xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision b11391bb47d6fb75639c331378440b405e64be7a)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
964   return Flags;
965 }
966 
967 /// Decode the flags for GlobalValue in the summary.
968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
969                                                             uint64_t Version) {
970   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
971   // like getDecodedLinkage() above. Any future change to the linkage enum and
972   // to getDecodedLinkage() will need to be taken into account here as above.
973   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
974   RawFlags = RawFlags >> 4;
975   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
976   // The Live flag wasn't introduced until version 3. For dead stripping
977   // to work correctly on earlier versions, we must conservatively treat all
978   // values as live.
979   bool Live = (RawFlags & 0x2) || Version < 3;
980   bool Local = (RawFlags & 0x4);
981   bool AutoHide = (RawFlags & 0x8);
982 
983   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
989                                      (RawFlags & 0x2) ? true : false);
990 }
991 
992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
993   switch (Val) {
994   default: // Map unknown visibilities to default.
995   case 0: return GlobalValue::DefaultVisibility;
996   case 1: return GlobalValue::HiddenVisibility;
997   case 2: return GlobalValue::ProtectedVisibility;
998   }
999 }
1000 
1001 static GlobalValue::DLLStorageClassTypes
1002 getDecodedDLLStorageClass(unsigned Val) {
1003   switch (Val) {
1004   default: // Map unknown values to default.
1005   case 0: return GlobalValue::DefaultStorageClass;
1006   case 1: return GlobalValue::DLLImportStorageClass;
1007   case 2: return GlobalValue::DLLExportStorageClass;
1008   }
1009 }
1010 
1011 static bool getDecodedDSOLocal(unsigned Val) {
1012   switch(Val) {
1013   default: // Map unknown values to preemptable.
1014   case 0:  return false;
1015   case 1:  return true;
1016   }
1017 }
1018 
1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1020   switch (Val) {
1021     case 0: return GlobalVariable::NotThreadLocal;
1022     default: // Map unknown non-zero value to general dynamic.
1023     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1024     case 2: return GlobalVariable::LocalDynamicTLSModel;
1025     case 3: return GlobalVariable::InitialExecTLSModel;
1026     case 4: return GlobalVariable::LocalExecTLSModel;
1027   }
1028 }
1029 
1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1031   switch (Val) {
1032     default: // Map unknown to UnnamedAddr::None.
1033     case 0: return GlobalVariable::UnnamedAddr::None;
1034     case 1: return GlobalVariable::UnnamedAddr::Global;
1035     case 2: return GlobalVariable::UnnamedAddr::Local;
1036   }
1037 }
1038 
1039 static int getDecodedCastOpcode(unsigned Val) {
1040   switch (Val) {
1041   default: return -1;
1042   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1043   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1044   case bitc::CAST_SEXT    : return Instruction::SExt;
1045   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1046   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1047   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1048   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1049   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1050   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1051   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1052   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1053   case bitc::CAST_BITCAST : return Instruction::BitCast;
1054   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1055   }
1056 }
1057 
1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1059   switch (Val) {
1060   default:
1061     return -1;
1062   case bitc::UNOP_FNEG:
1063     return Ty->isFPOrFPVectorTy() ? Instruction::FNeg : -1;
1064   case bitc::UNOP_FREEZE:
1065     return Instruction::Freeze;
1066   }
1067 }
1068 
1069 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1070   bool IsFP = Ty->isFPOrFPVectorTy();
1071   // BinOps are only valid for int/fp or vector of int/fp types
1072   if (!IsFP && !Ty->isIntOrIntVectorTy())
1073     return -1;
1074 
1075   switch (Val) {
1076   default:
1077     return -1;
1078   case bitc::BINOP_ADD:
1079     return IsFP ? Instruction::FAdd : Instruction::Add;
1080   case bitc::BINOP_SUB:
1081     return IsFP ? Instruction::FSub : Instruction::Sub;
1082   case bitc::BINOP_MUL:
1083     return IsFP ? Instruction::FMul : Instruction::Mul;
1084   case bitc::BINOP_UDIV:
1085     return IsFP ? -1 : Instruction::UDiv;
1086   case bitc::BINOP_SDIV:
1087     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1088   case bitc::BINOP_UREM:
1089     return IsFP ? -1 : Instruction::URem;
1090   case bitc::BINOP_SREM:
1091     return IsFP ? Instruction::FRem : Instruction::SRem;
1092   case bitc::BINOP_SHL:
1093     return IsFP ? -1 : Instruction::Shl;
1094   case bitc::BINOP_LSHR:
1095     return IsFP ? -1 : Instruction::LShr;
1096   case bitc::BINOP_ASHR:
1097     return IsFP ? -1 : Instruction::AShr;
1098   case bitc::BINOP_AND:
1099     return IsFP ? -1 : Instruction::And;
1100   case bitc::BINOP_OR:
1101     return IsFP ? -1 : Instruction::Or;
1102   case bitc::BINOP_XOR:
1103     return IsFP ? -1 : Instruction::Xor;
1104   }
1105 }
1106 
1107 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1108   switch (Val) {
1109   default: return AtomicRMWInst::BAD_BINOP;
1110   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1111   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1112   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1113   case bitc::RMW_AND: return AtomicRMWInst::And;
1114   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1115   case bitc::RMW_OR: return AtomicRMWInst::Or;
1116   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1117   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1118   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1119   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1120   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1121   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1122   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1123   }
1124 }
1125 
1126 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1127   switch (Val) {
1128   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1129   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1130   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1131   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1132   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1133   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1134   default: // Map unknown orderings to sequentially-consistent.
1135   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1136   }
1137 }
1138 
1139 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1140   switch (Val) {
1141   default: // Map unknown selection kinds to any.
1142   case bitc::COMDAT_SELECTION_KIND_ANY:
1143     return Comdat::Any;
1144   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1145     return Comdat::ExactMatch;
1146   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1147     return Comdat::Largest;
1148   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1149     return Comdat::NoDuplicates;
1150   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1151     return Comdat::SameSize;
1152   }
1153 }
1154 
1155 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1156   FastMathFlags FMF;
1157   if (0 != (Val & bitc::UnsafeAlgebra))
1158     FMF.setFast();
1159   if (0 != (Val & bitc::AllowReassoc))
1160     FMF.setAllowReassoc();
1161   if (0 != (Val & bitc::NoNaNs))
1162     FMF.setNoNaNs();
1163   if (0 != (Val & bitc::NoInfs))
1164     FMF.setNoInfs();
1165   if (0 != (Val & bitc::NoSignedZeros))
1166     FMF.setNoSignedZeros();
1167   if (0 != (Val & bitc::AllowReciprocal))
1168     FMF.setAllowReciprocal();
1169   if (0 != (Val & bitc::AllowContract))
1170     FMF.setAllowContract(true);
1171   if (0 != (Val & bitc::ApproxFunc))
1172     FMF.setApproxFunc();
1173   return FMF;
1174 }
1175 
1176 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1177   switch (Val) {
1178   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1179   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1180   }
1181 }
1182 
1183 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1184   // The type table size is always specified correctly.
1185   if (ID >= TypeList.size())
1186     return nullptr;
1187 
1188   if (Type *Ty = TypeList[ID])
1189     return Ty;
1190 
1191   // If we have a forward reference, the only possible case is when it is to a
1192   // named struct.  Just create a placeholder for now.
1193   return TypeList[ID] = createIdentifiedStructType(Context);
1194 }
1195 
1196 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1197                                                       StringRef Name) {
1198   auto *Ret = StructType::create(Context, Name);
1199   IdentifiedStructTypes.push_back(Ret);
1200   return Ret;
1201 }
1202 
1203 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1204   auto *Ret = StructType::create(Context);
1205   IdentifiedStructTypes.push_back(Ret);
1206   return Ret;
1207 }
1208 
1209 //===----------------------------------------------------------------------===//
1210 //  Functions for parsing blocks from the bitcode file
1211 //===----------------------------------------------------------------------===//
1212 
1213 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1214   switch (Val) {
1215   case Attribute::EndAttrKinds:
1216     llvm_unreachable("Synthetic enumerators which should never get here");
1217 
1218   case Attribute::None:            return 0;
1219   case Attribute::ZExt:            return 1 << 0;
1220   case Attribute::SExt:            return 1 << 1;
1221   case Attribute::NoReturn:        return 1 << 2;
1222   case Attribute::InReg:           return 1 << 3;
1223   case Attribute::StructRet:       return 1 << 4;
1224   case Attribute::NoUnwind:        return 1 << 5;
1225   case Attribute::NoAlias:         return 1 << 6;
1226   case Attribute::ByVal:           return 1 << 7;
1227   case Attribute::Nest:            return 1 << 8;
1228   case Attribute::ReadNone:        return 1 << 9;
1229   case Attribute::ReadOnly:        return 1 << 10;
1230   case Attribute::NoInline:        return 1 << 11;
1231   case Attribute::AlwaysInline:    return 1 << 12;
1232   case Attribute::OptimizeForSize: return 1 << 13;
1233   case Attribute::StackProtect:    return 1 << 14;
1234   case Attribute::StackProtectReq: return 1 << 15;
1235   case Attribute::Alignment:       return 31 << 16;
1236   case Attribute::NoCapture:       return 1 << 21;
1237   case Attribute::NoRedZone:       return 1 << 22;
1238   case Attribute::NoImplicitFloat: return 1 << 23;
1239   case Attribute::Naked:           return 1 << 24;
1240   case Attribute::InlineHint:      return 1 << 25;
1241   case Attribute::StackAlignment:  return 7 << 26;
1242   case Attribute::ReturnsTwice:    return 1 << 29;
1243   case Attribute::UWTable:         return 1 << 30;
1244   case Attribute::NonLazyBind:     return 1U << 31;
1245   case Attribute::SanitizeAddress: return 1ULL << 32;
1246   case Attribute::MinSize:         return 1ULL << 33;
1247   case Attribute::NoDuplicate:     return 1ULL << 34;
1248   case Attribute::StackProtectStrong: return 1ULL << 35;
1249   case Attribute::SanitizeThread:  return 1ULL << 36;
1250   case Attribute::SanitizeMemory:  return 1ULL << 37;
1251   case Attribute::NoBuiltin:       return 1ULL << 38;
1252   case Attribute::Returned:        return 1ULL << 39;
1253   case Attribute::Cold:            return 1ULL << 40;
1254   case Attribute::Builtin:         return 1ULL << 41;
1255   case Attribute::OptimizeNone:    return 1ULL << 42;
1256   case Attribute::InAlloca:        return 1ULL << 43;
1257   case Attribute::NonNull:         return 1ULL << 44;
1258   case Attribute::JumpTable:       return 1ULL << 45;
1259   case Attribute::Convergent:      return 1ULL << 46;
1260   case Attribute::SafeStack:       return 1ULL << 47;
1261   case Attribute::NoRecurse:       return 1ULL << 48;
1262   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1263   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1264   case Attribute::SwiftSelf:       return 1ULL << 51;
1265   case Attribute::SwiftError:      return 1ULL << 52;
1266   case Attribute::WriteOnly:       return 1ULL << 53;
1267   case Attribute::Speculatable:    return 1ULL << 54;
1268   case Attribute::StrictFP:        return 1ULL << 55;
1269   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1270   case Attribute::NoCfCheck:       return 1ULL << 57;
1271   case Attribute::OptForFuzzing:   return 1ULL << 58;
1272   case Attribute::ShadowCallStack: return 1ULL << 59;
1273   case Attribute::SpeculativeLoadHardening:
1274     return 1ULL << 60;
1275   case Attribute::ImmArg:
1276     return 1ULL << 61;
1277   case Attribute::WillReturn:
1278     return 1ULL << 62;
1279   case Attribute::NoFree:
1280     return 1ULL << 63;
1281   case Attribute::NoSync:
1282     llvm_unreachable("nosync attribute not supported in raw format");
1283     break;
1284   case Attribute::Dereferenceable:
1285     llvm_unreachable("dereferenceable attribute not supported in raw format");
1286     break;
1287   case Attribute::DereferenceableOrNull:
1288     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1289                      "format");
1290     break;
1291   case Attribute::ArgMemOnly:
1292     llvm_unreachable("argmemonly attribute not supported in raw format");
1293     break;
1294   case Attribute::AllocSize:
1295     llvm_unreachable("allocsize not supported in raw format");
1296     break;
1297   case Attribute::SanitizeMemTag:
1298     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1299     break;
1300   }
1301   llvm_unreachable("Unsupported attribute type");
1302 }
1303 
1304 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1305   if (!Val) return;
1306 
1307   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1308        I = Attribute::AttrKind(I + 1)) {
1309     if (I == Attribute::SanitizeMemTag ||
1310         I == Attribute::Dereferenceable ||
1311         I == Attribute::DereferenceableOrNull ||
1312         I == Attribute::ArgMemOnly ||
1313         I == Attribute::AllocSize ||
1314         I == Attribute::NoSync)
1315       continue;
1316     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1317       if (I == Attribute::Alignment)
1318         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1319       else if (I == Attribute::StackAlignment)
1320         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1321       else
1322         B.addAttribute(I);
1323     }
1324   }
1325 }
1326 
1327 /// This fills an AttrBuilder object with the LLVM attributes that have
1328 /// been decoded from the given integer. This function must stay in sync with
1329 /// 'encodeLLVMAttributesForBitcode'.
1330 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1331                                            uint64_t EncodedAttrs) {
1332   // FIXME: Remove in 4.0.
1333 
1334   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1335   // the bits above 31 down by 11 bits.
1336   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1337   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1338          "Alignment must be a power of two.");
1339 
1340   if (Alignment)
1341     B.addAlignmentAttr(Alignment);
1342   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1343                           (EncodedAttrs & 0xffff));
1344 }
1345 
1346 Error BitcodeReader::parseAttributeBlock() {
1347   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1348     return Err;
1349 
1350   if (!MAttributes.empty())
1351     return error("Invalid multiple blocks");
1352 
1353   SmallVector<uint64_t, 64> Record;
1354 
1355   SmallVector<AttributeList, 8> Attrs;
1356 
1357   // Read all the records.
1358   while (true) {
1359     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1360     if (!MaybeEntry)
1361       return MaybeEntry.takeError();
1362     BitstreamEntry Entry = MaybeEntry.get();
1363 
1364     switch (Entry.Kind) {
1365     case BitstreamEntry::SubBlock: // Handled for us already.
1366     case BitstreamEntry::Error:
1367       return error("Malformed block");
1368     case BitstreamEntry::EndBlock:
1369       return Error::success();
1370     case BitstreamEntry::Record:
1371       // The interesting case.
1372       break;
1373     }
1374 
1375     // Read a record.
1376     Record.clear();
1377     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1378     if (!MaybeRecord)
1379       return MaybeRecord.takeError();
1380     switch (MaybeRecord.get()) {
1381     default:  // Default behavior: ignore.
1382       break;
1383     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1384       // FIXME: Remove in 4.0.
1385       if (Record.size() & 1)
1386         return error("Invalid record");
1387 
1388       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1389         AttrBuilder B;
1390         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1391         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1392       }
1393 
1394       MAttributes.push_back(AttributeList::get(Context, Attrs));
1395       Attrs.clear();
1396       break;
1397     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1398       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1399         Attrs.push_back(MAttributeGroups[Record[i]]);
1400 
1401       MAttributes.push_back(AttributeList::get(Context, Attrs));
1402       Attrs.clear();
1403       break;
1404     }
1405   }
1406 }
1407 
1408 // Returns Attribute::None on unrecognized codes.
1409 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1410   switch (Code) {
1411   default:
1412     return Attribute::None;
1413   case bitc::ATTR_KIND_ALIGNMENT:
1414     return Attribute::Alignment;
1415   case bitc::ATTR_KIND_ALWAYS_INLINE:
1416     return Attribute::AlwaysInline;
1417   case bitc::ATTR_KIND_ARGMEMONLY:
1418     return Attribute::ArgMemOnly;
1419   case bitc::ATTR_KIND_BUILTIN:
1420     return Attribute::Builtin;
1421   case bitc::ATTR_KIND_BY_VAL:
1422     return Attribute::ByVal;
1423   case bitc::ATTR_KIND_IN_ALLOCA:
1424     return Attribute::InAlloca;
1425   case bitc::ATTR_KIND_COLD:
1426     return Attribute::Cold;
1427   case bitc::ATTR_KIND_CONVERGENT:
1428     return Attribute::Convergent;
1429   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1430     return Attribute::InaccessibleMemOnly;
1431   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1432     return Attribute::InaccessibleMemOrArgMemOnly;
1433   case bitc::ATTR_KIND_INLINE_HINT:
1434     return Attribute::InlineHint;
1435   case bitc::ATTR_KIND_IN_REG:
1436     return Attribute::InReg;
1437   case bitc::ATTR_KIND_JUMP_TABLE:
1438     return Attribute::JumpTable;
1439   case bitc::ATTR_KIND_MIN_SIZE:
1440     return Attribute::MinSize;
1441   case bitc::ATTR_KIND_NAKED:
1442     return Attribute::Naked;
1443   case bitc::ATTR_KIND_NEST:
1444     return Attribute::Nest;
1445   case bitc::ATTR_KIND_NO_ALIAS:
1446     return Attribute::NoAlias;
1447   case bitc::ATTR_KIND_NO_BUILTIN:
1448     return Attribute::NoBuiltin;
1449   case bitc::ATTR_KIND_NO_CAPTURE:
1450     return Attribute::NoCapture;
1451   case bitc::ATTR_KIND_NO_DUPLICATE:
1452     return Attribute::NoDuplicate;
1453   case bitc::ATTR_KIND_NOFREE:
1454     return Attribute::NoFree;
1455   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1456     return Attribute::NoImplicitFloat;
1457   case bitc::ATTR_KIND_NO_INLINE:
1458     return Attribute::NoInline;
1459   case bitc::ATTR_KIND_NO_RECURSE:
1460     return Attribute::NoRecurse;
1461   case bitc::ATTR_KIND_NON_LAZY_BIND:
1462     return Attribute::NonLazyBind;
1463   case bitc::ATTR_KIND_NON_NULL:
1464     return Attribute::NonNull;
1465   case bitc::ATTR_KIND_DEREFERENCEABLE:
1466     return Attribute::Dereferenceable;
1467   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1468     return Attribute::DereferenceableOrNull;
1469   case bitc::ATTR_KIND_ALLOC_SIZE:
1470     return Attribute::AllocSize;
1471   case bitc::ATTR_KIND_NO_RED_ZONE:
1472     return Attribute::NoRedZone;
1473   case bitc::ATTR_KIND_NO_RETURN:
1474     return Attribute::NoReturn;
1475   case bitc::ATTR_KIND_NOSYNC:
1476     return Attribute::NoSync;
1477   case bitc::ATTR_KIND_NOCF_CHECK:
1478     return Attribute::NoCfCheck;
1479   case bitc::ATTR_KIND_NO_UNWIND:
1480     return Attribute::NoUnwind;
1481   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1482     return Attribute::OptForFuzzing;
1483   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1484     return Attribute::OptimizeForSize;
1485   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1486     return Attribute::OptimizeNone;
1487   case bitc::ATTR_KIND_READ_NONE:
1488     return Attribute::ReadNone;
1489   case bitc::ATTR_KIND_READ_ONLY:
1490     return Attribute::ReadOnly;
1491   case bitc::ATTR_KIND_RETURNED:
1492     return Attribute::Returned;
1493   case bitc::ATTR_KIND_RETURNS_TWICE:
1494     return Attribute::ReturnsTwice;
1495   case bitc::ATTR_KIND_S_EXT:
1496     return Attribute::SExt;
1497   case bitc::ATTR_KIND_SPECULATABLE:
1498     return Attribute::Speculatable;
1499   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1500     return Attribute::StackAlignment;
1501   case bitc::ATTR_KIND_STACK_PROTECT:
1502     return Attribute::StackProtect;
1503   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1504     return Attribute::StackProtectReq;
1505   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1506     return Attribute::StackProtectStrong;
1507   case bitc::ATTR_KIND_SAFESTACK:
1508     return Attribute::SafeStack;
1509   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1510     return Attribute::ShadowCallStack;
1511   case bitc::ATTR_KIND_STRICT_FP:
1512     return Attribute::StrictFP;
1513   case bitc::ATTR_KIND_STRUCT_RET:
1514     return Attribute::StructRet;
1515   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1516     return Attribute::SanitizeAddress;
1517   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1518     return Attribute::SanitizeHWAddress;
1519   case bitc::ATTR_KIND_SANITIZE_THREAD:
1520     return Attribute::SanitizeThread;
1521   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1522     return Attribute::SanitizeMemory;
1523   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1524     return Attribute::SpeculativeLoadHardening;
1525   case bitc::ATTR_KIND_SWIFT_ERROR:
1526     return Attribute::SwiftError;
1527   case bitc::ATTR_KIND_SWIFT_SELF:
1528     return Attribute::SwiftSelf;
1529   case bitc::ATTR_KIND_UW_TABLE:
1530     return Attribute::UWTable;
1531   case bitc::ATTR_KIND_WILLRETURN:
1532     return Attribute::WillReturn;
1533   case bitc::ATTR_KIND_WRITEONLY:
1534     return Attribute::WriteOnly;
1535   case bitc::ATTR_KIND_Z_EXT:
1536     return Attribute::ZExt;
1537   case bitc::ATTR_KIND_IMMARG:
1538     return Attribute::ImmArg;
1539   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1540     return Attribute::SanitizeMemTag;
1541   }
1542 }
1543 
1544 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1545                                          MaybeAlign &Alignment) {
1546   // Note: Alignment in bitcode files is incremented by 1, so that zero
1547   // can be used for default alignment.
1548   if (Exponent > Value::MaxAlignmentExponent + 1)
1549     return error("Invalid alignment value");
1550   Alignment = decodeMaybeAlign(Exponent);
1551   return Error::success();
1552 }
1553 
1554 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1555   *Kind = getAttrFromCode(Code);
1556   if (*Kind == Attribute::None)
1557     return error("Unknown attribute kind (" + Twine(Code) + ")");
1558   return Error::success();
1559 }
1560 
1561 Error BitcodeReader::parseAttributeGroupBlock() {
1562   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1563     return Err;
1564 
1565   if (!MAttributeGroups.empty())
1566     return error("Invalid multiple blocks");
1567 
1568   SmallVector<uint64_t, 64> Record;
1569 
1570   // Read all the records.
1571   while (true) {
1572     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1573     if (!MaybeEntry)
1574       return MaybeEntry.takeError();
1575     BitstreamEntry Entry = MaybeEntry.get();
1576 
1577     switch (Entry.Kind) {
1578     case BitstreamEntry::SubBlock: // Handled for us already.
1579     case BitstreamEntry::Error:
1580       return error("Malformed block");
1581     case BitstreamEntry::EndBlock:
1582       return Error::success();
1583     case BitstreamEntry::Record:
1584       // The interesting case.
1585       break;
1586     }
1587 
1588     // Read a record.
1589     Record.clear();
1590     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1591     if (!MaybeRecord)
1592       return MaybeRecord.takeError();
1593     switch (MaybeRecord.get()) {
1594     default:  // Default behavior: ignore.
