1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 964 return Flags; 965 } 966 967 /// Decode the flags for GlobalValue in the summary. 968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 969 uint64_t Version) { 970 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 971 // like getDecodedLinkage() above. Any future change to the linkage enum and 972 // to getDecodedLinkage() will need to be taken into account here as above. 973 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 974 RawFlags = RawFlags >> 4; 975 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 976 // The Live flag wasn't introduced until version 3. For dead stripping 977 // to work correctly on earlier versions, we must conservatively treat all 978 // values as live. 979 bool Live = (RawFlags & 0x2) || Version < 3; 980 bool Local = (RawFlags & 0x4); 981 bool AutoHide = (RawFlags & 0x8); 982 983 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 989 (RawFlags & 0x2) ? true : false); 990 } 991 992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 993 switch (Val) { 994 default: // Map unknown visibilities to default. 995 case 0: return GlobalValue::DefaultVisibility; 996 case 1: return GlobalValue::HiddenVisibility; 997 case 2: return GlobalValue::ProtectedVisibility; 998 } 999 } 1000 1001 static GlobalValue::DLLStorageClassTypes 1002 getDecodedDLLStorageClass(unsigned Val) { 1003 switch (Val) { 1004 default: // Map unknown values to default. 1005 case 0: return GlobalValue::DefaultStorageClass; 1006 case 1: return GlobalValue::DLLImportStorageClass; 1007 case 2: return GlobalValue::DLLExportStorageClass; 1008 } 1009 } 1010 1011 static bool getDecodedDSOLocal(unsigned Val) { 1012 switch(Val) { 1013 default: // Map unknown values to preemptable. 1014 case 0: return false; 1015 case 1: return true; 1016 } 1017 } 1018 1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1020 switch (Val) { 1021 case 0: return GlobalVariable::NotThreadLocal; 1022 default: // Map unknown non-zero value to general dynamic. 1023 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1024 case 2: return GlobalVariable::LocalDynamicTLSModel; 1025 case 3: return GlobalVariable::InitialExecTLSModel; 1026 case 4: return GlobalVariable::LocalExecTLSModel; 1027 } 1028 } 1029 1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1031 switch (Val) { 1032 default: // Map unknown to UnnamedAddr::None. 1033 case 0: return GlobalVariable::UnnamedAddr::None; 1034 case 1: return GlobalVariable::UnnamedAddr::Global; 1035 case 2: return GlobalVariable::UnnamedAddr::Local; 1036 } 1037 } 1038 1039 static int getDecodedCastOpcode(unsigned Val) { 1040 switch (Val) { 1041 default: return -1; 1042 case bitc::CAST_TRUNC : return Instruction::Trunc; 1043 case bitc::CAST_ZEXT : return Instruction::ZExt; 1044 case bitc::CAST_SEXT : return Instruction::SExt; 1045 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1046 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1047 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1048 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1049 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1050 case bitc::CAST_FPEXT : return Instruction::FPExt; 1051 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1052 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1053 case bitc::CAST_BITCAST : return Instruction::BitCast; 1054 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1055 } 1056 } 1057 1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1059 switch (Val) { 1060 default: 1061 return -1; 1062 case bitc::UNOP_FNEG: 1063 return Ty->isFPOrFPVectorTy() ? Instruction::FNeg : -1; 1064 case bitc::UNOP_FREEZE: 1065 return Instruction::Freeze; 1066 } 1067 } 1068 1069 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1070 bool IsFP = Ty->isFPOrFPVectorTy(); 1071 // BinOps are only valid for int/fp or vector of int/fp types 1072 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1073 return -1; 1074 1075 switch (Val) { 1076 default: 1077 return -1; 1078 case bitc::BINOP_ADD: 1079 return IsFP ? Instruction::FAdd : Instruction::Add; 1080 case bitc::BINOP_SUB: 1081 return IsFP ? Instruction::FSub : Instruction::Sub; 1082 case bitc::BINOP_MUL: 1083 return IsFP ? Instruction::FMul : Instruction::Mul; 1084 case bitc::BINOP_UDIV: 1085 return IsFP ? -1 : Instruction::UDiv; 1086 case bitc::BINOP_SDIV: 1087 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1088 case bitc::BINOP_UREM: 1089 return IsFP ? -1 : Instruction::URem; 1090 case bitc::BINOP_SREM: 1091 return IsFP ? Instruction::FRem : Instruction::SRem; 1092 case bitc::BINOP_SHL: 1093 return IsFP ? -1 : Instruction::Shl; 1094 case bitc::BINOP_LSHR: 1095 return IsFP ? -1 : Instruction::LShr; 1096 case bitc::BINOP_ASHR: 1097 return IsFP ? -1 : Instruction::AShr; 1098 case bitc::BINOP_AND: 1099 return IsFP ? -1 : Instruction::And; 1100 case bitc::BINOP_OR: 1101 return IsFP ? -1 : Instruction::Or; 1102 case bitc::BINOP_XOR: 1103 return IsFP ? -1 : Instruction::Xor; 1104 } 1105 } 1106 1107 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1108 switch (Val) { 1109 default: return AtomicRMWInst::BAD_BINOP; 1110 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1111 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1112 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1113 case bitc::RMW_AND: return AtomicRMWInst::And; 1114 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1115 case bitc::RMW_OR: return AtomicRMWInst::Or; 1116 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1117 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1118 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1119 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1120 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1121 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1122 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1123 } 1124 } 1125 1126 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1127 switch (Val) { 1128 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1129 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1130 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1131 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1132 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1133 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1134 default: // Map unknown orderings to sequentially-consistent. 1135 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1136 } 1137 } 1138 1139 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1140 switch (Val) { 1141 default: // Map unknown selection kinds to any. 1142 case bitc::COMDAT_SELECTION_KIND_ANY: 1143 return Comdat::Any; 1144 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1145 return Comdat::ExactMatch; 1146 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1147 return Comdat::Largest; 1148 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1149 return Comdat::NoDuplicates; 1150 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1151 return Comdat::SameSize; 1152 } 1153 } 1154 1155 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1156 FastMathFlags FMF; 1157 if (0 != (Val & bitc::UnsafeAlgebra)) 1158 FMF.setFast(); 1159 if (0 != (Val & bitc::AllowReassoc)) 1160 FMF.setAllowReassoc(); 1161 if (0 != (Val & bitc::NoNaNs)) 1162 FMF.setNoNaNs(); 1163 if (0 != (Val & bitc::NoInfs)) 1164 FMF.setNoInfs(); 1165 if (0 != (Val & bitc::NoSignedZeros)) 1166 FMF.setNoSignedZeros(); 1167 if (0 != (Val & bitc::AllowReciprocal)) 1168 FMF.setAllowReciprocal(); 1169 if (0 != (Val & bitc::AllowContract)) 1170 FMF.setAllowContract(true); 1171 if (0 != (Val & bitc::ApproxFunc)) 1172 FMF.setApproxFunc(); 1173 return FMF; 1174 } 1175 1176 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1177 switch (Val) { 1178 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1179 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1180 } 1181 } 1182 1183 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1184 // The type table size is always specified correctly. 1185 if (ID >= TypeList.size()) 1186 return nullptr; 1187 1188 if (Type *Ty = TypeList[ID]) 1189 return Ty; 1190 1191 // If we have a forward reference, the only possible case is when it is to a 1192 // named struct. Just create a placeholder for now. 1193 return TypeList[ID] = createIdentifiedStructType(Context); 1194 } 1195 1196 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1197 StringRef Name) { 1198 auto *Ret = StructType::create(Context, Name); 1199 IdentifiedStructTypes.push_back(Ret); 1200 return Ret; 1201 } 1202 1203 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1204 auto *Ret = StructType::create(Context); 1205 IdentifiedStructTypes.push_back(Ret); 1206 return Ret; 1207 } 1208 1209 //===----------------------------------------------------------------------===// 1210 // Functions for parsing blocks from the bitcode file 1211 //===----------------------------------------------------------------------===// 1212 1213 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1214 switch (Val) { 1215 case Attribute::EndAttrKinds: 1216 llvm_unreachable("Synthetic enumerators which should never get here"); 1217 1218 case Attribute::None: return 0; 1219 case Attribute::ZExt: return 1 << 0; 1220 case Attribute::SExt: return 1 << 1; 1221 case Attribute::NoReturn: return 1 << 2; 1222 case Attribute::InReg: return 1 << 3; 1223 case Attribute::StructRet: return 1 << 4; 1224 case Attribute::NoUnwind: return 1 << 5; 1225 case Attribute::NoAlias: return 1 << 6; 1226 case Attribute::ByVal: return 1 << 7; 1227 case Attribute::Nest: return 1 << 8; 1228 case Attribute::ReadNone: return 1 << 9; 1229 case Attribute::ReadOnly: return 1 << 10; 1230 case Attribute::NoInline: return 1 << 11; 1231 case Attribute::AlwaysInline: return 1 << 12; 1232 case Attribute::OptimizeForSize: return 1 << 13; 1233 case Attribute::StackProtect: return 1 << 14; 1234 case Attribute::StackProtectReq: return 1 << 15; 1235 case Attribute::Alignment: return 31 << 16; 1236 case Attribute::NoCapture: return 1 << 21; 1237 case Attribute::NoRedZone: return 1 << 22; 1238 case Attribute::NoImplicitFloat: return 1 << 23; 1239 case Attribute::Naked: return 1 << 24; 1240 case Attribute::InlineHint: return 1 << 25; 1241 case Attribute::StackAlignment: return 7 << 26; 1242 case Attribute::ReturnsTwice: return 1 << 29; 1243 case Attribute::UWTable: return 1 << 30; 1244 case Attribute::NonLazyBind: return 1U << 31; 1245 case Attribute::SanitizeAddress: return 1ULL << 32; 1246 case Attribute::MinSize: return 1ULL << 33; 1247 case Attribute::NoDuplicate: return 1ULL << 34; 1248 case Attribute::StackProtectStrong: return 1ULL << 35; 1249 case Attribute::SanitizeThread: return 1ULL << 36; 1250 case Attribute::SanitizeMemory: return 1ULL << 37; 1251 case Attribute::NoBuiltin: return 1ULL << 38; 1252 case Attribute::Returned: return 1ULL << 39; 1253 case Attribute::Cold: return 1ULL << 40; 1254 case Attribute::Builtin: return 1ULL << 41; 1255 case Attribute::OptimizeNone: return 1ULL << 42; 1256 case Attribute::InAlloca: return 1ULL << 43; 1257 case Attribute::NonNull: return 1ULL << 44; 1258 case Attribute::JumpTable: return 1ULL << 45; 1259 case Attribute::Convergent: return 1ULL << 46; 1260 case Attribute::SafeStack: return 1ULL << 47; 1261 case Attribute::NoRecurse: return 1ULL << 48; 1262 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1263 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1264 case Attribute::SwiftSelf: return 1ULL << 51; 1265 case Attribute::SwiftError: return 1ULL << 52; 1266 case Attribute::WriteOnly: return 1ULL << 53; 1267 case Attribute::Speculatable: return 1ULL << 54; 1268 case Attribute::StrictFP: return 1ULL << 55; 1269 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1270 case Attribute::NoCfCheck: return 1ULL << 57; 1271 case Attribute::OptForFuzzing: return 1ULL << 58; 1272 case Attribute::ShadowCallStack: return 1ULL << 59; 1273 case Attribute::SpeculativeLoadHardening: 1274 return 1ULL << 60; 1275 case Attribute::ImmArg: 1276 return 1ULL << 61; 1277 case Attribute::WillReturn: 1278 return 1ULL << 62; 1279 case Attribute::NoFree: 1280 return 1ULL << 63; 1281 case Attribute::NoSync: 1282 llvm_unreachable("nosync attribute not supported in raw format"); 1283 break; 1284 case Attribute::Dereferenceable: 1285 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1286 break; 1287 case Attribute::DereferenceableOrNull: 1288 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1289 "format"); 1290 break; 1291 case Attribute::ArgMemOnly: 1292 llvm_unreachable("argmemonly attribute not supported in raw format"); 1293 break; 1294 case Attribute::AllocSize: 1295 llvm_unreachable("allocsize not supported in raw format"); 1296 break; 1297 case Attribute::SanitizeMemTag: 1298 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1299 break; 1300 } 1301 llvm_unreachable("Unsupported attribute type"); 1302 } 1303 1304 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1305 if (!Val) return; 1306 1307 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1308 I = Attribute::AttrKind(I + 1)) { 1309 if (I == Attribute::SanitizeMemTag || 1310 I == Attribute::Dereferenceable || 1311 I == Attribute::DereferenceableOrNull || 1312 I == Attribute::ArgMemOnly || 1313 I == Attribute::AllocSize || 1314 I == Attribute::NoSync) 1315 continue; 1316 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1317 if (I == Attribute::Alignment) 1318 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1319 else if (I == Attribute::StackAlignment) 1320 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1321 else 1322 B.addAttribute(I); 1323 } 1324 } 1325 } 1326 1327 /// This fills an AttrBuilder object with the LLVM attributes that have 1328 /// been decoded from the given integer. This function must stay in sync with 1329 /// 'encodeLLVMAttributesForBitcode'. 1330 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1331 uint64_t EncodedAttrs) { 1332 // FIXME: Remove in 4.0. 1333 1334 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1335 // the bits above 31 down by 11 bits. 1336 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1337 assert((!Alignment || isPowerOf2_32(Alignment)) && 1338 "Alignment must be a power of two."); 1339 1340 if (Alignment) 1341 B.addAlignmentAttr(Alignment); 1342 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1343 (EncodedAttrs & 0xffff)); 1344 } 1345 1346 Error BitcodeReader::parseAttributeBlock() { 1347 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1348 return Err; 1349 1350 if (!MAttributes.empty()) 1351 return error("Invalid multiple blocks"); 1352 1353 SmallVector<uint64_t, 64> Record; 1354 1355 SmallVector<AttributeList, 8> Attrs; 1356 1357 // Read all the records. 1358 while (true) { 1359 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1360 if (!MaybeEntry) 1361 return MaybeEntry.takeError(); 1362 BitstreamEntry Entry = MaybeEntry.get(); 1363 1364 switch (Entry.Kind) { 1365 case BitstreamEntry::SubBlock: // Handled for us already. 1366 case BitstreamEntry::Error: 1367 return error("Malformed block"); 1368 case BitstreamEntry::EndBlock: 1369 return Error::success(); 1370 case BitstreamEntry::Record: 1371 // The interesting case. 1372 break; 1373 } 1374 1375 // Read a record. 1376 Record.clear(); 1377 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1378 if (!MaybeRecord) 1379 return MaybeRecord.takeError(); 1380 switch (MaybeRecord.get()) { 1381 default: // Default behavior: ignore. 1382 break; 1383 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1384 // FIXME: Remove in 4.0. 1385 if (Record.size() & 1) 1386 return error("Invalid record"); 1387 1388 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1389 AttrBuilder B; 1390 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1391 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1392 } 1393 1394 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1395 Attrs.clear(); 1396 break; 1397 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1398 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1399 Attrs.push_back(MAttributeGroups[Record[i]]); 1400 1401 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1402 Attrs.clear(); 1403 break; 1404 } 1405 } 1406 } 1407 1408 // Returns Attribute::None on unrecognized codes. 1409 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1410 switch (Code) { 1411 default: 1412 return Attribute::None; 1413 case bitc::ATTR_KIND_ALIGNMENT: 1414 return Attribute::Alignment; 1415 case bitc::ATTR_KIND_ALWAYS_INLINE: 1416 return Attribute::AlwaysInline; 1417 case bitc::ATTR_KIND_ARGMEMONLY: 1418 return Attribute::ArgMemOnly; 1419 case bitc::ATTR_KIND_BUILTIN: 1420 return Attribute::Builtin; 1421 case bitc::ATTR_KIND_BY_VAL: 1422 return Attribute::ByVal; 1423 case bitc::ATTR_KIND_IN_ALLOCA: 1424 return Attribute::InAlloca; 1425 case bitc::ATTR_KIND_COLD: 1426 return Attribute::Cold; 1427 case bitc::ATTR_KIND_CONVERGENT: 1428 return Attribute::Convergent; 1429 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1430 return Attribute::InaccessibleMemOnly; 1431 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1432 return Attribute::InaccessibleMemOrArgMemOnly; 1433 case bitc::ATTR_KIND_INLINE_HINT: 1434 return Attribute::InlineHint; 1435 case bitc::ATTR_KIND_IN_REG: 1436 return Attribute::InReg; 1437 case bitc::ATTR_KIND_JUMP_TABLE: 1438 return Attribute::JumpTable; 1439 case bitc::ATTR_KIND_MIN_SIZE: 1440 return Attribute::MinSize; 1441 case bitc::ATTR_KIND_NAKED: 1442 return Attribute::Naked; 1443 case bitc::ATTR_KIND_NEST: 1444 return Attribute::Nest; 1445 case bitc::ATTR_KIND_NO_ALIAS: 1446 return Attribute::NoAlias; 1447 case bitc::ATTR_KIND_NO_BUILTIN: 1448 return Attribute::NoBuiltin; 1449 case bitc::ATTR_KIND_NO_CAPTURE: 1450 return Attribute::NoCapture; 1451 case bitc::ATTR_KIND_NO_DUPLICATE: 1452 return Attribute::NoDuplicate; 1453 case bitc::ATTR_KIND_NOFREE: 1454 return Attribute::NoFree; 1455 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1456 return Attribute::NoImplicitFloat; 1457 case bitc::ATTR_KIND_NO_INLINE: 1458 return Attribute::NoInline; 1459 case bitc::ATTR_KIND_NO_RECURSE: 1460 return Attribute::NoRecurse; 1461 case bitc::ATTR_KIND_NON_LAZY_BIND: 1462 return Attribute::NonLazyBind; 1463 case bitc::ATTR_KIND_NON_NULL: 1464 return Attribute::NonNull; 1465 case bitc::ATTR_KIND_DEREFERENCEABLE: 1466 return Attribute::Dereferenceable; 1467 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1468 return Attribute::DereferenceableOrNull; 1469 case bitc::ATTR_KIND_ALLOC_SIZE: 1470 return Attribute::AllocSize; 1471 case bitc::ATTR_KIND_NO_RED_ZONE: 1472 return Attribute::NoRedZone; 1473 case bitc::ATTR_KIND_NO_RETURN: 1474 return Attribute::NoReturn; 1475 case bitc::ATTR_KIND_NOSYNC: 1476 return Attribute::NoSync; 1477 case bitc::ATTR_KIND_NOCF_CHECK: 1478 return Attribute::NoCfCheck; 1479 case bitc::ATTR_KIND_NO_UNWIND: 1480 return Attribute::NoUnwind; 1481 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1482 return Attribute::OptForFuzzing; 1483 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1484 return Attribute::OptimizeForSize; 1485 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1486 return Attribute::OptimizeNone; 1487 case bitc::ATTR_KIND_READ_NONE: 1488 return Attribute::ReadNone; 1489 case bitc::ATTR_KIND_READ_ONLY: 1490 return Attribute::ReadOnly; 1491 case bitc::ATTR_KIND_RETURNED: 1492 return Attribute::Returned; 1493 case bitc::ATTR_KIND_RETURNS_TWICE: 1494 return Attribute::ReturnsTwice; 1495 case bitc::ATTR_KIND_S_EXT: 1496 return Attribute::SExt; 1497 case bitc::ATTR_KIND_SPECULATABLE: 1498 return Attribute::Speculatable; 1499 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1500 return Attribute::StackAlignment; 1501 case bitc::ATTR_KIND_STACK_PROTECT: 1502 return Attribute::StackProtect; 1503 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1504 return Attribute::StackProtectReq; 1505 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1506 return Attribute::StackProtectStrong; 1507 case bitc::ATTR_KIND_SAFESTACK: 1508 return Attribute::SafeStack; 1509 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1510 return Attribute::ShadowCallStack; 1511 case bitc::ATTR_KIND_STRICT_FP: 1512 return Attribute::StrictFP; 1513 case bitc::ATTR_KIND_STRUCT_RET: 1514 return Attribute::StructRet; 1515 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1516 return Attribute::SanitizeAddress; 1517 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1518 return Attribute::SanitizeHWAddress; 1519 case bitc::ATTR_KIND_SANITIZE_THREAD: 1520 return Attribute::SanitizeThread; 1521 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1522 return Attribute::SanitizeMemory; 1523 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1524 return Attribute::SpeculativeLoadHardening; 1525 case bitc::ATTR_KIND_SWIFT_ERROR: 1526 return Attribute::SwiftError; 1527 case bitc::ATTR_KIND_SWIFT_SELF: 1528 return Attribute::SwiftSelf; 1529 case bitc::ATTR_KIND_UW_TABLE: 1530 return Attribute::UWTable; 1531 case bitc::ATTR_KIND_WILLRETURN: 1532 return Attribute::WillReturn; 1533 case bitc::ATTR_KIND_WRITEONLY: 1534 return Attribute::WriteOnly; 1535 case bitc::ATTR_KIND_Z_EXT: 1536 return Attribute::ZExt; 1537 case bitc::ATTR_KIND_IMMARG: 1538 return Attribute::ImmArg; 1539 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1540 return Attribute::SanitizeMemTag; 1541 } 1542 } 1543 1544 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1545 MaybeAlign &Alignment) { 1546 // Note: Alignment in bitcode files is incremented by 1, so that zero 1547 // can be used for default alignment. 1548 if (Exponent > Value::MaxAlignmentExponent + 1) 1549 return error("Invalid alignment value"); 1550 Alignment = decodeMaybeAlign(Exponent); 1551 return Error::success(); 1552 } 1553 1554 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1555 *Kind = getAttrFromCode(Code); 1556 if (*Kind == Attribute::None) 1557 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1558 return Error::success(); 1559 } 1560 1561 Error BitcodeReader::parseAttributeGroupBlock() { 1562 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1563 return Err; 1564 1565 if (!MAttributeGroups.empty()) 1566 return error("Invalid multiple blocks"); 1567 1568 SmallVector<uint64_t, 64> Record; 1569 1570 // Read all the records. 1571 while (true) { 1572 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1573 if (!MaybeEntry) 1574 return MaybeEntry.takeError(); 1575 BitstreamEntry Entry = MaybeEntry.get(); 1576 1577 switch (Entry.Kind) { 1578 case BitstreamEntry::SubBlock: // Handled for us already. 1579 case BitstreamEntry::Error: 1580 return error("Malformed block"); 1581 case BitstreamEntry::EndBlock: 1582 return Error::success(); 1583 case BitstreamEntry::Record: 1584 // The interesting case. 1585 break; 1586 } 1587 1588 // Read a record. 1589 Record.clear(); 1590 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1591 if (!MaybeRecord) 1592 return MaybeRecord.takeError(); 1593 switch (MaybeRecord.get()) { 1594 default: // Default behavior: ignore. 1595 break; 1596 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1597 if (Record.size() < 3) 1598 return error("Invalid record"); 1599 1600 uint64_t GrpID = Record[0]; 1601 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1602 1603 AttrBuilder B; 1604 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1605 if (Record[i] == 0) { // Enum attribute 1606 Attribute::AttrKind Kind; 1607 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1608 return Err; 1609 1610 // Upgrade old-style byval attribute to one with a type, even if it's 1611 // nullptr. We will have to insert the real type when we associate 1612 // this AttributeList with a function. 1613 if (Kind == Attribute::ByVal) 1614 B.addByValAttr(nullptr); 1615 1616 B.addAttribute(Kind); 1617 } else if (Record[i] == 1) { // Integer attribute 1618 Attribute::AttrKind Kind; 1619 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1620 return Err; 1621 if (Kind == Attribute::Alignment) 1622 B.addAlignmentAttr(Record[++i]); 1623 else if (Kind == Attribute::StackAlignment) 1624 B.addStackAlignmentAttr(Record[++i]); 1625 else if (Kind == Attribute::Dereferenceable) 1626 B.addDereferenceableAttr(Record[++i]); 1627 else if (Kind == Attribute::DereferenceableOrNull) 1628 B.addDereferenceableOrNullAttr(Record[++i]); 1629 else if (Kind == Attribute::AllocSize) 1630 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1631 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1632 bool HasValue = (Record[i++] == 4); 1633 SmallString<64> KindStr; 1634 SmallString<64> ValStr; 1635 1636 while (Record[i] != 0 && i != e) 1637 KindStr += Record[i++]; 1638 assert(Record[i] == 0 && "Kind string not null terminated"); 1639 1640 if (HasValue) { 1641 // Has a value associated with it. 1642 ++i; // Skip the '0' that terminates the "kind" string. 