1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 void BitcodeReader::materializeForwardReferencedFunctions() { 35 while (!BlockAddrFwdRefs.empty()) { 36 Function *F = BlockAddrFwdRefs.begin()->first; 37 F->Materialize(); 38 } 39 } 40 41 void BitcodeReader::FreeState() { 42 Buffer = nullptr; 43 std::vector<Type*>().swap(TypeList); 44 ValueList.clear(); 45 MDValueList.clear(); 46 std::vector<Comdat *>().swap(ComdatList); 47 48 std::vector<AttributeSet>().swap(MAttributes); 49 std::vector<BasicBlock*>().swap(FunctionBBs); 50 std::vector<Function*>().swap(FunctionsWithBodies); 51 DeferredFunctionInfo.clear(); 52 MDKindMap.clear(); 53 54 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 55 } 56 57 //===----------------------------------------------------------------------===// 58 // Helper functions to implement forward reference resolution, etc. 59 //===----------------------------------------------------------------------===// 60 61 /// ConvertToString - Convert a string from a record into an std::string, return 62 /// true on failure. 63 template<typename StrTy> 64 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 65 StrTy &Result) { 66 if (Idx > Record.size()) 67 return true; 68 69 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 70 Result += (char)Record[i]; 71 return false; 72 } 73 74 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 75 switch (Val) { 76 default: // Map unknown/new linkages to external 77 case 0: return GlobalValue::ExternalLinkage; 78 case 1: return GlobalValue::WeakAnyLinkage; 79 case 2: return GlobalValue::AppendingLinkage; 80 case 3: return GlobalValue::InternalLinkage; 81 case 4: return GlobalValue::LinkOnceAnyLinkage; 82 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 83 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 84 case 7: return GlobalValue::ExternalWeakLinkage; 85 case 8: return GlobalValue::CommonLinkage; 86 case 9: return GlobalValue::PrivateLinkage; 87 case 10: return GlobalValue::WeakODRLinkage; 88 case 11: return GlobalValue::LinkOnceODRLinkage; 89 case 12: return GlobalValue::AvailableExternallyLinkage; 90 case 13: 91 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 92 case 14: 93 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 94 } 95 } 96 97 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 98 switch (Val) { 99 default: // Map unknown visibilities to default. 100 case 0: return GlobalValue::DefaultVisibility; 101 case 1: return GlobalValue::HiddenVisibility; 102 case 2: return GlobalValue::ProtectedVisibility; 103 } 104 } 105 106 static GlobalValue::DLLStorageClassTypes 107 GetDecodedDLLStorageClass(unsigned Val) { 108 switch (Val) { 109 default: // Map unknown values to default. 110 case 0: return GlobalValue::DefaultStorageClass; 111 case 1: return GlobalValue::DLLImportStorageClass; 112 case 2: return GlobalValue::DLLExportStorageClass; 113 } 114 } 115 116 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 117 switch (Val) { 118 case 0: return GlobalVariable::NotThreadLocal; 119 default: // Map unknown non-zero value to general dynamic. 120 case 1: return GlobalVariable::GeneralDynamicTLSModel; 121 case 2: return GlobalVariable::LocalDynamicTLSModel; 122 case 3: return GlobalVariable::InitialExecTLSModel; 123 case 4: return GlobalVariable::LocalExecTLSModel; 124 } 125 } 126 127 static int GetDecodedCastOpcode(unsigned Val) { 128 switch (Val) { 129 default: return -1; 130 case bitc::CAST_TRUNC : return Instruction::Trunc; 131 case bitc::CAST_ZEXT : return Instruction::ZExt; 132 case bitc::CAST_SEXT : return Instruction::SExt; 133 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 134 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 135 case bitc::CAST_UITOFP : return Instruction::UIToFP; 136 case bitc::CAST_SITOFP : return Instruction::SIToFP; 137 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 138 case bitc::CAST_FPEXT : return Instruction::FPExt; 139 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 140 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 141 case bitc::CAST_BITCAST : return Instruction::BitCast; 142 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 143 } 144 } 145 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 146 switch (Val) { 147 default: return -1; 148 case bitc::BINOP_ADD: 149 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 150 case bitc::BINOP_SUB: 151 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 152 case bitc::BINOP_MUL: 153 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 154 case bitc::BINOP_UDIV: return Instruction::UDiv; 155 case bitc::BINOP_SDIV: 156 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 157 case bitc::BINOP_UREM: return Instruction::URem; 158 case bitc::BINOP_SREM: 159 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 160 case bitc::BINOP_SHL: return Instruction::Shl; 161 case bitc::BINOP_LSHR: return Instruction::LShr; 162 case bitc::BINOP_ASHR: return Instruction::AShr; 163 case bitc::BINOP_AND: return Instruction::And; 164 case bitc::BINOP_OR: return Instruction::Or; 165 case bitc::BINOP_XOR: return Instruction::Xor; 166 } 167 } 168 169 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 170 switch (Val) { 171 default: return AtomicRMWInst::BAD_BINOP; 172 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 173 case bitc::RMW_ADD: return AtomicRMWInst::Add; 174 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 175 case bitc::RMW_AND: return AtomicRMWInst::And; 176 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 177 case bitc::RMW_OR: return AtomicRMWInst::Or; 178 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 179 case bitc::RMW_MAX: return AtomicRMWInst::Max; 180 case bitc::RMW_MIN: return AtomicRMWInst::Min; 181 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 182 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 183 } 184 } 185 186 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 187 switch (Val) { 188 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 189 case bitc::ORDERING_UNORDERED: return Unordered; 190 case bitc::ORDERING_MONOTONIC: return Monotonic; 191 case bitc::ORDERING_ACQUIRE: return Acquire; 192 case bitc::ORDERING_RELEASE: return Release; 193 case bitc::ORDERING_ACQREL: return AcquireRelease; 194 default: // Map unknown orderings to sequentially-consistent. 195 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 196 } 197 } 198 199 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 200 switch (Val) { 201 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 202 default: // Map unknown scopes to cross-thread. 203 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 204 } 205 } 206 207 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 208 switch (Val) { 209 default: // Map unknown selection kinds to any. 210 case bitc::COMDAT_SELECTION_KIND_ANY: 211 return Comdat::Any; 212 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 213 return Comdat::ExactMatch; 214 case bitc::COMDAT_SELECTION_KIND_LARGEST: 215 return Comdat::Largest; 216 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 217 return Comdat::NoDuplicates; 218 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 219 return Comdat::SameSize; 220 } 221 } 222 223 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 224 switch (Val) { 225 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 226 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 227 } 228 } 229 230 namespace llvm { 231 namespace { 232 /// @brief A class for maintaining the slot number definition 233 /// as a placeholder for the actual definition for forward constants defs. 234 class ConstantPlaceHolder : public ConstantExpr { 235 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 236 public: 237 // allocate space for exactly one operand 238 void *operator new(size_t s) { 239 return User::operator new(s, 1); 240 } 241 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 242 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 243 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 244 } 245 246 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 247 static bool classof(const Value *V) { 248 return isa<ConstantExpr>(V) && 249 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 250 } 251 252 253 /// Provide fast operand accessors 254 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 255 }; 256 } 257 258 // FIXME: can we inherit this from ConstantExpr? 259 template <> 260 struct OperandTraits<ConstantPlaceHolder> : 261 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 262 }; 263 } 264 265 266 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 267 if (Idx == size()) { 268 push_back(V); 269 return; 270 } 271 272 if (Idx >= size()) 273 resize(Idx+1); 274 275 WeakVH &OldV = ValuePtrs[Idx]; 276 if (!OldV) { 277 OldV = V; 278 return; 279 } 280 281 // Handle constants and non-constants (e.g. instrs) differently for 282 // efficiency. 283 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 284 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 285 OldV = V; 286 } else { 287 // If there was a forward reference to this value, replace it. 288 Value *PrevVal = OldV; 289 OldV->replaceAllUsesWith(V); 290 delete PrevVal; 291 } 292 } 293 294 295 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 296 Type *Ty) { 297 if (Idx >= size()) 298 resize(Idx + 1); 299 300 if (Value *V = ValuePtrs[Idx]) { 301 assert(Ty == V->getType() && "Type mismatch in constant table!"); 302 return cast<Constant>(V); 303 } 304 305 // Create and return a placeholder, which will later be RAUW'd. 306 Constant *C = new ConstantPlaceHolder(Ty, Context); 307 ValuePtrs[Idx] = C; 308 return C; 309 } 310 311 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 312 if (Idx >= size()) 313 resize(Idx + 1); 314 315 if (Value *V = ValuePtrs[Idx]) { 316 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 317 return V; 318 } 319 320 // No type specified, must be invalid reference. 321 if (!Ty) return nullptr; 322 323 // Create and return a placeholder, which will later be RAUW'd. 324 Value *V = new Argument(Ty); 325 ValuePtrs[Idx] = V; 326 return V; 327 } 328 329 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 330 /// resolves any forward references. The idea behind this is that we sometimes 331 /// get constants (such as large arrays) which reference *many* forward ref 332 /// constants. Replacing each of these causes a lot of thrashing when 333 /// building/reuniquing the constant. Instead of doing this, we look at all the 334 /// uses and rewrite all the place holders at once for any constant that uses 335 /// a placeholder. 336 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 337 // Sort the values by-pointer so that they are efficient to look up with a 338 // binary search. 339 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 340 341 SmallVector<Constant*, 64> NewOps; 342 343 while (!ResolveConstants.empty()) { 344 Value *RealVal = operator[](ResolveConstants.back().second); 345 Constant *Placeholder = ResolveConstants.back().first; 346 ResolveConstants.pop_back(); 347 348 // Loop over all users of the placeholder, updating them to reference the 349 // new value. If they reference more than one placeholder, update them all 350 // at once. 351 while (!Placeholder->use_empty()) { 352 auto UI = Placeholder->user_begin(); 353 User *U = *UI; 354 355 // If the using object isn't uniqued, just update the operands. This 356 // handles instructions and initializers for global variables. 357 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 358 UI.getUse().set(RealVal); 359 continue; 360 } 361 362 // Otherwise, we have a constant that uses the placeholder. Replace that 363 // constant with a new constant that has *all* placeholder uses updated. 364 Constant *UserC = cast<Constant>(U); 365 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 366 I != E; ++I) { 367 Value *NewOp; 368 if (!isa<ConstantPlaceHolder>(*I)) { 369 // Not a placeholder reference. 370 NewOp = *I; 371 } else if (*I == Placeholder) { 372 // Common case is that it just references this one placeholder. 373 NewOp = RealVal; 374 } else { 375 // Otherwise, look up the placeholder in ResolveConstants. 376 ResolveConstantsTy::iterator It = 377 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 378 std::pair<Constant*, unsigned>(cast<Constant>(*I), 379 0)); 380 assert(It != ResolveConstants.end() && It->first == *I); 381 NewOp = operator[](It->second); 382 } 383 384 NewOps.push_back(cast<Constant>(NewOp)); 385 } 386 387 // Make the new constant. 