1595       break;
1596     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1597       if (Record.size() < 3)
1598         return error("Invalid record");
1599 
1600       uint64_t GrpID = Record[0];
1601       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1602 
1603       AttrBuilder B;
1604       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1605         if (Record[i] == 0) {        // Enum attribute
1606           Attribute::AttrKind Kind;
1607           if (Error Err = parseAttrKind(Record[++i], &Kind))
1608             return Err;
1609 
1610           // Upgrade old-style byval attribute to one with a type, even if it's
1611           // nullptr. We will have to insert the real type when we associate
1612           // this AttributeList with a function.
1613           if (Kind == Attribute::ByVal)
1614             B.addByValAttr(nullptr);
1615 
1616           B.addAttribute(Kind);
1617         } else if (Record[i] == 1) { // Integer attribute
1618           Attribute::AttrKind Kind;
1619           if (Error Err = parseAttrKind(Record[++i], &Kind))
1620             return Err;
1621           if (Kind == Attribute::Alignment)
1622             B.addAlignmentAttr(Record[++i]);
1623           else if (Kind == Attribute::StackAlignment)
1624             B.addStackAlignmentAttr(Record[++i]);
1625           else if (Kind == Attribute::Dereferenceable)
1626             B.addDereferenceableAttr(Record[++i]);
1627           else if (Kind == Attribute::DereferenceableOrNull)
1628             B.addDereferenceableOrNullAttr(Record[++i]);
1629           else if (Kind == Attribute::AllocSize)
1630             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1631         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1632           bool HasValue = (Record[i++] == 4);
1633           SmallString<64> KindStr;
1634           SmallString<64> ValStr;
1635 
1636           while (Record[i] != 0 && i != e)
1637             KindStr += Record[i++];
1638           assert(Record[i] == 0 && "Kind string not null terminated");
1639 
1640           if (HasValue) {
1641             // Has a value associated with it.
1642             ++i; // Skip the '0' that terminates the "kind" string.
1643             while (Record[i] != 0 && i != e)
1644               ValStr += Record[i++];
1645             assert(Record[i] == 0 && "Value string not null terminated");
1646           }
1647 
1648           B.addAttribute(KindStr.str(), ValStr.str());
1649         } else {
1650           assert((Record[i] == 5 || Record[i] == 6) &&
1651                  "Invalid attribute group entry");
1652           bool HasType = Record[i] == 6;
1653           Attribute::AttrKind Kind;
1654           if (Error Err = parseAttrKind(Record[++i], &Kind))
1655             return Err;
1656           if (Kind == Attribute::ByVal)
1657             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1658         }
1659       }
1660 
1661       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1662       break;
1663     }
1664     }
1665   }
1666 }
1667 
1668 Error BitcodeReader::parseTypeTable() {
1669   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1670     return Err;
1671 
1672   return parseTypeTableBody();
1673 }
1674 
1675 Error BitcodeReader::parseTypeTableBody() {
1676   if (!TypeList.empty())
1677     return error("Invalid multiple blocks");
1678 
1679   SmallVector<uint64_t, 64> Record;
1680   unsigned NumRecords = 0;
1681 
1682   SmallString<64> TypeName;
1683 
1684   // Read all the records for this type table.
1685   while (true) {
1686     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1687     if (!MaybeEntry)
1688       return MaybeEntry.takeError();
1689     BitstreamEntry Entry = MaybeEntry.get();
1690 
1691     switch (Entry.Kind) {
1692     case BitstreamEntry::SubBlock: // Handled for us already.
1693     case BitstreamEntry::Error:
1694       return error("Malformed block");
1695     case BitstreamEntry::EndBlock:
1696       if (NumRecords != TypeList.size())
1697         return error("Malformed block");
1698       return Error::success();
1699     case BitstreamEntry::Record:
1700       // The interesting case.
1701       break;
1702     }
1703 
1704     // Read a record.
1705     Record.clear();
1706     Type *ResultTy = nullptr;
1707     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1708     if (!MaybeRecord)
1709       return MaybeRecord.takeError();
1710     switch (MaybeRecord.get()) {
1711     default:
1712       return error("Invalid value");
1713     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1714       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1715       // type list.  This allows us to reserve space.
1716       if (Record.size() < 1)
1717         return error("Invalid record");
1718       TypeList.resize(Record[0]);
1719       continue;
1720     case bitc::TYPE_CODE_VOID:      // VOID
1721       ResultTy = Type::getVoidTy(Context);
1722       break;
1723     case bitc::TYPE_CODE_HALF:     // HALF
1724       ResultTy = Type::getHalfTy(Context);
1725       break;
1726     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1727       ResultTy = Type::getFloatTy(Context);
1728       break;
1729     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1730       ResultTy = Type::getDoubleTy(Context);
1731       break;
1732     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1733       ResultTy = Type::getX86_FP80Ty(Context);
1734       break;
1735     case bitc::TYPE_CODE_FP128:     // FP128
1736       ResultTy = Type::getFP128Ty(Context);
1737       break;
1738     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1739       ResultTy = Type::getPPC_FP128Ty(Context);
1740       break;
1741     case bitc::TYPE_CODE_LABEL:     // LABEL
1742       ResultTy = Type::getLabelTy(Context);
1743       break;
1744     case bitc::TYPE_CODE_METADATA:  // METADATA
1745       ResultTy = Type::getMetadataTy(Context);
1746       break;
1747     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1748       ResultTy = Type::getX86_MMXTy(Context);
1749       break;
1750     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1751       ResultTy = Type::getTokenTy(Context);
1752       break;
1753     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1754       if (Record.size() < 1)
1755         return error("Invalid record");
1756 
1757       uint64_t NumBits = Record[0];
1758       if (NumBits < IntegerType::MIN_INT_BITS ||
1759           NumBits > IntegerType::MAX_INT_BITS)
1760         return error("Bitwidth for integer type out of range");
1761       ResultTy = IntegerType::get(Context, NumBits);
1762       break;
1763     }
1764     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1765                                     //          [pointee type, address space]
1766       if (Record.size() < 1)
1767         return error("Invalid record");
1768       unsigned AddressSpace = 0;
1769       if (Record.size() == 2)
1770         AddressSpace = Record[1];
1771       ResultTy = getTypeByID(Record[0]);
1772       if (!ResultTy ||
1773           !PointerType::isValidElementType(ResultTy))
1774         return error("Invalid type");
1775       ResultTy = PointerType::get(ResultTy, AddressSpace);
1776       break;
1777     }
1778     case bitc::TYPE_CODE_FUNCTION_OLD: {
1779       // FIXME: attrid is dead, remove it in LLVM 4.0
1780       // FUNCTION: [vararg, attrid, retty, paramty x N]
1781       if (Record.size() < 3)
1782         return error("Invalid record");
1783       SmallVector<Type*, 8> ArgTys;
1784       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1785         if (Type *T = getTypeByID(Record[i]))
1786           ArgTys.push_back(T);
1787         else
1788           break;
1789       }
1790 
1791       ResultTy = getTypeByID(Record[2]);
1792       if (!ResultTy || ArgTys.size() < Record.size()-3)
1793         return error("Invalid type");
1794 
1795       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION: {
1799       // FUNCTION: [vararg, retty, paramty x N]
1800       if (Record.size() < 2)
1801         return error("Invalid record");
1802       SmallVector<Type*, 8> ArgTys;
1803       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1804         if (Type *T = getTypeByID(Record[i])) {
1805           if (!FunctionType::isValidArgumentType(T))
1806             return error("Invalid function argument type");
1807           ArgTys.push_back(T);
1808         }
1809         else
1810           break;
1811       }
1812 
1813       ResultTy = getTypeByID(Record[1]);
1814       if (!ResultTy || ArgTys.size() < Record.size()-2)
1815         return error("Invalid type");
1816 
1817       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1818       break;
1819     }
1820     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1821       if (Record.size() < 1)
1822         return error("Invalid record");
1823       SmallVector<Type*, 8> EltTys;
1824       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1825         if (Type *T = getTypeByID(Record[i]))
1826           EltTys.push_back(T);
1827         else
1828           break;
1829       }
1830       if (EltTys.size() != Record.size()-1)
1831         return error("Invalid type");
1832       ResultTy = StructType::get(Context, EltTys, Record[0]);
1833       break;
1834     }
1835     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1836       if (convertToString(Record, 0, TypeName))
1837         return error("Invalid record");
1838       continue;
1839 
1840     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1841       if (Record.size() < 1)
1842         return error("Invalid record");
1843 
1844       if (NumRecords >= TypeList.size())
1845         return error("Invalid TYPE table");
1846 
1847       // Check to see if this was forward referenced, if so fill in the temp.
1848       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1849       if (Res) {
1850         Res->setName(TypeName);
1851         TypeList[NumRecords] = nullptr;
1852       } else  // Otherwise, create a new struct.
1853         Res = createIdentifiedStructType(Context, TypeName);
1854       TypeName.clear();
1855 
1856       SmallVector<Type*, 8> EltTys;
1857       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1858         if (Type *T = getTypeByID(Record[i]))
1859           EltTys.push_back(T);
1860         else
1861           break;
1862       }
1863       if (EltTys.size() != Record.size()-1)
1864         return error("Invalid record");
1865       Res->setBody(EltTys, Record[0]);
1866       ResultTy = Res;
1867       break;
1868     }
1869     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1870       if (Record.size() != 1)
1871         return error("Invalid record");
1872 
1873       if (NumRecords >= TypeList.size())
1874         return error("Invalid TYPE table");
1875 
1876       // Check to see if this was forward referenced, if so fill in the temp.
1877       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1878       if (Res) {
1879         Res->setName(TypeName);
1880         TypeList[NumRecords] = nullptr;
1881       } else  // Otherwise, create a new struct with no body.
1882         Res = createIdentifiedStructType(Context, TypeName);
1883       TypeName.clear();
1884       ResultTy = Res;
1885       break;
1886     }
1887     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1888       if (Record.size() < 2)
1889         return error("Invalid record");
1890       ResultTy = getTypeByID(Record[1]);
1891       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1892         return error("Invalid type");
1893       ResultTy = ArrayType::get(ResultTy, Record[0]);
1894       break;
1895     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1896                                     //         [numelts, eltty, scalable]
1897       if (Record.size() < 2)
1898         return error("Invalid record");
1899       if (Record[0] == 0)
1900         return error("Invalid vector length");
1901       ResultTy = getTypeByID(Record[1]);
1902       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1903         return error("Invalid type");
1904       bool Scalable = Record.size() > 2 ? Record[2] : false;
1905       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1906       break;
1907     }
1908 
1909     if (NumRecords >= TypeList.size())
1910       return error("Invalid TYPE table");
1911     if (TypeList[NumRecords])
1912       return error(
1913           "Invalid TYPE table: Only named structs can be forward referenced");
1914     assert(ResultTy && "Didn't read a type?");
1915     TypeList[NumRecords++] = ResultTy;
1916   }
1917 }
1918 
1919 Error BitcodeReader::parseOperandBundleTags() {
1920   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1921     return Err;
1922 
1923   if (!BundleTags.empty())
1924     return error("Invalid multiple blocks");
1925 
1926   SmallVector<uint64_t, 64> Record;
1927 
1928   while (true) {
1929     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1930     if (!MaybeEntry)
1931       return MaybeEntry.takeError();
1932     BitstreamEntry Entry = MaybeEntry.get();
1933 
1934     switch (Entry.Kind) {
1935     case BitstreamEntry::SubBlock: // Handled for us already.
1936     case BitstreamEntry::Error:
1937       return error("Malformed block");
1938     case BitstreamEntry::EndBlock:
1939       return Error::success();
1940     case BitstreamEntry::Record:
1941       // The interesting case.
1942       break;
1943     }
1944 
1945     // Tags are implicitly mapped to integers by their order.
1946 
1947     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1948     if (!MaybeRecord)
1949       return MaybeRecord.takeError();
1950     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1951       return error("Invalid record");
1952 
1953     // OPERAND_BUNDLE_TAG: [strchr x N]
1954     BundleTags.emplace_back();
1955     if (convertToString(Record, 0, BundleTags.back()))
1956       return error("Invalid record");
1957     Record.clear();
1958   }
1959 }
1960 
1961 Error BitcodeReader::parseSyncScopeNames() {
1962   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1963     return Err;
1964 
1965   if (!SSIDs.empty())
1966     return error("Invalid multiple synchronization scope names blocks");
1967 
1968   SmallVector<uint64_t, 64> Record;
1969   while (true) {
1970     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1971     if (!MaybeEntry)
1972       return MaybeEntry.takeError();
1973     BitstreamEntry Entry = MaybeEntry.get();
1974 
1975     switch (Entry.Kind) {
1976     case BitstreamEntry::SubBlock: // Handled for us already.
1977     case BitstreamEntry::Error:
1978       return error("Malformed block");
1979     case BitstreamEntry::EndBlock:
1980       if (SSIDs.empty())
1981         return error("Invalid empty synchronization scope names block");
1982       return Error::success();
1983     case BitstreamEntry::Record:
1984       // The interesting case.
1985       break;
1986     }
1987 
1988     // Synchronization scope names are implicitly mapped to synchronization
1989     // scope IDs by their order.
1990 
1991     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1992     if (!MaybeRecord)
1993       return MaybeRecord.takeError();
1994     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1995       return error("Invalid record");
1996 
1997     SmallString<16> SSN;
1998     if (convertToString(Record, 0, SSN))
1999       return error("Invalid record");
2000 
2001     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2002     Record.clear();
2003   }
2004 }
2005 
2006 /// Associate a value with its name from the given index in the provided record.
2007 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2008                                              unsigned NameIndex, Triple &TT) {
2009   SmallString<128> ValueName;
2010   if (convertToString(Record, NameIndex, ValueName))
2011     return error("Invalid record");
2012   unsigned ValueID = Record[0];
2013   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2014     return error("Invalid record");
2015   Value *V = ValueList[ValueID];
2016 
2017   StringRef NameStr(ValueName.data(), ValueName.size());
2018   if (NameStr.find_first_of(0) != StringRef::npos)
2019     return error("Invalid value name");
2020   V->setName(NameStr);
2021   auto *GO = dyn_cast<GlobalObject>(V);
2022   if (GO) {
2023     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2024       if (TT.supportsCOMDAT())
2025         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2026       else
2027         GO->setComdat(nullptr);
2028     }
2029   }
2030   return V;
2031 }
2032 
2033 /// Helper to note and return the current location, and jump to the given
2034 /// offset.
2035 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2036                                                  BitstreamCursor &Stream) {
2037   // Save the current parsing location so we can jump back at the end
2038   // of the VST read.
2039   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2040   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2041     return std::move(JumpFailed);
2042   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2043   if (!MaybeEntry)
2044     return MaybeEntry.takeError();
2045   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2046   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2047   return CurrentBit;
2048 }
2049 
2050 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2051                                             Function *F,
2052                                             ArrayRef<uint64_t> Record) {
2053   // Note that we subtract 1 here because the offset is relative to one word
2054   // before the start of the identification or module block, which was
2055   // historically always the start of the regular bitcode header.
2056   uint64_t FuncWordOffset = Record[1] - 1;
2057   uint64_t FuncBitOffset = FuncWordOffset * 32;
2058   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2059   // Set the LastFunctionBlockBit to point to the last function block.
2060   // Later when parsing is resumed after function materialization,
2061   // we can simply skip that last function block.
2062   if (FuncBitOffset > LastFunctionBlockBit)
2063     LastFunctionBlockBit = FuncBitOffset;
2064 }
2065 
2066 /// Read a new-style GlobalValue symbol table.
2067 Error BitcodeReader::parseGlobalValueSymbolTable() {
2068   unsigned FuncBitcodeOffsetDelta =
2069       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2070 
2071   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2072     return Err;
2073 
2074   SmallVector<uint64_t, 64> Record;
2075   while (true) {
2076     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2077     if (!MaybeEntry)
2078       return MaybeEntry.takeError();
2079     BitstreamEntry Entry = MaybeEntry.get();
2080 
2081     switch (Entry.Kind) {
2082     case BitstreamEntry::SubBlock:
2083     case BitstreamEntry::Error:
2084       return error("Malformed block");
2085     case BitstreamEntry::EndBlock:
2086       return Error::success();
2087     case BitstreamEntry::Record:
2088       break;
2089     }
2090 
2091     Record.clear();
2092     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2093     if (!MaybeRecord)
2094       return MaybeRecord.takeError();
2095     switch (MaybeRecord.get()) {
2096     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2097       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2098                               cast<Function>(ValueList[Record[0]]), Record);
2099       break;
2100     }
2101   }
2102 }
2103 
2104 /// Parse the value symbol table at either the current parsing location or
2105 /// at the given bit offset if provided.
2106 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2107   uint64_t CurrentBit;
2108   // Pass in the Offset to distinguish between calling for the module-level
2109   // VST (where we want to jump to the VST offset) and the function-level
2110   // VST (where we don't).
2111   if (Offset > 0) {
2112     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2113     if (!MaybeCurrentBit)
2114       return MaybeCurrentBit.takeError();
2115     CurrentBit = MaybeCurrentBit.get();
2116     // If this module uses a string table, read this as a module-level VST.
2117     if (UseStrtab) {
2118       if (Error Err = parseGlobalValueSymbolTable())
2119         return Err;
2120       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2121         return JumpFailed;
2122       return Error::success();
2123     }
2124     // Otherwise, the VST will be in a similar format to a function-level VST,
2125     // and will contain symbol names.
2126   }
2127 
2128   // Compute the delta between the bitcode indices in the VST (the word offset
2129   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2130   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2131   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2132   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2133   // just before entering the VST subblock because: 1) the EnterSubBlock
2134   // changes the AbbrevID width; 2) the VST block is nested within the same
2135   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2136   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2137   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2138   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2139   unsigned FuncBitcodeOffsetDelta =
2140       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2141 
2142   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2143     return Err;
2144 
2145   SmallVector<uint64_t, 64> Record;
2146 
2147   Triple TT(TheModule->getTargetTriple());
2148 
2149   // Read all the records for this value table.
2150   SmallString<128> ValueName;
2151 
2152   while (true) {
2153     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2154     if (!MaybeEntry)
2155       return MaybeEntry.takeError();
2156     BitstreamEntry Entry = MaybeEntry.get();
2157 
2158     switch (Entry.Kind) {
2159     case BitstreamEntry::SubBlock: // Handled for us already.
2160     case BitstreamEntry::Error:
2161       return error("Malformed block");
2162     case BitstreamEntry::EndBlock:
2163       if (Offset > 0)
2164         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2165           return JumpFailed;
2166       return Error::success();
2167     case BitstreamEntry::Record:
2168       // The interesting case.
2169       break;
2170     }
2171 
2172     // Read a record.
2173     Record.clear();
2174     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2175     if (!MaybeRecord)
2176       return MaybeRecord.takeError();
2177     switch (MaybeRecord.get()) {
2178     default:  // Default behavior: unknown type.
2179       break;
2180     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2181       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2182       if (Error Err = ValOrErr.takeError())
2183         return Err;
2184       ValOrErr.get();
2185       break;
2186     }
2187     case bitc::VST_CODE_FNENTRY: {
2188       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2189       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2190       if (Error Err = ValOrErr.takeError())
2191         return Err;
2192       Value *V = ValOrErr.get();
2193 
2194       // Ignore function offsets emitted for aliases of functions in older
2195       // versions of LLVM.
2196       if (auto *F = dyn_cast<Function>(V))
2197         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2198       break;
2199     }
2200     case bitc::VST_CODE_BBENTRY: {
2201       if (convertToString(Record, 1, ValueName))
2202         return error("Invalid record");
2203       BasicBlock *BB = getBasicBlock(Record[0]);
2204       if (!BB)
2205         return error("Invalid record");
2206 
2207       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2208       ValueName.clear();
2209       break;
2210     }
2211     }
2212   }
2213 }
2214 
2215 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2216 /// encoding.
2217 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2218   if ((V & 1) == 0)
2219     return V >> 1;
2220   if (V != 1)
2221     return -(V >> 1);
2222   // There is no such thing as -0 with integers.  "-0" really means MININT.
2223   return 1ULL << 63;
2224 }
2225 
2226 /// Resolve all of the initializers for global values and aliases that we can.
2227 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2228   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2229   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2230       IndirectSymbolInitWorklist;
2231   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2232   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2233   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2234 
2235   GlobalInitWorklist.swap(GlobalInits);
2236   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2237   FunctionPrefixWorklist.swap(FunctionPrefixes);
2238   FunctionPrologueWorklist.swap(FunctionPrologues);
2239   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2240 
2241   while (!GlobalInitWorklist.empty()) {
2242     unsigned ValID = GlobalInitWorklist.back().second;
2243     if (ValID >= ValueList.size()) {
2244       // Not ready to resolve this yet, it requires something later in the file.
2245       GlobalInits.push_back(GlobalInitWorklist.back());
2246     } else {
2247       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2248         GlobalInitWorklist.back().first->setInitializer(C);
2249       else
2250         return error("Expected a constant");
2251     }
2252     GlobalInitWorklist.pop_back();
2253   }
2254 
2255   while (!IndirectSymbolInitWorklist.empty()) {
2256     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2257     if (ValID >= ValueList.size()) {
2258       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2259     } else {
2260       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2261       if (!C)
2262         return error("Expected a constant");
2263       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2264       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2265         return error("Alias and aliasee types don't match");
2266       GIS->setIndirectSymbol(C);
2267     }
2268     IndirectSymbolInitWorklist.pop_back();
2269   }
2270 
2271   while (!FunctionPrefixWorklist.empty()) {
2272     unsigned ValID = FunctionPrefixWorklist.back().second;
2273     if (ValID >= ValueList.size()) {
2274       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2275     } else {
2276       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2277         FunctionPrefixWorklist.back().first->setPrefixData(C);
2278       else
2279         return error("Expected a constant");
2280     }
2281     FunctionPrefixWorklist.pop_back();
2282   }
2283 
2284   while (!FunctionPrologueWorklist.empty()) {
2285     unsigned ValID = FunctionPrologueWorklist.back().second;
2286     if (ValID >= ValueList.size()) {
2287       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2288     } else {
2289       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2290         FunctionPrologueWorklist.back().first->setPrologueData(C);
2291       else
2292         return error("Expected a constant");
2293     }
2294     FunctionPrologueWorklist.pop_back();
2295   }
2296 
2297   while (!FunctionPersonalityFnWorklist.empty()) {
2298     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2299     if (ValID >= ValueList.size()) {
2300       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2301     } else {
2302       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2303         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2304       else
2305         return error("Expected a constant");
2306     }
2307     FunctionPersonalityFnWorklist.pop_back();
2308   }
2309 
2310   return Error::success();
2311 }
2312 
2313 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2314   SmallVector<uint64_t, 8> Words(Vals.size());
2315   transform(Vals, Words.begin(),
2316                  BitcodeReader::decodeSignRotatedValue);
2317 
2318   return APInt(TypeBits, Words);
2319 }
2320 
2321 Error BitcodeReader::parseConstants() {
2322   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2323     return Err;
2324 
2325   SmallVector<uint64_t, 64> Record;
2326 
2327   // Read all the records for this value table.
2328   Type *CurTy = Type::getInt32Ty(Context);
2329   Type *CurFullTy = Type::getInt32Ty(Context);
2330   unsigned NextCstNo = ValueList.size();
2331 
2332   while (true) {
2333     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2334     if (!MaybeEntry)
2335       return MaybeEntry.takeError();
2336     BitstreamEntry Entry = MaybeEntry.get();
2337 
2338     switch (Entry.Kind) {
2339     case BitstreamEntry::SubBlock: // Handled for us already.