1643 while (Record[i] != 0 && i != e) 1644 ValStr += Record[i++]; 1645 assert(Record[i] == 0 && "Value string not null terminated"); 1646 } 1647 1648 B.addAttribute(KindStr.str(), ValStr.str()); 1649 } else { 1650 assert((Record[i] == 5 || Record[i] == 6) && 1651 "Invalid attribute group entry"); 1652 bool HasType = Record[i] == 6; 1653 Attribute::AttrKind Kind; 1654 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1655 return Err; 1656 if (Kind == Attribute::ByVal) 1657 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1658 } 1659 } 1660 1661 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1662 break; 1663 } 1664 } 1665 } 1666 } 1667 1668 Error BitcodeReader::parseTypeTable() { 1669 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1670 return Err; 1671 1672 return parseTypeTableBody(); 1673 } 1674 1675 Error BitcodeReader::parseTypeTableBody() { 1676 if (!TypeList.empty()) 1677 return error("Invalid multiple blocks"); 1678 1679 SmallVector<uint64_t, 64> Record; 1680 unsigned NumRecords = 0; 1681 1682 SmallString<64> TypeName; 1683 1684 // Read all the records for this type table. 1685 while (true) { 1686 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1687 if (!MaybeEntry) 1688 return MaybeEntry.takeError(); 1689 BitstreamEntry Entry = MaybeEntry.get(); 1690 1691 switch (Entry.Kind) { 1692 case BitstreamEntry::SubBlock: // Handled for us already. 1693 case BitstreamEntry::Error: 1694 return error("Malformed block"); 1695 case BitstreamEntry::EndBlock: 1696 if (NumRecords != TypeList.size()) 1697 return error("Malformed block"); 1698 return Error::success(); 1699 case BitstreamEntry::Record: 1700 // The interesting case. 1701 break; 1702 } 1703 1704 // Read a record. 1705 Record.clear(); 1706 Type *ResultTy = nullptr; 1707 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1708 if (!MaybeRecord) 1709 return MaybeRecord.takeError(); 1710 switch (MaybeRecord.get()) { 1711 default: 1712 return error("Invalid value"); 1713 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1714 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1715 // type list. This allows us to reserve space. 1716 if (Record.size() < 1) 1717 return error("Invalid record"); 1718 TypeList.resize(Record[0]); 1719 continue; 1720 case bitc::TYPE_CODE_VOID: // VOID 1721 ResultTy = Type::getVoidTy(Context); 1722 break; 1723 case bitc::TYPE_CODE_HALF: // HALF 1724 ResultTy = Type::getHalfTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_FLOAT: // FLOAT 1727 ResultTy = Type::getFloatTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1730 ResultTy = Type::getDoubleTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1733 ResultTy = Type::getX86_FP80Ty(Context); 1734 break; 1735 case bitc::TYPE_CODE_FP128: // FP128 1736 ResultTy = Type::getFP128Ty(Context); 1737 break; 1738 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1739 ResultTy = Type::getPPC_FP128Ty(Context); 1740 break; 1741 case bitc::TYPE_CODE_LABEL: // LABEL 1742 ResultTy = Type::getLabelTy(Context); 1743 break; 1744 case bitc::TYPE_CODE_METADATA: // METADATA 1745 ResultTy = Type::getMetadataTy(Context); 1746 break; 1747 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1748 ResultTy = Type::getX86_MMXTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_TOKEN: // TOKEN 1751 ResultTy = Type::getTokenTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1754 if (Record.size() < 1) 1755 return error("Invalid record"); 1756 1757 uint64_t NumBits = Record[0]; 1758 if (NumBits < IntegerType::MIN_INT_BITS || 1759 NumBits > IntegerType::MAX_INT_BITS) 1760 return error("Bitwidth for integer type out of range"); 1761 ResultTy = IntegerType::get(Context, NumBits); 1762 break; 1763 } 1764 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1765 // [pointee type, address space] 1766 if (Record.size() < 1) 1767 return error("Invalid record"); 1768 unsigned AddressSpace = 0; 1769 if (Record.size() == 2) 1770 AddressSpace = Record[1]; 1771 ResultTy = getTypeByID(Record[0]); 1772 if (!ResultTy || 1773 !PointerType::isValidElementType(ResultTy)) 1774 return error("Invalid type"); 1775 ResultTy = PointerType::get(ResultTy, AddressSpace); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_FUNCTION_OLD: { 1779 // FIXME: attrid is dead, remove it in LLVM 4.0 1780 // FUNCTION: [vararg, attrid, retty, paramty x N] 1781 if (Record.size() < 3) 1782 return error("Invalid record"); 1783 SmallVector<Type*, 8> ArgTys; 1784 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1785 if (Type *T = getTypeByID(Record[i])) 1786 ArgTys.push_back(T); 1787 else 1788 break; 1789 } 1790 1791 ResultTy = getTypeByID(Record[2]); 1792 if (!ResultTy || ArgTys.size() < Record.size()-3) 1793 return error("Invalid type"); 1794 1795 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION: { 1799 // FUNCTION: [vararg, retty, paramty x N] 1800 if (Record.size() < 2) 1801 return error("Invalid record"); 1802 SmallVector<Type*, 8> ArgTys; 1803 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1804 if (Type *T = getTypeByID(Record[i])) { 1805 if (!FunctionType::isValidArgumentType(T)) 1806 return error("Invalid function argument type"); 1807 ArgTys.push_back(T); 1808 } 1809 else 1810 break; 1811 } 1812 1813 ResultTy = getTypeByID(Record[1]); 1814 if (!ResultTy || ArgTys.size() < Record.size()-2) 1815 return error("Invalid type"); 1816 1817 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1818 break; 1819 } 1820 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1821 if (Record.size() < 1) 1822 return error("Invalid record"); 1823 SmallVector<Type*, 8> EltTys; 1824 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1825 if (Type *T = getTypeByID(Record[i])) 1826 EltTys.push_back(T); 1827 else 1828 break; 1829 } 1830 if (EltTys.size() != Record.size()-1) 1831 return error("Invalid type"); 1832 ResultTy = StructType::get(Context, EltTys, Record[0]); 1833 break; 1834 } 1835 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1836 if (convertToString(Record, 0, TypeName)) 1837 return error("Invalid record"); 1838 continue; 1839 1840 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.size() < 1) 1842 return error("Invalid record"); 1843 1844 if (NumRecords >= TypeList.size()) 1845 return error("Invalid TYPE table"); 1846 1847 // Check to see if this was forward referenced, if so fill in the temp. 1848 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1849 if (Res) { 1850 Res->setName(TypeName); 1851 TypeList[NumRecords] = nullptr; 1852 } else // Otherwise, create a new struct. 1853 Res = createIdentifiedStructType(Context, TypeName); 1854 TypeName.clear(); 1855 1856 SmallVector<Type*, 8> EltTys; 1857 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1858 if (Type *T = getTypeByID(Record[i])) 1859 EltTys.push_back(T); 1860 else 1861 break; 1862 } 1863 if (EltTys.size() != Record.size()-1) 1864 return error("Invalid record"); 1865 Res->setBody(EltTys, Record[0]); 1866 ResultTy = Res; 1867 break; 1868 } 1869 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1870 if (Record.size() != 1) 1871 return error("Invalid record"); 1872 1873 if (NumRecords >= TypeList.size()) 1874 return error("Invalid TYPE table"); 1875 1876 // Check to see if this was forward referenced, if so fill in the temp. 1877 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1878 if (Res) { 1879 Res->setName(TypeName); 1880 TypeList[NumRecords] = nullptr; 1881 } else // Otherwise, create a new struct with no body. 1882 Res = createIdentifiedStructType(Context, TypeName); 1883 TypeName.clear(); 1884 ResultTy = Res; 1885 break; 1886 } 1887 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1888 if (Record.size() < 2) 1889 return error("Invalid record"); 1890 ResultTy = getTypeByID(Record[1]); 1891 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1892 return error("Invalid type"); 1893 ResultTy = ArrayType::get(ResultTy, Record[0]); 1894 break; 1895 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1896 // [numelts, eltty, scalable] 1897 if (Record.size() < 2) 1898 return error("Invalid record"); 1899 if (Record[0] == 0) 1900 return error("Invalid vector length"); 1901 ResultTy = getTypeByID(Record[1]); 1902 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1903 return error("Invalid type"); 1904 bool Scalable = Record.size() > 2 ? Record[2] : false; 1905 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1906 break; 1907 } 1908 1909 if (NumRecords >= TypeList.size()) 1910 return error("Invalid TYPE table"); 1911 if (TypeList[NumRecords]) 1912 return error( 1913 "Invalid TYPE table: Only named structs can be forward referenced"); 1914 assert(ResultTy && "Didn't read a type?"); 1915 TypeList[NumRecords++] = ResultTy; 1916 } 1917 } 1918 1919 Error BitcodeReader::parseOperandBundleTags() { 1920 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1921 return Err; 1922 1923 if (!BundleTags.empty()) 1924 return error("Invalid multiple blocks"); 1925 1926 SmallVector<uint64_t, 64> Record; 1927 1928 while (true) { 1929 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1930 if (!MaybeEntry) 1931 return MaybeEntry.takeError(); 1932 BitstreamEntry Entry = MaybeEntry.get(); 1933 1934 switch (Entry.Kind) { 1935 case BitstreamEntry::SubBlock: // Handled for us already. 1936 case BitstreamEntry::Error: 1937 return error("Malformed block"); 1938 case BitstreamEntry::EndBlock: 1939 return Error::success(); 1940 case BitstreamEntry::Record: 1941 // The interesting case. 1942 break; 1943 } 1944 1945 // Tags are implicitly mapped to integers by their order. 1946 1947 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1948 if (!MaybeRecord) 1949 return MaybeRecord.takeError(); 1950 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1951 return error("Invalid record"); 1952 1953 // OPERAND_BUNDLE_TAG: [strchr x N] 1954 BundleTags.emplace_back(); 1955 if (convertToString(Record, 0, BundleTags.back())) 1956 return error("Invalid record"); 1957 Record.clear(); 1958 } 1959 } 1960 1961 Error BitcodeReader::parseSyncScopeNames() { 1962 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1963 return Err; 1964 1965 if (!SSIDs.empty()) 1966 return error("Invalid multiple synchronization scope names blocks"); 1967 1968 SmallVector<uint64_t, 64> Record; 1969 while (true) { 1970 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1971 if (!MaybeEntry) 1972 return MaybeEntry.takeError(); 1973 BitstreamEntry Entry = MaybeEntry.get(); 1974 1975 switch (Entry.Kind) { 1976 case BitstreamEntry::SubBlock: // Handled for us already. 1977 case BitstreamEntry::Error: 1978 return error("Malformed block"); 1979 case BitstreamEntry::EndBlock: 1980 if (SSIDs.empty()) 1981 return error("Invalid empty synchronization scope names block"); 1982 return Error::success(); 1983 case BitstreamEntry::Record: 1984 // The interesting case. 1985 break; 1986 } 1987 1988 // Synchronization scope names are implicitly mapped to synchronization 1989 // scope IDs by their order. 1990 1991 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1992 if (!MaybeRecord) 1993 return MaybeRecord.takeError(); 1994 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1995 return error("Invalid record"); 1996 1997 SmallString<16> SSN; 1998 if (convertToString(Record, 0, SSN)) 1999 return error("Invalid record"); 2000 2001 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2002 Record.clear(); 2003 } 2004 } 2005 2006 /// Associate a value with its name from the given index in the provided record. 2007 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2008 unsigned NameIndex, Triple &TT) { 2009 SmallString<128> ValueName; 2010 if (convertToString(Record, NameIndex, ValueName)) 2011 return error("Invalid record"); 2012 unsigned ValueID = Record[0]; 2013 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2014 return error("Invalid record"); 2015 Value *V = ValueList[ValueID]; 2016 2017 StringRef NameStr(ValueName.data(), ValueName.size()); 2018 if (NameStr.find_first_of(0) != StringRef::npos) 2019 return error("Invalid value name"); 2020 V->setName(NameStr); 2021 auto *GO = dyn_cast<GlobalObject>(V); 2022 if (GO) { 2023 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2024 if (TT.supportsCOMDAT()) 2025 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2026 else 2027 GO->setComdat(nullptr); 2028 } 2029 } 2030 return V; 2031 } 2032 2033 /// Helper to note and return the current location, and jump to the given 2034 /// offset. 2035 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2036 BitstreamCursor &Stream) { 2037 // Save the current parsing location so we can jump back at the end 2038 // of the VST read. 2039 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2040 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2041 return std::move(JumpFailed); 2042 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2043 if (!MaybeEntry) 2044 return MaybeEntry.takeError(); 2045 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2046 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2047 return CurrentBit; 2048 } 2049 2050 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2051 Function *F, 2052 ArrayRef<uint64_t> Record) { 2053 // Note that we subtract 1 here because the offset is relative to one word 2054 // before the start of the identification or module block, which was 2055 // historically always the start of the regular bitcode header. 2056 uint64_t FuncWordOffset = Record[1] - 1; 2057 uint64_t FuncBitOffset = FuncWordOffset * 32; 2058 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2059 // Set the LastFunctionBlockBit to point to the last function block. 2060 // Later when parsing is resumed after function materialization, 2061 // we can simply skip that last function block. 2062 if (FuncBitOffset > LastFunctionBlockBit) 2063 LastFunctionBlockBit = FuncBitOffset; 2064 } 2065 2066 /// Read a new-style GlobalValue symbol table. 2067 Error BitcodeReader::parseGlobalValueSymbolTable() { 2068 unsigned FuncBitcodeOffsetDelta = 2069 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2070 2071 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2072 return Err; 2073 2074 SmallVector<uint64_t, 64> Record; 2075 while (true) { 2076 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2077 if (!MaybeEntry) 2078 return MaybeEntry.takeError(); 2079 BitstreamEntry Entry = MaybeEntry.get(); 2080 2081 switch (Entry.Kind) { 2082 case BitstreamEntry::SubBlock: 2083 case BitstreamEntry::Error: 2084 return error("Malformed block"); 2085 case BitstreamEntry::EndBlock: 2086 return Error::success(); 2087 case BitstreamEntry::Record: 2088 break; 2089 } 2090 2091 Record.clear(); 2092 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2093 if (!MaybeRecord) 2094 return MaybeRecord.takeError(); 2095 switch (MaybeRecord.get()) { 2096 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2097 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2098 cast<Function>(ValueList[Record[0]]), Record); 2099 break; 2100 } 2101 } 2102 } 2103 2104 /// Parse the value symbol table at either the current parsing location or 2105 /// at the given bit offset if provided. 2106 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2107 uint64_t CurrentBit; 2108 // Pass in the Offset to distinguish between calling for the module-level 2109 // VST (where we want to jump to the VST offset) and the function-level 2110 // VST (where we don't). 2111 if (Offset > 0) { 2112 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2113 if (!MaybeCurrentBit) 2114 return MaybeCurrentBit.takeError(); 2115 CurrentBit = MaybeCurrentBit.get(); 2116 // If this module uses a string table, read this as a module-level VST. 2117 if (UseStrtab) { 2118 if (Error Err = parseGlobalValueSymbolTable()) 2119 return Err; 2120 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2121 return JumpFailed; 2122 return Error::success(); 2123 } 2124 // Otherwise, the VST will be in a similar format to a function-level VST, 2125 // and will contain symbol names. 2126 } 2127 2128 // Compute the delta between the bitcode indices in the VST (the word offset 2129 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2130 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2131 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2132 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2133 // just before entering the VST subblock because: 1) the EnterSubBlock 2134 // changes the AbbrevID width; 2) the VST block is nested within the same 2135 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2136 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2137 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2138 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2139 unsigned FuncBitcodeOffsetDelta = 2140 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2141 2142 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2143 return Err; 2144 2145 SmallVector<uint64_t, 64> Record; 2146 2147 Triple TT(TheModule->getTargetTriple()); 2148 2149 // Read all the records for this value table. 2150 SmallString<128> ValueName; 2151 2152 while (true) { 2153 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2154 if (!MaybeEntry) 2155 return MaybeEntry.takeError(); 2156 BitstreamEntry Entry = MaybeEntry.get(); 2157 2158 switch (Entry.Kind) { 2159 case BitstreamEntry::SubBlock: // Handled for us already. 2160 case BitstreamEntry::Error: 2161 return error("Malformed block"); 2162 case BitstreamEntry::EndBlock: 2163 if (Offset > 0) 2164 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2165 return JumpFailed; 2166 return Error::success(); 2167 case BitstreamEntry::Record: 2168 // The interesting case. 2169 break; 2170 } 2171 2172 // Read a record. 2173 Record.clear(); 2174 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2175 if (!MaybeRecord) 2176 return MaybeRecord.takeError(); 2177 switch (MaybeRecord.get()) { 2178 default: // Default behavior: unknown type. 2179 break; 2180 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2181 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2182 if (Error Err = ValOrErr.takeError()) 2183 return Err; 2184 ValOrErr.get(); 2185 break; 2186 } 2187 case bitc::VST_CODE_FNENTRY: { 2188 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2189 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2190 if (Error Err = ValOrErr.takeError()) 2191 return Err; 2192 Value *V = ValOrErr.get(); 2193 2194 // Ignore function offsets emitted for aliases of functions in older 2195 // versions of LLVM. 2196 if (auto *F = dyn_cast<Function>(V)) 2197 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2198 break; 2199 } 2200 case bitc::VST_CODE_BBENTRY: { 2201 if (convertToString(Record, 1, ValueName)) 2202 return error("Invalid record"); 2203 BasicBlock *BB = getBasicBlock(Record[0]); 2204 if (!BB) 2205 return error("Invalid record"); 2206 2207 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2208 ValueName.clear(); 2209 break; 2210 } 2211 } 2212 } 2213 } 2214 2215 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2216 /// encoding. 2217 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2218 if ((V & 1) == 0) 2219 return V >> 1; 2220 if (V != 1) 2221 return -(V >> 1); 2222 // There is no such thing as -0 with integers. "-0" really means MININT. 2223 return 1ULL << 63; 2224 } 2225 2226 /// Resolve all of the initializers for global values and aliases that we can. 2227 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2228 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2229 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2230 IndirectSymbolInitWorklist; 2231 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2232 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2233 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2234 2235 GlobalInitWorklist.swap(GlobalInits); 2236 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2237 FunctionPrefixWorklist.swap(FunctionPrefixes); 2238 FunctionPrologueWorklist.swap(FunctionPrologues); 2239 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2240 2241 while (!GlobalInitWorklist.empty()) { 2242 unsigned ValID = GlobalInitWorklist.back().second; 2243 if (ValID >= ValueList.size()) { 2244 // Not ready to resolve this yet, it requires something later in the file. 2245 GlobalInits.push_back(GlobalInitWorklist.back()); 2246 } else { 2247 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2248 GlobalInitWorklist.back().first->setInitializer(C); 2249 else 2250 return error("Expected a constant"); 2251 } 2252 GlobalInitWorklist.pop_back(); 2253 } 2254 2255 while (!IndirectSymbolInitWorklist.empty()) { 2256 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2257 if (ValID >= ValueList.size()) { 2258 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2259 } else { 2260 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2261 if (!C) 2262 return error("Expected a constant"); 2263 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2264 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2265 return error("Alias and aliasee types don't match"); 2266 GIS->setIndirectSymbol(C); 2267 } 2268 IndirectSymbolInitWorklist.pop_back(); 2269 } 2270 2271 while (!FunctionPrefixWorklist.empty()) { 2272 unsigned ValID = FunctionPrefixWorklist.back().second; 2273 if (ValID >= ValueList.size()) { 2274 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2275 } else { 2276 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2277 FunctionPrefixWorklist.back().first->setPrefixData(C); 2278 else 2279 return error("Expected a constant"); 2280 } 2281 FunctionPrefixWorklist.pop_back(); 2282 } 2283 2284 while (!FunctionPrologueWorklist.empty()) { 2285 unsigned ValID = FunctionPrologueWorklist.back().second; 2286 if (ValID >= ValueList.size()) { 2287 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2288 } else { 2289 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2290 FunctionPrologueWorklist.back().first->setPrologueData(C); 2291 else 2292 return error("Expected a constant"); 2293 } 2294 FunctionPrologueWorklist.pop_back(); 2295 } 2296 2297 while (!FunctionPersonalityFnWorklist.empty()) { 2298 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2299 if (ValID >= ValueList.size()) { 2300 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2301 } else { 2302 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2303 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2304 else 2305 return error("Expected a constant"); 2306 } 2307 FunctionPersonalityFnWorklist.pop_back(); 2308 } 2309 2310 return Error::success(); 2311 } 2312 2313 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2314 SmallVector<uint64_t, 8> Words(Vals.size()); 2315 transform(Vals, Words.begin(), 2316 BitcodeReader::decodeSignRotatedValue); 2317 2318 return APInt(TypeBits, Words); 2319 } 2320 2321 Error BitcodeReader::parseConstants() { 2322 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2323 return Err; 2324 2325 SmallVector<uint64_t, 64> Record; 2326 2327 // Read all the records for this value table. 2328 Type *CurTy = Type::getInt32Ty(Context); 2329 Type *CurFullTy = Type::getInt32Ty(Context); 2330 unsigned NextCstNo = ValueList.size(); 2331 2332 while (true) { 2333 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2334 if (!MaybeEntry) 2335 return MaybeEntry.takeError(); 2336 BitstreamEntry Entry = MaybeEntry.get(); 2337 2338 switch (Entry.Kind) { 2339 case BitstreamEntry::SubBlock: // Handled for us already. 2340 case BitstreamEntry::Error: 2341 return error("Malformed block"); 2342 case BitstreamEntry::EndBlock: 2343 if (NextCstNo != ValueList.size()) 2344 return error("Invalid constant reference"); 2345 2346 // Once all the constants have been read, go through and resolve forward 2347 // references. 2348 ValueList.resolveConstantForwardRefs(); 2349 return Error::success(); 2350 case BitstreamEntry::Record: 2351 // The interesting case. 2352 break; 2353 } 2354 2355 // Read a record. 2356 Record.clear(); 2357 Type *VoidType = Type::getVoidTy(Context); 2358 Value *V = nullptr; 2359 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2360 if (!MaybeBitCode) 2361 return MaybeBitCode.takeError(); 2362 switch (unsigned BitCode = MaybeBitCode.get()) { 2363 default: // Default behavior: unknown constant 2364 case bitc::CST_CODE_UNDEF: // UNDEF 2365 V = UndefValue::get(CurTy); 2366 break; 2367 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2368 if (Record.empty()) 2369 return error("Invalid record"); 2370 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2371 return error("Invalid record"); 2372 if (TypeList[Record[0]] == VoidType) 2373 return error("Invalid constant type"); 2374 CurFullTy = TypeList[Record[0]]; 2375 CurTy = flattenPointerTypes(CurFullTy); 2376 continue; // Skip the ValueList manipulation. 2377 case bitc::CST_CODE_NULL: // NULL 2378 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2379 return error("Invalid type for a constant null value"); 2380 V = Constant::getNullValue(CurTy); 2381 break; 2382 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2383 if (!CurTy->isIntegerTy() || Record.empty()) 2384 return error("Invalid record"); 2385 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2386 break; 2387 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2388 if (!CurTy->isIntegerTy() || Record.empty()) 2389 return error("Invalid record"); 2390 2391 APInt VInt = 2392 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2393 V = ConstantInt::get(Context, VInt); 2394 2395 break; 2396 } 2397 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2398 if (Record.empty()) 2399 return error("Invalid record"); 2400 if (CurTy->isHalfTy()) 2401 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2402 APInt(16, (uint16_t)Record[0]))); 2403 else if (CurTy->isFloatTy()) 2404 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2405 APInt(32, (uint32_t)Record[0]))); 2406 else if (CurTy->isDoubleTy()) 2407 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2408 APInt(64, Record[0]))); 2409 else if (CurTy->isX86_FP80Ty()) { 2410 // Bits are not stored the same way as a normal i80 APInt, compensate. 