388 Constant *NewC; 389 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 390 NewC = ConstantArray::get(UserCA->getType(), NewOps); 391 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 392 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 393 } else if (isa<ConstantVector>(UserC)) { 394 NewC = ConstantVector::get(NewOps); 395 } else { 396 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 397 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 398 } 399 400 UserC->replaceAllUsesWith(NewC); 401 UserC->destroyConstant(); 402 NewOps.clear(); 403 } 404 405 // Update all ValueHandles, they should be the only users at this point. 406 Placeholder->replaceAllUsesWith(RealVal); 407 delete Placeholder; 408 } 409 } 410 411 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 412 if (Idx == size()) { 413 push_back(V); 414 return; 415 } 416 417 if (Idx >= size()) 418 resize(Idx+1); 419 420 WeakVH &OldV = MDValuePtrs[Idx]; 421 if (!OldV) { 422 OldV = V; 423 return; 424 } 425 426 // If there was a forward reference to this value, replace it. 427 MDNode *PrevVal = cast<MDNode>(OldV); 428 OldV->replaceAllUsesWith(V); 429 MDNode::deleteTemporary(PrevVal); 430 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 431 // value for Idx. 432 MDValuePtrs[Idx] = V; 433 } 434 435 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 436 if (Idx >= size()) 437 resize(Idx + 1); 438 439 if (Value *V = MDValuePtrs[Idx]) { 440 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 441 return V; 442 } 443 444 // Create and return a placeholder, which will later be RAUW'd. 445 Value *V = MDNode::getTemporary(Context, None); 446 MDValuePtrs[Idx] = V; 447 return V; 448 } 449 450 Type *BitcodeReader::getTypeByID(unsigned ID) { 451 // The type table size is always specified correctly. 452 if (ID >= TypeList.size()) 453 return nullptr; 454 455 if (Type *Ty = TypeList[ID]) 456 return Ty; 457 458 // If we have a forward reference, the only possible case is when it is to a 459 // named struct. Just create a placeholder for now. 460 return TypeList[ID] = StructType::create(Context); 461 } 462 463 464 //===----------------------------------------------------------------------===// 465 // Functions for parsing blocks from the bitcode file 466 //===----------------------------------------------------------------------===// 467 468 469 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 470 /// been decoded from the given integer. This function must stay in sync with 471 /// 'encodeLLVMAttributesForBitcode'. 472 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 473 uint64_t EncodedAttrs) { 474 // FIXME: Remove in 4.0. 475 476 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 477 // the bits above 31 down by 11 bits. 478 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 479 assert((!Alignment || isPowerOf2_32(Alignment)) && 480 "Alignment must be a power of two."); 481 482 if (Alignment) 483 B.addAlignmentAttr(Alignment); 484 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 485 (EncodedAttrs & 0xffff)); 486 } 487 488 std::error_code BitcodeReader::ParseAttributeBlock() { 489 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 490 return Error(InvalidRecord); 491 492 if (!MAttributes.empty()) 493 return Error(InvalidMultipleBlocks); 494 495 SmallVector<uint64_t, 64> Record; 496 497 SmallVector<AttributeSet, 8> Attrs; 498 499 // Read all the records. 500 while (1) { 501 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 502 503 switch (Entry.Kind) { 504 case BitstreamEntry::SubBlock: // Handled for us already. 505 case BitstreamEntry::Error: 506 return Error(MalformedBlock); 507 case BitstreamEntry::EndBlock: 508 return std::error_code(); 509 case BitstreamEntry::Record: 510 // The interesting case. 511 break; 512 } 513 514 // Read a record. 515 Record.clear(); 516 switch (Stream.readRecord(Entry.ID, Record)) { 517 default: // Default behavior: ignore. 518 break; 519 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 520 // FIXME: Remove in 4.0. 521 if (Record.size() & 1) 522 return Error(InvalidRecord); 523 524 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 525 AttrBuilder B; 526 decodeLLVMAttributesForBitcode(B, Record[i+1]); 527 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 528 } 529 530 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 531 Attrs.clear(); 532 break; 533 } 534 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 535 for (unsigned i = 0, e = Record.size(); i != e; ++i) 536 Attrs.push_back(MAttributeGroups[Record[i]]); 537 538 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 539 Attrs.clear(); 540 break; 541 } 542 } 543 } 544 } 545 546 // Returns Attribute::None on unrecognized codes. 547 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 548 switch (Code) { 549 default: 550 return Attribute::None; 551 case bitc::ATTR_KIND_ALIGNMENT: 552 return Attribute::Alignment; 553 case bitc::ATTR_KIND_ALWAYS_INLINE: 554 return Attribute::AlwaysInline; 555 case bitc::ATTR_KIND_BUILTIN: 556 return Attribute::Builtin; 557 case bitc::ATTR_KIND_BY_VAL: 558 return Attribute::ByVal; 559 case bitc::ATTR_KIND_IN_ALLOCA: 560 return Attribute::InAlloca; 561 case bitc::ATTR_KIND_COLD: 562 return Attribute::Cold; 563 case bitc::ATTR_KIND_INLINE_HINT: 564 return Attribute::InlineHint; 565 case bitc::ATTR_KIND_IN_REG: 566 return Attribute::InReg; 567 case bitc::ATTR_KIND_JUMP_TABLE: 568 return Attribute::JumpTable; 569 case bitc::ATTR_KIND_MIN_SIZE: 570 return Attribute::MinSize; 571 case bitc::ATTR_KIND_NAKED: 572 return Attribute::Naked; 573 case bitc::ATTR_KIND_NEST: 574 return Attribute::Nest; 575 case bitc::ATTR_KIND_NO_ALIAS: 576 return Attribute::NoAlias; 577 case bitc::ATTR_KIND_NO_BUILTIN: 578 return Attribute::NoBuiltin; 579 case bitc::ATTR_KIND_NO_CAPTURE: 580 return Attribute::NoCapture; 581 case bitc::ATTR_KIND_NO_DUPLICATE: 582 return Attribute::NoDuplicate; 583 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 584 return Attribute::NoImplicitFloat; 585 case bitc::ATTR_KIND_NO_INLINE: 586 return Attribute::NoInline; 587 case bitc::ATTR_KIND_NON_LAZY_BIND: 588 return Attribute::NonLazyBind; 589 case bitc::ATTR_KIND_NON_NULL: 590 return Attribute::NonNull; 591 case bitc::ATTR_KIND_DEREFERENCEABLE: 592 return Attribute::Dereferenceable; 593 case bitc::ATTR_KIND_NO_RED_ZONE: 594 return Attribute::NoRedZone; 595 case bitc::ATTR_KIND_NO_RETURN: 596 return Attribute::NoReturn; 597 case bitc::ATTR_KIND_NO_UNWIND: 598 return Attribute::NoUnwind; 599 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 600 return Attribute::OptimizeForSize; 601 case bitc::ATTR_KIND_OPTIMIZE_NONE: 602 return Attribute::OptimizeNone; 603 case bitc::ATTR_KIND_READ_NONE: 604 return Attribute::ReadNone; 605 case bitc::ATTR_KIND_READ_ONLY: 606 return Attribute::ReadOnly; 607 case bitc::ATTR_KIND_RETURNED: 608 return Attribute::Returned; 609 case bitc::ATTR_KIND_RETURNS_TWICE: 610 return Attribute::ReturnsTwice; 611 case bitc::ATTR_KIND_S_EXT: 612 return Attribute::SExt; 613 case bitc::ATTR_KIND_STACK_ALIGNMENT: 614 return Attribute::StackAlignment; 615 case bitc::ATTR_KIND_STACK_PROTECT: 616 return Attribute::StackProtect; 617 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 618 return Attribute::StackProtectReq; 619 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 620 return Attribute::StackProtectStrong; 621 case bitc::ATTR_KIND_STRUCT_RET: 622 return Attribute::StructRet; 623 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 624 return Attribute::SanitizeAddress; 625 case bitc::ATTR_KIND_SANITIZE_THREAD: 626 return Attribute::SanitizeThread; 627 case bitc::ATTR_KIND_SANITIZE_MEMORY: 628 return Attribute::SanitizeMemory; 629 case bitc::ATTR_KIND_UW_TABLE: 630 return Attribute::UWTable; 631 case bitc::ATTR_KIND_Z_EXT: 632 return Attribute::ZExt; 633 } 634 } 635 636 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 637 Attribute::AttrKind *Kind) { 638 *Kind = GetAttrFromCode(Code); 639 if (*Kind == Attribute::None) 640 return Error(InvalidValue); 641 return std::error_code(); 642 } 643 644 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 645 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 646 return Error(InvalidRecord); 647 648 if (!MAttributeGroups.empty()) 649 return Error(InvalidMultipleBlocks); 650 651 SmallVector<uint64_t, 64> Record; 652 653 // Read all the records. 654 while (1) { 655 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 656 657 switch (Entry.Kind) { 658 case BitstreamEntry::SubBlock: // Handled for us already. 659 case BitstreamEntry::Error: 660 return Error(MalformedBlock); 661 case BitstreamEntry::EndBlock: 662 return std::error_code(); 663 case BitstreamEntry::Record: 664 // The interesting case. 665 break; 666 } 667 668 // Read a record. 669 Record.clear(); 670 switch (Stream.readRecord(Entry.ID, Record)) { 671 default: // Default behavior: ignore. 672 break; 673 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 674 if (Record.size() < 3) 675 return Error(InvalidRecord); 676 677 uint64_t GrpID = Record[0]; 678 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 679 680 AttrBuilder B; 681 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 682 if (Record[i] == 0) { // Enum attribute 683 Attribute::AttrKind Kind; 684 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 685 return EC; 686 687 B.addAttribute(Kind); 688 } else if (Record[i] == 1) { // Integer attribute 689 Attribute::AttrKind Kind; 690 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 691 return EC; 692 if (Kind == Attribute::Alignment) 693 B.addAlignmentAttr(Record[++i]); 694 else if (Kind == Attribute::StackAlignment) 695 B.addStackAlignmentAttr(Record[++i]); 696 else if (Kind == Attribute::Dereferenceable) 697 B.addDereferenceableAttr(Record[++i]); 698 } else { // String attribute 699 assert((Record[i] == 3 || Record[i] == 4) && 700 "Invalid attribute group entry"); 701 bool HasValue = (Record[i++] == 4); 702 SmallString<64> KindStr; 703 SmallString<64> ValStr; 704 705 while (Record[i] != 0 && i != e) 706 KindStr += Record[i++]; 707 assert(Record[i] == 0 && "Kind string not null terminated"); 708 709 if (HasValue) { 710 // Has a value associated with it. 711 ++i; // Skip the '0' that terminates the "kind" string. 712 while (Record[i] != 0 && i != e) 713 ValStr += Record[i++]; 714 assert(Record[i] == 0 && "Value string not null terminated"); 715 } 716 717 B.addAttribute(KindStr.str(), ValStr.str()); 718 } 719 } 720 721 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 722 break; 723 } 724 } 725 } 726 } 727 728 std::error_code BitcodeReader::ParseTypeTable() { 729 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 730 return Error(InvalidRecord); 731 732 return ParseTypeTableBody(); 733 } 734 735 std::error_code BitcodeReader::ParseTypeTableBody() { 736 if (!TypeList.empty()) 737 return Error(InvalidMultipleBlocks); 738 739 SmallVector<uint64_t, 64> Record; 740 unsigned NumRecords = 0; 741 742 SmallString<64> TypeName; 743 744 // Read all the records for this type table. 745 while (1) { 746 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 747 748 switch (Entry.Kind) { 749 case BitstreamEntry::SubBlock: // Handled for us already. 750 case BitstreamEntry::Error: 751 return Error(MalformedBlock); 752 case BitstreamEntry::EndBlock: 753 if (NumRecords != TypeList.size()) 754 return Error(MalformedBlock); 755 return std::error_code(); 756 case BitstreamEntry::Record: 757 // The interesting case. 758 break; 759 } 760 761 // Read a record. 762 Record.clear(); 763 Type *ResultTy = nullptr; 764 switch (Stream.readRecord(Entry.ID, Record)) { 765 default: 766 return Error(InvalidValue); 767 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 768 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 769 // type list. This allows us to reserve space. 