2340     case BitstreamEntry::Error:
2341       return error("Malformed block");
2342     case BitstreamEntry::EndBlock:
2343       if (NextCstNo != ValueList.size())
2344         return error("Invalid constant reference");
2345 
2346       // Once all the constants have been read, go through and resolve forward
2347       // references.
2348       ValueList.resolveConstantForwardRefs();
2349       return Error::success();
2350     case BitstreamEntry::Record:
2351       // The interesting case.
2352       break;
2353     }
2354 
2355     // Read a record.
2356     Record.clear();
2357     Type *VoidType = Type::getVoidTy(Context);
2358     Value *V = nullptr;
2359     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2360     if (!MaybeBitCode)
2361       return MaybeBitCode.takeError();
2362     switch (unsigned BitCode = MaybeBitCode.get()) {
2363     default:  // Default behavior: unknown constant
2364     case bitc::CST_CODE_UNDEF:     // UNDEF
2365       V = UndefValue::get(CurTy);
2366       break;
2367     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2368       if (Record.empty())
2369         return error("Invalid record");
2370       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2371         return error("Invalid record");
2372       if (TypeList[Record[0]] == VoidType)
2373         return error("Invalid constant type");
2374       CurFullTy = TypeList[Record[0]];
2375       CurTy = flattenPointerTypes(CurFullTy);
2376       continue;  // Skip the ValueList manipulation.
2377     case bitc::CST_CODE_NULL:      // NULL
2378       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2379         return error("Invalid type for a constant null value");
2380       V = Constant::getNullValue(CurTy);
2381       break;
2382     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2383       if (!CurTy->isIntegerTy() || Record.empty())
2384         return error("Invalid record");
2385       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2386       break;
2387     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2388       if (!CurTy->isIntegerTy() || Record.empty())
2389         return error("Invalid record");
2390 
2391       APInt VInt =
2392           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2393       V = ConstantInt::get(Context, VInt);
2394 
2395       break;
2396     }
2397     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2398       if (Record.empty())
2399         return error("Invalid record");
2400       if (CurTy->isHalfTy())
2401         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2402                                              APInt(16, (uint16_t)Record[0])));
2403       else if (CurTy->isFloatTy())
2404         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2405                                              APInt(32, (uint32_t)Record[0])));
2406       else if (CurTy->isDoubleTy())
2407         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2408                                              APInt(64, Record[0])));
2409       else if (CurTy->isX86_FP80Ty()) {
2410         // Bits are not stored the same way as a normal i80 APInt, compensate.
2411         uint64_t Rearrange[2];
2412         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2413         Rearrange[1] = Record[0] >> 48;
2414         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2415                                              APInt(80, Rearrange)));
2416       } else if (CurTy->isFP128Ty())
2417         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2418                                              APInt(128, Record)));
2419       else if (CurTy->isPPC_FP128Ty())
2420         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2421                                              APInt(128, Record)));
2422       else
2423         V = UndefValue::get(CurTy);
2424       break;
2425     }
2426 
2427     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2428       if (Record.empty())
2429         return error("Invalid record");
2430 
2431       unsigned Size = Record.size();
2432       SmallVector<Constant*, 16> Elts;
2433 
2434       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2435         for (unsigned i = 0; i != Size; ++i)
2436           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2437                                                      STy->getElementType(i)));
2438         V = ConstantStruct::get(STy, Elts);
2439       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2440         Type *EltTy = ATy->getElementType();
2441         for (unsigned i = 0; i != Size; ++i)
2442           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2443         V = ConstantArray::get(ATy, Elts);
2444       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2445         Type *EltTy = VTy->getElementType();
2446         for (unsigned i = 0; i != Size; ++i)
2447           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2448         V = ConstantVector::get(Elts);
2449       } else {
2450         V = UndefValue::get(CurTy);
2451       }
2452       break;
2453     }
2454     case bitc::CST_CODE_STRING:    // STRING: [values]
2455     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2456       if (Record.empty())
2457         return error("Invalid record");
2458 
2459       SmallString<16> Elts(Record.begin(), Record.end());
2460       V = ConstantDataArray::getString(Context, Elts,
2461                                        BitCode == bitc::CST_CODE_CSTRING);
2462       break;
2463     }
2464     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2465       if (Record.empty())
2466         return error("Invalid record");
2467 
2468       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2469       if (EltTy->isIntegerTy(8)) {
2470         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2471         if (isa<VectorType>(CurTy))
2472           V = ConstantDataVector::get(Context, Elts);
2473         else
2474           V = ConstantDataArray::get(Context, Elts);
2475       } else if (EltTy->isIntegerTy(16)) {
2476         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2477         if (isa<VectorType>(CurTy))
2478           V = ConstantDataVector::get(Context, Elts);
2479         else
2480           V = ConstantDataArray::get(Context, Elts);
2481       } else if (EltTy->isIntegerTy(32)) {
2482         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2483         if (isa<VectorType>(CurTy))
2484           V = ConstantDataVector::get(Context, Elts);
2485         else
2486           V = ConstantDataArray::get(Context, Elts);
2487       } else if (EltTy->isIntegerTy(64)) {
2488         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2489         if (isa<VectorType>(CurTy))
2490           V = ConstantDataVector::get(Context, Elts);
2491         else
2492           V = ConstantDataArray::get(Context, Elts);
2493       } else if (EltTy->isHalfTy()) {
2494         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2495         if (isa<VectorType>(CurTy))
2496           V = ConstantDataVector::getFP(Context, Elts);
2497         else
2498           V = ConstantDataArray::getFP(Context, Elts);
2499       } else if (EltTy->isFloatTy()) {
2500         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2501         if (isa<VectorType>(CurTy))
2502           V = ConstantDataVector::getFP(Context, Elts);
2503         else
2504           V = ConstantDataArray::getFP(Context, Elts);
2505       } else if (EltTy->isDoubleTy()) {
2506         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2507         if (isa<VectorType>(CurTy))
2508           V = ConstantDataVector::getFP(Context, Elts);
2509         else
2510           V = ConstantDataArray::getFP(Context, Elts);
2511       } else {
2512         return error("Invalid type for value");
2513       }
2514       break;
2515     }
2516     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2517       if (Record.size() < 2)
2518         return error("Invalid record");
2519       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2520       if (Opc < 0) {
2521         V = UndefValue::get(CurTy);  // Unknown unop.
2522       } else {
2523         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2524         unsigned Flags = 0;
2525         V = ConstantExpr::get(Opc, LHS, Flags);
2526       }
2527       break;
2528     }
2529     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2530       if (Record.size() < 3)
2531         return error("Invalid record");
2532       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2533       if (Opc < 0) {
2534         V = UndefValue::get(CurTy);  // Unknown binop.
2535       } else {
2536         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2537         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2538         unsigned Flags = 0;
2539         if (Record.size() >= 4) {
2540           if (Opc == Instruction::Add ||
2541               Opc == Instruction::Sub ||
2542               Opc == Instruction::Mul ||
2543               Opc == Instruction::Shl) {
2544             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2545               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2546             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2547               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2548           } else if (Opc == Instruction::SDiv ||
2549                      Opc == Instruction::UDiv ||
2550                      Opc == Instruction::LShr ||
2551                      Opc == Instruction::AShr) {
2552             if (Record[3] & (1 << bitc::PEO_EXACT))
2553               Flags |= SDivOperator::IsExact;
2554           }
2555         }
2556         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2557       }
2558       break;
2559     }
2560     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2561       if (Record.size() < 3)
2562         return error("Invalid record");
2563       int Opc = getDecodedCastOpcode(Record[0]);
2564       if (Opc < 0) {
2565         V = UndefValue::get(CurTy);  // Unknown cast.
2566       } else {
2567         Type *OpTy = getTypeByID(Record[1]);
2568         if (!OpTy)
2569           return error("Invalid record");
2570         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2571         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2572         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2573       }
2574       break;
2575     }
2576     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2577     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2578     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2579                                                      // operands]
2580       unsigned OpNum = 0;
2581       Type *PointeeType = nullptr;
2582       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2583           Record.size() % 2)
2584         PointeeType = getTypeByID(Record[OpNum++]);
2585 
2586       bool InBounds = false;
2587       Optional<unsigned> InRangeIndex;
2588       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2589         uint64_t Op = Record[OpNum++];
2590         InBounds = Op & 1;
2591         InRangeIndex = Op >> 1;
2592       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2593         InBounds = true;
2594 
2595       SmallVector<Constant*, 16> Elts;
2596       Type *Elt0FullTy = nullptr;
2597       while (OpNum != Record.size()) {
2598         if (!Elt0FullTy)
2599           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2600         Type *ElTy = getTypeByID(Record[OpNum++]);
2601         if (!ElTy)
2602           return error("Invalid record");
2603         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2604       }
2605 
2606       if (Elts.size() < 1)
2607         return error("Invalid gep with no operands");
2608 
2609       Type *ImplicitPointeeType =
2610           getPointerElementFlatType(Elt0FullTy->getScalarType());
2611       if (!PointeeType)
2612         PointeeType = ImplicitPointeeType;
2613       else if (PointeeType != ImplicitPointeeType)
2614         return error("Explicit gep operator type does not match pointee type "
2615                      "of pointer operand");
2616 
2617       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2618       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2619                                          InBounds, InRangeIndex);
2620       break;
2621     }
2622     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2623       if (Record.size() < 3)
2624         return error("Invalid record");
2625 
2626       Type *SelectorTy = Type::getInt1Ty(Context);
2627 
2628       // The selector might be an i1 or an <n x i1>
2629       // Get the type from the ValueList before getting a forward ref.
2630       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2631         if (Value *V = ValueList[Record[0]])
2632           if (SelectorTy != V->getType())
2633             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2634 
2635       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2636                                                               SelectorTy),
2637                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2638                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2639       break;
2640     }
2641     case bitc::CST_CODE_CE_EXTRACTELT
2642         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2643       if (Record.size() < 3)
2644         return error("Invalid record");
2645       VectorType *OpTy =
2646         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2647       if (!OpTy)
2648         return error("Invalid record");
2649       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2650       Constant *Op1 = nullptr;
2651       if (Record.size() == 4) {
2652         Type *IdxTy = getTypeByID(Record[2]);
2653         if (!IdxTy)
2654           return error("Invalid record");
2655         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2656       } else // TODO: Remove with llvm 4.0
2657         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2658       if (!Op1)
2659         return error("Invalid record");
2660       V = ConstantExpr::getExtractElement(Op0, Op1);
2661       break;
2662     }
2663     case bitc::CST_CODE_CE_INSERTELT
2664         : { // CE_INSERTELT: [opval, opval, opty, opval]
2665       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2666       if (Record.size() < 3 || !OpTy)
2667         return error("Invalid record");
2668       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2669       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2670                                                   OpTy->getElementType());
2671       Constant *Op2 = nullptr;
2672       if (Record.size() == 4) {
2673         Type *IdxTy = getTypeByID(Record[2]);
2674         if (!IdxTy)
2675           return error("Invalid record");
2676         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2677       } else // TODO: Remove with llvm 4.0
2678         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2679       if (!Op2)
2680         return error("Invalid record");
2681       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2682       break;
2683     }
2684     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2685       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2686       if (Record.size() < 3 || !OpTy)
2687         return error("Invalid record");
2688       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2689       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2690       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2691                                                  OpTy->getNumElements());
2692       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2693       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2694       break;
2695     }
2696     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2697       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2698       VectorType *OpTy =
2699         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2700       if (Record.size() < 4 || !RTy || !OpTy)
2701         return error("Invalid record");
2702       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2703       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2704       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2705                                                  RTy->getNumElements());
2706       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2707       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2708       break;
2709     }
2710     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2711       if (Record.size() < 4)
2712         return error("Invalid record");
2713       Type *OpTy = getTypeByID(Record[0]);
2714       if (!OpTy)
2715         return error("Invalid record");
2716       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2717       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2718 
2719       if (OpTy->isFPOrFPVectorTy())
2720         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2721       else
2722         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2723       break;
2724     }
2725     // This maintains backward compatibility, pre-asm dialect keywords.
2726     // FIXME: Remove with the 4.0 release.
2727     case bitc::CST_CODE_INLINEASM_OLD: {
2728       if (Record.size() < 2)
2729         return error("Invalid record");
2730       std::string AsmStr, ConstrStr;
2731       bool HasSideEffects = Record[0] & 1;
2732       bool IsAlignStack = Record[0] >> 1;
2733       unsigned AsmStrSize = Record[1];
2734       if (2+AsmStrSize >= Record.size())
2735         return error("Invalid record");
2736       unsigned ConstStrSize = Record[2+AsmStrSize];
2737       if (3+AsmStrSize+ConstStrSize > Record.size())
2738         return error("Invalid record");
2739 
2740       for (unsigned i = 0; i != AsmStrSize; ++i)
2741         AsmStr += (char)Record[2+i];
2742       for (unsigned i = 0; i != ConstStrSize; ++i)
2743         ConstrStr += (char)Record[3+AsmStrSize+i];
2744       UpgradeInlineAsmString(&AsmStr);
2745       V = InlineAsm::get(
2746           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2747           ConstrStr, HasSideEffects, IsAlignStack);
2748       break;
2749     }
2750     // This version adds support for the asm dialect keywords (e.g.,
2751     // inteldialect).
2752     case bitc::CST_CODE_INLINEASM: {
2753       if (Record.size() < 2)
2754         return error("Invalid record");
2755       std::string AsmStr, ConstrStr;
2756       bool HasSideEffects = Record[0] & 1;
2757       bool IsAlignStack = (Record[0] >> 1) & 1;
2758       unsigned AsmDialect = Record[0] >> 2;
2759       unsigned AsmStrSize = Record[1];
2760       if (2+AsmStrSize >= Record.size())
2761         return error("Invalid record");
2762       unsigned ConstStrSize = Record[2+AsmStrSize];
2763       if (3+AsmStrSize+ConstStrSize > Record.size())
2764         return error("Invalid record");
2765 
2766       for (unsigned i = 0; i != AsmStrSize; ++i)
2767         AsmStr += (char)Record[2+i];
2768       for (unsigned i = 0; i != ConstStrSize; ++i)
2769         ConstrStr += (char)Record[3+AsmStrSize+i];
2770       UpgradeInlineAsmString(&AsmStr);
2771       V = InlineAsm::get(
2772           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2773           ConstrStr, HasSideEffects, IsAlignStack,
2774           InlineAsm::AsmDialect(AsmDialect));
2775       break;
2776     }
2777     case bitc::CST_CODE_BLOCKADDRESS:{
2778       if (Record.size() < 3)
2779         return error("Invalid record");
2780       Type *FnTy = getTypeByID(Record[0]);
2781       if (!FnTy)
2782         return error("Invalid record");
2783       Function *Fn =
2784         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2785       if (!Fn)
2786         return error("Invalid record");
2787 
2788       // If the function is already parsed we can insert the block address right
2789       // away.
2790       BasicBlock *BB;
2791       unsigned BBID = Record[2];
2792       if (!BBID)
2793         // Invalid reference to entry block.
2794         return error("Invalid ID");
2795       if (!Fn->empty()) {
2796         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2797         for (size_t I = 0, E = BBID; I != E; ++I) {
2798           if (BBI == BBE)
2799             return error("Invalid ID");
2800           ++BBI;
2801         }
2802         BB = &*BBI;
2803       } else {
2804         // Otherwise insert a placeholder and remember it so it can be inserted
2805         // when the function is parsed.
2806         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2807         if (FwdBBs.empty())
2808           BasicBlockFwdRefQueue.push_back(Fn);
2809         if (FwdBBs.size() < BBID + 1)
2810           FwdBBs.resize(BBID + 1);
2811         if (!FwdBBs[BBID])
2812           FwdBBs[BBID] = BasicBlock::Create(Context);
2813         BB = FwdBBs[BBID];
2814       }
2815       V = BlockAddress::get(Fn, BB);
2816       break;
2817     }
2818     }
2819 
2820     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2821            "Incorrect fully structured type provided for Constant");
2822     ValueList.assignValue(V, NextCstNo, CurFullTy);
2823     ++NextCstNo;
2824   }
2825 }
2826 
2827 Error BitcodeReader::parseUseLists() {
2828   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2829     return Err;
2830 
2831   // Read all the records.
2832   SmallVector<uint64_t, 64> Record;
2833 
2834   while (true) {
2835     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2836     if (!MaybeEntry)
2837       return MaybeEntry.takeError();
2838     BitstreamEntry Entry = MaybeEntry.get();
2839 
2840     switch (Entry.Kind) {
2841     case BitstreamEntry::SubBlock: // Handled for us already.
2842     case BitstreamEntry::Error:
2843       return error("Malformed block");
2844     case BitstreamEntry::EndBlock:
2845       return Error::success();
2846     case BitstreamEntry::Record:
2847       // The interesting case.
2848       break;
2849     }
2850 
2851     // Read a use list record.
2852     Record.clear();
2853     bool IsBB = false;
2854     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2855     if (!MaybeRecord)
2856       return MaybeRecord.takeError();
2857     switch (MaybeRecord.get()) {
2858     default:  // Default behavior: unknown type.
2859       break;
2860     case bitc::USELIST_CODE_BB:
2861       IsBB = true;
2862       LLVM_FALLTHROUGH;
2863     case bitc::USELIST_CODE_DEFAULT: {
2864       unsigned RecordLength = Record.size();
2865       if (RecordLength < 3)
2866         // Records should have at least an ID and two indexes.
2867         return error("Invalid record");
2868       unsigned ID = Record.back();
2869       Record.pop_back();
2870 
2871       Value *V;
2872       if (IsBB) {
2873         assert(ID < FunctionBBs.size() && "Basic block not found");
2874         V = FunctionBBs[ID];
2875       } else
2876         V = ValueList[ID];
2877       unsigned NumUses = 0;
2878       SmallDenseMap<const Use *, unsigned, 16> Order;
2879       for (const Use &U : V->materialized_uses()) {
2880         if (++NumUses > Record.size())
2881           break;
2882         Order[&U] = Record[NumUses - 1];
2883       }
2884       if (Order.size() != Record.size() || NumUses > Record.size())
2885         // Mismatches can happen if the functions are being materialized lazily
2886         // (out-of-order), or a value has been upgraded.
2887         break;
2888 
2889       V->sortUseList([&](const Use &L, const Use &R) {
2890         return Order.lookup(&L) < Order.lookup(&R);
2891       });
2892       break;
2893     }
2894     }
2895   }
2896 }
2897 
2898 /// When we see the block for metadata, remember where it is and then skip it.
2899 /// This lets us lazily deserialize the metadata.
2900 Error BitcodeReader::rememberAndSkipMetadata() {
2901   // Save the current stream state.
2902   uint64_t CurBit = Stream.GetCurrentBitNo();
2903   DeferredMetadataInfo.push_back(CurBit);
2904 
2905   // Skip over the block for now.
2906   if (Error Err = Stream.SkipBlock())
2907     return Err;
2908   return Error::success();
2909 }
2910 
2911 Error BitcodeReader::materializeMetadata() {
2912   for (uint64_t BitPos : DeferredMetadataInfo) {
2913     // Move the bit stream to the saved position.
2914     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2915       return JumpFailed;
2916     if (Error Err = MDLoader->parseModuleMetadata())
2917       return Err;
2918   }
2919 
2920   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2921   // metadata.
2922   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2923     NamedMDNode *LinkerOpts =
2924         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2925     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2926       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2927   }
2928 
2929   DeferredMetadataInfo.clear();
2930   return Error::success();
2931 }
2932 
2933 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2934 
2935 /// When we see the block for a function body, remember where it is and then
2936 /// skip it.  This lets us lazily deserialize the functions.
2937 Error BitcodeReader::rememberAndSkipFunctionBody() {
2938   // Get the function we are talking about.
2939   if (FunctionsWithBodies.empty())
2940     return error("Insufficient function protos");
2941 
2942   Function *Fn = FunctionsWithBodies.back();
2943   FunctionsWithBodies.pop_back();
2944 
2945   // Save the current stream state.
2946   uint64_t CurBit = Stream.GetCurrentBitNo();
2947   assert(
2948       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2949       "Mismatch between VST and scanned function offsets");
2950   DeferredFunctionInfo[Fn] = CurBit;
2951 
2952   // Skip over the function block for now.
2953   if (Error Err = Stream.SkipBlock())
2954     return Err;
2955   return Error::success();
2956 }
2957 
2958 Error BitcodeReader::globalCleanup() {
2959   // Patch the initializers for globals and aliases up.
2960   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2961     return Err;
2962   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2963     return error("Malformed global initializer set");
2964 
2965   // Look for intrinsic functions which need to be upgraded at some point
2966   for (Function &F : *TheModule) {
2967     MDLoader->upgradeDebugIntrinsics(F);
2968     Function *NewFn;
2969     if (UpgradeIntrinsicFunction(&F, NewFn))
2970       UpgradedIntrinsics[&F] = NewFn;
2971     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2972       // Some types could be renamed during loading if several modules are
2973       // loaded in the same LLVMContext (LTO scenario). In this case we should
2974       // remangle intrinsics names as well.
2975       RemangledIntrinsics[&F] = Remangled.getValue();
2976   }
2977 
2978   // Look for global variables which need to be renamed.
2979   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2980   for (GlobalVariable &GV : TheModule->globals())
2981     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2982       UpgradedVariables.emplace_back(&GV, Upgraded);
2983   for (auto &Pair : UpgradedVariables) {
2984     Pair.first->eraseFromParent();
2985     TheModule->getGlobalList().push_back(Pair.second);
2986   }
2987 
2988   // Force deallocation of memory for these vectors to favor the client that
2989   // want lazy deserialization.
2990   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2991   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2992       IndirectSymbolInits);
2993   return Error::success();
2994 }
2995 
2996 /// Support for lazy parsing of function bodies. This is required if we
2997 /// either have an old bitcode file without a VST forward declaration record,
2998 /// or if we have an anonymous function being materialized, since anonymous
2999 /// functions do not have a name and are therefore not in the VST.
3000 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3001   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3002     return JumpFailed;
3003 
3004   if (Stream.AtEndOfStream())
3005     return error("Could not find function in stream");
3006 
3007   if (!SeenFirstFunctionBody)
3008     return error("Trying to materialize functions before seeing function blocks");
3009 
3010   // An old bitcode file with the symbol table at the end would have
3011   // finished the parse greedily.
3012   assert(SeenValueSymbolTable);
3013 
3014   SmallVector<uint64_t, 64> Record;
3015 
3016   while (true) {
3017     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3018     if (!MaybeEntry)
3019       return MaybeEntry.takeError();
3020     llvm::BitstreamEntry Entry = MaybeEntry.get();
3021 
3022     switch (Entry.Kind) {
3023     default:
3024       return error("Expect SubBlock");
3025     case BitstreamEntry::SubBlock:
3026       switch (Entry.ID) {
3027       default:
3028         return error("Expect function block");
3029       case bitc::FUNCTION_BLOCK_ID:
3030         if (Error Err = rememberAndSkipFunctionBody())
3031           return Err;
3032         NextUnreadBit = Stream.GetCurrentBitNo();
3033         return Error::success();
3034       }
3035     }
3036   }
3037 }
3038 
3039 bool BitcodeReaderBase::readBlockInfo() {
3040   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3041       Stream.ReadBlockInfoBlock();
3042   if (!MaybeNewBlockInfo)
3043     return true; // FIXME Handle the error.