2411 uint64_t Rearrange[2]; 2412 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2413 Rearrange[1] = Record[0] >> 48; 2414 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2415 APInt(80, Rearrange))); 2416 } else if (CurTy->isFP128Ty()) 2417 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2418 APInt(128, Record))); 2419 else if (CurTy->isPPC_FP128Ty()) 2420 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2421 APInt(128, Record))); 2422 else 2423 V = UndefValue::get(CurTy); 2424 break; 2425 } 2426 2427 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2428 if (Record.empty()) 2429 return error("Invalid record"); 2430 2431 unsigned Size = Record.size(); 2432 SmallVector<Constant*, 16> Elts; 2433 2434 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2435 for (unsigned i = 0; i != Size; ++i) 2436 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2437 STy->getElementType(i))); 2438 V = ConstantStruct::get(STy, Elts); 2439 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2440 Type *EltTy = ATy->getElementType(); 2441 for (unsigned i = 0; i != Size; ++i) 2442 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2443 V = ConstantArray::get(ATy, Elts); 2444 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2445 Type *EltTy = VTy->getElementType(); 2446 for (unsigned i = 0; i != Size; ++i) 2447 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2448 V = ConstantVector::get(Elts); 2449 } else { 2450 V = UndefValue::get(CurTy); 2451 } 2452 break; 2453 } 2454 case bitc::CST_CODE_STRING: // STRING: [values] 2455 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2456 if (Record.empty()) 2457 return error("Invalid record"); 2458 2459 SmallString<16> Elts(Record.begin(), Record.end()); 2460 V = ConstantDataArray::getString(Context, Elts, 2461 BitCode == bitc::CST_CODE_CSTRING); 2462 break; 2463 } 2464 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2465 if (Record.empty()) 2466 return error("Invalid record"); 2467 2468 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2469 if (EltTy->isIntegerTy(8)) { 2470 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2471 if (isa<VectorType>(CurTy)) 2472 V = ConstantDataVector::get(Context, Elts); 2473 else 2474 V = ConstantDataArray::get(Context, Elts); 2475 } else if (EltTy->isIntegerTy(16)) { 2476 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2477 if (isa<VectorType>(CurTy)) 2478 V = ConstantDataVector::get(Context, Elts); 2479 else 2480 V = ConstantDataArray::get(Context, Elts); 2481 } else if (EltTy->isIntegerTy(32)) { 2482 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2483 if (isa<VectorType>(CurTy)) 2484 V = ConstantDataVector::get(Context, Elts); 2485 else 2486 V = ConstantDataArray::get(Context, Elts); 2487 } else if (EltTy->isIntegerTy(64)) { 2488 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2489 if (isa<VectorType>(CurTy)) 2490 V = ConstantDataVector::get(Context, Elts); 2491 else 2492 V = ConstantDataArray::get(Context, Elts); 2493 } else if (EltTy->isHalfTy()) { 2494 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2495 if (isa<VectorType>(CurTy)) 2496 V = ConstantDataVector::getFP(Context, Elts); 2497 else 2498 V = ConstantDataArray::getFP(Context, Elts); 2499 } else if (EltTy->isFloatTy()) { 2500 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2501 if (isa<VectorType>(CurTy)) 2502 V = ConstantDataVector::getFP(Context, Elts); 2503 else 2504 V = ConstantDataArray::getFP(Context, Elts); 2505 } else if (EltTy->isDoubleTy()) { 2506 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2507 if (isa<VectorType>(CurTy)) 2508 V = ConstantDataVector::getFP(Context, Elts); 2509 else 2510 V = ConstantDataArray::getFP(Context, Elts); 2511 } else { 2512 return error("Invalid type for value"); 2513 } 2514 break; 2515 } 2516 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2517 if (Record.size() < 2) 2518 return error("Invalid record"); 2519 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2520 if (Opc < 0) { 2521 V = UndefValue::get(CurTy); // Unknown unop. 2522 } else { 2523 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2524 unsigned Flags = 0; 2525 V = ConstantExpr::get(Opc, LHS, Flags); 2526 } 2527 break; 2528 } 2529 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2530 if (Record.size() < 3) 2531 return error("Invalid record"); 2532 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2533 if (Opc < 0) { 2534 V = UndefValue::get(CurTy); // Unknown binop. 2535 } else { 2536 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2537 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2538 unsigned Flags = 0; 2539 if (Record.size() >= 4) { 2540 if (Opc == Instruction::Add || 2541 Opc == Instruction::Sub || 2542 Opc == Instruction::Mul || 2543 Opc == Instruction::Shl) { 2544 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2545 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2546 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2547 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2548 } else if (Opc == Instruction::SDiv || 2549 Opc == Instruction::UDiv || 2550 Opc == Instruction::LShr || 2551 Opc == Instruction::AShr) { 2552 if (Record[3] & (1 << bitc::PEO_EXACT)) 2553 Flags |= SDivOperator::IsExact; 2554 } 2555 } 2556 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2557 } 2558 break; 2559 } 2560 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2561 if (Record.size() < 3) 2562 return error("Invalid record"); 2563 int Opc = getDecodedCastOpcode(Record[0]); 2564 if (Opc < 0) { 2565 V = UndefValue::get(CurTy); // Unknown cast. 2566 } else { 2567 Type *OpTy = getTypeByID(Record[1]); 2568 if (!OpTy) 2569 return error("Invalid record"); 2570 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2571 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2572 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2573 } 2574 break; 2575 } 2576 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2577 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2578 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2579 // operands] 2580 unsigned OpNum = 0; 2581 Type *PointeeType = nullptr; 2582 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2583 Record.size() % 2) 2584 PointeeType = getTypeByID(Record[OpNum++]); 2585 2586 bool InBounds = false; 2587 Optional<unsigned> InRangeIndex; 2588 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2589 uint64_t Op = Record[OpNum++]; 2590 InBounds = Op & 1; 2591 InRangeIndex = Op >> 1; 2592 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2593 InBounds = true; 2594 2595 SmallVector<Constant*, 16> Elts; 2596 Type *Elt0FullTy = nullptr; 2597 while (OpNum != Record.size()) { 2598 if (!Elt0FullTy) 2599 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2600 Type *ElTy = getTypeByID(Record[OpNum++]); 2601 if (!ElTy) 2602 return error("Invalid record"); 2603 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2604 } 2605 2606 if (Elts.size() < 1) 2607 return error("Invalid gep with no operands"); 2608 2609 Type *ImplicitPointeeType = 2610 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2611 if (!PointeeType) 2612 PointeeType = ImplicitPointeeType; 2613 else if (PointeeType != ImplicitPointeeType) 2614 return error("Explicit gep operator type does not match pointee type " 2615 "of pointer operand"); 2616 2617 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2618 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2619 InBounds, InRangeIndex); 2620 break; 2621 } 2622 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2623 if (Record.size() < 3) 2624 return error("Invalid record"); 2625 2626 Type *SelectorTy = Type::getInt1Ty(Context); 2627 2628 // The selector might be an i1 or an <n x i1> 2629 // Get the type from the ValueList before getting a forward ref. 2630 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2631 if (Value *V = ValueList[Record[0]]) 2632 if (SelectorTy != V->getType()) 2633 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2634 2635 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2636 SelectorTy), 2637 ValueList.getConstantFwdRef(Record[1],CurTy), 2638 ValueList.getConstantFwdRef(Record[2],CurTy)); 2639 break; 2640 } 2641 case bitc::CST_CODE_CE_EXTRACTELT 2642 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2643 if (Record.size() < 3) 2644 return error("Invalid record"); 2645 VectorType *OpTy = 2646 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2647 if (!OpTy) 2648 return error("Invalid record"); 2649 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2650 Constant *Op1 = nullptr; 2651 if (Record.size() == 4) { 2652 Type *IdxTy = getTypeByID(Record[2]); 2653 if (!IdxTy) 2654 return error("Invalid record"); 2655 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2656 } else // TODO: Remove with llvm 4.0 2657 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2658 if (!Op1) 2659 return error("Invalid record"); 2660 V = ConstantExpr::getExtractElement(Op0, Op1); 2661 break; 2662 } 2663 case bitc::CST_CODE_CE_INSERTELT 2664 : { // CE_INSERTELT: [opval, opval, opty, opval] 2665 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2666 if (Record.size() < 3 || !OpTy) 2667 return error("Invalid record"); 2668 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2669 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2670 OpTy->getElementType()); 2671 Constant *Op2 = nullptr; 2672 if (Record.size() == 4) { 2673 Type *IdxTy = getTypeByID(Record[2]); 2674 if (!IdxTy) 2675 return error("Invalid record"); 2676 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2677 } else // TODO: Remove with llvm 4.0 2678 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2679 if (!Op2) 2680 return error("Invalid record"); 2681 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2682 break; 2683 } 2684 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2685 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2686 if (Record.size() < 3 || !OpTy) 2687 return error("Invalid record"); 2688 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2689 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2690 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2691 OpTy->getNumElements()); 2692 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2693 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2694 break; 2695 } 2696 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2697 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2698 VectorType *OpTy = 2699 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2700 if (Record.size() < 4 || !RTy || !OpTy) 2701 return error("Invalid record"); 2702 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2703 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2704 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2705 RTy->getNumElements()); 2706 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2707 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2708 break; 2709 } 2710 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2711 if (Record.size() < 4) 2712 return error("Invalid record"); 2713 Type *OpTy = getTypeByID(Record[0]); 2714 if (!OpTy) 2715 return error("Invalid record"); 2716 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2717 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2718 2719 if (OpTy->isFPOrFPVectorTy()) 2720 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2721 else 2722 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2723 break; 2724 } 2725 // This maintains backward compatibility, pre-asm dialect keywords. 2726 // FIXME: Remove with the 4.0 release. 2727 case bitc::CST_CODE_INLINEASM_OLD: { 2728 if (Record.size() < 2) 2729 return error("Invalid record"); 2730 std::string AsmStr, ConstrStr; 2731 bool HasSideEffects = Record[0] & 1; 2732 bool IsAlignStack = Record[0] >> 1; 2733 unsigned AsmStrSize = Record[1]; 2734 if (2+AsmStrSize >= Record.size()) 2735 return error("Invalid record"); 2736 unsigned ConstStrSize = Record[2+AsmStrSize]; 2737 if (3+AsmStrSize+ConstStrSize > Record.size()) 2738 return error("Invalid record"); 2739 2740 for (unsigned i = 0; i != AsmStrSize; ++i) 2741 AsmStr += (char)Record[2+i]; 2742 for (unsigned i = 0; i != ConstStrSize; ++i) 2743 ConstrStr += (char)Record[3+AsmStrSize+i]; 2744 UpgradeInlineAsmString(&AsmStr); 2745 V = InlineAsm::get( 2746 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2747 ConstrStr, HasSideEffects, IsAlignStack); 2748 break; 2749 } 2750 // This version adds support for the asm dialect keywords (e.g., 2751 // inteldialect). 2752 case bitc::CST_CODE_INLINEASM: { 2753 if (Record.size() < 2) 2754 return error("Invalid record"); 2755 std::string AsmStr, ConstrStr; 2756 bool HasSideEffects = Record[0] & 1; 2757 bool IsAlignStack = (Record[0] >> 1) & 1; 2758 unsigned AsmDialect = Record[0] >> 2; 2759 unsigned AsmStrSize = Record[1]; 2760 if (2+AsmStrSize >= Record.size()) 2761 return error("Invalid record"); 2762 unsigned ConstStrSize = Record[2+AsmStrSize]; 2763 if (3+AsmStrSize+ConstStrSize > Record.size()) 2764 return error("Invalid record"); 2765 2766 for (unsigned i = 0; i != AsmStrSize; ++i) 2767 AsmStr += (char)Record[2+i]; 2768 for (unsigned i = 0; i != ConstStrSize; ++i) 2769 ConstrStr += (char)Record[3+AsmStrSize+i]; 2770 UpgradeInlineAsmString(&AsmStr); 2771 V = InlineAsm::get( 2772 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2773 ConstrStr, HasSideEffects, IsAlignStack, 2774 InlineAsm::AsmDialect(AsmDialect)); 2775 break; 2776 } 2777 case bitc::CST_CODE_BLOCKADDRESS:{ 2778 if (Record.size() < 3) 2779 return error("Invalid record"); 2780 Type *FnTy = getTypeByID(Record[0]); 2781 if (!FnTy) 2782 return error("Invalid record"); 2783 Function *Fn = 2784 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2785 if (!Fn) 2786 return error("Invalid record"); 2787 2788 // If the function is already parsed we can insert the block address right 2789 // away. 2790 BasicBlock *BB; 2791 unsigned BBID = Record[2]; 2792 if (!BBID) 2793 // Invalid reference to entry block. 2794 return error("Invalid ID"); 2795 if (!Fn->empty()) { 2796 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2797 for (size_t I = 0, E = BBID; I != E; ++I) { 2798 if (BBI == BBE) 2799 return error("Invalid ID"); 2800 ++BBI; 2801 } 2802 BB = &*BBI; 2803 } else { 2804 // Otherwise insert a placeholder and remember it so it can be inserted 2805 // when the function is parsed. 2806 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2807 if (FwdBBs.empty()) 2808 BasicBlockFwdRefQueue.push_back(Fn); 2809 if (FwdBBs.size() < BBID + 1) 2810 FwdBBs.resize(BBID + 1); 2811 if (!FwdBBs[BBID]) 2812 FwdBBs[BBID] = BasicBlock::Create(Context); 2813 BB = FwdBBs[BBID]; 2814 } 2815 V = BlockAddress::get(Fn, BB); 2816 break; 2817 } 2818 } 2819 2820 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2821 "Incorrect fully structured type provided for Constant"); 2822 ValueList.assignValue(V, NextCstNo, CurFullTy); 2823 ++NextCstNo; 2824 } 2825 } 2826 2827 Error BitcodeReader::parseUseLists() { 2828 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2829 return Err; 2830 2831 // Read all the records. 2832 SmallVector<uint64_t, 64> Record; 2833 2834 while (true) { 2835 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2836 if (!MaybeEntry) 2837 return MaybeEntry.takeError(); 2838 BitstreamEntry Entry = MaybeEntry.get(); 2839 2840 switch (Entry.Kind) { 2841 case BitstreamEntry::SubBlock: // Handled for us already. 2842 case BitstreamEntry::Error: 2843 return error("Malformed block"); 2844 case BitstreamEntry::EndBlock: 2845 return Error::success(); 2846 case BitstreamEntry::Record: 2847 // The interesting case. 2848 break; 2849 } 2850 2851 // Read a use list record. 2852 Record.clear(); 2853 bool IsBB = false; 2854 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2855 if (!MaybeRecord) 2856 return MaybeRecord.takeError(); 2857 switch (MaybeRecord.get()) { 2858 default: // Default behavior: unknown type. 2859 break; 2860 case bitc::USELIST_CODE_BB: 2861 IsBB = true; 2862 LLVM_FALLTHROUGH; 2863 case bitc::USELIST_CODE_DEFAULT: { 2864 unsigned RecordLength = Record.size(); 2865 if (RecordLength < 3) 2866 // Records should have at least an ID and two indexes. 2867 return error("Invalid record"); 2868 unsigned ID = Record.back(); 2869 Record.pop_back(); 2870 2871 Value *V; 2872 if (IsBB) { 2873 assert(ID < FunctionBBs.size() && "Basic block not found"); 2874 V = FunctionBBs[ID]; 2875 } else 2876 V = ValueList[ID]; 2877 unsigned NumUses = 0; 2878 SmallDenseMap<const Use *, unsigned, 16> Order; 2879 for (const Use &U : V->materialized_uses()) { 2880 if (++NumUses > Record.size()) 2881 break; 2882 Order[&U] = Record[NumUses - 1]; 2883 } 2884 if (Order.size() != Record.size() || NumUses > Record.size()) 2885 // Mismatches can happen if the functions are being materialized lazily 2886 // (out-of-order), or a value has been upgraded. 2887 break; 2888 2889 V->sortUseList([&](const Use &L, const Use &R) { 2890 return Order.lookup(&L) < Order.lookup(&R); 2891 }); 2892 break; 2893 } 2894 } 2895 } 2896 } 2897 2898 /// When we see the block for metadata, remember where it is and then skip it. 2899 /// This lets us lazily deserialize the metadata. 2900 Error BitcodeReader::rememberAndSkipMetadata() { 2901 // Save the current stream state. 2902 uint64_t CurBit = Stream.GetCurrentBitNo(); 2903 DeferredMetadataInfo.push_back(CurBit); 2904 2905 // Skip over the block for now. 2906 if (Error Err = Stream.SkipBlock()) 2907 return Err; 2908 return Error::success(); 2909 } 2910 2911 Error BitcodeReader::materializeMetadata() { 2912 for (uint64_t BitPos : DeferredMetadataInfo) { 2913 // Move the bit stream to the saved position. 2914 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2915 return JumpFailed; 2916 if (Error Err = MDLoader->parseModuleMetadata()) 2917 return Err; 2918 } 2919 2920 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2921 // metadata. 2922 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2923 NamedMDNode *LinkerOpts = 2924 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2925 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2926 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2927 } 2928 2929 DeferredMetadataInfo.clear(); 2930 return Error::success(); 2931 } 2932 2933 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2934 2935 /// When we see the block for a function body, remember where it is and then 2936 /// skip it. This lets us lazily deserialize the functions. 2937 Error BitcodeReader::rememberAndSkipFunctionBody() { 2938 // Get the function we are talking about. 2939 if (FunctionsWithBodies.empty()) 2940 return error("Insufficient function protos"); 2941 2942 Function *Fn = FunctionsWithBodies.back(); 2943 FunctionsWithBodies.pop_back(); 2944 2945 // Save the current stream state. 2946 uint64_t CurBit = Stream.GetCurrentBitNo(); 2947 assert( 2948 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2949 "Mismatch between VST and scanned function offsets"); 2950 DeferredFunctionInfo[Fn] = CurBit; 2951 2952 // Skip over the function block for now. 2953 if (Error Err = Stream.SkipBlock()) 2954 return Err; 2955 return Error::success(); 2956 } 2957 2958 Error BitcodeReader::globalCleanup() { 2959 // Patch the initializers for globals and aliases up. 2960 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2961 return Err; 2962 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2963 return error("Malformed global initializer set"); 2964 2965 // Look for intrinsic functions which need to be upgraded at some point 2966 for (Function &F : *TheModule) { 2967 MDLoader->upgradeDebugIntrinsics(F); 2968 Function *NewFn; 2969 if (UpgradeIntrinsicFunction(&F, NewFn)) 2970 UpgradedIntrinsics[&F] = NewFn; 2971 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2972 // Some types could be renamed during loading if several modules are 2973 // loaded in the same LLVMContext (LTO scenario). In this case we should 2974 // remangle intrinsics names as well. 2975 RemangledIntrinsics[&F] = Remangled.getValue(); 2976 } 2977 2978 // Look for global variables which need to be renamed. 2979 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2980 for (GlobalVariable &GV : TheModule->globals()) 2981 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2982 UpgradedVariables.emplace_back(&GV, Upgraded); 2983 for (auto &Pair : UpgradedVariables) { 2984 Pair.first->eraseFromParent(); 2985 TheModule->getGlobalList().push_back(Pair.second); 2986 } 2987 2988 // Force deallocation of memory for these vectors to favor the client that 2989 // want lazy deserialization. 2990 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2991 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2992 IndirectSymbolInits); 2993 return Error::success(); 2994 } 2995 2996 /// Support for lazy parsing of function bodies. This is required if we 2997 /// either have an old bitcode file without a VST forward declaration record, 2998 /// or if we have an anonymous function being materialized, since anonymous 2999 /// functions do not have a name and are therefore not in the VST. 3000 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3001 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3002 return JumpFailed; 3003 3004 if (Stream.AtEndOfStream()) 3005 return error("Could not find function in stream"); 3006 3007 if (!SeenFirstFunctionBody) 3008 return error("Trying to materialize functions before seeing function blocks"); 3009 3010 // An old bitcode file with the symbol table at the end would have 3011 // finished the parse greedily. 3012 assert(SeenValueSymbolTable); 3013 3014 SmallVector<uint64_t, 64> Record; 3015 3016 while (true) { 3017 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3018 if (!MaybeEntry) 3019 return MaybeEntry.takeError(); 3020 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3021 3022 switch (Entry.Kind) { 3023 default: 3024 return error("Expect SubBlock"); 3025 case BitstreamEntry::SubBlock: 3026 switch (Entry.ID) { 3027 default: 3028 return error("Expect function block"); 3029 case bitc::FUNCTION_BLOCK_ID: 3030 if (Error Err = rememberAndSkipFunctionBody()) 3031 return Err; 3032 NextUnreadBit = Stream.GetCurrentBitNo(); 3033 return Error::success(); 3034 } 3035 } 3036 } 3037 } 3038 3039 bool BitcodeReaderBase::readBlockInfo() { 3040 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3041 Stream.ReadBlockInfoBlock(); 3042 if (!MaybeNewBlockInfo) 3043 return true; // FIXME Handle the error. 3044 Optional<BitstreamBlockInfo> NewBlockInfo = 3045 std::move(MaybeNewBlockInfo.get()); 3046 if (!NewBlockInfo) 3047 return true; 3048 BlockInfo = std::move(*NewBlockInfo); 3049 return false; 3050 } 3051 3052 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3053 // v1: [selection_kind, name] 3054 // v2: [strtab_offset, strtab_size, selection_kind] 3055 StringRef Name; 3056 std::tie(Name, Record) = readNameFromStrtab(Record); 3057 3058 if (Record.empty()) 3059 return error("Invalid record"); 3060 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3061 std::string OldFormatName; 3062 if (!UseStrtab) { 3063 if (Record.size() < 2) 3064 return error("Invalid record"); 3065 unsigned ComdatNameSize = Record[1]; 3066 OldFormatName.reserve(ComdatNameSize); 3067 for (unsigned i = 0; i != ComdatNameSize; ++i) 3068 OldFormatName += (char)Record[2 + i]; 3069 Name = OldFormatName; 3070 } 3071 Comdat *C = TheModule->getOrInsertComdat(Name); 3072 C->setSelectionKind(SK); 3073 ComdatList.push_back(C); 3074 return Error::success(); 3075 } 3076 3077 static void inferDSOLocal(GlobalValue *GV) { 3078 // infer dso_local from linkage and visibility if it is not encoded. 3079 if (GV->hasLocalLinkage() || 3080 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3081 GV->setDSOLocal(true); 3082 } 3083 3084 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3085 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3086 // visibility, threadlocal, unnamed_addr, externally_initialized, 3087 // dllstorageclass, comdat, attributes, preemption specifier, 3088 // partition strtab offset, partition strtab size] (name in VST) 3089 // v2: [strtab_offset, strtab_size, v1] 3090 StringRef Name; 3091 std::tie(Name, Record) = readNameFromStrtab(Record); 3092 3093 if (Record.size() < 6) 3094 return error("Invalid record"); 3095 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3096 Type *Ty = flattenPointerTypes(FullTy); 3097 if (!Ty) 3098 return error("Invalid record"); 3099 bool isConstant = Record[1] & 1; 3100 bool explicitType = Record[1] & 2; 3101 unsigned AddressSpace; 3102 if (explicitType) { 3103 AddressSpace = Record[1] >> 2; 3104 } else { 3105 if (!Ty->isPointerTy()) 3106 return error("Invalid type for value"); 3107 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3108 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3109 } 3110 3111 uint64_t RawLinkage = Record[3]; 3112 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3113 MaybeAlign Alignment; 3114 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3115 return Err; 3116 std::string Section; 3117 if (Record[5]) { 3118 if (Record[5] - 1 >= SectionTable.size()) 3119 return error("Invalid ID"); 3120 Section = SectionTable[Record[5] - 1]; 3121 } 3122 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3123 // Local linkage must have default visibility. 