770 if (Record.size() < 1) 771 return Error(InvalidRecord); 772 TypeList.resize(Record[0]); 773 continue; 774 case bitc::TYPE_CODE_VOID: // VOID 775 ResultTy = Type::getVoidTy(Context); 776 break; 777 case bitc::TYPE_CODE_HALF: // HALF 778 ResultTy = Type::getHalfTy(Context); 779 break; 780 case bitc::TYPE_CODE_FLOAT: // FLOAT 781 ResultTy = Type::getFloatTy(Context); 782 break; 783 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 784 ResultTy = Type::getDoubleTy(Context); 785 break; 786 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 787 ResultTy = Type::getX86_FP80Ty(Context); 788 break; 789 case bitc::TYPE_CODE_FP128: // FP128 790 ResultTy = Type::getFP128Ty(Context); 791 break; 792 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 793 ResultTy = Type::getPPC_FP128Ty(Context); 794 break; 795 case bitc::TYPE_CODE_LABEL: // LABEL 796 ResultTy = Type::getLabelTy(Context); 797 break; 798 case bitc::TYPE_CODE_METADATA: // METADATA 799 ResultTy = Type::getMetadataTy(Context); 800 break; 801 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 802 ResultTy = Type::getX86_MMXTy(Context); 803 break; 804 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 805 if (Record.size() < 1) 806 return Error(InvalidRecord); 807 808 ResultTy = IntegerType::get(Context, Record[0]); 809 break; 810 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 811 // [pointee type, address space] 812 if (Record.size() < 1) 813 return Error(InvalidRecord); 814 unsigned AddressSpace = 0; 815 if (Record.size() == 2) 816 AddressSpace = Record[1]; 817 ResultTy = getTypeByID(Record[0]); 818 if (!ResultTy) 819 return Error(InvalidType); 820 ResultTy = PointerType::get(ResultTy, AddressSpace); 821 break; 822 } 823 case bitc::TYPE_CODE_FUNCTION_OLD: { 824 // FIXME: attrid is dead, remove it in LLVM 4.0 825 // FUNCTION: [vararg, attrid, retty, paramty x N] 826 if (Record.size() < 3) 827 return Error(InvalidRecord); 828 SmallVector<Type*, 8> ArgTys; 829 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 830 if (Type *T = getTypeByID(Record[i])) 831 ArgTys.push_back(T); 832 else 833 break; 834 } 835 836 ResultTy = getTypeByID(Record[2]); 837 if (!ResultTy || ArgTys.size() < Record.size()-3) 838 return Error(InvalidType); 839 840 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 841 break; 842 } 843 case bitc::TYPE_CODE_FUNCTION: { 844 // FUNCTION: [vararg, retty, paramty x N] 845 if (Record.size() < 2) 846 return Error(InvalidRecord); 847 SmallVector<Type*, 8> ArgTys; 848 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 849 if (Type *T = getTypeByID(Record[i])) 850 ArgTys.push_back(T); 851 else 852 break; 853 } 854 855 ResultTy = getTypeByID(Record[1]); 856 if (!ResultTy || ArgTys.size() < Record.size()-2) 857 return Error(InvalidType); 858 859 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 860 break; 861 } 862 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 863 if (Record.size() < 1) 864 return Error(InvalidRecord); 865 SmallVector<Type*, 8> EltTys; 866 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 867 if (Type *T = getTypeByID(Record[i])) 868 EltTys.push_back(T); 869 else 870 break; 871 } 872 if (EltTys.size() != Record.size()-1) 873 return Error(InvalidType); 874 ResultTy = StructType::get(Context, EltTys, Record[0]); 875 break; 876 } 877 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 878 if (ConvertToString(Record, 0, TypeName)) 879 return Error(InvalidRecord); 880 continue; 881 882 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 883 if (Record.size() < 1) 884 return Error(InvalidRecord); 885 886 if (NumRecords >= TypeList.size()) 887 return Error(InvalidTYPETable); 888 889 // Check to see if this was forward referenced, if so fill in the temp. 890 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 891 if (Res) { 892 Res->setName(TypeName); 893 TypeList[NumRecords] = nullptr; 894 } else // Otherwise, create a new struct. 895 Res = StructType::create(Context, TypeName); 896 TypeName.clear(); 897 898 SmallVector<Type*, 8> EltTys; 899 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 900 if (Type *T = getTypeByID(Record[i])) 901 EltTys.push_back(T); 902 else 903 break; 904 } 905 if (EltTys.size() != Record.size()-1) 906 return Error(InvalidRecord); 907 Res->setBody(EltTys, Record[0]); 908 ResultTy = Res; 909 break; 910 } 911 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 912 if (Record.size() != 1) 913 return Error(InvalidRecord); 914 915 if (NumRecords >= TypeList.size()) 916 return Error(InvalidTYPETable); 917 918 // Check to see if this was forward referenced, if so fill in the temp. 919 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 920 if (Res) { 921 Res->setName(TypeName); 922 TypeList[NumRecords] = nullptr; 923 } else // Otherwise, create a new struct with no body. 924 Res = StructType::create(Context, TypeName); 925 TypeName.clear(); 926 ResultTy = Res; 927 break; 928 } 929 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 930 if (Record.size() < 2) 931 return Error(InvalidRecord); 932 if ((ResultTy = getTypeByID(Record[1]))) 933 ResultTy = ArrayType::get(ResultTy, Record[0]); 934 else 935 return Error(InvalidType); 936 break; 937 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 938 if (Record.size() < 2) 939 return Error(InvalidRecord); 940 if ((ResultTy = getTypeByID(Record[1]))) 941 ResultTy = VectorType::get(ResultTy, Record[0]); 942 else 943 return Error(InvalidType); 944 break; 945 } 946 947 if (NumRecords >= TypeList.size()) 948 return Error(InvalidTYPETable); 949 assert(ResultTy && "Didn't read a type?"); 950 assert(!TypeList[NumRecords] && "Already read type?"); 951 TypeList[NumRecords++] = ResultTy; 952 } 953 } 954 955 std::error_code BitcodeReader::ParseValueSymbolTable() { 956 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 957 return Error(InvalidRecord); 958 959 SmallVector<uint64_t, 64> Record; 960 961 // Read all the records for this value table. 962 SmallString<128> ValueName; 963 while (1) { 964 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 965 966 switch (Entry.Kind) { 967 case BitstreamEntry::SubBlock: // Handled for us already. 968 case BitstreamEntry::Error: 969 return Error(MalformedBlock); 970 case BitstreamEntry::EndBlock: 971 return std::error_code(); 972 case BitstreamEntry::Record: 973 // The interesting case. 974 break; 975 } 976 977 // Read a record. 978 Record.clear(); 979 switch (Stream.readRecord(Entry.ID, Record)) { 980 default: // Default behavior: unknown type. 981 break; 982 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 983 if (ConvertToString(Record, 1, ValueName)) 984 return Error(InvalidRecord); 985 unsigned ValueID = Record[0]; 986 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 987 return Error(InvalidRecord); 988 Value *V = ValueList[ValueID]; 989 990 V->setName(StringRef(ValueName.data(), ValueName.size())); 991 ValueName.clear(); 992 break; 993 } 994 case bitc::VST_CODE_BBENTRY: { 995 if (ConvertToString(Record, 1, ValueName)) 996 return Error(InvalidRecord); 997 BasicBlock *BB = getBasicBlock(Record[0]); 998 if (!BB) 999 return Error(InvalidRecord); 1000 1001 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1002 ValueName.clear(); 1003 break; 1004 } 1005 } 1006 } 1007 } 1008 1009 std::error_code BitcodeReader::ParseMetadata() { 1010 unsigned NextMDValueNo = MDValueList.size(); 1011 1012 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1013 return Error(InvalidRecord); 1014 1015 SmallVector<uint64_t, 64> Record; 1016 1017 // Read all the records. 1018 while (1) { 1019 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1020 1021 switch (Entry.Kind) { 1022 case BitstreamEntry::SubBlock: // Handled for us already. 1023 case BitstreamEntry::Error: 1024 return Error(MalformedBlock); 1025 case BitstreamEntry::EndBlock: 1026 return std::error_code(); 1027 case BitstreamEntry::Record: 1028 // The interesting case. 1029 break; 1030 } 1031 1032 bool IsFunctionLocal = false; 1033 // Read a record. 1034 Record.clear(); 1035 unsigned Code = Stream.readRecord(Entry.ID, Record); 1036 switch (Code) { 1037 default: // Default behavior: ignore. 1038 break; 1039 case bitc::METADATA_NAME: { 1040 // Read name of the named metadata. 1041 SmallString<8> Name(Record.begin(), Record.end()); 1042 Record.clear(); 1043 Code = Stream.ReadCode(); 1044 1045 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1046 unsigned NextBitCode = Stream.readRecord(Code, Record); 1047 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1048 1049 // Read named metadata elements. 1050 unsigned Size = Record.size(); 1051 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1052 for (unsigned i = 0; i != Size; ++i) { 1053 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1054 if (!MD) 1055 return Error(InvalidRecord); 1056 NMD->addOperand(MD); 1057 } 1058 break; 1059 } 1060 case bitc::METADATA_FN_NODE: 1061 IsFunctionLocal = true; 1062 // fall-through 1063 case bitc::METADATA_NODE: { 1064 if (Record.size() % 2 == 1) 1065 return Error(InvalidRecord); 1066 1067 unsigned Size = Record.size(); 1068 SmallVector<Value*, 8> Elts; 1069 for (unsigned i = 0; i != Size; i += 2) { 1070 Type *Ty = getTypeByID(Record[i]); 1071 if (!Ty) 1072 return Error(InvalidRecord); 1073 if (Ty->isMetadataTy()) 1074 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1075 else if (!Ty->isVoidTy()) 1076 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1077 else 1078 Elts.push_back(nullptr); 1079 } 1080 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1081 IsFunctionLocal = false; 1082 MDValueList.AssignValue(V, NextMDValueNo++); 1083 break; 1084 } 1085 case bitc::METADATA_STRING: { 1086 std::string String(Record.begin(), Record.end()); 1087 llvm::UpgradeMDStringConstant(String); 1088 Value *V = MDString::get(Context, String); 1089 MDValueList.AssignValue(V, NextMDValueNo++); 1090 break; 1091 } 1092 case bitc::METADATA_KIND: { 1093 if (Record.size() < 2) 1094 return Error(InvalidRecord); 1095 1096 unsigned Kind = Record[0]; 1097 SmallString<8> Name(Record.begin()+1, Record.end()); 1098 1099 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1100 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1101 return Error(ConflictingMETADATA_KINDRecords); 1102 break; 1103 } 1104 } 1105 } 1106 } 1107 1108 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1109 /// the LSB for dense VBR encoding. 1110 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1111 if ((V & 1) == 0) 1112 return V >> 1; 1113 if (V != 1) 1114 return -(V >> 1); 1115 // There is no such thing as -0 with integers. "-0" really means MININT. 1116 return 1ULL << 63; 1117 } 1118 1119 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1120 /// values and aliases that we can. 1121 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1122 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1123 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1124 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1125 1126 GlobalInitWorklist.swap(GlobalInits); 1127 AliasInitWorklist.swap(AliasInits); 1128 FunctionPrefixWorklist.swap(FunctionPrefixes); 1129 1130 while (!GlobalInitWorklist.empty()) { 1131 unsigned ValID = GlobalInitWorklist.back().second; 1132 if (ValID >= ValueList.size()) { 1133 // Not ready to resolve this yet, it requires something later in the file. 1134 GlobalInits.push_back(GlobalInitWorklist.back()); 1135 } else { 1136 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1137 GlobalInitWorklist.back().first->setInitializer(C); 1138 else 1139 return Error(ExpectedConstant); 1140 } 1141 GlobalInitWorklist.pop_back(); 1142 } 1143 1144 while (!AliasInitWorklist.empty()) { 1145 unsigned ValID = AliasInitWorklist.back().second; 1146 if (ValID >= ValueList.size()) { 1147 AliasInits.push_back(AliasInitWorklist.back()); 1148 } else { 1149 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1150 AliasInitWorklist.back().first->setAliasee(C); 1151 else 1152 return Error(ExpectedConstant); 1153 } 1154 AliasInitWorklist.pop_back(); 1155 } 1156 1157 while (!FunctionPrefixWorklist.empty()) { 1158 unsigned ValID = FunctionPrefixWorklist.back().second; 1159 if (ValID >= ValueList.size()) { 1160 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1161 } else { 1162 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1163 FunctionPrefixWorklist.back().first->setPrefixData(C); 1164 else 1165 return Error(ExpectedConstant); 1166 } 1167 FunctionPrefixWorklist.pop_back(); 1168 } 1169 1170 return std::error_code(); 1171 } 1172 1173 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1174 SmallVector<uint64_t, 8> Words(Vals.size()); 1175 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1176 BitcodeReader::decodeSignRotatedValue); 1177 1178 return APInt(TypeBits, Words); 1179 } 1180 1181 std::error_code BitcodeReader::ParseConstants() { 1182 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1183 return Error(InvalidRecord); 1184 1185 SmallVector<uint64_t, 64> Record; 1186 1187 // Read all the records for this value table. 1188 Type *CurTy = Type::getInt32Ty(Context); 1189 unsigned NextCstNo = ValueList.size(); 1190 while (1) { 1191 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1192 1193 switch (Entry.Kind) { 1194 case BitstreamEntry::SubBlock: // Handled for us already. 1195 case BitstreamEntry::Error: 1196 return Error(MalformedBlock); 1197 case BitstreamEntry::EndBlock: 1198 if (NextCstNo != ValueList.size()) 1199 return Error(InvalidConstantReference); 1200 1201 // Once all the constants have been read, go through and resolve forward 1202 // references. 1203 ValueList.ResolveConstantForwardRefs(); 1204 return std::error_code(); 1205 case BitstreamEntry::Record: 1206 // The interesting case. 1207 break; 1208 } 1209 1210 // Read a record. 