3044   Optional<BitstreamBlockInfo> NewBlockInfo =
3045       std::move(MaybeNewBlockInfo.get());
3046   if (!NewBlockInfo)
3047     return true;
3048   BlockInfo = std::move(*NewBlockInfo);
3049   return false;
3050 }
3051 
3052 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3053   // v1: [selection_kind, name]
3054   // v2: [strtab_offset, strtab_size, selection_kind]
3055   StringRef Name;
3056   std::tie(Name, Record) = readNameFromStrtab(Record);
3057 
3058   if (Record.empty())
3059     return error("Invalid record");
3060   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3061   std::string OldFormatName;
3062   if (!UseStrtab) {
3063     if (Record.size() < 2)
3064       return error("Invalid record");
3065     unsigned ComdatNameSize = Record[1];
3066     OldFormatName.reserve(ComdatNameSize);
3067     for (unsigned i = 0; i != ComdatNameSize; ++i)
3068       OldFormatName += (char)Record[2 + i];
3069     Name = OldFormatName;
3070   }
3071   Comdat *C = TheModule->getOrInsertComdat(Name);
3072   C->setSelectionKind(SK);
3073   ComdatList.push_back(C);
3074   return Error::success();
3075 }
3076 
3077 static void inferDSOLocal(GlobalValue *GV) {
3078   // infer dso_local from linkage and visibility if it is not encoded.
3079   if (GV->hasLocalLinkage() ||
3080       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3081     GV->setDSOLocal(true);
3082 }
3083 
3084 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3085   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3086   // visibility, threadlocal, unnamed_addr, externally_initialized,
3087   // dllstorageclass, comdat, attributes, preemption specifier,
3088   // partition strtab offset, partition strtab size] (name in VST)
3089   // v2: [strtab_offset, strtab_size, v1]
3090   StringRef Name;
3091   std::tie(Name, Record) = readNameFromStrtab(Record);
3092 
3093   if (Record.size() < 6)
3094     return error("Invalid record");
3095   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3096   Type *Ty = flattenPointerTypes(FullTy);
3097   if (!Ty)
3098     return error("Invalid record");
3099   bool isConstant = Record[1] & 1;
3100   bool explicitType = Record[1] & 2;
3101   unsigned AddressSpace;
3102   if (explicitType) {
3103     AddressSpace = Record[1] >> 2;
3104   } else {
3105     if (!Ty->isPointerTy())
3106       return error("Invalid type for value");
3107     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3108     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3109   }
3110 
3111   uint64_t RawLinkage = Record[3];
3112   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3113   MaybeAlign Alignment;
3114   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3115     return Err;
3116   std::string Section;
3117   if (Record[5]) {
3118     if (Record[5] - 1 >= SectionTable.size())
3119       return error("Invalid ID");
3120     Section = SectionTable[Record[5] - 1];
3121   }
3122   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3123   // Local linkage must have default visibility.
3124   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3125     // FIXME: Change to an error if non-default in 4.0.
3126     Visibility = getDecodedVisibility(Record[6]);
3127 
3128   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3129   if (Record.size() > 7)
3130     TLM = getDecodedThreadLocalMode(Record[7]);
3131 
3132   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3133   if (Record.size() > 8)
3134     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3135 
3136   bool ExternallyInitialized = false;
3137   if (Record.size() > 9)
3138     ExternallyInitialized = Record[9];
3139 
3140   GlobalVariable *NewGV =
3141       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3142                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3143   NewGV->setAlignment(Alignment);
3144   if (!Section.empty())
3145     NewGV->setSection(Section);
3146   NewGV->setVisibility(Visibility);
3147   NewGV->setUnnamedAddr(UnnamedAddr);
3148 
3149   if (Record.size() > 10)
3150     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3151   else
3152     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3153 
3154   FullTy = PointerType::get(FullTy, AddressSpace);
3155   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3156          "Incorrect fully specified type for GlobalVariable");
3157   ValueList.push_back(NewGV, FullTy);
3158 
3159   // Remember which value to use for the global initializer.
3160   if (unsigned InitID = Record[2])
3161     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3162 
3163   if (Record.size() > 11) {
3164     if (unsigned ComdatID = Record[11]) {
3165       if (ComdatID > ComdatList.size())
3166         return error("Invalid global variable comdat ID");
3167       NewGV->setComdat(ComdatList[ComdatID - 1]);
3168     }
3169   } else if (hasImplicitComdat(RawLinkage)) {
3170     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3171   }
3172 
3173   if (Record.size() > 12) {
3174     auto AS = getAttributes(Record[12]).getFnAttributes();
3175     NewGV->setAttributes(AS);
3176   }
3177 
3178   if (Record.size() > 13) {
3179     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3180   }
3181   inferDSOLocal(NewGV);
3182 
3183   // Check whether we have enough values to read a partition name.
3184   if (Record.size() > 15)
3185     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3186 
3187   return Error::success();
3188 }
3189 
3190 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3191   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3192   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3193   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3194   // v2: [strtab_offset, strtab_size, v1]
3195   StringRef Name;
3196   std::tie(Name, Record) = readNameFromStrtab(Record);
3197 
3198   if (Record.size() < 8)
3199     return error("Invalid record");
3200   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3201   Type *FTy = flattenPointerTypes(FullFTy);
3202   if (!FTy)
3203     return error("Invalid record");
3204   if (isa<PointerType>(FTy))
3205     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3206 
3207   if (!isa<FunctionType>(FTy))
3208     return error("Invalid type for value");
3209   auto CC = static_cast<CallingConv::ID>(Record[1]);
3210   if (CC & ~CallingConv::MaxID)
3211     return error("Invalid calling convention ID");
3212 
3213   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3214   if (Record.size() > 16)
3215     AddrSpace = Record[16];
3216 
3217   Function *Func =
3218       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3219                        AddrSpace, Name, TheModule);
3220 
3221   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3222          "Incorrect fully specified type provided for function");
3223   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3224 
3225   Func->setCallingConv(CC);
3226   bool isProto = Record[2];
3227   uint64_t RawLinkage = Record[3];
3228   Func->setLinkage(getDecodedLinkage(RawLinkage));
3229   Func->setAttributes(getAttributes(Record[4]));
3230 
3231   // Upgrade any old-style byval without a type by propagating the argument's
3232   // pointee type. There should be no opaque pointers where the byval type is
3233   // implicit.
3234   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3235     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3236       continue;
3237 
3238     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3239     Func->removeParamAttr(i, Attribute::ByVal);
3240     Func->addParamAttr(i, Attribute::getWithByValType(
3241                               Context, getPointerElementFlatType(PTy)));
3242   }
3243 
3244   MaybeAlign Alignment;
3245   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3246     return Err;
3247   Func->setAlignment(Alignment);
3248   if (Record[6]) {
3249     if (Record[6] - 1 >= SectionTable.size())
3250       return error("Invalid ID");
3251     Func->setSection(SectionTable[Record[6] - 1]);
3252   }
3253   // Local linkage must have default visibility.
3254   if (!Func->hasLocalLinkage())
3255     // FIXME: Change to an error if non-default in 4.0.
3256     Func->setVisibility(getDecodedVisibility(Record[7]));
3257   if (Record.size() > 8 && Record[8]) {
3258     if (Record[8] - 1 >= GCTable.size())
3259       return error("Invalid ID");
3260     Func->setGC(GCTable[Record[8] - 1]);
3261   }
3262   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3263   if (Record.size() > 9)
3264     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3265   Func->setUnnamedAddr(UnnamedAddr);
3266   if (Record.size() > 10 && Record[10] != 0)
3267     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3268 
3269   if (Record.size() > 11)
3270     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3271   else
3272     upgradeDLLImportExportLinkage(Func, RawLinkage);
3273 
3274   if (Record.size() > 12) {
3275     if (unsigned ComdatID = Record[12]) {
3276       if (ComdatID > ComdatList.size())
3277         return error("Invalid function comdat ID");
3278       Func->setComdat(ComdatList[ComdatID - 1]);
3279     }
3280   } else if (hasImplicitComdat(RawLinkage)) {
3281     Func->setComdat(reinterpret_cast<Comdat *>(1));
3282   }
3283 
3284   if (Record.size() > 13 && Record[13] != 0)
3285     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3286 
3287   if (Record.size() > 14 && Record[14] != 0)
3288     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3289 
3290   if (Record.size() > 15) {
3291     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3292   }
3293   inferDSOLocal(Func);
3294 
3295   // Record[16] is the address space number.
3296 
3297   // Check whether we have enough values to read a partition name.
3298   if (Record.size() > 18)
3299     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3300 
3301   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3302   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3303          "Incorrect fully specified type provided for Function");
3304   ValueList.push_back(Func, FullTy);
3305 
3306   // If this is a function with a body, remember the prototype we are
3307   // creating now, so that we can match up the body with them later.
3308   if (!isProto) {
3309     Func->setIsMaterializable(true);
3310     FunctionsWithBodies.push_back(Func);
3311     DeferredFunctionInfo[Func] = 0;
3312   }
3313   return Error::success();
3314 }
3315 
3316 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3317     unsigned BitCode, ArrayRef<uint64_t> Record) {
3318   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3319   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3320   // dllstorageclass, threadlocal, unnamed_addr,
3321   // preemption specifier] (name in VST)
3322   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3323   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3324   // preemption specifier] (name in VST)
3325   // v2: [strtab_offset, strtab_size, v1]
3326   StringRef Name;
3327   std::tie(Name, Record) = readNameFromStrtab(Record);
3328 
3329   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3330   if (Record.size() < (3 + (unsigned)NewRecord))
3331     return error("Invalid record");
3332   unsigned OpNum = 0;
3333   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3334   Type *Ty = flattenPointerTypes(FullTy);
3335   if (!Ty)
3336     return error("Invalid record");
3337 
3338   unsigned AddrSpace;
3339   if (!NewRecord) {
3340     auto *PTy = dyn_cast<PointerType>(Ty);
3341     if (!PTy)
3342       return error("Invalid type for value");
3343     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3344     AddrSpace = PTy->getAddressSpace();
3345   } else {
3346     AddrSpace = Record[OpNum++];
3347   }
3348 
3349   auto Val = Record[OpNum++];
3350   auto Linkage = Record[OpNum++];
3351   GlobalIndirectSymbol *NewGA;
3352   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3353       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3354     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3355                                 TheModule);
3356   else
3357     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3358                                 nullptr, TheModule);
3359 
3360   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3361          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3362   // Old bitcode files didn't have visibility field.
3363   // Local linkage must have default visibility.
3364   if (OpNum != Record.size()) {
3365     auto VisInd = OpNum++;
3366     if (!NewGA->hasLocalLinkage())
3367       // FIXME: Change to an error if non-default in 4.0.
3368       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3369   }
3370   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3371       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3372     if (OpNum != Record.size())
3373       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3374     else
3375       upgradeDLLImportExportLinkage(NewGA, Linkage);
3376     if (OpNum != Record.size())
3377       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3378     if (OpNum != Record.size())
3379       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3380   }
3381   if (OpNum != Record.size())
3382     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3383   inferDSOLocal(NewGA);
3384 
3385   // Check whether we have enough values to read a partition name.
3386   if (OpNum + 1 < Record.size()) {
3387     NewGA->setPartition(
3388         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3389     OpNum += 2;
3390   }
3391 
3392   FullTy = PointerType::get(FullTy, AddrSpace);
3393   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3394          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3395   ValueList.push_back(NewGA, FullTy);
3396   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3397   return Error::success();
3398 }
3399 
3400 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3401                                  bool ShouldLazyLoadMetadata) {
3402   if (ResumeBit) {
3403     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3404       return JumpFailed;
3405   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3406     return Err;
3407 
3408   SmallVector<uint64_t, 64> Record;
3409 
3410   // Read all the records for this module.
3411   while (true) {
3412     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3413     if (!MaybeEntry)
3414       return MaybeEntry.takeError();
3415     llvm::BitstreamEntry Entry = MaybeEntry.get();
3416 
3417     switch (Entry.Kind) {
3418     case BitstreamEntry::Error:
3419       return error("Malformed block");
3420     case BitstreamEntry::EndBlock:
3421       return globalCleanup();
3422 
3423     case BitstreamEntry::SubBlock:
3424       switch (Entry.ID) {
3425       default:  // Skip unknown content.
3426         if (Error Err = Stream.SkipBlock())
3427           return Err;
3428         break;
3429       case bitc::BLOCKINFO_BLOCK_ID:
3430         if (readBlockInfo())
3431           return error("Malformed block");
3432         break;
3433       case bitc::PARAMATTR_BLOCK_ID:
3434         if (Error Err = parseAttributeBlock())
3435           return Err;
3436         break;
3437       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3438         if (Error Err = parseAttributeGroupBlock())
3439           return Err;
3440         break;
3441       case bitc::TYPE_BLOCK_ID_NEW:
3442         if (Error Err = parseTypeTable())
3443           return Err;
3444         break;
3445       case bitc::VALUE_SYMTAB_BLOCK_ID:
3446         if (!SeenValueSymbolTable) {
3447           // Either this is an old form VST without function index and an
3448           // associated VST forward declaration record (which would have caused
3449           // the VST to be jumped to and parsed before it was encountered
3450           // normally in the stream), or there were no function blocks to
3451           // trigger an earlier parsing of the VST.
3452           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3453           if (Error Err = parseValueSymbolTable())
3454             return Err;
3455           SeenValueSymbolTable = true;
3456         } else {
3457           // We must have had a VST forward declaration record, which caused
3458           // the parser to jump to and parse the VST earlier.
3459           assert(VSTOffset > 0);
3460           if (Error Err = Stream.SkipBlock())
3461             return Err;
3462         }
3463         break;
3464       case bitc::CONSTANTS_BLOCK_ID:
3465         if (Error Err = parseConstants())
3466           return Err;
3467         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3468           return Err;
3469         break;
3470       case bitc::METADATA_BLOCK_ID:
3471         if (ShouldLazyLoadMetadata) {
3472           if (Error Err = rememberAndSkipMetadata())
3473             return Err;
3474           break;
3475         }
3476         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3477         if (Error Err = MDLoader->parseModuleMetadata())
3478           return Err;
3479         break;
3480       case bitc::METADATA_KIND_BLOCK_ID:
3481         if (Error Err = MDLoader->parseMetadataKinds())
3482           return Err;
3483         break;
3484       case bitc::FUNCTION_BLOCK_ID:
3485         // If this is the first function body we've seen, reverse the
3486         // FunctionsWithBodies list.
3487         if (!SeenFirstFunctionBody) {
3488           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3489           if (Error Err = globalCleanup())
3490             return Err;
3491           SeenFirstFunctionBody = true;
3492         }
3493 
3494         if (VSTOffset > 0) {
3495           // If we have a VST forward declaration record, make sure we
3496           // parse the VST now if we haven't already. It is needed to
3497           // set up the DeferredFunctionInfo vector for lazy reading.
3498           if (!SeenValueSymbolTable) {
3499             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3500               return Err;
3501             SeenValueSymbolTable = true;
3502             // Fall through so that we record the NextUnreadBit below.
3503             // This is necessary in case we have an anonymous function that
3504             // is later materialized. Since it will not have a VST entry we
3505             // need to fall back to the lazy parse to find its offset.
3506           } else {
3507             // If we have a VST forward declaration record, but have already
3508             // parsed the VST (just above, when the first function body was
3509             // encountered here), then we are resuming the parse after
3510             // materializing functions. The ResumeBit points to the
3511             // start of the last function block recorded in the
3512             // DeferredFunctionInfo map. Skip it.
3513             if (Error Err = Stream.SkipBlock())
3514               return Err;
3515             continue;
3516           }
3517         }
3518 
3519         // Support older bitcode files that did not have the function
3520         // index in the VST, nor a VST forward declaration record, as
3521         // well as anonymous functions that do not have VST entries.
3522         // Build the DeferredFunctionInfo vector on the fly.
3523         if (Error Err = rememberAndSkipFunctionBody())
3524           return Err;
3525 
3526         // Suspend parsing when we reach the function bodies. Subsequent
3527         // materialization calls will resume it when necessary. If the bitcode
3528         // file is old, the symbol table will be at the end instead and will not
3529         // have been seen yet. In this case, just finish the parse now.
3530         if (SeenValueSymbolTable) {
3531           NextUnreadBit = Stream.GetCurrentBitNo();
3532           // After the VST has been parsed, we need to make sure intrinsic name
3533           // are auto-upgraded.
3534           return globalCleanup();
3535         }
3536         break;
3537       case bitc::USELIST_BLOCK_ID:
3538         if (Error Err = parseUseLists())
3539           return Err;
3540         break;
3541       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3542         if (Error Err = parseOperandBundleTags())
3543           return Err;
3544         break;
3545       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3546         if (Error Err = parseSyncScopeNames())
3547           return Err;
3548         break;
3549       }
3550       continue;
3551 
3552     case BitstreamEntry::Record:
3553       // The interesting case.
3554       break;
3555     }
3556 
3557     // Read a record.
3558     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3559     if (!MaybeBitCode)
3560       return MaybeBitCode.takeError();
3561     switch (unsigned BitCode = MaybeBitCode.get()) {
3562     default: break;  // Default behavior, ignore unknown content.
3563     case bitc::MODULE_CODE_VERSION: {
3564       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3565       if (!VersionOrErr)
3566         return VersionOrErr.takeError();
3567       UseRelativeIDs = *VersionOrErr >= 1;
3568       break;
3569     }
3570     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3571       std::string S;
3572       if (convertToString(Record, 0, S))
3573         return error("Invalid record");
3574       TheModule->setTargetTriple(S);
3575       break;
3576     }
3577     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3578       std::string S;
3579       if (convertToString(Record, 0, S))
3580         return error("Invalid record");
3581       TheModule->setDataLayout(S);
3582       break;
3583     }
3584     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3585       std::string S;
3586       if (convertToString(Record, 0, S))
3587         return error("Invalid record");
3588       TheModule->setModuleInlineAsm(S);
3589       break;
3590     }
3591     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3592       // FIXME: Remove in 4.0.
3593       std::string S;
3594       if (convertToString(Record, 0, S))
3595         return error("Invalid record");
3596       // Ignore value.
3597       break;
3598     }
3599     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3600       std::string S;
3601       if (convertToString(Record, 0, S))
3602         return error("Invalid record");
3603       SectionTable.push_back(S);
3604       break;
3605     }
3606     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3607       std::string S;
3608       if (convertToString(Record, 0, S))
3609         return error("Invalid record");
3610       GCTable.push_back(S);
3611       break;
3612     }
3613     case bitc::MODULE_CODE_COMDAT:
3614       if (Error Err = parseComdatRecord(Record))
3615         return Err;
3616       break;
3617     case bitc::MODULE_CODE_GLOBALVAR:
3618       if (Error Err = parseGlobalVarRecord(Record))
3619         return Err;
3620       break;
3621     case bitc::MODULE_CODE_FUNCTION:
3622       if (Error Err = parseFunctionRecord(Record))
3623         return Err;
3624       break;
3625     case bitc::MODULE_CODE_IFUNC:
3626     case bitc::MODULE_CODE_ALIAS:
3627     case bitc::MODULE_CODE_ALIAS_OLD:
3628       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3629         return Err;
3630       break;
3631     /// MODULE_CODE_VSTOFFSET: [offset]
3632     case bitc::MODULE_CODE_VSTOFFSET:
3633       if (Record.size() < 1)
3634         return error("Invalid record");
3635       // Note that we subtract 1 here because the offset is relative to one word
3636       // before the start of the identification or module block, which was
3637       // historically always the start of the regular bitcode header.
3638       VSTOffset = Record[0] - 1;
3639       break;
3640     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3641     case bitc::MODULE_CODE_SOURCE_FILENAME:
3642       SmallString<128> ValueName;
3643       if (convertToString(Record, 0, ValueName))
3644         return error("Invalid record");
3645       TheModule->setSourceFileName(ValueName);
3646       break;
3647     }
3648     Record.clear();
3649 
3650     // Upgrade data layout string.
3651     std::string DL = llvm::UpgradeDataLayoutString(
3652         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3653     TheModule->setDataLayout(DL);
3654   }
3655 }
3656 
3657 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3658                                       bool IsImporting) {
3659   TheModule = M;
3660   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3661                             [&](unsigned ID) { return getTypeByID(ID); });
3662   return parseModule(0, ShouldLazyLoadMetadata);
3663 }
3664 
3665 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3666   if (!isa<PointerType>(PtrType))
3667     return error("Load/Store operand is not a pointer type");
3668   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3669 
3670   if (ValType && ValType != ElemType)
3671     return error("Explicit load/store type does not match pointee "
3672                  "type of pointer operand");
3673   if (!PointerType::isLoadableOrStorableType(ElemType))
3674     return error("Cannot load/store from pointer");
3675   return Error::success();
3676 }
3677 
3678 void BitcodeReader::propagateByValTypes(CallBase *CB,
3679                                         ArrayRef<Type *> ArgsFullTys) {
3680   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3681     if (!CB->paramHasAttr(i, Attribute::ByVal))
3682       continue;
3683 
3684     CB->removeParamAttr(i, Attribute::ByVal);
3685     CB->addParamAttr(
3686         i, Attribute::getWithByValType(
3687                Context, getPointerElementFlatType(ArgsFullTys[i])));
3688   }
3689 }
3690 
3691 /// Lazily parse the specified function body block.
3692 Error BitcodeReader::parseFunctionBody(Function *F) {
3693   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3694     return Err;
3695 
3696   // Unexpected unresolved metadata when parsing function.
3697   if (MDLoader->hasFwdRefs())
3698     return error("Invalid function metadata: incoming forward references");
3699 
3700   InstructionList.clear();
3701   unsigned ModuleValueListSize = ValueList.size();
3702   unsigned ModuleMDLoaderSize = MDLoader->size();
3703 
3704   // Add all the function arguments to the value table.
3705   unsigned ArgNo = 0;
3706   FunctionType *FullFTy = FunctionTypes[F];
3707   for (Argument &I : F->args()) {
3708     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3709            "Incorrect fully specified type for Function Argument");
3710     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3711   }
3712   unsigned NextValueNo = ValueList.size();
3713   BasicBlock *CurBB = nullptr;
3714   unsigned CurBBNo = 0;
3715 
3716   DebugLoc LastLoc;
3717   auto getLastInstruction = [&]() -> Instruction * {
3718     if (CurBB && !CurBB->empty())
3719       return &CurBB->back();
3720     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3721              !FunctionBBs[CurBBNo - 1]->empty())
3722       return &FunctionBBs[CurBBNo - 1]->back();
3723     return nullptr;
3724   };
3725 
3726   std::vector<OperandBundleDef> OperandBundles;
3727 
3728   // Read all the records.
3729   SmallVector<uint64_t, 64> Record;
3730 
3731   while (true) {
3732     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3733     if (!MaybeEntry)
3734       return MaybeEntry.takeError();
3735     llvm::BitstreamEntry Entry = MaybeEntry.get();
3736 
3737     switch (Entry.Kind) {
3738     case BitstreamEntry::Error:
3739       return error("Malformed block");
3740     case BitstreamEntry::EndBlock:
3741       goto OutOfRecordLoop;
3742 
3743     case BitstreamEntry::SubBlock:
3744       switch (Entry.ID) {
3745       default:  // Skip unknown content.