3124 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3125 // FIXME: Change to an error if non-default in 4.0. 3126 Visibility = getDecodedVisibility(Record[6]); 3127 3128 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3129 if (Record.size() > 7) 3130 TLM = getDecodedThreadLocalMode(Record[7]); 3131 3132 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3133 if (Record.size() > 8) 3134 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3135 3136 bool ExternallyInitialized = false; 3137 if (Record.size() > 9) 3138 ExternallyInitialized = Record[9]; 3139 3140 GlobalVariable *NewGV = 3141 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3142 nullptr, TLM, AddressSpace, ExternallyInitialized); 3143 NewGV->setAlignment(Alignment); 3144 if (!Section.empty()) 3145 NewGV->setSection(Section); 3146 NewGV->setVisibility(Visibility); 3147 NewGV->setUnnamedAddr(UnnamedAddr); 3148 3149 if (Record.size() > 10) 3150 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3151 else 3152 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3153 3154 FullTy = PointerType::get(FullTy, AddressSpace); 3155 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3156 "Incorrect fully specified type for GlobalVariable"); 3157 ValueList.push_back(NewGV, FullTy); 3158 3159 // Remember which value to use for the global initializer. 3160 if (unsigned InitID = Record[2]) 3161 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3162 3163 if (Record.size() > 11) { 3164 if (unsigned ComdatID = Record[11]) { 3165 if (ComdatID > ComdatList.size()) 3166 return error("Invalid global variable comdat ID"); 3167 NewGV->setComdat(ComdatList[ComdatID - 1]); 3168 } 3169 } else if (hasImplicitComdat(RawLinkage)) { 3170 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3171 } 3172 3173 if (Record.size() > 12) { 3174 auto AS = getAttributes(Record[12]).getFnAttributes(); 3175 NewGV->setAttributes(AS); 3176 } 3177 3178 if (Record.size() > 13) { 3179 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3180 } 3181 inferDSOLocal(NewGV); 3182 3183 // Check whether we have enough values to read a partition name. 3184 if (Record.size() > 15) 3185 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3186 3187 return Error::success(); 3188 } 3189 3190 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3191 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3192 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3193 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3194 // v2: [strtab_offset, strtab_size, v1] 3195 StringRef Name; 3196 std::tie(Name, Record) = readNameFromStrtab(Record); 3197 3198 if (Record.size() < 8) 3199 return error("Invalid record"); 3200 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3201 Type *FTy = flattenPointerTypes(FullFTy); 3202 if (!FTy) 3203 return error("Invalid record"); 3204 if (isa<PointerType>(FTy)) 3205 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3206 3207 if (!isa<FunctionType>(FTy)) 3208 return error("Invalid type for value"); 3209 auto CC = static_cast<CallingConv::ID>(Record[1]); 3210 if (CC & ~CallingConv::MaxID) 3211 return error("Invalid calling convention ID"); 3212 3213 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3214 if (Record.size() > 16) 3215 AddrSpace = Record[16]; 3216 3217 Function *Func = 3218 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3219 AddrSpace, Name, TheModule); 3220 3221 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3222 "Incorrect fully specified type provided for function"); 3223 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3224 3225 Func->setCallingConv(CC); 3226 bool isProto = Record[2]; 3227 uint64_t RawLinkage = Record[3]; 3228 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3229 Func->setAttributes(getAttributes(Record[4])); 3230 3231 // Upgrade any old-style byval without a type by propagating the argument's 3232 // pointee type. There should be no opaque pointers where the byval type is 3233 // implicit. 3234 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3235 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3236 continue; 3237 3238 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3239 Func->removeParamAttr(i, Attribute::ByVal); 3240 Func->addParamAttr(i, Attribute::getWithByValType( 3241 Context, getPointerElementFlatType(PTy))); 3242 } 3243 3244 MaybeAlign Alignment; 3245 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3246 return Err; 3247 Func->setAlignment(Alignment); 3248 if (Record[6]) { 3249 if (Record[6] - 1 >= SectionTable.size()) 3250 return error("Invalid ID"); 3251 Func->setSection(SectionTable[Record[6] - 1]); 3252 } 3253 // Local linkage must have default visibility. 3254 if (!Func->hasLocalLinkage()) 3255 // FIXME: Change to an error if non-default in 4.0. 3256 Func->setVisibility(getDecodedVisibility(Record[7])); 3257 if (Record.size() > 8 && Record[8]) { 3258 if (Record[8] - 1 >= GCTable.size()) 3259 return error("Invalid ID"); 3260 Func->setGC(GCTable[Record[8] - 1]); 3261 } 3262 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3263 if (Record.size() > 9) 3264 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3265 Func->setUnnamedAddr(UnnamedAddr); 3266 if (Record.size() > 10 && Record[10] != 0) 3267 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3268 3269 if (Record.size() > 11) 3270 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3271 else 3272 upgradeDLLImportExportLinkage(Func, RawLinkage); 3273 3274 if (Record.size() > 12) { 3275 if (unsigned ComdatID = Record[12]) { 3276 if (ComdatID > ComdatList.size()) 3277 return error("Invalid function comdat ID"); 3278 Func->setComdat(ComdatList[ComdatID - 1]); 3279 } 3280 } else if (hasImplicitComdat(RawLinkage)) { 3281 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3282 } 3283 3284 if (Record.size() > 13 && Record[13] != 0) 3285 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3286 3287 if (Record.size() > 14 && Record[14] != 0) 3288 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3289 3290 if (Record.size() > 15) { 3291 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3292 } 3293 inferDSOLocal(Func); 3294 3295 // Record[16] is the address space number. 3296 3297 // Check whether we have enough values to read a partition name. 3298 if (Record.size() > 18) 3299 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3300 3301 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3302 assert(Func->getType() == flattenPointerTypes(FullTy) && 3303 "Incorrect fully specified type provided for Function"); 3304 ValueList.push_back(Func, FullTy); 3305 3306 // If this is a function with a body, remember the prototype we are 3307 // creating now, so that we can match up the body with them later. 3308 if (!isProto) { 3309 Func->setIsMaterializable(true); 3310 FunctionsWithBodies.push_back(Func); 3311 DeferredFunctionInfo[Func] = 0; 3312 } 3313 return Error::success(); 3314 } 3315 3316 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3317 unsigned BitCode, ArrayRef<uint64_t> Record) { 3318 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3319 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3320 // dllstorageclass, threadlocal, unnamed_addr, 3321 // preemption specifier] (name in VST) 3322 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3323 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3324 // preemption specifier] (name in VST) 3325 // v2: [strtab_offset, strtab_size, v1] 3326 StringRef Name; 3327 std::tie(Name, Record) = readNameFromStrtab(Record); 3328 3329 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3330 if (Record.size() < (3 + (unsigned)NewRecord)) 3331 return error("Invalid record"); 3332 unsigned OpNum = 0; 3333 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3334 Type *Ty = flattenPointerTypes(FullTy); 3335 if (!Ty) 3336 return error("Invalid record"); 3337 3338 unsigned AddrSpace; 3339 if (!NewRecord) { 3340 auto *PTy = dyn_cast<PointerType>(Ty); 3341 if (!PTy) 3342 return error("Invalid type for value"); 3343 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3344 AddrSpace = PTy->getAddressSpace(); 3345 } else { 3346 AddrSpace = Record[OpNum++]; 3347 } 3348 3349 auto Val = Record[OpNum++]; 3350 auto Linkage = Record[OpNum++]; 3351 GlobalIndirectSymbol *NewGA; 3352 if (BitCode == bitc::MODULE_CODE_ALIAS || 3353 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3354 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3355 TheModule); 3356 else 3357 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3358 nullptr, TheModule); 3359 3360 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3361 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3362 // Old bitcode files didn't have visibility field. 3363 // Local linkage must have default visibility. 3364 if (OpNum != Record.size()) { 3365 auto VisInd = OpNum++; 3366 if (!NewGA->hasLocalLinkage()) 3367 // FIXME: Change to an error if non-default in 4.0. 3368 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3369 } 3370 if (BitCode == bitc::MODULE_CODE_ALIAS || 3371 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3372 if (OpNum != Record.size()) 3373 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3374 else 3375 upgradeDLLImportExportLinkage(NewGA, Linkage); 3376 if (OpNum != Record.size()) 3377 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3378 if (OpNum != Record.size()) 3379 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3380 } 3381 if (OpNum != Record.size()) 3382 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3383 inferDSOLocal(NewGA); 3384 3385 // Check whether we have enough values to read a partition name. 3386 if (OpNum + 1 < Record.size()) { 3387 NewGA->setPartition( 3388 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3389 OpNum += 2; 3390 } 3391 3392 FullTy = PointerType::get(FullTy, AddrSpace); 3393 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3394 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3395 ValueList.push_back(NewGA, FullTy); 3396 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3397 return Error::success(); 3398 } 3399 3400 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3401 bool ShouldLazyLoadMetadata) { 3402 if (ResumeBit) { 3403 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3404 return JumpFailed; 3405 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3406 return Err; 3407 3408 SmallVector<uint64_t, 64> Record; 3409 3410 // Read all the records for this module. 3411 while (true) { 3412 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3413 if (!MaybeEntry) 3414 return MaybeEntry.takeError(); 3415 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3416 3417 switch (Entry.Kind) { 3418 case BitstreamEntry::Error: 3419 return error("Malformed block"); 3420 case BitstreamEntry::EndBlock: 3421 return globalCleanup(); 3422 3423 case BitstreamEntry::SubBlock: 3424 switch (Entry.ID) { 3425 default: // Skip unknown content. 3426 if (Error Err = Stream.SkipBlock()) 3427 return Err; 3428 break; 3429 case bitc::BLOCKINFO_BLOCK_ID: 3430 if (readBlockInfo()) 3431 return error("Malformed block"); 3432 break; 3433 case bitc::PARAMATTR_BLOCK_ID: 3434 if (Error Err = parseAttributeBlock()) 3435 return Err; 3436 break; 3437 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3438 if (Error Err = parseAttributeGroupBlock()) 3439 return Err; 3440 break; 3441 case bitc::TYPE_BLOCK_ID_NEW: 3442 if (Error Err = parseTypeTable()) 3443 return Err; 3444 break; 3445 case bitc::VALUE_SYMTAB_BLOCK_ID: 3446 if (!SeenValueSymbolTable) { 3447 // Either this is an old form VST without function index and an 3448 // associated VST forward declaration record (which would have caused 3449 // the VST to be jumped to and parsed before it was encountered 3450 // normally in the stream), or there were no function blocks to 3451 // trigger an earlier parsing of the VST. 3452 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3453 if (Error Err = parseValueSymbolTable()) 3454 return Err; 3455 SeenValueSymbolTable = true; 3456 } else { 3457 // We must have had a VST forward declaration record, which caused 3458 // the parser to jump to and parse the VST earlier. 3459 assert(VSTOffset > 0); 3460 if (Error Err = Stream.SkipBlock()) 3461 return Err; 3462 } 3463 break; 3464 case bitc::CONSTANTS_BLOCK_ID: 3465 if (Error Err = parseConstants()) 3466 return Err; 3467 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3468 return Err; 3469 break; 3470 case bitc::METADATA_BLOCK_ID: 3471 if (ShouldLazyLoadMetadata) { 3472 if (Error Err = rememberAndSkipMetadata()) 3473 return Err; 3474 break; 3475 } 3476 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3477 if (Error Err = MDLoader->parseModuleMetadata()) 3478 return Err; 3479 break; 3480 case bitc::METADATA_KIND_BLOCK_ID: 3481 if (Error Err = MDLoader->parseMetadataKinds()) 3482 return Err; 3483 break; 3484 case bitc::FUNCTION_BLOCK_ID: 3485 // If this is the first function body we've seen, reverse the 3486 // FunctionsWithBodies list. 3487 if (!SeenFirstFunctionBody) { 3488 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3489 if (Error Err = globalCleanup()) 3490 return Err; 3491 SeenFirstFunctionBody = true; 3492 } 3493 3494 if (VSTOffset > 0) { 3495 // If we have a VST forward declaration record, make sure we 3496 // parse the VST now if we haven't already. It is needed to 3497 // set up the DeferredFunctionInfo vector for lazy reading. 3498 if (!SeenValueSymbolTable) { 3499 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3500 return Err; 3501 SeenValueSymbolTable = true; 3502 // Fall through so that we record the NextUnreadBit below. 3503 // This is necessary in case we have an anonymous function that 3504 // is later materialized. Since it will not have a VST entry we 3505 // need to fall back to the lazy parse to find its offset. 3506 } else { 3507 // If we have a VST forward declaration record, but have already 3508 // parsed the VST (just above, when the first function body was 3509 // encountered here), then we are resuming the parse after 3510 // materializing functions. The ResumeBit points to the 3511 // start of the last function block recorded in the 3512 // DeferredFunctionInfo map. Skip it. 3513 if (Error Err = Stream.SkipBlock()) 3514 return Err; 3515 continue; 3516 } 3517 } 3518 3519 // Support older bitcode files that did not have the function 3520 // index in the VST, nor a VST forward declaration record, as 3521 // well as anonymous functions that do not have VST entries. 3522 // Build the DeferredFunctionInfo vector on the fly. 3523 if (Error Err = rememberAndSkipFunctionBody()) 3524 return Err; 3525 3526 // Suspend parsing when we reach the function bodies. Subsequent 3527 // materialization calls will resume it when necessary. If the bitcode 3528 // file is old, the symbol table will be at the end instead and will not 3529 // have been seen yet. In this case, just finish the parse now. 3530 if (SeenValueSymbolTable) { 3531 NextUnreadBit = Stream.GetCurrentBitNo(); 3532 // After the VST has been parsed, we need to make sure intrinsic name 3533 // are auto-upgraded. 3534 return globalCleanup(); 3535 } 3536 break; 3537 case bitc::USELIST_BLOCK_ID: 3538 if (Error Err = parseUseLists()) 3539 return Err; 3540 break; 3541 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3542 if (Error Err = parseOperandBundleTags()) 3543 return Err; 3544 break; 3545 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3546 if (Error Err = parseSyncScopeNames()) 3547 return Err; 3548 break; 3549 } 3550 continue; 3551 3552 case BitstreamEntry::Record: 3553 // The interesting case. 3554 break; 3555 } 3556 3557 // Read a record. 3558 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3559 if (!MaybeBitCode) 3560 return MaybeBitCode.takeError(); 3561 switch (unsigned BitCode = MaybeBitCode.get()) { 3562 default: break; // Default behavior, ignore unknown content. 3563 case bitc::MODULE_CODE_VERSION: { 3564 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3565 if (!VersionOrErr) 3566 return VersionOrErr.takeError(); 3567 UseRelativeIDs = *VersionOrErr >= 1; 3568 break; 3569 } 3570 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3571 std::string S; 3572 if (convertToString(Record, 0, S)) 3573 return error("Invalid record"); 3574 TheModule->setTargetTriple(S); 3575 break; 3576 } 3577 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3578 std::string S; 3579 if (convertToString(Record, 0, S)) 3580 return error("Invalid record"); 3581 TheModule->setDataLayout(S); 3582 break; 3583 } 3584 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3585 std::string S; 3586 if (convertToString(Record, 0, S)) 3587 return error("Invalid record"); 3588 TheModule->setModuleInlineAsm(S); 3589 break; 3590 } 3591 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3592 // FIXME: Remove in 4.0. 3593 std::string S; 3594 if (convertToString(Record, 0, S)) 3595 return error("Invalid record"); 3596 // Ignore value. 3597 break; 3598 } 3599 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3600 std::string S; 3601 if (convertToString(Record, 0, S)) 3602 return error("Invalid record"); 3603 SectionTable.push_back(S); 3604 break; 3605 } 3606 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3607 std::string S; 3608 if (convertToString(Record, 0, S)) 3609 return error("Invalid record"); 3610 GCTable.push_back(S); 3611 break; 3612 } 3613 case bitc::MODULE_CODE_COMDAT: 3614 if (Error Err = parseComdatRecord(Record)) 3615 return Err; 3616 break; 3617 case bitc::MODULE_CODE_GLOBALVAR: 3618 if (Error Err = parseGlobalVarRecord(Record)) 3619 return Err; 3620 break; 3621 case bitc::MODULE_CODE_FUNCTION: 3622 if (Error Err = parseFunctionRecord(Record)) 3623 return Err; 3624 break; 3625 case bitc::MODULE_CODE_IFUNC: 3626 case bitc::MODULE_CODE_ALIAS: 3627 case bitc::MODULE_CODE_ALIAS_OLD: 3628 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3629 return Err; 3630 break; 3631 /// MODULE_CODE_VSTOFFSET: [offset] 3632 case bitc::MODULE_CODE_VSTOFFSET: 3633 if (Record.size() < 1) 3634 return error("Invalid record"); 3635 // Note that we subtract 1 here because the offset is relative to one word 3636 // before the start of the identification or module block, which was 3637 // historically always the start of the regular bitcode header. 3638 VSTOffset = Record[0] - 1; 3639 break; 3640 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3641 case bitc::MODULE_CODE_SOURCE_FILENAME: 3642 SmallString<128> ValueName; 3643 if (convertToString(Record, 0, ValueName)) 3644 return error("Invalid record"); 3645 TheModule->setSourceFileName(ValueName); 3646 break; 3647 } 3648 Record.clear(); 3649 3650 // Upgrade data layout string. 3651 std::string DL = llvm::UpgradeDataLayoutString( 3652 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3653 TheModule->setDataLayout(DL); 3654 } 3655 } 3656 3657 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3658 bool IsImporting) { 3659 TheModule = M; 3660 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3661 [&](unsigned ID) { return getTypeByID(ID); }); 3662 return parseModule(0, ShouldLazyLoadMetadata); 3663 } 3664 3665 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3666 if (!isa<PointerType>(PtrType)) 3667 return error("Load/Store operand is not a pointer type"); 3668 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3669 3670 if (ValType && ValType != ElemType) 3671 return error("Explicit load/store type does not match pointee " 3672 "type of pointer operand"); 3673 if (!PointerType::isLoadableOrStorableType(ElemType)) 3674 return error("Cannot load/store from pointer"); 3675 return Error::success(); 3676 } 3677 3678 void BitcodeReader::propagateByValTypes(CallBase *CB, 3679 ArrayRef<Type *> ArgsFullTys) { 3680 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3681 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3682 continue; 3683 3684 CB->removeParamAttr(i, Attribute::ByVal); 3685 CB->addParamAttr( 3686 i, Attribute::getWithByValType( 3687 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3688 } 3689 } 3690 3691 /// Lazily parse the specified function body block. 3692 Error BitcodeReader::parseFunctionBody(Function *F) { 3693 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3694 return Err; 3695 3696 // Unexpected unresolved metadata when parsing function. 3697 if (MDLoader->hasFwdRefs()) 3698 return error("Invalid function metadata: incoming forward references"); 3699 3700 InstructionList.clear(); 3701 unsigned ModuleValueListSize = ValueList.size(); 3702 unsigned ModuleMDLoaderSize = MDLoader->size(); 3703 3704 // Add all the function arguments to the value table. 3705 unsigned ArgNo = 0; 3706 FunctionType *FullFTy = FunctionTypes[F]; 3707 for (Argument &I : F->args()) { 3708 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3709 "Incorrect fully specified type for Function Argument"); 3710 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3711 } 3712 unsigned NextValueNo = ValueList.size(); 3713 BasicBlock *CurBB = nullptr; 3714 unsigned CurBBNo = 0; 3715 3716 DebugLoc LastLoc; 3717 auto getLastInstruction = [&]() -> Instruction * { 3718 if (CurBB && !CurBB->empty()) 3719 return &CurBB->back(); 3720 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3721 !FunctionBBs[CurBBNo - 1]->empty()) 3722 return &FunctionBBs[CurBBNo - 1]->back(); 3723 return nullptr; 3724 }; 3725 3726 std::vector<OperandBundleDef> OperandBundles; 3727 3728 // Read all the records. 3729 SmallVector<uint64_t, 64> Record; 3730 3731 while (true) { 3732 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3733 if (!MaybeEntry) 3734 return MaybeEntry.takeError(); 3735 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3736 3737 switch (Entry.Kind) { 3738 case BitstreamEntry::Error: 3739 return error("Malformed block"); 3740 case BitstreamEntry::EndBlock: 3741 goto OutOfRecordLoop; 3742 3743 case BitstreamEntry::SubBlock: 3744 switch (Entry.ID) { 3745 default: // Skip unknown content. 3746 if (Error Err = Stream.SkipBlock()) 3747 return Err; 3748 break; 3749 case bitc::CONSTANTS_BLOCK_ID: 3750 if (Error Err = parseConstants()) 3751 return Err; 3752 NextValueNo = ValueList.size(); 3753 break; 3754 case bitc::VALUE_SYMTAB_BLOCK_ID: 3755 if (Error Err = parseValueSymbolTable()) 3756 return Err; 3757 break; 3758 case bitc::METADATA_ATTACHMENT_ID: 3759 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3760 return Err; 3761 break; 3762 case bitc::METADATA_BLOCK_ID: 3763 assert(DeferredMetadataInfo.empty() && 3764 "Must read all module-level metadata before function-level"); 3765 if (Error Err = MDLoader->parseFunctionMetadata()) 3766 return Err; 3767 break; 3768 case bitc::USELIST_BLOCK_ID: 3769 if (Error Err = parseUseLists()) 3770 return Err; 3771 break; 3772 } 3773 continue; 3774 3775 case BitstreamEntry::Record: 3776 // The interesting case. 3777 break; 3778 } 3779 3780 // Read a record. 3781 Record.clear(); 3782 Instruction *I = nullptr; 3783 Type *FullTy = nullptr; 3784 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3785 if (!MaybeBitCode) 3786 return MaybeBitCode.takeError(); 3787 switch (unsigned BitCode = MaybeBitCode.get()) { 3788 default: // Default behavior: reject 3789 return error("Invalid value"); 3790 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3791 if (Record.size() < 1 || Record[0] == 0) 3792 return error("Invalid record"); 3793 // Create all the basic blocks for the function. 3794 FunctionBBs.resize(Record[0]); 3795 3796 // See if anything took the address of blocks in this function. 3797 auto BBFRI = BasicBlockFwdRefs.find(F); 3798 if (BBFRI == BasicBlockFwdRefs.end()) { 3799 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3800 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3801 } else { 3802 auto &BBRefs = BBFRI->second; 3803 // Check for invalid basic block references. 3804 if (BBRefs.size() > FunctionBBs.size()) 3805 return error("Invalid ID"); 3806 assert(!BBRefs.empty() && "Unexpected empty array"); 3807 assert(!BBRefs.front() && "Invalid reference to entry block"); 3808 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3809 ++I) 3810 if (I < RE && BBRefs[I]) { 3811 BBRefs[I]->insertInto(F); 3812 FunctionBBs[I] = BBRefs[I]; 3813 } else { 3814 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3815 } 3816 3817 // Erase from the table. 3818 BasicBlockFwdRefs.erase(BBFRI); 3819 } 3820 3821 CurBB = FunctionBBs[0]; 3822 continue; 3823 } 3824 3825 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3826 // This record indicates that the last instruction is at the same 3827 // location as the previous instruction with a location. 