1211 Record.clear(); 1212 Value *V = nullptr; 1213 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1214 switch (BitCode) { 1215 default: // Default behavior: unknown constant 1216 case bitc::CST_CODE_UNDEF: // UNDEF 1217 V = UndefValue::get(CurTy); 1218 break; 1219 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1220 if (Record.empty()) 1221 return Error(InvalidRecord); 1222 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1223 return Error(InvalidRecord); 1224 CurTy = TypeList[Record[0]]; 1225 continue; // Skip the ValueList manipulation. 1226 case bitc::CST_CODE_NULL: // NULL 1227 V = Constant::getNullValue(CurTy); 1228 break; 1229 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1230 if (!CurTy->isIntegerTy() || Record.empty()) 1231 return Error(InvalidRecord); 1232 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1233 break; 1234 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1235 if (!CurTy->isIntegerTy() || Record.empty()) 1236 return Error(InvalidRecord); 1237 1238 APInt VInt = ReadWideAPInt(Record, 1239 cast<IntegerType>(CurTy)->getBitWidth()); 1240 V = ConstantInt::get(Context, VInt); 1241 1242 break; 1243 } 1244 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1245 if (Record.empty()) 1246 return Error(InvalidRecord); 1247 if (CurTy->isHalfTy()) 1248 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1249 APInt(16, (uint16_t)Record[0]))); 1250 else if (CurTy->isFloatTy()) 1251 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1252 APInt(32, (uint32_t)Record[0]))); 1253 else if (CurTy->isDoubleTy()) 1254 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1255 APInt(64, Record[0]))); 1256 else if (CurTy->isX86_FP80Ty()) { 1257 // Bits are not stored the same way as a normal i80 APInt, compensate. 1258 uint64_t Rearrange[2]; 1259 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1260 Rearrange[1] = Record[0] >> 48; 1261 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1262 APInt(80, Rearrange))); 1263 } else if (CurTy->isFP128Ty()) 1264 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1265 APInt(128, Record))); 1266 else if (CurTy->isPPC_FP128Ty()) 1267 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1268 APInt(128, Record))); 1269 else 1270 V = UndefValue::get(CurTy); 1271 break; 1272 } 1273 1274 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1275 if (Record.empty()) 1276 return Error(InvalidRecord); 1277 1278 unsigned Size = Record.size(); 1279 SmallVector<Constant*, 16> Elts; 1280 1281 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1282 for (unsigned i = 0; i != Size; ++i) 1283 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1284 STy->getElementType(i))); 1285 V = ConstantStruct::get(STy, Elts); 1286 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1287 Type *EltTy = ATy->getElementType(); 1288 for (unsigned i = 0; i != Size; ++i) 1289 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1290 V = ConstantArray::get(ATy, Elts); 1291 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1292 Type *EltTy = VTy->getElementType(); 1293 for (unsigned i = 0; i != Size; ++i) 1294 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1295 V = ConstantVector::get(Elts); 1296 } else { 1297 V = UndefValue::get(CurTy); 1298 } 1299 break; 1300 } 1301 case bitc::CST_CODE_STRING: // STRING: [values] 1302 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1303 if (Record.empty()) 1304 return Error(InvalidRecord); 1305 1306 SmallString<16> Elts(Record.begin(), Record.end()); 1307 V = ConstantDataArray::getString(Context, Elts, 1308 BitCode == bitc::CST_CODE_CSTRING); 1309 break; 1310 } 1311 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1312 if (Record.empty()) 1313 return Error(InvalidRecord); 1314 1315 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1316 unsigned Size = Record.size(); 1317 1318 if (EltTy->isIntegerTy(8)) { 1319 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1320 if (isa<VectorType>(CurTy)) 1321 V = ConstantDataVector::get(Context, Elts); 1322 else 1323 V = ConstantDataArray::get(Context, Elts); 1324 } else if (EltTy->isIntegerTy(16)) { 1325 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1326 if (isa<VectorType>(CurTy)) 1327 V = ConstantDataVector::get(Context, Elts); 1328 else 1329 V = ConstantDataArray::get(Context, Elts); 1330 } else if (EltTy->isIntegerTy(32)) { 1331 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1332 if (isa<VectorType>(CurTy)) 1333 V = ConstantDataVector::get(Context, Elts); 1334 else 1335 V = ConstantDataArray::get(Context, Elts); 1336 } else if (EltTy->isIntegerTy(64)) { 1337 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1338 if (isa<VectorType>(CurTy)) 1339 V = ConstantDataVector::get(Context, Elts); 1340 else 1341 V = ConstantDataArray::get(Context, Elts); 1342 } else if (EltTy->isFloatTy()) { 1343 SmallVector<float, 16> Elts(Size); 1344 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1345 if (isa<VectorType>(CurTy)) 1346 V = ConstantDataVector::get(Context, Elts); 1347 else 1348 V = ConstantDataArray::get(Context, Elts); 1349 } else if (EltTy->isDoubleTy()) { 1350 SmallVector<double, 16> Elts(Size); 1351 std::transform(Record.begin(), Record.end(), Elts.begin(), 1352 BitsToDouble); 1353 if (isa<VectorType>(CurTy)) 1354 V = ConstantDataVector::get(Context, Elts); 1355 else 1356 V = ConstantDataArray::get(Context, Elts); 1357 } else { 1358 return Error(InvalidTypeForValue); 1359 } 1360 break; 1361 } 1362 1363 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1364 if (Record.size() < 3) 1365 return Error(InvalidRecord); 1366 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1367 if (Opc < 0) { 1368 V = UndefValue::get(CurTy); // Unknown binop. 1369 } else { 1370 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1371 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1372 unsigned Flags = 0; 1373 if (Record.size() >= 4) { 1374 if (Opc == Instruction::Add || 1375 Opc == Instruction::Sub || 1376 Opc == Instruction::Mul || 1377 Opc == Instruction::Shl) { 1378 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1379 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1380 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1381 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1382 } else if (Opc == Instruction::SDiv || 1383 Opc == Instruction::UDiv || 1384 Opc == Instruction::LShr || 1385 Opc == Instruction::AShr) { 1386 if (Record[3] & (1 << bitc::PEO_EXACT)) 1387 Flags |= SDivOperator::IsExact; 1388 } 1389 } 1390 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1391 } 1392 break; 1393 } 1394 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1395 if (Record.size() < 3) 1396 return Error(InvalidRecord); 1397 int Opc = GetDecodedCastOpcode(Record[0]); 1398 if (Opc < 0) { 1399 V = UndefValue::get(CurTy); // Unknown cast. 1400 } else { 1401 Type *OpTy = getTypeByID(Record[1]); 1402 if (!OpTy) 1403 return Error(InvalidRecord); 1404 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1405 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1406 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1407 } 1408 break; 1409 } 1410 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1411 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1412 if (Record.size() & 1) 1413 return Error(InvalidRecord); 1414 SmallVector<Constant*, 16> Elts; 1415 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1416 Type *ElTy = getTypeByID(Record[i]); 1417 if (!ElTy) 1418 return Error(InvalidRecord); 1419 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1420 } 1421 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1422 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1423 BitCode == 1424 bitc::CST_CODE_CE_INBOUNDS_GEP); 1425 break; 1426 } 1427 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1428 if (Record.size() < 3) 1429 return Error(InvalidRecord); 1430 1431 Type *SelectorTy = Type::getInt1Ty(Context); 1432 1433 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1434 // vector. Otherwise, it must be a single bit. 1435 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1436 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1437 VTy->getNumElements()); 1438 1439 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1440 SelectorTy), 1441 ValueList.getConstantFwdRef(Record[1],CurTy), 1442 ValueList.getConstantFwdRef(Record[2],CurTy)); 1443 break; 1444 } 1445 case bitc::CST_CODE_CE_EXTRACTELT 1446 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1447 if (Record.size() < 3) 1448 return Error(InvalidRecord); 1449 VectorType *OpTy = 1450 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1451 if (!OpTy) 1452 return Error(InvalidRecord); 1453 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1454 Constant *Op1 = nullptr; 1455 if (Record.size() == 4) { 1456 Type *IdxTy = getTypeByID(Record[2]); 1457 if (!IdxTy) 1458 return Error(InvalidRecord); 1459 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1460 } else // TODO: Remove with llvm 4.0 1461 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1462 if (!Op1) 1463 return Error(InvalidRecord); 1464 V = ConstantExpr::getExtractElement(Op0, Op1); 1465 break; 1466 } 1467 case bitc::CST_CODE_CE_INSERTELT 1468 : { // CE_INSERTELT: [opval, opval, opty, opval] 1469 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1470 if (Record.size() < 3 || !OpTy) 1471 return Error(InvalidRecord); 1472 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1473 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1474 OpTy->getElementType()); 1475 Constant *Op2 = nullptr; 1476 if (Record.size() == 4) { 1477 Type *IdxTy = getTypeByID(Record[2]); 1478 if (!IdxTy) 1479 return Error(InvalidRecord); 1480 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1481 } else // TODO: Remove with llvm 4.0 1482 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1483 if (!Op2) 1484 return Error(InvalidRecord); 1485 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1486 break; 1487 } 1488 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1489 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1490 if (Record.size() < 3 || !OpTy) 1491 return Error(InvalidRecord); 1492 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1493 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1494 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1495 OpTy->getNumElements()); 1496 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1497 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1498 break; 1499 } 1500 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1501 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1502 VectorType *OpTy = 1503 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1504 if (Record.size() < 4 || !RTy || !OpTy) 1505 return Error(InvalidRecord); 1506 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1507 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1508 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1509 RTy->getNumElements()); 1510 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1511 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1512 break; 1513 } 1514 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1515 if (Record.size() < 4) 1516 return Error(InvalidRecord); 1517 Type *OpTy = getTypeByID(Record[0]); 1518 if (!OpTy) 1519 return Error(InvalidRecord); 1520 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1521 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1522 1523 if (OpTy->isFPOrFPVectorTy()) 1524 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1525 else 1526 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1527 break; 1528 } 1529 // This maintains backward compatibility, pre-asm dialect keywords. 1530 // FIXME: Remove with the 4.0 release. 1531 case bitc::CST_CODE_INLINEASM_OLD: { 1532 if (Record.size() < 2) 1533 return Error(InvalidRecord); 1534 std::string AsmStr, ConstrStr; 1535 bool HasSideEffects = Record[0] & 1; 1536 bool IsAlignStack = Record[0] >> 1; 1537 unsigned AsmStrSize = Record[1]; 1538 if (2+AsmStrSize >= Record.size()) 1539 return Error(InvalidRecord); 1540 unsigned ConstStrSize = Record[2+AsmStrSize]; 1541 if (3+AsmStrSize+ConstStrSize > Record.size()) 1542 return Error(InvalidRecord); 1543 1544 for (unsigned i = 0; i != AsmStrSize; ++i) 1545 AsmStr += (char)Record[2+i]; 1546 for (unsigned i = 0; i != ConstStrSize; ++i) 1547 ConstrStr += (char)Record[3+AsmStrSize+i]; 1548 PointerType *PTy = cast<PointerType>(CurTy); 1549 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1550 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1551 break; 1552 } 1553 // This version adds support for the asm dialect keywords (e.g., 1554 // inteldialect). 