3746         if (Error Err = Stream.SkipBlock())
3747           return Err;
3748         break;
3749       case bitc::CONSTANTS_BLOCK_ID:
3750         if (Error Err = parseConstants())
3751           return Err;
3752         NextValueNo = ValueList.size();
3753         break;
3754       case bitc::VALUE_SYMTAB_BLOCK_ID:
3755         if (Error Err = parseValueSymbolTable())
3756           return Err;
3757         break;
3758       case bitc::METADATA_ATTACHMENT_ID:
3759         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3760           return Err;
3761         break;
3762       case bitc::METADATA_BLOCK_ID:
3763         assert(DeferredMetadataInfo.empty() &&
3764                "Must read all module-level metadata before function-level");
3765         if (Error Err = MDLoader->parseFunctionMetadata())
3766           return Err;
3767         break;
3768       case bitc::USELIST_BLOCK_ID:
3769         if (Error Err = parseUseLists())
3770           return Err;
3771         break;
3772       }
3773       continue;
3774 
3775     case BitstreamEntry::Record:
3776       // The interesting case.
3777       break;
3778     }
3779 
3780     // Read a record.
3781     Record.clear();
3782     Instruction *I = nullptr;
3783     Type *FullTy = nullptr;
3784     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3785     if (!MaybeBitCode)
3786       return MaybeBitCode.takeError();
3787     switch (unsigned BitCode = MaybeBitCode.get()) {
3788     default: // Default behavior: reject
3789       return error("Invalid value");
3790     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3791       if (Record.size() < 1 || Record[0] == 0)
3792         return error("Invalid record");
3793       // Create all the basic blocks for the function.
3794       FunctionBBs.resize(Record[0]);
3795 
3796       // See if anything took the address of blocks in this function.
3797       auto BBFRI = BasicBlockFwdRefs.find(F);
3798       if (BBFRI == BasicBlockFwdRefs.end()) {
3799         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3800           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3801       } else {
3802         auto &BBRefs = BBFRI->second;
3803         // Check for invalid basic block references.
3804         if (BBRefs.size() > FunctionBBs.size())
3805           return error("Invalid ID");
3806         assert(!BBRefs.empty() && "Unexpected empty array");
3807         assert(!BBRefs.front() && "Invalid reference to entry block");
3808         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3809              ++I)
3810           if (I < RE && BBRefs[I]) {
3811             BBRefs[I]->insertInto(F);
3812             FunctionBBs[I] = BBRefs[I];
3813           } else {
3814             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3815           }
3816 
3817         // Erase from the table.
3818         BasicBlockFwdRefs.erase(BBFRI);
3819       }
3820 
3821       CurBB = FunctionBBs[0];
3822       continue;
3823     }
3824 
3825     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3826       // This record indicates that the last instruction is at the same
3827       // location as the previous instruction with a location.
3828       I = getLastInstruction();
3829 
3830       if (!I)
3831         return error("Invalid record");
3832       I->setDebugLoc(LastLoc);
3833       I = nullptr;
3834       continue;
3835 
3836     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3837       I = getLastInstruction();
3838       if (!I || Record.size() < 4)
3839         return error("Invalid record");
3840 
3841       unsigned Line = Record[0], Col = Record[1];
3842       unsigned ScopeID = Record[2], IAID = Record[3];
3843       bool isImplicitCode = Record.size() == 5 && Record[4];
3844 
3845       MDNode *Scope = nullptr, *IA = nullptr;
3846       if (ScopeID) {
3847         Scope = dyn_cast_or_null<MDNode>(
3848             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3849         if (!Scope)
3850           return error("Invalid record");
3851       }
3852       if (IAID) {
3853         IA = dyn_cast_or_null<MDNode>(
3854             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3855         if (!IA)
3856           return error("Invalid record");
3857       }
3858       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3859       I->setDebugLoc(LastLoc);
3860       I = nullptr;
3861       continue;
3862     }
3863     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3864       unsigned OpNum = 0;
3865       Value *LHS;
3866       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, &FullTy) ||
3867           OpNum+1 > Record.size())
3868         return error("Invalid record");
3869 
3870       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3871       if (Opc == -1)
3872         return error("Invalid record");
3873       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3874       InstructionList.push_back(I);
3875       if (OpNum < Record.size()) {
3876         if (isa<FPMathOperator>(I)) {
3877           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3878           if (FMF.any())
3879             I->setFastMathFlags(FMF);
3880         }
3881       }
3882       break;
3883     }
3884     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3885       unsigned OpNum = 0;
3886       Value *LHS, *RHS;
3887       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3888           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3889           OpNum+1 > Record.size())
3890         return error("Invalid record");
3891 
3892       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3893       if (Opc == -1)
3894         return error("Invalid record");
3895       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3896       InstructionList.push_back(I);
3897       if (OpNum < Record.size()) {
3898         if (Opc == Instruction::Add ||
3899             Opc == Instruction::Sub ||
3900             Opc == Instruction::Mul ||
3901             Opc == Instruction::Shl) {
3902           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3903             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3904           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3905             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3906         } else if (Opc == Instruction::SDiv ||
3907                    Opc == Instruction::UDiv ||
3908                    Opc == Instruction::LShr ||
3909                    Opc == Instruction::AShr) {
3910           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3911             cast<BinaryOperator>(I)->setIsExact(true);
3912         } else if (isa<FPMathOperator>(I)) {
3913           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3914           if (FMF.any())
3915             I->setFastMathFlags(FMF);
3916         }
3917 
3918       }
3919       break;
3920     }
3921     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3922       unsigned OpNum = 0;
3923       Value *Op;
3924       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3925           OpNum+2 != Record.size())
3926         return error("Invalid record");
3927 
3928       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3929       Type *ResTy = flattenPointerTypes(FullTy);
3930       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3931       if (Opc == -1 || !ResTy)
3932         return error("Invalid record");
3933       Instruction *Temp = nullptr;
3934       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3935         if (Temp) {
3936           InstructionList.push_back(Temp);
3937           assert(CurBB && "No current BB?");
3938           CurBB->getInstList().push_back(Temp);
3939         }
3940       } else {
3941         auto CastOp = (Instruction::CastOps)Opc;
3942         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3943           return error("Invalid cast");
3944         I = CastInst::Create(CastOp, Op, ResTy);
3945       }
3946       InstructionList.push_back(I);
3947       break;
3948     }
3949     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3950     case bitc::FUNC_CODE_INST_GEP_OLD:
3951     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3952       unsigned OpNum = 0;
3953 
3954       Type *Ty;
3955       bool InBounds;
3956 
3957       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3958         InBounds = Record[OpNum++];
3959         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3960         Ty = flattenPointerTypes(FullTy);
3961       } else {
3962         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3963         Ty = nullptr;
3964       }
3965 
3966       Value *BasePtr;
3967       Type *FullBaseTy = nullptr;
3968       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3969         return error("Invalid record");
3970 
3971       if (!Ty) {
3972         std::tie(FullTy, Ty) =
3973             getPointerElementTypes(FullBaseTy->getScalarType());
3974       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3975         return error(
3976             "Explicit gep type does not match pointee type of pointer operand");
3977 
3978       SmallVector<Value*, 16> GEPIdx;
3979       while (OpNum != Record.size()) {
3980         Value *Op;
3981         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3982           return error("Invalid record");
3983         GEPIdx.push_back(Op);
3984       }
3985 
3986       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3987       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3988 
3989       InstructionList.push_back(I);
3990       if (InBounds)
3991         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3992       break;
3993     }
3994 
3995     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3996                                        // EXTRACTVAL: [opty, opval, n x indices]
3997       unsigned OpNum = 0;
3998       Value *Agg;
3999       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4000         return error("Invalid record");
4001 
4002       unsigned RecSize = Record.size();
4003       if (OpNum == RecSize)
4004         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4005 
4006       SmallVector<unsigned, 4> EXTRACTVALIdx;
4007       for (; OpNum != RecSize; ++OpNum) {
4008         bool IsArray = FullTy->isArrayTy();
4009         bool IsStruct = FullTy->isStructTy();
4010         uint64_t Index = Record[OpNum];
4011 
4012         if (!IsStruct && !IsArray)
4013           return error("EXTRACTVAL: Invalid type");
4014         if ((unsigned)Index != Index)
4015           return error("Invalid value");
4016         if (IsStruct && Index >= FullTy->getStructNumElements())
4017           return error("EXTRACTVAL: Invalid struct index");
4018         if (IsArray && Index >= FullTy->getArrayNumElements())
4019           return error("EXTRACTVAL: Invalid array index");
4020         EXTRACTVALIdx.push_back((unsigned)Index);
4021 
4022         if (IsStruct)
4023           FullTy = FullTy->getStructElementType(Index);
4024         else
4025           FullTy = FullTy->getArrayElementType();
4026       }
4027 
4028       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4029       InstructionList.push_back(I);
4030       break;
4031     }
4032 
4033     case bitc::FUNC_CODE_INST_INSERTVAL: {
4034                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4035       unsigned OpNum = 0;
4036       Value *Agg;
4037       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4038         return error("Invalid record");
4039       Value *Val;
4040       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4041         return error("Invalid record");
4042 
4043       unsigned RecSize = Record.size();
4044       if (OpNum == RecSize)
4045         return error("INSERTVAL: Invalid instruction with 0 indices");
4046 
4047       SmallVector<unsigned, 4> INSERTVALIdx;
4048       Type *CurTy = Agg->getType();
4049       for (; OpNum != RecSize; ++OpNum) {
4050         bool IsArray = CurTy->isArrayTy();
4051         bool IsStruct = CurTy->isStructTy();
4052         uint64_t Index = Record[OpNum];
4053 
4054         if (!IsStruct && !IsArray)
4055           return error("INSERTVAL: Invalid type");
4056         if ((unsigned)Index != Index)
4057           return error("Invalid value");
4058         if (IsStruct && Index >= CurTy->getStructNumElements())
4059           return error("INSERTVAL: Invalid struct index");
4060         if (IsArray && Index >= CurTy->getArrayNumElements())
4061           return error("INSERTVAL: Invalid array index");
4062 
4063         INSERTVALIdx.push_back((unsigned)Index);
4064         if (IsStruct)
4065           CurTy = CurTy->getStructElementType(Index);
4066         else
4067           CurTy = CurTy->getArrayElementType();
4068       }
4069 
4070       if (CurTy != Val->getType())
4071         return error("Inserted value type doesn't match aggregate type");
4072 
4073       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4074       InstructionList.push_back(I);
4075       break;
4076     }
4077 
4078     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4079       // obsolete form of select
4080       // handles select i1 ... in old bitcode
4081       unsigned OpNum = 0;
4082       Value *TrueVal, *FalseVal, *Cond;
4083       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4084           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4085           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4086         return error("Invalid record");
4087 
4088       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4089       InstructionList.push_back(I);
4090       break;
4091     }
4092 
4093     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4094       // new form of select
4095       // handles select i1 or select [N x i1]
4096       unsigned OpNum = 0;
4097       Value *TrueVal, *FalseVal, *Cond;
4098       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4099           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4100           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4101         return error("Invalid record");
4102 
4103       // select condition can be either i1 or [N x i1]
4104       if (VectorType* vector_type =
4105           dyn_cast<VectorType>(Cond->getType())) {
4106         // expect <n x i1>
4107         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4108           return error("Invalid type for value");
4109       } else {
4110         // expect i1
4111         if (Cond->getType() != Type::getInt1Ty(Context))
4112           return error("Invalid type for value");
4113       }
4114 
4115       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4116       InstructionList.push_back(I);
4117       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4118         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4119         if (FMF.any())
4120           I->setFastMathFlags(FMF);
4121       }
4122       break;
4123     }
4124 
4125     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4126       unsigned OpNum = 0;
4127       Value *Vec, *Idx;
4128       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4129           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4130         return error("Invalid record");
4131       if (!Vec->getType()->isVectorTy())
4132         return error("Invalid type for value");
4133       I = ExtractElementInst::Create(Vec, Idx);
4134       FullTy = FullTy->getVectorElementType();
4135       InstructionList.push_back(I);
4136       break;
4137     }
4138 
4139     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4140       unsigned OpNum = 0;
4141       Value *Vec, *Elt, *Idx;
4142       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4143         return error("Invalid record");
4144       if (!Vec->getType()->isVectorTy())
4145         return error("Invalid type for value");
4146       if (popValue(Record, OpNum, NextValueNo,
4147                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4148           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4149         return error("Invalid record");
4150       I = InsertElementInst::Create(Vec, Elt, Idx);
4151       InstructionList.push_back(I);
4152       break;
4153     }
4154 
4155     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4156       unsigned OpNum = 0;
4157       Value *Vec1, *Vec2, *Mask;
4158       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4159           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4160         return error("Invalid record");
4161 
4162       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4163         return error("Invalid record");
4164       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4165         return error("Invalid type for value");
4166       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4167       FullTy = VectorType::get(FullTy->getVectorElementType(),
4168                                Mask->getType()->getVectorNumElements());
4169       InstructionList.push_back(I);
4170       break;
4171     }
4172 
4173     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4174       // Old form of ICmp/FCmp returning bool
4175       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4176       // both legal on vectors but had different behaviour.
4177     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4178       // FCmp/ICmp returning bool or vector of bool
4179 
4180       unsigned OpNum = 0;
4181       Value *LHS, *RHS;
4182       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4183           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4184         return error("Invalid record");
4185 
4186       if (OpNum >= Record.size())
4187         return error(
4188             "Invalid record: operand number exceeded available operands");
4189 
4190       unsigned PredVal = Record[OpNum];
4191       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4192       FastMathFlags FMF;
4193       if (IsFP && Record.size() > OpNum+1)
4194         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4195 
4196       if (OpNum+1 != Record.size())
4197         return error("Invalid record");
4198 
4199       if (LHS->getType()->isFPOrFPVectorTy())
4200         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4201       else
4202         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4203 
4204       if (FMF.any())
4205         I->setFastMathFlags(FMF);
4206       InstructionList.push_back(I);
4207       break;
4208     }
4209 
4210     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4211       {
4212         unsigned Size = Record.size();
4213         if (Size == 0) {
4214           I = ReturnInst::Create(Context);
4215           InstructionList.push_back(I);
4216           break;
4217         }
4218 
4219         unsigned OpNum = 0;
4220         Value *Op = nullptr;
4221         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4222           return error("Invalid record");
4223         if (OpNum != Record.size())
4224           return error("Invalid record");
4225 
4226         I = ReturnInst::Create(Context, Op);
4227         InstructionList.push_back(I);
4228         break;
4229       }
4230     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4231       if (Record.size() != 1 && Record.size() != 3)
4232         return error("Invalid record");
4233       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4234       if (!TrueDest)
4235         return error("Invalid record");
4236 
4237       if (Record.size() == 1) {
4238         I = BranchInst::Create(TrueDest);
4239         InstructionList.push_back(I);
4240       }
4241       else {
4242         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4243         Value *Cond = getValue(Record, 2, NextValueNo,
4244                                Type::getInt1Ty(Context));
4245         if (!FalseDest || !Cond)
4246           return error("Invalid record");
4247         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4248         InstructionList.push_back(I);
4249       }
4250       break;
4251     }
4252     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4253       if (Record.size() != 1 && Record.size() != 2)
4254         return error("Invalid record");
4255       unsigned Idx = 0;
4256       Value *CleanupPad =
4257           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4258       if (!CleanupPad)
4259         return error("Invalid record");
4260       BasicBlock *UnwindDest = nullptr;
4261       if (Record.size() == 2) {
4262         UnwindDest = getBasicBlock(Record[Idx++]);
4263         if (!UnwindDest)
4264           return error("Invalid record");
4265       }
4266 
4267       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4268       InstructionList.push_back(I);
4269       break;
4270     }
4271     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4272       if (Record.size() != 2)
4273         return error("Invalid record");
4274       unsigned Idx = 0;
4275       Value *CatchPad =
4276           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4277       if (!CatchPad)
4278         return error("Invalid record");
4279       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4280       if (!BB)
4281         return error("Invalid record");
4282 
4283       I = CatchReturnInst::Create(CatchPad, BB);
4284       InstructionList.push_back(I);
4285       break;
4286     }
4287     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4288       // We must have, at minimum, the outer scope and the number of arguments.
4289       if (Record.size() < 2)
4290         return error("Invalid record");
4291 
4292       unsigned Idx = 0;
4293 
4294       Value *ParentPad =
4295           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4296 
4297       unsigned NumHandlers = Record[Idx++];
4298 
4299       SmallVector<BasicBlock *, 2> Handlers;
4300       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4301         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4302         if (!BB)
4303           return error("Invalid record");
4304         Handlers.push_back(BB);
4305       }
4306 
4307       BasicBlock *UnwindDest = nullptr;
4308       if (Idx + 1 == Record.size()) {
4309         UnwindDest = getBasicBlock(Record[Idx++]);
4310         if (!UnwindDest)
4311           return error("Invalid record");
4312       }
4313 
4314       if (Record.size() != Idx)
4315         return error("Invalid record");
4316 
4317       auto *CatchSwitch =
4318           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4319       for (BasicBlock *Handler : Handlers)
4320         CatchSwitch->addHandler(Handler);
4321       I = CatchSwitch;
4322       InstructionList.push_back(I);
4323       break;
4324     }
4325     case bitc::FUNC_CODE_INST_CATCHPAD:
4326     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4327       // We must have, at minimum, the outer scope and the number of arguments.
4328       if (Record.size() < 2)
4329         return error("Invalid record");
4330 
4331       unsigned Idx = 0;
4332 
4333       Value *ParentPad =
4334           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4335 
4336       unsigned NumArgOperands = Record[Idx++];
4337 
4338       SmallVector<Value *, 2> Args;
4339       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4340         Value *Val;
4341         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4342           return error("Invalid record");
4343         Args.push_back(Val);
4344       }
4345 
4346       if (Record.size() != Idx)
4347         return error("Invalid record");
4348 
4349       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4350         I = CleanupPadInst::Create(ParentPad, Args);
4351       else
4352         I = CatchPadInst::Create(ParentPad, Args);
4353       InstructionList.push_back(I);
4354       break;
4355     }
4356     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4357       // Check magic
4358       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4359         // "New" SwitchInst format with case ranges. The changes to write this
4360         // format were reverted but we still recognize bitcode that uses it.
4361         // Hopefully someday we will have support for case ranges and can use
4362         // this format again.
4363 
4364         Type *OpTy = getTypeByID(Record[1]);
4365         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4366 
4367         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4368         BasicBlock *Default = getBasicBlock(Record[3]);
4369         if (!OpTy || !Cond || !Default)
4370           return error("Invalid record");
4371 
4372         unsigned NumCases = Record[4];
4373 
4374         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4375         InstructionList.push_back(SI);
4376 
4377         unsigned CurIdx = 5;
4378         for (unsigned i = 0; i != NumCases; ++i) {
4379           SmallVector<ConstantInt*, 1> CaseVals;
4380           unsigned NumItems = Record[CurIdx++];
4381           for (unsigned ci = 0; ci != NumItems; ++ci) {
4382             bool isSingleNumber = Record[CurIdx++];
4383 
4384             APInt Low;
4385             unsigned ActiveWords = 1;
4386             if (ValueBitWidth > 64)
4387               ActiveWords = Record[CurIdx++];
4388             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4389                                 ValueBitWidth);
4390             CurIdx += ActiveWords;
4391 
4392             if (!isSingleNumber) {
4393               ActiveWords = 1;
4394               if (ValueBitWidth > 64)
4395                 ActiveWords = Record[CurIdx++];
4396               APInt High = readWideAPInt(
4397                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4398               CurIdx += ActiveWords;
4399 
4400               // FIXME: It is not clear whether values in the range should be
4401               // compared as signed or unsigned values. The partially
4402               // implemented changes that used this format in the past used
4403               // unsigned comparisons.
4404               for ( ; Low.ule(High); ++Low)
4405                 CaseVals.push_back(ConstantInt::get(Context, Low));
4406             } else
4407               CaseVals.push_back(ConstantInt::get(Context, Low));
4408           }
4409           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4410           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4411                  cve = CaseVals.end(); cvi != cve; ++cvi)
4412             SI->addCase(*cvi, DestBB);
4413         }
4414         I = SI;
4415         break;
4416       }
4417 
4418       // Old SwitchInst format without case ranges.
4419 
4420       if (Record.size() < 3 || (Record.size() & 1) == 0)
4421         return error("Invalid record");
4422       Type *OpTy = getTypeByID(Record[0]);
4423       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4424       BasicBlock *Default = getBasicBlock(Record[2]);
4425       if (!OpTy || !Cond || !Default)
4426         return error("Invalid record");
4427       unsigned NumCases = (Record.size()-3)/2;
4428       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4429       InstructionList.push_back(SI);
4430       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4431         ConstantInt *CaseVal =
4432           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4433         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4434         if (!CaseVal || !DestBB) {
4435           delete SI;
4436           return error("Invalid record");
4437         }
4438         SI->addCase(CaseVal, DestBB);
4439       }
4440       I = SI;
4441       break;
4442     }
4443     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4444       if (Record.size() < 2)
4445         return error("Invalid record");
4446       Type *OpTy = getTypeByID(Record[0]);
4447       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4448       if (!OpTy || !Address)
4449         return error("Invalid record");
4450       unsigned NumDests = Record.size()-2;
4451       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4452       InstructionList.push_back(IBI);
4453       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4454         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4455           IBI->addDestination(DestBB);
4456         } else {
4457           delete IBI;
4458           return error("Invalid record");
4459         }
4460       }
4461       I = IBI;
4462       break;
4463     }
4464 
4465     case bitc::FUNC_CODE_INST_INVOKE: {
4466       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4467       if (Record.size() < 4)
4468         return error("Invalid record");
4469       unsigned OpNum = 0;
4470       AttributeList PAL = getAttributes(Record[OpNum++]);
4471       unsigned CCInfo = Record[OpNum++];
4472       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4473       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4474 
4475       FunctionType *FTy = nullptr;
4476       FunctionType *FullFTy = nullptr;
4477       if ((CCInfo >> 13) & 1) {
4478         FullFTy =
4479             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4480         if (!FullFTy)
4481           return error("Explicit invoke type is not a function type");
4482         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4483       }
4484 
4485       Value *Callee;
4486       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4487         return error("Invalid record");
4488 
4489       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4490       if (!CalleeTy)
4491         return error("Callee is not a pointer");
4492       if (!FTy) {
4493         FullFTy =
4494             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4495         if (!FullFTy)
4496           return error("Callee is not of pointer to function type");
4497         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4498       } else if (getPointerElementFlatType(FullTy) != FTy)
4499         return error("Explicit invoke type does not match pointee type of "
4500                      "callee operand");
4501       if (Record.size() < FTy->getNumParams() + OpNum)
4502         return error("Insufficient operands to call");
4503 
4504       SmallVector<Value*, 16> Ops;
4505       SmallVector<Type *, 16> ArgsFullTys;
4506       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4507         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4508                                FTy->getParamType(i)));
4509         ArgsFullTys.push_back(FullFTy->getParamType(i));
4510         if (!Ops.back())
4511           return error("Invalid record");
4512       }
4513 
4514       if (!FTy->isVarArg()) {
4515         if (Record.size() != OpNum)
4516           return error("Invalid record");
4517       } else {
4518         // Read type/value pairs for varargs params.
