1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/CallSite.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DiagnosticPrinter.h" 24 #include "llvm/IR/GVMaterializer.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IR/OperandTraits.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/DataStream.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ManagedStatic.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/MemoryBuffer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <deque> 41 #include <utility> 42 43 using namespace llvm; 44 45 static cl::opt<bool> PrintSummaryGUIDs( 46 "print-summary-global-ids", cl::init(false), cl::Hidden, 47 cl::desc( 48 "Print the global id for each value when reading the module summary")); 49 50 namespace { 51 enum { 52 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 53 }; 54 55 class BitcodeReaderValueList { 56 std::vector<WeakVH> ValuePtrs; 57 58 /// As we resolve forward-referenced constants, we add information about them 59 /// to this vector. This allows us to resolve them in bulk instead of 60 /// resolving each reference at a time. See the code in 61 /// ResolveConstantForwardRefs for more information about this. 62 /// 63 /// The key of this vector is the placeholder constant, the value is the slot 64 /// number that holds the resolved value. 65 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 66 ResolveConstantsTy ResolveConstants; 67 LLVMContext &Context; 68 public: 69 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 70 ~BitcodeReaderValueList() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 } 73 74 // vector compatibility methods 75 unsigned size() const { return ValuePtrs.size(); } 76 void resize(unsigned N) { ValuePtrs.resize(N); } 77 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 78 79 void clear() { 80 assert(ResolveConstants.empty() && "Constants not resolved?"); 81 ValuePtrs.clear(); 82 } 83 84 Value *operator[](unsigned i) const { 85 assert(i < ValuePtrs.size()); 86 return ValuePtrs[i]; 87 } 88 89 Value *back() const { return ValuePtrs.back(); } 90 void pop_back() { ValuePtrs.pop_back(); } 91 bool empty() const { return ValuePtrs.empty(); } 92 void shrinkTo(unsigned N) { 93 assert(N <= size() && "Invalid shrinkTo request!"); 94 ValuePtrs.resize(N); 95 } 96 97 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 98 Value *getValueFwdRef(unsigned Idx, Type *Ty); 99 100 void assignValue(Value *V, unsigned Idx); 101 102 /// Once all constants are read, this method bulk resolves any forward 103 /// references. 104 void resolveConstantForwardRefs(); 105 }; 106 107 class BitcodeReaderMetadataList { 108 unsigned NumFwdRefs; 109 bool AnyFwdRefs; 110 unsigned MinFwdRef; 111 unsigned MaxFwdRef; 112 113 /// Array of metadata references. 114 /// 115 /// Don't use std::vector here. Some versions of libc++ copy (instead of 116 /// move) on resize, and TrackingMDRef is very expensive to copy. 117 SmallVector<TrackingMDRef, 1> MetadataPtrs; 118 119 /// Structures for resolving old type refs. 120 struct { 121 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 122 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 123 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 124 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 125 } OldTypeRefs; 126 127 LLVMContext &Context; 128 public: 129 BitcodeReaderMetadataList(LLVMContext &C) 130 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 131 132 // vector compatibility methods 133 unsigned size() const { return MetadataPtrs.size(); } 134 void resize(unsigned N) { MetadataPtrs.resize(N); } 135 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 136 void clear() { MetadataPtrs.clear(); } 137 Metadata *back() const { return MetadataPtrs.back(); } 138 void pop_back() { MetadataPtrs.pop_back(); } 139 bool empty() const { return MetadataPtrs.empty(); } 140 141 Metadata *operator[](unsigned i) const { 142 assert(i < MetadataPtrs.size()); 143 return MetadataPtrs[i]; 144 } 145 146 Metadata *lookup(unsigned I) const { 147 if (I < MetadataPtrs.size()) 148 return MetadataPtrs[I]; 149 return nullptr; 150 } 151 152 void shrinkTo(unsigned N) { 153 assert(N <= size() && "Invalid shrinkTo request!"); 154 assert(!AnyFwdRefs && "Unexpected forward refs"); 155 MetadataPtrs.resize(N); 156 } 157 158 /// Return the given metadata, creating a replaceable forward reference if 159 /// necessary. 160 Metadata *getMetadataFwdRef(unsigned Idx); 161 162 /// Return the the given metadata only if it is fully resolved. 163 /// 164 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 165 /// would give \c false. 166 Metadata *getMetadataIfResolved(unsigned Idx); 167 168 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 169 void assignValue(Metadata *MD, unsigned Idx); 170 void tryToResolveCycles(); 171 bool hasFwdRefs() const { return AnyFwdRefs; } 172 173 /// Upgrade a type that had an MDString reference. 174 void addTypeRef(MDString &UUID, DICompositeType &CT); 175 176 /// Upgrade a type that had an MDString reference. 177 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 178 179 /// Upgrade a type ref array that may have MDString references. 180 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 181 182 private: 183 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 184 }; 185 186 class BitcodeReader : public GVMaterializer { 187 LLVMContext &Context; 188 Module *TheModule = nullptr; 189 std::unique_ptr<MemoryBuffer> Buffer; 190 std::unique_ptr<BitstreamReader> StreamFile; 191 BitstreamCursor Stream; 192 // Next offset to start scanning for lazy parsing of function bodies. 193 uint64_t NextUnreadBit = 0; 194 // Last function offset found in the VST. 195 uint64_t LastFunctionBlockBit = 0; 196 bool SeenValueSymbolTable = false; 197 uint64_t VSTOffset = 0; 198 // Contains an arbitrary and optional string identifying the bitcode producer 199 std::string ProducerIdentification; 200 201 std::vector<Type*> TypeList; 202 BitcodeReaderValueList ValueList; 203 BitcodeReaderMetadataList MetadataList; 204 std::vector<Comdat *> ComdatList; 205 SmallVector<Instruction *, 64> InstructionList; 206 207 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 208 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 209 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 210 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 211 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 212 213 SmallVector<Instruction*, 64> InstsWithTBAATag; 214 215 bool HasSeenOldLoopTags = false; 216 217 /// The set of attributes by index. Index zero in the file is for null, and 218 /// is thus not represented here. As such all indices are off by one. 219 std::vector<AttributeSet> MAttributes; 220 221 /// The set of attribute groups. 222 std::map<unsigned, AttributeSet> MAttributeGroups; 223 224 /// While parsing a function body, this is a list of the basic blocks for the 225 /// function. 226 std::vector<BasicBlock*> FunctionBBs; 227 228 // When reading the module header, this list is populated with functions that 229 // have bodies later in the file. 230 std::vector<Function*> FunctionsWithBodies; 231 232 // When intrinsic functions are encountered which require upgrading they are 233 // stored here with their replacement function. 234 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 235 UpdatedIntrinsicMap UpgradedIntrinsics; 236 // Intrinsics which were remangled because of types rename 237 UpdatedIntrinsicMap RemangledIntrinsics; 238 239 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 240 DenseMap<unsigned, unsigned> MDKindMap; 241 242 // Several operations happen after the module header has been read, but 243 // before function bodies are processed. This keeps track of whether 244 // we've done this yet. 245 bool SeenFirstFunctionBody = false; 246 247 /// When function bodies are initially scanned, this map contains info about 248 /// where to find deferred function body in the stream. 249 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 250 251 /// When Metadata block is initially scanned when parsing the module, we may 252 /// choose to defer parsing of the metadata. This vector contains info about 253 /// which Metadata blocks are deferred. 254 std::vector<uint64_t> DeferredMetadataInfo; 255 256 /// These are basic blocks forward-referenced by block addresses. They are 257 /// inserted lazily into functions when they're loaded. The basic block ID is 258 /// its index into the vector. 259 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 260 std::deque<Function *> BasicBlockFwdRefQueue; 261 262 /// Indicates that we are using a new encoding for instruction operands where 263 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 264 /// instruction number, for a more compact encoding. Some instruction 265 /// operands are not relative to the instruction ID: basic block numbers, and 266 /// types. Once the old style function blocks have been phased out, we would 267 /// not need this flag. 268 bool UseRelativeIDs = false; 269 270 /// True if all functions will be materialized, negating the need to process 271 /// (e.g.) blockaddress forward references. 272 bool WillMaterializeAllForwardRefs = false; 273 274 /// True if any Metadata block has been materialized. 275 bool IsMetadataMaterialized = false; 276 277 bool StripDebugInfo = false; 278 279 /// Functions that need to be matched with subprograms when upgrading old 280 /// metadata. 281 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 282 283 std::vector<std::string> BundleTags; 284 285 public: 286 std::error_code error(BitcodeError E, const Twine &Message); 287 std::error_code error(const Twine &Message); 288 289 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 290 BitcodeReader(LLVMContext &Context); 291 ~BitcodeReader() override { freeState(); } 292 293 std::error_code materializeForwardReferencedFunctions(); 294 295 void freeState(); 296 297 void releaseBuffer(); 298 299 std::error_code materialize(GlobalValue *GV) override; 300 std::error_code materializeModule() override; 301 std::vector<StructType *> getIdentifiedStructTypes() const override; 302 303 /// \brief Main interface to parsing a bitcode buffer. 304 /// \returns true if an error occurred. 305 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 306 Module *M, 307 bool ShouldLazyLoadMetadata = false); 308 309 /// \brief Cheap mechanism to just extract module triple 310 /// \returns true if an error occurred. 311 ErrorOr<std::string> parseTriple(); 312 313 /// Cheap mechanism to just extract the identification block out of bitcode. 314 ErrorOr<std::string> parseIdentificationBlock(); 315 316 static uint64_t decodeSignRotatedValue(uint64_t V); 317 318 /// Materialize any deferred Metadata block. 319 std::error_code materializeMetadata() override; 320 321 void setStripDebugInfo() override; 322 323 private: 324 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 325 // ProducerIdentification data member, and do some basic enforcement on the 326 // "epoch" encoded in the bitcode. 327 std::error_code parseBitcodeVersion(); 328 329 std::vector<StructType *> IdentifiedStructTypes; 330 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 331 StructType *createIdentifiedStructType(LLVMContext &Context); 332 333 Type *getTypeByID(unsigned ID); 334 Value *getFnValueByID(unsigned ID, Type *Ty) { 335 if (Ty && Ty->isMetadataTy()) 336 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 337 return ValueList.getValueFwdRef(ID, Ty); 338 } 339 Metadata *getFnMetadataByID(unsigned ID) { 340 return MetadataList.getMetadataFwdRef(ID); 341 } 342 BasicBlock *getBasicBlock(unsigned ID) const { 343 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 344 return FunctionBBs[ID]; 345 } 346 AttributeSet getAttributes(unsigned i) const { 347 if (i-1 < MAttributes.size()) 348 return MAttributes[i-1]; 349 return AttributeSet(); 350 } 351 352 /// Read a value/type pair out of the specified record from slot 'Slot'. 353 /// Increment Slot past the number of slots used in the record. Return true on 354 /// failure. 355 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 356 unsigned InstNum, Value *&ResVal) { 357 if (Slot == Record.size()) return true; 358 unsigned ValNo = (unsigned)Record[Slot++]; 359 // Adjust the ValNo, if it was encoded relative to the InstNum. 360 if (UseRelativeIDs) 361 ValNo = InstNum - ValNo; 362 if (ValNo < InstNum) { 363 // If this is not a forward reference, just return the value we already 364 // have. 365 ResVal = getFnValueByID(ValNo, nullptr); 366 return ResVal == nullptr; 367 } 368 if (Slot == Record.size()) 369 return true; 370 371 unsigned TypeNo = (unsigned)Record[Slot++]; 372 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 373 return ResVal == nullptr; 374 } 375 376 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 377 /// past the number of slots used by the value in the record. Return true if 378 /// there is an error. 379 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 380 unsigned InstNum, Type *Ty, Value *&ResVal) { 381 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 382 return true; 383 // All values currently take a single record slot. 384 ++Slot; 385 return false; 386 } 387 388 /// Like popValue, but does not increment the Slot number. 389 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 390 unsigned InstNum, Type *Ty, Value *&ResVal) { 391 ResVal = getValue(Record, Slot, InstNum, Ty); 392 return ResVal == nullptr; 393 } 394 395 /// Version of getValue that returns ResVal directly, or 0 if there is an 396 /// error. 397 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 398 unsigned InstNum, Type *Ty) { 399 if (Slot == Record.size()) return nullptr; 400 unsigned ValNo = (unsigned)Record[Slot]; 401 // Adjust the ValNo, if it was encoded relative to the InstNum. 402 if (UseRelativeIDs) 403 ValNo = InstNum - ValNo; 404 return getFnValueByID(ValNo, Ty); 405 } 406 407 /// Like getValue, but decodes signed VBRs. 408 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 409 unsigned InstNum, Type *Ty) { 410 if (Slot == Record.size()) return nullptr; 411 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 412 // Adjust the ValNo, if it was encoded relative to the InstNum. 413 if (UseRelativeIDs) 414 ValNo = InstNum - ValNo; 415 return getFnValueByID(ValNo, Ty); 416 } 417 418 /// Converts alignment exponent (i.e. power of two (or zero)) to the 419 /// corresponding alignment to use. If alignment is too large, returns 420 /// a corresponding error code. 421 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 422 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 423 std::error_code parseModule(uint64_t ResumeBit, 424 bool ShouldLazyLoadMetadata = false); 425 std::error_code parseAttributeBlock(); 426 std::error_code parseAttributeGroupBlock(); 427 std::error_code parseTypeTable(); 428 std::error_code parseTypeTableBody(); 429 std::error_code parseOperandBundleTags(); 430 431 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 432 unsigned NameIndex, Triple &TT); 433 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 434 std::error_code parseConstants(); 435 std::error_code rememberAndSkipFunctionBodies(); 436 std::error_code rememberAndSkipFunctionBody(); 437 /// Save the positions of the Metadata blocks and skip parsing the blocks. 438 std::error_code rememberAndSkipMetadata(); 439 std::error_code parseFunctionBody(Function *F); 440 std::error_code globalCleanup(); 441 std::error_code resolveGlobalAndIndirectSymbolInits(); 442 std::error_code parseMetadata(bool ModuleLevel = false); 443 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 444 StringRef Blob, 445 unsigned &NextMetadataNo); 446 std::error_code parseMetadataKinds(); 447 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 448 std::error_code 449 parseGlobalObjectAttachment(GlobalObject &GO, 450 ArrayRef<uint64_t> Record); 451 std::error_code parseMetadataAttachment(Function &F); 452 ErrorOr<std::string> parseModuleTriple(); 453 std::error_code parseUseLists(); 454 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 455 std::error_code initStreamFromBuffer(); 456 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 457 std::error_code findFunctionInStream( 458 Function *F, 459 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 460 }; 461 462 /// Class to manage reading and parsing function summary index bitcode 463 /// files/sections. 464 class ModuleSummaryIndexBitcodeReader { 465 DiagnosticHandlerFunction DiagnosticHandler; 466 467 /// Eventually points to the module index built during parsing. 468 ModuleSummaryIndex *TheIndex = nullptr; 469 470 std::unique_ptr<MemoryBuffer> Buffer; 471 std::unique_ptr<BitstreamReader> StreamFile; 472 BitstreamCursor Stream; 473 474 /// Used to indicate whether caller only wants to check for the presence 475 /// of the global value summary bitcode section. All blocks are skipped, 476 /// but the SeenGlobalValSummary boolean is set. 477 bool CheckGlobalValSummaryPresenceOnly = false; 478 479 /// Indicates whether we have encountered a global value summary section 480 /// yet during parsing, used when checking if file contains global value 481 /// summary section. 482 bool SeenGlobalValSummary = false; 483 484 /// Indicates whether we have already parsed the VST, used for error checking. 485 bool SeenValueSymbolTable = false; 486 487 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 488 /// Used to enable on-demand parsing of the VST. 489 uint64_t VSTOffset = 0; 490 491 // Map to save ValueId to GUID association that was recorded in the 492 // ValueSymbolTable. It is used after the VST is parsed to convert 493 // call graph edges read from the function summary from referencing 494 // callees by their ValueId to using the GUID instead, which is how 495 // they are recorded in the summary index being built. 496 // We save a second GUID which is the same as the first one, but ignoring the 497 // linkage, i.e. for value other than local linkage they are identical. 498 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 499 ValueIdToCallGraphGUIDMap; 500 501 /// Map populated during module path string table parsing, from the 502 /// module ID to a string reference owned by the index's module 503 /// path string table, used to correlate with combined index 504 /// summary records. 505 DenseMap<uint64_t, StringRef> ModuleIdMap; 506 507 /// Original source file name recorded in a bitcode record. 508 std::string SourceFileName; 509 510 public: 511 std::error_code error(const Twine &Message); 512 513 ModuleSummaryIndexBitcodeReader( 514 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 515 bool CheckGlobalValSummaryPresenceOnly = false); 516 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 517 518 void freeState(); 519 520 void releaseBuffer(); 521 522 /// Check if the parser has encountered a summary section. 523 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 524 525 /// \brief Main interface to parsing a bitcode buffer. 526 /// \returns true if an error occurred. 527 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 528 ModuleSummaryIndex *I); 529 530 private: 531 std::error_code parseModule(); 532 std::error_code parseValueSymbolTable( 533 uint64_t Offset, 534 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 535 std::error_code parseEntireSummary(); 536 std::error_code parseModuleStringTable(); 537 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 538 std::error_code initStreamFromBuffer(); 539 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 540 std::pair<GlobalValue::GUID, GlobalValue::GUID> 541 getGUIDFromValueId(unsigned ValueId); 542 }; 543 } // end anonymous namespace 544 545 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 546 DiagnosticSeverity Severity, 547 const Twine &Msg) 548 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 549 550 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 551 552 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 553 std::error_code EC, const Twine &Message) { 554 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 555 DiagnosticHandler(DI); 556 return EC; 557 } 558 559 static std::error_code error(LLVMContext &Context, std::error_code EC, 560 const Twine &Message) { 561 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 562 Message); 563 } 564 565 static std::error_code error(LLVMContext &Context, const Twine &Message) { 566 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 567 Message); 568 } 569 570 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 571 if (!ProducerIdentification.empty()) { 572 return ::error(Context, make_error_code(E), 573 Message + " (Producer: '" + ProducerIdentification + 574 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 575 } 576 return ::error(Context, make_error_code(E), Message); 577 } 578 579 std::error_code BitcodeReader::error(const Twine &Message) { 580 if (!ProducerIdentification.empty()) { 581 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 582 Message + " (Producer: '" + ProducerIdentification + 583 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 584 } 585 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 586 Message); 587 } 588 589 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 590 : Context(Context), Buffer(Buffer), ValueList(Context), 591 MetadataList(Context) {} 592 593 BitcodeReader::BitcodeReader(LLVMContext &Context) 594 : Context(Context), Buffer(nullptr), ValueList(Context), 595 MetadataList(Context) {} 596 597 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 598 if (WillMaterializeAllForwardRefs) 599 return std::error_code(); 600 601 // Prevent recursion. 602 WillMaterializeAllForwardRefs = true; 603 604 while (!BasicBlockFwdRefQueue.empty()) { 605 Function *F = BasicBlockFwdRefQueue.front(); 606 BasicBlockFwdRefQueue.pop_front(); 607 assert(F && "Expected valid function"); 608 if (!BasicBlockFwdRefs.count(F)) 609 // Already materialized. 610 continue; 611 612 // Check for a function that isn't materializable to prevent an infinite 613 // loop. When parsing a blockaddress stored in a global variable, there 614 // isn't a trivial way to check if a function will have a body without a 615 // linear search through FunctionsWithBodies, so just check it here. 616 if (!F->isMaterializable()) 617 return error("Never resolved function from blockaddress"); 618 619 // Try to materialize F. 620 if (std::error_code EC = materialize(F)) 621 return EC; 622 } 623 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 624 625 // Reset state. 626 WillMaterializeAllForwardRefs = false; 627 return std::error_code(); 628 } 629 630 void BitcodeReader::freeState() { 631 Buffer = nullptr; 632 std::vector<Type*>().swap(TypeList); 633 ValueList.clear(); 634 MetadataList.clear(); 635 std::vector<Comdat *>().swap(ComdatList); 636 637 std::vector<AttributeSet>().swap(MAttributes); 638 std::vector<BasicBlock*>().swap(FunctionBBs); 639 std::vector<Function*>().swap(FunctionsWithBodies); 640 DeferredFunctionInfo.clear(); 641 DeferredMetadataInfo.clear(); 642 MDKindMap.clear(); 643 644 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 645 BasicBlockFwdRefQueue.clear(); 646 } 647 648 //===----------------------------------------------------------------------===// 649 // Helper functions to implement forward reference resolution, etc. 650 //===----------------------------------------------------------------------===// 651 652 /// Convert a string from a record into an std::string, return true on failure. 653 template <typename StrTy> 654 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 655 StrTy &Result) { 656 if (Idx > Record.size()) 657 return true; 658 659 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 660 Result += (char)Record[i]; 661 return false; 662 } 663 664 static bool hasImplicitComdat(size_t Val) { 665 switch (Val) { 666 default: 667 return false; 668 case 1: // Old WeakAnyLinkage 669 case 4: // Old LinkOnceAnyLinkage 670 case 10: // Old WeakODRLinkage 671 case 11: // Old LinkOnceODRLinkage 672 return true; 673 } 674 } 675 676 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 677 switch (Val) { 678 default: // Map unknown/new linkages to external 679 case 0: 680 return GlobalValue::ExternalLinkage; 681 case 2: 682 return GlobalValue::AppendingLinkage; 683 case 3: 684 return GlobalValue::InternalLinkage; 685 case 5: 686 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 687 case 6: 688 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 689 case 7: 690 return GlobalValue::ExternalWeakLinkage; 691 case 8: 692 return GlobalValue::CommonLinkage; 693 case 9: 694 return GlobalValue::PrivateLinkage; 695 case 12: 696 return GlobalValue::AvailableExternallyLinkage; 697 case 13: 698 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 699 case 14: 700 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 701 case 15: 702 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 703 case 1: // Old value with implicit comdat. 704 case 16: 705 return GlobalValue::WeakAnyLinkage; 706 case 10: // Old value with implicit comdat. 707 case 17: 708 return GlobalValue::WeakODRLinkage; 709 case 4: // Old value with implicit comdat. 710 case 18: 711 return GlobalValue::LinkOnceAnyLinkage; 712 case 11: // Old value with implicit comdat. 713 case 19: 714 return GlobalValue::LinkOnceODRLinkage; 715 } 716 } 717 718 // Decode the flags for GlobalValue in the summary 719 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 720 uint64_t Version) { 721 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 722 // like getDecodedLinkage() above. Any future change to the linkage enum and 723 // to getDecodedLinkage() will need to be taken into account here as above. 724 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 725 RawFlags = RawFlags >> 4; 726 auto HasSection = RawFlags & 0x1; // bool 727 return GlobalValueSummary::GVFlags(Linkage, HasSection); 728 } 729 730 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 731 switch (Val) { 732 default: // Map unknown visibilities to default. 733 case 0: return GlobalValue::DefaultVisibility; 734 case 1: return GlobalValue::HiddenVisibility; 735 case 2: return GlobalValue::ProtectedVisibility; 736 } 737 } 738 739 static GlobalValue::DLLStorageClassTypes 740 getDecodedDLLStorageClass(unsigned Val) { 741 switch (Val) { 742 default: // Map unknown values to default. 743 case 0: return GlobalValue::DefaultStorageClass; 744 case 1: return GlobalValue::DLLImportStorageClass; 745 case 2: return GlobalValue::DLLExportStorageClass; 746 } 747 } 748 749 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 750 switch (Val) { 751 case 0: return GlobalVariable::NotThreadLocal; 752 default: // Map unknown non-zero value to general dynamic. 