkage = Record[3]; 5749 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5750 ValueIdToLinkageMap[ValueId++] = Linkage; 5751 break; 5752 } 5753 } 5754 } 5755 continue; 5756 } 5757 } 5758 } 5759 5760 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5761 // objects in the index. 5762 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5763 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5764 return error("Invalid record"); 5765 5766 SmallVector<uint64_t, 64> Record; 5767 5768 bool Combined = false; 5769 while (1) { 5770 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5771 5772 switch (Entry.Kind) { 5773 case BitstreamEntry::SubBlock: // Handled for us already. 5774 case BitstreamEntry::Error: 5775 return error("Malformed block"); 5776 case BitstreamEntry::EndBlock: 5777 // For a per-module index, remove any entries that still have empty 5778 // summaries. The VST parsing creates entries eagerly for all symbols, 5779 // but not all have associated summaries (e.g. it doesn't know how to 5780 // distinguish between VST_CODE_ENTRY for function declarations vs global 5781 // variables with initializers that end up with a summary). Remove those 5782 // entries now so that we don't need to rely on the combined index merger 5783 // to clean them up (especially since that may not run for the first 5784 // module's index if we merge into that). 5785 if (!Combined) 5786 TheIndex->removeEmptySummaryEntries(); 5787 return std::error_code(); 5788 case BitstreamEntry::Record: 5789 // The interesting case. 5790 break; 5791 } 5792 5793 // Read a record. The record format depends on whether this 5794 // is a per-module index or a combined index file. In the per-module 5795 // case the records contain the associated value's ID for correlation 5796 // with VST entries. In the combined index the correlation is done 5797 // via the bitcode offset of the summary records (which were saved 5798 // in the combined index VST entries). The records also contain 5799 // information used for ThinLTO renaming and importing. 5800 Record.clear(); 5801 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5802 auto BitCode = Stream.readRecord(Entry.ID, Record); 5803 switch (BitCode) { 5804 default: // Default behavior: ignore. 5805 break; 5806 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5807 // n x (valueid, callsitecount)] 5808 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5809 // numrefs x valueid, 5810 // n x (valueid, callsitecount, profilecount)] 5811 case bitc::FS_PERMODULE: 5812 case bitc::FS_PERMODULE_PROFILE: { 5813 unsigned ValueID = Record[0]; 5814 uint64_t RawLinkage = Record[1]; 5815 unsigned InstCount = Record[2]; 5816 unsigned NumRefs = Record[3]; 5817 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5818 getDecodedLinkage(RawLinkage), InstCount); 5819 // The module path string ref set in the summary must be owned by the 5820 // index's module string table. Since we don't have a module path 5821 // string table section in the per-module index, we create a single 5822 // module path string table entry with an empty (0) ID to take 5823 // ownership. 5824 FS->setModulePath( 5825 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5826 static int RefListStartIndex = 4; 5827 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5828 assert(Record.size() >= RefListStartIndex + NumRefs && 5829 "Record size inconsistent with number of references"); 5830 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5831 unsigned RefValueId = Record[I]; 5832 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5833 FS->addRefEdge(RefGUID); 5834 } 5835 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5836 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5837 ++I) { 5838 unsigned CalleeValueId = Record[I]; 5839 unsigned CallsiteCount = Record[++I]; 5840 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5841 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5842 FS->addCallGraphEdge(CalleeGUID, 5843 CalleeInfo(CallsiteCount, ProfileCount)); 5844 } 5845 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5846 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5847 assert(!Info->summary() && "Expected a single summary per VST entry"); 5848 Info->setSummary(std::move(FS)); 5849 break; 5850 } 5851 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5852 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5853 unsigned ValueID = Record[0]; 5854 uint64_t RawLinkage = Record[1]; 5855 std::unique_ptr<GlobalVarSummary> FS = 5856 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5857 FS->setModulePath( 5858 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5859 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5860 unsigned RefValueId = Record[I]; 5861 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5862 FS->addRefEdge(RefGUID); 5863 } 5864 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5865 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5866 assert(!Info->summary() && "Expected a single summary per VST entry"); 5867 Info->setSummary(std::move(FS)); 5868 break; 5869 } 5870 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5871 // n x (valueid, callsitecount)] 5872 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5873 // numrefs x valueid, 5874 // n x (valueid, callsitecount, profilecount)] 5875 case bitc::FS_COMBINED: 5876 case bitc::FS_COMBINED_PROFILE: { 5877 uint64_t ModuleId = Record[0]; 5878 uint64_t RawLinkage = Record[1]; 5879 unsigned InstCount = Record[2]; 5880 unsigned NumRefs = Record[3]; 5881 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5882 getDecodedLinkage(RawLinkage), InstCount); 5883 FS->setModulePath(ModuleIdMap[ModuleId]); 5884 static int RefListStartIndex = 4; 5885 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5886 assert(Record.size() >= RefListStartIndex + NumRefs && 5887 "Record size inconsistent with number of references"); 5888 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5889 unsigned RefValueId = Record[I]; 5890 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5891 FS->addRefEdge(RefGUID); 5892 } 5893 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5894 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5895 ++I) { 5896 unsigned CalleeValueId = Record[I]; 5897 unsigned CallsiteCount = Record[++I]; 5898 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5899 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5900 FS->addCallGraphEdge(CalleeGUID, 5901 CalleeInfo(CallsiteCount, ProfileCount)); 5902 } 5903 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5904 assert(!Info->summary() && "Expected a single summary per VST entry"); 5905 Info->setSummary(std::move(FS)); 5906 Combined = true; 5907 break; 5908 } 5909 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5910 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5911 uint64_t ModuleId = Record[0]; 5912 uint64_t RawLinkage = Record[1]; 5913 std::unique_ptr<GlobalVarSummary> FS = 5914 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5915 FS->setModulePath(ModuleIdMap[ModuleId]); 5916 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5917 unsigned RefValueId = Record[I]; 5918 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5919 FS->addRefEdge(RefGUID); 5920 } 5921 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5922 assert(!Info->summary() && "Expected a single summary per VST entry"); 5923 Info->setSummary(std::move(FS)); 5924 Combined = true; 5925 break; 5926 } 5927 } 5928 } 5929 llvm_unreachable("Exit infinite loop"); 5930 } 5931 5932 // Parse the module string table block into the Index. 5933 // This populates the ModulePathStringTable map in the index. 5934 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5935 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5936 return error("Invalid record"); 5937 5938 SmallVector<uint64_t, 64> Record; 5939 5940 SmallString<128> ModulePath; 5941 ModulePathStringTableTy::iterator LastSeenModulePath; 5942 while (1) { 5943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5944 5945 switch (Entry.Kind) { 5946 case BitstreamEntry::SubBlock: // Handled for us already. 5947 case BitstreamEntry::Error: 5948 return error("Malformed block"); 5949 case BitstreamEntry::EndBlock: 5950 return std::error_code(); 5951 case BitstreamEntry::Record: 5952 // The interesting case. 5953 break; 5954 } 5955 5956 Record.clear(); 5957 switch (Stream.readRecord(Entry.ID, Record)) { 5958 default: // Default behavior: ignore. 5959 break; 5960 case bitc::MST_CODE_ENTRY: { 5961 // MST_ENTRY: [modid, namechar x N] 5962 uint64_t ModuleId = Record[0]; 5963 5964 if (convertToString(Record, 1, ModulePath)) 5965 return error("Invalid record"); 5966 5967 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 5968 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5969 5970 ModulePath.clear(); 5971 break; 5972 } 5973 /// MST_CODE_HASH: [5*i32] 5974 case bitc::MST_CODE_HASH: { 5975 if (Record.size() != 5) 5976 return error("Invalid hash length " + Twine(Record.size()).str()); 5977 if (LastSeenModulePath == TheIndex->modulePaths().end()) 5978 return error("Invalid hash that does not follow a module path"); 5979 int Pos = 0; 5980 for (auto &Val : Record) { 5981 assert(!(Val >> 32) && "Unexpected high bits set"); 5982 LastSeenModulePath->second.second[Pos++] = Val; 5983 } 5984 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5985 LastSeenModulePath = TheIndex->modulePaths().end(); 5986 break; 5987 } 5988 } 5989 } 5990 llvm_unreachable("Exit infinite loop"); 5991 } 5992 5993 // Parse the function info index from the bitcode streamer into the given index. 5994 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5995 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5996 TheIndex = I; 5997 5998 if (std::error_code EC = initStream(std::move(Streamer))) 5999 return EC; 6000 6001 // Sniff for the signature. 6002 if (!hasValidBitcodeHeader(Stream)) 6003 return error("Invalid bitcode signature"); 6004 6005 // We expect a number of well-defined blocks, though we don't necessarily 6006 // need to understand them all. 6007 while (1) { 6008 if (Stream.AtEndOfStream()) { 6009 // We didn't really read a proper Module block. 6010 return error("Malformed block"); 6011 } 6012 6013 BitstreamEntry Entry = 6014 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6015 6016 if (Entry.Kind != BitstreamEntry::SubBlock) 6017 return error("Malformed block"); 6018 6019 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6020 // building the function summary index. 6021 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6022 return parseModule(); 6023 6024 if (Stream.SkipBlock()) 6025 return error("Invalid record"); 6026 } 6027 } 6028 6029 // Parse the summary information at the given offset in the buffer into 6030 // the index. Used to support lazy parsing of summaries from the 6031 // combined index during importing. 