4519         while (OpNum != Record.size()) {
4520           Value *Op;
4521           Type *FullTy;
4522           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4523             return error("Invalid record");
4524           Ops.push_back(Op);
4525           ArgsFullTys.push_back(FullTy);
4526         }
4527       }
4528 
4529       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4530                              OperandBundles);
4531       FullTy = FullFTy->getReturnType();
4532       OperandBundles.clear();
4533       InstructionList.push_back(I);
4534       cast<InvokeInst>(I)->setCallingConv(
4535           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4536       cast<InvokeInst>(I)->setAttributes(PAL);
4537       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4538 
4539       break;
4540     }
4541     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4542       unsigned Idx = 0;
4543       Value *Val = nullptr;
4544       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4545         return error("Invalid record");
4546       I = ResumeInst::Create(Val);
4547       InstructionList.push_back(I);
4548       break;
4549     }
4550     case bitc::FUNC_CODE_INST_CALLBR: {
4551       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4552       unsigned OpNum = 0;
4553       AttributeList PAL = getAttributes(Record[OpNum++]);
4554       unsigned CCInfo = Record[OpNum++];
4555 
4556       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4557       unsigned NumIndirectDests = Record[OpNum++];
4558       SmallVector<BasicBlock *, 16> IndirectDests;
4559       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4560         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4561 
4562       FunctionType *FTy = nullptr;
4563       FunctionType *FullFTy = nullptr;
4564       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4565         FullFTy =
4566             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4567         if (!FullFTy)
4568           return error("Explicit call type is not a function type");
4569         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4570       }
4571 
4572       Value *Callee;
4573       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4574         return error("Invalid record");
4575 
4576       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4577       if (!OpTy)
4578         return error("Callee is not a pointer type");
4579       if (!FTy) {
4580         FullFTy =
4581             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4582         if (!FullFTy)
4583           return error("Callee is not of pointer to function type");
4584         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4585       } else if (getPointerElementFlatType(FullTy) != FTy)
4586         return error("Explicit call type does not match pointee type of "
4587                      "callee operand");
4588       if (Record.size() < FTy->getNumParams() + OpNum)
4589         return error("Insufficient operands to call");
4590 
4591       SmallVector<Value*, 16> Args;
4592       // Read the fixed params.
4593       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4594         if (FTy->getParamType(i)->isLabelTy())
4595           Args.push_back(getBasicBlock(Record[OpNum]));
4596         else
4597           Args.push_back(getValue(Record, OpNum, NextValueNo,
4598                                   FTy->getParamType(i)));
4599         if (!Args.back())
4600           return error("Invalid record");
4601       }
4602 
4603       // Read type/value pairs for varargs params.
4604       if (!FTy->isVarArg()) {
4605         if (OpNum != Record.size())
4606           return error("Invalid record");
4607       } else {
4608         while (OpNum != Record.size()) {
4609           Value *Op;
4610           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4611             return error("Invalid record");
4612           Args.push_back(Op);
4613         }
4614       }
4615 
4616       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4617                              OperandBundles);
4618       FullTy = FullFTy->getReturnType();
4619       OperandBundles.clear();
4620       InstructionList.push_back(I);
4621       cast<CallBrInst>(I)->setCallingConv(
4622           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4623       cast<CallBrInst>(I)->setAttributes(PAL);
4624       break;
4625     }
4626     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4627       I = new UnreachableInst(Context);
4628       InstructionList.push_back(I);
4629       break;
4630     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4631       if (Record.size() < 1)
4632         return error("Invalid record");
4633       // The first record specifies the type.
4634       FullTy = getFullyStructuredTypeByID(Record[0]);
4635       Type *Ty = flattenPointerTypes(FullTy);
4636       if (!Ty)
4637         return error("Invalid record");
4638 
4639       // Phi arguments are pairs of records of [value, basic block].
4640       // There is an optional final record for fast-math-flags if this phi has a
4641       // floating-point type.
4642       size_t NumArgs = (Record.size() - 1) / 2;
4643       PHINode *PN = PHINode::Create(Ty, NumArgs);
4644       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4645         return error("Invalid record");
4646       InstructionList.push_back(PN);
4647 
4648       for (unsigned i = 0; i != NumArgs; i++) {
4649         Value *V;
4650         // With the new function encoding, it is possible that operands have
4651         // negative IDs (for forward references).  Use a signed VBR
4652         // representation to keep the encoding small.
4653         if (UseRelativeIDs)
4654           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4655         else
4656           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4657         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4658         if (!V || !BB)
4659           return error("Invalid record");
4660         PN->addIncoming(V, BB);
4661       }
4662       I = PN;
4663 
4664       // If there are an even number of records, the final record must be FMF.
4665       if (Record.size() % 2 == 0) {
4666         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4667         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4668         if (FMF.any())
4669           I->setFastMathFlags(FMF);
4670       }
4671 
4672       break;
4673     }
4674 
4675     case bitc::FUNC_CODE_INST_LANDINGPAD:
4676     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4677       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4678       unsigned Idx = 0;
4679       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4680         if (Record.size() < 3)
4681           return error("Invalid record");
4682       } else {
4683         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4684         if (Record.size() < 4)
4685           return error("Invalid record");
4686       }
4687       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4688       Type *Ty = flattenPointerTypes(FullTy);
4689       if (!Ty)
4690         return error("Invalid record");
4691       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4692         Value *PersFn = nullptr;
4693         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4694           return error("Invalid record");
4695 
4696         if (!F->hasPersonalityFn())
4697           F->setPersonalityFn(cast<Constant>(PersFn));
4698         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4699           return error("Personality function mismatch");
4700       }
4701 
4702       bool IsCleanup = !!Record[Idx++];
4703       unsigned NumClauses = Record[Idx++];
4704       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4705       LP->setCleanup(IsCleanup);
4706       for (unsigned J = 0; J != NumClauses; ++J) {
4707         LandingPadInst::ClauseType CT =
4708           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4709         Value *Val;
4710 
4711         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4712           delete LP;
4713           return error("Invalid record");
4714         }
4715 
4716         assert((CT != LandingPadInst::Catch ||
4717                 !isa<ArrayType>(Val->getType())) &&
4718                "Catch clause has a invalid type!");
4719         assert((CT != LandingPadInst::Filter ||
4720                 isa<ArrayType>(Val->getType())) &&
4721                "Filter clause has invalid type!");
4722         LP->addClause(cast<Constant>(Val));
4723       }
4724 
4725       I = LP;
4726       InstructionList.push_back(I);
4727       break;
4728     }
4729 
4730     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4731       if (Record.size() != 4)
4732         return error("Invalid record");
4733       uint64_t AlignRecord = Record[3];
4734       const uint64_t InAllocaMask = uint64_t(1) << 5;
4735       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4736       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4737       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4738                                 SwiftErrorMask;
4739       bool InAlloca = AlignRecord & InAllocaMask;
4740       bool SwiftError = AlignRecord & SwiftErrorMask;
4741       FullTy = getFullyStructuredTypeByID(Record[0]);
4742       Type *Ty = flattenPointerTypes(FullTy);
4743       if ((AlignRecord & ExplicitTypeMask) == 0) {
4744         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4745         if (!PTy)
4746           return error("Old-style alloca with a non-pointer type");
4747         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4748       }
4749       Type *OpTy = getTypeByID(Record[1]);
4750       Value *Size = getFnValueByID(Record[2], OpTy);
4751       MaybeAlign Align;
4752       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4753         return Err;
4754       }
4755       if (!Ty || !Size)
4756         return error("Invalid record");
4757 
4758       // FIXME: Make this an optional field.
4759       const DataLayout &DL = TheModule->getDataLayout();
4760       unsigned AS = DL.getAllocaAddrSpace();
4761 
4762       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4763       AI->setUsedWithInAlloca(InAlloca);
4764       AI->setSwiftError(SwiftError);
4765       I = AI;
4766       FullTy = PointerType::get(FullTy, AS);
4767       InstructionList.push_back(I);
4768       break;
4769     }
4770     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4771       unsigned OpNum = 0;
4772       Value *Op;
4773       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4774           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4775         return error("Invalid record");
4776 
4777       if (!isa<PointerType>(Op->getType()))
4778         return error("Load operand is not a pointer type");
4779 
4780       Type *Ty = nullptr;
4781       if (OpNum + 3 == Record.size()) {
4782         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4783         Ty = flattenPointerTypes(FullTy);
4784       } else
4785         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4786 
4787       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4788         return Err;
4789 
4790       MaybeAlign Align;
4791       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4792         return Err;
4793       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4794       InstructionList.push_back(I);
4795       break;
4796     }
4797     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4798        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4799       unsigned OpNum = 0;
4800       Value *Op;
4801       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4802           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4803         return error("Invalid record");
4804 
4805       if (!isa<PointerType>(Op->getType()))
4806         return error("Load operand is not a pointer type");
4807 
4808       Type *Ty = nullptr;
4809       if (OpNum + 5 == Record.size()) {
4810         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4811         Ty = flattenPointerTypes(FullTy);
4812       } else
4813         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4814 
4815       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4816         return Err;
4817 
4818       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4819       if (Ordering == AtomicOrdering::NotAtomic ||
4820           Ordering == AtomicOrdering::Release ||
4821           Ordering == AtomicOrdering::AcquireRelease)
4822         return error("Invalid record");
4823       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4824         return error("Invalid record");
4825       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4826 
4827       MaybeAlign Align;
4828       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4829         return Err;
4830       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4831       InstructionList.push_back(I);
4832       break;
4833     }
4834     case bitc::FUNC_CODE_INST_STORE:
4835     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4836       unsigned OpNum = 0;
4837       Value *Val, *Ptr;
4838       Type *FullTy;
4839       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4840           (BitCode == bitc::FUNC_CODE_INST_STORE
4841                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4842                : popValue(Record, OpNum, NextValueNo,
4843                           getPointerElementFlatType(FullTy), Val)) ||
4844           OpNum + 2 != Record.size())
4845         return error("Invalid record");
4846 
4847       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4848         return Err;
4849       MaybeAlign Align;
4850       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4851         return Err;
4852       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4853       InstructionList.push_back(I);
4854       break;
4855     }
4856     case bitc::FUNC_CODE_INST_STOREATOMIC:
4857     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4858       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4859       unsigned OpNum = 0;
4860       Value *Val, *Ptr;
4861       Type *FullTy;
4862       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4863           !isa<PointerType>(Ptr->getType()) ||
4864           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4865                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4866                : popValue(Record, OpNum, NextValueNo,
4867                           getPointerElementFlatType(FullTy), Val)) ||
4868           OpNum + 4 != Record.size())
4869         return error("Invalid record");
4870 
4871       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4872         return Err;
4873       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4874       if (Ordering == AtomicOrdering::NotAtomic ||
4875           Ordering == AtomicOrdering::Acquire ||
4876           Ordering == AtomicOrdering::AcquireRelease)
4877         return error("Invalid record");
4878       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4879       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4880         return error("Invalid record");
4881 
4882       MaybeAlign Align;
4883       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4884         return Err;
4885       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4886       InstructionList.push_back(I);
4887       break;
4888     }
4889     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4890     case bitc::FUNC_CODE_INST_CMPXCHG: {
4891       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4892       //          failureordering?, isweak?]
4893       unsigned OpNum = 0;
4894       Value *Ptr, *Cmp, *New;
4895       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4896         return error("Invalid record");
4897 
4898       if (!isa<PointerType>(Ptr->getType()))
4899         return error("Cmpxchg operand is not a pointer type");
4900 
4901       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4902         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4903           return error("Invalid record");
4904       } else if (popValue(Record, OpNum, NextValueNo,
4905                           getPointerElementFlatType(FullTy), Cmp))
4906         return error("Invalid record");
4907       else
4908         FullTy = cast<PointerType>(FullTy)->getElementType();
4909 
4910       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4911           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4912         return error("Invalid record");
4913 
4914       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4915       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4916           SuccessOrdering == AtomicOrdering::Unordered)
4917         return error("Invalid record");
4918       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4919 
4920       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4921         return Err;
4922       AtomicOrdering FailureOrdering;
4923       if (Record.size() < 7)
4924         FailureOrdering =
4925             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4926       else
4927         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4928 
4929       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4930                                 SSID);
4931       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4932       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4933 
4934       if (Record.size() < 8) {
4935         // Before weak cmpxchgs existed, the instruction simply returned the
4936         // value loaded from memory, so bitcode files from that era will be
4937         // expecting the first component of a modern cmpxchg.
4938         CurBB->getInstList().push_back(I);
4939         I = ExtractValueInst::Create(I, 0);
4940         FullTy = cast<StructType>(FullTy)->getElementType(0);
4941       } else {
4942         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4943       }
4944 
4945       InstructionList.push_back(I);
4946       break;
4947     }
4948     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4949       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4950       unsigned OpNum = 0;
4951       Value *Ptr, *Val;
4952       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4953           !isa<PointerType>(Ptr->getType()) ||
4954           popValue(Record, OpNum, NextValueNo,
4955                    getPointerElementFlatType(FullTy), Val) ||
4956           OpNum + 4 != Record.size())
4957         return error("Invalid record");
4958       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4959       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4960           Operation > AtomicRMWInst::LAST_BINOP)
4961         return error("Invalid record");
4962       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4963       if (Ordering == AtomicOrdering::NotAtomic ||
4964           Ordering == AtomicOrdering::Unordered)
4965         return error("Invalid record");
4966       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4967       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4968       FullTy = getPointerElementFlatType(FullTy);
4969       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4970       InstructionList.push_back(I);
4971       break;
4972     }
4973     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4974       if (2 != Record.size())
4975         return error("Invalid record");
4976       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4977       if (Ordering == AtomicOrdering::NotAtomic ||
4978           Ordering == AtomicOrdering::Unordered ||
4979           Ordering == AtomicOrdering::Monotonic)
4980         return error("Invalid record");
4981       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4982       I = new FenceInst(Context, Ordering, SSID);
4983       InstructionList.push_back(I);
4984       break;
4985     }
4986     case bitc::FUNC_CODE_INST_CALL: {
4987       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4988       if (Record.size() < 3)
4989         return error("Invalid record");
4990 
4991       unsigned OpNum = 0;
4992       AttributeList PAL = getAttributes(Record[OpNum++]);
4993       unsigned CCInfo = Record[OpNum++];
4994 
4995       FastMathFlags FMF;
4996       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4997         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4998         if (!FMF.any())
4999           return error("Fast math flags indicator set for call with no FMF");
5000       }
5001 
5002       FunctionType *FTy = nullptr;
5003       FunctionType *FullFTy = nullptr;
5004       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5005         FullFTy =
5006             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5007         if (!FullFTy)
5008           return error("Explicit call type is not a function type");
5009         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5010       }
5011 
5012       Value *Callee;
5013       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5014         return error("Invalid record");
5015 
5016       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5017       if (!OpTy)
5018         return error("Callee is not a pointer type");
5019       if (!FTy) {
5020         FullFTy =
5021             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5022         if (!FullFTy)
5023           return error("Callee is not of pointer to function type");
5024         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5025       } else if (getPointerElementFlatType(FullTy) != FTy)
5026         return error("Explicit call type does not match pointee type of "
5027                      "callee operand");
5028       if (Record.size() < FTy->getNumParams() + OpNum)
5029         return error("Insufficient operands to call");
5030 
5031       SmallVector<Value*, 16> Args;
5032       SmallVector<Type*, 16> ArgsFullTys;
5033       // Read the fixed params.
5034       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5035         if (FTy->getParamType(i)->isLabelTy())
5036           Args.push_back(getBasicBlock(Record[OpNum]));
5037         else
5038           Args.push_back(getValue(Record, OpNum, NextValueNo,
5039                                   FTy->getParamType(i)));
5040         ArgsFullTys.push_back(FullFTy->getParamType(i));
5041         if (!Args.back())
5042           return error("Invalid record");
5043       }
5044 
5045       // Read type/value pairs for varargs params.
5046       if (!FTy->isVarArg()) {
5047         if (OpNum != Record.size())
5048           return error("Invalid record");
5049       } else {
5050         while (OpNum != Record.size()) {
5051           Value *Op;
5052           Type *FullTy;
5053           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5054             return error("Invalid record");
5055           Args.push_back(Op);
5056           ArgsFullTys.push_back(FullTy);
5057         }
5058       }
5059 
5060       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5061       FullTy = FullFTy->getReturnType();
5062       OperandBundles.clear();
5063       InstructionList.push_back(I);
5064       cast<CallInst>(I)->setCallingConv(
5065           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5066       CallInst::TailCallKind TCK = CallInst::TCK_None;
5067       if (CCInfo & 1 << bitc::CALL_TAIL)
5068         TCK = CallInst::TCK_Tail;
5069       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5070         TCK = CallInst::TCK_MustTail;
5071       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5072         TCK = CallInst::TCK_NoTail;
5073       cast<CallInst>(I)->setTailCallKind(TCK);
5074       cast<CallInst>(I)->setAttributes(PAL);
5075       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5076       if (FMF.any()) {
5077         if (!isa<FPMathOperator>(I))
5078           return error("Fast-math-flags specified for call without "
5079                        "floating-point scalar or vector return type");
5080         I->setFastMathFlags(FMF);
5081       }
5082       break;
5083     }
5084     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5085       if (Record.size() < 3)
5086         return error("Invalid record");
5087       Type *OpTy = getTypeByID(Record[0]);
5088       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5089       FullTy = getFullyStructuredTypeByID(Record[2]);
5090       Type *ResTy = flattenPointerTypes(FullTy);
5091       if (!OpTy || !Op || !ResTy)
5092         return error("Invalid record");
5093       I = new VAArgInst(Op, ResTy);
5094       InstructionList.push_back(I);
5095       break;
5096     }
5097 
5098     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5099       // A call or an invoke can be optionally prefixed with some variable
5100       // number of operand bundle blocks.  These blocks are read into
5101       // OperandBundles and consumed at the next call or invoke instruction.
5102 
5103       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5104         return error("Invalid record");
5105 
5106       std::vector<Value *> Inputs;
5107 
5108       unsigned OpNum = 1;
5109       while (OpNum != Record.size()) {
5110         Value *Op;
5111         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5112           return error("Invalid record");
5113         Inputs.push_back(Op);
5114       }
5115 
5116       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5117       continue;
5118     }
5119     }
5120 
5121     // Add instruction to end of current BB.  If there is no current BB, reject
5122     // this file.
5123     if (!CurBB) {
5124       I->deleteValue();
5125       return error("Invalid instruction with no BB");
5126     }
5127     if (!OperandBundles.empty()) {
5128       I->deleteValue();
5129       return error("Operand bundles found with no consumer");
5130     }
5131     CurBB->getInstList().push_back(I);
5132 
5133     // If this was a terminator instruction, move to the next block.
5134     if (I->isTerminator()) {
5135       ++CurBBNo;
5136       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5137     }
5138 
5139     // Non-void values get registered in the value table for future use.
5140     if (!I->getType()->isVoidTy()) {
5141       if (!FullTy) {
5142         FullTy = I->getType();
5143         assert(
5144             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5145             !isa<ArrayType>(FullTy) &&
5146             (!isa<VectorType>(FullTy) ||
5147              FullTy->getVectorElementType()->isFloatingPointTy() ||
5148              FullTy->getVectorElementType()->isIntegerTy()) &&
5149             "Structured types must be assigned with corresponding non-opaque "
5150             "pointer type");
5151       }
5152 
5153       assert(I->getType() == flattenPointerTypes(FullTy) &&
5154              "Incorrect fully structured type provided for Instruction");
5155       ValueList.assignValue(I, NextValueNo++, FullTy);
5156     }
5157   }
5158 
5159 OutOfRecordLoop:
5160 
5161   if (!OperandBundles.empty())
5162     return error("Operand bundles found with no consumer");
5163 
5164   // Check the function list for unresolved values.
5165   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5166     if (!A->getParent()) {
5167       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5168       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5169         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5170           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5171           delete A;
5172         }
5173       }
5174       return error("Never resolved value found in function");
5175     }
5176   }
5177 
5178   // Unexpected unresolved metadata about to be dropped.
5179   if (MDLoader->hasFwdRefs())
5180     return error("Invalid function metadata: outgoing forward refs");
5181 
5182   // Trim the value list down to the size it was before we parsed this function.
5183   ValueList.shrinkTo(ModuleValueListSize);
5184   MDLoader->shrinkTo(ModuleMDLoaderSize);
5185   std::vector<BasicBlock*>().swap(FunctionBBs);
5186   return Error::success();
5187 }
5188 
5189 /// Find the function body in the bitcode stream
5190 Error BitcodeReader::findFunctionInStream(
5191     Function *F,
5192     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5193   while (DeferredFunctionInfoIterator->second == 0) {
5194     // This is the fallback handling for the old format bitcode that
5195     // didn't contain the function index in the VST, or when we have
5196     // an anonymous function which would not have a VST entry.
5197     // Assert that we have one of those two cases.
5198     assert(VSTOffset == 0 || !F->hasName());
5199     // Parse the next body in the stream and set its position in the
5200     // DeferredFunctionInfo map.
5201     if (Error Err = rememberAndSkipFunctionBodies())
5202       return Err;
5203   }
5204   return Error::success();
5205 }
5206 
5207 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5208   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5209     return SyncScope::ID(Val);
5210   if (Val >= SSIDs.size())
5211     return SyncScope::System; // Map unknown synchronization scopes to system.
5212   return SSIDs[Val];
5213 }
5214 
5215 //===----------------------------------------------------------------------===//
5216 // GVMaterializer implementation
5217 //===----------------------------------------------------------------------===//
5218 
5219 Error BitcodeReader::materialize(GlobalValue *GV) {
5220   Function *F = dyn_cast<Function>(GV);
5221   // If it's not a function or is already material, ignore the request.
5222   if (!F || !F->isMaterializable())
5223     return Error::success();
5224 
5225   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5226   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5227   // If its position is recorded as 0, its body is somewhere in the stream
5228   // but we haven't seen it yet.
5229   if (DFII->second == 0)
5230     if (Error Err = findFunctionInStream(F, DFII))
5231       return Err;
5232 
5233   // Materialize metadata before parsing any function bodies.
5234   if (Error Err = materializeMetadata())
5235     return Err;
5236 
5237   // Move the bit stream to the saved position of the deferred function body.
5238   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5239     return JumpFailed;
5240   if (Error Err = parseFunctionBody(F))
5241     return Err;
5242   F->setIsMaterializable(false);
5243 
5244   if (StripDebugInfo)
5245     stripDebugInfo(*F);
5246 
5247   // Upgrade any old intrinsic calls in the function.
5248   for (auto &I : UpgradedIntrinsics) {
5249     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5250          UI != UE;) {
5251       User *U = *UI;
5252       ++UI;
5253       if (CallInst *CI = dyn_cast<CallInst>(U))
5254         UpgradeIntrinsicCall(CI, I.second);
5255     }
5256   }
5257 
5258   // Update calls to the remangled intrinsics
5259   for (auto &I : RemangledIntrinsics)
5260     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5261          UI != UE;)
5262       // Don't expect any other users than call sites
5263       CallSite(*UI++).setCalledFunction(I.second);
5264 
5265   // Finish fn->subprogram upgrade for materialized functions.