753 case 1: return GlobalVariable::GeneralDynamicTLSModel; 754 case 2: return GlobalVariable::LocalDynamicTLSModel; 755 case 3: return GlobalVariable::InitialExecTLSModel; 756 case 4: return GlobalVariable::LocalExecTLSModel; 757 } 758 } 759 760 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 761 switch (Val) { 762 default: // Map unknown to UnnamedAddr::None. 763 case 0: return GlobalVariable::UnnamedAddr::None; 764 case 1: return GlobalVariable::UnnamedAddr::Global; 765 case 2: return GlobalVariable::UnnamedAddr::Local; 766 } 767 } 768 769 static int getDecodedCastOpcode(unsigned Val) { 770 switch (Val) { 771 default: return -1; 772 case bitc::CAST_TRUNC : return Instruction::Trunc; 773 case bitc::CAST_ZEXT : return Instruction::ZExt; 774 case bitc::CAST_SEXT : return Instruction::SExt; 775 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 776 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 777 case bitc::CAST_UITOFP : return Instruction::UIToFP; 778 case bitc::CAST_SITOFP : return Instruction::SIToFP; 779 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 780 case bitc::CAST_FPEXT : return Instruction::FPExt; 781 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 782 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 783 case bitc::CAST_BITCAST : return Instruction::BitCast; 784 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 785 } 786 } 787 788 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 789 bool IsFP = Ty->isFPOrFPVectorTy(); 790 // BinOps are only valid for int/fp or vector of int/fp types 791 if (!IsFP && !Ty->isIntOrIntVectorTy()) 792 return -1; 793 794 switch (Val) { 795 default: 796 return -1; 797 case bitc::BINOP_ADD: 798 return IsFP ? Instruction::FAdd : Instruction::Add; 799 case bitc::BINOP_SUB: 800 return IsFP ? Instruction::FSub : Instruction::Sub; 801 case bitc::BINOP_MUL: 802 return IsFP ? Instruction::FMul : Instruction::Mul; 803 case bitc::BINOP_UDIV: 804 return IsFP ? -1 : Instruction::UDiv; 805 case bitc::BINOP_SDIV: 806 return IsFP ? Instruction::FDiv : Instruction::SDiv; 807 case bitc::BINOP_UREM: 808 return IsFP ? -1 : Instruction::URem; 809 case bitc::BINOP_SREM: 810 return IsFP ? Instruction::FRem : Instruction::SRem; 811 case bitc::BINOP_SHL: 812 return IsFP ? -1 : Instruction::Shl; 813 case bitc::BINOP_LSHR: 814 return IsFP ? -1 : Instruction::LShr; 815 case bitc::BINOP_ASHR: 816 return IsFP ? -1 : Instruction::AShr; 817 case bitc::BINOP_AND: 818 return IsFP ? -1 : Instruction::And; 819 case bitc::BINOP_OR: 820 return IsFP ? -1 : Instruction::Or; 821 case bitc::BINOP_XOR: 822 return IsFP ? -1 : Instruction::Xor; 823 } 824 } 825 826 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 827 switch (Val) { 828 default: return AtomicRMWInst::BAD_BINOP; 829 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 830 case bitc::RMW_ADD: return AtomicRMWInst::Add; 831 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 832 case bitc::RMW_AND: return AtomicRMWInst::And; 833 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 834 case bitc::RMW_OR: return AtomicRMWInst::Or; 835 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 836 case bitc::RMW_MAX: return AtomicRMWInst::Max; 837 case bitc::RMW_MIN: return AtomicRMWInst::Min; 838 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 839 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 840 } 841 } 842 843 static AtomicOrdering getDecodedOrdering(unsigned Val) { 844 switch (Val) { 845 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 846 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 847 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 848 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 849 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 850 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 851 default: // Map unknown orderings to sequentially-consistent. 852 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 853 } 854 } 855 856 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 857 switch (Val) { 858 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 859 default: // Map unknown scopes to cross-thread. 860 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 861 } 862 } 863 864 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 865 switch (Val) { 866 default: // Map unknown selection kinds to any. 867 case bitc::COMDAT_SELECTION_KIND_ANY: 868 return Comdat::Any; 869 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 870 return Comdat::ExactMatch; 871 case bitc::COMDAT_SELECTION_KIND_LARGEST: 872 return Comdat::Largest; 873 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 874 return Comdat::NoDuplicates; 875 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 876 return Comdat::SameSize; 877 } 878 } 879 880 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 881 FastMathFlags FMF; 882 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 883 FMF.setUnsafeAlgebra(); 884 if (0 != (Val & FastMathFlags::NoNaNs)) 885 FMF.setNoNaNs(); 886 if (0 != (Val & FastMathFlags::NoInfs)) 887 FMF.setNoInfs(); 888 if (0 != (Val & FastMathFlags::NoSignedZeros)) 889 FMF.setNoSignedZeros(); 890 if (0 != (Val & FastMathFlags::AllowReciprocal)) 891 FMF.setAllowReciprocal(); 892 return FMF; 893 } 894 895 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 896 switch (Val) { 897 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 898 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 899 } 900 } 901 902 namespace llvm { 903 namespace { 904 /// \brief A class for maintaining the slot number definition 905 /// as a placeholder for the actual definition for forward constants defs. 906 class ConstantPlaceHolder : public ConstantExpr { 907 void operator=(const ConstantPlaceHolder &) = delete; 908 909 public: 910 // allocate space for exactly one operand 911 void *operator new(size_t s) { return User::operator new(s, 1); } 912 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 913 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 914 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 915 } 916 917 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 918 static bool classof(const Value *V) { 919 return isa<ConstantExpr>(V) && 920 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 921 } 922 923 /// Provide fast operand accessors 924 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 925 }; 926 } // end anonymous namespace 927 928 // FIXME: can we inherit this from ConstantExpr? 929 template <> 930 struct OperandTraits<ConstantPlaceHolder> : 931 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 932 }; 933 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 934 } // end namespace llvm 935 936 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 937 if (Idx == size()) { 938 push_back(V); 939 return; 940 } 941 942 if (Idx >= size()) 943 resize(Idx+1); 944 945 WeakVH &OldV = ValuePtrs[Idx]; 946 if (!OldV) { 947 OldV = V; 948 return; 949 } 950 951 // Handle constants and non-constants (e.g. instrs) differently for 952 // efficiency. 953 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 954 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 955 OldV = V; 956 } else { 957 // If there was a forward reference to this value, replace it. 958 Value *PrevVal = OldV; 959 OldV->replaceAllUsesWith(V); 960 delete PrevVal; 961 } 962 } 963 964 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 965 Type *Ty) { 966 if (Idx >= size()) 967 resize(Idx + 1); 968 969 if (Value *V = ValuePtrs[Idx]) { 970 if (Ty != V->getType()) 971 report_fatal_error("Type mismatch in constant table!"); 972 return cast<Constant>(V); 973 } 974 975 // Create and return a placeholder, which will later be RAUW'd. 976 Constant *C = new ConstantPlaceHolder(Ty, Context); 977 ValuePtrs[Idx] = C; 978 return C; 979 } 980 981 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 982 // Bail out for a clearly invalid value. This would make us call resize(0) 983 if (Idx == UINT_MAX) 984 return nullptr; 985 986 if (Idx >= size()) 987 resize(Idx + 1); 988 989 if (Value *V = ValuePtrs[Idx]) { 990 // If the types don't match, it's invalid. 991 if (Ty && Ty != V->getType()) 992 return nullptr; 993 return V; 994 } 995 996 // No type specified, must be invalid reference. 997 if (!Ty) return nullptr; 998 999 // Create and return a placeholder, which will later be RAUW'd. 1000 Value *V = new Argument(Ty); 1001 ValuePtrs[Idx] = V; 1002 return V; 1003 } 1004 1005 /// Once all constants are read, this method bulk resolves any forward 1006 /// references. The idea behind this is that we sometimes get constants (such 1007 /// as large arrays) which reference *many* forward ref constants. Replacing 1008 /// each of these causes a lot of thrashing when building/reuniquing the 1009 /// constant. Instead of doing this, we look at all the uses and rewrite all 1010 /// the place holders at once for any constant that uses a placeholder. 1011 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1012 // Sort the values by-pointer so that they are efficient to look up with a 1013 // binary search. 1014 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1015 1016 SmallVector<Constant*, 64> NewOps; 1017 1018 while (!ResolveConstants.empty()) { 1019 Value *RealVal = operator[](ResolveConstants.back().second); 1020 Constant *Placeholder = ResolveConstants.back().first; 1021 ResolveConstants.pop_back(); 1022 1023 // Loop over all users of the placeholder, updating them to reference the 1024 // new value. If they reference more than one placeholder, update them all 1025 // at once. 1026 while (!Placeholder->use_empty()) { 1027 auto UI = Placeholder->user_begin(); 1028 User *U = *UI; 1029 1030 // If the using object isn't uniqued, just update the operands. This 1031 // handles instructions and initializers for global variables. 1032 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1033 UI.getUse().set(RealVal); 1034 continue; 1035 } 1036 1037 // Otherwise, we have a constant that uses the placeholder. Replace that 1038 // constant with a new constant that has *all* placeholder uses updated. 1039 Constant *UserC = cast<Constant>(U); 1040 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1041 I != E; ++I) { 1042 Value *NewOp; 1043 if (!isa<ConstantPlaceHolder>(*I)) { 1044 // Not a placeholder reference. 1045 NewOp = *I; 1046 } else if (*I == Placeholder) { 1047 // Common case is that it just references this one placeholder. 1048 NewOp = RealVal; 1049 } else { 1050 // Otherwise, look up the placeholder in ResolveConstants. 1051 ResolveConstantsTy::iterator It = 1052 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1053 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1054 0)); 1055 assert(It != ResolveConstants.end() && It->first == *I); 1056 NewOp = operator[](It->second); 1057 } 1058 1059 NewOps.push_back(cast<Constant>(NewOp)); 1060 } 1061 1062 // Make the new constant. 1063 Constant *NewC; 1064 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1065 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1066 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1067 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1068 } else if (isa<ConstantVector>(UserC)) { 1069 NewC = ConstantVector::get(NewOps); 1070 } else { 1071 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1072 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1073 } 1074 1075 UserC->replaceAllUsesWith(NewC); 1076 UserC->destroyConstant(); 1077 NewOps.clear(); 1078 } 1079 1080 // Update all ValueHandles, they should be the only users at this point. 1081 Placeholder->replaceAllUsesWith(RealVal); 1082 delete Placeholder; 1083 } 1084 } 1085 1086 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1087 if (Idx == size()) { 1088 push_back(MD); 1089 return; 1090 } 1091 1092 if (Idx >= size()) 1093 resize(Idx+1); 1094 1095 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1096 if (!OldMD) { 1097 OldMD.reset(MD); 1098 return; 1099 } 1100 1101 // If there was a forward reference to this value, replace it. 1102 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1103 PrevMD->replaceAllUsesWith(MD); 1104 --NumFwdRefs; 1105 } 1106 1107 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1108 if (Idx >= size()) 1109 resize(Idx + 1); 1110 1111 if (Metadata *MD = MetadataPtrs[Idx]) 1112 return MD; 1113 1114 // Track forward refs to be resolved later. 1115 if (AnyFwdRefs) { 1116 MinFwdRef = std::min(MinFwdRef, Idx); 1117 MaxFwdRef = std::max(MaxFwdRef, Idx); 1118 } else { 1119 AnyFwdRefs = true; 1120 MinFwdRef = MaxFwdRef = Idx; 1121 } 1122 ++NumFwdRefs; 1123 1124 // Create and return a placeholder, which will later be RAUW'd. 1125 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1126 MetadataPtrs[Idx].reset(MD); 1127 return MD; 1128 } 1129 1130 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1131 Metadata *MD = lookup(Idx); 1132 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1133 if (!N->isResolved()) 1134 return nullptr; 1135 return MD; 1136 } 1137 1138 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1139 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1140 } 1141 1142 void BitcodeReaderMetadataList::tryToResolveCycles() { 1143 if (NumFwdRefs) 1144 // Still forward references... can't resolve cycles. 1145 return; 1146 1147 bool DidReplaceTypeRefs = false; 1148 1149 // Give up on finding a full definition for any forward decls that remain. 1150 for (const auto &Ref : OldTypeRefs.FwdDecls) 1151 OldTypeRefs.Final.insert(Ref); 1152 OldTypeRefs.FwdDecls.clear(); 1153 1154 // Upgrade from old type ref arrays. In strange cases, this could add to 1155 // OldTypeRefs.Unknown. 1156 for (const auto &Array : OldTypeRefs.Arrays) { 1157 DidReplaceTypeRefs = true; 1158 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1159 } 1160 OldTypeRefs.Arrays.clear(); 1161 1162 // Replace old string-based type refs with the resolved node, if possible. 1163 // If we haven't seen the node, leave it to the verifier to complain about 1164 // the invalid string reference. 1165 for (const auto &Ref : OldTypeRefs.Unknown) { 1166 DidReplaceTypeRefs = true; 1167 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1168 Ref.second->replaceAllUsesWith(CT); 1169 else 1170 Ref.second->replaceAllUsesWith(Ref.first); 1171 } 1172 OldTypeRefs.Unknown.clear(); 1173 1174 // Make sure all the upgraded types are resolved. 1175 if (DidReplaceTypeRefs) { 1176 AnyFwdRefs = true; 1177 MinFwdRef = 0; 1178 MaxFwdRef = MetadataPtrs.size() - 1; 1179 } 1180 1181 if (!AnyFwdRefs) 1182 // Nothing to do. 1183 return; 1184 1185 // Resolve any cycles. 1186 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1187 auto &MD = MetadataPtrs[I]; 1188 auto *N = dyn_cast_or_null<MDNode>(MD); 1189 if (!N) 1190 continue; 1191 1192 assert(!N->isTemporary() && "Unexpected forward reference"); 1193 N->resolveCycles(); 1194 } 1195 1196 // Make sure we return early again until there's another forward ref. 1197 AnyFwdRefs = false; 1198 } 1199 1200 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1201 DICompositeType &CT) { 1202 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1203 if (CT.isForwardDecl()) 1204 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1205 else 1206 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1207 } 1208 1209 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1210 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1211 if (LLVM_LIKELY(!UUID)) 1212 return MaybeUUID; 1213 1214 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1215 return CT; 1216 1217 auto &Ref = OldTypeRefs.Unknown[UUID]; 1218 if (!Ref) 1219 Ref = MDNode::getTemporary(Context, None); 1220 return Ref.get(); 1221 } 1222 1223 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1224 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1225 if (!Tuple || Tuple->isDistinct()) 1226 return MaybeTuple; 1227 1228 // Look through the array immediately if possible. 1229 if (!Tuple->isTemporary()) 1230 return resolveTypeRefArray(Tuple); 1231 1232 // Create and return a placeholder to use for now. Eventually 1233 // resolveTypeRefArrays() will be resolve this forward reference. 1234 OldTypeRefs.Arrays.emplace_back( 1235 std::piecewise_construct, std::forward_as_tuple(Tuple), 1236 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1237 return OldTypeRefs.Arrays.back().second.get(); 1238 } 1239 1240 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1241 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1242 if (!Tuple || Tuple->isDistinct()) 1243 return MaybeTuple; 1244 1245 // Look through the DITypeRefArray, upgrading each DITypeRef. 1246 SmallVector<Metadata *, 32> Ops; 1247 Ops.reserve(Tuple->getNumOperands()); 1248 for (Metadata *MD : Tuple->operands()) 1249 Ops.push_back(upgradeTypeRef(MD)); 1250 1251 return MDTuple::get(Context, Ops); 1252 } 1253 1254 Type *BitcodeReader::getTypeByID(unsigned ID) { 1255 // The type table size is always specified correctly. 1256 if (ID >= TypeList.size()) 1257 return nullptr; 1258 1259 if (Type *Ty = TypeList[ID]) 1260 return Ty; 1261 1262 // If we have a forward reference, the only possible case is when it is to a 1263 // named struct. Just create a placeholder for now. 1264 return TypeList[ID] = createIdentifiedStructType(Context); 1265 } 1266 1267 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1268 StringRef Name) { 1269 auto *Ret = StructType::create(Context, Name); 1270 IdentifiedStructTypes.push_back(Ret); 1271 return Ret; 1272 } 1273 1274 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1275 auto *Ret = StructType::create(Context); 1276 IdentifiedStructTypes.push_back(Ret); 1277 return Ret; 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // Functions for parsing blocks from the bitcode file 1282 //===----------------------------------------------------------------------===// 1283 1284 1285 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1286 /// been decoded from the given integer. This function must stay in sync with 1287 /// 'encodeLLVMAttributesForBitcode'. 1288 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1289 uint64_t EncodedAttrs) { 1290 // FIXME: Remove in 4.0. 1291 1292 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1293 // the bits above 31 down by 11 bits. 1294 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1295 assert((!Alignment || isPowerOf2_32(Alignment)) && 1296 "Alignment must be a power of two."); 1297 1298 if (Alignment) 1299 B.addAlignmentAttr(Alignment); 1300 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1301 (EncodedAttrs & 0xffff)); 1302 } 1303 1304 std::error_code BitcodeReader::parseAttributeBlock() { 1305 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1306 return error("Invalid record"); 1307 1308 if (!MAttributes.empty()) 1309 return error("Invalid multiple blocks"); 1310 1311 SmallVector<uint64_t, 64> Record; 1312 1313 SmallVector<AttributeSet, 8> Attrs; 1314 1315 // Read all the records. 1316 while (1) { 1317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1318 1319 switch (Entry.Kind) { 1320 case BitstreamEntry::SubBlock: // Handled for us already. 1321 case BitstreamEntry::Error: 1322 return error("Malformed block"); 1323 case BitstreamEntry::EndBlock: 1324 return std::error_code(); 1325 case BitstreamEntry::Record: 1326 // The interesting case. 1327 break; 1328 } 1329 1330 // Read a record. 1331 Record.clear(); 1332 switch (Stream.readRecord(Entry.ID, Record)) { 1333 default: // Default behavior: ignore. 1334 break; 1335 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1336 // FIXME: Remove in 4.0. 1337 if (Record.size() & 1) 1338 return error("Invalid record"); 1339 1340 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1341 AttrBuilder B; 1342 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1343 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1344 } 1345 1346 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1347 Attrs.clear(); 1348 break; 1349 } 1350 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1351 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1352 Attrs.push_back(MAttributeGroups[Record[i]]); 1353 1354 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1355 Attrs.clear(); 1356 break; 1357 } 1358 } 1359 } 1360 } 1361 1362 // Returns Attribute::None on unrecognized codes. 1363 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1364 switch (Code) { 1365 default: 1366 return Attribute::None; 1367 case bitc::ATTR_KIND_ALIGNMENT: 1368 return Attribute::Alignment; 1369 case bitc::ATTR_KIND_ALWAYS_INLINE: 1370 return Attribute::AlwaysInline; 1371 case bitc::ATTR_KIND_ARGMEMONLY: 1372 return Attribute::ArgMemOnly; 1373 case bitc::ATTR_KIND_BUILTIN: 1374 return Attribute::Builtin; 1375 case bitc::ATTR_KIND_BY_VAL: 1376 return Attribute::ByVal; 1377 case bitc::ATTR_KIND_IN_ALLOCA: 1378 return Attribute::InAlloca; 1379 case bitc::ATTR_KIND_COLD: 1380 return Attribute::Cold; 1381 case bitc::ATTR_KIND_CONVERGENT: 1382 return Attribute::Convergent; 1383 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1384 return Attribute::InaccessibleMemOnly; 1385 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1386 return Attribute::InaccessibleMemOrArgMemOnly; 1387 case bitc::ATTR_KIND_INLINE_HINT: 1388 return Attribute::InlineHint; 1389 case bitc::ATTR_KIND_IN_REG: 1390 return Attribute::InReg; 1391 case bitc::ATTR_KIND_JUMP_TABLE: 1392 return Attribute::JumpTable; 1393 case bitc::ATTR_KIND_MIN_SIZE: 1394 return Attribute::MinSize; 1395 case bitc::ATTR_KIND_NAKED: 1396 return Attribute::Naked; 1397 case bitc::ATTR_KIND_NEST: 1398 return Attribute::Nest; 1399 case bitc::ATTR_KIND_NO_ALIAS: 1400 return Attribute::NoAlias; 1401 case bitc::ATTR_KIND_NO_BUILTIN: 1402 return Attribute::NoBuiltin; 1403 case bitc::ATTR_KIND_NO_CAPTURE: 1404 return Attribute::NoCapture; 1405 case bitc::ATTR_KIND_NO_DUPLICATE: 1406 return Attribute::NoDuplicate; 1407 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1408 return Attribute::NoImplicitFloat; 1409 case bitc::ATTR_KIND_NO_INLINE: 1410 return Attribute::NoInline; 1411 case bitc::ATTR_KIND_NO_RECURSE: 1412 return Attribute::NoRecurse; 1413 case bitc::ATTR_KIND_NON_LAZY_BIND: 1414 return Attribute::NonLazyBind; 1415 case bitc::ATTR_KIND_NON_NULL: 1416 return Attribute::NonNull; 1417 case bitc::ATTR_KIND_DEREFERENCEABLE: 1418 return Attribute::Dereferenceable; 1419 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1420 return Attribute::DereferenceableOrNull; 1421 case bitc::ATTR_KIND_ALLOC_SIZE: 1422 return Attribute::AllocSize; 1423 case bitc::ATTR_KIND_NO_RED_ZONE: 1424 return Attribute::NoRedZone; 1425 case bitc::ATTR_KIND_NO_RETURN: 1426 return Attribute::NoReturn; 1427 case bitc::ATTR_KIND_NO_UNWIND: 1428 return Attribute::NoUnwind; 1429 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1430 return Attribute::OptimizeForSize; 1431 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1432 return Attribute::OptimizeNone; 1433 case bitc::ATTR_KIND_READ_NONE: 1434 return Attribute::ReadNone; 1435 case bitc::ATTR_KIND_READ_ONLY: 1436 return Attribute::ReadOnly; 1437 case bitc::ATTR_KIND_RETURNED: 1438 return Attribute::Returned; 1439 case bitc::ATTR_KIND_RETURNS_TWICE: 1440 return Attribute::ReturnsTwice; 1441 case bitc::ATTR_KIND_S_EXT: 1442 return Attribute::SExt; 1443 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1444 return Attribute::StackAlignment; 1445 case bitc::ATTR_KIND_STACK_PROTECT: 1446 return Attribute::StackProtect; 1447 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1448 return Attribute::StackProtectReq; 1449 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1450 return Attribute::StackProtectStrong; 1451 case bitc::ATTR_KIND_SAFESTACK: 1452 return Attribute::SafeStack; 1453 case bitc::ATTR_KIND_STRUCT_RET: 1454 return Attribute::StructRet; 1455 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1456 return Attribute::SanitizeAddress; 1457 case bitc::ATTR_KIND_SANITIZE_THREAD: 1458 return Attribute::SanitizeThread; 1459 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1460 return Attribute::SanitizeMemory; 1461 case bitc::ATTR_KIND_SWIFT_ERROR: 1462 return Attribute::SwiftError; 1463 case bitc::ATTR_KIND_SWIFT_SELF: 1464 return Attribute::SwiftSelf; 1465 case bitc::ATTR_KIND_UW_TABLE: 1466 return Attribute::UWTable; 1467 case bitc::ATTR_KIND_Z_EXT: 1468 return Attribute::ZExt; 1469 } 1470 } 1471 1472 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1473 unsigned &Alignment) { 1474 // Note: Alignment in bitcode files is incremented by 1, so that zero 1475 // can be used for default alignment. 1476 if (Exponent > Value::MaxAlignmentExponent + 1) 1477 return error("Invalid alignment value"); 1478 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1479 return std::error_code(); 1480 } 1481 1482 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1483 Attribute::AttrKind *Kind) { 1484 *Kind = getAttrFromCode(Code); 1485 if (*Kind == Attribute::None) 1486 return error(BitcodeError::CorruptedBitcode, 1487 "Unknown attribute kind (" + Twine(Code) + ")"); 1488 return std::error_code(); 1489 } 1490 1491 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1492 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1493 return error("Invalid record"); 1494 1495 if (!MAttributeGroups.empty()) 1496 return error("Invalid multiple blocks"); 1497 1498 SmallVector<uint64_t, 64> Record; 1499 1500 // Read all the records. 1501 while (1) { 1502 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1503 1504 switch (Entry.Kind) { 1505 case BitstreamEntry::SubBlock: // Handled for us already. 1506 case BitstreamEntry::Error: 1507 return error("Malformed block"); 1508 case BitstreamEntry::EndBlock: 1509 return std::error_code(); 1510 case BitstreamEntry::Record: 1511 // The interesting case. 1512 break; 1513 } 1514 1515 // Read a record. 1516 Record.clear(); 1517 switch (Stream.readRecord(Entry.ID, Record)) { 1518 default: // Default behavior: ignore. 1519 break; 1520 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1521 if (Record.size() < 3) 1522 return error("Invalid record"); 1523 1524 uint64_t GrpID = Record[0]; 1525 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1526 1527 AttrBuilder B; 1528 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1529 if (Record[i] == 0) { // Enum attribute 1530 Attribute::AttrKind Kind; 1531 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1532 return EC; 1533 1534 B.addAttribute(Kind); 1535 } else if (Record[i] == 1) { // Integer attribute 1536 Attribute::AttrKind Kind; 1537 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1538 return EC; 1539 if (Kind == Attribute::Alignment) 1540 B.addAlignmentAttr(Record[++i]); 1541 else if (Kind == Attribute::StackAlignment) 1542 B.addStackAlignmentAttr(Record[++i]); 1543 else if (Kind == Attribute::Dereferenceable) 1544 B.addDereferenceableAttr(Record[++i]); 1545 else if (Kind == Attribute::DereferenceableOrNull) 1546 B.addDereferenceableOrNullAttr(Record[++i]); 1547 else if (Kind == Attribute::AllocSize) 1548 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1549 } else { // String attribute 1550 assert((Record[i] == 3 || Record[i] == 4) && 1551 "Invalid attribute group entry"); 1552 bool HasValue = (Record[i++] == 4); 1553 SmallString<64> KindStr; 1554 SmallString<64> ValStr; 1555 1556 while (Record[i] != 0 && i != e) 1557 KindStr += Record[i++]; 1558 assert(Record[i] == 0 && "Kind string not null terminated"); 1559 1560 if (HasValue) { 1561 // Has a value associated with it. 1562 ++i; // Skip the '0' that terminates the "kind" string. 1563 while (Record[i] != 0 && i != e) 1564 ValStr += Record[i++]; 1565 assert(Record[i] == 0 && "Value string not null terminated"); 1566 } 1567 1568 B.addAttribute(KindStr.str(), ValStr.str()); 1569 } 1570 } 1571 1572 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1573 break; 1574 } 1575 } 1576 } 1577 } 1578 1579 std::error_code BitcodeReader::parseTypeTable() { 1580 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1581 return error("Invalid record"); 1582 1583 return parseTypeTableBody(); 1584 } 1585 1586 std::error_code BitcodeReader::parseTypeTableBody() { 1587 if (!TypeList.empty()) 1588 return error("Invalid multiple blocks"); 1589 1590 SmallVector<uint64_t, 64> Record; 1591 unsigned NumRecords = 0; 1592 1593 SmallString<64> TypeName; 1594 1595 // Read all the records for this type table. 1596 while (1) { 1597 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1598 1599 switch (Entry.Kind) { 1600 case BitstreamEntry::SubBlock: // Handled for us already. 1601 case BitstreamEntry::Error: 1602 return error("Malformed block"); 1603 case BitstreamEntry::EndBlock: 1604 if (NumRecords != TypeList.size()) 1605 return error("Malformed block"); 1606 return std::error_code(); 1607 case BitstreamEntry::Record: 1608 // The interesting case. 1609 break; 1610 } 1611 1612 // Read a record. 1613 Record.clear(); 1614 Type *ResultTy = nullptr; 1615 switch (Stream.readRecord(Entry.ID, Record)) { 1616 default: 1617 return error("Invalid value"); 1618 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1619 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1620 // type list. This allows us to reserve space. 