6032 // TODO: This function is not yet complete as it won't have a consumer 6033 // until ThinLTO function importing is added. 6034 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6035 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6036 size_t SummaryOffset) { 6037 TheIndex = I; 6038 6039 if (std::error_code EC = initStream(std::move(Streamer))) 6040 return EC; 6041 6042 // Sniff for the signature. 6043 if (!hasValidBitcodeHeader(Stream)) 6044 return error("Invalid bitcode signature"); 6045 6046 Stream.JumpToBit(SummaryOffset); 6047 6048 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6049 6050 switch (Entry.Kind) { 6051 default: 6052 return error("Malformed block"); 6053 case BitstreamEntry::Record: 6054 // The expected case. 6055 break; 6056 } 6057 6058 // TODO: Read a record. This interface will be completed when ThinLTO 6059 // importing is added so that it can be tested. 6060 SmallVector<uint64_t, 64> Record; 6061 switch (Stream.readRecord(Entry.ID, Record)) { 6062 case bitc::FS_COMBINED: 6063 case bitc::FS_COMBINED_PROFILE: 6064 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6065 default: 6066 return error("Invalid record"); 6067 } 6068 6069 return std::error_code(); 6070 } 6071 6072 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6073 std::unique_ptr<DataStreamer> Streamer) { 6074 if (Streamer) 6075 return initLazyStream(std::move(Streamer)); 6076 return initStreamFromBuffer(); 6077 } 6078 6079 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6080 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6081 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6082 6083 if (Buffer->getBufferSize() & 3) 6084 return error("Invalid bitcode signature"); 6085 6086 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6087 // The magic number is 0x0B17C0DE stored in little endian. 6088 if (isBitcodeWrapper(BufPtr, BufEnd)) 6089 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6090 return error("Invalid bitcode wrapper header"); 6091 6092 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6093 Stream.init(&*StreamFile); 6094 6095 return std::error_code(); 6096 } 6097 6098 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6099 std::unique_ptr<DataStreamer> Streamer) { 6100 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6101 // see it. 6102 auto OwnedBytes = 6103 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6104 StreamingMemoryObject &Bytes = *OwnedBytes; 6105 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6106 Stream.init(&*StreamFile); 6107 6108 unsigned char buf[16]; 6109 if (Bytes.readBytes(buf, 16, 0) != 16) 6110 return error("Invalid bitcode signature"); 6111 6112 if (!isBitcode(buf, buf + 16)) 6113 return error("Invalid bitcode signature"); 6114 6115 if (isBitcodeWrapper(buf, buf + 4)) { 6116 const unsigned char *bitcodeStart = buf; 6117 const unsigned char *bitcodeEnd = buf + 16; 6118 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6119 Bytes.dropLeadingBytes(bitcodeStart - buf); 6120 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6121 } 6122 return std::error_code(); 6123 } 6124 6125 namespace { 6126 class BitcodeErrorCategoryType : public std::error_category { 6127 const char *name() const LLVM_NOEXCEPT override { 6128 return "llvm.bitcode"; 6129 } 6130 std::string message(int IE) const override { 6131 BitcodeError E = static_cast<BitcodeError>(IE); 6132 switch (E) { 6133 case BitcodeError::InvalidBitcodeSignature: 6134 return "Invalid bitcode signature"; 6135 case BitcodeError::CorruptedBitcode: 6136 return "Corrupted bitcode"; 6137 } 6138 llvm_unreachable("Unknown error type!"); 6139 } 6140 }; 6141 } // end anonymous namespace 6142 6143 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6144 6145 const std::error_category &llvm::BitcodeErrorCategory() { 6146 return *ErrorCategory; 6147 } 6148 6149 //===----------------------------------------------------------------------===// 6150 // External interface 6151 //===----------------------------------------------------------------------===// 6152 6153 static ErrorOr<std::unique_ptr<Module>> 6154 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6155 BitcodeReader *R, LLVMContext &Context, 6156 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6157 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6158 M->setMaterializer(R); 6159 6160 auto cleanupOnError = [&](std::error_code EC) { 6161 R->releaseBuffer(); // Never take ownership on error. 6162 return EC; 6163 }; 6164 6165 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6166 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6167 ShouldLazyLoadMetadata)) 6168 return cleanupOnError(EC); 6169 6170 if (MaterializeAll) { 6171 // Read in the entire module, and destroy the BitcodeReader. 6172 if (std::error_code EC = M->materializeAll()) 6173 return cleanupOnError(EC); 6174 } else { 6175 // Resolve forward references from blockaddresses. 6176 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6177 return cleanupOnError(EC); 6178 } 6179 return std::move(M); 6180 } 6181 6182 /// \brief Get a lazy one-at-time loading module from bitcode. 6183 /// 6184 /// This isn't always used in a lazy context. In particular, it's also used by 6185 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6186 /// in forward-referenced functions from block address references. 