5266   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5267     F->setSubprogram(SP);
5268 
5269   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5270   if (!MDLoader->isStrippingTBAA()) {
5271     for (auto &I : instructions(F)) {
5272       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5273       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5274         continue;
5275       MDLoader->setStripTBAA(true);
5276       stripTBAA(F->getParent());
5277     }
5278   }
5279 
5280   // Bring in any functions that this function forward-referenced via
5281   // blockaddresses.
5282   return materializeForwardReferencedFunctions();
5283 }
5284 
5285 Error BitcodeReader::materializeModule() {
5286   if (Error Err = materializeMetadata())
5287     return Err;
5288 
5289   // Promise to materialize all forward references.
5290   WillMaterializeAllForwardRefs = true;
5291 
5292   // Iterate over the module, deserializing any functions that are still on
5293   // disk.
5294   for (Function &F : *TheModule) {
5295     if (Error Err = materialize(&F))
5296       return Err;
5297   }
5298   // At this point, if there are any function bodies, parse the rest of
5299   // the bits in the module past the last function block we have recorded
5300   // through either lazy scanning or the VST.
5301   if (LastFunctionBlockBit || NextUnreadBit)
5302     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5303                                     ? LastFunctionBlockBit
5304                                     : NextUnreadBit))
5305       return Err;
5306 
5307   // Check that all block address forward references got resolved (as we
5308   // promised above).
5309   if (!BasicBlockFwdRefs.empty())
5310     return error("Never resolved function from blockaddress");
5311 
5312   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5313   // delete the old functions to clean up. We can't do this unless the entire
5314   // module is materialized because there could always be another function body
5315   // with calls to the old function.
5316   for (auto &I : UpgradedIntrinsics) {
5317     for (auto *U : I.first->users()) {
5318       if (CallInst *CI = dyn_cast<CallInst>(U))
5319         UpgradeIntrinsicCall(CI, I.second);
5320     }
5321     if (!I.first->use_empty())
5322       I.first->replaceAllUsesWith(I.second);
5323     I.first->eraseFromParent();
5324   }
5325   UpgradedIntrinsics.clear();
5326   // Do the same for remangled intrinsics
5327   for (auto &I : RemangledIntrinsics) {
5328     I.first->replaceAllUsesWith(I.second);
5329     I.first->eraseFromParent();
5330   }
5331   RemangledIntrinsics.clear();
5332 
5333   UpgradeDebugInfo(*TheModule);
5334 
5335   UpgradeModuleFlags(*TheModule);
5336 
5337   UpgradeARCRuntime(*TheModule);
5338 
5339   return Error::success();
5340 }
5341 
5342 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5343   return IdentifiedStructTypes;
5344 }
5345 
5346 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5347     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5348     StringRef ModulePath, unsigned ModuleId)
5349     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5350       ModulePath(ModulePath), ModuleId(ModuleId) {}
5351 
5352 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5353   TheIndex.addModule(ModulePath, ModuleId);
5354 }
5355 
5356 ModuleSummaryIndex::ModuleInfo *
5357 ModuleSummaryIndexBitcodeReader::getThisModule() {
5358   return TheIndex.getModule(ModulePath);
5359 }
5360 
5361 std::pair<ValueInfo, GlobalValue::GUID>
5362 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5363   auto VGI = ValueIdToValueInfoMap[ValueId];
5364   assert(VGI.first);
5365   return VGI;
5366 }
5367 
5368 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5369     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5370     StringRef SourceFileName) {
5371   std::string GlobalId =
5372       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5373   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5374   auto OriginalNameID = ValueGUID;
5375   if (GlobalValue::isLocalLinkage(Linkage))
5376     OriginalNameID = GlobalValue::getGUID(ValueName);
5377   if (PrintSummaryGUIDs)
5378     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5379            << ValueName << "\n";
5380 
5381   // UseStrtab is false for legacy summary formats and value names are
5382   // created on stack. In that case we save the name in a string saver in
5383   // the index so that the value name can be recorded.
5384   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5385       TheIndex.getOrInsertValueInfo(
5386           ValueGUID,
5387           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5388       OriginalNameID);
5389 }
5390 
5391 // Specialized value symbol table parser used when reading module index
5392 // blocks where we don't actually create global values. The parsed information
5393 // is saved in the bitcode reader for use when later parsing summaries.
5394 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5395     uint64_t Offset,
5396     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5397   // With a strtab the VST is not required to parse the summary.
5398   if (UseStrtab)
5399     return Error::success();
5400 
5401   assert(Offset > 0 && "Expected non-zero VST offset");
5402   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5403   if (!MaybeCurrentBit)
5404     return MaybeCurrentBit.takeError();
5405   uint64_t CurrentBit = MaybeCurrentBit.get();
5406 
5407   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5408     return Err;
5409 
5410   SmallVector<uint64_t, 64> Record;
5411 
5412   // Read all the records for this value table.
5413   SmallString<128> ValueName;
5414 
5415   while (true) {
5416     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5417     if (!MaybeEntry)
5418       return MaybeEntry.takeError();
5419     BitstreamEntry Entry = MaybeEntry.get();
5420 
5421     switch (Entry.Kind) {
5422     case BitstreamEntry::SubBlock: // Handled for us already.
5423     case BitstreamEntry::Error:
5424       return error("Malformed block");
5425     case BitstreamEntry::EndBlock:
5426       // Done parsing VST, jump back to wherever we came from.
5427       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5428         return JumpFailed;
5429       return Error::success();
5430     case BitstreamEntry::Record:
5431       // The interesting case.
5432       break;
5433     }
5434 
5435     // Read a record.
5436     Record.clear();
5437     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5438     if (!MaybeRecord)
5439       return MaybeRecord.takeError();
5440     switch (MaybeRecord.get()) {
5441     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5442       break;
5443     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5444       if (convertToString(Record, 1, ValueName))
5445         return error("Invalid record");
5446       unsigned ValueID = Record[0];
5447       assert(!SourceFileName.empty());
5448       auto VLI = ValueIdToLinkageMap.find(ValueID);
5449       assert(VLI != ValueIdToLinkageMap.end() &&
5450              "No linkage found for VST entry?");
5451       auto Linkage = VLI->second;
5452       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5453       ValueName.clear();
5454       break;
5455     }
5456     case bitc::VST_CODE_FNENTRY: {
5457       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5458       if (convertToString(Record, 2, ValueName))
5459         return error("Invalid record");
5460       unsigned ValueID = Record[0];
5461       assert(!SourceFileName.empty());
5462       auto VLI = ValueIdToLinkageMap.find(ValueID);
5463       assert(VLI != ValueIdToLinkageMap.end() &&
5464              "No linkage found for VST entry?");
5465       auto Linkage = VLI->second;
5466       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5467       ValueName.clear();
5468       break;
5469     }
5470     case bitc::VST_CODE_COMBINED_ENTRY: {
5471       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5472       unsigned ValueID = Record[0];
5473       GlobalValue::GUID RefGUID = Record[1];
5474       // The "original name", which is the second value of the pair will be
5475       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5476       ValueIdToValueInfoMap[ValueID] =
5477           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5478       break;
5479     }
5480     }
5481   }
5482 }
5483 
5484 // Parse just the blocks needed for building the index out of the module.
5485 // At the end of this routine the module Index is populated with a map
5486 // from global value id to GlobalValueSummary objects.
5487 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5488   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5489     return Err;
5490 
5491   SmallVector<uint64_t, 64> Record;
5492   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5493   unsigned ValueId = 0;
5494 
5495   // Read the index for this module.
5496   while (true) {
5497     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5498     if (!MaybeEntry)
5499       return MaybeEntry.takeError();
5500     llvm::BitstreamEntry Entry = MaybeEntry.get();
5501 
5502     switch (Entry.Kind) {
5503     case BitstreamEntry::Error:
5504       return error("Malformed block");
5505     case BitstreamEntry::EndBlock:
5506       return Error::success();
5507 
5508     case BitstreamEntry::SubBlock:
5509       switch (Entry.ID) {
5510       default: // Skip unknown content.
5511         if (Error Err = Stream.SkipBlock())
5512           return Err;
5513         break;
5514       case bitc::BLOCKINFO_BLOCK_ID:
5515         // Need to parse these to get abbrev ids (e.g. for VST)
5516         if (readBlockInfo())
5517           return error("Malformed block");
5518         break;
5519       case bitc::VALUE_SYMTAB_BLOCK_ID:
5520         // Should have been parsed earlier via VSTOffset, unless there
5521         // is no summary section.
5522         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5523                 !SeenGlobalValSummary) &&
5524                "Expected early VST parse via VSTOffset record");
5525         if (Error Err = Stream.SkipBlock())
5526           return Err;
5527         break;
5528       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5529       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5530         // Add the module if it is a per-module index (has a source file name).
5531         if (!SourceFileName.empty())
5532           addThisModule();
5533         assert(!SeenValueSymbolTable &&
5534                "Already read VST when parsing summary block?");
5535         // We might not have a VST if there were no values in the
5536         // summary. An empty summary block generated when we are
5537         // performing ThinLTO compiles so we don't later invoke
5538         // the regular LTO process on them.
5539         if (VSTOffset > 0) {
5540           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5541             return Err;
5542           SeenValueSymbolTable = true;
5543         }
5544         SeenGlobalValSummary = true;
5545         if (Error Err = parseEntireSummary(Entry.ID))
5546           return Err;
5547         break;
5548       case bitc::MODULE_STRTAB_BLOCK_ID:
5549         if (Error Err = parseModuleStringTable())
5550           return Err;
5551         break;
5552       }
5553       continue;
5554 
5555     case BitstreamEntry::Record: {
5556         Record.clear();
5557         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5558         if (!MaybeBitCode)
5559           return MaybeBitCode.takeError();
5560         switch (MaybeBitCode.get()) {
5561         default:
5562           break; // Default behavior, ignore unknown content.
5563         case bitc::MODULE_CODE_VERSION: {
5564           if (Error Err = parseVersionRecord(Record).takeError())
5565             return Err;
5566           break;
5567         }
5568         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5569         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5570           SmallString<128> ValueName;
5571           if (convertToString(Record, 0, ValueName))
5572             return error("Invalid record");
5573           SourceFileName = ValueName.c_str();
5574           break;
5575         }
5576         /// MODULE_CODE_HASH: [5*i32]
5577         case bitc::MODULE_CODE_HASH: {
5578           if (Record.size() != 5)
5579             return error("Invalid hash length " + Twine(Record.size()).str());
5580           auto &Hash = getThisModule()->second.second;
5581           int Pos = 0;
5582           for (auto &Val : Record) {
5583             assert(!(Val >> 32) && "Unexpected high bits set");
5584             Hash[Pos++] = Val;
5585           }
5586           break;
5587         }
5588         /// MODULE_CODE_VSTOFFSET: [offset]
5589         case bitc::MODULE_CODE_VSTOFFSET:
5590           if (Record.size() < 1)
5591             return error("Invalid record");
5592           // Note that we subtract 1 here because the offset is relative to one
5593           // word before the start of the identification or module block, which
5594           // was historically always the start of the regular bitcode header.
5595           VSTOffset = Record[0] - 1;
5596           break;
5597         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5598         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5599         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5600         // v2: [strtab offset, strtab size, v1]
5601         case bitc::MODULE_CODE_GLOBALVAR:
5602         case bitc::MODULE_CODE_FUNCTION:
5603         case bitc::MODULE_CODE_ALIAS: {
5604           StringRef Name;
5605           ArrayRef<uint64_t> GVRecord;
5606           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5607           if (GVRecord.size() <= 3)
5608             return error("Invalid record");
5609           uint64_t RawLinkage = GVRecord[3];
5610           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5611           if (!UseStrtab) {
5612             ValueIdToLinkageMap[ValueId++] = Linkage;
5613             break;
5614           }
5615 
5616           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5617           break;
5618         }
5619         }
5620       }
5621       continue;
5622     }
5623   }
5624 }
5625 
5626 std::vector<ValueInfo>
5627 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5628   std::vector<ValueInfo> Ret;
5629   Ret.reserve(Record.size());
5630   for (uint64_t RefValueId : Record)
5631     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5632   return Ret;
5633 }
5634 
5635 std::vector<FunctionSummary::EdgeTy>
5636 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5637                                               bool IsOldProfileFormat,
5638                                               bool HasProfile, bool HasRelBF) {
5639   std::vector<FunctionSummary::EdgeTy> Ret;
5640   Ret.reserve(Record.size());
5641   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5642     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5643     uint64_t RelBF = 0;
5644     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5645     if (IsOldProfileFormat) {
5646       I += 1; // Skip old callsitecount field
5647       if (HasProfile)
5648         I += 1; // Skip old profilecount field
5649     } else if (HasProfile)
5650       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5651     else if (HasRelBF)
5652       RelBF = Record[++I];
5653     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5654   }
5655   return Ret;
5656 }
5657 
5658 static void
5659 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5660                                        WholeProgramDevirtResolution &Wpd) {
5661   uint64_t ArgNum = Record[Slot++];
5662   WholeProgramDevirtResolution::ByArg &B =
5663       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5664   Slot += ArgNum;
5665 
5666   B.TheKind =
5667       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5668   B.Info = Record[Slot++];
5669   B.Byte = Record[Slot++];
5670   B.Bit = Record[Slot++];
5671 }
5672 
5673 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5674                                               StringRef Strtab, size_t &Slot,
5675                                               TypeIdSummary &TypeId) {
5676   uint64_t Id = Record[Slot++];
5677   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5678 
5679   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5680   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5681                         static_cast<size_t>(Record[Slot + 1])};
5682   Slot += 2;
5683 
5684   uint64_t ResByArgNum = Record[Slot++];
5685   for (uint64_t I = 0; I != ResByArgNum; ++I)
5686     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5687 }
5688 
5689 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5690                                      StringRef Strtab,
5691                                      ModuleSummaryIndex &TheIndex) {
5692   size_t Slot = 0;
5693   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5694       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5695   Slot += 2;
5696 
5697   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5698   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5699   TypeId.TTRes.AlignLog2 = Record[Slot++];
5700   TypeId.TTRes.SizeM1 = Record[Slot++];
5701   TypeId.TTRes.BitMask = Record[Slot++];
5702   TypeId.TTRes.InlineBits = Record[Slot++];
5703 
5704   while (Slot < Record.size())
5705     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5706 }
5707 
5708 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5709     ArrayRef<uint64_t> Record, size_t &Slot,
5710     TypeIdCompatibleVtableInfo &TypeId) {
5711   uint64_t Offset = Record[Slot++];
5712   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5713   TypeId.push_back({Offset, Callee});
5714 }
5715 
5716 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5717     ArrayRef<uint64_t> Record) {
5718   size_t Slot = 0;
5719   TypeIdCompatibleVtableInfo &TypeId =
5720       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5721           {Strtab.data() + Record[Slot],
5722            static_cast<size_t>(Record[Slot + 1])});
5723   Slot += 2;
5724 
5725   while (Slot < Record.size())
5726     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5727 }
5728 
5729 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5730                            unsigned WOCnt) {
5731   // Readonly and writeonly refs are in the end of the refs list.
5732   assert(ROCnt + WOCnt <= Refs.size());
5733   unsigned FirstWORef = Refs.size() - WOCnt;
5734   unsigned RefNo = FirstWORef - ROCnt;
5735   for (; RefNo < FirstWORef; ++RefNo)
5736     Refs[RefNo].setReadOnly();
5737   for (; RefNo < Refs.size(); ++RefNo)
5738     Refs[RefNo].setWriteOnly();
5739 }
5740 
5741 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5742 // objects in the index.
5743 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5744   if (Error Err = Stream.EnterSubBlock(ID))
5745     return Err;
5746   SmallVector<uint64_t, 64> Record;
5747 
5748   // Parse version
5749   {
5750     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5751     if (!MaybeEntry)
5752       return MaybeEntry.takeError();
5753     BitstreamEntry Entry = MaybeEntry.get();
5754 
5755     if (Entry.Kind != BitstreamEntry::Record)
5756       return error("Invalid Summary Block: record for version expected");
5757     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5758     if (!MaybeRecord)
5759       return MaybeRecord.takeError();
5760     if (MaybeRecord.get() != bitc::FS_VERSION)
5761       return error("Invalid Summary Block: version expected");
5762   }
5763   const uint64_t Version = Record[0];
5764   const bool IsOldProfileFormat = Version == 1;
5765   if (Version < 1 || Version > 8)
5766     return error("Invalid summary version " + Twine(Version) +
5767                  ". Version should be in the range [1-7].");
5768   Record.clear();
5769 
5770   // Keep around the last seen summary to be used when we see an optional
5771   // "OriginalName" attachement.
5772   GlobalValueSummary *LastSeenSummary = nullptr;
5773   GlobalValue::GUID LastSeenGUID = 0;
5774 
5775   // We can expect to see any number of type ID information records before
5776   // each function summary records; these variables store the information
5777   // collected so far so that it can be used to create the summary object.
5778   std::vector<GlobalValue::GUID> PendingTypeTests;
5779   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5780       PendingTypeCheckedLoadVCalls;
5781   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5782       PendingTypeCheckedLoadConstVCalls;
5783 
5784   while (true) {
5785     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5786     if (!MaybeEntry)
5787       return MaybeEntry.takeError();
5788     BitstreamEntry Entry = MaybeEntry.get();
5789 
5790     switch (Entry.Kind) {
5791     case BitstreamEntry::SubBlock: // Handled for us already.
5792     case BitstreamEntry::Error:
5793       return error("Malformed block");
5794     case BitstreamEntry::EndBlock:
5795       return Error::success();
5796     case BitstreamEntry::Record:
5797       // The interesting case.
5798       break;
5799     }
5800 
5801     // Read a record. The record format depends on whether this
5802     // is a per-module index or a combined index file. In the per-module
5803     // case the records contain the associated value's ID for correlation
5804     // with VST entries. In the combined index the correlation is done
5805     // via the bitcode offset of the summary records (which were saved
5806     // in the combined index VST entries). The records also contain
5807     // information used for ThinLTO renaming and importing.
5808     Record.clear();
5809     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5810     if (!MaybeBitCode)
5811       return MaybeBitCode.takeError();
5812     switch (unsigned BitCode = MaybeBitCode.get()) {
5813     default: // Default behavior: ignore.
5814       break;
5815     case bitc::FS_FLAGS: {  // [flags]
5816       uint64_t Flags = Record[0];
5817       // Scan flags.
5818       assert(Flags <= 0x3f && "Unexpected bits in flag");
5819 
5820       // 1 bit: WithGlobalValueDeadStripping flag.
5821       // Set on combined index only.
5822       if (Flags & 0x1)
5823         TheIndex.setWithGlobalValueDeadStripping();
5824       // 1 bit: SkipModuleByDistributedBackend flag.
5825       // Set on combined index only.
5826       if (Flags & 0x2)
5827         TheIndex.setSkipModuleByDistributedBackend();
5828       // 1 bit: HasSyntheticEntryCounts flag.
5829       // Set on combined index only.
5830       if (Flags & 0x4)
5831         TheIndex.setHasSyntheticEntryCounts();
5832       // 1 bit: DisableSplitLTOUnit flag.
5833       // Set on per module indexes. It is up to the client to validate
5834       // the consistency of this flag across modules being linked.
5835       if (Flags & 0x8)
5836         TheIndex.setEnableSplitLTOUnit();
5837       // 1 bit: PartiallySplitLTOUnits flag.
5838       // Set on combined index only.
5839       if (Flags & 0x10)
5840         TheIndex.setPartiallySplitLTOUnits();
5841       // 1 bit: WithAttributePropagation flag.
5842       // Set on combined index only.
5843       if (Flags & 0x20)
5844         TheIndex.setWithAttributePropagation();
5845       break;
5846     }
5847     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5848       uint64_t ValueID = Record[0];
5849       GlobalValue::GUID RefGUID = Record[1];
5850       ValueIdToValueInfoMap[ValueID] =
5851           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5852       break;
5853     }
5854     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5855     //                numrefs x valueid, n x (valueid)]
5856     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5857     //                        numrefs x valueid,
5858     //                        n x (valueid, hotness)]
5859     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5860     //                      numrefs x valueid,
5861     //                      n x (valueid, relblockfreq)]
5862     case bitc::FS_PERMODULE:
5863     case bitc::FS_PERMODULE_RELBF:
5864     case bitc::FS_PERMODULE_PROFILE: {
5865       unsigned ValueID = Record[0];
5866       uint64_t RawFlags = Record[1];
5867       unsigned InstCount = Record[2];
5868       uint64_t RawFunFlags = 0;
5869       unsigned NumRefs = Record[3];
5870       unsigned NumRORefs = 0, NumWORefs = 0;
5871       int RefListStartIndex = 4;
5872       if (Version >= 4) {
5873         RawFunFlags = Record[3];
5874         NumRefs = Record[4];
5875         RefListStartIndex = 5;
5876         if (Version >= 5) {
5877           NumRORefs = Record[5];
5878           RefListStartIndex = 6;
5879           if (Version >= 7) {
5880             NumWORefs = Record[6];
5881             RefListStartIndex = 7;
5882           }
5883         }
5884       }
5885 
5886       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5887       // The module path string ref set in the summary must be owned by the
5888       // index's module string table. Since we don't have a module path
5889       // string table section in the per-module index, we create a single
5890       // module path string table entry with an empty (0) ID to take
5891       // ownership.
5892       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5893       assert(Record.size() >= RefListStartIndex + NumRefs &&
5894              "Record size inconsistent with number of references");
5895       std::vector<ValueInfo> Refs = makeRefList(
5896           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5897       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5898       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5899       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5900           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5901           IsOldProfileFormat, HasProfile, HasRelBF);
5902       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5903       auto FS = std::make_unique<FunctionSummary>(
5904           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5905           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5906           std::move(PendingTypeTestAssumeVCalls),
5907           std::move(PendingTypeCheckedLoadVCalls),
5908           std::move(PendingTypeTestAssumeConstVCalls),
5909           std::move(PendingTypeCheckedLoadConstVCalls));
5910       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5911       FS->setModulePath(getThisModule()->first());
5912       FS->setOriginalName(VIAndOriginalGUID.second);
5913       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5914       break;
5915     }
5916     // FS_ALIAS: [valueid, flags, valueid]
5917     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5918     // they expect all aliasee summaries to be available.
5919     case bitc::FS_ALIAS: {
5920       unsigned ValueID = Record[0];
5921       uint64_t RawFlags = Record[1];
5922       unsigned AliaseeID = Record[2];
5923       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5924       auto AS = std::make_unique<AliasSummary>(Flags);
5925       // The module path string ref set in the summary must be owned by the
5926       // index's module string table. Since we don't have a module path
5927       // string table section in the per-module index, we create a single
5928       // module path string table entry with an empty (0) ID to take
5929       // ownership.