1621 if (Record.size() < 1) 1622 return error("Invalid record"); 1623 TypeList.resize(Record[0]); 1624 continue; 1625 case bitc::TYPE_CODE_VOID: // VOID 1626 ResultTy = Type::getVoidTy(Context); 1627 break; 1628 case bitc::TYPE_CODE_HALF: // HALF 1629 ResultTy = Type::getHalfTy(Context); 1630 break; 1631 case bitc::TYPE_CODE_FLOAT: // FLOAT 1632 ResultTy = Type::getFloatTy(Context); 1633 break; 1634 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1635 ResultTy = Type::getDoubleTy(Context); 1636 break; 1637 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1638 ResultTy = Type::getX86_FP80Ty(Context); 1639 break; 1640 case bitc::TYPE_CODE_FP128: // FP128 1641 ResultTy = Type::getFP128Ty(Context); 1642 break; 1643 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1644 ResultTy = Type::getPPC_FP128Ty(Context); 1645 break; 1646 case bitc::TYPE_CODE_LABEL: // LABEL 1647 ResultTy = Type::getLabelTy(Context); 1648 break; 1649 case bitc::TYPE_CODE_METADATA: // METADATA 1650 ResultTy = Type::getMetadataTy(Context); 1651 break; 1652 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1653 ResultTy = Type::getX86_MMXTy(Context); 1654 break; 1655 case bitc::TYPE_CODE_TOKEN: // TOKEN 1656 ResultTy = Type::getTokenTy(Context); 1657 break; 1658 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1659 if (Record.size() < 1) 1660 return error("Invalid record"); 1661 1662 uint64_t NumBits = Record[0]; 1663 if (NumBits < IntegerType::MIN_INT_BITS || 1664 NumBits > IntegerType::MAX_INT_BITS) 1665 return error("Bitwidth for integer type out of range"); 1666 ResultTy = IntegerType::get(Context, NumBits); 1667 break; 1668 } 1669 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1670 // [pointee type, address space] 1671 if (Record.size() < 1) 1672 return error("Invalid record"); 1673 unsigned AddressSpace = 0; 1674 if (Record.size() == 2) 1675 AddressSpace = Record[1]; 1676 ResultTy = getTypeByID(Record[0]); 1677 if (!ResultTy || 1678 !PointerType::isValidElementType(ResultTy)) 1679 return error("Invalid type"); 1680 ResultTy = PointerType::get(ResultTy, AddressSpace); 1681 break; 1682 } 1683 case bitc::TYPE_CODE_FUNCTION_OLD: { 1684 // FIXME: attrid is dead, remove it in LLVM 4.0 1685 // FUNCTION: [vararg, attrid, retty, paramty x N] 1686 if (Record.size() < 3) 1687 return error("Invalid record"); 1688 SmallVector<Type*, 8> ArgTys; 1689 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1690 if (Type *T = getTypeByID(Record[i])) 1691 ArgTys.push_back(T); 1692 else 1693 break; 1694 } 1695 1696 ResultTy = getTypeByID(Record[2]); 1697 if (!ResultTy || ArgTys.size() < Record.size()-3) 1698 return error("Invalid type"); 1699 1700 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1701 break; 1702 } 1703 case bitc::TYPE_CODE_FUNCTION: { 1704 // FUNCTION: [vararg, retty, paramty x N] 1705 if (Record.size() < 2) 1706 return error("Invalid record"); 1707 SmallVector<Type*, 8> ArgTys; 1708 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1709 if (Type *T = getTypeByID(Record[i])) { 1710 if (!FunctionType::isValidArgumentType(T)) 1711 return error("Invalid function argument type"); 1712 ArgTys.push_back(T); 1713 } 1714 else 1715 break; 1716 } 1717 1718 ResultTy = getTypeByID(Record[1]); 1719 if (!ResultTy || ArgTys.size() < Record.size()-2) 1720 return error("Invalid type"); 1721 1722 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1723 break; 1724 } 1725 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1726 if (Record.size() < 1) 1727 return error("Invalid record"); 1728 SmallVector<Type*, 8> EltTys; 1729 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1730 if (Type *T = getTypeByID(Record[i])) 1731 EltTys.push_back(T); 1732 else 1733 break; 1734 } 1735 if (EltTys.size() != Record.size()-1) 1736 return error("Invalid type"); 1737 ResultTy = StructType::get(Context, EltTys, Record[0]); 1738 break; 1739 } 1740 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1741 if (convertToString(Record, 0, TypeName)) 1742 return error("Invalid record"); 1743 continue; 1744 1745 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1746 if (Record.size() < 1) 1747 return error("Invalid record"); 1748 1749 if (NumRecords >= TypeList.size()) 1750 return error("Invalid TYPE table"); 1751 1752 // Check to see if this was forward referenced, if so fill in the temp. 1753 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1754 if (Res) { 1755 Res->setName(TypeName); 1756 TypeList[NumRecords] = nullptr; 1757 } else // Otherwise, create a new struct. 1758 Res = createIdentifiedStructType(Context, TypeName); 1759 TypeName.clear(); 1760 1761 SmallVector<Type*, 8> EltTys; 1762 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1763 if (Type *T = getTypeByID(Record[i])) 1764 EltTys.push_back(T); 1765 else 1766 break; 1767 } 1768 if (EltTys.size() != Record.size()-1) 1769 return error("Invalid record"); 1770 Res->setBody(EltTys, Record[0]); 1771 ResultTy = Res; 1772 break; 1773 } 1774 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1775 if (Record.size() != 1) 1776 return error("Invalid record"); 1777 1778 if (NumRecords >= TypeList.size()) 1779 return error("Invalid TYPE table"); 1780 1781 // Check to see if this was forward referenced, if so fill in the temp. 1782 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1783 if (Res) { 1784 Res->setName(TypeName); 1785 TypeList[NumRecords] = nullptr; 1786 } else // Otherwise, create a new struct with no body. 1787 Res = createIdentifiedStructType(Context, TypeName); 1788 TypeName.clear(); 1789 ResultTy = Res; 1790 break; 1791 } 1792 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1793 if (Record.size() < 2) 1794 return error("Invalid record"); 1795 ResultTy = getTypeByID(Record[1]); 1796 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1797 return error("Invalid type"); 1798 ResultTy = ArrayType::get(ResultTy, Record[0]); 1799 break; 1800 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1801 if (Record.size() < 2) 1802 return error("Invalid record"); 1803 if (Record[0] == 0) 1804 return error("Invalid vector length"); 1805 ResultTy = getTypeByID(Record[1]); 1806 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1807 return error("Invalid type"); 1808 ResultTy = VectorType::get(ResultTy, Record[0]); 1809 break; 1810 } 1811 1812 if (NumRecords >= TypeList.size()) 1813 return error("Invalid TYPE table"); 1814 if (TypeList[NumRecords]) 1815 return error( 1816 "Invalid TYPE table: Only named structs can be forward referenced"); 1817 assert(ResultTy && "Didn't read a type?"); 1818 TypeList[NumRecords++] = ResultTy; 1819 } 1820 } 1821 1822 std::error_code BitcodeReader::parseOperandBundleTags() { 1823 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1824 return error("Invalid record"); 1825 1826 if (!BundleTags.empty()) 1827 return error("Invalid multiple blocks"); 1828 1829 SmallVector<uint64_t, 64> Record; 1830 1831 while (1) { 1832 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1833 1834 switch (Entry.Kind) { 1835 case BitstreamEntry::SubBlock: // Handled for us already. 1836 case BitstreamEntry::Error: 1837 return error("Malformed block"); 1838 case BitstreamEntry::EndBlock: 1839 return std::error_code(); 1840 case BitstreamEntry::Record: 1841 // The interesting case. 1842 break; 1843 } 1844 1845 // Tags are implicitly mapped to integers by their order. 1846 1847 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1848 return error("Invalid record"); 1849 1850 // OPERAND_BUNDLE_TAG: [strchr x N] 1851 BundleTags.emplace_back(); 1852 if (convertToString(Record, 0, BundleTags.back())) 1853 return error("Invalid record"); 1854 Record.clear(); 1855 } 1856 } 1857 1858 /// Associate a value with its name from the given index in the provided record. 1859 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1860 unsigned NameIndex, Triple &TT) { 1861 SmallString<128> ValueName; 1862 if (convertToString(Record, NameIndex, ValueName)) 1863 return error("Invalid record"); 1864 unsigned ValueID = Record[0]; 1865 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1866 return error("Invalid record"); 1867 Value *V = ValueList[ValueID]; 1868 1869 StringRef NameStr(ValueName.data(), ValueName.size()); 1870 if (NameStr.find_first_of(0) != StringRef::npos) 1871 return error("Invalid value name"); 1872 V->setName(NameStr); 1873 auto *GO = dyn_cast<GlobalObject>(V); 1874 if (GO) { 1875 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1876 if (TT.isOSBinFormatMachO()) 1877 GO->setComdat(nullptr); 1878 else 1879 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1880 } 1881 } 1882 return V; 1883 } 1884 1885 /// Helper to note and return the current location, and jump to the given 1886 /// offset. 1887 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1888 BitstreamCursor &Stream) { 1889 // Save the current parsing location so we can jump back at the end 1890 // of the VST read. 1891 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1892 Stream.JumpToBit(Offset * 32); 1893 #ifndef NDEBUG 1894 // Do some checking if we are in debug mode. 1895 BitstreamEntry Entry = Stream.advance(); 1896 assert(Entry.Kind == BitstreamEntry::SubBlock); 1897 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1898 #else 1899 // In NDEBUG mode ignore the output so we don't get an unused variable 1900 // warning. 1901 Stream.advance(); 1902 #endif 1903 return CurrentBit; 1904 } 1905 1906 /// Parse the value symbol table at either the current parsing location or 1907 /// at the given bit offset if provided. 1908 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1909 uint64_t CurrentBit; 1910 // Pass in the Offset to distinguish between calling for the module-level 1911 // VST (where we want to jump to the VST offset) and the function-level 1912 // VST (where we don't). 1913 if (Offset > 0) 1914 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1915 1916 // Compute the delta between the bitcode indices in the VST (the word offset 1917 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1918 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1919 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1920 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1921 // just before entering the VST subblock because: 1) the EnterSubBlock 1922 // changes the AbbrevID width; 2) the VST block is nested within the same 1923 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1924 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1925 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1926 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1927 unsigned FuncBitcodeOffsetDelta = 1928 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1929 1930 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1931 return error("Invalid record"); 1932 1933 SmallVector<uint64_t, 64> Record; 1934 1935 Triple TT(TheModule->getTargetTriple()); 1936 1937 // Read all the records for this value table. 1938 SmallString<128> ValueName; 1939 while (1) { 1940 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1941 1942 switch (Entry.Kind) { 1943 case BitstreamEntry::SubBlock: // Handled for us already. 1944 case BitstreamEntry::Error: 1945 return error("Malformed block"); 1946 case BitstreamEntry::EndBlock: 1947 if (Offset > 0) 1948 Stream.JumpToBit(CurrentBit); 1949 return std::error_code(); 1950 case BitstreamEntry::Record: 1951 // The interesting case. 1952 break; 1953 } 1954 1955 // Read a record. 1956 Record.clear(); 1957 switch (Stream.readRecord(Entry.ID, Record)) { 1958 default: // Default behavior: unknown type. 1959 break; 1960 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1961 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1962 if (std::error_code EC = ValOrErr.getError()) 1963 return EC; 1964 ValOrErr.get(); 1965 break; 1966 } 1967 case bitc::VST_CODE_FNENTRY: { 1968 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1969 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1970 if (std::error_code EC = ValOrErr.getError()) 1971 return EC; 1972 Value *V = ValOrErr.get(); 1973 1974 auto *GO = dyn_cast<GlobalObject>(V); 1975 if (!GO) { 1976 // If this is an alias, need to get the actual Function object 1977 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1978 auto *GA = dyn_cast<GlobalAlias>(V); 1979 if (GA) 1980 GO = GA->getBaseObject(); 1981 assert(GO); 1982 } 1983 1984 uint64_t FuncWordOffset = Record[1]; 1985 Function *F = dyn_cast<Function>(GO); 1986 assert(F); 1987 uint64_t FuncBitOffset = FuncWordOffset * 32; 1988 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1989 // Set the LastFunctionBlockBit to point to the last function block. 1990 // Later when parsing is resumed after function materialization, 1991 // we can simply skip that last function block. 1992 if (FuncBitOffset > LastFunctionBlockBit) 1993 LastFunctionBlockBit = FuncBitOffset; 1994 break; 1995 } 1996 case bitc::VST_CODE_BBENTRY: { 1997 if (convertToString(Record, 1, ValueName)) 1998 return error("Invalid record"); 1999 BasicBlock *BB = getBasicBlock(Record[0]); 2000 if (!BB) 2001 return error("Invalid record"); 2002 2003 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2004 ValueName.clear(); 2005 break; 2006 } 2007 } 2008 } 2009 } 2010 2011 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2012 std::error_code 2013 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2014 if (Record.size() < 2) 2015 return error("Invalid record"); 2016 2017 unsigned Kind = Record[0]; 2018 SmallString<8> Name(Record.begin() + 1, Record.end()); 2019 2020 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2021 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2022 return error("Conflicting METADATA_KIND records"); 2023 return std::error_code(); 2024 } 2025 2026 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2027 2028 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2029 StringRef Blob, 2030 unsigned &NextMetadataNo) { 2031 // All the MDStrings in the block are emitted together in a single 2032 // record. The strings are concatenated and stored in a blob along with 2033 // their sizes. 2034 if (Record.size() != 2) 2035 return error("Invalid record: metadata strings layout"); 2036 2037 unsigned NumStrings = Record[0]; 2038 unsigned StringsOffset = Record[1]; 2039 if (!NumStrings) 2040 return error("Invalid record: metadata strings with no strings"); 2041 if (StringsOffset > Blob.size()) 2042 return error("Invalid record: metadata strings corrupt offset"); 2043 2044 StringRef Lengths = Blob.slice(0, StringsOffset); 2045 SimpleBitstreamCursor R(*StreamFile); 2046 R.jumpToPointer(Lengths.begin()); 2047 2048 // Ensure that Blob doesn't get invalidated, even if this is reading from 2049 // a StreamingMemoryObject with corrupt data. 2050 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2051 2052 StringRef Strings = Blob.drop_front(StringsOffset); 2053 do { 2054 if (R.AtEndOfStream()) 2055 return error("Invalid record: metadata strings bad length"); 2056 2057 unsigned Size = R.ReadVBR(6); 2058 if (Strings.size() < Size) 2059 return error("Invalid record: metadata strings truncated chars"); 2060 2061 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2062 NextMetadataNo++); 2063 Strings = Strings.drop_front(Size); 2064 } while (--NumStrings); 2065 2066 return std::error_code(); 2067 } 2068 2069 namespace { 2070 class PlaceholderQueue { 2071 // Placeholders would thrash around when moved, so store in a std::deque 2072 // instead of some sort of vector. 2073 std::deque<DistinctMDOperandPlaceholder> PHs; 2074 2075 public: 2076 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2077 void flush(BitcodeReaderMetadataList &MetadataList); 2078 }; 2079 } // end namespace 2080 2081 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2082 PHs.emplace_back(ID); 2083 return PHs.back(); 2084 } 2085 2086 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2087 while (!PHs.empty()) { 2088 PHs.front().replaceUseWith( 2089 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2090 PHs.pop_front(); 2091 } 2092 } 2093 2094 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2095 /// module level metadata. 2096 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2097 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2098 "Must read all module-level metadata before function-level"); 2099 2100 IsMetadataMaterialized = true; 2101 unsigned NextMetadataNo = MetadataList.size(); 2102 2103 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2104 return error("Invalid metadata: fwd refs into function blocks"); 2105 2106 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2107 return error("Invalid record"); 2108 2109 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2110 SmallVector<uint64_t, 64> Record; 2111 2112 PlaceholderQueue Placeholders; 2113 bool IsDistinct; 2114 auto getMD = [&](unsigned ID) -> Metadata * { 2115 if (!IsDistinct) 2116 return MetadataList.getMetadataFwdRef(ID); 2117 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2118 return MD; 2119 return &Placeholders.getPlaceholderOp(ID); 2120 }; 2121 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2122 if (ID) 2123 return getMD(ID - 1); 2124 return nullptr; 2125 }; 2126 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2127 if (ID) 2128 return MetadataList.getMetadataFwdRef(ID - 1); 2129 return nullptr; 2130 }; 2131 auto getMDString = [&](unsigned ID) -> MDString *{ 2132 // This requires that the ID is not really a forward reference. In 2133 // particular, the MDString must already have been resolved. 2134 return cast_or_null<MDString>(getMDOrNull(ID)); 2135 }; 2136 2137 // Support for old type refs. 2138 auto getDITypeRefOrNull = [&](unsigned ID) { 2139 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2140 }; 2141 2142 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2143 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2144 2145 // Read all the records. 2146 while (1) { 2147 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2148 2149 switch (Entry.Kind) { 2150 case BitstreamEntry::SubBlock: // Handled for us already. 2151 case BitstreamEntry::Error: 2152 return error("Malformed block"); 2153 case BitstreamEntry::EndBlock: 2154 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2155 for (auto CU_SP : CUSubprograms) 2156 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2157 for (auto &Op : SPs->operands()) 2158 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2159 SP->replaceOperandWith(7, CU_SP.first); 2160 2161 MetadataList.tryToResolveCycles(); 2162 Placeholders.flush(MetadataList); 2163 return std::error_code(); 2164 case BitstreamEntry::Record: 2165 // The interesting case. 2166 break; 2167 } 2168 2169 // Read a record. 2170 Record.clear(); 2171 StringRef Blob; 2172 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2173 IsDistinct = false; 2174 switch (Code) { 2175 default: // Default behavior: ignore. 2176 break; 2177 case bitc::METADATA_NAME: { 2178 // Read name of the named metadata. 2179 SmallString<8> Name(Record.begin(), Record.end()); 2180 Record.clear(); 2181 Code = Stream.ReadCode(); 2182 2183 unsigned NextBitCode = Stream.readRecord(Code, Record); 2184 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2185 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2186 2187 // Read named metadata elements. 2188 unsigned Size = Record.size(); 2189 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2190 for (unsigned i = 0; i != Size; ++i) { 2191 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2192 if (!MD) 2193 return error("Invalid record"); 2194 NMD->addOperand(MD); 2195 } 2196 break; 2197 } 2198 case bitc::METADATA_OLD_FN_NODE: { 2199 // FIXME: Remove in 4.0. 2200 // This is a LocalAsMetadata record, the only type of function-local 2201 // metadata. 2202 if (Record.size() % 2 == 1) 2203 return error("Invalid record"); 2204 2205 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2206 // to be legal, but there's no upgrade path. 2207 auto dropRecord = [&] { 2208 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2209 }; 2210 if (Record.size() != 2) { 2211 dropRecord(); 2212 break; 2213 } 2214 2215 Type *Ty = getTypeByID(Record[0]); 2216 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2217 dropRecord(); 2218 break; 2219 } 2220 2221 MetadataList.assignValue( 2222 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2223 NextMetadataNo++); 2224 break; 2225 } 2226 case bitc::METADATA_OLD_NODE: { 2227 // FIXME: Remove in 4.0. 2228 if (Record.size() % 2 == 1) 2229 return error("Invalid record"); 2230 2231 unsigned Size = Record.size(); 2232 SmallVector<Metadata *, 8> Elts; 2233 for (unsigned i = 0; i != Size; i += 2) { 2234 Type *Ty = getTypeByID(Record[i]); 2235 if (!Ty) 2236 return error("Invalid record"); 2237 if (Ty->isMetadataTy()) 2238 Elts.push_back(getMD(Record[i + 1])); 2239 else if (!Ty->isVoidTy()) { 2240 auto *MD = 2241 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2242 assert(isa<ConstantAsMetadata>(MD) && 2243 "Expected non-function-local metadata"); 2244 Elts.push_back(MD); 2245 } else 2246 Elts.push_back(nullptr); 2247 } 2248 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2249 break; 2250 } 2251 case bitc::METADATA_VALUE: { 2252 if (Record.size() != 2) 2253 return error("Invalid record"); 2254 2255 Type *Ty = getTypeByID(Record[0]); 2256 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2257 return error("Invalid record"); 2258 2259 MetadataList.assignValue( 2260 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2261 NextMetadataNo++); 2262 break; 2263 } 2264 case bitc::METADATA_DISTINCT_NODE: 2265 IsDistinct = true; 2266 // fallthrough... 2267 case bitc::METADATA_NODE: { 2268 SmallVector<Metadata *, 8> Elts; 2269 Elts.reserve(Record.size()); 2270 for (unsigned ID : Record) 2271 Elts.push_back(getMDOrNull(ID)); 2272 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2273 : MDNode::get(Context, Elts), 2274 NextMetadataNo++); 2275 break; 2276 } 2277 case bitc::METADATA_LOCATION: { 2278 if (Record.size() != 5) 2279 return error("Invalid record"); 2280 2281 IsDistinct = Record[0]; 2282 unsigned Line = Record[1]; 2283 unsigned Column = Record[2]; 2284 Metadata *Scope = getMD(Record[3]); 2285 Metadata *InlinedAt = getMDOrNull(Record[4]); 2286 MetadataList.assignValue( 2287 GET_OR_DISTINCT(DILocation, 2288 (Context, Line, Column, Scope, InlinedAt)), 2289 NextMetadataNo++); 2290 break; 2291 } 2292 case bitc::METADATA_GENERIC_DEBUG: { 2293 if (Record.size() < 4) 2294 return error("Invalid record"); 2295 2296 IsDistinct = Record[0]; 2297 unsigned Tag = Record[1]; 2298 unsigned Version = Record[2]; 2299 2300 if (Tag >= 1u << 16 || Version != 0) 2301 return error("Invalid record"); 2302 2303 auto *Header = getMDString(Record[3]); 2304 SmallVector<Metadata *, 8> DwarfOps; 2305 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2306 DwarfOps.push_back(getMDOrNull(Record[I])); 2307 MetadataList.assignValue( 2308 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2309 NextMetadataNo++); 2310 break; 2311 } 2312 case bitc::METADATA_SUBRANGE: { 2313 if (Record.size() != 3) 2314 return error("Invalid record"); 2315 2316 IsDistinct = Record[0]; 2317 MetadataList.assignValue( 2318 GET_OR_DISTINCT(DISubrange, 2319 (Context, Record[1], unrotateSign(Record[2]))), 2320 NextMetadataNo++); 2321 break; 2322 } 2323 case bitc::METADATA_ENUMERATOR: { 2324 if (Record.size() != 3) 2325 return error("Invalid record"); 2326 2327 IsDistinct = Record[0]; 2328 MetadataList.assignValue( 2329 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2330 getMDString(Record[2]))), 2331 NextMetadataNo++); 2332 break; 2333 } 2334 case bitc::METADATA_BASIC_TYPE: { 2335 if (Record.size() != 6) 2336 return error("Invalid record"); 2337 2338 IsDistinct = Record[0]; 2339 MetadataList.assignValue( 2340 GET_OR_DISTINCT(DIBasicType, 2341 (Context, Record[1], getMDString(Record[2]), 2342 Record[3], Record[4], Record[5])), 2343 NextMetadataNo++); 2344 break; 2345 } 2346 case bitc::METADATA_DERIVED_TYPE: { 2347 if (Record.size() != 12) 2348 return error("Invalid record"); 2349 2350 IsDistinct = Record[0]; 2351 MetadataList.assignValue( 2352 GET_OR_DISTINCT( 2353 DIDerivedType, 2354 (Context, Record[1], getMDString(Record[2]), 2355 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2356 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2357 Record[10], getDITypeRefOrNull(Record[11]))), 2358 NextMetadataNo++); 2359 break; 2360 } 2361 case bitc::METADATA_COMPOSITE_TYPE: { 2362 if (Record.size() != 16) 2363 return error("Invalid record"); 2364 2365 // If we have a UUID and this is not a forward declaration, lookup the 2366 // mapping. 2367 IsDistinct = Record[0] & 0x1; 2368 bool IsNotUsedInTypeRef = Record[0] >= 2; 2369 unsigned Tag = Record[1]; 2370 MDString *Name = getMDString(Record[2]); 2371 Metadata *File = getMDOrNull(Record[3]); 2372 unsigned Line = Record[4]; 2373 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2374 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2375 uint64_t SizeInBits = Record[7]; 2376 uint64_t AlignInBits = Record[8]; 2377 uint64_t OffsetInBits = Record[9]; 2378 unsigned Flags = Record[10]; 2379 Metadata *Elements = getMDOrNull(Record[11]); 2380 unsigned RuntimeLang = Record[12]; 2381 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2382 Metadata *TemplateParams = getMDOrNull(Record[14]); 2383 auto *Identifier = getMDString(Record[15]); 2384 DICompositeType *CT = nullptr; 2385 if (Identifier) 2386 CT = DICompositeType::buildODRType( 2387 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2388 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2389 VTableHolder, TemplateParams); 2390 2391 // Create a node if we didn't get a lazy ODR type. 2392 if (!CT) 2393 CT = GET_OR_DISTINCT(DICompositeType, 2394 (Context, Tag, Name, File, Line, Scope, BaseType, 2395 SizeInBits, AlignInBits, OffsetInBits, Flags, 2396 Elements, RuntimeLang, VTableHolder, 2397 TemplateParams, Identifier)); 2398 if (!IsNotUsedInTypeRef && Identifier) 2399 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2400 2401 MetadataList.assignValue(CT, NextMetadataNo++); 2402 break; 2403 } 2404 case bitc::METADATA_SUBROUTINE_TYPE: { 2405 if (Record.size() < 3 || Record.size() > 4) 2406 return error("Invalid record"); 2407 bool IsOldTypeRefArray = Record[0] < 2; 2408 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2409 2410 IsDistinct = Record[0] & 0x1; 2411 Metadata *Types = getMDOrNull(Record[2]); 2412 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2413 Types = MetadataList.upgradeTypeRefArray(Types); 2414 2415 MetadataList.assignValue( 2416 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)), 2417 NextMetadataNo++); 2418 break; 2419 } 2420 2421 case bitc::METADATA_MODULE: { 2422 if (Record.size() != 6) 2423 return error("Invalid record"); 2424 2425 IsDistinct = Record[0]; 2426 MetadataList.assignValue( 2427 GET_OR_DISTINCT(DIModule, 2428 (Context, getMDOrNull(Record[1]), 2429 getMDString(Record[2]), getMDString(Record[3]), 2430 getMDString(Record[4]), getMDString(Record[5]))), 2431 NextMetadataNo++); 2432 break; 2433 } 2434 2435 case bitc::METADATA_FILE: { 2436 if (Record.size() != 3) 2437 return error("Invalid record"); 2438 2439 IsDistinct = Record[0]; 2440 MetadataList.assignValue( 2441 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2442 getMDString(Record[2]))), 2443 NextMetadataNo++); 2444 break; 2445 } 2446 case bitc::METADATA_COMPILE_UNIT: { 2447 if (Record.size() < 14 || Record.size() > 16) 2448 return error("Invalid record"); 2449 2450 // Ignore Record[0], which indicates whether this compile unit is 2451 // distinct. It's always distinct. 2452 IsDistinct = true; 2453 auto *CU = DICompileUnit::getDistinct( 2454 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2455 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2456 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2457 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2458 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2459 Record.size() <= 14 ? 0 : Record[14]); 2460 2461 MetadataList.assignValue(CU, NextMetadataNo++); 2462 2463 // Move the Upgrade the list of subprograms. 2464 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2465 CUSubprograms.push_back({CU, SPs}); 2466 break; 2467 } 2468 case bitc::METADATA_SUBPROGRAM: { 2469 if (Record.size() < 18 || Record.size() > 20) 2470 return error("Invalid record"); 2471 2472 IsDistinct = 2473 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2474 // Version 1 has a Function as Record[15]. 2475 // Version 2 has removed Record[15]. 2476 // Version 3 has the Unit as Record[15]. 2477 // Version 4 added thisAdjustment. 2478 bool HasUnit = Record[0] >= 2; 2479 if (HasUnit && Record.size() < 19) 2480 return error("Invalid record"); 2481 Metadata *CUorFn = getMDOrNull(Record[15]); 2482 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2483 bool HasFn = Offset && !HasUnit; 2484 bool HasThisAdj = Record.size() >= 20; 2485 DISubprogram *SP = GET_OR_DISTINCT( 2486 DISubprogram, (Context, 2487 getDITypeRefOrNull(Record[1]), // scope 2488 getMDString(Record[2]), // name 2489 getMDString(Record[3]), // linkageName 2490 getMDOrNull(Record[4]), // file 2491 Record[5], // line 2492 getMDOrNull(Record[6]), // type 2493 Record[7], // isLocal 2494 Record[8], // isDefinition 2495 Record[9], // scopeLine 2496 getDITypeRefOrNull(Record[10]), // containingType 2497 Record[11], // virtuality 2498 Record[12], // virtualIndex 2499 HasThisAdj ? Record[19] : 0, // thisAdjustment 2500 Record[13], // flags 2501 Record[14], // isOptimized 2502 HasUnit ? CUorFn : nullptr, // unit 2503 getMDOrNull(Record[15 + Offset]), // templateParams 2504 getMDOrNull(Record[16 + Offset]), // declaration 2505 getMDOrNull(Record[17 + Offset]) // variables 2506 )); 2507 MetadataList.assignValue(SP, NextMetadataNo++); 2508 2509 // Upgrade sp->function mapping to function->sp mapping. 