6187 /// 6188 /// \param[in] MaterializeAll Set to \c true if we should materialize 6189 /// everything. 6190 static ErrorOr<std::unique_ptr<Module>> 6191 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6192 LLVMContext &Context, bool MaterializeAll, 6193 bool ShouldLazyLoadMetadata = false) { 6194 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6195 6196 ErrorOr<std::unique_ptr<Module>> Ret = 6197 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6198 MaterializeAll, ShouldLazyLoadMetadata); 6199 if (!Ret) 6200 return Ret; 6201 6202 Buffer.release(); // The BitcodeReader owns it now. 6203 return Ret; 6204 } 6205 6206 ErrorOr<std::unique_ptr<Module>> 6207 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6208 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6209 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6210 ShouldLazyLoadMetadata); 6211 } 6212 6213 ErrorOr<std::unique_ptr<Module>> 6214 llvm::getStreamedBitcodeModule(StringRef Name, 6215 std::unique_ptr<DataStreamer> Streamer, 6216 LLVMContext &Context) { 6217 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6218 BitcodeReader *R = new BitcodeReader(Context); 6219 6220 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6221 false); 6222 } 6223 6224 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6225 LLVMContext &Context) { 6226 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6227 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6228 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6229 // written. We must defer until the Module has been fully materialized. 6230 } 6231 6232 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6233 LLVMContext &Context) { 6234 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6235 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6236 ErrorOr<std::string> Triple = R->parseTriple(); 6237 if (Triple.getError()) 6238 return ""; 6239 return Triple.get(); 6240 } 6241 6242 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6243 LLVMContext &Context) { 6244 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6245 BitcodeReader R(Buf.release(), Context); 6246 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6247 if (ProducerString.getError()) 6248 return ""; 6249 return ProducerString.get(); 6250 } 6251 6252 // Parse the specified bitcode buffer, returning the function info index. 6253 // If IsLazy is false, parse the entire function summary into 6254 // the index. Otherwise skip the function summary section, and only create 6255 // an index object with a map from function name to function summary offset. 6256 // The index is used to perform lazy function summary reading later. 6257 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6258 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6259 DiagnosticHandlerFunction DiagnosticHandler, 6260 bool IsLazy) { 6261 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6262 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6263 6264 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6265 6266 auto cleanupOnError = [&](std::error_code EC) { 6267 R.releaseBuffer(); // Never take ownership on error. 6268 return EC; 6269 }; 6270 6271 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6272 return cleanupOnError(EC); 6273 6274 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6275 return std::move(Index); 6276 } 6277 6278 // Check if the given bitcode buffer contains a global value summary block. 6279 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6280 DiagnosticHandlerFunction DiagnosticHandler) { 6281 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6282 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6283 6284 auto cleanupOnError = [&](std::error_code EC) { 6285 R.releaseBuffer(); // Never take ownership on error. 6286 return false; 6287 }; 6288 6289 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6290 return cleanupOnError(EC); 6291 6292 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6293 return R.foundGlobalValSummary(); 6294 } 6295 6296 // This method supports lazy reading of summary data from the combined 6297 // index during ThinLTO function importing. When reading the combined index 6298 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6299 // Then this method is called for each value considered for importing, 6300 // to parse the summary information for the given value name into 6301 // the index. 6302 std::error_code llvm::readGlobalValueSummary( 6303 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6304 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6305 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6306 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6307 6308 auto cleanupOnError = [&](std::error_code EC) { 6309 R.releaseBuffer(); // Never take ownership on error. 6310 return EC; 6311 }; 6312 6313 // Lookup the given value name in the GlobalValueMap, which may 6314 // contain a list of global value infos in the case of a COMDAT. Walk through 6315 // and parse each summary info at the summary offset 6316 // recorded when parsing the value symbol table. 6317 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6318 size_t SummaryOffset = FI->bitcodeIndex(); 6319 if (std::error_code EC = 6320 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6321 return cleanupOnError(EC); 6322 } 6323 6324 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6325 return std::error_code(); 6326 } 6327