5930       AS->setModulePath(getThisModule()->first());
5931 
5932       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5933       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5934       if (!AliaseeInModule)
5935         return error("Alias expects aliasee summary to be parsed");
5936       AS->setAliasee(AliaseeVI, AliaseeInModule);
5937 
5938       auto GUID = getValueInfoFromValueId(ValueID);
5939       AS->setOriginalName(GUID.second);
5940       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5941       break;
5942     }
5943     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5944     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5945       unsigned ValueID = Record[0];
5946       uint64_t RawFlags = Record[1];
5947       unsigned RefArrayStart = 2;
5948       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5949                                       /* WriteOnly */ false);
5950       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5951       if (Version >= 5) {
5952         GVF = getDecodedGVarFlags(Record[2]);
5953         RefArrayStart = 3;
5954       }
5955       std::vector<ValueInfo> Refs =
5956           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5957       auto FS =
5958           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5959       FS->setModulePath(getThisModule()->first());
5960       auto GUID = getValueInfoFromValueId(ValueID);
5961       FS->setOriginalName(GUID.second);
5962       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5963       break;
5964     }
5965     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5966     //                        numrefs, numrefs x valueid,
5967     //                        n x (valueid, offset)]
5968     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5969       unsigned ValueID = Record[0];
5970       uint64_t RawFlags = Record[1];
5971       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5972       unsigned NumRefs = Record[3];
5973       unsigned RefListStartIndex = 4;
5974       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5975       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5976       std::vector<ValueInfo> Refs = makeRefList(
5977           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5978       VTableFuncList VTableFuncs;
5979       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5980         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5981         uint64_t Offset = Record[++I];
5982         VTableFuncs.push_back({Callee, Offset});
5983       }
5984       auto VS =
5985           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5986       VS->setModulePath(getThisModule()->first());
5987       VS->setVTableFuncs(VTableFuncs);
5988       auto GUID = getValueInfoFromValueId(ValueID);
5989       VS->setOriginalName(GUID.second);
5990       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5991       break;
5992     }
5993     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5994     //               numrefs x valueid, n x (valueid)]
5995     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5996     //                       numrefs x valueid, n x (valueid, hotness)]
5997     case bitc::FS_COMBINED:
5998     case bitc::FS_COMBINED_PROFILE: {
5999       unsigned ValueID = Record[0];
6000       uint64_t ModuleId = Record[1];
6001       uint64_t RawFlags = Record[2];
6002       unsigned InstCount = Record[3];
6003       uint64_t RawFunFlags = 0;
6004       uint64_t EntryCount = 0;
6005       unsigned NumRefs = Record[4];
6006       unsigned NumRORefs = 0, NumWORefs = 0;
6007       int RefListStartIndex = 5;
6008 
6009       if (Version >= 4) {
6010         RawFunFlags = Record[4];
6011         RefListStartIndex = 6;
6012         size_t NumRefsIndex = 5;
6013         if (Version >= 5) {
6014           unsigned NumRORefsOffset = 1;
6015           RefListStartIndex = 7;
6016           if (Version >= 6) {
6017             NumRefsIndex = 6;
6018             EntryCount = Record[5];
6019             RefListStartIndex = 8;
6020             if (Version >= 7) {
6021               RefListStartIndex = 9;
6022               NumWORefs = Record[8];
6023               NumRORefsOffset = 2;
6024             }
6025           }
6026           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6027         }
6028         NumRefs = Record[NumRefsIndex];
6029       }
6030 
6031       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6032       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6033       assert(Record.size() >= RefListStartIndex + NumRefs &&
6034              "Record size inconsistent with number of references");
6035       std::vector<ValueInfo> Refs = makeRefList(
6036           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6037       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6038       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6039           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6040           IsOldProfileFormat, HasProfile, false);
6041       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6042       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6043       auto FS = std::make_unique<FunctionSummary>(
6044           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6045           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6046           std::move(PendingTypeTestAssumeVCalls),
6047           std::move(PendingTypeCheckedLoadVCalls),
6048           std::move(PendingTypeTestAssumeConstVCalls),
6049           std::move(PendingTypeCheckedLoadConstVCalls));
6050       LastSeenSummary = FS.get();
6051       LastSeenGUID = VI.getGUID();
6052       FS->setModulePath(ModuleIdMap[ModuleId]);
6053       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6054       break;
6055     }
6056     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6057     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6058     // they expect all aliasee summaries to be available.
6059     case bitc::FS_COMBINED_ALIAS: {
6060       unsigned ValueID = Record[0];
6061       uint64_t ModuleId = Record[1];
6062       uint64_t RawFlags = Record[2];
6063       unsigned AliaseeValueId = Record[3];
6064       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6065       auto AS = std::make_unique<AliasSummary>(Flags);
6066       LastSeenSummary = AS.get();
6067       AS->setModulePath(ModuleIdMap[ModuleId]);
6068 
6069       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6070       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6071       AS->setAliasee(AliaseeVI, AliaseeInModule);
6072 
6073       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6074       LastSeenGUID = VI.getGUID();
6075       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6076       break;
6077     }
6078     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6079     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6080       unsigned ValueID = Record[0];
6081       uint64_t ModuleId = Record[1];
6082       uint64_t RawFlags = Record[2];
6083       unsigned RefArrayStart = 3;
6084       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6085                                       /* WriteOnly */ false);
6086       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6087       if (Version >= 5) {
6088         GVF = getDecodedGVarFlags(Record[3]);
6089         RefArrayStart = 4;
6090       }
6091       std::vector<ValueInfo> Refs =
6092           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6093       auto FS =
6094           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6095       LastSeenSummary = FS.get();
6096       FS->setModulePath(ModuleIdMap[ModuleId]);
6097       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6098       LastSeenGUID = VI.getGUID();
6099       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6100       break;
6101     }
6102     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6103     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6104       uint64_t OriginalName = Record[0];
6105       if (!LastSeenSummary)
6106         return error("Name attachment that does not follow a combined record");
6107       LastSeenSummary->setOriginalName(OriginalName);
6108       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6109       // Reset the LastSeenSummary
6110       LastSeenSummary = nullptr;
6111       LastSeenGUID = 0;
6112       break;
6113     }
6114     case bitc::FS_TYPE_TESTS:
6115       assert(PendingTypeTests.empty());
6116       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6117                               Record.end());
6118       break;
6119 
6120     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6121       assert(PendingTypeTestAssumeVCalls.empty());
6122       for (unsigned I = 0; I != Record.size(); I += 2)
6123         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6124       break;
6125 
6126     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6127       assert(PendingTypeCheckedLoadVCalls.empty());
6128       for (unsigned I = 0; I != Record.size(); I += 2)
6129         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6130       break;
6131 
6132     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6133       PendingTypeTestAssumeConstVCalls.push_back(
6134           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6135       break;
6136 
6137     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6138       PendingTypeCheckedLoadConstVCalls.push_back(
6139           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6140       break;
6141 
6142     case bitc::FS_CFI_FUNCTION_DEFS: {
6143       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6144       for (unsigned I = 0; I != Record.size(); I += 2)
6145         CfiFunctionDefs.insert(
6146             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6147       break;
6148     }
6149 
6150     case bitc::FS_CFI_FUNCTION_DECLS: {
6151       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6152       for (unsigned I = 0; I != Record.size(); I += 2)
6153         CfiFunctionDecls.insert(
6154             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6155       break;
6156     }
6157 
6158     case bitc::FS_TYPE_ID:
6159       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6160       break;
6161 
6162     case bitc::FS_TYPE_ID_METADATA:
6163       parseTypeIdCompatibleVtableSummaryRecord(Record);
6164       break;
6165     }
6166   }
6167   llvm_unreachable("Exit infinite loop");
6168 }
6169 
6170 // Parse the  module string table block into the Index.
6171 // This populates the ModulePathStringTable map in the index.
6172 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6173   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6174     return Err;
6175 
6176   SmallVector<uint64_t, 64> Record;
6177 
6178   SmallString<128> ModulePath;
6179   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6180 
6181   while (true) {
6182     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6183     if (!MaybeEntry)
6184       return MaybeEntry.takeError();
6185     BitstreamEntry Entry = MaybeEntry.get();
6186 
6187     switch (Entry.Kind) {
6188     case BitstreamEntry::SubBlock: // Handled for us already.
6189     case BitstreamEntry::Error:
6190       return error("Malformed block");
6191     case BitstreamEntry::EndBlock:
6192       return Error::success();
6193     case BitstreamEntry::Record:
6194       // The interesting case.
6195       break;
6196     }
6197 
6198     Record.clear();
6199     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6200     if (!MaybeRecord)
6201       return MaybeRecord.takeError();
6202     switch (MaybeRecord.get()) {
6203     default: // Default behavior: ignore.
6204       break;
6205     case bitc::MST_CODE_ENTRY: {
6206       // MST_ENTRY: [modid, namechar x N]
6207       uint64_t ModuleId = Record[0];
6208 
6209       if (convertToString(Record, 1, ModulePath))
6210         return error("Invalid record");
6211 
6212       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6213       ModuleIdMap[ModuleId] = LastSeenModule->first();
6214 
6215       ModulePath.clear();
6216       break;
6217     }
6218     /// MST_CODE_HASH: [5*i32]
6219     case bitc::MST_CODE_HASH: {
6220       if (Record.size() != 5)
6221         return error("Invalid hash length " + Twine(Record.size()).str());
6222       if (!LastSeenModule)
6223         return error("Invalid hash that does not follow a module path");
6224       int Pos = 0;
6225       for (auto &Val : Record) {
6226         assert(!(Val >> 32) && "Unexpected high bits set");
6227         LastSeenModule->second.second[Pos++] = Val;
6228       }
6229       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6230       LastSeenModule = nullptr;
6231       break;
6232     }
6233     }
6234   }
6235   llvm_unreachable("Exit infinite loop");
6236 }
6237 
6238 namespace {
6239 
6240 // FIXME: This class is only here to support the transition to llvm::Error. It
6241 // will be removed once this transition is complete. Clients should prefer to
6242 // deal with the Error value directly, rather than converting to error_code.
6243 class BitcodeErrorCategoryType : public std::error_category {
6244   const char *name() const noexcept override {
6245     return "llvm.bitcode";
6246   }
6247 
6248   std::string message(int IE) const override {
6249     BitcodeError E = static_cast<BitcodeError>(IE);
6250     switch (E) {
6251     case BitcodeError::CorruptedBitcode:
6252       return "Corrupted bitcode";
6253     }
6254     llvm_unreachable("Unknown error type!");
6255   }
6256 };
6257 
6258 } // end anonymous namespace
6259 
6260 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6261 
6262 const std::error_category &llvm::BitcodeErrorCategory() {
6263   return *ErrorCategory;
6264 }
6265 
6266 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6267                                             unsigned Block, unsigned RecordID) {
6268   if (Error Err = Stream.EnterSubBlock(Block))
6269     return std::move(Err);
6270 
6271   StringRef Strtab;
6272   while (true) {
6273     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6274     if (!MaybeEntry)
6275       return MaybeEntry.takeError();
6276     llvm::BitstreamEntry Entry = MaybeEntry.get();
6277 
6278     switch (Entry.Kind) {
6279     case BitstreamEntry::EndBlock:
6280       return Strtab;
6281 
6282     case BitstreamEntry::Error:
6283       return error("Malformed block");
6284 
6285     case BitstreamEntry::SubBlock:
6286       if (Error Err = Stream.SkipBlock())
6287         return std::move(Err);
6288       break;
6289 
6290     case BitstreamEntry::Record:
6291       StringRef Blob;
6292       SmallVector<uint64_t, 1> Record;
6293       Expected<unsigned> MaybeRecord =
6294           Stream.readRecord(Entry.ID, Record, &Blob);
6295       if (!MaybeRecord)
6296         return MaybeRecord.takeError();
6297       if (MaybeRecord.get() == RecordID)
6298         Strtab = Blob;
6299       break;
6300     }
6301   }
6302 }
6303 
6304 //===----------------------------------------------------------------------===//
6305 // External interface
6306 //===----------------------------------------------------------------------===//
6307 
6308 Expected<std::vector<BitcodeModule>>
6309 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6310   auto FOrErr = getBitcodeFileContents(Buffer);
6311   if (!FOrErr)
6312     return FOrErr.takeError();
6313   return std::move(FOrErr->Mods);
6314 }
6315 
6316 Expected<BitcodeFileContents>
6317 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6318   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6319   if (!StreamOrErr)
6320     return StreamOrErr.takeError();
6321   BitstreamCursor &Stream = *StreamOrErr;
6322 
6323   BitcodeFileContents F;
6324   while (true) {
6325     uint64_t BCBegin = Stream.getCurrentByteNo();
6326 
6327     // We may be consuming bitcode from a client that leaves garbage at the end
6328     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6329     // the end that there cannot possibly be another module, stop looking.
6330     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6331       return F;
6332 
6333     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6334     if (!MaybeEntry)
6335       return MaybeEntry.takeError();
6336     llvm::BitstreamEntry Entry = MaybeEntry.get();
6337 
6338     switch (Entry.Kind) {
6339     case BitstreamEntry::EndBlock:
6340     case BitstreamEntry::Error:
6341       return error("Malformed block");
6342 
6343     case BitstreamEntry::SubBlock: {
6344       uint64_t IdentificationBit = -1ull;
6345       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6346         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6347         if (Error Err = Stream.SkipBlock())
6348           return std::move(Err);
6349 
6350         {
6351           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6352           if (!MaybeEntry)
6353             return MaybeEntry.takeError();
6354           Entry = MaybeEntry.get();
6355         }
6356 
6357         if (Entry.Kind != BitstreamEntry::SubBlock ||
6358             Entry.ID != bitc::MODULE_BLOCK_ID)
6359           return error("Malformed block");
6360       }
6361 
6362       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6363         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6364         if (Error Err = Stream.SkipBlock())
6365           return std::move(Err);
6366 
6367         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6368                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6369                           Buffer.getBufferIdentifier(), IdentificationBit,
6370                           ModuleBit});
6371         continue;
6372       }
6373 
6374       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6375         Expected<StringRef> Strtab =
6376             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6377         if (!Strtab)
6378           return Strtab.takeError();
6379         // This string table is used by every preceding bitcode module that does
6380         // not have its own string table. A bitcode file may have multiple
6381         // string tables if it was created by binary concatenation, for example
6382         // with "llvm-cat -b".
6383         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6384           if (!I->Strtab.empty())
6385             break;
6386           I->Strtab = *Strtab;
6387         }
6388         // Similarly, the string table is used by every preceding symbol table;
6389         // normally there will be just one unless the bitcode file was created
6390         // by binary concatenation.
6391         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6392           F.StrtabForSymtab = *Strtab;
6393         continue;
6394       }
6395 
6396       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6397         Expected<StringRef> SymtabOrErr =
6398             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6399         if (!SymtabOrErr)
6400           return SymtabOrErr.takeError();
6401 
6402         // We can expect the bitcode file to have multiple symbol tables if it
6403         // was created by binary concatenation. In that case we silently
6404         // ignore any subsequent symbol tables, which is fine because this is a
6405         // low level function. The client is expected to notice that the number
6406         // of modules in the symbol table does not match the number of modules
6407         // in the input file and regenerate the symbol table.
6408         if (F.Symtab.empty())
6409           F.Symtab = *SymtabOrErr;
6410         continue;
6411       }
6412 
6413       if (Error Err = Stream.SkipBlock())
6414         return std::move(Err);
6415       continue;
6416     }
6417     case BitstreamEntry::Record:
6418       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6419         continue;
6420       else
6421         return StreamFailed.takeError();
6422     }
6423   }
6424 }
6425 
6426 /// Get a lazy one-at-time loading module from bitcode.
6427 ///
6428 /// This isn't always used in a lazy context.  In particular, it's also used by
6429 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6430 /// in forward-referenced functions from block address references.
6431 ///
6432 /// \param[in] MaterializeAll Set to \c true if we should materialize
6433 /// everything.
6434 Expected<std::unique_ptr<Module>>
6435 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6436                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6437   BitstreamCursor Stream(Buffer);
6438 
6439   std::string ProducerIdentification;
6440   if (IdentificationBit != -1ull) {
6441     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6442       return std::move(JumpFailed);
6443     Expected<std::string> ProducerIdentificationOrErr =
6444         readIdentificationBlock(Stream);
6445     if (!ProducerIdentificationOrErr)
6446       return ProducerIdentificationOrErr.takeError();
6447 
6448     ProducerIdentification = *ProducerIdentificationOrErr;
6449   }
6450 
6451   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6452     return std::move(JumpFailed);
6453   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6454                               Context);
6455 
6456   std::unique_ptr<Module> M =
6457       std::make_unique<Module>(ModuleIdentifier, Context);
6458   M->setMaterializer(R);
6459 
6460   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6461   if (Error Err =
6462           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6463     return std::move(Err);
6464 
6465   if (MaterializeAll) {
6466     // Read in the entire module, and destroy the BitcodeReader.
6467     if (Error Err = M->materializeAll())
6468       return std::move(Err);
6469   } else {
6470     // Resolve forward references from blockaddresses.
6471     if (Error Err = R->materializeForwardReferencedFunctions())
6472       return std::move(Err);
6473   }
6474   return std::move(M);
6475 }
6476 
6477 Expected<std::unique_ptr<Module>>
6478 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6479                              bool IsImporting) {
6480   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6481 }
6482 
6483 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6484 // We don't use ModuleIdentifier here because the client may need to control the
6485 // module path used in the combined summary (e.g. when reading summaries for
6486 // regular LTO modules).
6487 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6488                                  StringRef ModulePath, uint64_t ModuleId) {
6489   BitstreamCursor Stream(Buffer);
6490   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6491     return JumpFailed;
6492 
6493   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6494                                     ModulePath, ModuleId);
6495   return R.parseModule();
6496 }
6497 
6498 // Parse the specified bitcode buffer, returning the function info index.
6499 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6500   BitstreamCursor Stream(Buffer);
6501   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6502     return std::move(JumpFailed);
6503 
6504   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6505   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6506                                     ModuleIdentifier, 0);
6507 
6508   if (Error Err = R.parseModule())
6509     return std::move(Err);
6510 
6511   return std::move(Index);
6512 }
6513 
6514 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6515                                                 unsigned ID) {
6516   if (Error Err = Stream.EnterSubBlock(ID))
6517     return std::move(Err);
6518   SmallVector<uint64_t, 64> Record;
6519 
6520   while (true) {
6521     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6522     if (!MaybeEntry)
6523       return MaybeEntry.takeError();
6524     BitstreamEntry Entry = MaybeEntry.get();
6525 
6526     switch (Entry.Kind) {
6527     case BitstreamEntry::SubBlock: // Handled for us already.
6528     case BitstreamEntry::Error:
6529       return error("Malformed block");
6530     case BitstreamEntry::EndBlock:
6531       // If no flags record found, conservatively return true to mimic
6532       // behavior before this flag was added.
6533       return true;
6534     case BitstreamEntry::Record:
6535       // The interesting case.
6536       break;
6537     }
6538 
6539     // Look for the FS_FLAGS record.
6540     Record.clear();
6541     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6542     if (!MaybeBitCode)
6543       return MaybeBitCode.takeError();
6544     switch (MaybeBitCode.get()) {
6545     default: // Default behavior: ignore.
6546       break;
6547     case bitc::FS_FLAGS: { // [flags]
6548       uint64_t Flags = Record[0];
6549       // Scan flags.
6550       assert(Flags <= 0x3f && "Unexpected bits in flag");
6551 
6552       return Flags & 0x8;
6553     }
6554     }
6555   }
6556   llvm_unreachable("Exit infinite loop");
6557 }
6558 
6559 // Check if the given bitcode buffer contains a global value summary block.
6560 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6561   BitstreamCursor Stream(Buffer);
6562   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6563     return std::move(JumpFailed);
6564 
6565   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6566     return std::move(Err);
6567 
6568   while (true) {
6569     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6570     if (!MaybeEntry)
6571       return MaybeEntry.takeError();
6572     llvm::BitstreamEntry Entry = MaybeEntry.get();
6573 
6574     switch (Entry.Kind) {
6575     case BitstreamEntry::Error:
6576       return error("Malformed block");
6577     case BitstreamEntry::EndBlock:
6578       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6579                             /*EnableSplitLTOUnit=*/false};
6580 
6581     case BitstreamEntry::SubBlock:
6582       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6583         Expected<bool> EnableSplitLTOUnit =
6584             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6585         if (!EnableSplitLTOUnit)
6586           return EnableSplitLTOUnit.takeError();
6587         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6588                               *EnableSplitLTOUnit};
6589       }
6590 
6591       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6592         Expected<bool> EnableSplitLTOUnit =
6593             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6594         if (!EnableSplitLTOUnit)
6595           return EnableSplitLTOUnit.takeError();
6596         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6597                               *EnableSplitLTOUnit};
6598       }
6599 
6600       // Ignore other sub-blocks.
6601       if (Error Err = Stream.SkipBlock())
6602         return std::move(Err);
6603       continue;
6604 
6605     case BitstreamEntry::Record:
6606       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6607         continue;
6608       else
6609         return StreamFailed.takeError();
6610     }
6611   }
6612 }
6613 
6614 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6615   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6616   if (!MsOrErr)
6617     return MsOrErr.takeError();
6618 
6619   if (MsOrErr->size() != 1)
6620     return error("Expected a single module");
6621 
6622   return (*MsOrErr)[0];
6623 }
6624 
6625 Expected<std::unique_ptr<Module>>
6626 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6627                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6628   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6629   if (!BM)
6630     return BM.takeError();
6631 
6632   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6633 }
6634 
6635 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6636     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6637     bool ShouldLazyLoadMetadata, bool IsImporting) {
6638   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6639                                      IsImporting);
6640   if (MOrErr)
6641     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6642   return MOrErr;
6643 }
6644 
6645 Expected<std::unique_ptr<Module>>
6646 BitcodeModule::parseModule(LLVMContext &Context) {
6647   return getModuleImpl(Context, true, false, false);
6648   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6649   // written.  We must defer until the Module has been fully materialized.
6650 }
6651 
6652 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6653                                                          LLVMContext &Context) {
6654   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6655   if (!BM)
6656     return BM.takeError();
6657 
6658   return BM->parseModule(Context);
6659 }
6660 
6661 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6662   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6663   if (!StreamOrErr)
6664     return StreamOrErr.takeError();
6665 
6666   return readTriple(*StreamOrErr);
6667 }
6668 
6669 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6670   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6671   if (!StreamOrErr)
6672     return StreamOrErr.takeError();
6673 
6674   return hasObjCCategory(*StreamOrErr);
6675 }
6676 
6677 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6678   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6679   if (!StreamOrErr)
6680     return StreamOrErr.takeError();
6681 
6682   return readIdentificationCode(*StreamOrErr);
6683 }
6684 
6685 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6686                                    ModuleSummaryIndex &CombinedIndex,
6687                                    uint64_t ModuleId) {
6688   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6689   if (!BM)
6690     return BM.takeError();
6691 
6692   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6693 }
6694 
6695 Expected<std::unique_ptr<ModuleSummaryIndex>>
6696 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6697   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6698   if (!BM)
6699     return BM.takeError();
6700 
6701   return BM->getSummary();
6702 }
6703 
6704 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6705   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6706   if (!BM)
6707     return BM.takeError();
6708 
6709   return BM->getLTOInfo();
6710 }
6711 
6712 Expected<std::unique_ptr<ModuleSummaryIndex>>
6713 llvm::getModuleSummaryIndexForFile(StringRef Path,
6714                                    bool IgnoreEmptyThinLTOIndexFile) {
6715   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6716       MemoryBuffer::getFileOrSTDIN(Path);
6717   if (!FileOrErr)
6718     return errorCodeToError(FileOrErr.getError());
6719   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6720     return nullptr;
6721   return getModuleSummaryIndex(**FileOrErr);
6722 }
6723