2510 if (HasFn) { 2511 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2512 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2513 if (F->isMaterializable()) 2514 // Defer until materialized; unmaterialized functions may not have 2515 // metadata. 2516 FunctionsWithSPs[F] = SP; 2517 else if (!F->empty()) 2518 F->setSubprogram(SP); 2519 } 2520 } 2521 break; 2522 } 2523 case bitc::METADATA_LEXICAL_BLOCK: { 2524 if (Record.size() != 5) 2525 return error("Invalid record"); 2526 2527 IsDistinct = Record[0]; 2528 MetadataList.assignValue( 2529 GET_OR_DISTINCT(DILexicalBlock, 2530 (Context, getMDOrNull(Record[1]), 2531 getMDOrNull(Record[2]), Record[3], Record[4])), 2532 NextMetadataNo++); 2533 break; 2534 } 2535 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2536 if (Record.size() != 4) 2537 return error("Invalid record"); 2538 2539 IsDistinct = Record[0]; 2540 MetadataList.assignValue( 2541 GET_OR_DISTINCT(DILexicalBlockFile, 2542 (Context, getMDOrNull(Record[1]), 2543 getMDOrNull(Record[2]), Record[3])), 2544 NextMetadataNo++); 2545 break; 2546 } 2547 case bitc::METADATA_NAMESPACE: { 2548 if (Record.size() != 5) 2549 return error("Invalid record"); 2550 2551 IsDistinct = Record[0]; 2552 MetadataList.assignValue( 2553 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2554 getMDOrNull(Record[2]), 2555 getMDString(Record[3]), Record[4])), 2556 NextMetadataNo++); 2557 break; 2558 } 2559 case bitc::METADATA_MACRO: { 2560 if (Record.size() != 5) 2561 return error("Invalid record"); 2562 2563 IsDistinct = Record[0]; 2564 MetadataList.assignValue( 2565 GET_OR_DISTINCT(DIMacro, 2566 (Context, Record[1], Record[2], 2567 getMDString(Record[3]), getMDString(Record[4]))), 2568 NextMetadataNo++); 2569 break; 2570 } 2571 case bitc::METADATA_MACRO_FILE: { 2572 if (Record.size() != 5) 2573 return error("Invalid record"); 2574 2575 IsDistinct = Record[0]; 2576 MetadataList.assignValue( 2577 GET_OR_DISTINCT(DIMacroFile, 2578 (Context, Record[1], Record[2], 2579 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2580 NextMetadataNo++); 2581 break; 2582 } 2583 case bitc::METADATA_TEMPLATE_TYPE: { 2584 if (Record.size() != 3) 2585 return error("Invalid record"); 2586 2587 IsDistinct = Record[0]; 2588 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2589 (Context, getMDString(Record[1]), 2590 getDITypeRefOrNull(Record[2]))), 2591 NextMetadataNo++); 2592 break; 2593 } 2594 case bitc::METADATA_TEMPLATE_VALUE: { 2595 if (Record.size() != 5) 2596 return error("Invalid record"); 2597 2598 IsDistinct = Record[0]; 2599 MetadataList.assignValue( 2600 GET_OR_DISTINCT(DITemplateValueParameter, 2601 (Context, Record[1], getMDString(Record[2]), 2602 getDITypeRefOrNull(Record[3]), 2603 getMDOrNull(Record[4]))), 2604 NextMetadataNo++); 2605 break; 2606 } 2607 case bitc::METADATA_GLOBAL_VAR: { 2608 if (Record.size() != 11) 2609 return error("Invalid record"); 2610 2611 IsDistinct = Record[0]; 2612 MetadataList.assignValue( 2613 GET_OR_DISTINCT(DIGlobalVariable, 2614 (Context, getMDOrNull(Record[1]), 2615 getMDString(Record[2]), getMDString(Record[3]), 2616 getMDOrNull(Record[4]), Record[5], 2617 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2618 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2619 NextMetadataNo++); 2620 break; 2621 } 2622 case bitc::METADATA_LOCAL_VAR: { 2623 // 10th field is for the obseleted 'inlinedAt:' field. 2624 if (Record.size() < 8 || Record.size() > 10) 2625 return error("Invalid record"); 2626 2627 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2628 // DW_TAG_arg_variable. 2629 IsDistinct = Record[0]; 2630 bool HasTag = Record.size() > 8; 2631 MetadataList.assignValue( 2632 GET_OR_DISTINCT(DILocalVariable, 2633 (Context, getMDOrNull(Record[1 + HasTag]), 2634 getMDString(Record[2 + HasTag]), 2635 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2636 getDITypeRefOrNull(Record[5 + HasTag]), 2637 Record[6 + HasTag], Record[7 + HasTag])), 2638 NextMetadataNo++); 2639 break; 2640 } 2641 case bitc::METADATA_EXPRESSION: { 2642 if (Record.size() < 1) 2643 return error("Invalid record"); 2644 2645 IsDistinct = Record[0]; 2646 MetadataList.assignValue( 2647 GET_OR_DISTINCT(DIExpression, 2648 (Context, makeArrayRef(Record).slice(1))), 2649 NextMetadataNo++); 2650 break; 2651 } 2652 case bitc::METADATA_OBJC_PROPERTY: { 2653 if (Record.size() != 8) 2654 return error("Invalid record"); 2655 2656 IsDistinct = Record[0]; 2657 MetadataList.assignValue( 2658 GET_OR_DISTINCT(DIObjCProperty, 2659 (Context, getMDString(Record[1]), 2660 getMDOrNull(Record[2]), Record[3], 2661 getMDString(Record[4]), getMDString(Record[5]), 2662 Record[6], getDITypeRefOrNull(Record[7]))), 2663 NextMetadataNo++); 2664 break; 2665 } 2666 case bitc::METADATA_IMPORTED_ENTITY: { 2667 if (Record.size() != 6) 2668 return error("Invalid record"); 2669 2670 IsDistinct = Record[0]; 2671 MetadataList.assignValue( 2672 GET_OR_DISTINCT(DIImportedEntity, 2673 (Context, Record[1], getMDOrNull(Record[2]), 2674 getDITypeRefOrNull(Record[3]), Record[4], 2675 getMDString(Record[5]))), 2676 NextMetadataNo++); 2677 break; 2678 } 2679 case bitc::METADATA_STRING_OLD: { 2680 std::string String(Record.begin(), Record.end()); 2681 2682 // Test for upgrading !llvm.loop. 2683 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2684 2685 Metadata *MD = MDString::get(Context, String); 2686 MetadataList.assignValue(MD, NextMetadataNo++); 2687 break; 2688 } 2689 case bitc::METADATA_STRINGS: 2690 if (std::error_code EC = 2691 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2692 return EC; 2693 break; 2694 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2695 if (Record.size() % 2 == 0) 2696 return error("Invalid record"); 2697 unsigned ValueID = Record[0]; 2698 if (ValueID >= ValueList.size()) 2699 return error("Invalid record"); 2700 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2701 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2702 break; 2703 } 2704 case bitc::METADATA_KIND: { 2705 // Support older bitcode files that had METADATA_KIND records in a 2706 // block with METADATA_BLOCK_ID. 2707 if (std::error_code EC = parseMetadataKindRecord(Record)) 2708 return EC; 2709 break; 2710 } 2711 } 2712 } 2713 #undef GET_OR_DISTINCT 2714 } 2715 2716 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2717 std::error_code BitcodeReader::parseMetadataKinds() { 2718 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2719 return error("Invalid record"); 2720 2721 SmallVector<uint64_t, 64> Record; 2722 2723 // Read all the records. 2724 while (1) { 2725 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2726 2727 switch (Entry.Kind) { 2728 case BitstreamEntry::SubBlock: // Handled for us already. 2729 case BitstreamEntry::Error: 2730 return error("Malformed block"); 2731 case BitstreamEntry::EndBlock: 2732 return std::error_code(); 2733 case BitstreamEntry::Record: 2734 // The interesting case. 2735 break; 2736 } 2737 2738 // Read a record. 2739 Record.clear(); 2740 unsigned Code = Stream.readRecord(Entry.ID, Record); 2741 switch (Code) { 2742 default: // Default behavior: ignore. 2743 break; 2744 case bitc::METADATA_KIND: { 2745 if (std::error_code EC = parseMetadataKindRecord(Record)) 2746 return EC; 2747 break; 2748 } 2749 } 2750 } 2751 } 2752 2753 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2754 /// encoding. 2755 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2756 if ((V & 1) == 0) 2757 return V >> 1; 2758 if (V != 1) 2759 return -(V >> 1); 2760 // There is no such thing as -0 with integers. "-0" really means MININT. 2761 return 1ULL << 63; 2762 } 2763 2764 /// Resolve all of the initializers for global values and aliases that we can. 2765 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2766 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2767 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2768 IndirectSymbolInitWorklist; 2769 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2770 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2771 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2772 2773 GlobalInitWorklist.swap(GlobalInits); 2774 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2775 FunctionPrefixWorklist.swap(FunctionPrefixes); 2776 FunctionPrologueWorklist.swap(FunctionPrologues); 2777 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2778 2779 while (!GlobalInitWorklist.empty()) { 2780 unsigned ValID = GlobalInitWorklist.back().second; 2781 if (ValID >= ValueList.size()) { 2782 // Not ready to resolve this yet, it requires something later in the file. 2783 GlobalInits.push_back(GlobalInitWorklist.back()); 2784 } else { 2785 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2786 GlobalInitWorklist.back().first->setInitializer(C); 2787 else 2788 return error("Expected a constant"); 2789 } 2790 GlobalInitWorklist.pop_back(); 2791 } 2792 2793 while (!IndirectSymbolInitWorklist.empty()) { 2794 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2795 if (ValID >= ValueList.size()) { 2796 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2797 } else { 2798 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2799 if (!C) 2800 return error("Expected a constant"); 2801 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2802 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2803 return error("Alias and aliasee types don't match"); 2804 GIS->setIndirectSymbol(C); 2805 } 2806 IndirectSymbolInitWorklist.pop_back(); 2807 } 2808 2809 while (!FunctionPrefixWorklist.empty()) { 2810 unsigned ValID = FunctionPrefixWorklist.back().second; 2811 if (ValID >= ValueList.size()) { 2812 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2813 } else { 2814 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2815 FunctionPrefixWorklist.back().first->setPrefixData(C); 2816 else 2817 return error("Expected a constant"); 2818 } 2819 FunctionPrefixWorklist.pop_back(); 2820 } 2821 2822 while (!FunctionPrologueWorklist.empty()) { 2823 unsigned ValID = FunctionPrologueWorklist.back().second; 2824 if (ValID >= ValueList.size()) { 2825 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2826 } else { 2827 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2828 FunctionPrologueWorklist.back().first->setPrologueData(C); 2829 else 2830 return error("Expected a constant"); 2831 } 2832 FunctionPrologueWorklist.pop_back(); 2833 } 2834 2835 while (!FunctionPersonalityFnWorklist.empty()) { 2836 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2837 if (ValID >= ValueList.size()) { 2838 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2839 } else { 2840 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2841 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2842 else 2843 return error("Expected a constant"); 2844 } 2845 FunctionPersonalityFnWorklist.pop_back(); 2846 } 2847 2848 return std::error_code(); 2849 } 2850 2851 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2852 SmallVector<uint64_t, 8> Words(Vals.size()); 2853 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2854 BitcodeReader::decodeSignRotatedValue); 2855 2856 return APInt(TypeBits, Words); 2857 } 2858 2859 std::error_code BitcodeReader::parseConstants() { 2860 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2861 return error("Invalid record"); 2862 2863 SmallVector<uint64_t, 64> Record; 2864 2865 // Read all the records for this value table. 2866 Type *CurTy = Type::getInt32Ty(Context); 2867 unsigned NextCstNo = ValueList.size(); 2868 while (1) { 2869 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2870 2871 switch (Entry.Kind) { 2872 case BitstreamEntry::SubBlock: // Handled for us already. 2873 case BitstreamEntry::Error: 2874 return error("Malformed block"); 2875 case BitstreamEntry::EndBlock: 2876 if (NextCstNo != ValueList.size()) 2877 return error("Invalid constant reference"); 2878 2879 // Once all the constants have been read, go through and resolve forward 2880 // references. 2881 ValueList.resolveConstantForwardRefs(); 2882 return std::error_code(); 2883 case BitstreamEntry::Record: 2884 // The interesting case. 2885 break; 2886 } 2887 2888 // Read a record. 2889 Record.clear(); 2890 Type *VoidType = Type::getVoidTy(Context); 2891 Value *V = nullptr; 2892 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2893 switch (BitCode) { 2894 default: // Default behavior: unknown constant 2895 case bitc::CST_CODE_UNDEF: // UNDEF 2896 V = UndefValue::get(CurTy); 2897 break; 2898 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2899 if (Record.empty()) 2900 return error("Invalid record"); 2901 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2902 return error("Invalid record"); 2903 if (TypeList[Record[0]] == VoidType) 2904 return error("Invalid constant type"); 2905 CurTy = TypeList[Record[0]]; 2906 continue; // Skip the ValueList manipulation. 2907 case bitc::CST_CODE_NULL: // NULL 2908 V = Constant::getNullValue(CurTy); 2909 break; 2910 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2911 if (!CurTy->isIntegerTy() || Record.empty()) 2912 return error("Invalid record"); 2913 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2914 break; 2915 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2916 if (!CurTy->isIntegerTy() || Record.empty()) 2917 return error("Invalid record"); 2918 2919 APInt VInt = 2920 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2921 V = ConstantInt::get(Context, VInt); 2922 2923 break; 2924 } 2925 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2926 if (Record.empty()) 2927 return error("Invalid record"); 2928 if (CurTy->isHalfTy()) 2929 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2930 APInt(16, (uint16_t)Record[0]))); 2931 else if (CurTy->isFloatTy()) 2932 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2933 APInt(32, (uint32_t)Record[0]))); 2934 else if (CurTy->isDoubleTy()) 2935 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2936 APInt(64, Record[0]))); 2937 else if (CurTy->isX86_FP80Ty()) { 2938 // Bits are not stored the same way as a normal i80 APInt, compensate. 2939 uint64_t Rearrange[2]; 2940 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2941 Rearrange[1] = Record[0] >> 48; 2942 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2943 APInt(80, Rearrange))); 2944 } else if (CurTy->isFP128Ty()) 2945 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2946 APInt(128, Record))); 2947 else if (CurTy->isPPC_FP128Ty()) 2948 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2949 APInt(128, Record))); 2950 else 2951 V = UndefValue::get(CurTy); 2952 break; 2953 } 2954 2955 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2956 if (Record.empty()) 2957 return error("Invalid record"); 2958 2959 unsigned Size = Record.size(); 2960 SmallVector<Constant*, 16> Elts; 2961 2962 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2963 for (unsigned i = 0; i != Size; ++i) 2964 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2965 STy->getElementType(i))); 2966 V = ConstantStruct::get(STy, Elts); 2967 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2968 Type *EltTy = ATy->getElementType(); 2969 for (unsigned i = 0; i != Size; ++i) 2970 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2971 V = ConstantArray::get(ATy, Elts); 2972 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2973 Type *EltTy = VTy->getElementType(); 2974 for (unsigned i = 0; i != Size; ++i) 2975 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2976 V = ConstantVector::get(Elts); 2977 } else { 2978 V = UndefValue::get(CurTy); 2979 } 2980 break; 2981 } 2982 case bitc::CST_CODE_STRING: // STRING: [values] 2983 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2984 if (Record.empty()) 2985 return error("Invalid record"); 2986 2987 SmallString<16> Elts(Record.begin(), Record.end()); 2988 V = ConstantDataArray::getString(Context, Elts, 2989 BitCode == bitc::CST_CODE_CSTRING); 2990 break; 2991 } 2992 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2993 if (Record.empty()) 2994 return error("Invalid record"); 2995 2996 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2997 if (EltTy->isIntegerTy(8)) { 2998 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2999 if (isa<VectorType>(CurTy)) 3000 V = ConstantDataVector::get(Context, Elts); 3001 else 3002 V = ConstantDataArray::get(Context, Elts); 3003 } else if (EltTy->isIntegerTy(16)) { 3004 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3005 if (isa<VectorType>(CurTy)) 3006 V = ConstantDataVector::get(Context, Elts); 3007 else 3008 V = ConstantDataArray::get(Context, Elts); 3009 } else if (EltTy->isIntegerTy(32)) { 3010 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3011 if (isa<VectorType>(CurTy)) 3012 V = ConstantDataVector::get(Context, Elts); 3013 else 3014 V = ConstantDataArray::get(Context, Elts); 3015 } else if (EltTy->isIntegerTy(64)) { 3016 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3017 if (isa<VectorType>(CurTy)) 3018 V = ConstantDataVector::get(Context, Elts); 3019 else 3020 V = ConstantDataArray::get(Context, Elts); 3021 } else if (EltTy->isHalfTy()) { 3022 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3023 if (isa<VectorType>(CurTy)) 3024 V = ConstantDataVector::getFP(Context, Elts); 3025 else 3026 V = ConstantDataArray::getFP(Context, Elts); 3027 } else if (EltTy->isFloatTy()) { 3028 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3029 if (isa<VectorType>(CurTy)) 3030 V = ConstantDataVector::getFP(Context, Elts); 3031 else 3032 V = ConstantDataArray::getFP(Context, Elts); 3033 } else if (EltTy->isDoubleTy()) { 3034 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3035 if (isa<VectorType>(CurTy)) 3036 V = ConstantDataVector::getFP(Context, Elts); 3037 else 3038 V = ConstantDataArray::getFP(Context, Elts); 3039 } else { 3040 return error("Invalid type for value"); 3041 } 3042 break; 3043 } 3044 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3045 if (Record.size() < 3) 3046 return error("Invalid record"); 3047 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3048 if (Opc < 0) { 3049 V = UndefValue::get(CurTy); // Unknown binop. 3050 } else { 3051 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3052 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3053 unsigned Flags = 0; 3054 if (Record.size() >= 4) { 3055 if (Opc == Instruction::Add || 3056 Opc == Instruction::Sub || 3057 Opc == Instruction::Mul || 3058 Opc == Instruction::Shl) { 3059 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3060 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3061 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3062 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3063 } else if (Opc == Instruction::SDiv || 3064 Opc == Instruction::UDiv || 3065 Opc == Instruction::LShr || 3066 Opc == Instruction::AShr) { 3067 if (Record[3] & (1 << bitc::PEO_EXACT)) 3068 Flags |= SDivOperator::IsExact; 3069 } 3070 } 3071 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3072 } 3073 break; 3074 } 3075 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3076 if (Record.size() < 3) 3077 return error("Invalid record"); 3078 int Opc = getDecodedCastOpcode(Record[0]); 3079 if (Opc < 0) { 3080 V = UndefValue::get(CurTy); // Unknown cast. 3081 } else { 3082 Type *OpTy = getTypeByID(Record[1]); 3083 if (!OpTy) 3084 return error("Invalid record"); 3085 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3086 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3087 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3088 } 3089 break; 3090 } 3091 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3092 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3093 unsigned OpNum = 0; 3094 Type *PointeeType = nullptr; 3095 if (Record.size() % 2) 3096 PointeeType = getTypeByID(Record[OpNum++]); 3097 SmallVector<Constant*, 16> Elts; 3098 while (OpNum != Record.size()) { 3099 Type *ElTy = getTypeByID(Record[OpNum++]); 3100 if (!ElTy) 3101 return error("Invalid record"); 3102 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3103 } 3104 3105 if (PointeeType && 3106 PointeeType != 3107 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3108 ->getElementType()) 3109 return error("Explicit gep operator type does not match pointee type " 3110 "of pointer operand"); 3111 3112 if (Elts.size() < 1) 3113 return error("Invalid gep with no operands"); 3114 3115 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3116 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3117 BitCode == 3118 bitc::CST_CODE_CE_INBOUNDS_GEP); 3119 break; 3120 } 3121 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3122 if (Record.size() < 3) 3123 return error("Invalid record"); 3124 3125 Type *SelectorTy = Type::getInt1Ty(Context); 3126 3127 // The selector might be an i1 or an <n x i1> 3128 // Get the type from the ValueList before getting a forward ref. 3129 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3130 if (Value *V = ValueList[Record[0]]) 3131 if (SelectorTy != V->getType()) 3132 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3133 3134 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3135 SelectorTy), 3136 ValueList.getConstantFwdRef(Record[1],CurTy), 3137 ValueList.getConstantFwdRef(Record[2],CurTy)); 3138 break; 3139 } 3140 case bitc::CST_CODE_CE_EXTRACTELT 3141 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3142 if (Record.size() < 3) 3143 return error("Invalid record"); 3144 VectorType *OpTy = 3145 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3146 if (!OpTy) 3147 return error("Invalid record"); 3148 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3149 Constant *Op1 = nullptr; 3150 if (Record.size() == 4) { 3151 Type *IdxTy = getTypeByID(Record[2]); 3152 if (!IdxTy) 3153 return error("Invalid record"); 3154 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3155 } else // TODO: Remove with llvm 4.0 3156 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3157 if (!Op1) 3158 return error("Invalid record"); 3159 V = ConstantExpr::getExtractElement(Op0, Op1); 3160 break; 3161 } 3162 case bitc::CST_CODE_CE_INSERTELT 3163 : { // CE_INSERTELT: [opval, opval, opty, opval] 3164 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3165 if (Record.size() < 3 || !OpTy) 3166 return error("Invalid record"); 3167 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3168 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3169 OpTy->getElementType()); 3170 Constant *Op2 = nullptr; 3171 if (Record.size() == 4) { 3172 Type *IdxTy = getTypeByID(Record[2]); 3173 if (!IdxTy) 3174 return error("Invalid record"); 3175 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3176 } else // TODO: Remove with llvm 4.0 3177 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3178 if (!Op2) 3179 return error("Invalid record"); 3180 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3181 break; 3182 } 3183 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3184 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3185 if (Record.size() < 3 || !OpTy) 3186 return error("Invalid record"); 3187 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3188 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3189 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3190 OpTy->getNumElements()); 3191 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3192 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3193 break; 3194 } 3195 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3196 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3197 VectorType *OpTy = 3198 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3199 if (Record.size() < 4 || !RTy || !OpTy) 3200 return error("Invalid record"); 3201 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3202 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3203 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3204 RTy->getNumElements()); 3205 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3206 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3207 break; 3208 } 3209 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3210 if (Record.size() < 4) 3211 return error("Invalid record"); 3212 Type *OpTy = getTypeByID(Record[0]); 3213 if (!OpTy) 3214 return error("Invalid record"); 3215 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3216 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3217 3218 if (OpTy->isFPOrFPVectorTy()) 3219 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3220 else 3221 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3222 break; 3223 } 3224 // This maintains backward compatibility, pre-asm dialect keywords. 3225 // FIXME: Remove with the 4.0 release. 3226 case bitc::CST_CODE_INLINEASM_OLD: { 3227 if (Record.size() < 2) 3228 return error("Invalid record"); 3229 std::string AsmStr, ConstrStr; 3230 bool HasSideEffects = Record[0] & 1; 3231 bool IsAlignStack = Record[0] >> 1; 3232 unsigned AsmStrSize = Record[1]; 3233 if (2+AsmStrSize >= Record.size()) 3234 return error("Invalid record"); 3235 unsigned ConstStrSize = Record[2+AsmStrSize]; 3236 if (3+AsmStrSize+ConstStrSize > Record.size()) 3237 return error("Invalid record"); 3238 3239 for (unsigned i = 0; i != AsmStrSize; ++i) 3240 AsmStr += (char)Record[2+i]; 3241 for (unsigned i = 0; i != ConstStrSize; ++i) 3242 ConstrStr += (char)Record[3+AsmStrSize+i]; 3243 PointerType *PTy = cast<PointerType>(CurTy); 3244 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3245 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3246 break; 3247 } 3248 // This version adds support for the asm dialect keywords (e.g., 3249 // inteldialect). 3250 case bitc::CST_CODE_INLINEASM: { 3251 if (Record.size() < 2) 3252 return error("Invalid record"); 3253 std::string AsmStr, ConstrStr; 3254 bool HasSideEffects = Record[0] & 1; 3255 bool IsAlignStack = (Record[0] >> 1) & 1; 3256 unsigned AsmDialect = Record[0] >> 2; 3257 unsigned AsmStrSize = Record[1]; 3258 if (2+AsmStrSize >= Record.size()) 3259 return error("Invalid record"); 3260 unsigned ConstStrSize = Record[2+AsmStrSize]; 3261 if (3+AsmStrSize+ConstStrSize > Record.size()) 3262 return error("Invalid record"); 3263 3264 for (unsigned i = 0; i != AsmStrSize; ++i) 3265 AsmStr += (char)Record[2+i]; 3266 for (unsigned i = 0; i != ConstStrSize; ++i) 3267 ConstrStr += (char)Record[3+AsmStrSize+i]; 3268 PointerType *PTy = cast<PointerType>(CurTy); 3269 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3270 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3271 InlineAsm::AsmDialect(AsmDialect)); 3272 break; 3273 } 3274 case bitc::CST_CODE_BLOCKADDRESS:{ 3275 if (Record.size() < 3) 3276 return error("Invalid record"); 3277 Type *FnTy = getTypeByID(Record[0]); 3278 if (!FnTy) 3279 return error("Invalid record"); 3280 Function *Fn = 3281 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3282 if (!Fn) 3283 return error("Invalid record"); 3284 3285 // If the function is already parsed we can insert the block address right 3286 // away. 3287 BasicBlock *BB; 3288 unsigned BBID = Record[2]; 3289 if (!BBID) 3290 // Invalid reference to entry block. 3291 return error("Invalid ID"); 3292 if (!Fn->empty()) { 3293 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3294 for (size_t I = 0, E = BBID; I != E; ++I) { 3295 if (BBI == BBE) 3296 return error("Invalid ID"); 3297 ++BBI; 3298 } 3299 BB = &*BBI; 3300 } else { 3301 // Otherwise insert a placeholder and remember it so it can be inserted 3302 // when the function is parsed. 3303 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3304 if (FwdBBs.empty()) 3305 BasicBlockFwdRefQueue.push_back(Fn); 3306 if (FwdBBs.size() < BBID + 1) 3307 FwdBBs.resize(BBID + 1); 3308 if (!FwdBBs[BBID]) 3309 FwdBBs[BBID] = BasicBlock::Create(Context); 3310 BB = FwdBBs[BBID]; 3311 } 3312 V = BlockAddress::get(Fn, BB); 3313 break; 3314 } 3315 } 3316 3317 ValueList.assignValue(V, NextCstNo); 3318 ++NextCstNo; 3319 } 3320 } 3321 3322 std::error_code BitcodeReader::parseUseLists() { 3323 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3324 return error("Invalid record"); 3325 3326 // Read all the records. 