3828 I = getLastInstruction(); 3829 3830 if (!I) 3831 return error("Invalid record"); 3832 I->setDebugLoc(LastLoc); 3833 I = nullptr; 3834 continue; 3835 3836 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3837 I = getLastInstruction(); 3838 if (!I || Record.size() < 4) 3839 return error("Invalid record"); 3840 3841 unsigned Line = Record[0], Col = Record[1]; 3842 unsigned ScopeID = Record[2], IAID = Record[3]; 3843 bool isImplicitCode = Record.size() == 5 && Record[4]; 3844 3845 MDNode *Scope = nullptr, *IA = nullptr; 3846 if (ScopeID) { 3847 Scope = dyn_cast_or_null<MDNode>( 3848 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3849 if (!Scope) 3850 return error("Invalid record"); 3851 } 3852 if (IAID) { 3853 IA = dyn_cast_or_null<MDNode>( 3854 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3855 if (!IA) 3856 return error("Invalid record"); 3857 } 3858 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3859 I->setDebugLoc(LastLoc); 3860 I = nullptr; 3861 continue; 3862 } 3863 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3864 unsigned OpNum = 0; 3865 Value *LHS; 3866 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, &FullTy) || 3867 OpNum+1 > Record.size()) 3868 return error("Invalid record"); 3869 3870 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3871 if (Opc == -1) 3872 return error("Invalid record"); 3873 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3874 InstructionList.push_back(I); 3875 if (OpNum < Record.size()) { 3876 if (isa<FPMathOperator>(I)) { 3877 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3878 if (FMF.any()) 3879 I->setFastMathFlags(FMF); 3880 } 3881 } 3882 break; 3883 } 3884 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3885 unsigned OpNum = 0; 3886 Value *LHS, *RHS; 3887 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3888 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3889 OpNum+1 > Record.size()) 3890 return error("Invalid record"); 3891 3892 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3893 if (Opc == -1) 3894 return error("Invalid record"); 3895 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3896 InstructionList.push_back(I); 3897 if (OpNum < Record.size()) { 3898 if (Opc == Instruction::Add || 3899 Opc == Instruction::Sub || 3900 Opc == Instruction::Mul || 3901 Opc == Instruction::Shl) { 3902 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3903 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3904 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3905 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3906 } else if (Opc == Instruction::SDiv || 3907 Opc == Instruction::UDiv || 3908 Opc == Instruction::LShr || 3909 Opc == Instruction::AShr) { 3910 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3911 cast<BinaryOperator>(I)->setIsExact(true); 3912 } else if (isa<FPMathOperator>(I)) { 3913 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3914 if (FMF.any()) 3915 I->setFastMathFlags(FMF); 3916 } 3917 3918 } 3919 break; 3920 } 3921 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3922 unsigned OpNum = 0; 3923 Value *Op; 3924 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3925 OpNum+2 != Record.size()) 3926 return error("Invalid record"); 3927 3928 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3929 Type *ResTy = flattenPointerTypes(FullTy); 3930 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3931 if (Opc == -1 || !ResTy) 3932 return error("Invalid record"); 3933 Instruction *Temp = nullptr; 3934 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3935 if (Temp) { 3936 InstructionList.push_back(Temp); 3937 assert(CurBB && "No current BB?"); 3938 CurBB->getInstList().push_back(Temp); 3939 } 3940 } else { 3941 auto CastOp = (Instruction::CastOps)Opc; 3942 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3943 return error("Invalid cast"); 3944 I = CastInst::Create(CastOp, Op, ResTy); 3945 } 3946 InstructionList.push_back(I); 3947 break; 3948 } 3949 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3950 case bitc::FUNC_CODE_INST_GEP_OLD: 3951 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3952 unsigned OpNum = 0; 3953 3954 Type *Ty; 3955 bool InBounds; 3956 3957 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3958 InBounds = Record[OpNum++]; 3959 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3960 Ty = flattenPointerTypes(FullTy); 3961 } else { 3962 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3963 Ty = nullptr; 3964 } 3965 3966 Value *BasePtr; 3967 Type *FullBaseTy = nullptr; 3968 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3969 return error("Invalid record"); 3970 3971 if (!Ty) { 3972 std::tie(FullTy, Ty) = 3973 getPointerElementTypes(FullBaseTy->getScalarType()); 3974 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3975 return error( 3976 "Explicit gep type does not match pointee type of pointer operand"); 3977 3978 SmallVector<Value*, 16> GEPIdx; 3979 while (OpNum != Record.size()) { 3980 Value *Op; 3981 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3982 return error("Invalid record"); 3983 GEPIdx.push_back(Op); 3984 } 3985 3986 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3987 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3988 3989 InstructionList.push_back(I); 3990 if (InBounds) 3991 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3992 break; 3993 } 3994 3995 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3996 // EXTRACTVAL: [opty, opval, n x indices] 3997 unsigned OpNum = 0; 3998 Value *Agg; 3999 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4000 return error("Invalid record"); 4001 4002 unsigned RecSize = Record.size(); 4003 if (OpNum == RecSize) 4004 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4005 4006 SmallVector<unsigned, 4> EXTRACTVALIdx; 4007 for (; OpNum != RecSize; ++OpNum) { 4008 bool IsArray = FullTy->isArrayTy(); 4009 bool IsStruct = FullTy->isStructTy(); 4010 uint64_t Index = Record[OpNum]; 4011 4012 if (!IsStruct && !IsArray) 4013 return error("EXTRACTVAL: Invalid type"); 4014 if ((unsigned)Index != Index) 4015 return error("Invalid value"); 4016 if (IsStruct && Index >= FullTy->getStructNumElements()) 4017 return error("EXTRACTVAL: Invalid struct index"); 4018 if (IsArray && Index >= FullTy->getArrayNumElements()) 4019 return error("EXTRACTVAL: Invalid array index"); 4020 EXTRACTVALIdx.push_back((unsigned)Index); 4021 4022 if (IsStruct) 4023 FullTy = FullTy->getStructElementType(Index); 4024 else 4025 FullTy = FullTy->getArrayElementType(); 4026 } 4027 4028 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4029 InstructionList.push_back(I); 4030 break; 4031 } 4032 4033 case bitc::FUNC_CODE_INST_INSERTVAL: { 4034 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4035 unsigned OpNum = 0; 4036 Value *Agg; 4037 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4038 return error("Invalid record"); 4039 Value *Val; 4040 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4041 return error("Invalid record"); 4042 4043 unsigned RecSize = Record.size(); 4044 if (OpNum == RecSize) 4045 return error("INSERTVAL: Invalid instruction with 0 indices"); 4046 4047 SmallVector<unsigned, 4> INSERTVALIdx; 4048 Type *CurTy = Agg->getType(); 4049 for (; OpNum != RecSize; ++OpNum) { 4050 bool IsArray = CurTy->isArrayTy(); 4051 bool IsStruct = CurTy->isStructTy(); 4052 uint64_t Index = Record[OpNum]; 4053 4054 if (!IsStruct && !IsArray) 4055 return error("INSERTVAL: Invalid type"); 4056 if ((unsigned)Index != Index) 4057 return error("Invalid value"); 4058 if (IsStruct && Index >= CurTy->getStructNumElements()) 4059 return error("INSERTVAL: Invalid struct index"); 4060 if (IsArray && Index >= CurTy->getArrayNumElements()) 4061 return error("INSERTVAL: Invalid array index"); 4062 4063 INSERTVALIdx.push_back((unsigned)Index); 4064 if (IsStruct) 4065 CurTy = CurTy->getStructElementType(Index); 4066 else 4067 CurTy = CurTy->getArrayElementType(); 4068 } 4069 4070 if (CurTy != Val->getType()) 4071 return error("Inserted value type doesn't match aggregate type"); 4072 4073 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4074 InstructionList.push_back(I); 4075 break; 4076 } 4077 4078 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4079 // obsolete form of select 4080 // handles select i1 ... in old bitcode 4081 unsigned OpNum = 0; 4082 Value *TrueVal, *FalseVal, *Cond; 4083 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4084 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4085 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4086 return error("Invalid record"); 4087 4088 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4089 InstructionList.push_back(I); 4090 break; 4091 } 4092 4093 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4094 // new form of select 4095 // handles select i1 or select [N x i1] 4096 unsigned OpNum = 0; 4097 Value *TrueVal, *FalseVal, *Cond; 4098 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4099 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4100 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4101 return error("Invalid record"); 4102 4103 // select condition can be either i1 or [N x i1] 4104 if (VectorType* vector_type = 4105 dyn_cast<VectorType>(Cond->getType())) { 4106 // expect <n x i1> 4107 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4108 return error("Invalid type for value"); 4109 } else { 4110 // expect i1 4111 if (Cond->getType() != Type::getInt1Ty(Context)) 4112 return error("Invalid type for value"); 4113 } 4114 4115 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4116 InstructionList.push_back(I); 4117 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4118 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4119 if (FMF.any()) 4120 I->setFastMathFlags(FMF); 4121 } 4122 break; 4123 } 4124 4125 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4126 unsigned OpNum = 0; 4127 Value *Vec, *Idx; 4128 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4129 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4130 return error("Invalid record"); 4131 if (!Vec->getType()->isVectorTy()) 4132 return error("Invalid type for value"); 4133 I = ExtractElementInst::Create(Vec, Idx); 4134 FullTy = FullTy->getVectorElementType(); 4135 InstructionList.push_back(I); 4136 break; 4137 } 4138 4139 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4140 unsigned OpNum = 0; 4141 Value *Vec, *Elt, *Idx; 4142 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4143 return error("Invalid record"); 4144 if (!Vec->getType()->isVectorTy()) 4145 return error("Invalid type for value"); 4146 if (popValue(Record, OpNum, NextValueNo, 4147 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4148 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4149 return error("Invalid record"); 4150 I = InsertElementInst::Create(Vec, Elt, Idx); 4151 InstructionList.push_back(I); 4152 break; 4153 } 4154 4155 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4156 unsigned OpNum = 0; 4157 Value *Vec1, *Vec2, *Mask; 4158 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4159 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4160 return error("Invalid record"); 4161 4162 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4163 return error("Invalid record"); 4164 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4165 return error("Invalid type for value"); 4166 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4167 FullTy = VectorType::get(FullTy->getVectorElementType(), 4168 Mask->getType()->getVectorNumElements()); 4169 InstructionList.push_back(I); 4170 break; 4171 } 4172 4173 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4174 // Old form of ICmp/FCmp returning bool 4175 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4176 // both legal on vectors but had different behaviour. 4177 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4178 // FCmp/ICmp returning bool or vector of bool 4179 4180 unsigned OpNum = 0; 4181 Value *LHS, *RHS; 4182 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4183 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4184 return error("Invalid record"); 4185 4186 if (OpNum >= Record.size()) 4187 return error( 4188 "Invalid record: operand number exceeded available operands"); 4189 4190 unsigned PredVal = Record[OpNum]; 4191 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4192 FastMathFlags FMF; 4193 if (IsFP && Record.size() > OpNum+1) 4194 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4195 4196 if (OpNum+1 != Record.size()) 4197 return error("Invalid record"); 4198 4199 if (LHS->getType()->isFPOrFPVectorTy()) 4200 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4201 else 4202 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4203 4204 if (FMF.any()) 4205 I->setFastMathFlags(FMF); 4206 InstructionList.push_back(I); 4207 break; 4208 } 4209 4210 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4211 { 4212 unsigned Size = Record.size(); 4213 if (Size == 0) { 4214 I = ReturnInst::Create(Context); 4215 InstructionList.push_back(I); 4216 break; 4217 } 4218 4219 unsigned OpNum = 0; 4220 Value *Op = nullptr; 4221 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4222 return error("Invalid record"); 4223 if (OpNum != Record.size()) 4224 return error("Invalid record"); 4225 4226 I = ReturnInst::Create(Context, Op); 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4231 if (Record.size() != 1 && Record.size() != 3) 4232 return error("Invalid record"); 4233 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4234 if (!TrueDest) 4235 return error("Invalid record"); 4236 4237 if (Record.size() == 1) { 4238 I = BranchInst::Create(TrueDest); 4239 InstructionList.push_back(I); 4240 } 4241 else { 4242 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4243 Value *Cond = getValue(Record, 2, NextValueNo, 4244 Type::getInt1Ty(Context)); 4245 if (!FalseDest || !Cond) 4246 return error("Invalid record"); 4247 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4248 InstructionList.push_back(I); 4249 } 4250 break; 4251 } 4252 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4253 if (Record.size() != 1 && Record.size() != 2) 4254 return error("Invalid record"); 4255 unsigned Idx = 0; 4256 Value *CleanupPad = 4257 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4258 if (!CleanupPad) 4259 return error("Invalid record"); 4260 BasicBlock *UnwindDest = nullptr; 4261 if (Record.size() == 2) { 4262 UnwindDest = getBasicBlock(Record[Idx++]); 4263 if (!UnwindDest) 4264 return error("Invalid record"); 4265 } 4266 4267 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4268 InstructionList.push_back(I); 4269 break; 4270 } 4271 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4272 if (Record.size() != 2) 4273 return error("Invalid record"); 4274 unsigned Idx = 0; 4275 Value *CatchPad = 4276 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4277 if (!CatchPad) 4278 return error("Invalid record"); 4279 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4280 if (!BB) 4281 return error("Invalid record"); 4282 4283 I = CatchReturnInst::Create(CatchPad, BB); 4284 InstructionList.push_back(I); 4285 break; 4286 } 4287 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4288 // We must have, at minimum, the outer scope and the number of arguments. 4289 if (Record.size() < 2) 4290 return error("Invalid record"); 4291 4292 unsigned Idx = 0; 4293 4294 Value *ParentPad = 4295 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4296 4297 unsigned NumHandlers = Record[Idx++]; 4298 4299 SmallVector<BasicBlock *, 2> Handlers; 4300 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4301 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4302 if (!BB) 4303 return error("Invalid record"); 4304 Handlers.push_back(BB); 4305 } 4306 4307 BasicBlock *UnwindDest = nullptr; 4308 if (Idx + 1 == Record.size()) { 4309 UnwindDest = getBasicBlock(Record[Idx++]); 4310 if (!UnwindDest) 4311 return error("Invalid record"); 4312 } 4313 4314 if (Record.size() != Idx) 4315 return error("Invalid record"); 4316 4317 auto *CatchSwitch = 4318 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4319 for (BasicBlock *Handler : Handlers) 4320 CatchSwitch->addHandler(Handler); 4321 I = CatchSwitch; 4322 InstructionList.push_back(I); 4323 break; 4324 } 4325 case bitc::FUNC_CODE_INST_CATCHPAD: 4326 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4327 // We must have, at minimum, the outer scope and the number of arguments. 4328 if (Record.size() < 2) 4329 return error("Invalid record"); 4330 4331 unsigned Idx = 0; 4332 4333 Value *ParentPad = 4334 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4335 4336 unsigned NumArgOperands = Record[Idx++]; 4337 4338 SmallVector<Value *, 2> Args; 4339 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4340 Value *Val; 4341 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4342 return error("Invalid record"); 4343 Args.push_back(Val); 4344 } 4345 4346 if (Record.size() != Idx) 4347 return error("Invalid record"); 4348 4349 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4350 I = CleanupPadInst::Create(ParentPad, Args); 4351 else 4352 I = CatchPadInst::Create(ParentPad, Args); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4357 // Check magic 4358 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4359 // "New" SwitchInst format with case ranges. The changes to write this 4360 // format were reverted but we still recognize bitcode that uses it. 4361 // Hopefully someday we will have support for case ranges and can use 4362 // this format again. 4363 4364 Type *OpTy = getTypeByID(Record[1]); 4365 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4366 4367 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4368 BasicBlock *Default = getBasicBlock(Record[3]); 4369 if (!OpTy || !Cond || !Default) 4370 return error("Invalid record"); 4371 4372 unsigned NumCases = Record[4]; 4373 4374 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4375 InstructionList.push_back(SI); 4376 4377 unsigned CurIdx = 5; 4378 for (unsigned i = 0; i != NumCases; ++i) { 4379 SmallVector<ConstantInt*, 1> CaseVals; 4380 unsigned NumItems = Record[CurIdx++]; 4381 for (unsigned ci = 0; ci != NumItems; ++ci) { 4382 bool isSingleNumber = Record[CurIdx++]; 4383 4384 APInt Low; 4385 unsigned ActiveWords = 1; 4386 if (ValueBitWidth > 64) 4387 ActiveWords = Record[CurIdx++]; 4388 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4389 ValueBitWidth); 4390 CurIdx += ActiveWords; 4391 4392 if (!isSingleNumber) { 4393 ActiveWords = 1; 4394 if (ValueBitWidth > 64) 4395 ActiveWords = Record[CurIdx++]; 4396 APInt High = readWideAPInt( 4397 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4398 CurIdx += ActiveWords; 4399 4400 // FIXME: It is not clear whether values in the range should be 4401 // compared as signed or unsigned values. The partially 4402 // implemented changes that used this format in the past used 4403 // unsigned comparisons. 4404 for ( ; Low.ule(High); ++Low) 4405 CaseVals.push_back(ConstantInt::get(Context, Low)); 4406 } else 4407 CaseVals.push_back(ConstantInt::get(Context, Low)); 4408 } 4409 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4410 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4411 cve = CaseVals.end(); cvi != cve; ++cvi) 4412 SI->addCase(*cvi, DestBB); 4413 } 4414 I = SI; 4415 break; 4416 } 4417 4418 // Old SwitchInst format without case ranges. 4419 4420 if (Record.size() < 3 || (Record.size() & 1) == 0) 4421 return error("Invalid record"); 4422 Type *OpTy = getTypeByID(Record[0]); 4423 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4424 BasicBlock *Default = getBasicBlock(Record[2]); 4425 if (!OpTy || !Cond || !Default) 4426 return error("Invalid record"); 4427 unsigned NumCases = (Record.size()-3)/2; 4428 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4429 InstructionList.push_back(SI); 4430 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4431 ConstantInt *CaseVal = 4432 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4433 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4434 if (!CaseVal || !DestBB) { 4435 delete SI; 4436 return error("Invalid record"); 4437 } 4438 SI->addCase(CaseVal, DestBB); 4439 } 4440 I = SI; 4441 break; 4442 } 4443 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4444 if (Record.size() < 2) 4445 return error("Invalid record"); 4446 Type *OpTy = getTypeByID(Record[0]); 4447 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4448 if (!OpTy || !Address) 4449 return error("Invalid record"); 4450 unsigned NumDests = Record.size()-2; 4451 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4452 InstructionList.push_back(IBI); 4453 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4454 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4455 IBI->addDestination(DestBB); 4456 } else { 4457 delete IBI; 4458 return error("Invalid record"); 4459 } 4460 } 4461 I = IBI; 4462 break; 4463 } 4464 4465 case bitc::FUNC_CODE_INST_INVOKE: { 4466 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4467 if (Record.size() < 4) 4468 return error("Invalid record"); 4469 unsigned OpNum = 0; 4470 AttributeList PAL = getAttributes(Record[OpNum++]); 4471 unsigned CCInfo = Record[OpNum++]; 4472 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4473 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4474 4475 FunctionType *FTy = nullptr; 4476 FunctionType *FullFTy = nullptr; 4477 if ((CCInfo >> 13) & 1) { 4478 FullFTy = 4479 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4480 if (!FullFTy) 4481 return error("Explicit invoke type is not a function type"); 4482 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4483 } 4484 4485 Value *Callee; 4486 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4487 return error("Invalid record"); 4488 4489 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4490 if (!CalleeTy) 4491 return error("Callee is not a pointer"); 4492 if (!FTy) { 4493 FullFTy = 4494 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4495 if (!FullFTy) 4496 return error("Callee is not of pointer to function type"); 4497 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4498 } else if (getPointerElementFlatType(FullTy) != FTy) 4499 return error("Explicit invoke type does not match pointee type of " 4500 "callee operand"); 4501 if (Record.size() < FTy->getNumParams() + OpNum) 4502 return error("Insufficient operands to call"); 4503 4504 SmallVector<Value*, 16> Ops; 4505 SmallVector<Type *, 16> ArgsFullTys; 4506 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4507 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4508 FTy->getParamType(i))); 4509 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4510 if (!Ops.back()) 4511 return error("Invalid record"); 4512 } 4513 4514 if (!FTy->isVarArg()) { 4515 if (Record.size() != OpNum) 4516 return error("Invalid record"); 4517 } else { 4518 // Read type/value pairs for varargs params. 4519 while (OpNum != Record.size()) { 4520 Value *Op; 4521 Type *FullTy; 4522 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4523 return error("Invalid record"); 4524 Ops.push_back(Op); 4525 ArgsFullTys.push_back(FullTy); 4526 } 4527 } 4528 4529 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4530 OperandBundles); 4531 FullTy = FullFTy->getReturnType(); 4532 OperandBundles.clear(); 4533 InstructionList.push_back(I); 4534 cast<InvokeInst>(I)->setCallingConv( 4535 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4536 cast<InvokeInst>(I)->setAttributes(PAL); 4537 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4538 4539 break; 4540 } 4541 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4542 unsigned Idx = 0; 4543 Value *Val = nullptr; 4544 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4545 return error("Invalid record"); 4546 I = ResumeInst::Create(Val); 4547 InstructionList.push_back(I); 4548 break; 4549 } 4550 case bitc::FUNC_CODE_INST_CALLBR: { 4551 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4552 unsigned OpNum = 0; 4553 AttributeList PAL = getAttributes(Record[OpNum++]); 4554 unsigned CCInfo = Record[OpNum++]; 4555 4556 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4557 unsigned NumIndirectDests = Record[OpNum++]; 4558 SmallVector<BasicBlock *, 16> IndirectDests; 4559 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4560 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4561 4562 FunctionType *FTy = nullptr; 4563 FunctionType *FullFTy = nullptr; 4564 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4565 FullFTy = 4566 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4567 if (!FullFTy) 4568 return error("Explicit call type is not a function type"); 4569 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4570 } 4571 4572 Value *Callee; 4573 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4574 return error("Invalid record"); 4575 4576 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4577 if (!OpTy) 4578 return error("Callee is not a pointer type"); 4579 if (!FTy) { 4580 FullFTy = 4581 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4582 if (!FullFTy) 4583 return error("Callee is not of pointer to function type"); 4584 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4585 } else if (getPointerElementFlatType(FullTy) != FTy) 4586 return error("Explicit call type does not match pointee type of " 4587 "callee operand"); 4588 if (Record.size() < FTy->getNumParams() + OpNum) 4589 return error("Insufficient operands to call"); 4590 4591 SmallVector<Value*, 16> Args; 4592 // Read the fixed params. 