1555 case bitc::CST_CODE_INLINEASM: { 1556 if (Record.size() < 2) 1557 return Error(InvalidRecord); 1558 std::string AsmStr, ConstrStr; 1559 bool HasSideEffects = Record[0] & 1; 1560 bool IsAlignStack = (Record[0] >> 1) & 1; 1561 unsigned AsmDialect = Record[0] >> 2; 1562 unsigned AsmStrSize = Record[1]; 1563 if (2+AsmStrSize >= Record.size()) 1564 return Error(InvalidRecord); 1565 unsigned ConstStrSize = Record[2+AsmStrSize]; 1566 if (3+AsmStrSize+ConstStrSize > Record.size()) 1567 return Error(InvalidRecord); 1568 1569 for (unsigned i = 0; i != AsmStrSize; ++i) 1570 AsmStr += (char)Record[2+i]; 1571 for (unsigned i = 0; i != ConstStrSize; ++i) 1572 ConstrStr += (char)Record[3+AsmStrSize+i]; 1573 PointerType *PTy = cast<PointerType>(CurTy); 1574 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1575 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1576 InlineAsm::AsmDialect(AsmDialect)); 1577 break; 1578 } 1579 case bitc::CST_CODE_BLOCKADDRESS:{ 1580 if (Record.size() < 3) 1581 return Error(InvalidRecord); 1582 Type *FnTy = getTypeByID(Record[0]); 1583 if (!FnTy) 1584 return Error(InvalidRecord); 1585 Function *Fn = 1586 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1587 if (!Fn) 1588 return Error(InvalidRecord); 1589 1590 // If the function is already parsed we can insert the block address right 1591 // away. 1592 if (!Fn->empty()) { 1593 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1594 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1595 if (BBI == BBE) 1596 return Error(InvalidID); 1597 ++BBI; 1598 } 1599 V = BlockAddress::get(Fn, BBI); 1600 } else { 1601 // Otherwise insert a placeholder and remember it so it can be inserted 1602 // when the function is parsed. 1603 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1604 Type::getInt8Ty(Context), 1605 false, GlobalValue::InternalLinkage, 1606 nullptr, ""); 1607 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1608 V = FwdRef; 1609 } 1610 break; 1611 } 1612 } 1613 1614 ValueList.AssignValue(V, NextCstNo); 1615 ++NextCstNo; 1616 } 1617 } 1618 1619 std::error_code BitcodeReader::ParseUseLists() { 1620 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1621 return Error(InvalidRecord); 1622 1623 SmallVector<uint64_t, 64> Record; 1624 1625 // Read all the records. 1626 while (1) { 1627 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1628 1629 switch (Entry.Kind) { 1630 case BitstreamEntry::SubBlock: // Handled for us already. 1631 case BitstreamEntry::Error: 1632 return Error(MalformedBlock); 1633 case BitstreamEntry::EndBlock: 1634 return std::error_code(); 1635 case BitstreamEntry::Record: 1636 // The interesting case. 1637 break; 1638 } 1639 1640 // Read a use list record. 1641 Record.clear(); 1642 switch (Stream.readRecord(Entry.ID, Record)) { 1643 default: // Default behavior: unknown type. 1644 break; 1645 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1646 unsigned RecordLength = Record.size(); 1647 if (RecordLength < 1) 1648 return Error(InvalidRecord); 1649 UseListRecords.push_back(Record); 1650 break; 1651 } 1652 } 1653 } 1654 } 1655 1656 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1657 /// remember where it is and then skip it. This lets us lazily deserialize the 1658 /// functions. 1659 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1660 // Get the function we are talking about. 1661 if (FunctionsWithBodies.empty()) 1662 return Error(InsufficientFunctionProtos); 1663 1664 Function *Fn = FunctionsWithBodies.back(); 1665 FunctionsWithBodies.pop_back(); 1666 1667 // Save the current stream state. 1668 uint64_t CurBit = Stream.GetCurrentBitNo(); 1669 DeferredFunctionInfo[Fn] = CurBit; 1670 1671 // Skip over the function block for now. 1672 if (Stream.SkipBlock()) 1673 return Error(InvalidRecord); 1674 return std::error_code(); 1675 } 1676 1677 std::error_code BitcodeReader::GlobalCleanup() { 1678 // Patch the initializers for globals and aliases up. 1679 ResolveGlobalAndAliasInits(); 1680 if (!GlobalInits.empty() || !AliasInits.empty()) 1681 return Error(MalformedGlobalInitializerSet); 1682 1683 // Look for intrinsic functions which need to be upgraded at some point 1684 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1685 FI != FE; ++FI) { 1686 Function *NewFn; 1687 if (UpgradeIntrinsicFunction(FI, NewFn)) 1688 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1689 } 1690 1691 // Look for global variables which need to be renamed. 1692 for (Module::global_iterator 1693 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1694 GI != GE;) { 1695 GlobalVariable *GV = GI++; 1696 UpgradeGlobalVariable(GV); 1697 } 1698 1699 // Force deallocation of memory for these vectors to favor the client that 1700 // want lazy deserialization. 1701 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1702 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1703 return std::error_code(); 1704 } 1705 1706 std::error_code BitcodeReader::ParseModule(bool Resume) { 1707 if (Resume) 1708 Stream.JumpToBit(NextUnreadBit); 1709 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1710 return Error(InvalidRecord); 1711 1712 SmallVector<uint64_t, 64> Record; 1713 std::vector<std::string> SectionTable; 1714 std::vector<std::string> GCTable; 1715 1716 // Read all the records for this module. 1717 while (1) { 1718 BitstreamEntry Entry = Stream.advance(); 1719 1720 switch (Entry.Kind) { 1721 case BitstreamEntry::Error: 1722 return Error(MalformedBlock); 1723 case BitstreamEntry::EndBlock: 1724 return GlobalCleanup(); 1725 1726 case BitstreamEntry::SubBlock: 1727 switch (Entry.ID) { 1728 default: // Skip unknown content. 1729 if (Stream.SkipBlock()) 1730 return Error(InvalidRecord); 1731 break; 1732 case bitc::BLOCKINFO_BLOCK_ID: 1733 if (Stream.ReadBlockInfoBlock()) 1734 return Error(MalformedBlock); 1735 break; 1736 case bitc::PARAMATTR_BLOCK_ID: 1737 if (std::error_code EC = ParseAttributeBlock()) 1738 return EC; 1739 break; 1740 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1741 if (std::error_code EC = ParseAttributeGroupBlock()) 1742 return EC; 1743 break; 1744 case bitc::TYPE_BLOCK_ID_NEW: 1745 if (std::error_code EC = ParseTypeTable()) 1746 return EC; 1747 break; 1748 case bitc::VALUE_SYMTAB_BLOCK_ID: 1749 if (std::error_code EC = ParseValueSymbolTable()) 1750 return EC; 1751 SeenValueSymbolTable = true; 1752 break; 1753 case bitc::CONSTANTS_BLOCK_ID: 1754 if (std::error_code EC = ParseConstants()) 1755 return EC; 1756 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1757 return EC; 1758 break; 1759 case bitc::METADATA_BLOCK_ID: 1760 if (std::error_code EC = ParseMetadata()) 1761 return EC; 1762 break; 1763 case bitc::FUNCTION_BLOCK_ID: 1764 // If this is the first function body we've seen, reverse the 1765 // FunctionsWithBodies list. 1766 if (!SeenFirstFunctionBody) { 1767 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1768 if (std::error_code EC = GlobalCleanup()) 1769 return EC; 1770 SeenFirstFunctionBody = true; 1771 } 1772 1773 if (std::error_code EC = RememberAndSkipFunctionBody()) 1774 return EC; 1775 // For streaming bitcode, suspend parsing when we reach the function 1776 // bodies. Subsequent materialization calls will resume it when 1777 // necessary. For streaming, the function bodies must be at the end of 1778 // the bitcode. If the bitcode file is old, the symbol table will be 1779 // at the end instead and will not have been seen yet. In this case, 1780 // just finish the parse now. 1781 if (LazyStreamer && SeenValueSymbolTable) { 1782 NextUnreadBit = Stream.GetCurrentBitNo(); 1783 return std::error_code(); 1784 } 1785 break; 1786 case bitc::USELIST_BLOCK_ID: 1787 if (std::error_code EC = ParseUseLists()) 1788 return EC; 1789 break; 1790 } 1791 continue; 1792 1793 case BitstreamEntry::Record: 1794 // The interesting case. 1795 break; 1796 } 1797 1798 1799 // Read a record. 1800 switch (Stream.readRecord(Entry.ID, Record)) { 1801 default: break; // Default behavior, ignore unknown content. 1802 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1803 if (Record.size() < 1) 1804 return Error(InvalidRecord); 1805 // Only version #0 and #1 are supported so far. 1806 unsigned module_version = Record[0]; 1807 switch (module_version) { 1808 default: 1809 return Error(InvalidValue); 1810 case 0: 1811 UseRelativeIDs = false; 1812 break; 1813 case 1: 1814 UseRelativeIDs = true; 1815 break; 1816 } 1817 break; 1818 } 1819 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1820 std::string S; 1821 if (ConvertToString(Record, 0, S)) 1822 return Error(InvalidRecord); 1823 TheModule->setTargetTriple(S); 1824 break; 1825 } 1826 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1827 std::string S; 1828 if (ConvertToString(Record, 0, S)) 1829 return Error(InvalidRecord); 1830 TheModule->setDataLayout(S); 1831 break; 1832 } 1833 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1834 std::string S; 1835 if (ConvertToString(Record, 0, S)) 1836 return Error(InvalidRecord); 1837 TheModule->setModuleInlineAsm(S); 1838 break; 1839 } 1840 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1841 // FIXME: Remove in 4.0. 1842 std::string S; 1843 if (ConvertToString(Record, 0, S)) 1844 return Error(InvalidRecord); 1845 // Ignore value. 1846 break; 1847 } 1848 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1849 std::string S; 1850 if (ConvertToString(Record, 0, S)) 1851 return Error(InvalidRecord); 1852 SectionTable.push_back(S); 1853 break; 1854 } 1855 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1856 std::string S; 1857 if (ConvertToString(Record, 0, S)) 1858 return Error(InvalidRecord); 1859 GCTable.push_back(S); 1860 break; 1861 } 1862 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 1863 if (Record.size() < 2) 1864 return Error(InvalidRecord); 1865 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 1866 unsigned ComdatNameSize = Record[1]; 1867 std::string ComdatName; 1868 ComdatName.reserve(ComdatNameSize); 1869 for (unsigned i = 0; i != ComdatNameSize; ++i) 1870 ComdatName += (char)Record[2 + i]; 1871 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 1872 C->setSelectionKind(SK); 1873 ComdatList.push_back(C); 1874 break; 1875 } 1876 // GLOBALVAR: [pointer type, isconst, initid, 1877 // linkage, alignment, section, visibility, threadlocal, 1878 // unnamed_addr, dllstorageclass] 1879 case bitc::MODULE_CODE_GLOBALVAR: { 1880 if (Record.size() < 6) 1881 return Error(InvalidRecord); 1882 Type *Ty = getTypeByID(Record[0]); 1883 if (!Ty) 1884 return Error(InvalidRecord); 1885 if (!Ty->isPointerTy()) 1886 return Error(InvalidTypeForValue); 1887 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1888 Ty = cast<PointerType>(Ty)->getElementType(); 1889 1890 bool isConstant = Record[1]; 1891 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1892 unsigned Alignment = (1 << Record[4]) >> 1; 1893 std::string Section; 1894 if (Record[5]) { 1895 if (Record[5]-1 >= SectionTable.size()) 1896 return Error(InvalidID); 1897 Section = SectionTable[Record[5]-1]; 1898 } 1899 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1900 // Local linkage must have default visibility. 1901 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1902 // FIXME: Change to an error if non-default in 4.0. 1903 Visibility = GetDecodedVisibility(Record[6]); 1904 1905 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1906 if (Record.size() > 7) 1907 TLM = GetDecodedThreadLocalMode(Record[7]); 1908 1909 bool UnnamedAddr = false; 1910 if (Record.size() > 8) 1911 UnnamedAddr = Record[8]; 1912 1913 bool ExternallyInitialized = false; 1914 if (Record.size() > 9) 1915 ExternallyInitialized = Record[9]; 1916 1917 GlobalVariable *NewGV = 1918 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1919 TLM, AddressSpace, ExternallyInitialized); 1920 NewGV->setAlignment(Alignment); 1921 if (!Section.empty()) 1922 NewGV->setSection(Section); 1923 NewGV->setVisibility(Visibility); 1924 NewGV->setUnnamedAddr(UnnamedAddr); 1925 1926 if (Record.size() > 10) 1927 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1928 else 1929 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1930 1931 ValueList.push_back(NewGV); 1932 1933 // Remember which value to use for the global initializer. 1934 if (unsigned InitID = Record[2]) 1935 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1936 1937 if (Record.size() > 11) 1938 if (unsigned ComdatID = Record[11]) { 1939 assert(ComdatID <= ComdatList.size()); 1940 NewGV->setComdat(ComdatList[ComdatID - 1]); 1941 } 1942 break; 1943 } 1944 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1945 // alignment, section, visibility, gc, unnamed_addr, 1946 // dllstorageclass] 1947 case bitc::MODULE_CODE_FUNCTION: { 1948 if (Record.size() < 8) 1949 return Error(InvalidRecord); 1950 Type *Ty = getTypeByID(Record[0]); 1951 if (!Ty) 1952 return Error(InvalidRecord); 1953 if (!Ty->isPointerTy()) 1954 return Error(InvalidTypeForValue); 1955 FunctionType *FTy = 1956 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1957 if (!FTy) 1958 return Error(InvalidTypeForValue); 1959 1960 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1961 "", TheModule); 1962 1963 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1964 bool isProto = Record[2]; 1965 Func->setLinkage(GetDecodedLinkage(Record[3])); 1966 Func->setAttributes(getAttributes(Record[4])); 1967 1968 Func->setAlignment((1 << Record[5]) >> 1); 1969 if (Record[6]) { 1970 if (Record[6]-1 >= SectionTable.size()) 1971 return Error(InvalidID); 1972 Func->setSection(SectionTable[Record[6]-1]); 1973 } 1974 // Local linkage must have default visibility. 