3327 SmallVector<uint64_t, 64> Record; 3328 while (1) { 3329 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3330 3331 switch (Entry.Kind) { 3332 case BitstreamEntry::SubBlock: // Handled for us already. 3333 case BitstreamEntry::Error: 3334 return error("Malformed block"); 3335 case BitstreamEntry::EndBlock: 3336 return std::error_code(); 3337 case BitstreamEntry::Record: 3338 // The interesting case. 3339 break; 3340 } 3341 3342 // Read a use list record. 3343 Record.clear(); 3344 bool IsBB = false; 3345 switch (Stream.readRecord(Entry.ID, Record)) { 3346 default: // Default behavior: unknown type. 3347 break; 3348 case bitc::USELIST_CODE_BB: 3349 IsBB = true; 3350 // fallthrough 3351 case bitc::USELIST_CODE_DEFAULT: { 3352 unsigned RecordLength = Record.size(); 3353 if (RecordLength < 3) 3354 // Records should have at least an ID and two indexes. 3355 return error("Invalid record"); 3356 unsigned ID = Record.back(); 3357 Record.pop_back(); 3358 3359 Value *V; 3360 if (IsBB) { 3361 assert(ID < FunctionBBs.size() && "Basic block not found"); 3362 V = FunctionBBs[ID]; 3363 } else 3364 V = ValueList[ID]; 3365 unsigned NumUses = 0; 3366 SmallDenseMap<const Use *, unsigned, 16> Order; 3367 for (const Use &U : V->materialized_uses()) { 3368 if (++NumUses > Record.size()) 3369 break; 3370 Order[&U] = Record[NumUses - 1]; 3371 } 3372 if (Order.size() != Record.size() || NumUses > Record.size()) 3373 // Mismatches can happen if the functions are being materialized lazily 3374 // (out-of-order), or a value has been upgraded. 3375 break; 3376 3377 V->sortUseList([&](const Use &L, const Use &R) { 3378 return Order.lookup(&L) < Order.lookup(&R); 3379 }); 3380 break; 3381 } 3382 } 3383 } 3384 } 3385 3386 /// When we see the block for metadata, remember where it is and then skip it. 3387 /// This lets us lazily deserialize the metadata. 3388 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3389 // Save the current stream state. 3390 uint64_t CurBit = Stream.GetCurrentBitNo(); 3391 DeferredMetadataInfo.push_back(CurBit); 3392 3393 // Skip over the block for now. 3394 if (Stream.SkipBlock()) 3395 return error("Invalid record"); 3396 return std::error_code(); 3397 } 3398 3399 std::error_code BitcodeReader::materializeMetadata() { 3400 for (uint64_t BitPos : DeferredMetadataInfo) { 3401 // Move the bit stream to the saved position. 3402 Stream.JumpToBit(BitPos); 3403 if (std::error_code EC = parseMetadata(true)) 3404 return EC; 3405 } 3406 DeferredMetadataInfo.clear(); 3407 return std::error_code(); 3408 } 3409 3410 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3411 3412 /// When we see the block for a function body, remember where it is and then 3413 /// skip it. This lets us lazily deserialize the functions. 3414 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3415 // Get the function we are talking about. 3416 if (FunctionsWithBodies.empty()) 3417 return error("Insufficient function protos"); 3418 3419 Function *Fn = FunctionsWithBodies.back(); 3420 FunctionsWithBodies.pop_back(); 3421 3422 // Save the current stream state. 3423 uint64_t CurBit = Stream.GetCurrentBitNo(); 3424 assert( 3425 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3426 "Mismatch between VST and scanned function offsets"); 3427 DeferredFunctionInfo[Fn] = CurBit; 3428 3429 // Skip over the function block for now. 3430 if (Stream.SkipBlock()) 3431 return error("Invalid record"); 3432 return std::error_code(); 3433 } 3434 3435 std::error_code BitcodeReader::globalCleanup() { 3436 // Patch the initializers for globals and aliases up. 3437 resolveGlobalAndIndirectSymbolInits(); 3438 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3439 return error("Malformed global initializer set"); 3440 3441 // Look for intrinsic functions which need to be upgraded at some point 3442 for (Function &F : *TheModule) { 3443 Function *NewFn; 3444 if (UpgradeIntrinsicFunction(&F, NewFn)) 3445 UpgradedIntrinsics[&F] = NewFn; 3446 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3447 // Some types could be renamed during loading if several modules are 3448 // loaded in the same LLVMContext (LTO scenario). In this case we should 3449 // remangle intrinsics names as well. 3450 RemangledIntrinsics[&F] = Remangled.getValue(); 3451 } 3452 3453 // Look for global variables which need to be renamed. 3454 for (GlobalVariable &GV : TheModule->globals()) 3455 UpgradeGlobalVariable(&GV); 3456 3457 // Force deallocation of memory for these vectors to favor the client that 3458 // want lazy deserialization. 3459 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3460 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3461 IndirectSymbolInits); 3462 return std::error_code(); 3463 } 3464 3465 /// Support for lazy parsing of function bodies. This is required if we 3466 /// either have an old bitcode file without a VST forward declaration record, 3467 /// or if we have an anonymous function being materialized, since anonymous 3468 /// functions do not have a name and are therefore not in the VST. 3469 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3470 Stream.JumpToBit(NextUnreadBit); 3471 3472 if (Stream.AtEndOfStream()) 3473 return error("Could not find function in stream"); 3474 3475 if (!SeenFirstFunctionBody) 3476 return error("Trying to materialize functions before seeing function blocks"); 3477 3478 // An old bitcode file with the symbol table at the end would have 3479 // finished the parse greedily. 3480 assert(SeenValueSymbolTable); 3481 3482 SmallVector<uint64_t, 64> Record; 3483 3484 while (1) { 3485 BitstreamEntry Entry = Stream.advance(); 3486 switch (Entry.Kind) { 3487 default: 3488 return error("Expect SubBlock"); 3489 case BitstreamEntry::SubBlock: 3490 switch (Entry.ID) { 3491 default: 3492 return error("Expect function block"); 3493 case bitc::FUNCTION_BLOCK_ID: 3494 if (std::error_code EC = rememberAndSkipFunctionBody()) 3495 return EC; 3496 NextUnreadBit = Stream.GetCurrentBitNo(); 3497 return std::error_code(); 3498 } 3499 } 3500 } 3501 } 3502 3503 std::error_code BitcodeReader::parseBitcodeVersion() { 3504 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3505 return error("Invalid record"); 3506 3507 // Read all the records. 3508 SmallVector<uint64_t, 64> Record; 3509 while (1) { 3510 BitstreamEntry Entry = Stream.advance(); 3511 3512 switch (Entry.Kind) { 3513 default: 3514 case BitstreamEntry::Error: 3515 return error("Malformed block"); 3516 case BitstreamEntry::EndBlock: 3517 return std::error_code(); 3518 case BitstreamEntry::Record: 3519 // The interesting case. 3520 break; 3521 } 3522 3523 // Read a record. 3524 Record.clear(); 3525 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3526 switch (BitCode) { 3527 default: // Default behavior: reject 3528 return error("Invalid value"); 3529 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3530 // N] 3531 convertToString(Record, 0, ProducerIdentification); 3532 break; 3533 } 3534 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3535 unsigned epoch = (unsigned)Record[0]; 3536 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3537 return error( 3538 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3539 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3540 } 3541 } 3542 } 3543 } 3544 } 3545 3546 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3547 bool ShouldLazyLoadMetadata) { 3548 if (ResumeBit) 3549 Stream.JumpToBit(ResumeBit); 3550 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3551 return error("Invalid record"); 3552 3553 SmallVector<uint64_t, 64> Record; 3554 std::vector<std::string> SectionTable; 3555 std::vector<std::string> GCTable; 3556 3557 // Read all the records for this module. 3558 while (1) { 3559 BitstreamEntry Entry = Stream.advance(); 3560 3561 switch (Entry.Kind) { 3562 case BitstreamEntry::Error: 3563 return error("Malformed block"); 3564 case BitstreamEntry::EndBlock: 3565 return globalCleanup(); 3566 3567 case BitstreamEntry::SubBlock: 3568 switch (Entry.ID) { 3569 default: // Skip unknown content. 3570 if (Stream.SkipBlock()) 3571 return error("Invalid record"); 3572 break; 3573 case bitc::BLOCKINFO_BLOCK_ID: 3574 if (Stream.ReadBlockInfoBlock()) 3575 return error("Malformed block"); 3576 break; 3577 case bitc::PARAMATTR_BLOCK_ID: 3578 if (std::error_code EC = parseAttributeBlock()) 3579 return EC; 3580 break; 3581 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3582 if (std::error_code EC = parseAttributeGroupBlock()) 3583 return EC; 3584 break; 3585 case bitc::TYPE_BLOCK_ID_NEW: 3586 if (std::error_code EC = parseTypeTable()) 3587 return EC; 3588 break; 3589 case bitc::VALUE_SYMTAB_BLOCK_ID: 3590 if (!SeenValueSymbolTable) { 3591 // Either this is an old form VST without function index and an 3592 // associated VST forward declaration record (which would have caused 3593 // the VST to be jumped to and parsed before it was encountered 3594 // normally in the stream), or there were no function blocks to 3595 // trigger an earlier parsing of the VST. 3596 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3597 if (std::error_code EC = parseValueSymbolTable()) 3598 return EC; 3599 SeenValueSymbolTable = true; 3600 } else { 3601 // We must have had a VST forward declaration record, which caused 3602 // the parser to jump to and parse the VST earlier. 3603 assert(VSTOffset > 0); 3604 if (Stream.SkipBlock()) 3605 return error("Invalid record"); 3606 } 3607 break; 3608 case bitc::CONSTANTS_BLOCK_ID: 3609 if (std::error_code EC = parseConstants()) 3610 return EC; 3611 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3612 return EC; 3613 break; 3614 case bitc::METADATA_BLOCK_ID: 3615 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3616 if (std::error_code EC = rememberAndSkipMetadata()) 3617 return EC; 3618 break; 3619 } 3620 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3621 if (std::error_code EC = parseMetadata(true)) 3622 return EC; 3623 break; 3624 case bitc::METADATA_KIND_BLOCK_ID: 3625 if (std::error_code EC = parseMetadataKinds()) 3626 return EC; 3627 break; 3628 case bitc::FUNCTION_BLOCK_ID: 3629 // If this is the first function body we've seen, reverse the 3630 // FunctionsWithBodies list. 3631 if (!SeenFirstFunctionBody) { 3632 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3633 if (std::error_code EC = globalCleanup()) 3634 return EC; 3635 SeenFirstFunctionBody = true; 3636 } 3637 3638 if (VSTOffset > 0) { 3639 // If we have a VST forward declaration record, make sure we 3640 // parse the VST now if we haven't already. It is needed to 3641 // set up the DeferredFunctionInfo vector for lazy reading. 3642 if (!SeenValueSymbolTable) { 3643 if (std::error_code EC = 3644 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3645 return EC; 3646 SeenValueSymbolTable = true; 3647 // Fall through so that we record the NextUnreadBit below. 3648 // This is necessary in case we have an anonymous function that 3649 // is later materialized. Since it will not have a VST entry we 3650 // need to fall back to the lazy parse to find its offset. 3651 } else { 3652 // If we have a VST forward declaration record, but have already 3653 // parsed the VST (just above, when the first function body was 3654 // encountered here), then we are resuming the parse after 3655 // materializing functions. The ResumeBit points to the 3656 // start of the last function block recorded in the 3657 // DeferredFunctionInfo map. Skip it. 3658 if (Stream.SkipBlock()) 3659 return error("Invalid record"); 3660 continue; 3661 } 3662 } 3663 3664 // Support older bitcode files that did not have the function 3665 // index in the VST, nor a VST forward declaration record, as 3666 // well as anonymous functions that do not have VST entries. 3667 // Build the DeferredFunctionInfo vector on the fly. 3668 if (std::error_code EC = rememberAndSkipFunctionBody()) 3669 return EC; 3670 3671 // Suspend parsing when we reach the function bodies. Subsequent 3672 // materialization calls will resume it when necessary. If the bitcode 3673 // file is old, the symbol table will be at the end instead and will not 3674 // have been seen yet. In this case, just finish the parse now. 3675 if (SeenValueSymbolTable) { 3676 NextUnreadBit = Stream.GetCurrentBitNo(); 3677 return std::error_code(); 3678 } 3679 break; 3680 case bitc::USELIST_BLOCK_ID: 3681 if (std::error_code EC = parseUseLists()) 3682 return EC; 3683 break; 3684 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3685 if (std::error_code EC = parseOperandBundleTags()) 3686 return EC; 3687 break; 3688 } 3689 continue; 3690 3691 case BitstreamEntry::Record: 3692 // The interesting case. 3693 break; 3694 } 3695 3696 // Read a record. 3697 auto BitCode = Stream.readRecord(Entry.ID, Record); 3698 switch (BitCode) { 3699 default: break; // Default behavior, ignore unknown content. 3700 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3701 if (Record.size() < 1) 3702 return error("Invalid record"); 3703 // Only version #0 and #1 are supported so far. 3704 unsigned module_version = Record[0]; 3705 switch (module_version) { 3706 default: 3707 return error("Invalid value"); 3708 case 0: 3709 UseRelativeIDs = false; 3710 break; 3711 case 1: 3712 UseRelativeIDs = true; 3713 break; 3714 } 3715 break; 3716 } 3717 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3718 std::string S; 3719 if (convertToString(Record, 0, S)) 3720 return error("Invalid record"); 3721 TheModule->setTargetTriple(S); 3722 break; 3723 } 3724 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3725 std::string S; 3726 if (convertToString(Record, 0, S)) 3727 return error("Invalid record"); 3728 TheModule->setDataLayout(S); 3729 break; 3730 } 3731 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3732 std::string S; 3733 if (convertToString(Record, 0, S)) 3734 return error("Invalid record"); 3735 TheModule->setModuleInlineAsm(S); 3736 break; 3737 } 3738 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3739 // FIXME: Remove in 4.0. 3740 std::string S; 3741 if (convertToString(Record, 0, S)) 3742 return error("Invalid record"); 3743 // Ignore value. 3744 break; 3745 } 3746 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3747 std::string S; 3748 if (convertToString(Record, 0, S)) 3749 return error("Invalid record"); 3750 SectionTable.push_back(S); 3751 break; 3752 } 3753 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3754 std::string S; 3755 if (convertToString(Record, 0, S)) 3756 return error("Invalid record"); 3757 GCTable.push_back(S); 3758 break; 3759 } 3760 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3761 if (Record.size() < 2) 3762 return error("Invalid record"); 3763 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3764 unsigned ComdatNameSize = Record[1]; 3765 std::string ComdatName; 3766 ComdatName.reserve(ComdatNameSize); 3767 for (unsigned i = 0; i != ComdatNameSize; ++i) 3768 ComdatName += (char)Record[2 + i]; 3769 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3770 C->setSelectionKind(SK); 3771 ComdatList.push_back(C); 3772 break; 3773 } 3774 // GLOBALVAR: [pointer type, isconst, initid, 3775 // linkage, alignment, section, visibility, threadlocal, 3776 // unnamed_addr, externally_initialized, dllstorageclass, 3777 // comdat] 3778 case bitc::MODULE_CODE_GLOBALVAR: { 3779 if (Record.size() < 6) 3780 return error("Invalid record"); 3781 Type *Ty = getTypeByID(Record[0]); 3782 if (!Ty) 3783 return error("Invalid record"); 3784 bool isConstant = Record[1] & 1; 3785 bool explicitType = Record[1] & 2; 3786 unsigned AddressSpace; 3787 if (explicitType) { 3788 AddressSpace = Record[1] >> 2; 3789 } else { 3790 if (!Ty->isPointerTy()) 3791 return error("Invalid type for value"); 3792 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3793 Ty = cast<PointerType>(Ty)->getElementType(); 3794 } 3795 3796 uint64_t RawLinkage = Record[3]; 3797 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3798 unsigned Alignment; 3799 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3800 return EC; 3801 std::string Section; 3802 if (Record[5]) { 3803 if (Record[5]-1 >= SectionTable.size()) 3804 return error("Invalid ID"); 3805 Section = SectionTable[Record[5]-1]; 3806 } 3807 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3808 // Local linkage must have default visibility. 3809 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3810 // FIXME: Change to an error if non-default in 4.0. 3811 Visibility = getDecodedVisibility(Record[6]); 3812 3813 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3814 if (Record.size() > 7) 3815 TLM = getDecodedThreadLocalMode(Record[7]); 3816 3817 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3818 if (Record.size() > 8) 3819 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3820 3821 bool ExternallyInitialized = false; 3822 if (Record.size() > 9) 3823 ExternallyInitialized = Record[9]; 3824 3825 GlobalVariable *NewGV = 3826 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3827 TLM, AddressSpace, ExternallyInitialized); 3828 NewGV->setAlignment(Alignment); 3829 if (!Section.empty()) 3830 NewGV->setSection(Section); 3831 NewGV->setVisibility(Visibility); 3832 NewGV->setUnnamedAddr(UnnamedAddr); 3833 3834 if (Record.size() > 10) 3835 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3836 else 3837 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3838 3839 ValueList.push_back(NewGV); 3840 3841 // Remember which value to use for the global initializer. 3842 if (unsigned InitID = Record[2]) 3843 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3844 3845 if (Record.size() > 11) { 3846 if (unsigned ComdatID = Record[11]) { 3847 if (ComdatID > ComdatList.size()) 3848 return error("Invalid global variable comdat ID"); 3849 NewGV->setComdat(ComdatList[ComdatID - 1]); 3850 } 3851 } else if (hasImplicitComdat(RawLinkage)) { 3852 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3853 } 3854 3855 break; 3856 } 3857 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3858 // alignment, section, visibility, gc, unnamed_addr, 3859 // prologuedata, dllstorageclass, comdat, prefixdata] 3860 case bitc::MODULE_CODE_FUNCTION: { 3861 if (Record.size() < 8) 3862 return error("Invalid record"); 3863 Type *Ty = getTypeByID(Record[0]); 3864 if (!Ty) 3865 return error("Invalid record"); 3866 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3867 Ty = PTy->getElementType(); 3868 auto *FTy = dyn_cast<FunctionType>(Ty); 3869 if (!FTy) 3870 return error("Invalid type for value"); 3871 auto CC = static_cast<CallingConv::ID>(Record[1]); 3872 if (CC & ~CallingConv::MaxID) 3873 return error("Invalid calling convention ID"); 3874 3875 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3876 "", TheModule); 3877 3878 Func->setCallingConv(CC); 3879 bool isProto = Record[2]; 3880 uint64_t RawLinkage = Record[3]; 3881 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3882 Func->setAttributes(getAttributes(Record[4])); 3883 3884 unsigned Alignment; 3885 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3886 return EC; 3887 Func->setAlignment(Alignment); 3888 if (Record[6]) { 3889 if (Record[6]-1 >= SectionTable.size()) 3890 return error("Invalid ID"); 3891 Func->setSection(SectionTable[Record[6]-1]); 3892 } 3893 // Local linkage must have default visibility. 3894 if (!Func->hasLocalLinkage()) 3895 // FIXME: Change to an error if non-default in 4.0. 3896 Func->setVisibility(getDecodedVisibility(Record[7])); 3897 if (Record.size() > 8 && Record[8]) { 3898 if (Record[8]-1 >= GCTable.size()) 3899 return error("Invalid ID"); 3900 Func->setGC(GCTable[Record[8] - 1]); 3901 } 3902 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3903 if (Record.size() > 9) 3904 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3905 Func->setUnnamedAddr(UnnamedAddr); 3906 if (Record.size() > 10 && Record[10] != 0) 3907 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3908 3909 if (Record.size() > 11) 3910 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3911 else 3912 upgradeDLLImportExportLinkage(Func, RawLinkage); 3913 3914 if (Record.size() > 12) { 3915 if (unsigned ComdatID = Record[12]) { 3916 if (ComdatID > ComdatList.size()) 3917 return error("Invalid function comdat ID"); 3918 Func->setComdat(ComdatList[ComdatID - 1]); 3919 } 3920 } else if (hasImplicitComdat(RawLinkage)) { 3921 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3922 } 3923 3924 if (Record.size() > 13 && Record[13] != 0) 3925 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3926 3927 if (Record.size() > 14 && Record[14] != 0) 3928 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3929 3930 ValueList.push_back(Func); 3931 3932 // If this is a function with a body, remember the prototype we are 3933 // creating now, so that we can match up the body with them later. 3934 if (!isProto) { 3935 Func->setIsMaterializable(true); 3936 FunctionsWithBodies.push_back(Func); 3937 DeferredFunctionInfo[Func] = 0; 3938 } 3939 break; 3940 } 3941 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3942 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3943 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3944 case bitc::MODULE_CODE_IFUNC: 3945 case bitc::MODULE_CODE_ALIAS: 3946 case bitc::MODULE_CODE_ALIAS_OLD: { 3947 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3948 if (Record.size() < (3 + (unsigned)NewRecord)) 3949 return error("Invalid record"); 3950 unsigned OpNum = 0; 3951 Type *Ty = getTypeByID(Record[OpNum++]); 3952 if (!Ty) 3953 return error("Invalid record"); 3954 3955 unsigned AddrSpace; 3956 if (!NewRecord) { 3957 auto *PTy = dyn_cast<PointerType>(Ty); 3958 if (!PTy) 3959 return error("Invalid type for value"); 3960 Ty = PTy->getElementType(); 3961 AddrSpace = PTy->getAddressSpace(); 3962 } else { 3963 AddrSpace = Record[OpNum++]; 3964 } 3965 3966 auto Val = Record[OpNum++]; 3967 auto Linkage = Record[OpNum++]; 3968 GlobalIndirectSymbol *NewGA; 3969 if (BitCode == bitc::MODULE_CODE_ALIAS || 3970 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3971 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3972 "", TheModule); 3973 else 3974 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3975 "", nullptr, TheModule); 3976 // Old bitcode files didn't have visibility field. 3977 // Local linkage must have default visibility. 3978 if (OpNum != Record.size()) { 3979 auto VisInd = OpNum++; 3980 if (!NewGA->hasLocalLinkage()) 3981 // FIXME: Change to an error if non-default in 4.0. 3982 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3983 } 3984 if (OpNum != Record.size()) 3985 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3986 else 3987 upgradeDLLImportExportLinkage(NewGA, Linkage); 3988 if (OpNum != Record.size()) 3989 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3990 if (OpNum != Record.size()) 3991 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3992 ValueList.push_back(NewGA); 3993 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3994 break; 3995 } 3996 /// MODULE_CODE_PURGEVALS: [numvals] 3997 case bitc::MODULE_CODE_PURGEVALS: 3998 // Trim down the value list to the specified size. 3999 if (Record.size() < 1 || Record[0] > ValueList.size()) 4000 return error("Invalid record"); 4001 ValueList.shrinkTo(Record[0]); 4002 break; 4003 /// MODULE_CODE_VSTOFFSET: [offset] 4004 case bitc::MODULE_CODE_VSTOFFSET: 4005 if (Record.size() < 1) 4006 return error("Invalid record"); 4007 VSTOffset = Record[0]; 4008 break; 4009 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4010 case bitc::MODULE_CODE_SOURCE_FILENAME: 4011 SmallString<128> ValueName; 4012 if (convertToString(Record, 0, ValueName)) 4013 return error("Invalid record"); 4014 TheModule->setSourceFileName(ValueName); 4015 break; 4016 } 4017 Record.clear(); 4018 } 4019 } 4020 4021 /// Helper to read the header common to all bitcode files. 4022 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4023 // Sniff for the signature. 4024 if (Stream.Read(8) != 'B' || 4025 Stream.Read(8) != 'C' || 4026 Stream.Read(4) != 0x0 || 4027 Stream.Read(4) != 0xC || 4028 Stream.Read(4) != 0xE || 4029 Stream.Read(4) != 0xD) 4030 return false; 4031 return true; 4032 } 4033 4034 std::error_code 4035 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4036 Module *M, bool ShouldLazyLoadMetadata) { 4037 TheModule = M; 4038 4039 if (std::error_code EC = initStream(std::move(Streamer))) 4040 return EC; 4041 4042 // Sniff for the signature. 4043 if (!hasValidBitcodeHeader(Stream)) 4044 return error("Invalid bitcode signature"); 4045 4046 // We expect a number of well-defined blocks, though we don't necessarily 4047 // need to understand them all. 4048 while (1) { 4049 if (Stream.AtEndOfStream()) { 4050 // We didn't really read a proper Module. 4051 return error("Malformed IR file"); 4052 } 4053 4054 BitstreamEntry Entry = 4055 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4056 4057 if (Entry.Kind != BitstreamEntry::SubBlock) 4058 return error("Malformed block"); 4059 4060 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4061 parseBitcodeVersion(); 4062 continue; 4063 } 4064 4065 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4066 return parseModule(0, ShouldLazyLoadMetadata); 4067 4068 if (Stream.SkipBlock()) 4069 return error("Invalid record"); 4070 } 4071 } 4072 4073 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4074 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4075 return error("Invalid record"); 4076 4077 SmallVector<uint64_t, 64> Record; 4078 4079 std::string Triple; 4080 // Read all the records for this module. 4081 while (1) { 4082 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4083 4084 switch (Entry.Kind) { 4085 case BitstreamEntry::SubBlock: // Handled for us already. 4086 case BitstreamEntry::Error: 4087 return error("Malformed block"); 4088 case BitstreamEntry::EndBlock: 4089 return Triple; 4090 case BitstreamEntry::Record: 4091 // The interesting case. 4092 break; 4093 } 4094 4095 // Read a record. 4096 switch (Stream.readRecord(Entry.ID, Record)) { 4097 default: break; // Default behavior, ignore unknown content. 4098 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4099 std::string S; 4100 if (convertToString(Record, 0, S)) 4101 return error("Invalid record"); 4102 Triple = S; 4103 break; 4104 } 4105 } 4106 Record.clear(); 4107 } 4108 llvm_unreachable("Exit infinite loop"); 4109 } 4110 4111 ErrorOr<std::string> BitcodeReader::parseTriple() { 4112 if (std::error_code EC = initStream(nullptr)) 4113 return EC; 4114 4115 // Sniff for the signature. 4116 if (!hasValidBitcodeHeader(Stream)) 4117 return error("Invalid bitcode signature"); 4118 4119 // We expect a number of well-defined blocks, though we don't necessarily 4120 // need to understand them all. 4121 while (1) { 4122 BitstreamEntry Entry = Stream.advance(); 4123 4124 switch (Entry.Kind) { 4125 case BitstreamEntry::Error: 4126 return error("Malformed block"); 4127 case BitstreamEntry::EndBlock: 4128 return std::error_code(); 4129 4130 case BitstreamEntry::SubBlock: 4131 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4132 return parseModuleTriple(); 4133 4134 // Ignore other sub-blocks. 4135 if (Stream.SkipBlock()) 4136 return error("Malformed block"); 4137 continue; 4138 4139 case BitstreamEntry::Record: 4140 Stream.skipRecord(Entry.ID); 4141 continue; 4142 } 4143 } 4144 } 4145 4146 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4147 if (std::error_code EC = initStream(nullptr)) 4148 return EC; 4149 4150 // Sniff for the signature. 4151 if (!hasValidBitcodeHeader(Stream)) 4152 return error("Invalid bitcode signature"); 4153 4154 // We expect a number of well-defined blocks, though we don't necessarily 4155 // need to understand them all. 4156 while (1) { 4157 BitstreamEntry Entry = Stream.advance(); 4158 switch (Entry.Kind) { 4159 case BitstreamEntry::Error: 4160 return error("Malformed block"); 4161 case BitstreamEntry::EndBlock: 4162 return std::error_code(); 4163 4164 case BitstreamEntry::SubBlock: 4165 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4166 if (std::error_code EC = parseBitcodeVersion()) 4167 return EC; 4168 return ProducerIdentification; 4169 } 4170 // Ignore other sub-blocks. 