4593 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4594 if (FTy->getParamType(i)->isLabelTy()) 4595 Args.push_back(getBasicBlock(Record[OpNum])); 4596 else 4597 Args.push_back(getValue(Record, OpNum, NextValueNo, 4598 FTy->getParamType(i))); 4599 if (!Args.back()) 4600 return error("Invalid record"); 4601 } 4602 4603 // Read type/value pairs for varargs params. 4604 if (!FTy->isVarArg()) { 4605 if (OpNum != Record.size()) 4606 return error("Invalid record"); 4607 } else { 4608 while (OpNum != Record.size()) { 4609 Value *Op; 4610 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4611 return error("Invalid record"); 4612 Args.push_back(Op); 4613 } 4614 } 4615 4616 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4617 OperandBundles); 4618 FullTy = FullFTy->getReturnType(); 4619 OperandBundles.clear(); 4620 InstructionList.push_back(I); 4621 cast<CallBrInst>(I)->setCallingConv( 4622 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4623 cast<CallBrInst>(I)->setAttributes(PAL); 4624 break; 4625 } 4626 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4627 I = new UnreachableInst(Context); 4628 InstructionList.push_back(I); 4629 break; 4630 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4631 if (Record.size() < 1) 4632 return error("Invalid record"); 4633 // The first record specifies the type. 4634 FullTy = getFullyStructuredTypeByID(Record[0]); 4635 Type *Ty = flattenPointerTypes(FullTy); 4636 if (!Ty) 4637 return error("Invalid record"); 4638 4639 // Phi arguments are pairs of records of [value, basic block]. 4640 // There is an optional final record for fast-math-flags if this phi has a 4641 // floating-point type. 4642 size_t NumArgs = (Record.size() - 1) / 2; 4643 PHINode *PN = PHINode::Create(Ty, NumArgs); 4644 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4645 return error("Invalid record"); 4646 InstructionList.push_back(PN); 4647 4648 for (unsigned i = 0; i != NumArgs; i++) { 4649 Value *V; 4650 // With the new function encoding, it is possible that operands have 4651 // negative IDs (for forward references). Use a signed VBR 4652 // representation to keep the encoding small. 4653 if (UseRelativeIDs) 4654 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4655 else 4656 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4657 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4658 if (!V || !BB) 4659 return error("Invalid record"); 4660 PN->addIncoming(V, BB); 4661 } 4662 I = PN; 4663 4664 // If there are an even number of records, the final record must be FMF. 4665 if (Record.size() % 2 == 0) { 4666 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4667 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4668 if (FMF.any()) 4669 I->setFastMathFlags(FMF); 4670 } 4671 4672 break; 4673 } 4674 4675 case bitc::FUNC_CODE_INST_LANDINGPAD: 4676 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4677 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4678 unsigned Idx = 0; 4679 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4680 if (Record.size() < 3) 4681 return error("Invalid record"); 4682 } else { 4683 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4684 if (Record.size() < 4) 4685 return error("Invalid record"); 4686 } 4687 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4688 Type *Ty = flattenPointerTypes(FullTy); 4689 if (!Ty) 4690 return error("Invalid record"); 4691 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4692 Value *PersFn = nullptr; 4693 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4694 return error("Invalid record"); 4695 4696 if (!F->hasPersonalityFn()) 4697 F->setPersonalityFn(cast<Constant>(PersFn)); 4698 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4699 return error("Personality function mismatch"); 4700 } 4701 4702 bool IsCleanup = !!Record[Idx++]; 4703 unsigned NumClauses = Record[Idx++]; 4704 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4705 LP->setCleanup(IsCleanup); 4706 for (unsigned J = 0; J != NumClauses; ++J) { 4707 LandingPadInst::ClauseType CT = 4708 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4709 Value *Val; 4710 4711 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4712 delete LP; 4713 return error("Invalid record"); 4714 } 4715 4716 assert((CT != LandingPadInst::Catch || 4717 !isa<ArrayType>(Val->getType())) && 4718 "Catch clause has a invalid type!"); 4719 assert((CT != LandingPadInst::Filter || 4720 isa<ArrayType>(Val->getType())) && 4721 "Filter clause has invalid type!"); 4722 LP->addClause(cast<Constant>(Val)); 4723 } 4724 4725 I = LP; 4726 InstructionList.push_back(I); 4727 break; 4728 } 4729 4730 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4731 if (Record.size() != 4) 4732 return error("Invalid record"); 4733 uint64_t AlignRecord = Record[3]; 4734 const uint64_t InAllocaMask = uint64_t(1) << 5; 4735 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4736 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4737 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4738 SwiftErrorMask; 4739 bool InAlloca = AlignRecord & InAllocaMask; 4740 bool SwiftError = AlignRecord & SwiftErrorMask; 4741 FullTy = getFullyStructuredTypeByID(Record[0]); 4742 Type *Ty = flattenPointerTypes(FullTy); 4743 if ((AlignRecord & ExplicitTypeMask) == 0) { 4744 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4745 if (!PTy) 4746 return error("Old-style alloca with a non-pointer type"); 4747 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4748 } 4749 Type *OpTy = getTypeByID(Record[1]); 4750 Value *Size = getFnValueByID(Record[2], OpTy); 4751 MaybeAlign Align; 4752 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4753 return Err; 4754 } 4755 if (!Ty || !Size) 4756 return error("Invalid record"); 4757 4758 // FIXME: Make this an optional field. 4759 const DataLayout &DL = TheModule->getDataLayout(); 4760 unsigned AS = DL.getAllocaAddrSpace(); 4761 4762 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4763 AI->setUsedWithInAlloca(InAlloca); 4764 AI->setSwiftError(SwiftError); 4765 I = AI; 4766 FullTy = PointerType::get(FullTy, AS); 4767 InstructionList.push_back(I); 4768 break; 4769 } 4770 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4771 unsigned OpNum = 0; 4772 Value *Op; 4773 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4774 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4775 return error("Invalid record"); 4776 4777 if (!isa<PointerType>(Op->getType())) 4778 return error("Load operand is not a pointer type"); 4779 4780 Type *Ty = nullptr; 4781 if (OpNum + 3 == Record.size()) { 4782 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4783 Ty = flattenPointerTypes(FullTy); 4784 } else 4785 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4786 4787 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4788 return Err; 4789 4790 MaybeAlign Align; 4791 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4792 return Err; 4793 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4794 InstructionList.push_back(I); 4795 break; 4796 } 4797 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4798 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4799 unsigned OpNum = 0; 4800 Value *Op; 4801 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4802 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4803 return error("Invalid record"); 4804 4805 if (!isa<PointerType>(Op->getType())) 4806 return error("Load operand is not a pointer type"); 4807 4808 Type *Ty = nullptr; 4809 if (OpNum + 5 == Record.size()) { 4810 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4811 Ty = flattenPointerTypes(FullTy); 4812 } else 4813 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4814 4815 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4816 return Err; 4817 4818 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4819 if (Ordering == AtomicOrdering::NotAtomic || 4820 Ordering == AtomicOrdering::Release || 4821 Ordering == AtomicOrdering::AcquireRelease) 4822 return error("Invalid record"); 4823 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4824 return error("Invalid record"); 4825 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4826 4827 MaybeAlign Align; 4828 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4829 return Err; 4830 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4831 InstructionList.push_back(I); 4832 break; 4833 } 4834 case bitc::FUNC_CODE_INST_STORE: 4835 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4836 unsigned OpNum = 0; 4837 Value *Val, *Ptr; 4838 Type *FullTy; 4839 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4840 (BitCode == bitc::FUNC_CODE_INST_STORE 4841 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4842 : popValue(Record, OpNum, NextValueNo, 4843 getPointerElementFlatType(FullTy), Val)) || 4844 OpNum + 2 != Record.size()) 4845 return error("Invalid record"); 4846 4847 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4848 return Err; 4849 MaybeAlign Align; 4850 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4851 return Err; 4852 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4853 InstructionList.push_back(I); 4854 break; 4855 } 4856 case bitc::FUNC_CODE_INST_STOREATOMIC: 4857 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4858 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4859 unsigned OpNum = 0; 4860 Value *Val, *Ptr; 4861 Type *FullTy; 4862 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4863 !isa<PointerType>(Ptr->getType()) || 4864 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4865 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4866 : popValue(Record, OpNum, NextValueNo, 4867 getPointerElementFlatType(FullTy), Val)) || 4868 OpNum + 4 != Record.size()) 4869 return error("Invalid record"); 4870 4871 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4872 return Err; 4873 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4874 if (Ordering == AtomicOrdering::NotAtomic || 4875 Ordering == AtomicOrdering::Acquire || 4876 Ordering == AtomicOrdering::AcquireRelease) 4877 return error("Invalid record"); 4878 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4879 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4880 return error("Invalid record"); 4881 4882 MaybeAlign Align; 4883 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4884 return Err; 4885 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4886 InstructionList.push_back(I); 4887 break; 4888 } 4889 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4890 case bitc::FUNC_CODE_INST_CMPXCHG: { 4891 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4892 // failureordering?, isweak?] 4893 unsigned OpNum = 0; 4894 Value *Ptr, *Cmp, *New; 4895 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4896 return error("Invalid record"); 4897 4898 if (!isa<PointerType>(Ptr->getType())) 4899 return error("Cmpxchg operand is not a pointer type"); 4900 4901 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4902 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4903 return error("Invalid record"); 4904 } else if (popValue(Record, OpNum, NextValueNo, 4905 getPointerElementFlatType(FullTy), Cmp)) 4906 return error("Invalid record"); 4907 else 4908 FullTy = cast<PointerType>(FullTy)->getElementType(); 4909 4910 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4911 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4912 return error("Invalid record"); 4913 4914 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4915 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4916 SuccessOrdering == AtomicOrdering::Unordered) 4917 return error("Invalid record"); 4918 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4919 4920 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4921 return Err; 4922 AtomicOrdering FailureOrdering; 4923 if (Record.size() < 7) 4924 FailureOrdering = 4925 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4926 else 4927 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4928 4929 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4930 SSID); 4931 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4932 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4933 4934 if (Record.size() < 8) { 4935 // Before weak cmpxchgs existed, the instruction simply returned the 4936 // value loaded from memory, so bitcode files from that era will be 4937 // expecting the first component of a modern cmpxchg. 4938 CurBB->getInstList().push_back(I); 4939 I = ExtractValueInst::Create(I, 0); 4940 FullTy = cast<StructType>(FullTy)->getElementType(0); 4941 } else { 4942 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4943 } 4944 4945 InstructionList.push_back(I); 4946 break; 4947 } 4948 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4949 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4950 unsigned OpNum = 0; 4951 Value *Ptr, *Val; 4952 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4953 !isa<PointerType>(Ptr->getType()) || 4954 popValue(Record, OpNum, NextValueNo, 4955 getPointerElementFlatType(FullTy), Val) || 4956 OpNum + 4 != Record.size()) 4957 return error("Invalid record"); 4958 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4959 if (Operation < AtomicRMWInst::FIRST_BINOP || 4960 Operation > AtomicRMWInst::LAST_BINOP) 4961 return error("Invalid record"); 4962 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4963 if (Ordering == AtomicOrdering::NotAtomic || 4964 Ordering == AtomicOrdering::Unordered) 4965 return error("Invalid record"); 4966 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4967 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4968 FullTy = getPointerElementFlatType(FullTy); 4969 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4970 InstructionList.push_back(I); 4971 break; 4972 } 4973 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4974 if (2 != Record.size()) 4975 return error("Invalid record"); 4976 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4977 if (Ordering == AtomicOrdering::NotAtomic || 4978 Ordering == AtomicOrdering::Unordered || 4979 Ordering == AtomicOrdering::Monotonic) 4980 return error("Invalid record"); 4981 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4982 I = new FenceInst(Context, Ordering, SSID); 4983 InstructionList.push_back(I); 4984 break; 4985 } 4986 case bitc::FUNC_CODE_INST_CALL: { 4987 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4988 if (Record.size() < 3) 4989 return error("Invalid record"); 4990 4991 unsigned OpNum = 0; 4992 AttributeList PAL = getAttributes(Record[OpNum++]); 4993 unsigned CCInfo = Record[OpNum++]; 4994 4995 FastMathFlags FMF; 4996 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4997 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4998 if (!FMF.any()) 4999 return error("Fast math flags indicator set for call with no FMF"); 5000 } 5001 5002 FunctionType *FTy = nullptr; 5003 FunctionType *FullFTy = nullptr; 5004 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5005 FullFTy = 5006 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5007 if (!FullFTy) 5008 return error("Explicit call type is not a function type"); 5009 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5010 } 5011 5012 Value *Callee; 5013 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5014 return error("Invalid record"); 5015 5016 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5017 if (!OpTy) 5018 return error("Callee is not a pointer type"); 5019 if (!FTy) { 5020 FullFTy = 5021 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5022 if (!FullFTy) 5023 return error("Callee is not of pointer to function type"); 5024 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5025 } else if (getPointerElementFlatType(FullTy) != FTy) 5026 return error("Explicit call type does not match pointee type of " 5027 "callee operand"); 5028 if (Record.size() < FTy->getNumParams() + OpNum) 5029 return error("Insufficient operands to call"); 5030 5031 SmallVector<Value*, 16> Args; 5032 SmallVector<Type*, 16> ArgsFullTys; 5033 // Read the fixed params. 5034 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5035 if (FTy->getParamType(i)->isLabelTy()) 5036 Args.push_back(getBasicBlock(Record[OpNum])); 5037 else 5038 Args.push_back(getValue(Record, OpNum, NextValueNo, 5039 FTy->getParamType(i))); 5040 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5041 if (!Args.back()) 5042 return error("Invalid record"); 5043 } 5044 5045 // Read type/value pairs for varargs params. 5046 if (!FTy->isVarArg()) { 5047 if (OpNum != Record.size()) 5048 return error("Invalid record"); 5049 } else { 5050 while (OpNum != Record.size()) { 5051 Value *Op; 5052 Type *FullTy; 5053 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5054 return error("Invalid record"); 5055 Args.push_back(Op); 5056 ArgsFullTys.push_back(FullTy); 5057 } 5058 } 5059 5060 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5061 FullTy = FullFTy->getReturnType(); 5062 OperandBundles.clear(); 5063 InstructionList.push_back(I); 5064 cast<CallInst>(I)->setCallingConv( 5065 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5066 CallInst::TailCallKind TCK = CallInst::TCK_None; 5067 if (CCInfo & 1 << bitc::CALL_TAIL) 5068 TCK = CallInst::TCK_Tail; 5069 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5070 TCK = CallInst::TCK_MustTail; 5071 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5072 TCK = CallInst::TCK_NoTail; 5073 cast<CallInst>(I)->setTailCallKind(TCK); 5074 cast<CallInst>(I)->setAttributes(PAL); 5075 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5076 if (FMF.any()) { 5077 if (!isa<FPMathOperator>(I)) 5078 return error("Fast-math-flags specified for call without " 5079 "floating-point scalar or vector return type"); 5080 I->setFastMathFlags(FMF); 5081 } 5082 break; 5083 } 5084 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5085 if (Record.size() < 3) 5086 return error("Invalid record"); 5087 Type *OpTy = getTypeByID(Record[0]); 5088 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5089 FullTy = getFullyStructuredTypeByID(Record[2]); 5090 Type *ResTy = flattenPointerTypes(FullTy); 5091 if (!OpTy || !Op || !ResTy) 5092 return error("Invalid record"); 5093 I = new VAArgInst(Op, ResTy); 5094 InstructionList.push_back(I); 5095 break; 5096 } 5097 5098 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5099 // A call or an invoke can be optionally prefixed with some variable 5100 // number of operand bundle blocks. These blocks are read into 5101 // OperandBundles and consumed at the next call or invoke instruction. 5102 5103 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5104 return error("Invalid record"); 5105 5106 std::vector<Value *> Inputs; 5107 5108 unsigned OpNum = 1; 5109 while (OpNum != Record.size()) { 5110 Value *Op; 5111 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5112 return error("Invalid record"); 5113 Inputs.push_back(Op); 5114 } 5115 5116 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5117 continue; 5118 } 5119 } 5120 5121 // Add instruction to end of current BB. If there is no current BB, reject 5122 // this file. 5123 if (!CurBB) { 5124 I->deleteValue(); 5125 return error("Invalid instruction with no BB"); 5126 } 5127 if (!OperandBundles.empty()) { 5128 I->deleteValue(); 5129 return error("Operand bundles found with no consumer"); 5130 } 5131 CurBB->getInstList().push_back(I); 5132 5133 // If this was a terminator instruction, move to the next block. 5134 if (I->isTerminator()) { 5135 ++CurBBNo; 5136 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5137 } 5138 5139 // Non-void values get registered in the value table for future use. 5140 if (!I->getType()->isVoidTy()) { 5141 if (!FullTy) { 5142 FullTy = I->getType(); 5143 assert( 5144 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5145 !isa<ArrayType>(FullTy) && 5146 (!isa<VectorType>(FullTy) || 5147 FullTy->getVectorElementType()->isFloatingPointTy() || 5148 FullTy->getVectorElementType()->isIntegerTy()) && 5149 "Structured types must be assigned with corresponding non-opaque " 5150 "pointer type"); 5151 } 5152 5153 assert(I->getType() == flattenPointerTypes(FullTy) && 5154 "Incorrect fully structured type provided for Instruction"); 5155 ValueList.assignValue(I, NextValueNo++, FullTy); 5156 } 5157 } 5158 5159 OutOfRecordLoop: 5160 5161 if (!OperandBundles.empty()) 5162 return error("Operand bundles found with no consumer"); 5163 5164 // Check the function list for unresolved values. 5165 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5166 if (!A->getParent()) { 5167 // We found at least one unresolved value. Nuke them all to avoid leaks. 5168 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5169 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5170 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5171 delete A; 5172 } 5173 } 5174 return error("Never resolved value found in function"); 5175 } 5176 } 5177 5178 // Unexpected unresolved metadata about to be dropped. 5179 if (MDLoader->hasFwdRefs()) 5180 return error("Invalid function metadata: outgoing forward refs"); 5181 5182 // Trim the value list down to the size it was before we parsed this function. 5183 ValueList.shrinkTo(ModuleValueListSize); 5184 MDLoader->shrinkTo(ModuleMDLoaderSize); 5185 std::vector<BasicBlock*>().swap(FunctionBBs); 5186 return Error::success(); 5187 } 5188 5189 /// Find the function body in the bitcode stream 5190 Error BitcodeReader::findFunctionInStream( 5191 Function *F, 5192 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5193 while (DeferredFunctionInfoIterator->second == 0) { 5194 // This is the fallback handling for the old format bitcode that 5195 // didn't contain the function index in the VST, or when we have 5196 // an anonymous function which would not have a VST entry. 5197 // Assert that we have one of those two cases. 5198 assert(VSTOffset == 0 || !F->hasName()); 5199 // Parse the next body in the stream and set its position in the 5200 // DeferredFunctionInfo map. 5201 if (Error Err = rememberAndSkipFunctionBodies()) 5202 return Err; 5203 } 5204 return Error::success(); 5205 } 5206 5207 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5208 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5209 return SyncScope::ID(Val); 5210 if (Val >= SSIDs.size()) 5211 return SyncScope::System; // Map unknown synchronization scopes to system. 5212 return SSIDs[Val]; 5213 } 5214 5215 //===----------------------------------------------------------------------===// 5216 // GVMaterializer implementation 5217 //===----------------------------------------------------------------------===// 5218 5219 Error BitcodeReader::materialize(GlobalValue *GV) { 5220 Function *F = dyn_cast<Function>(GV); 5221 // If it's not a function or is already material, ignore the request. 5222 if (!F || !F->isMaterializable()) 5223 return Error::success(); 5224 5225 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5226 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5227 // If its position is recorded as 0, its body is somewhere in the stream 5228 // but we haven't seen it yet. 5229 if (DFII->second == 0) 5230 if (Error Err = findFunctionInStream(F, DFII)) 5231 return Err; 5232 5233 // Materialize metadata before parsing any function bodies. 5234 if (Error Err = materializeMetadata()) 5235 return Err; 5236 5237 // Move the bit stream to the saved position of the deferred function body. 5238 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5239 return JumpFailed; 5240 if (Error Err = parseFunctionBody(F)) 5241 return Err; 5242 F->setIsMaterializable(false); 5243 5244 if (StripDebugInfo) 5245 stripDebugInfo(*F); 5246 5247 // Upgrade any old intrinsic calls in the function. 5248 for (auto &I : UpgradedIntrinsics) { 5249 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5250 UI != UE;) { 5251 User *U = *UI; 5252 ++UI; 5253 if (CallInst *CI = dyn_cast<CallInst>(U)) 5254 UpgradeIntrinsicCall(CI, I.second); 5255 } 5256 } 5257 5258 // Update calls to the remangled intrinsics 5259 for (auto &I : RemangledIntrinsics) 5260 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5261 UI != UE;) 5262 // Don't expect any other users than call sites 5263 CallSite(*UI++).setCalledFunction(I.second); 5264 5265 // Finish fn->subprogram upgrade for materialized functions. 5266 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5267 F->setSubprogram(SP); 5268 5269 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5270 if (!MDLoader->isStrippingTBAA()) { 5271 for (auto &I : instructions(F)) { 5272 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5273 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5274 continue; 5275 MDLoader->setStripTBAA(true); 5276 stripTBAA(F->getParent()); 5277 } 5278 } 5279 5280 // Bring in any functions that this function forward-referenced via 5281 // blockaddresses. 5282 return materializeForwardReferencedFunctions(); 5283 } 5284 5285 Error BitcodeReader::materializeModule() { 5286 if (Error Err = materializeMetadata()) 5287 return Err; 5288 5289 // Promise to materialize all forward references. 