1975 if (!Func->hasLocalLinkage()) 1976 // FIXME: Change to an error if non-default in 4.0. 1977 Func->setVisibility(GetDecodedVisibility(Record[7])); 1978 if (Record.size() > 8 && Record[8]) { 1979 if (Record[8]-1 > GCTable.size()) 1980 return Error(InvalidID); 1981 Func->setGC(GCTable[Record[8]-1].c_str()); 1982 } 1983 bool UnnamedAddr = false; 1984 if (Record.size() > 9) 1985 UnnamedAddr = Record[9]; 1986 Func->setUnnamedAddr(UnnamedAddr); 1987 if (Record.size() > 10 && Record[10] != 0) 1988 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1989 1990 if (Record.size() > 11) 1991 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 1992 else 1993 UpgradeDLLImportExportLinkage(Func, Record[3]); 1994 1995 if (Record.size() > 12) 1996 if (unsigned ComdatID = Record[12]) { 1997 assert(ComdatID <= ComdatList.size()); 1998 Func->setComdat(ComdatList[ComdatID - 1]); 1999 } 2000 2001 ValueList.push_back(Func); 2002 2003 // If this is a function with a body, remember the prototype we are 2004 // creating now, so that we can match up the body with them later. 2005 if (!isProto) { 2006 FunctionsWithBodies.push_back(Func); 2007 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 2008 } 2009 break; 2010 } 2011 // ALIAS: [alias type, aliasee val#, linkage] 2012 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2013 case bitc::MODULE_CODE_ALIAS: { 2014 if (Record.size() < 3) 2015 return Error(InvalidRecord); 2016 Type *Ty = getTypeByID(Record[0]); 2017 if (!Ty) 2018 return Error(InvalidRecord); 2019 auto *PTy = dyn_cast<PointerType>(Ty); 2020 if (!PTy) 2021 return Error(InvalidTypeForValue); 2022 2023 auto *NewGA = 2024 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2025 GetDecodedLinkage(Record[2]), "", TheModule); 2026 // Old bitcode files didn't have visibility field. 2027 // Local linkage must have default visibility. 2028 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2029 // FIXME: Change to an error if non-default in 4.0. 2030 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2031 if (Record.size() > 4) 2032 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2033 else 2034 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2035 if (Record.size() > 5) 2036 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2037 if (Record.size() > 6) 2038 NewGA->setUnnamedAddr(Record[6]); 2039 ValueList.push_back(NewGA); 2040 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2041 break; 2042 } 2043 /// MODULE_CODE_PURGEVALS: [numvals] 2044 case bitc::MODULE_CODE_PURGEVALS: 2045 // Trim down the value list to the specified size. 2046 if (Record.size() < 1 || Record[0] > ValueList.size()) 2047 return Error(InvalidRecord); 2048 ValueList.shrinkTo(Record[0]); 2049 break; 2050 } 2051 Record.clear(); 2052 } 2053 } 2054 2055 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2056 TheModule = nullptr; 2057 2058 if (std::error_code EC = InitStream()) 2059 return EC; 2060 2061 // Sniff for the signature. 2062 if (Stream.Read(8) != 'B' || 2063 Stream.Read(8) != 'C' || 2064 Stream.Read(4) != 0x0 || 2065 Stream.Read(4) != 0xC || 2066 Stream.Read(4) != 0xE || 2067 Stream.Read(4) != 0xD) 2068 return Error(InvalidBitcodeSignature); 2069 2070 // We expect a number of well-defined blocks, though we don't necessarily 2071 // need to understand them all. 2072 while (1) { 2073 if (Stream.AtEndOfStream()) 2074 return std::error_code(); 2075 2076 BitstreamEntry Entry = 2077 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2078 2079 switch (Entry.Kind) { 2080 case BitstreamEntry::Error: 2081 return Error(MalformedBlock); 2082 case BitstreamEntry::EndBlock: 2083 return std::error_code(); 2084 2085 case BitstreamEntry::SubBlock: 2086 switch (Entry.ID) { 2087 case bitc::BLOCKINFO_BLOCK_ID: 2088 if (Stream.ReadBlockInfoBlock()) 2089 return Error(MalformedBlock); 2090 break; 2091 case bitc::MODULE_BLOCK_ID: 2092 // Reject multiple MODULE_BLOCK's in a single bitstream. 2093 if (TheModule) 2094 return Error(InvalidMultipleBlocks); 2095 TheModule = M; 2096 if (std::error_code EC = ParseModule(false)) 2097 return EC; 2098 if (LazyStreamer) 2099 return std::error_code(); 2100 break; 2101 default: 2102 if (Stream.SkipBlock()) 2103 return Error(InvalidRecord); 2104 break; 2105 } 2106 continue; 2107 case BitstreamEntry::Record: 2108 // There should be no records in the top-level of blocks. 2109 2110 // The ranlib in Xcode 4 will align archive members by appending newlines 2111 // to the end of them. If this file size is a multiple of 4 but not 8, we 2112 // have to read and ignore these final 4 bytes :-( 2113 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2114 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2115 Stream.AtEndOfStream()) 2116 return std::error_code(); 2117 2118 return Error(InvalidRecord); 2119 } 2120 } 2121 } 2122 2123 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2124 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2125 return Error(InvalidRecord); 2126 2127 SmallVector<uint64_t, 64> Record; 2128 2129 std::string Triple; 2130 // Read all the records for this module. 2131 while (1) { 2132 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2133 2134 switch (Entry.Kind) { 2135 case BitstreamEntry::SubBlock: // Handled for us already. 2136 case BitstreamEntry::Error: 2137 return Error(MalformedBlock); 2138 case BitstreamEntry::EndBlock: 2139 return Triple; 2140 case BitstreamEntry::Record: 2141 // The interesting case. 2142 break; 2143 } 2144 2145 // Read a record. 2146 switch (Stream.readRecord(Entry.ID, Record)) { 2147 default: break; // Default behavior, ignore unknown content. 2148 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2149 std::string S; 2150 if (ConvertToString(Record, 0, S)) 2151 return Error(InvalidRecord); 2152 Triple = S; 2153 break; 2154 } 2155 } 2156 Record.clear(); 2157 } 2158 llvm_unreachable("Exit infinite loop"); 2159 } 2160 2161 ErrorOr<std::string> BitcodeReader::parseTriple() { 2162 if (std::error_code EC = InitStream()) 2163 return EC; 2164 2165 // Sniff for the signature. 2166 if (Stream.Read(8) != 'B' || 2167 Stream.Read(8) != 'C' || 2168 Stream.Read(4) != 0x0 || 2169 Stream.Read(4) != 0xC || 2170 Stream.Read(4) != 0xE || 2171 Stream.Read(4) != 0xD) 2172 return Error(InvalidBitcodeSignature); 2173 2174 // We expect a number of well-defined blocks, though we don't necessarily 2175 // need to understand them all. 2176 while (1) { 2177 BitstreamEntry Entry = Stream.advance(); 2178 2179 switch (Entry.Kind) { 2180 case BitstreamEntry::Error: 2181 return Error(MalformedBlock); 2182 case BitstreamEntry::EndBlock: 2183 return std::error_code(); 2184 2185 case BitstreamEntry::SubBlock: 2186 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2187 return parseModuleTriple(); 2188 2189 // Ignore other sub-blocks. 2190 if (Stream.SkipBlock()) 2191 return Error(MalformedBlock); 2192 continue; 2193 2194 case BitstreamEntry::Record: 2195 Stream.skipRecord(Entry.ID); 2196 continue; 2197 } 2198 } 2199 } 2200 2201 /// ParseMetadataAttachment - Parse metadata attachments. 2202 std::error_code BitcodeReader::ParseMetadataAttachment() { 2203 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2204 return Error(InvalidRecord); 2205 2206 SmallVector<uint64_t, 64> Record; 2207 while (1) { 2208 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2209 2210 switch (Entry.Kind) { 2211 case BitstreamEntry::SubBlock: // Handled for us already. 2212 case BitstreamEntry::Error: 2213 return Error(MalformedBlock); 2214 case BitstreamEntry::EndBlock: 2215 return std::error_code(); 2216 case BitstreamEntry::Record: 2217 // The interesting case. 2218 break; 2219 } 2220 2221 // Read a metadata attachment record. 2222 Record.clear(); 2223 switch (Stream.readRecord(Entry.ID, Record)) { 2224 default: // Default behavior: ignore. 2225 break; 2226 case bitc::METADATA_ATTACHMENT: { 2227 unsigned RecordLength = Record.size(); 2228 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2229 return Error(InvalidRecord); 2230 Instruction *Inst = InstructionList[Record[0]]; 2231 for (unsigned i = 1; i != RecordLength; i = i+2) { 2232 unsigned Kind = Record[i]; 2233 DenseMap<unsigned, unsigned>::iterator I = 2234 MDKindMap.find(Kind); 2235 if (I == MDKindMap.end()) 2236 return Error(InvalidID); 2237 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2238 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2239 if (I->second == LLVMContext::MD_tbaa) 2240 InstsWithTBAATag.push_back(Inst); 2241 } 2242 break; 2243 } 2244 } 2245 } 2246 } 2247 2248 /// ParseFunctionBody - Lazily parse the specified function body block. 2249 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2250 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2251 return Error(InvalidRecord); 2252 2253 InstructionList.clear(); 2254 unsigned ModuleValueListSize = ValueList.size(); 2255 unsigned ModuleMDValueListSize = MDValueList.size(); 2256 2257 // Add all the function arguments to the value table. 2258 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2259 ValueList.push_back(I); 2260 2261 unsigned NextValueNo = ValueList.size(); 2262 BasicBlock *CurBB = nullptr; 2263 unsigned CurBBNo = 0; 2264 2265 DebugLoc LastLoc; 2266 2267 // Read all the records. 2268 SmallVector<uint64_t, 64> Record; 2269 while (1) { 2270 BitstreamEntry Entry = Stream.advance(); 2271 2272 switch (Entry.Kind) { 2273 case BitstreamEntry::Error: 2274 return Error(MalformedBlock); 2275 case BitstreamEntry::EndBlock: 2276 goto OutOfRecordLoop; 2277 2278 case BitstreamEntry::SubBlock: 2279 switch (Entry.ID) { 2280 default: // Skip unknown content. 2281 if (Stream.SkipBlock()) 2282 return Error(InvalidRecord); 2283 break; 2284 case bitc::CONSTANTS_BLOCK_ID: 2285 if (std::error_code EC = ParseConstants()) 2286 return EC; 2287 NextValueNo = ValueList.size(); 2288 break; 2289 case bitc::VALUE_SYMTAB_BLOCK_ID: 2290 if (std::error_code EC = ParseValueSymbolTable()) 2291 return EC; 2292 break; 2293 case bitc::METADATA_ATTACHMENT_ID: 2294 if (std::error_code EC = ParseMetadataAttachment()) 2295 return EC; 2296 break; 2297 case bitc::METADATA_BLOCK_ID: 2298 if (std::error_code EC = ParseMetadata()) 2299 return EC; 2300 break; 2301 } 2302 continue; 2303 2304 case BitstreamEntry::Record: 2305 // The interesting case. 2306 break; 2307 } 2308 2309 // Read a record. 2310 Record.clear(); 2311 Instruction *I = nullptr; 2312 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2313 switch (BitCode) { 2314 default: // Default behavior: reject 2315 return Error(InvalidValue); 2316 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2317 if (Record.size() < 1 || Record[0] == 0) 2318 return Error(InvalidRecord); 2319 // Create all the basic blocks for the function. 2320 FunctionBBs.resize(Record[0]); 2321 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2322 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2323 CurBB = FunctionBBs[0]; 2324 continue; 2325 2326 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2327 // This record indicates that the last instruction is at the same 2328 // location as the previous instruction with a location. 2329 I = nullptr; 2330 2331 // Get the last instruction emitted. 2332 if (CurBB && !CurBB->empty()) 2333 I = &CurBB->back(); 2334 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2335 !FunctionBBs[CurBBNo-1]->empty()) 2336 I = &FunctionBBs[CurBBNo-1]->back(); 2337 2338 if (!I) 2339 return Error(InvalidRecord); 2340 I->setDebugLoc(LastLoc); 2341 I = nullptr; 2342 continue; 2343 2344 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2345 I = nullptr; // Get the last instruction emitted. 