4171 if (Stream.SkipBlock()) 4172 return error("Malformed block"); 4173 continue; 4174 case BitstreamEntry::Record: 4175 Stream.skipRecord(Entry.ID); 4176 continue; 4177 } 4178 } 4179 } 4180 4181 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4182 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4183 assert(Record.size() % 2 == 0); 4184 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4185 auto K = MDKindMap.find(Record[I]); 4186 if (K == MDKindMap.end()) 4187 return error("Invalid ID"); 4188 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4189 if (!MD) 4190 return error("Invalid metadata attachment"); 4191 GO.addMetadata(K->second, *MD); 4192 } 4193 return std::error_code(); 4194 } 4195 4196 /// Parse metadata attachments. 4197 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4198 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4199 return error("Invalid record"); 4200 4201 SmallVector<uint64_t, 64> Record; 4202 while (1) { 4203 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4204 4205 switch (Entry.Kind) { 4206 case BitstreamEntry::SubBlock: // Handled for us already. 4207 case BitstreamEntry::Error: 4208 return error("Malformed block"); 4209 case BitstreamEntry::EndBlock: 4210 return std::error_code(); 4211 case BitstreamEntry::Record: 4212 // The interesting case. 4213 break; 4214 } 4215 4216 // Read a metadata attachment record. 4217 Record.clear(); 4218 switch (Stream.readRecord(Entry.ID, Record)) { 4219 default: // Default behavior: ignore. 4220 break; 4221 case bitc::METADATA_ATTACHMENT: { 4222 unsigned RecordLength = Record.size(); 4223 if (Record.empty()) 4224 return error("Invalid record"); 4225 if (RecordLength % 2 == 0) { 4226 // A function attachment. 4227 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4228 return EC; 4229 continue; 4230 } 4231 4232 // An instruction attachment. 4233 Instruction *Inst = InstructionList[Record[0]]; 4234 for (unsigned i = 1; i != RecordLength; i = i+2) { 4235 unsigned Kind = Record[i]; 4236 DenseMap<unsigned, unsigned>::iterator I = 4237 MDKindMap.find(Kind); 4238 if (I == MDKindMap.end()) 4239 return error("Invalid ID"); 4240 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4241 if (isa<LocalAsMetadata>(Node)) 4242 // Drop the attachment. This used to be legal, but there's no 4243 // upgrade path. 4244 break; 4245 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4246 if (!MD) 4247 return error("Invalid metadata attachment"); 4248 4249 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4250 MD = upgradeInstructionLoopAttachment(*MD); 4251 4252 Inst->setMetadata(I->second, MD); 4253 if (I->second == LLVMContext::MD_tbaa) { 4254 InstsWithTBAATag.push_back(Inst); 4255 continue; 4256 } 4257 } 4258 break; 4259 } 4260 } 4261 } 4262 } 4263 4264 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4265 LLVMContext &Context = PtrType->getContext(); 4266 if (!isa<PointerType>(PtrType)) 4267 return error(Context, "Load/Store operand is not a pointer type"); 4268 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4269 4270 if (ValType && ValType != ElemType) 4271 return error(Context, "Explicit load/store type does not match pointee " 4272 "type of pointer operand"); 4273 if (!PointerType::isLoadableOrStorableType(ElemType)) 4274 return error(Context, "Cannot load/store from pointer"); 4275 return std::error_code(); 4276 } 4277 4278 /// Lazily parse the specified function body block. 4279 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4280 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4281 return error("Invalid record"); 4282 4283 // Unexpected unresolved metadata when parsing function. 4284 if (MetadataList.hasFwdRefs()) 4285 return error("Invalid function metadata: incoming forward references"); 4286 4287 InstructionList.clear(); 4288 unsigned ModuleValueListSize = ValueList.size(); 4289 unsigned ModuleMetadataListSize = MetadataList.size(); 4290 4291 // Add all the function arguments to the value table. 4292 for (Argument &I : F->args()) 4293 ValueList.push_back(&I); 4294 4295 unsigned NextValueNo = ValueList.size(); 4296 BasicBlock *CurBB = nullptr; 4297 unsigned CurBBNo = 0; 4298 4299 DebugLoc LastLoc; 4300 auto getLastInstruction = [&]() -> Instruction * { 4301 if (CurBB && !CurBB->empty()) 4302 return &CurBB->back(); 4303 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4304 !FunctionBBs[CurBBNo - 1]->empty()) 4305 return &FunctionBBs[CurBBNo - 1]->back(); 4306 return nullptr; 4307 }; 4308 4309 std::vector<OperandBundleDef> OperandBundles; 4310 4311 // Read all the records. 4312 SmallVector<uint64_t, 64> Record; 4313 while (1) { 4314 BitstreamEntry Entry = Stream.advance(); 4315 4316 switch (Entry.Kind) { 4317 case BitstreamEntry::Error: 4318 return error("Malformed block"); 4319 case BitstreamEntry::EndBlock: 4320 goto OutOfRecordLoop; 4321 4322 case BitstreamEntry::SubBlock: 4323 switch (Entry.ID) { 4324 default: // Skip unknown content. 4325 if (Stream.SkipBlock()) 4326 return error("Invalid record"); 4327 break; 4328 case bitc::CONSTANTS_BLOCK_ID: 4329 if (std::error_code EC = parseConstants()) 4330 return EC; 4331 NextValueNo = ValueList.size(); 4332 break; 4333 case bitc::VALUE_SYMTAB_BLOCK_ID: 4334 if (std::error_code EC = parseValueSymbolTable()) 4335 return EC; 4336 break; 4337 case bitc::METADATA_ATTACHMENT_ID: 4338 if (std::error_code EC = parseMetadataAttachment(*F)) 4339 return EC; 4340 break; 4341 case bitc::METADATA_BLOCK_ID: 4342 if (std::error_code EC = parseMetadata()) 4343 return EC; 4344 break; 4345 case bitc::USELIST_BLOCK_ID: 4346 if (std::error_code EC = parseUseLists()) 4347 return EC; 4348 break; 4349 } 4350 continue; 4351 4352 case BitstreamEntry::Record: 4353 // The interesting case. 4354 break; 4355 } 4356 4357 // Read a record. 4358 Record.clear(); 4359 Instruction *I = nullptr; 4360 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4361 switch (BitCode) { 4362 default: // Default behavior: reject 4363 return error("Invalid value"); 4364 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4365 if (Record.size() < 1 || Record[0] == 0) 4366 return error("Invalid record"); 4367 // Create all the basic blocks for the function. 4368 FunctionBBs.resize(Record[0]); 4369 4370 // See if anything took the address of blocks in this function. 4371 auto BBFRI = BasicBlockFwdRefs.find(F); 4372 if (BBFRI == BasicBlockFwdRefs.end()) { 4373 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4374 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4375 } else { 4376 auto &BBRefs = BBFRI->second; 4377 // Check for invalid basic block references. 4378 if (BBRefs.size() > FunctionBBs.size()) 4379 return error("Invalid ID"); 4380 assert(!BBRefs.empty() && "Unexpected empty array"); 4381 assert(!BBRefs.front() && "Invalid reference to entry block"); 4382 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4383 ++I) 4384 if (I < RE && BBRefs[I]) { 4385 BBRefs[I]->insertInto(F); 4386 FunctionBBs[I] = BBRefs[I]; 4387 } else { 4388 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4389 } 4390 4391 // Erase from the table. 4392 BasicBlockFwdRefs.erase(BBFRI); 4393 } 4394 4395 CurBB = FunctionBBs[0]; 4396 continue; 4397 } 4398 4399 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4400 // This record indicates that the last instruction is at the same 4401 // location as the previous instruction with a location. 4402 I = getLastInstruction(); 4403 4404 if (!I) 4405 return error("Invalid record"); 4406 I->setDebugLoc(LastLoc); 4407 I = nullptr; 4408 continue; 4409 4410 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4411 I = getLastInstruction(); 4412 if (!I || Record.size() < 4) 4413 return error("Invalid record"); 4414 4415 unsigned Line = Record[0], Col = Record[1]; 4416 unsigned ScopeID = Record[2], IAID = Record[3]; 4417 4418 MDNode *Scope = nullptr, *IA = nullptr; 4419 if (ScopeID) { 4420 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4421 if (!Scope) 4422 return error("Invalid record"); 4423 } 4424 if (IAID) { 4425 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4426 if (!IA) 4427 return error("Invalid record"); 4428 } 4429 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4430 I->setDebugLoc(LastLoc); 4431 I = nullptr; 4432 continue; 4433 } 4434 4435 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4436 unsigned OpNum = 0; 4437 Value *LHS, *RHS; 4438 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4439 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4440 OpNum+1 > Record.size()) 4441 return error("Invalid record"); 4442 4443 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4444 if (Opc == -1) 4445 return error("Invalid record"); 4446 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4447 InstructionList.push_back(I); 4448 if (OpNum < Record.size()) { 4449 if (Opc == Instruction::Add || 4450 Opc == Instruction::Sub || 4451 Opc == Instruction::Mul || 4452 Opc == Instruction::Shl) { 4453 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4454 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4455 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4456 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4457 } else if (Opc == Instruction::SDiv || 4458 Opc == Instruction::UDiv || 4459 Opc == Instruction::LShr || 4460 Opc == Instruction::AShr) { 4461 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4462 cast<BinaryOperator>(I)->setIsExact(true); 4463 } else if (isa<FPMathOperator>(I)) { 4464 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4465 if (FMF.any()) 4466 I->setFastMathFlags(FMF); 4467 } 4468 4469 } 4470 break; 4471 } 4472 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4473 unsigned OpNum = 0; 4474 Value *Op; 4475 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4476 OpNum+2 != Record.size()) 4477 return error("Invalid record"); 4478 4479 Type *ResTy = getTypeByID(Record[OpNum]); 4480 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4481 if (Opc == -1 || !ResTy) 4482 return error("Invalid record"); 4483 Instruction *Temp = nullptr; 4484 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4485 if (Temp) { 4486 InstructionList.push_back(Temp); 4487 CurBB->getInstList().push_back(Temp); 4488 } 4489 } else { 4490 auto CastOp = (Instruction::CastOps)Opc; 4491 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4492 return error("Invalid cast"); 4493 I = CastInst::Create(CastOp, Op, ResTy); 4494 } 4495 InstructionList.push_back(I); 4496 break; 4497 } 4498 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4499 case bitc::FUNC_CODE_INST_GEP_OLD: 4500 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4501 unsigned OpNum = 0; 4502 4503 Type *Ty; 4504 bool InBounds; 4505 4506 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4507 InBounds = Record[OpNum++]; 4508 Ty = getTypeByID(Record[OpNum++]); 4509 } else { 4510 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4511 Ty = nullptr; 4512 } 4513 4514 Value *BasePtr; 4515 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4516 return error("Invalid record"); 4517 4518 if (!Ty) 4519 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4520 ->getElementType(); 4521 else if (Ty != 4522 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4523 ->getElementType()) 4524 return error( 4525 "Explicit gep type does not match pointee type of pointer operand"); 4526 4527 SmallVector<Value*, 16> GEPIdx; 4528 while (OpNum != Record.size()) { 4529 Value *Op; 4530 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4531 return error("Invalid record"); 4532 GEPIdx.push_back(Op); 4533 } 4534 4535 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4536 4537 InstructionList.push_back(I); 4538 if (InBounds) 4539 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4540 break; 4541 } 4542 4543 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4544 // EXTRACTVAL: [opty, opval, n x indices] 4545 unsigned OpNum = 0; 4546 Value *Agg; 4547 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4548 return error("Invalid record"); 4549 4550 unsigned RecSize = Record.size(); 4551 if (OpNum == RecSize) 4552 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4553 4554 SmallVector<unsigned, 4> EXTRACTVALIdx; 4555 Type *CurTy = Agg->getType(); 4556 for (; OpNum != RecSize; ++OpNum) { 4557 bool IsArray = CurTy->isArrayTy(); 4558 bool IsStruct = CurTy->isStructTy(); 4559 uint64_t Index = Record[OpNum]; 4560 4561 if (!IsStruct && !IsArray) 4562 return error("EXTRACTVAL: Invalid type"); 4563 if ((unsigned)Index != Index) 4564 return error("Invalid value"); 4565 if (IsStruct && Index >= CurTy->subtypes().size()) 4566 return error("EXTRACTVAL: Invalid struct index"); 4567 if (IsArray && Index >= CurTy->getArrayNumElements()) 4568 return error("EXTRACTVAL: Invalid array index"); 4569 EXTRACTVALIdx.push_back((unsigned)Index); 4570 4571 if (IsStruct) 4572 CurTy = CurTy->subtypes()[Index]; 4573 else 4574 CurTy = CurTy->subtypes()[0]; 4575 } 4576 4577 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4578 InstructionList.push_back(I); 4579 break; 4580 } 4581 4582 case bitc::FUNC_CODE_INST_INSERTVAL: { 4583 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4584 unsigned OpNum = 0; 4585 Value *Agg; 4586 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4587 return error("Invalid record"); 4588 Value *Val; 4589 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4590 return error("Invalid record"); 4591 4592 unsigned RecSize = Record.size(); 4593 if (OpNum == RecSize) 4594 return error("INSERTVAL: Invalid instruction with 0 indices"); 4595 4596 SmallVector<unsigned, 4> INSERTVALIdx; 4597 Type *CurTy = Agg->getType(); 4598 for (; OpNum != RecSize; ++OpNum) { 4599 bool IsArray = CurTy->isArrayTy(); 4600 bool IsStruct = CurTy->isStructTy(); 4601 uint64_t Index = Record[OpNum]; 4602 4603 if (!IsStruct && !IsArray) 4604 return error("INSERTVAL: Invalid type"); 4605 if ((unsigned)Index != Index) 4606 return error("Invalid value"); 4607 if (IsStruct && Index >= CurTy->subtypes().size()) 4608 return error("INSERTVAL: Invalid struct index"); 4609 if (IsArray && Index >= CurTy->getArrayNumElements()) 4610 return error("INSERTVAL: Invalid array index"); 4611 4612 INSERTVALIdx.push_back((unsigned)Index); 4613 if (IsStruct) 4614 CurTy = CurTy->subtypes()[Index]; 4615 else 4616 CurTy = CurTy->subtypes()[0]; 4617 } 4618 4619 if (CurTy != Val->getType()) 4620 return error("Inserted value type doesn't match aggregate type"); 4621 4622 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4623 InstructionList.push_back(I); 4624 break; 4625 } 4626 4627 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4628 // obsolete form of select 4629 // handles select i1 ... in old bitcode 4630 unsigned OpNum = 0; 4631 Value *TrueVal, *FalseVal, *Cond; 4632 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4633 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4634 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4635 return error("Invalid record"); 4636 4637 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4638 InstructionList.push_back(I); 4639 break; 4640 } 4641 4642 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4643 // new form of select 4644 // handles select i1 or select [N x i1] 4645 unsigned OpNum = 0; 4646 Value *TrueVal, *FalseVal, *Cond; 4647 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4648 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4649 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4650 return error("Invalid record"); 4651 4652 // select condition can be either i1 or [N x i1] 4653 if (VectorType* vector_type = 4654 dyn_cast<VectorType>(Cond->getType())) { 4655 // expect <n x i1> 4656 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4657 return error("Invalid type for value"); 4658 } else { 4659 // expect i1 4660 if (Cond->getType() != Type::getInt1Ty(Context)) 4661 return error("Invalid type for value"); 4662 } 4663 4664 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4665 InstructionList.push_back(I); 4666 break; 4667 } 4668 4669 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4670 unsigned OpNum = 0; 4671 Value *Vec, *Idx; 4672 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4673 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4674 return error("Invalid record"); 4675 if (!Vec->getType()->isVectorTy()) 4676 return error("Invalid type for value"); 4677 I = ExtractElementInst::Create(Vec, Idx); 4678 InstructionList.push_back(I); 4679 break; 4680 } 4681 4682 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4683 unsigned OpNum = 0; 4684 Value *Vec, *Elt, *Idx; 4685 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4686 return error("Invalid record"); 4687 if (!Vec->getType()->isVectorTy()) 4688 return error("Invalid type for value"); 4689 if (popValue(Record, OpNum, NextValueNo, 4690 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4691 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4692 return error("Invalid record"); 4693 I = InsertElementInst::Create(Vec, Elt, Idx); 4694 InstructionList.push_back(I); 4695 break; 4696 } 4697 4698 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4699 unsigned OpNum = 0; 4700 Value *Vec1, *Vec2, *Mask; 4701 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4702 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4703 return error("Invalid record"); 4704 4705 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4706 return error("Invalid record"); 4707 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4708 return error("Invalid type for value"); 4709 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4710 InstructionList.push_back(I); 4711 break; 4712 } 4713 4714 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4715 // Old form of ICmp/FCmp returning bool 4716 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4717 // both legal on vectors but had different behaviour. 4718 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4719 // FCmp/ICmp returning bool or vector of bool 4720 4721 unsigned OpNum = 0; 4722 Value *LHS, *RHS; 4723 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4724 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4725 return error("Invalid record"); 4726 4727 unsigned PredVal = Record[OpNum]; 4728 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4729 FastMathFlags FMF; 4730 if (IsFP && Record.size() > OpNum+1) 4731 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4732 4733 if (OpNum+1 != Record.size()) 4734 return error("Invalid record"); 4735 4736 if (LHS->getType()->isFPOrFPVectorTy()) 4737 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4738 else 4739 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4740 4741 if (FMF.any()) 4742 I->setFastMathFlags(FMF); 4743 InstructionList.push_back(I); 4744 break; 4745 } 4746 4747 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4748 { 4749 unsigned Size = Record.size(); 4750 if (Size == 0) { 4751 I = ReturnInst::Create(Context); 4752 InstructionList.push_back(I); 4753 break; 4754 } 4755 4756 unsigned OpNum = 0; 4757 Value *Op = nullptr; 4758 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4759 return error("Invalid record"); 4760 if (OpNum != Record.size()) 4761 return error("Invalid record"); 4762 4763 I = ReturnInst::Create(Context, Op); 4764 InstructionList.push_back(I); 4765 break; 4766 } 4767 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4768 if (Record.size() != 1 && Record.size() != 3) 4769 return error("Invalid record"); 4770 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4771 if (!TrueDest) 4772 return error("Invalid record"); 4773 4774 if (Record.size() == 1) { 4775 I = BranchInst::Create(TrueDest); 4776 InstructionList.push_back(I); 4777 } 4778 else { 4779 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4780 Value *Cond = getValue(Record, 2, NextValueNo, 4781 Type::getInt1Ty(Context)); 4782 if (!FalseDest || !Cond) 4783 return error("Invalid record"); 4784 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4785 InstructionList.push_back(I); 4786 } 4787 break; 4788 } 4789 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4790 if (Record.size() != 1 && Record.size() != 2) 4791 return error("Invalid record"); 4792 unsigned Idx = 0; 4793 Value *CleanupPad = 4794 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4795 if (!CleanupPad) 4796 return error("Invalid record"); 4797 BasicBlock *UnwindDest = nullptr; 4798 if (Record.size() == 2) { 4799 UnwindDest = getBasicBlock(Record[Idx++]); 4800 if (!UnwindDest) 4801 return error("Invalid record"); 4802 } 4803 4804 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4805 InstructionList.push_back(I); 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4809 if (Record.size() != 2) 4810 return error("Invalid record"); 4811 unsigned Idx = 0; 4812 Value *CatchPad = 4813 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4814 if (!CatchPad) 4815 return error("Invalid record"); 4816 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4817 if (!BB) 4818 return error("Invalid record"); 4819 4820 I = CatchReturnInst::Create(CatchPad, BB); 4821 InstructionList.push_back(I); 4822 break; 4823 } 4824 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4825 // We must have, at minimum, the outer scope and the number of arguments. 4826 if (Record.size() < 2) 4827 return error("Invalid record"); 4828 4829 unsigned Idx = 0; 4830 4831 Value *ParentPad = 4832 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4833 4834 unsigned NumHandlers = Record[Idx++]; 4835 4836 SmallVector<BasicBlock *, 2> Handlers; 4837 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4838 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4839 if (!BB) 4840 return error("Invalid record"); 4841 Handlers.push_back(BB); 4842 } 4843 4844 BasicBlock *UnwindDest = nullptr; 4845 if (Idx + 1 == Record.size()) { 4846 UnwindDest = getBasicBlock(Record[Idx++]); 4847 if (!UnwindDest) 4848 return error("Invalid record"); 4849 } 4850 4851 if (Record.size() != Idx) 4852 return error("Invalid record"); 4853 4854 auto *CatchSwitch = 4855 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4856 for (BasicBlock *Handler : Handlers) 4857 CatchSwitch->addHandler(Handler); 4858 I = CatchSwitch; 4859 InstructionList.push_back(I); 4860 break; 4861 } 4862 case bitc::FUNC_CODE_INST_CATCHPAD: 4863 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4864 // We must have, at minimum, the outer scope and the number of arguments. 4865 if (Record.size() < 2) 4866 return error("Invalid record"); 4867 4868 unsigned Idx = 0; 4869 4870 Value *ParentPad = 4871 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4872 4873 unsigned NumArgOperands = Record[Idx++]; 4874 4875 SmallVector<Value *, 2> Args; 4876 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4877 Value *Val; 4878 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4879 return error("Invalid record"); 4880 Args.push_back(Val); 4881 } 4882 4883 if (Record.size() != Idx) 4884 return error("Invalid record"); 4885 4886 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4887 I = CleanupPadInst::Create(ParentPad, Args); 4888 else 4889 I = CatchPadInst::Create(ParentPad, Args); 4890 InstructionList.push_back(I); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4894 // Check magic 4895 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4896 // "New" SwitchInst format with case ranges. The changes to write this 4897 // format were reverted but we still recognize bitcode that uses it. 4898 // Hopefully someday we will have support for case ranges and can use 4899 // this format again. 4900 4901 Type *OpTy = getTypeByID(Record[1]); 4902 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4903 4904 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4905 BasicBlock *Default = getBasicBlock(Record[3]); 4906 if (!OpTy || !Cond || !Default) 4907 return error("Invalid record"); 4908 4909 unsigned NumCases = Record[4]; 4910 4911 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4912 InstructionList.push_back(SI); 4913 4914 unsigned CurIdx = 5; 4915 for (unsigned i = 0; i != NumCases; ++i) { 4916 SmallVector<ConstantInt*, 1> CaseVals; 4917 unsigned NumItems = Record[CurIdx++]; 4918 for (unsigned ci = 0; ci != NumItems; ++ci) { 4919 bool isSingleNumber = Record[CurIdx++]; 4920 4921 APInt Low; 4922 unsigned ActiveWords = 1; 4923 if (ValueBitWidth > 64) 4924 ActiveWords = Record[CurIdx++]; 4925 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4926 ValueBitWidth); 4927 CurIdx += ActiveWords; 4928 4929 if (!isSingleNumber) { 4930 ActiveWords = 1; 4931 if (ValueBitWidth > 64) 4932 ActiveWords = Record[CurIdx++]; 4933 APInt High = readWideAPInt( 4934 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4935 CurIdx += ActiveWords; 4936 4937 // FIXME: It is not clear whether values in the range should be 4938 // compared as signed or unsigned values. The partially 4939 // implemented changes that used this format in the past used 4940 // unsigned comparisons. 4941 for ( ; Low.ule(High); ++Low) 4942 CaseVals.push_back(ConstantInt::get(Context, Low)); 4943 } else 4944 CaseVals.push_back(ConstantInt::get(Context, Low)); 4945 } 4946 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4947 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4948 cve = CaseVals.end(); cvi != cve; ++cvi) 4949 SI->addCase(*cvi, DestBB); 4950 } 4951 I = SI; 4952 break; 4953 } 4954 4955 // Old SwitchInst format without case ranges. 4956 4957 if (Record.size() < 3 || (Record.size() & 1) == 0) 4958 return error("Invalid record"); 4959 Type *OpTy = getTypeByID(Record[0]); 4960 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4961 BasicBlock *Default = getBasicBlock(Record[2]); 4962 if (!OpTy || !Cond || !Default) 4963 return error("Invalid record"); 4964 unsigned NumCases = (Record.size()-3)/2; 4965 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4966 InstructionList.push_back(SI); 4967 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4968 ConstantInt *CaseVal = 4969 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4970 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4971 if (!CaseVal || !DestBB) { 4972 delete SI; 4973 return error("Invalid record"); 4974 } 4975 SI->addCase(CaseVal, DestBB); 4976 } 4977 I = SI; 4978 break; 4979 } 4980 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4981 if (Record.size() < 2) 4982 return error("Invalid record"); 4983 Type *OpTy = getTypeByID(Record[0]); 4984 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4985 if (!OpTy || !Address) 4986 return error("Invalid record"); 4987 unsigned NumDests = Record.size()-2; 4988 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4989 InstructionList.push_back(IBI); 4990 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4991 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4992 IBI->addDestination(DestBB); 4993 } else { 4994 delete IBI; 4995 return error("Invalid record"); 4996 } 4997 } 4998 I = IBI; 4999 break; 5000 } 5001 5002 case bitc::FUNC_CODE_INST_INVOKE: { 5003 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5004 if (Record.size() < 4) 5005 return error("Invalid record"); 5006 unsigned OpNum = 0; 5007 AttributeSet PAL = getAttributes(Record[OpNum++]); 5008 unsigned CCInfo = Record[OpNum++]; 5009 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5010 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5011 5012 FunctionType *FTy = nullptr; 5013 if (CCInfo >> 13 & 1 && 5014 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5015 return error("Explicit invoke type is not a function type"); 5016 5017 Value *Callee; 5018 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5019 return error("Invalid record"); 5020 5021 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5022 if (!CalleeTy) 5023 return error("Callee is not a pointer"); 5024 if (!FTy) { 5025 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5026 if (!FTy) 5027 return error("Callee is not of pointer to function type"); 5028 } else if (CalleeTy->getElementType() != FTy) 5029 return error("Explicit invoke type does not match pointee type of " 5030 "callee operand"); 5031 if (Record.size() < FTy->getNumParams() + OpNum) 5032 return error("Insufficient operands to call"); 5033 5034 SmallVector<Value*, 16> Ops; 5035 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5036 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5037 FTy->getParamType(i))); 5038 if (!Ops.back()) 5039 return error("Invalid record"); 5040 } 5041 5042 if (!FTy->isVarArg()) { 5043 if (Record.size() != OpNum) 5044 return error("Invalid record"); 5045 } else { 5046 // Read type/value pairs for varargs params. 