5290 WillMaterializeAllForwardRefs = true; 5291 5292 // Iterate over the module, deserializing any functions that are still on 5293 // disk. 5294 for (Function &F : *TheModule) { 5295 if (Error Err = materialize(&F)) 5296 return Err; 5297 } 5298 // At this point, if there are any function bodies, parse the rest of 5299 // the bits in the module past the last function block we have recorded 5300 // through either lazy scanning or the VST. 5301 if (LastFunctionBlockBit || NextUnreadBit) 5302 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5303 ? LastFunctionBlockBit 5304 : NextUnreadBit)) 5305 return Err; 5306 5307 // Check that all block address forward references got resolved (as we 5308 // promised above). 5309 if (!BasicBlockFwdRefs.empty()) 5310 return error("Never resolved function from blockaddress"); 5311 5312 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5313 // delete the old functions to clean up. We can't do this unless the entire 5314 // module is materialized because there could always be another function body 5315 // with calls to the old function. 5316 for (auto &I : UpgradedIntrinsics) { 5317 for (auto *U : I.first->users()) { 5318 if (CallInst *CI = dyn_cast<CallInst>(U)) 5319 UpgradeIntrinsicCall(CI, I.second); 5320 } 5321 if (!I.first->use_empty()) 5322 I.first->replaceAllUsesWith(I.second); 5323 I.first->eraseFromParent(); 5324 } 5325 UpgradedIntrinsics.clear(); 5326 // Do the same for remangled intrinsics 5327 for (auto &I : RemangledIntrinsics) { 5328 I.first->replaceAllUsesWith(I.second); 5329 I.first->eraseFromParent(); 5330 } 5331 RemangledIntrinsics.clear(); 5332 5333 UpgradeDebugInfo(*TheModule); 5334 5335 UpgradeModuleFlags(*TheModule); 5336 5337 UpgradeARCRuntime(*TheModule); 5338 5339 return Error::success(); 5340 } 5341 5342 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5343 return IdentifiedStructTypes; 5344 } 5345 5346 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5347 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5348 StringRef ModulePath, unsigned ModuleId) 5349 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5350 ModulePath(ModulePath), ModuleId(ModuleId) {} 5351 5352 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5353 TheIndex.addModule(ModulePath, ModuleId); 5354 } 5355 5356 ModuleSummaryIndex::ModuleInfo * 5357 ModuleSummaryIndexBitcodeReader::getThisModule() { 5358 return TheIndex.getModule(ModulePath); 5359 } 5360 5361 std::pair<ValueInfo, GlobalValue::GUID> 5362 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5363 auto VGI = ValueIdToValueInfoMap[ValueId]; 5364 assert(VGI.first); 5365 return VGI; 5366 } 5367 5368 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5369 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5370 StringRef SourceFileName) { 5371 std::string GlobalId = 5372 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5373 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5374 auto OriginalNameID = ValueGUID; 5375 if (GlobalValue::isLocalLinkage(Linkage)) 5376 OriginalNameID = GlobalValue::getGUID(ValueName); 5377 if (PrintSummaryGUIDs) 5378 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5379 << ValueName << "\n"; 5380 5381 // UseStrtab is false for legacy summary formats and value names are 5382 // created on stack. In that case we save the name in a string saver in 5383 // the index so that the value name can be recorded. 5384 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5385 TheIndex.getOrInsertValueInfo( 5386 ValueGUID, 5387 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5388 OriginalNameID); 5389 } 5390 5391 // Specialized value symbol table parser used when reading module index 5392 // blocks where we don't actually create global values. The parsed information 5393 // is saved in the bitcode reader for use when later parsing summaries. 5394 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5395 uint64_t Offset, 5396 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5397 // With a strtab the VST is not required to parse the summary. 5398 if (UseStrtab) 5399 return Error::success(); 5400 5401 assert(Offset > 0 && "Expected non-zero VST offset"); 5402 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5403 if (!MaybeCurrentBit) 5404 return MaybeCurrentBit.takeError(); 5405 uint64_t CurrentBit = MaybeCurrentBit.get(); 5406 5407 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5408 return Err; 5409 5410 SmallVector<uint64_t, 64> Record; 5411 5412 // Read all the records for this value table. 5413 SmallString<128> ValueName; 5414 5415 while (true) { 5416 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5417 if (!MaybeEntry) 5418 return MaybeEntry.takeError(); 5419 BitstreamEntry Entry = MaybeEntry.get(); 5420 5421 switch (Entry.Kind) { 5422 case BitstreamEntry::SubBlock: // Handled for us already. 5423 case BitstreamEntry::Error: 5424 return error("Malformed block"); 5425 case BitstreamEntry::EndBlock: 5426 // Done parsing VST, jump back to wherever we came from. 5427 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5428 return JumpFailed; 5429 return Error::success(); 5430 case BitstreamEntry::Record: 5431 // The interesting case. 5432 break; 5433 } 5434 5435 // Read a record. 5436 Record.clear(); 5437 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5438 if (!MaybeRecord) 5439 return MaybeRecord.takeError(); 5440 switch (MaybeRecord.get()) { 5441 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5442 break; 5443 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5444 if (convertToString(Record, 1, ValueName)) 5445 return error("Invalid record"); 5446 unsigned ValueID = Record[0]; 5447 assert(!SourceFileName.empty()); 5448 auto VLI = ValueIdToLinkageMap.find(ValueID); 5449 assert(VLI != ValueIdToLinkageMap.end() && 5450 "No linkage found for VST entry?"); 5451 auto Linkage = VLI->second; 5452 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5453 ValueName.clear(); 5454 break; 5455 } 5456 case bitc::VST_CODE_FNENTRY: { 5457 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5458 if (convertToString(Record, 2, ValueName)) 5459 return error("Invalid record"); 5460 unsigned ValueID = Record[0]; 5461 assert(!SourceFileName.empty()); 5462 auto VLI = ValueIdToLinkageMap.find(ValueID); 5463 assert(VLI != ValueIdToLinkageMap.end() && 5464 "No linkage found for VST entry?"); 5465 auto Linkage = VLI->second; 5466 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5467 ValueName.clear(); 5468 break; 5469 } 5470 case bitc::VST_CODE_COMBINED_ENTRY: { 5471 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5472 unsigned ValueID = Record[0]; 5473 GlobalValue::GUID RefGUID = Record[1]; 5474 // The "original name", which is the second value of the pair will be 5475 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5476 ValueIdToValueInfoMap[ValueID] = 5477 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5478 break; 5479 } 5480 } 5481 } 5482 } 5483 5484 // Parse just the blocks needed for building the index out of the module. 5485 // At the end of this routine the module Index is populated with a map 5486 // from global value id to GlobalValueSummary objects. 5487 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5488 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5489 return Err; 5490 5491 SmallVector<uint64_t, 64> Record; 5492 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5493 unsigned ValueId = 0; 5494 5495 // Read the index for this module. 5496 while (true) { 5497 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5498 if (!MaybeEntry) 5499 return MaybeEntry.takeError(); 5500 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5501 5502 switch (Entry.Kind) { 5503 case BitstreamEntry::Error: 5504 return error("Malformed block"); 5505 case BitstreamEntry::EndBlock: 5506 return Error::success(); 5507 5508 case BitstreamEntry::SubBlock: 5509 switch (Entry.ID) { 5510 default: // Skip unknown content. 5511 if (Error Err = Stream.SkipBlock()) 5512 return Err; 5513 break; 5514 case bitc::BLOCKINFO_BLOCK_ID: 5515 // Need to parse these to get abbrev ids (e.g. for VST) 5516 if (readBlockInfo()) 5517 return error("Malformed block"); 5518 break; 5519 case bitc::VALUE_SYMTAB_BLOCK_ID: 5520 // Should have been parsed earlier via VSTOffset, unless there 5521 // is no summary section. 5522 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5523 !SeenGlobalValSummary) && 5524 "Expected early VST parse via VSTOffset record"); 5525 if (Error Err = Stream.SkipBlock()) 5526 return Err; 5527 break; 5528 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5529 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5530 // Add the module if it is a per-module index (has a source file name). 5531 if (!SourceFileName.empty()) 5532 addThisModule(); 5533 assert(!SeenValueSymbolTable && 5534 "Already read VST when parsing summary block?"); 5535 // We might not have a VST if there were no values in the 5536 // summary. An empty summary block generated when we are 5537 // performing ThinLTO compiles so we don't later invoke 5538 // the regular LTO process on them. 5539 if (VSTOffset > 0) { 5540 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5541 return Err; 5542 SeenValueSymbolTable = true; 5543 } 5544 SeenGlobalValSummary = true; 5545 if (Error Err = parseEntireSummary(Entry.ID)) 5546 return Err; 5547 break; 5548 case bitc::MODULE_STRTAB_BLOCK_ID: 5549 if (Error Err = parseModuleStringTable()) 5550 return Err; 5551 break; 5552 } 5553 continue; 5554 5555 case BitstreamEntry::Record: { 5556 Record.clear(); 5557 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5558 if (!MaybeBitCode) 5559 return MaybeBitCode.takeError(); 5560 switch (MaybeBitCode.get()) { 5561 default: 5562 break; // Default behavior, ignore unknown content. 5563 case bitc::MODULE_CODE_VERSION: { 5564 if (Error Err = parseVersionRecord(Record).takeError()) 5565 return Err; 5566 break; 5567 } 5568 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5569 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5570 SmallString<128> ValueName; 5571 if (convertToString(Record, 0, ValueName)) 5572 return error("Invalid record"); 5573 SourceFileName = ValueName.c_str(); 5574 break; 5575 } 5576 /// MODULE_CODE_HASH: [5*i32] 5577 case bitc::MODULE_CODE_HASH: { 5578 if (Record.size() != 5) 5579 return error("Invalid hash length " + Twine(Record.size()).str()); 5580 auto &Hash = getThisModule()->second.second; 5581 int Pos = 0; 5582 for (auto &Val : Record) { 5583 assert(!(Val >> 32) && "Unexpected high bits set"); 5584 Hash[Pos++] = Val; 5585 } 5586 break; 5587 } 5588 /// MODULE_CODE_VSTOFFSET: [offset] 5589 case bitc::MODULE_CODE_VSTOFFSET: 5590 if (Record.size() < 1) 5591 return error("Invalid record"); 5592 // Note that we subtract 1 here because the offset is relative to one 5593 // word before the start of the identification or module block, which 5594 // was historically always the start of the regular bitcode header. 5595 VSTOffset = Record[0] - 1; 5596 break; 5597 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5598 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5599 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5600 // v2: [strtab offset, strtab size, v1] 5601 case bitc::MODULE_CODE_GLOBALVAR: 5602 case bitc::MODULE_CODE_FUNCTION: 5603 case bitc::MODULE_CODE_ALIAS: { 5604 StringRef Name; 5605 ArrayRef<uint64_t> GVRecord; 5606 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5607 if (GVRecord.size() <= 3) 5608 return error("Invalid record"); 5609 uint64_t RawLinkage = GVRecord[3]; 5610 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5611 if (!UseStrtab) { 5612 ValueIdToLinkageMap[ValueId++] = Linkage; 5613 break; 5614 } 5615 5616 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5617 break; 5618 } 5619 } 5620 } 5621 continue; 5622 } 5623 } 5624 } 5625 5626 std::vector<ValueInfo> 5627 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5628 std::vector<ValueInfo> Ret; 5629 Ret.reserve(Record.size()); 5630 for (uint64_t RefValueId : Record) 5631 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5632 return Ret; 5633 } 5634 5635 std::vector<FunctionSummary::EdgeTy> 5636 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5637 bool IsOldProfileFormat, 5638 bool HasProfile, bool HasRelBF) { 5639 std::vector<FunctionSummary::EdgeTy> Ret; 5640 Ret.reserve(Record.size()); 5641 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5642 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5643 uint64_t RelBF = 0; 5644 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5645 if (IsOldProfileFormat) { 5646 I += 1; // Skip old callsitecount field 5647 if (HasProfile) 5648 I += 1; // Skip old profilecount field 5649 } else if (HasProfile) 5650 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5651 else if (HasRelBF) 5652 RelBF = Record[++I]; 5653 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5654 } 5655 return Ret; 5656 } 5657 5658 static void 5659 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5660 WholeProgramDevirtResolution &Wpd) { 5661 uint64_t ArgNum = Record[Slot++]; 5662 WholeProgramDevirtResolution::ByArg &B = 5663 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5664 Slot += ArgNum; 5665 5666 B.TheKind = 5667 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5668 B.Info = Record[Slot++]; 5669 B.Byte = Record[Slot++]; 5670 B.Bit = Record[Slot++]; 5671 } 5672 5673 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5674 StringRef Strtab, size_t &Slot, 5675 TypeIdSummary &TypeId) { 5676 uint64_t Id = Record[Slot++]; 5677 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5678 5679 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5680 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5681 static_cast<size_t>(Record[Slot + 1])}; 5682 Slot += 2; 5683 5684 uint64_t ResByArgNum = Record[Slot++]; 5685 for (uint64_t I = 0; I != ResByArgNum; ++I) 5686 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5687 } 5688 5689 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5690 StringRef Strtab, 5691 ModuleSummaryIndex &TheIndex) { 5692 size_t Slot = 0; 5693 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5694 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5695 Slot += 2; 5696 5697 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5698 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5699 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5700 TypeId.TTRes.SizeM1 = Record[Slot++]; 5701 TypeId.TTRes.BitMask = Record[Slot++]; 5702 TypeId.TTRes.InlineBits = Record[Slot++]; 5703 5704 while (Slot < Record.size()) 5705 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5706 } 5707 5708 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5709 ArrayRef<uint64_t> Record, size_t &Slot, 5710 TypeIdCompatibleVtableInfo &TypeId) { 5711 uint64_t Offset = Record[Slot++]; 5712 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5713 TypeId.push_back({Offset, Callee}); 5714 } 5715 5716 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5717 ArrayRef<uint64_t> Record) { 5718 size_t Slot = 0; 5719 TypeIdCompatibleVtableInfo &TypeId = 5720 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5721 {Strtab.data() + Record[Slot], 5722 static_cast<size_t>(Record[Slot + 1])}); 5723 Slot += 2; 5724 5725 while (Slot < Record.size()) 5726 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5727 } 5728 5729 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5730 unsigned WOCnt) { 5731 // Readonly and writeonly refs are in the end of the refs list. 5732 assert(ROCnt + WOCnt <= Refs.size()); 5733 unsigned FirstWORef = Refs.size() - WOCnt; 5734 unsigned RefNo = FirstWORef - ROCnt; 5735 for (; RefNo < FirstWORef; ++RefNo) 5736 Refs[RefNo].setReadOnly(); 5737 for (; RefNo < Refs.size(); ++RefNo) 5738 Refs[RefNo].setWriteOnly(); 5739 } 5740 5741 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5742 // objects in the index. 5743 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5744 if (Error Err = Stream.EnterSubBlock(ID)) 5745 return Err; 5746 SmallVector<uint64_t, 64> Record; 5747 5748 // Parse version 5749 { 5750 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5751 if (!MaybeEntry) 5752 return MaybeEntry.takeError(); 5753 BitstreamEntry Entry = MaybeEntry.get(); 5754 5755 if (Entry.Kind != BitstreamEntry::Record) 5756 return error("Invalid Summary Block: record for version expected"); 5757 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5758 if (!MaybeRecord) 5759 return MaybeRecord.takeError(); 5760 if (MaybeRecord.get() != bitc::FS_VERSION) 5761 return error("Invalid Summary Block: version expected"); 5762 } 5763 const uint64_t Version = Record[0]; 5764 const bool IsOldProfileFormat = Version == 1; 5765 if (Version < 1 || Version > 8) 5766 return error("Invalid summary version " + Twine(Version) + 5767 ". Version should be in the range [1-7]."); 5768 Record.clear(); 5769 5770 // Keep around the last seen summary to be used when we see an optional 5771 // "OriginalName" attachement. 5772 GlobalValueSummary *LastSeenSummary = nullptr; 5773 GlobalValue::GUID LastSeenGUID = 0; 5774 5775 // We can expect to see any number of type ID information records before 5776 // each function summary records; these variables store the information 5777 // collected so far so that it can be used to create the summary object. 5778 std::vector<GlobalValue::GUID> PendingTypeTests; 5779 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5780 PendingTypeCheckedLoadVCalls; 5781 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5782 PendingTypeCheckedLoadConstVCalls; 5783 5784 while (true) { 5785 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5786 if (!MaybeEntry) 5787 return MaybeEntry.takeError(); 5788 BitstreamEntry Entry = MaybeEntry.get(); 5789 5790 switch (Entry.Kind) { 5791 case BitstreamEntry::SubBlock: // Handled for us already. 5792 case BitstreamEntry::Error: 5793 return error("Malformed block"); 5794 case BitstreamEntry::EndBlock: 5795 return Error::success(); 5796 case BitstreamEntry::Record: 5797 // The interesting case. 5798 break; 5799 } 5800 5801 // Read a record. The record format depends on whether this 5802 // is a per-module index or a combined index file. In the per-module 5803 // case the records contain the associated value's ID for correlation 5804 // with VST entries. In the combined index the correlation is done 5805 // via the bitcode offset of the summary records (which were saved 5806 // in the combined index VST entries). The records also contain 5807 // information used for ThinLTO renaming and importing. 5808 Record.clear(); 5809 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5810 if (!MaybeBitCode) 5811 return MaybeBitCode.takeError(); 5812 switch (unsigned BitCode = MaybeBitCode.get()) { 5813 default: // Default behavior: ignore. 5814 break; 5815 case bitc::FS_FLAGS: { // [flags] 5816 uint64_t Flags = Record[0]; 5817 // Scan flags. 5818 assert(Flags <= 0x3f && "Unexpected bits in flag"); 5819 5820 // 1 bit: WithGlobalValueDeadStripping flag. 5821 // Set on combined index only. 5822 if (Flags & 0x1) 5823 TheIndex.setWithGlobalValueDeadStripping(); 5824 // 1 bit: SkipModuleByDistributedBackend flag. 5825 // Set on combined index only. 5826 if (Flags & 0x2) 5827 TheIndex.setSkipModuleByDistributedBackend(); 5828 // 1 bit: HasSyntheticEntryCounts flag. 5829 // Set on combined index only. 5830 if (Flags & 0x4) 5831 TheIndex.setHasSyntheticEntryCounts(); 5832 // 1 bit: DisableSplitLTOUnit flag. 5833 // Set on per module indexes. It is up to the client to validate 5834 // the consistency of this flag across modules being linked. 5835 if (Flags & 0x8) 5836 TheIndex.setEnableSplitLTOUnit(); 5837 // 1 bit: PartiallySplitLTOUnits flag. 5838 // Set on combined index only. 5839 if (Flags & 0x10) 5840 TheIndex.setPartiallySplitLTOUnits(); 5841 // 1 bit: WithAttributePropagation flag. 5842 // Set on combined index only. 5843 if (Flags & 0x20) 5844 TheIndex.setWithAttributePropagation(); 5845 break; 5846 } 5847 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5848 uint64_t ValueID = Record[0]; 5849 GlobalValue::GUID RefGUID = Record[1]; 5850 ValueIdToValueInfoMap[ValueID] = 5851 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5852 break; 5853 } 5854 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5855 // numrefs x valueid, n x (valueid)] 5856 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5857 // numrefs x valueid, 5858 // n x (valueid, hotness)] 5859 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5860 // numrefs x valueid, 5861 // n x (valueid, relblockfreq)] 5862 case bitc::FS_PERMODULE: 5863 case bitc::FS_PERMODULE_RELBF: 5864 case bitc::FS_PERMODULE_PROFILE: { 5865 unsigned ValueID = Record[0]; 5866 uint64_t RawFlags = Record[1]; 5867 unsigned InstCount = Record[2]; 5868 uint64_t RawFunFlags = 0; 5869 unsigned NumRefs = Record[3]; 5870 unsigned NumRORefs = 0, NumWORefs = 0; 5871 int RefListStartIndex = 4; 5872 if (Version >= 4) { 5873 RawFunFlags = Record[3]; 5874 NumRefs = Record[4]; 5875 RefListStartIndex = 5; 5876 if (Version >= 5) { 5877 NumRORefs = Record[5]; 5878 RefListStartIndex = 6; 5879 if (Version >= 7) { 5880 NumWORefs = Record[6]; 5881 RefListStartIndex = 7; 5882 } 5883 } 5884 } 5885 5886 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5887 // The module path string ref set in the summary must be owned by the 5888 // index's module string table. Since we don't have a module path 5889 // string table section in the per-module index, we create a single 5890 // module path string table entry with an empty (0) ID to take 5891 // ownership. 5892 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5893 assert(Record.size() >= RefListStartIndex + NumRefs && 5894 "Record size inconsistent with number of references"); 5895 std::vector<ValueInfo> Refs = makeRefList( 5896 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5897 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5898 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5899 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5900 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5901 IsOldProfileFormat, HasProfile, HasRelBF); 5902 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5903 auto FS = std::make_unique<FunctionSummary>( 5904 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5905 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5906 std::move(PendingTypeTestAssumeVCalls), 5907 std::move(PendingTypeCheckedLoadVCalls), 5908 std::move(PendingTypeTestAssumeConstVCalls), 5909 std::move(PendingTypeCheckedLoadConstVCalls)); 5910 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5911 FS->setModulePath(getThisModule()->first()); 5912 FS->setOriginalName(VIAndOriginalGUID.second); 5913 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5914 break; 5915 } 5916 // FS_ALIAS: [valueid, flags, valueid] 5917 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5918 // they expect all aliasee summaries to be available. 5919 case bitc::FS_ALIAS: { 5920 unsigned ValueID = Record[0]; 5921 uint64_t RawFlags = Record[1]; 5922 unsigned AliaseeID = Record[2]; 5923 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5924 auto AS = std::make_unique<AliasSummary>(Flags); 5925 // The module path string ref set in the summary must be owned by the 5926 // index's module string table. Since we don't have a module path 5927 // string table section in the per-module index, we create a single 5928 // module path string table entry with an empty (0) ID to take 5929 // ownership. 