2346 if (CurBB && !CurBB->empty()) 2347 I = &CurBB->back(); 2348 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2349 !FunctionBBs[CurBBNo-1]->empty()) 2350 I = &FunctionBBs[CurBBNo-1]->back(); 2351 if (!I || Record.size() < 4) 2352 return Error(InvalidRecord); 2353 2354 unsigned Line = Record[0], Col = Record[1]; 2355 unsigned ScopeID = Record[2], IAID = Record[3]; 2356 2357 MDNode *Scope = nullptr, *IA = nullptr; 2358 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2359 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2360 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2361 I->setDebugLoc(LastLoc); 2362 I = nullptr; 2363 continue; 2364 } 2365 2366 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2367 unsigned OpNum = 0; 2368 Value *LHS, *RHS; 2369 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2370 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2371 OpNum+1 > Record.size()) 2372 return Error(InvalidRecord); 2373 2374 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2375 if (Opc == -1) 2376 return Error(InvalidRecord); 2377 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2378 InstructionList.push_back(I); 2379 if (OpNum < Record.size()) { 2380 if (Opc == Instruction::Add || 2381 Opc == Instruction::Sub || 2382 Opc == Instruction::Mul || 2383 Opc == Instruction::Shl) { 2384 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2385 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2386 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2387 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2388 } else if (Opc == Instruction::SDiv || 2389 Opc == Instruction::UDiv || 2390 Opc == Instruction::LShr || 2391 Opc == Instruction::AShr) { 2392 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2393 cast<BinaryOperator>(I)->setIsExact(true); 2394 } else if (isa<FPMathOperator>(I)) { 2395 FastMathFlags FMF; 2396 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2397 FMF.setUnsafeAlgebra(); 2398 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2399 FMF.setNoNaNs(); 2400 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2401 FMF.setNoInfs(); 2402 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2403 FMF.setNoSignedZeros(); 2404 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2405 FMF.setAllowReciprocal(); 2406 if (FMF.any()) 2407 I->setFastMathFlags(FMF); 2408 } 2409 2410 } 2411 break; 2412 } 2413 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2414 unsigned OpNum = 0; 2415 Value *Op; 2416 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2417 OpNum+2 != Record.size()) 2418 return Error(InvalidRecord); 2419 2420 Type *ResTy = getTypeByID(Record[OpNum]); 2421 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2422 if (Opc == -1 || !ResTy) 2423 return Error(InvalidRecord); 2424 Instruction *Temp = nullptr; 2425 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2426 if (Temp) { 2427 InstructionList.push_back(Temp); 2428 CurBB->getInstList().push_back(Temp); 2429 } 2430 } else { 2431 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2432 } 2433 InstructionList.push_back(I); 2434 break; 2435 } 2436 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2437 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2438 unsigned OpNum = 0; 2439 Value *BasePtr; 2440 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2441 return Error(InvalidRecord); 2442 2443 SmallVector<Value*, 16> GEPIdx; 2444 while (OpNum != Record.size()) { 2445 Value *Op; 2446 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2447 return Error(InvalidRecord); 2448 GEPIdx.push_back(Op); 2449 } 2450 2451 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2452 InstructionList.push_back(I); 2453 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2454 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2455 break; 2456 } 2457 2458 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2459 // EXTRACTVAL: [opty, opval, n x indices] 2460 unsigned OpNum = 0; 2461 Value *Agg; 2462 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2463 return Error(InvalidRecord); 2464 2465 SmallVector<unsigned, 4> EXTRACTVALIdx; 2466 for (unsigned RecSize = Record.size(); 2467 OpNum != RecSize; ++OpNum) { 2468 uint64_t Index = Record[OpNum]; 2469 if ((unsigned)Index != Index) 2470 return Error(InvalidValue); 2471 EXTRACTVALIdx.push_back((unsigned)Index); 2472 } 2473 2474 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2475 InstructionList.push_back(I); 2476 break; 2477 } 2478 2479 case bitc::FUNC_CODE_INST_INSERTVAL: { 2480 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2481 unsigned OpNum = 0; 2482 Value *Agg; 2483 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2484 return Error(InvalidRecord); 2485 Value *Val; 2486 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2487 return Error(InvalidRecord); 2488 2489 SmallVector<unsigned, 4> INSERTVALIdx; 2490 for (unsigned RecSize = Record.size(); 2491 OpNum != RecSize; ++OpNum) { 2492 uint64_t Index = Record[OpNum]; 2493 if ((unsigned)Index != Index) 2494 return Error(InvalidValue); 2495 INSERTVALIdx.push_back((unsigned)Index); 2496 } 2497 2498 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2499 InstructionList.push_back(I); 2500 break; 2501 } 2502 2503 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2504 // obsolete form of select 2505 // handles select i1 ... in old bitcode 2506 unsigned OpNum = 0; 2507 Value *TrueVal, *FalseVal, *Cond; 2508 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2509 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2510 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2511 return Error(InvalidRecord); 2512 2513 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2514 InstructionList.push_back(I); 2515 break; 2516 } 2517 2518 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2519 // new form of select 2520 // handles select i1 or select [N x i1] 2521 unsigned OpNum = 0; 2522 Value *TrueVal, *FalseVal, *Cond; 2523 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2524 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2525 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2526 return Error(InvalidRecord); 2527 2528 // select condition can be either i1 or [N x i1] 2529 if (VectorType* vector_type = 2530 dyn_cast<VectorType>(Cond->getType())) { 2531 // expect <n x i1> 2532 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2533 return Error(InvalidTypeForValue); 2534 } else { 2535 // expect i1 2536 if (Cond->getType() != Type::getInt1Ty(Context)) 2537 return Error(InvalidTypeForValue); 2538 } 2539 2540 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2541 InstructionList.push_back(I); 2542 break; 2543 } 2544 2545 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2546 unsigned OpNum = 0; 2547 Value *Vec, *Idx; 2548 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2549 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2550 return Error(InvalidRecord); 2551 I = ExtractElementInst::Create(Vec, Idx); 2552 InstructionList.push_back(I); 2553 break; 2554 } 2555 2556 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2557 unsigned OpNum = 0; 2558 Value *Vec, *Elt, *Idx; 2559 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2560 popValue(Record, OpNum, NextValueNo, 2561 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2562 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2563 return Error(InvalidRecord); 2564 I = InsertElementInst::Create(Vec, Elt, Idx); 2565 InstructionList.push_back(I); 2566 break; 2567 } 2568 2569 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2570 unsigned OpNum = 0; 2571 Value *Vec1, *Vec2, *Mask; 2572 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2573 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2574 return Error(InvalidRecord); 2575 2576 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2577 return Error(InvalidRecord); 2578 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2579 InstructionList.push_back(I); 2580 break; 2581 } 2582 2583 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2584 // Old form of ICmp/FCmp returning bool 2585 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2586 // both legal on vectors but had different behaviour. 2587 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2588 // FCmp/ICmp returning bool or vector of bool 2589 2590 unsigned OpNum = 0; 2591 Value *LHS, *RHS; 2592 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2593 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2594 OpNum+1 != Record.size()) 2595 return Error(InvalidRecord); 2596 2597 if (LHS->getType()->isFPOrFPVectorTy()) 2598 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2599 else 2600 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2601 InstructionList.push_back(I); 2602 break; 2603 } 2604 2605 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2606 { 2607 unsigned Size = Record.size(); 2608 if (Size == 0) { 2609 I = ReturnInst::Create(Context); 2610 InstructionList.push_back(I); 2611 break; 2612 } 2613 2614 unsigned OpNum = 0; 2615 Value *Op = nullptr; 2616 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2617 return Error(InvalidRecord); 2618 if (OpNum != Record.size()) 2619 return Error(InvalidRecord); 2620 2621 I = ReturnInst::Create(Context, Op); 2622 InstructionList.push_back(I); 2623 break; 2624 } 2625 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2626 if (Record.size() != 1 && Record.size() != 3) 2627 return Error(InvalidRecord); 2628 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2629 if (!TrueDest) 2630 return Error(InvalidRecord); 2631 2632 if (Record.size() == 1) { 2633 I = BranchInst::Create(TrueDest); 2634 InstructionList.push_back(I); 2635 } 2636 else { 2637 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2638 Value *Cond = getValue(Record, 2, NextValueNo, 2639 Type::getInt1Ty(Context)); 2640 if (!FalseDest || !Cond) 2641 return Error(InvalidRecord); 2642 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2643 InstructionList.push_back(I); 2644 } 2645 break; 2646 } 2647 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2648 // Check magic 2649 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2650 // "New" SwitchInst format with case ranges. The changes to write this 2651 // format were reverted but we still recognize bitcode that uses it. 2652 // Hopefully someday we will have support for case ranges and can use 2653 // this format again. 2654 2655 Type *OpTy = getTypeByID(Record[1]); 2656 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2657 2658 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2659 BasicBlock *Default = getBasicBlock(Record[3]); 2660 if (!OpTy || !Cond || !Default) 2661 return Error(InvalidRecord); 2662 2663 unsigned NumCases = Record[4]; 2664 2665 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2666 InstructionList.push_back(SI); 2667 2668 unsigned CurIdx = 5; 2669 for (unsigned i = 0; i != NumCases; ++i) { 2670 SmallVector<ConstantInt*, 1> CaseVals; 2671 unsigned NumItems = Record[CurIdx++]; 2672 for (unsigned ci = 0; ci != NumItems; ++ci) { 2673 bool isSingleNumber = Record[CurIdx++]; 2674 2675 APInt Low; 2676 unsigned ActiveWords = 1; 2677 if (ValueBitWidth > 64) 2678 ActiveWords = Record[CurIdx++]; 2679 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2680 ValueBitWidth); 2681 CurIdx += ActiveWords; 2682 2683 if (!isSingleNumber) { 2684 ActiveWords = 1; 2685 if (ValueBitWidth > 64) 2686 ActiveWords = Record[CurIdx++]; 2687 APInt High = 2688 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2689 ValueBitWidth); 2690 CurIdx += ActiveWords; 2691 2692 // FIXME: It is not clear whether values in the range should be 2693 // compared as signed or unsigned values. The partially 2694 // implemented changes that used this format in the past used 2695 // unsigned comparisons. 2696 for ( ; Low.ule(High); ++Low) 2697 CaseVals.push_back(ConstantInt::get(Context, Low)); 2698 } else 2699 CaseVals.push_back(ConstantInt::get(Context, Low)); 2700 } 2701 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2702 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2703 cve = CaseVals.end(); cvi != cve; ++cvi) 2704 SI->addCase(*cvi, DestBB); 2705 } 2706 I = SI; 2707 break; 2708 } 2709 2710 // Old SwitchInst format without case ranges. 