5047 while (OpNum != Record.size()) { 5048 Value *Op; 5049 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5050 return error("Invalid record"); 5051 Ops.push_back(Op); 5052 } 5053 } 5054 5055 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5056 OperandBundles.clear(); 5057 InstructionList.push_back(I); 5058 cast<InvokeInst>(I)->setCallingConv( 5059 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5060 cast<InvokeInst>(I)->setAttributes(PAL); 5061 break; 5062 } 5063 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5064 unsigned Idx = 0; 5065 Value *Val = nullptr; 5066 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5067 return error("Invalid record"); 5068 I = ResumeInst::Create(Val); 5069 InstructionList.push_back(I); 5070 break; 5071 } 5072 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5073 I = new UnreachableInst(Context); 5074 InstructionList.push_back(I); 5075 break; 5076 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5077 if (Record.size() < 1 || ((Record.size()-1)&1)) 5078 return error("Invalid record"); 5079 Type *Ty = getTypeByID(Record[0]); 5080 if (!Ty) 5081 return error("Invalid record"); 5082 5083 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5084 InstructionList.push_back(PN); 5085 5086 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5087 Value *V; 5088 // With the new function encoding, it is possible that operands have 5089 // negative IDs (for forward references). Use a signed VBR 5090 // representation to keep the encoding small. 5091 if (UseRelativeIDs) 5092 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5093 else 5094 V = getValue(Record, 1+i, NextValueNo, Ty); 5095 BasicBlock *BB = getBasicBlock(Record[2+i]); 5096 if (!V || !BB) 5097 return error("Invalid record"); 5098 PN->addIncoming(V, BB); 5099 } 5100 I = PN; 5101 break; 5102 } 5103 5104 case bitc::FUNC_CODE_INST_LANDINGPAD: 5105 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5106 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5107 unsigned Idx = 0; 5108 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5109 if (Record.size() < 3) 5110 return error("Invalid record"); 5111 } else { 5112 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5113 if (Record.size() < 4) 5114 return error("Invalid record"); 5115 } 5116 Type *Ty = getTypeByID(Record[Idx++]); 5117 if (!Ty) 5118 return error("Invalid record"); 5119 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5120 Value *PersFn = nullptr; 5121 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5122 return error("Invalid record"); 5123 5124 if (!F->hasPersonalityFn()) 5125 F->setPersonalityFn(cast<Constant>(PersFn)); 5126 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5127 return error("Personality function mismatch"); 5128 } 5129 5130 bool IsCleanup = !!Record[Idx++]; 5131 unsigned NumClauses = Record[Idx++]; 5132 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5133 LP->setCleanup(IsCleanup); 5134 for (unsigned J = 0; J != NumClauses; ++J) { 5135 LandingPadInst::ClauseType CT = 5136 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5137 Value *Val; 5138 5139 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5140 delete LP; 5141 return error("Invalid record"); 5142 } 5143 5144 assert((CT != LandingPadInst::Catch || 5145 !isa<ArrayType>(Val->getType())) && 5146 "Catch clause has a invalid type!"); 5147 assert((CT != LandingPadInst::Filter || 5148 isa<ArrayType>(Val->getType())) && 5149 "Filter clause has invalid type!"); 5150 LP->addClause(cast<Constant>(Val)); 5151 } 5152 5153 I = LP; 5154 InstructionList.push_back(I); 5155 break; 5156 } 5157 5158 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5159 if (Record.size() != 4) 5160 return error("Invalid record"); 5161 uint64_t AlignRecord = Record[3]; 5162 const uint64_t InAllocaMask = uint64_t(1) << 5; 5163 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5164 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5165 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5166 SwiftErrorMask; 5167 bool InAlloca = AlignRecord & InAllocaMask; 5168 bool SwiftError = AlignRecord & SwiftErrorMask; 5169 Type *Ty = getTypeByID(Record[0]); 5170 if ((AlignRecord & ExplicitTypeMask) == 0) { 5171 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5172 if (!PTy) 5173 return error("Old-style alloca with a non-pointer type"); 5174 Ty = PTy->getElementType(); 5175 } 5176 Type *OpTy = getTypeByID(Record[1]); 5177 Value *Size = getFnValueByID(Record[2], OpTy); 5178 unsigned Align; 5179 if (std::error_code EC = 5180 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5181 return EC; 5182 } 5183 if (!Ty || !Size) 5184 return error("Invalid record"); 5185 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5186 AI->setUsedWithInAlloca(InAlloca); 5187 AI->setSwiftError(SwiftError); 5188 I = AI; 5189 InstructionList.push_back(I); 5190 break; 5191 } 5192 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5193 unsigned OpNum = 0; 5194 Value *Op; 5195 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5196 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5197 return error("Invalid record"); 5198 5199 Type *Ty = nullptr; 5200 if (OpNum + 3 == Record.size()) 5201 Ty = getTypeByID(Record[OpNum++]); 5202 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5203 return EC; 5204 if (!Ty) 5205 Ty = cast<PointerType>(Op->getType())->getElementType(); 5206 5207 unsigned Align; 5208 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5209 return EC; 5210 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5211 5212 InstructionList.push_back(I); 5213 break; 5214 } 5215 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5216 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5217 unsigned OpNum = 0; 5218 Value *Op; 5219 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5220 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5221 return error("Invalid record"); 5222 5223 Type *Ty = nullptr; 5224 if (OpNum + 5 == Record.size()) 5225 Ty = getTypeByID(Record[OpNum++]); 5226 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5227 return EC; 5228 if (!Ty) 5229 Ty = cast<PointerType>(Op->getType())->getElementType(); 5230 5231 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5232 if (Ordering == AtomicOrdering::NotAtomic || 5233 Ordering == AtomicOrdering::Release || 5234 Ordering == AtomicOrdering::AcquireRelease) 5235 return error("Invalid record"); 5236 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5237 return error("Invalid record"); 5238 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5239 5240 unsigned Align; 5241 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5242 return EC; 5243 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5244 5245 InstructionList.push_back(I); 5246 break; 5247 } 5248 case bitc::FUNC_CODE_INST_STORE: 5249 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5250 unsigned OpNum = 0; 5251 Value *Val, *Ptr; 5252 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5253 (BitCode == bitc::FUNC_CODE_INST_STORE 5254 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5255 : popValue(Record, OpNum, NextValueNo, 5256 cast<PointerType>(Ptr->getType())->getElementType(), 5257 Val)) || 5258 OpNum + 2 != Record.size()) 5259 return error("Invalid record"); 5260 5261 if (std::error_code EC = 5262 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5263 return EC; 5264 unsigned Align; 5265 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5266 return EC; 5267 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5268 InstructionList.push_back(I); 5269 break; 5270 } 5271 case bitc::FUNC_CODE_INST_STOREATOMIC: 5272 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5273 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5274 unsigned OpNum = 0; 5275 Value *Val, *Ptr; 5276 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5277 !isa<PointerType>(Ptr->getType()) || 5278 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5279 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5280 : popValue(Record, OpNum, NextValueNo, 5281 cast<PointerType>(Ptr->getType())->getElementType(), 5282 Val)) || 5283 OpNum + 4 != Record.size()) 5284 return error("Invalid record"); 5285 5286 if (std::error_code EC = 5287 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5288 return EC; 5289 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5290 if (Ordering == AtomicOrdering::NotAtomic || 5291 Ordering == AtomicOrdering::Acquire || 5292 Ordering == AtomicOrdering::AcquireRelease) 5293 return error("Invalid record"); 5294 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5295 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5296 return error("Invalid record"); 5297 5298 unsigned Align; 5299 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5300 return EC; 5301 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5302 InstructionList.push_back(I); 5303 break; 5304 } 5305 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5306 case bitc::FUNC_CODE_INST_CMPXCHG: { 5307 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5308 // failureordering?, isweak?] 5309 unsigned OpNum = 0; 5310 Value *Ptr, *Cmp, *New; 5311 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5312 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5313 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5314 : popValue(Record, OpNum, NextValueNo, 5315 cast<PointerType>(Ptr->getType())->getElementType(), 5316 Cmp)) || 5317 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5318 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5319 return error("Invalid record"); 5320 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5321 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5322 SuccessOrdering == AtomicOrdering::Unordered) 5323 return error("Invalid record"); 5324 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5325 5326 if (std::error_code EC = 5327 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5328 return EC; 5329 AtomicOrdering FailureOrdering; 5330 if (Record.size() < 7) 5331 FailureOrdering = 5332 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5333 else 5334 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5335 5336 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5337 SynchScope); 5338 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5339 5340 if (Record.size() < 8) { 5341 // Before weak cmpxchgs existed, the instruction simply returned the 5342 // value loaded from memory, so bitcode files from that era will be 5343 // expecting the first component of a modern cmpxchg. 5344 CurBB->getInstList().push_back(I); 5345 I = ExtractValueInst::Create(I, 0); 5346 } else { 5347 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5348 } 5349 5350 InstructionList.push_back(I); 5351 break; 5352 } 5353 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5354 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5355 unsigned OpNum = 0; 5356 Value *Ptr, *Val; 5357 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5358 !isa<PointerType>(Ptr->getType()) || 5359 popValue(Record, OpNum, NextValueNo, 5360 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5361 OpNum+4 != Record.size()) 5362 return error("Invalid record"); 5363 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5364 if (Operation < AtomicRMWInst::FIRST_BINOP || 5365 Operation > AtomicRMWInst::LAST_BINOP) 5366 return error("Invalid record"); 5367 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5368 if (Ordering == AtomicOrdering::NotAtomic || 5369 Ordering == AtomicOrdering::Unordered) 5370 return error("Invalid record"); 5371 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5372 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5373 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5374 InstructionList.push_back(I); 5375 break; 5376 } 5377 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5378 if (2 != Record.size()) 5379 return error("Invalid record"); 5380 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5381 if (Ordering == AtomicOrdering::NotAtomic || 5382 Ordering == AtomicOrdering::Unordered || 5383 Ordering == AtomicOrdering::Monotonic) 5384 return error("Invalid record"); 5385 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5386 I = new FenceInst(Context, Ordering, SynchScope); 5387 InstructionList.push_back(I); 5388 break; 5389 } 5390 case bitc::FUNC_CODE_INST_CALL: { 5391 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5392 if (Record.size() < 3) 5393 return error("Invalid record"); 5394 5395 unsigned OpNum = 0; 5396 AttributeSet PAL = getAttributes(Record[OpNum++]); 5397 unsigned CCInfo = Record[OpNum++]; 5398 5399 FastMathFlags FMF; 5400 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5401 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5402 if (!FMF.any()) 5403 return error("Fast math flags indicator set for call with no FMF"); 5404 } 5405 5406 FunctionType *FTy = nullptr; 5407 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5408 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5409 return error("Explicit call type is not a function type"); 5410 5411 Value *Callee; 5412 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5413 return error("Invalid record"); 5414 5415 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5416 if (!OpTy) 5417 return error("Callee is not a pointer type"); 5418 if (!FTy) { 5419 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5420 if (!FTy) 5421 return error("Callee is not of pointer to function type"); 5422 } else if (OpTy->getElementType() != FTy) 5423 return error("Explicit call type does not match pointee type of " 5424 "callee operand"); 5425 if (Record.size() < FTy->getNumParams() + OpNum) 5426 return error("Insufficient operands to call"); 5427 5428 SmallVector<Value*, 16> Args; 5429 // Read the fixed params. 5430 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5431 if (FTy->getParamType(i)->isLabelTy()) 5432 Args.push_back(getBasicBlock(Record[OpNum])); 5433 else 5434 Args.push_back(getValue(Record, OpNum, NextValueNo, 5435 FTy->getParamType(i))); 5436 if (!Args.back()) 5437 return error("Invalid record"); 5438 } 5439 5440 // Read type/value pairs for varargs params. 5441 if (!FTy->isVarArg()) { 5442 if (OpNum != Record.size()) 5443 return error("Invalid record"); 5444 } else { 5445 while (OpNum != Record.size()) { 5446 Value *Op; 5447 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5448 return error("Invalid record"); 5449 Args.push_back(Op); 5450 } 5451 } 5452 5453 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5454 OperandBundles.clear(); 5455 InstructionList.push_back(I); 5456 cast<CallInst>(I)->setCallingConv( 5457 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5458 CallInst::TailCallKind TCK = CallInst::TCK_None; 5459 if (CCInfo & 1 << bitc::CALL_TAIL) 5460 TCK = CallInst::TCK_Tail; 5461 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5462 TCK = CallInst::TCK_MustTail; 5463 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5464 TCK = CallInst::TCK_NoTail; 5465 cast<CallInst>(I)->setTailCallKind(TCK); 5466 cast<CallInst>(I)->setAttributes(PAL); 5467 if (FMF.any()) { 5468 if (!isa<FPMathOperator>(I)) 5469 return error("Fast-math-flags specified for call without " 5470 "floating-point scalar or vector return type"); 5471 I->setFastMathFlags(FMF); 5472 } 5473 break; 5474 } 5475 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5476 if (Record.size() < 3) 5477 return error("Invalid record"); 5478 Type *OpTy = getTypeByID(Record[0]); 5479 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5480 Type *ResTy = getTypeByID(Record[2]); 5481 if (!OpTy || !Op || !ResTy) 5482 return error("Invalid record"); 5483 I = new VAArgInst(Op, ResTy); 5484 InstructionList.push_back(I); 5485 break; 5486 } 5487 5488 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5489 // A call or an invoke can be optionally prefixed with some variable 5490 // number of operand bundle blocks. These blocks are read into 5491 // OperandBundles and consumed at the next call or invoke instruction. 5492 5493 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5494 return error("Invalid record"); 5495 5496 std::vector<Value *> Inputs; 5497 5498 unsigned OpNum = 1; 5499 while (OpNum != Record.size()) { 5500 Value *Op; 5501 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5502 return error("Invalid record"); 5503 Inputs.push_back(Op); 5504 } 5505 5506 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5507 continue; 5508 } 5509 } 5510 5511 // Add instruction to end of current BB. If there is no current BB, reject 5512 // this file. 5513 if (!CurBB) { 5514 delete I; 5515 return error("Invalid instruction with no BB"); 5516 } 5517 if (!OperandBundles.empty()) { 5518 delete I; 5519 return error("Operand bundles found with no consumer"); 5520 } 5521 CurBB->getInstList().push_back(I); 5522 5523 // If this was a terminator instruction, move to the next block. 5524 if (isa<TerminatorInst>(I)) { 5525 ++CurBBNo; 5526 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5527 } 5528 5529 // Non-void values get registered in the value table for future use. 5530 if (I && !I->getType()->isVoidTy()) 5531 ValueList.assignValue(I, NextValueNo++); 5532 } 5533 5534 OutOfRecordLoop: 5535 5536 if (!OperandBundles.empty()) 5537 return error("Operand bundles found with no consumer"); 5538 5539 // Check the function list for unresolved values. 5540 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5541 if (!A->getParent()) { 5542 // We found at least one unresolved value. Nuke them all to avoid leaks. 5543 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5544 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5545 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5546 delete A; 5547 } 5548 } 5549 return error("Never resolved value found in function"); 5550 } 5551 } 5552 5553 // Unexpected unresolved metadata about to be dropped. 5554 if (MetadataList.hasFwdRefs()) 5555 return error("Invalid function metadata: outgoing forward refs"); 5556 5557 // Trim the value list down to the size it was before we parsed this function. 5558 ValueList.shrinkTo(ModuleValueListSize); 5559 MetadataList.shrinkTo(ModuleMetadataListSize); 5560 std::vector<BasicBlock*>().swap(FunctionBBs); 5561 return std::error_code(); 5562 } 5563 5564 /// Find the function body in the bitcode stream 5565 std::error_code BitcodeReader::findFunctionInStream( 5566 Function *F, 5567 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5568 while (DeferredFunctionInfoIterator->second == 0) { 5569 // This is the fallback handling for the old format bitcode that 5570 // didn't contain the function index in the VST, or when we have 5571 // an anonymous function which would not have a VST entry. 5572 // Assert that we have one of those two cases. 5573 assert(VSTOffset == 0 || !F->hasName()); 5574 // Parse the next body in the stream and set its position in the 5575 // DeferredFunctionInfo map. 5576 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5577 return EC; 5578 } 5579 return std::error_code(); 5580 } 5581 5582 //===----------------------------------------------------------------------===// 5583 // GVMaterializer implementation 5584 //===----------------------------------------------------------------------===// 5585 5586 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5587 5588 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5589 Function *F = dyn_cast<Function>(GV); 5590 // If it's not a function or is already material, ignore the request. 5591 if (!F || !F->isMaterializable()) 5592 return std::error_code(); 5593 5594 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5595 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5596 // If its position is recorded as 0, its body is somewhere in the stream 5597 // but we haven't seen it yet. 5598 if (DFII->second == 0) 5599 if (std::error_code EC = findFunctionInStream(F, DFII)) 5600 return EC; 5601 5602 // Materialize metadata before parsing any function bodies. 5603 if (std::error_code EC = materializeMetadata()) 5604 return EC; 5605 5606 // Move the bit stream to the saved position of the deferred function body. 5607 Stream.JumpToBit(DFII->second); 5608 5609 if (std::error_code EC = parseFunctionBody(F)) 5610 return EC; 5611 F->setIsMaterializable(false); 5612 5613 if (StripDebugInfo) 5614 stripDebugInfo(*F); 5615 5616 // Upgrade any old intrinsic calls in the function. 5617 for (auto &I : UpgradedIntrinsics) { 5618 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5619 UI != UE;) { 5620 User *U = *UI; 5621 ++UI; 5622 if (CallInst *CI = dyn_cast<CallInst>(U)) 5623 UpgradeIntrinsicCall(CI, I.second); 5624 } 5625 } 5626 5627 // Update calls to the remangled intrinsics 5628 for (auto &I : RemangledIntrinsics) 5629 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5630 UI != UE;) 5631 // Don't expect any other users than call sites 5632 CallSite(*UI++).setCalledFunction(I.second); 5633 5634 // Finish fn->subprogram upgrade for materialized functions. 5635 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5636 F->setSubprogram(SP); 5637 5638 // Bring in any functions that this function forward-referenced via 5639 // blockaddresses. 5640 return materializeForwardReferencedFunctions(); 5641 } 5642 5643 std::error_code BitcodeReader::materializeModule() { 5644 if (std::error_code EC = materializeMetadata()) 5645 return EC; 5646 5647 // Promise to materialize all forward references. 5648 WillMaterializeAllForwardRefs = true; 5649 5650 // Iterate over the module, deserializing any functions that are still on 5651 // disk. 5652 for (Function &F : *TheModule) { 5653 if (std::error_code EC = materialize(&F)) 5654 return EC; 5655 } 5656 // At this point, if there are any function bodies, parse the rest of 5657 // the bits in the module past the last function block we have recorded 5658 // through either lazy scanning or the VST. 5659 if (LastFunctionBlockBit || NextUnreadBit) 5660 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5661 : NextUnreadBit); 5662 5663 // Check that all block address forward references got resolved (as we 5664 // promised above). 5665 if (!BasicBlockFwdRefs.empty()) 5666 return error("Never resolved function from blockaddress"); 5667 5668 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5669 // to prevent this instructions with TBAA tags should be upgraded first. 5670 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5671 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5672 5673 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5674 // delete the old functions to clean up. We can't do this unless the entire 5675 // module is materialized because there could always be another function body 5676 // with calls to the old function. 5677 for (auto &I : UpgradedIntrinsics) { 5678 for (auto *U : I.first->users()) { 5679 if (CallInst *CI = dyn_cast<CallInst>(U)) 5680 UpgradeIntrinsicCall(CI, I.second); 5681 } 5682 if (!I.first->use_empty()) 5683 I.first->replaceAllUsesWith(I.second); 5684 I.first->eraseFromParent(); 5685 } 5686 UpgradedIntrinsics.clear(); 5687 // Do the same for remangled intrinsics 5688 for (auto &I : RemangledIntrinsics) { 5689 I.first->replaceAllUsesWith(I.second); 5690 I.first->eraseFromParent(); 5691 } 5692 RemangledIntrinsics.clear(); 5693 5694 UpgradeDebugInfo(*TheModule); 5695 5696 UpgradeModuleFlags(*TheModule); 5697 return std::error_code(); 5698 } 5699 5700 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5701 return IdentifiedStructTypes; 5702 } 5703 5704 std::error_code 5705 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5706 if (Streamer) 5707 return initLazyStream(std::move(Streamer)); 5708 return initStreamFromBuffer(); 5709 } 5710 5711 std::error_code BitcodeReader::initStreamFromBuffer() { 5712 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5713 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5714 5715 if (Buffer->getBufferSize() & 3) 5716 return error("Invalid bitcode signature"); 5717 5718 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5719 // The magic number is 0x0B17C0DE stored in little endian. 5720 if (isBitcodeWrapper(BufPtr, BufEnd)) 5721 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5722 return error("Invalid bitcode wrapper header"); 5723 5724 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5725 Stream.init(&*StreamFile); 5726 5727 return std::error_code(); 5728 } 5729 5730 std::error_code 5731 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5732 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5733 // see it. 5734 auto OwnedBytes = 5735 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5736 StreamingMemoryObject &Bytes = *OwnedBytes; 5737 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5738 Stream.init(&*StreamFile); 5739 5740 unsigned char buf[16]; 5741 if (Bytes.readBytes(buf, 16, 0) != 16) 5742 return error("Invalid bitcode signature"); 5743 5744 if (!isBitcode(buf, buf + 16)) 5745 return error("Invalid bitcode signature"); 5746 5747 if (isBitcodeWrapper(buf, buf + 4)) { 5748 const unsigned char *bitcodeStart = buf; 5749 const unsigned char *bitcodeEnd = buf + 16; 5750 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5751 Bytes.dropLeadingBytes(bitcodeStart - buf); 5752 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5753 } 5754 return std::error_code(); 5755 } 5756 5757 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5758 return ::error(DiagnosticHandler, 5759 make_error_code(BitcodeError::CorruptedBitcode), Message); 5760 } 5761 5762 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5763 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5764 bool CheckGlobalValSummaryPresenceOnly) 5765 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5766 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5767 5768 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5769 5770 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5771 5772 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5773 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5774 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5775 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5776 return VGI->second; 5777 } 5778 5779 // Specialized value symbol table parser used when reading module index 5780 // blocks where we don't actually create global values. The parsed information 5781 // is saved in the bitcode reader for use when later parsing summaries. 5782 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5783 uint64_t Offset, 5784 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5785 assert(Offset > 0 && "Expected non-zero VST offset"); 5786 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5787 5788 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5789 return error("Invalid record"); 5790 5791 SmallVector<uint64_t, 64> Record; 5792 5793 // Read all the records for this value table. 5794 SmallString<128> ValueName; 5795 while (1) { 5796 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5797 5798 switch (Entry.Kind) { 5799 case BitstreamEntry::SubBlock: // Handled for us already. 5800 case BitstreamEntry::Error: 5801 return error("Malformed block"); 5802 case BitstreamEntry::EndBlock: 5803 // Done parsing VST, jump back to wherever we came from. 5804 Stream.JumpToBit(CurrentBit); 5805 return std::error_code(); 5806 case BitstreamEntry::Record: 5807 // The interesting case. 5808 break; 5809 } 5810 5811 // Read a record. 