5930 AS->setModulePath(getThisModule()->first()); 5931 5932 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5933 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5934 if (!AliaseeInModule) 5935 return error("Alias expects aliasee summary to be parsed"); 5936 AS->setAliasee(AliaseeVI, AliaseeInModule); 5937 5938 auto GUID = getValueInfoFromValueId(ValueID); 5939 AS->setOriginalName(GUID.second); 5940 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5941 break; 5942 } 5943 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5944 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5945 unsigned ValueID = Record[0]; 5946 uint64_t RawFlags = Record[1]; 5947 unsigned RefArrayStart = 2; 5948 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5949 /* WriteOnly */ false); 5950 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5951 if (Version >= 5) { 5952 GVF = getDecodedGVarFlags(Record[2]); 5953 RefArrayStart = 3; 5954 } 5955 std::vector<ValueInfo> Refs = 5956 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5957 auto FS = 5958 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5959 FS->setModulePath(getThisModule()->first()); 5960 auto GUID = getValueInfoFromValueId(ValueID); 5961 FS->setOriginalName(GUID.second); 5962 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5963 break; 5964 } 5965 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5966 // numrefs, numrefs x valueid, 5967 // n x (valueid, offset)] 5968 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5969 unsigned ValueID = Record[0]; 5970 uint64_t RawFlags = Record[1]; 5971 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5972 unsigned NumRefs = Record[3]; 5973 unsigned RefListStartIndex = 4; 5974 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5975 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5976 std::vector<ValueInfo> Refs = makeRefList( 5977 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5978 VTableFuncList VTableFuncs; 5979 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5980 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5981 uint64_t Offset = Record[++I]; 5982 VTableFuncs.push_back({Callee, Offset}); 5983 } 5984 auto VS = 5985 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5986 VS->setModulePath(getThisModule()->first()); 5987 VS->setVTableFuncs(VTableFuncs); 5988 auto GUID = getValueInfoFromValueId(ValueID); 5989 VS->setOriginalName(GUID.second); 5990 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5991 break; 5992 } 5993 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5994 // numrefs x valueid, n x (valueid)] 5995 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5996 // numrefs x valueid, n x (valueid, hotness)] 5997 case bitc::FS_COMBINED: 5998 case bitc::FS_COMBINED_PROFILE: { 5999 unsigned ValueID = Record[0]; 6000 uint64_t ModuleId = Record[1]; 6001 uint64_t RawFlags = Record[2]; 6002 unsigned InstCount = Record[3]; 6003 uint64_t RawFunFlags = 0; 6004 uint64_t EntryCount = 0; 6005 unsigned NumRefs = Record[4]; 6006 unsigned NumRORefs = 0, NumWORefs = 0; 6007 int RefListStartIndex = 5; 6008 6009 if (Version >= 4) { 6010 RawFunFlags = Record[4]; 6011 RefListStartIndex = 6; 6012 size_t NumRefsIndex = 5; 6013 if (Version >= 5) { 6014 unsigned NumRORefsOffset = 1; 6015 RefListStartIndex = 7; 6016 if (Version >= 6) { 6017 NumRefsIndex = 6; 6018 EntryCount = Record[5]; 6019 RefListStartIndex = 8; 6020 if (Version >= 7) { 6021 RefListStartIndex = 9; 6022 NumWORefs = Record[8]; 6023 NumRORefsOffset = 2; 6024 } 6025 } 6026 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6027 } 6028 NumRefs = Record[NumRefsIndex]; 6029 } 6030 6031 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6032 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6033 assert(Record.size() >= RefListStartIndex + NumRefs && 6034 "Record size inconsistent with number of references"); 6035 std::vector<ValueInfo> Refs = makeRefList( 6036 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6037 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6038 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6039 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6040 IsOldProfileFormat, HasProfile, false); 6041 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6042 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6043 auto FS = std::make_unique<FunctionSummary>( 6044 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6045 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6046 std::move(PendingTypeTestAssumeVCalls), 6047 std::move(PendingTypeCheckedLoadVCalls), 6048 std::move(PendingTypeTestAssumeConstVCalls), 6049 std::move(PendingTypeCheckedLoadConstVCalls)); 6050 LastSeenSummary = FS.get(); 6051 LastSeenGUID = VI.getGUID(); 6052 FS->setModulePath(ModuleIdMap[ModuleId]); 6053 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6054 break; 6055 } 6056 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6057 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6058 // they expect all aliasee summaries to be available. 6059 case bitc::FS_COMBINED_ALIAS: { 6060 unsigned ValueID = Record[0]; 6061 uint64_t ModuleId = Record[1]; 6062 uint64_t RawFlags = Record[2]; 6063 unsigned AliaseeValueId = Record[3]; 6064 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6065 auto AS = std::make_unique<AliasSummary>(Flags); 6066 LastSeenSummary = AS.get(); 6067 AS->setModulePath(ModuleIdMap[ModuleId]); 6068 6069 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6070 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6071 AS->setAliasee(AliaseeVI, AliaseeInModule); 6072 6073 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6074 LastSeenGUID = VI.getGUID(); 6075 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6076 break; 6077 } 6078 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6079 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6080 unsigned ValueID = Record[0]; 6081 uint64_t ModuleId = Record[1]; 6082 uint64_t RawFlags = Record[2]; 6083 unsigned RefArrayStart = 3; 6084 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6085 /* WriteOnly */ false); 6086 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6087 if (Version >= 5) { 6088 GVF = getDecodedGVarFlags(Record[3]); 6089 RefArrayStart = 4; 6090 } 6091 std::vector<ValueInfo> Refs = 6092 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6093 auto FS = 6094 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6095 LastSeenSummary = FS.get(); 6096 FS->setModulePath(ModuleIdMap[ModuleId]); 6097 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6098 LastSeenGUID = VI.getGUID(); 6099 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6100 break; 6101 } 6102 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6103 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6104 uint64_t OriginalName = Record[0]; 6105 if (!LastSeenSummary) 6106 return error("Name attachment that does not follow a combined record"); 6107 LastSeenSummary->setOriginalName(OriginalName); 6108 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6109 // Reset the LastSeenSummary 6110 LastSeenSummary = nullptr; 6111 LastSeenGUID = 0; 6112 break; 6113 } 6114 case bitc::FS_TYPE_TESTS: 6115 assert(PendingTypeTests.empty()); 6116 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6117 Record.end()); 6118 break; 6119 6120 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6121 assert(PendingTypeTestAssumeVCalls.empty()); 6122 for (unsigned I = 0; I != Record.size(); I += 2) 6123 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6124 break; 6125 6126 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6127 assert(PendingTypeCheckedLoadVCalls.empty()); 6128 for (unsigned I = 0; I != Record.size(); I += 2) 6129 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6130 break; 6131 6132 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6133 PendingTypeTestAssumeConstVCalls.push_back( 6134 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6135 break; 6136 6137 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6138 PendingTypeCheckedLoadConstVCalls.push_back( 6139 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6140 break; 6141 6142 case bitc::FS_CFI_FUNCTION_DEFS: { 6143 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6144 for (unsigned I = 0; I != Record.size(); I += 2) 6145 CfiFunctionDefs.insert( 6146 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6147 break; 6148 } 6149 6150 case bitc::FS_CFI_FUNCTION_DECLS: { 6151 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6152 for (unsigned I = 0; I != Record.size(); I += 2) 6153 CfiFunctionDecls.insert( 6154 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6155 break; 6156 } 6157 6158 case bitc::FS_TYPE_ID: 6159 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6160 break; 6161 6162 case bitc::FS_TYPE_ID_METADATA: 6163 parseTypeIdCompatibleVtableSummaryRecord(Record); 6164 break; 6165 } 6166 } 6167 llvm_unreachable("Exit infinite loop"); 6168 } 6169 6170 // Parse the module string table block into the Index. 6171 // This populates the ModulePathStringTable map in the index. 6172 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6173 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6174 return Err; 6175 6176 SmallVector<uint64_t, 64> Record; 6177 6178 SmallString<128> ModulePath; 6179 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6180 6181 while (true) { 6182 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6183 if (!MaybeEntry) 6184 return MaybeEntry.takeError(); 6185 BitstreamEntry Entry = MaybeEntry.get(); 6186 6187 switch (Entry.Kind) { 6188 case BitstreamEntry::SubBlock: // Handled for us already. 6189 case BitstreamEntry::Error: 6190 return error("Malformed block"); 6191 case BitstreamEntry::EndBlock: 6192 return Error::success(); 6193 case BitstreamEntry::Record: 6194 // The interesting case. 6195 break; 6196 } 6197 6198 Record.clear(); 6199 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6200 if (!MaybeRecord) 6201 return MaybeRecord.takeError(); 6202 switch (MaybeRecord.get()) { 6203 default: // Default behavior: ignore. 6204 break; 6205 case bitc::MST_CODE_ENTRY: { 6206 // MST_ENTRY: [modid, namechar x N] 6207 uint64_t ModuleId = Record[0]; 6208 6209 if (convertToString(Record, 1, ModulePath)) 6210 return error("Invalid record"); 6211 6212 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6213 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6214 6215 ModulePath.clear(); 6216 break; 6217 } 6218 /// MST_CODE_HASH: [5*i32] 6219 case bitc::MST_CODE_HASH: { 6220 if (Record.size() != 5) 6221 return error("Invalid hash length " + Twine(Record.size()).str()); 6222 if (!LastSeenModule) 6223 return error("Invalid hash that does not follow a module path"); 6224 int Pos = 0; 6225 for (auto &Val : Record) { 6226 assert(!(Val >> 32) && "Unexpected high bits set"); 6227 LastSeenModule->second.second[Pos++] = Val; 6228 } 6229 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6230 LastSeenModule = nullptr; 6231 break; 6232 } 6233 } 6234 } 6235 llvm_unreachable("Exit infinite loop"); 6236 } 6237 6238 namespace { 6239 6240 // FIXME: This class is only here to support the transition to llvm::Error. It 6241 // will be removed once this transition is complete. Clients should prefer to 6242 // deal with the Error value directly, rather than converting to error_code. 6243 class BitcodeErrorCategoryType : public std::error_category { 6244 const char *name() const noexcept override { 6245 return "llvm.bitcode"; 6246 } 6247 6248 std::string message(int IE) const override { 6249 BitcodeError E = static_cast<BitcodeError>(IE); 6250 switch (E) { 6251 case BitcodeError::CorruptedBitcode: 6252 return "Corrupted bitcode"; 6253 } 6254 llvm_unreachable("Unknown error type!"); 6255 } 6256 }; 6257 6258 } // end anonymous namespace 6259 6260 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6261 6262 const std::error_category &llvm::BitcodeErrorCategory() { 6263 return *ErrorCategory; 6264 } 6265 6266 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6267 unsigned Block, unsigned RecordID) { 6268 if (Error Err = Stream.EnterSubBlock(Block)) 6269 return std::move(Err); 6270 6271 StringRef Strtab; 6272 while (true) { 6273 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6274 if (!MaybeEntry) 6275 return MaybeEntry.takeError(); 6276 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6277 6278 switch (Entry.Kind) { 6279 case BitstreamEntry::EndBlock: 6280 return Strtab; 6281 6282 case BitstreamEntry::Error: 6283 return error("Malformed block"); 6284 6285 case BitstreamEntry::SubBlock: 6286 if (Error Err = Stream.SkipBlock()) 6287 return std::move(Err); 6288 break; 6289 6290 case BitstreamEntry::Record: 6291 StringRef Blob; 6292 SmallVector<uint64_t, 1> Record; 6293 Expected<unsigned> MaybeRecord = 6294 Stream.readRecord(Entry.ID, Record, &Blob); 6295 if (!MaybeRecord) 6296 return MaybeRecord.takeError(); 6297 if (MaybeRecord.get() == RecordID) 6298 Strtab = Blob; 6299 break; 6300 } 6301 } 6302 } 6303 6304 //===----------------------------------------------------------------------===// 6305 // External interface 6306 //===----------------------------------------------------------------------===// 6307 6308 Expected<std::vector<BitcodeModule>> 6309 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6310 auto FOrErr = getBitcodeFileContents(Buffer); 6311 if (!FOrErr) 6312 return FOrErr.takeError(); 6313 return std::move(FOrErr->Mods); 6314 } 6315 6316 Expected<BitcodeFileContents> 6317 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6318 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6319 if (!StreamOrErr) 6320 return StreamOrErr.takeError(); 6321 BitstreamCursor &Stream = *StreamOrErr; 6322 6323 BitcodeFileContents F; 6324 while (true) { 6325 uint64_t BCBegin = Stream.getCurrentByteNo(); 6326 6327 // We may be consuming bitcode from a client that leaves garbage at the end 6328 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6329 // the end that there cannot possibly be another module, stop looking. 6330 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6331 return F; 6332 6333 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6334 if (!MaybeEntry) 6335 return MaybeEntry.takeError(); 6336 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6337 6338 switch (Entry.Kind) { 6339 case BitstreamEntry::EndBlock: 6340 case BitstreamEntry::Error: 6341 return error("Malformed block"); 6342 6343 case BitstreamEntry::SubBlock: { 6344 uint64_t IdentificationBit = -1ull; 6345 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6346 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6347 if (Error Err = Stream.SkipBlock()) 6348 return std::move(Err); 6349 6350 { 6351 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6352 if (!MaybeEntry) 6353 return MaybeEntry.takeError(); 6354 Entry = MaybeEntry.get(); 6355 } 6356 6357 if (Entry.Kind != BitstreamEntry::SubBlock || 6358 Entry.ID != bitc::MODULE_BLOCK_ID) 6359 return error("Malformed block"); 6360 } 6361 6362 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6363 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6364 if (Error Err = Stream.SkipBlock()) 6365 return std::move(Err); 6366 6367 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6368 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6369 Buffer.getBufferIdentifier(), IdentificationBit, 6370 ModuleBit}); 6371 continue; 6372 } 6373 6374 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6375 Expected<StringRef> Strtab = 6376 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6377 if (!Strtab) 6378 return Strtab.takeError(); 6379 // This string table is used by every preceding bitcode module that does 6380 // not have its own string table. A bitcode file may have multiple 6381 // string tables if it was created by binary concatenation, for example 6382 // with "llvm-cat -b". 6383 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6384 if (!I->Strtab.empty()) 6385 break; 6386 I->Strtab = *Strtab; 6387 } 6388 // Similarly, the string table is used by every preceding symbol table; 6389 // normally there will be just one unless the bitcode file was created 6390 // by binary concatenation. 6391 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6392 F.StrtabForSymtab = *Strtab; 6393 continue; 6394 } 6395 6396 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6397 Expected<StringRef> SymtabOrErr = 6398 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6399 if (!SymtabOrErr) 6400 return SymtabOrErr.takeError(); 6401 6402 // We can expect the bitcode file to have multiple symbol tables if it 6403 // was created by binary concatenation. In that case we silently 6404 // ignore any subsequent symbol tables, which is fine because this is a 6405 // low level function. The client is expected to notice that the number 6406 // of modules in the symbol table does not match the number of modules 6407 // in the input file and regenerate the symbol table. 6408 if (F.Symtab.empty()) 6409 F.Symtab = *SymtabOrErr; 6410 continue; 6411 } 6412 6413 if (Error Err = Stream.SkipBlock()) 6414 return std::move(Err); 6415 continue; 6416 } 6417 case BitstreamEntry::Record: 6418 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6419 continue; 6420 else 6421 return StreamFailed.takeError(); 6422 } 6423 } 6424 } 6425 6426 /// Get a lazy one-at-time loading module from bitcode. 6427 /// 6428 /// This isn't always used in a lazy context. In particular, it's also used by 6429 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6430 /// in forward-referenced functions from block address references. 6431 /// 6432 /// \param[in] MaterializeAll Set to \c true if we should materialize 6433 /// everything. 6434 Expected<std::unique_ptr<Module>> 6435 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6436 bool ShouldLazyLoadMetadata, bool IsImporting) { 6437 BitstreamCursor Stream(Buffer); 6438 6439 std::string ProducerIdentification; 6440 if (IdentificationBit != -1ull) { 6441 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6442 return std::move(JumpFailed); 6443 Expected<std::string> ProducerIdentificationOrErr = 6444 readIdentificationBlock(Stream); 6445 if (!ProducerIdentificationOrErr) 6446 return ProducerIdentificationOrErr.takeError(); 6447 6448 ProducerIdentification = *ProducerIdentificationOrErr; 6449 } 6450 6451 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6452 return std::move(JumpFailed); 6453 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6454 Context); 6455 6456 std::unique_ptr<Module> M = 6457 std::make_unique<Module>(ModuleIdentifier, Context); 6458 M->setMaterializer(R); 6459 6460 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6461 if (Error Err = 6462 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6463 return std::move(Err); 6464 6465 if (MaterializeAll) { 6466 // Read in the entire module, and destroy the BitcodeReader. 6467 if (Error Err = M->materializeAll()) 6468 return std::move(Err); 6469 } else { 6470 // Resolve forward references from blockaddresses. 6471 if (Error Err = R->materializeForwardReferencedFunctions()) 6472 return std::move(Err); 6473 } 6474 return std::move(M); 6475 } 6476 6477 Expected<std::unique_ptr<Module>> 6478 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6479 bool IsImporting) { 6480 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6481 } 6482 6483 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6484 // We don't use ModuleIdentifier here because the client may need to control the 6485 // module path used in the combined summary (e.g. when reading summaries for 6486 // regular LTO modules). 6487 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6488 StringRef ModulePath, uint64_t ModuleId) { 6489 BitstreamCursor Stream(Buffer); 6490 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6491 return JumpFailed; 6492 6493 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6494 ModulePath, ModuleId); 6495 return R.parseModule(); 6496 } 6497 6498 // Parse the specified bitcode buffer, returning the function info index. 6499 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6500 BitstreamCursor Stream(Buffer); 6501 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6502 return std::move(JumpFailed); 6503 6504 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6505 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6506 ModuleIdentifier, 0); 6507 6508 if (Error Err = R.parseModule()) 6509 return std::move(Err); 6510 6511 return std::move(Index); 6512 } 6513 6514 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6515 unsigned ID) { 6516 if (Error Err = Stream.EnterSubBlock(ID)) 6517 return std::move(Err); 6518 SmallVector<uint64_t, 64> Record; 6519 6520 while (true) { 6521 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6522 if (!MaybeEntry) 6523 return MaybeEntry.takeError(); 6524 BitstreamEntry Entry = MaybeEntry.get(); 6525 6526 switch (Entry.Kind) { 6527 case BitstreamEntry::SubBlock: // Handled for us already. 6528 case BitstreamEntry::Error: 6529 return error("Malformed block"); 6530 case BitstreamEntry::EndBlock: 6531 // If no flags record found, conservatively return true to mimic 6532 // behavior before this flag was added. 6533 return true; 6534 case BitstreamEntry::Record: 6535 // The interesting case. 6536 break; 6537 } 6538 6539 // Look for the FS_FLAGS record. 6540 Record.clear(); 6541 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6542 if (!MaybeBitCode) 6543 return MaybeBitCode.takeError(); 6544 switch (MaybeBitCode.get()) { 6545 default: // Default behavior: ignore. 6546 break; 6547 case bitc::FS_FLAGS: { // [flags] 6548 uint64_t Flags = Record[0]; 6549 // Scan flags. 6550 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6551 6552 return Flags & 0x8; 6553 } 6554 } 6555 } 6556 llvm_unreachable("Exit infinite loop"); 6557 } 6558 6559 // Check if the given bitcode buffer contains a global value summary block. 6560 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6561 BitstreamCursor Stream(Buffer); 6562 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6563 return std::move(JumpFailed); 6564 6565 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6566 return std::move(Err); 6567 6568 while (true) { 6569 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6570 if (!MaybeEntry) 6571 return MaybeEntry.takeError(); 6572 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6573 6574 switch (Entry.Kind) { 6575 case BitstreamEntry::Error: 6576 return error("Malformed block"); 6577 case BitstreamEntry::EndBlock: 6578 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6579 /*EnableSplitLTOUnit=*/false}; 6580 6581 case BitstreamEntry::SubBlock: 6582 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6583 Expected<bool> EnableSplitLTOUnit = 6584 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6585 if (!EnableSplitLTOUnit) 6586 return EnableSplitLTOUnit.takeError(); 6587 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6588 *EnableSplitLTOUnit}; 6589 } 6590 6591 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6592 Expected<bool> EnableSplitLTOUnit = 6593 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6594 if (!EnableSplitLTOUnit) 6595 return EnableSplitLTOUnit.takeError(); 6596 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6597 *EnableSplitLTOUnit}; 6598 } 6599 6600 // Ignore other sub-blocks. 6601 if (Error Err = Stream.SkipBlock()) 6602 return std::move(Err); 6603 continue; 6604 6605 case BitstreamEntry::Record: 6606 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6607 continue; 6608 else 6609 return StreamFailed.takeError(); 6610 } 6611 } 6612 } 6613 6614 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6615 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6616 if (!MsOrErr) 6617 return MsOrErr.takeError(); 6618 6619 if (MsOrErr->size() != 1) 6620 return error("Expected a single module"); 6621 6622 return (*MsOrErr)[0]; 6623 } 6624 6625 Expected<std::unique_ptr<Module>> 6626 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6627 bool ShouldLazyLoadMetadata, bool IsImporting) { 6628 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6629 if (!BM) 6630 return BM.takeError(); 6631 6632 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6633 } 6634 6635 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6636 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6637 bool ShouldLazyLoadMetadata, bool IsImporting) { 6638 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6639 IsImporting); 6640 if (MOrErr) 6641 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6642 return MOrErr; 6643 } 6644 6645 Expected<std::unique_ptr<Module>> 6646 BitcodeModule::parseModule(LLVMContext &Context) { 6647 return getModuleImpl(Context, true, false, false); 6648 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6649 // written. We must defer until the Module has been fully materialized. 6650 } 6651 6652 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6653 LLVMContext &Context) { 6654 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6655 if (!BM) 6656 return BM.takeError(); 6657 6658 return BM->parseModule(Context); 6659 } 6660 6661 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6662 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6663 if (!StreamOrErr) 6664 return StreamOrErr.takeError(); 6665 6666 return readTriple(*StreamOrErr); 6667 } 6668 6669 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6670 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6671 if (!StreamOrErr) 6672 return StreamOrErr.takeError(); 6673 6674 return hasObjCCategory(*StreamOrErr); 6675 } 6676 6677 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6678 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6679 if (!StreamOrErr) 6680 return StreamOrErr.takeError(); 6681 6682 return readIdentificationCode(*StreamOrErr); 6683 } 6684 6685 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6686 ModuleSummaryIndex &CombinedIndex, 6687 uint64_t ModuleId) { 6688 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6689 if (!BM) 6690 return BM.takeError(); 6691 6692 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6693 } 6694 6695 Expected<std::unique_ptr<ModuleSummaryIndex>> 6696 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6697 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6698 if (!BM) 6699 return BM.takeError(); 6700 6701 return BM->getSummary(); 6702 } 6703 6704 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6705 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6706 if (!BM) 6707 return BM.takeError(); 6708 6709 return BM->getLTOInfo(); 6710 } 6711 6712 Expected<std::unique_ptr<ModuleSummaryIndex>> 6713 llvm::getModuleSummaryIndexForFile(StringRef Path, 6714 bool IgnoreEmptyThinLTOIndexFile) { 6715 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6716 MemoryBuffer::getFileOrSTDIN(Path); 6717 if (!FileOrErr) 6718 return errorCodeToError(FileOrErr.getError()); 6719 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6720 return nullptr; 6721 return getModuleSummaryIndex(**FileOrErr); 6722 } 6723