5812 Record.clear(); 5813 switch (Stream.readRecord(Entry.ID, Record)) { 5814 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5815 break; 5816 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5817 if (convertToString(Record, 1, ValueName)) 5818 return error("Invalid record"); 5819 unsigned ValueID = Record[0]; 5820 assert(!SourceFileName.empty()); 5821 auto VLI = ValueIdToLinkageMap.find(ValueID); 5822 assert(VLI != ValueIdToLinkageMap.end() && 5823 "No linkage found for VST entry?"); 5824 auto Linkage = VLI->second; 5825 std::string GlobalId = 5826 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5827 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5828 auto OriginalNameID = ValueGUID; 5829 if (GlobalValue::isLocalLinkage(Linkage)) 5830 OriginalNameID = GlobalValue::getGUID(ValueName); 5831 if (PrintSummaryGUIDs) 5832 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5833 << ValueName << "\n"; 5834 ValueIdToCallGraphGUIDMap[ValueID] = 5835 std::make_pair(ValueGUID, OriginalNameID); 5836 ValueName.clear(); 5837 break; 5838 } 5839 case bitc::VST_CODE_FNENTRY: { 5840 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5841 if (convertToString(Record, 2, ValueName)) 5842 return error("Invalid record"); 5843 unsigned ValueID = Record[0]; 5844 assert(!SourceFileName.empty()); 5845 auto VLI = ValueIdToLinkageMap.find(ValueID); 5846 assert(VLI != ValueIdToLinkageMap.end() && 5847 "No linkage found for VST entry?"); 5848 auto Linkage = VLI->second; 5849 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5850 ValueName, VLI->second, SourceFileName); 5851 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5852 auto OriginalNameID = FunctionGUID; 5853 if (GlobalValue::isLocalLinkage(Linkage)) 5854 OriginalNameID = GlobalValue::getGUID(ValueName); 5855 if (PrintSummaryGUIDs) 5856 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5857 << ValueName << "\n"; 5858 ValueIdToCallGraphGUIDMap[ValueID] = 5859 std::make_pair(FunctionGUID, OriginalNameID); 5860 5861 ValueName.clear(); 5862 break; 5863 } 5864 case bitc::VST_CODE_COMBINED_ENTRY: { 5865 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5866 unsigned ValueID = Record[0]; 5867 GlobalValue::GUID RefGUID = Record[1]; 5868 // The "original name", which is the second value of the pair will be 5869 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5870 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5871 break; 5872 } 5873 } 5874 } 5875 } 5876 5877 // Parse just the blocks needed for building the index out of the module. 5878 // At the end of this routine the module Index is populated with a map 5879 // from global value id to GlobalValueSummary objects. 5880 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5881 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5882 return error("Invalid record"); 5883 5884 SmallVector<uint64_t, 64> Record; 5885 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5886 unsigned ValueId = 0; 5887 5888 // Read the index for this module. 5889 while (1) { 5890 BitstreamEntry Entry = Stream.advance(); 5891 5892 switch (Entry.Kind) { 5893 case BitstreamEntry::Error: 5894 return error("Malformed block"); 5895 case BitstreamEntry::EndBlock: 5896 return std::error_code(); 5897 5898 case BitstreamEntry::SubBlock: 5899 if (CheckGlobalValSummaryPresenceOnly) { 5900 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5901 SeenGlobalValSummary = true; 5902 // No need to parse the rest since we found the summary. 5903 return std::error_code(); 5904 } 5905 if (Stream.SkipBlock()) 5906 return error("Invalid record"); 5907 continue; 5908 } 5909 switch (Entry.ID) { 5910 default: // Skip unknown content. 5911 if (Stream.SkipBlock()) 5912 return error("Invalid record"); 5913 break; 5914 case bitc::BLOCKINFO_BLOCK_ID: 5915 // Need to parse these to get abbrev ids (e.g. for VST) 5916 if (Stream.ReadBlockInfoBlock()) 5917 return error("Malformed block"); 5918 break; 5919 case bitc::VALUE_SYMTAB_BLOCK_ID: 5920 // Should have been parsed earlier via VSTOffset, unless there 5921 // is no summary section. 5922 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5923 !SeenGlobalValSummary) && 5924 "Expected early VST parse via VSTOffset record"); 5925 if (Stream.SkipBlock()) 5926 return error("Invalid record"); 5927 break; 5928 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5929 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5930 assert(!SeenValueSymbolTable && 5931 "Already read VST when parsing summary block?"); 5932 if (std::error_code EC = 5933 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5934 return EC; 5935 SeenValueSymbolTable = true; 5936 SeenGlobalValSummary = true; 5937 if (std::error_code EC = parseEntireSummary()) 5938 return EC; 5939 break; 5940 case bitc::MODULE_STRTAB_BLOCK_ID: 5941 if (std::error_code EC = parseModuleStringTable()) 5942 return EC; 5943 break; 5944 } 5945 continue; 5946 5947 case BitstreamEntry::Record: { 5948 Record.clear(); 5949 auto BitCode = Stream.readRecord(Entry.ID, Record); 5950 switch (BitCode) { 5951 default: 5952 break; // Default behavior, ignore unknown content. 5953 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5954 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5955 SmallString<128> ValueName; 5956 if (convertToString(Record, 0, ValueName)) 5957 return error("Invalid record"); 5958 SourceFileName = ValueName.c_str(); 5959 break; 5960 } 5961 /// MODULE_CODE_HASH: [5*i32] 5962 case bitc::MODULE_CODE_HASH: { 5963 if (Record.size() != 5) 5964 return error("Invalid hash length " + Twine(Record.size()).str()); 5965 if (!TheIndex) 5966 break; 5967 if (TheIndex->modulePaths().empty()) 5968 // Does not have any summary emitted. 5969 break; 5970 if (TheIndex->modulePaths().size() != 1) 5971 return error("Don't expect multiple modules defined?"); 5972 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5973 int Pos = 0; 5974 for (auto &Val : Record) { 5975 assert(!(Val >> 32) && "Unexpected high bits set"); 5976 Hash[Pos++] = Val; 5977 } 5978 break; 5979 } 5980 /// MODULE_CODE_VSTOFFSET: [offset] 5981 case bitc::MODULE_CODE_VSTOFFSET: 5982 if (Record.size() < 1) 5983 return error("Invalid record"); 5984 VSTOffset = Record[0]; 5985 break; 5986 // GLOBALVAR: [pointer type, isconst, initid, 5987 // linkage, alignment, section, visibility, threadlocal, 5988 // unnamed_addr, externally_initialized, dllstorageclass, 5989 // comdat] 5990 case bitc::MODULE_CODE_GLOBALVAR: { 5991 if (Record.size() < 6) 5992 return error("Invalid record"); 5993 uint64_t RawLinkage = Record[3]; 5994 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5995 ValueIdToLinkageMap[ValueId++] = Linkage; 5996 break; 5997 } 5998 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5999 // alignment, section, visibility, gc, unnamed_addr, 6000 // prologuedata, dllstorageclass, comdat, prefixdata] 6001 case bitc::MODULE_CODE_FUNCTION: { 6002 if (Record.size() < 8) 6003 return error("Invalid record"); 6004 uint64_t RawLinkage = Record[3]; 6005 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6006 ValueIdToLinkageMap[ValueId++] = Linkage; 6007 break; 6008 } 6009 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6010 // dllstorageclass] 6011 case bitc::MODULE_CODE_ALIAS: { 6012 if (Record.size() < 6) 6013 return error("Invalid record"); 6014 uint64_t RawLinkage = Record[3]; 6015 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6016 ValueIdToLinkageMap[ValueId++] = Linkage; 6017 break; 6018 } 6019 } 6020 } 6021 continue; 6022 } 6023 } 6024 } 6025 6026 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6027 // objects in the index. 6028 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6029 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6030 return error("Invalid record"); 6031 SmallVector<uint64_t, 64> Record; 6032 6033 // Parse version 6034 { 6035 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6036 if (Entry.Kind != BitstreamEntry::Record) 6037 return error("Invalid Summary Block: record for version expected"); 6038 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6039 return error("Invalid Summary Block: version expected"); 6040 } 6041 const uint64_t Version = Record[0]; 6042 if (Version != 1) 6043 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6044 Record.clear(); 6045 6046 // Keep around the last seen summary to be used when we see an optional 6047 // "OriginalName" attachement. 6048 GlobalValueSummary *LastSeenSummary = nullptr; 6049 bool Combined = false; 6050 while (1) { 6051 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6052 6053 switch (Entry.Kind) { 6054 case BitstreamEntry::SubBlock: // Handled for us already. 6055 case BitstreamEntry::Error: 6056 return error("Malformed block"); 6057 case BitstreamEntry::EndBlock: 6058 // For a per-module index, remove any entries that still have empty 6059 // summaries. The VST parsing creates entries eagerly for all symbols, 6060 // but not all have associated summaries (e.g. it doesn't know how to 6061 // distinguish between VST_CODE_ENTRY for function declarations vs global 6062 // variables with initializers that end up with a summary). Remove those 6063 // entries now so that we don't need to rely on the combined index merger 6064 // to clean them up (especially since that may not run for the first 6065 // module's index if we merge into that). 6066 if (!Combined) 6067 TheIndex->removeEmptySummaryEntries(); 6068 return std::error_code(); 6069 case BitstreamEntry::Record: 6070 // The interesting case. 6071 break; 6072 } 6073 6074 // Read a record. The record format depends on whether this 6075 // is a per-module index or a combined index file. In the per-module 6076 // case the records contain the associated value's ID for correlation 6077 // with VST entries. In the combined index the correlation is done 6078 // via the bitcode offset of the summary records (which were saved 6079 // in the combined index VST entries). The records also contain 6080 // information used for ThinLTO renaming and importing. 6081 Record.clear(); 6082 auto BitCode = Stream.readRecord(Entry.ID, Record); 6083 switch (BitCode) { 6084 default: // Default behavior: ignore. 6085 break; 6086 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6087 // n x (valueid, callsitecount)] 6088 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6089 // numrefs x valueid, 6090 // n x (valueid, callsitecount, profilecount)] 6091 case bitc::FS_PERMODULE: 6092 case bitc::FS_PERMODULE_PROFILE: { 6093 unsigned ValueID = Record[0]; 6094 uint64_t RawFlags = Record[1]; 6095 unsigned InstCount = Record[2]; 6096 unsigned NumRefs = Record[3]; 6097 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6098 std::unique_ptr<FunctionSummary> FS = 6099 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6100 // The module path string ref set in the summary must be owned by the 6101 // index's module string table. Since we don't have a module path 6102 // string table section in the per-module index, we create a single 6103 // module path string table entry with an empty (0) ID to take 6104 // ownership. 6105 FS->setModulePath( 6106 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6107 static int RefListStartIndex = 4; 6108 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6109 assert(Record.size() >= RefListStartIndex + NumRefs && 6110 "Record size inconsistent with number of references"); 6111 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6112 unsigned RefValueId = Record[I]; 6113 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6114 FS->addRefEdge(RefGUID); 6115 } 6116 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6117 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6118 ++I) { 6119 unsigned CalleeValueId = Record[I]; 6120 unsigned CallsiteCount = Record[++I]; 6121 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6122 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6123 FS->addCallGraphEdge(CalleeGUID, 6124 CalleeInfo(CallsiteCount, ProfileCount)); 6125 } 6126 auto GUID = getGUIDFromValueId(ValueID); 6127 FS->setOriginalName(GUID.second); 6128 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6129 break; 6130 } 6131 // FS_ALIAS: [valueid, flags, valueid] 6132 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6133 // they expect all aliasee summaries to be available. 6134 case bitc::FS_ALIAS: { 6135 unsigned ValueID = Record[0]; 6136 uint64_t RawFlags = Record[1]; 6137 unsigned AliaseeID = Record[2]; 6138 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6139 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6140 // The module path string ref set in the summary must be owned by the 6141 // index's module string table. Since we don't have a module path 6142 // string table section in the per-module index, we create a single 6143 // module path string table entry with an empty (0) ID to take 6144 // ownership. 6145 AS->setModulePath( 6146 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6147 6148 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6149 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6150 if (!AliaseeSummary) 6151 return error("Alias expects aliasee summary to be parsed"); 6152 AS->setAliasee(AliaseeSummary); 6153 6154 auto GUID = getGUIDFromValueId(ValueID); 6155 AS->setOriginalName(GUID.second); 6156 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6157 break; 6158 } 6159 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6160 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6161 unsigned ValueID = Record[0]; 6162 uint64_t RawFlags = Record[1]; 6163 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6164 std::unique_ptr<GlobalVarSummary> FS = 6165 llvm::make_unique<GlobalVarSummary>(Flags); 6166 FS->setModulePath( 6167 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6168 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6169 unsigned RefValueId = Record[I]; 6170 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6171 FS->addRefEdge(RefGUID); 6172 } 6173 auto GUID = getGUIDFromValueId(ValueID); 6174 FS->setOriginalName(GUID.second); 6175 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6176 break; 6177 } 6178 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6179 // numrefs x valueid, n x (valueid, callsitecount)] 6180 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6181 // numrefs x valueid, 6182 // n x (valueid, callsitecount, profilecount)] 6183 case bitc::FS_COMBINED: 6184 case bitc::FS_COMBINED_PROFILE: { 6185 unsigned ValueID = Record[0]; 6186 uint64_t ModuleId = Record[1]; 6187 uint64_t RawFlags = Record[2]; 6188 unsigned InstCount = Record[3]; 6189 unsigned NumRefs = Record[4]; 6190 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6191 std::unique_ptr<FunctionSummary> FS = 6192 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6193 LastSeenSummary = FS.get(); 6194 FS->setModulePath(ModuleIdMap[ModuleId]); 6195 static int RefListStartIndex = 5; 6196 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6197 assert(Record.size() >= RefListStartIndex + NumRefs && 6198 "Record size inconsistent with number of references"); 6199 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6200 ++I) { 6201 unsigned RefValueId = Record[I]; 6202 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6203 FS->addRefEdge(RefGUID); 6204 } 6205 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6206 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6207 ++I) { 6208 unsigned CalleeValueId = Record[I]; 6209 unsigned CallsiteCount = Record[++I]; 6210 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6211 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6212 FS->addCallGraphEdge(CalleeGUID, 6213 CalleeInfo(CallsiteCount, ProfileCount)); 6214 } 6215 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6216 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6217 Combined = true; 6218 break; 6219 } 6220 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6221 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6222 // they expect all aliasee summaries to be available. 6223 case bitc::FS_COMBINED_ALIAS: { 6224 unsigned ValueID = Record[0]; 6225 uint64_t ModuleId = Record[1]; 6226 uint64_t RawFlags = Record[2]; 6227 unsigned AliaseeValueId = Record[3]; 6228 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6229 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6230 LastSeenSummary = AS.get(); 6231 AS->setModulePath(ModuleIdMap[ModuleId]); 6232 6233 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6234 auto AliaseeInModule = 6235 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6236 if (!AliaseeInModule) 6237 return error("Alias expects aliasee summary to be parsed"); 6238 AS->setAliasee(AliaseeInModule); 6239 6240 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6241 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6242 Combined = true; 6243 break; 6244 } 6245 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6246 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6247 unsigned ValueID = Record[0]; 6248 uint64_t ModuleId = Record[1]; 6249 uint64_t RawFlags = Record[2]; 6250 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6251 std::unique_ptr<GlobalVarSummary> FS = 6252 llvm::make_unique<GlobalVarSummary>(Flags); 6253 LastSeenSummary = FS.get(); 6254 FS->setModulePath(ModuleIdMap[ModuleId]); 6255 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6256 unsigned RefValueId = Record[I]; 6257 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6258 FS->addRefEdge(RefGUID); 6259 } 6260 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6261 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6262 Combined = true; 6263 break; 6264 } 6265 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6266 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6267 uint64_t OriginalName = Record[0]; 6268 if (!LastSeenSummary) 6269 return error("Name attachment that does not follow a combined record"); 6270 LastSeenSummary->setOriginalName(OriginalName); 6271 // Reset the LastSeenSummary 6272 LastSeenSummary = nullptr; 6273 } 6274 } 6275 } 6276 llvm_unreachable("Exit infinite loop"); 6277 } 6278 6279 // Parse the module string table block into the Index. 6280 // This populates the ModulePathStringTable map in the index. 6281 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6282 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6283 return error("Invalid record"); 6284 6285 SmallVector<uint64_t, 64> Record; 6286 6287 SmallString<128> ModulePath; 6288 ModulePathStringTableTy::iterator LastSeenModulePath; 6289 while (1) { 6290 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6291 6292 switch (Entry.Kind) { 6293 case BitstreamEntry::SubBlock: // Handled for us already. 6294 case BitstreamEntry::Error: 6295 return error("Malformed block"); 6296 case BitstreamEntry::EndBlock: 6297 return std::error_code(); 6298 case BitstreamEntry::Record: 6299 // The interesting case. 6300 break; 6301 } 6302 6303 Record.clear(); 6304 switch (Stream.readRecord(Entry.ID, Record)) { 6305 default: // Default behavior: ignore. 6306 break; 6307 case bitc::MST_CODE_ENTRY: { 6308 // MST_ENTRY: [modid, namechar x N] 6309 uint64_t ModuleId = Record[0]; 6310 6311 if (convertToString(Record, 1, ModulePath)) 6312 return error("Invalid record"); 6313 6314 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6315 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6316 6317 ModulePath.clear(); 6318 break; 6319 } 6320 /// MST_CODE_HASH: [5*i32] 6321 case bitc::MST_CODE_HASH: { 6322 if (Record.size() != 5) 6323 return error("Invalid hash length " + Twine(Record.size()).str()); 6324 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6325 return error("Invalid hash that does not follow a module path"); 6326 int Pos = 0; 6327 for (auto &Val : Record) { 6328 assert(!(Val >> 32) && "Unexpected high bits set"); 6329 LastSeenModulePath->second.second[Pos++] = Val; 6330 } 6331 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6332 LastSeenModulePath = TheIndex->modulePaths().end(); 6333 break; 6334 } 6335 } 6336 } 6337 llvm_unreachable("Exit infinite loop"); 6338 } 6339 6340 // Parse the function info index from the bitcode streamer into the given index. 6341 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6342 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6343 TheIndex = I; 6344 6345 if (std::error_code EC = initStream(std::move(Streamer))) 6346 return EC; 6347 6348 // Sniff for the signature. 6349 if (!hasValidBitcodeHeader(Stream)) 6350 return error("Invalid bitcode signature"); 6351 6352 // We expect a number of well-defined blocks, though we don't necessarily 6353 // need to understand them all. 6354 while (1) { 6355 if (Stream.AtEndOfStream()) { 6356 // We didn't really read a proper Module block. 6357 return error("Malformed block"); 6358 } 6359 6360 BitstreamEntry Entry = 6361 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6362 6363 if (Entry.Kind != BitstreamEntry::SubBlock) 6364 return error("Malformed block"); 6365 6366 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6367 // building the function summary index. 6368 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6369 return parseModule(); 6370 6371 if (Stream.SkipBlock()) 6372 return error("Invalid record"); 6373 } 6374 } 6375 6376 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6377 std::unique_ptr<DataStreamer> Streamer) { 6378 if (Streamer) 6379 return initLazyStream(std::move(Streamer)); 6380 return initStreamFromBuffer(); 6381 } 6382 6383 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6384 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6385 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6386 6387 if (Buffer->getBufferSize() & 3) 6388 return error("Invalid bitcode signature"); 6389 6390 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6391 // The magic number is 0x0B17C0DE stored in little endian. 6392 if (isBitcodeWrapper(BufPtr, BufEnd)) 6393 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6394 return error("Invalid bitcode wrapper header"); 6395 6396 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6397 Stream.init(&*StreamFile); 6398 6399 return std::error_code(); 6400 } 6401 6402 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6403 std::unique_ptr<DataStreamer> Streamer) { 6404 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6405 // see it. 6406 auto OwnedBytes = 6407 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6408 StreamingMemoryObject &Bytes = *OwnedBytes; 6409 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6410 Stream.init(&*StreamFile); 6411 6412 unsigned char buf[16]; 6413 if (Bytes.readBytes(buf, 16, 0) != 16) 6414 return error("Invalid bitcode signature"); 6415 6416 if (!isBitcode(buf, buf + 16)) 6417 return error("Invalid bitcode signature"); 6418 6419 if (isBitcodeWrapper(buf, buf + 4)) { 6420 const unsigned char *bitcodeStart = buf; 6421 const unsigned char *bitcodeEnd = buf + 16; 6422 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6423 Bytes.dropLeadingBytes(bitcodeStart - buf); 6424 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6425 } 6426 return std::error_code(); 6427 } 6428 6429 namespace { 6430 // FIXME: This class is only here to support the transition to llvm::Error. It 6431 // will be removed once this transition is complete. Clients should prefer to 6432 // deal with the Error value directly, rather than converting to error_code. 6433 class BitcodeErrorCategoryType : public std::error_category { 6434 const char *name() const LLVM_NOEXCEPT override { 6435 return "llvm.bitcode"; 6436 } 6437 std::string message(int IE) const override { 6438 BitcodeError E = static_cast<BitcodeError>(IE); 6439 switch (E) { 6440 case BitcodeError::InvalidBitcodeSignature: 6441 return "Invalid bitcode signature"; 6442 case BitcodeError::CorruptedBitcode: 6443 return "Corrupted bitcode"; 6444 } 6445 llvm_unreachable("Unknown error type!"); 6446 } 6447 }; 6448 } // end anonymous namespace 6449 6450 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6451 6452 const std::error_category &llvm::BitcodeErrorCategory() { 6453 return *ErrorCategory; 6454 } 6455 6456 //===----------------------------------------------------------------------===// 6457 // External interface 6458 //===----------------------------------------------------------------------===// 6459 6460 static ErrorOr<std::unique_ptr<Module>> 6461 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6462 BitcodeReader *R, LLVMContext &Context, 6463 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6464 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6465 M->setMaterializer(R); 6466 6467 auto cleanupOnError = [&](std::error_code EC) { 6468 R->releaseBuffer(); // Never take ownership on error. 6469 return EC; 6470 }; 6471 6472 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6473 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6474 ShouldLazyLoadMetadata)) 6475 return cleanupOnError(EC); 6476 6477 if (MaterializeAll) { 6478 // Read in the entire module, and destroy the BitcodeReader. 6479 if (std::error_code EC = M->materializeAll()) 6480 return cleanupOnError(EC); 6481 } else { 6482 // Resolve forward references from blockaddresses. 6483 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6484 return cleanupOnError(EC); 6485 } 6486 return std::move(M); 6487 } 6488 6489 /// \brief Get a lazy one-at-time loading module from bitcode. 6490 /// 6491 /// This isn't always used in a lazy context. In particular, it's also used by 6492 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6493 /// in forward-referenced functions from block address references. 6494 /// 6495 /// \param[in] MaterializeAll Set to \c true if we should materialize 6496 /// everything. 6497 static ErrorOr<std::unique_ptr<Module>> 6498 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6499 LLVMContext &Context, bool MaterializeAll, 6500 bool ShouldLazyLoadMetadata = false) { 6501 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6502 6503 ErrorOr<std::unique_ptr<Module>> Ret = 6504 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6505 MaterializeAll, ShouldLazyLoadMetadata); 6506 if (!Ret) 6507 return Ret; 6508 6509 Buffer.release(); // The BitcodeReader owns it now. 6510 return Ret; 6511 } 6512 6513 ErrorOr<std::unique_ptr<Module>> 6514 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6515 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6516 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6517 ShouldLazyLoadMetadata); 6518 } 6519 6520 ErrorOr<std::unique_ptr<Module>> 6521 llvm::getStreamedBitcodeModule(StringRef Name, 6522 std::unique_ptr<DataStreamer> Streamer, 6523 LLVMContext &Context) { 6524 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6525 BitcodeReader *R = new BitcodeReader(Context); 6526 6527 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6528 false); 6529 } 6530 6531 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6532 LLVMContext &Context) { 6533 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6534 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6535 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6536 // written. We must defer until the Module has been fully materialized. 6537 } 6538 6539 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6540 LLVMContext &Context) { 6541 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6542 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6543 ErrorOr<std::string> Triple = R->parseTriple(); 6544 if (Triple.getError()) 6545 return ""; 6546 return Triple.get(); 6547 } 6548 6549 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6550 LLVMContext &Context) { 6551 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6552 BitcodeReader R(Buf.release(), Context); 6553 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6554 if (ProducerString.getError()) 6555 return ""; 6556 return ProducerString.get(); 6557 } 6558 6559 // Parse the specified bitcode buffer, returning the function info index. 6560 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6561 MemoryBufferRef Buffer, 6562 const DiagnosticHandlerFunction &DiagnosticHandler) { 6563 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6564 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6565 6566 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6567 6568 auto cleanupOnError = [&](std::error_code EC) { 6569 R.releaseBuffer(); // Never take ownership on error. 6570 return EC; 6571 }; 6572 6573 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6574 return cleanupOnError(EC); 6575 6576 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6577 return std::move(Index); 6578 } 6579 6580 // Check if the given bitcode buffer contains a global value summary block. 6581 bool llvm::hasGlobalValueSummary( 6582 MemoryBufferRef Buffer, 6583 const DiagnosticHandlerFunction &DiagnosticHandler) { 6584 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6585 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6586 6587 auto cleanupOnError = [&](std::error_code EC) { 6588 R.releaseBuffer(); // Never take ownership on error. 6589 return false; 6590 }; 6591 6592 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6593 return cleanupOnError(EC); 6594 6595 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6596 return R.foundGlobalValSummary(); 6597 } 6598