2711 2712 if (Record.size() < 3 || (Record.size() & 1) == 0) 2713 return Error(InvalidRecord); 2714 Type *OpTy = getTypeByID(Record[0]); 2715 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2716 BasicBlock *Default = getBasicBlock(Record[2]); 2717 if (!OpTy || !Cond || !Default) 2718 return Error(InvalidRecord); 2719 unsigned NumCases = (Record.size()-3)/2; 2720 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2721 InstructionList.push_back(SI); 2722 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2723 ConstantInt *CaseVal = 2724 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2725 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2726 if (!CaseVal || !DestBB) { 2727 delete SI; 2728 return Error(InvalidRecord); 2729 } 2730 SI->addCase(CaseVal, DestBB); 2731 } 2732 I = SI; 2733 break; 2734 } 2735 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2736 if (Record.size() < 2) 2737 return Error(InvalidRecord); 2738 Type *OpTy = getTypeByID(Record[0]); 2739 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2740 if (!OpTy || !Address) 2741 return Error(InvalidRecord); 2742 unsigned NumDests = Record.size()-2; 2743 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2744 InstructionList.push_back(IBI); 2745 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2746 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2747 IBI->addDestination(DestBB); 2748 } else { 2749 delete IBI; 2750 return Error(InvalidRecord); 2751 } 2752 } 2753 I = IBI; 2754 break; 2755 } 2756 2757 case bitc::FUNC_CODE_INST_INVOKE: { 2758 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2759 if (Record.size() < 4) 2760 return Error(InvalidRecord); 2761 AttributeSet PAL = getAttributes(Record[0]); 2762 unsigned CCInfo = Record[1]; 2763 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2764 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2765 2766 unsigned OpNum = 4; 2767 Value *Callee; 2768 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2769 return Error(InvalidRecord); 2770 2771 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2772 FunctionType *FTy = !CalleeTy ? nullptr : 2773 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2774 2775 // Check that the right number of fixed parameters are here. 2776 if (!FTy || !NormalBB || !UnwindBB || 2777 Record.size() < OpNum+FTy->getNumParams()) 2778 return Error(InvalidRecord); 2779 2780 SmallVector<Value*, 16> Ops; 2781 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2782 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2783 FTy->getParamType(i))); 2784 if (!Ops.back()) 2785 return Error(InvalidRecord); 2786 } 2787 2788 if (!FTy->isVarArg()) { 2789 if (Record.size() != OpNum) 2790 return Error(InvalidRecord); 2791 } else { 2792 // Read type/value pairs for varargs params. 2793 while (OpNum != Record.size()) { 2794 Value *Op; 2795 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2796 return Error(InvalidRecord); 2797 Ops.push_back(Op); 2798 } 2799 } 2800 2801 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2802 InstructionList.push_back(I); 2803 cast<InvokeInst>(I)->setCallingConv( 2804 static_cast<CallingConv::ID>(CCInfo)); 2805 cast<InvokeInst>(I)->setAttributes(PAL); 2806 break; 2807 } 2808 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2809 unsigned Idx = 0; 2810 Value *Val = nullptr; 2811 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2812 return Error(InvalidRecord); 2813 I = ResumeInst::Create(Val); 2814 InstructionList.push_back(I); 2815 break; 2816 } 2817 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2818 I = new UnreachableInst(Context); 2819 InstructionList.push_back(I); 2820 break; 2821 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2822 if (Record.size() < 1 || ((Record.size()-1)&1)) 2823 return Error(InvalidRecord); 2824 Type *Ty = getTypeByID(Record[0]); 2825 if (!Ty) 2826 return Error(InvalidRecord); 2827 2828 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2829 InstructionList.push_back(PN); 2830 2831 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2832 Value *V; 2833 // With the new function encoding, it is possible that operands have 2834 // negative IDs (for forward references). Use a signed VBR 2835 // representation to keep the encoding small. 2836 if (UseRelativeIDs) 2837 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2838 else 2839 V = getValue(Record, 1+i, NextValueNo, Ty); 2840 BasicBlock *BB = getBasicBlock(Record[2+i]); 2841 if (!V || !BB) 2842 return Error(InvalidRecord); 2843 PN->addIncoming(V, BB); 2844 } 2845 I = PN; 2846 break; 2847 } 2848 2849 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2850 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2851 unsigned Idx = 0; 2852 if (Record.size() < 4) 2853 return Error(InvalidRecord); 2854 Type *Ty = getTypeByID(Record[Idx++]); 2855 if (!Ty) 2856 return Error(InvalidRecord); 2857 Value *PersFn = nullptr; 2858 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2859 return Error(InvalidRecord); 2860 2861 bool IsCleanup = !!Record[Idx++]; 2862 unsigned NumClauses = Record[Idx++]; 2863 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2864 LP->setCleanup(IsCleanup); 2865 for (unsigned J = 0; J != NumClauses; ++J) { 2866 LandingPadInst::ClauseType CT = 2867 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2868 Value *Val; 2869 2870 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2871 delete LP; 2872 return Error(InvalidRecord); 2873 } 2874 2875 assert((CT != LandingPadInst::Catch || 2876 !isa<ArrayType>(Val->getType())) && 2877 "Catch clause has a invalid type!"); 2878 assert((CT != LandingPadInst::Filter || 2879 isa<ArrayType>(Val->getType())) && 2880 "Filter clause has invalid type!"); 2881 LP->addClause(cast<Constant>(Val)); 2882 } 2883 2884 I = LP; 2885 InstructionList.push_back(I); 2886 break; 2887 } 2888 2889 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2890 if (Record.size() != 4) 2891 return Error(InvalidRecord); 2892 PointerType *Ty = 2893 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2894 Type *OpTy = getTypeByID(Record[1]); 2895 Value *Size = getFnValueByID(Record[2], OpTy); 2896 unsigned AlignRecord = Record[3]; 2897 bool InAlloca = AlignRecord & (1 << 5); 2898 unsigned Align = AlignRecord & ((1 << 5) - 1); 2899 if (!Ty || !Size) 2900 return Error(InvalidRecord); 2901 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2902 AI->setUsedWithInAlloca(InAlloca); 2903 I = AI; 2904 InstructionList.push_back(I); 2905 break; 2906 } 2907 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2908 unsigned OpNum = 0; 2909 Value *Op; 2910 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2911 OpNum+2 != Record.size()) 2912 return Error(InvalidRecord); 2913 2914 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2915 InstructionList.push_back(I); 2916 break; 2917 } 2918 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2919 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2920 unsigned OpNum = 0; 2921 Value *Op; 2922 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2923 OpNum+4 != Record.size()) 2924 return Error(InvalidRecord); 2925 2926 2927 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2928 if (Ordering == NotAtomic || Ordering == Release || 2929 Ordering == AcquireRelease) 2930 return Error(InvalidRecord); 2931 if (Ordering != NotAtomic && Record[OpNum] == 0) 2932 return Error(InvalidRecord); 2933 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2934 2935 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2936 Ordering, SynchScope); 2937 InstructionList.push_back(I); 2938 break; 2939 } 2940 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2941 unsigned OpNum = 0; 2942 Value *Val, *Ptr; 2943 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2944 popValue(Record, OpNum, NextValueNo, 2945 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2946 OpNum+2 != Record.size()) 2947 return Error(InvalidRecord); 2948 2949 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2950 InstructionList.push_back(I); 2951 break; 2952 } 2953 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2954 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2955 unsigned OpNum = 0; 2956 Value *Val, *Ptr; 2957 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2958 popValue(Record, OpNum, NextValueNo, 2959 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2960 OpNum+4 != Record.size()) 2961 return Error(InvalidRecord); 2962 2963 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2964 if (Ordering == NotAtomic || Ordering == Acquire || 2965 Ordering == AcquireRelease) 2966 return Error(InvalidRecord); 2967 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2968 if (Ordering != NotAtomic && Record[OpNum] == 0) 2969 return Error(InvalidRecord); 2970 2971 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2972 Ordering, SynchScope); 2973 InstructionList.push_back(I); 2974 break; 2975 } 2976 case bitc::FUNC_CODE_INST_CMPXCHG: { 2977 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 2978 // failureordering?, isweak?] 2979 unsigned OpNum = 0; 2980 Value *Ptr, *Cmp, *New; 2981 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2982 popValue(Record, OpNum, NextValueNo, 2983 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2984 popValue(Record, OpNum, NextValueNo, 2985 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2986 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 2987 return Error(InvalidRecord); 2988 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 2989 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 2990 return Error(InvalidRecord); 2991 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2992 2993 AtomicOrdering FailureOrdering; 2994 if (Record.size() < 7) 2995 FailureOrdering = 2996 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 2997 else 2998 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 2999 3000 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3001 SynchScope); 3002 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3003 3004 if (Record.size() < 8) { 3005 // Before weak cmpxchgs existed, the instruction simply returned the 3006 // value loaded from memory, so bitcode files from that era will be 3007 // expecting the first component of a modern cmpxchg. 3008 CurBB->getInstList().push_back(I); 3009 I = ExtractValueInst::Create(I, 0); 3010 } else { 3011 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3012 } 3013 3014 InstructionList.push_back(I); 3015 break; 3016 } 3017 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3018 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3019 unsigned OpNum = 0; 3020 Value *Ptr, *Val; 3021 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3022 popValue(Record, OpNum, NextValueNo, 3023 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3024 OpNum+4 != Record.size()) 3025 return Error(InvalidRecord); 3026 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3027 if (Operation < AtomicRMWInst::FIRST_BINOP || 3028 Operation > AtomicRMWInst::LAST_BINOP) 3029 return Error(InvalidRecord); 3030 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3031 if (Ordering == NotAtomic || Ordering == Unordered) 3032 return Error(InvalidRecord); 3033 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3034 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3035 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3036 InstructionList.push_back(I); 3037 break; 3038 } 3039 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3040 if (2 != Record.size()) 3041 return Error(InvalidRecord); 3042 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3043 if (Ordering == NotAtomic || Ordering == Unordered || 3044 Ordering == Monotonic) 3045 return Error(InvalidRecord); 3046 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3047 I = new FenceInst(Context, Ordering, SynchScope); 3048 InstructionList.push_back(I); 3049 break; 3050 } 3051 case bitc::FUNC_CODE_INST_CALL: { 3052 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3053 if (Record.size() < 3) 3054 return Error(InvalidRecord); 3055 3056 AttributeSet PAL = getAttributes(Record[0]); 3057 unsigned CCInfo = Record[1]; 3058 3059 unsigned OpNum = 2; 3060 Value *Callee; 3061 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3062 return Error(InvalidRecord); 3063 3064 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3065 FunctionType *FTy = nullptr; 3066 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3067 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3068 return Error(InvalidRecord); 3069 3070 SmallVector<Value*, 16> Args; 3071 // Read the fixed params. 3072 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3073 if (FTy->getParamType(i)->isLabelTy()) 3074 Args.push_back(getBasicBlock(Record[OpNum])); 3075 else 3076 Args.push_back(getValue(Record, OpNum, NextValueNo, 3077 FTy->getParamType(i))); 3078 if (!Args.back()) 3079 return Error(InvalidRecord); 3080 } 3081 3082 // Read type/value pairs for varargs params. 3083 if (!FTy->isVarArg()) { 3084 if (OpNum != Record.size()) 3085 return Error(InvalidRecord); 3086 } else { 3087 while (OpNum != Record.size()) { 3088 Value *Op; 3089 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3090 return Error(InvalidRecord); 3091 Args.push_back(Op); 3092 } 3093 } 3094 3095 I = CallInst::Create(Callee, Args); 3096 InstructionList.push_back(I); 3097 cast<CallInst>(I)->setCallingConv( 3098 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3099 CallInst::TailCallKind TCK = CallInst::TCK_None; 3100 if (CCInfo & 1) 3101 TCK = CallInst::TCK_Tail; 3102 if (CCInfo & (1 << 14)) 3103 TCK = CallInst::TCK_MustTail; 3104 cast<CallInst>(I)->setTailCallKind(TCK); 3105 cast<CallInst>(I)->setAttributes(PAL); 3106 break; 3107 } 3108 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3109 if (Record.size() < 3) 3110 return Error(InvalidRecord); 3111 Type *OpTy = getTypeByID(Record[0]); 3112 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3113 Type *ResTy = getTypeByID(Record[2]); 3114 if (!OpTy || !Op || !ResTy) 3115 return Error(InvalidRecord); 3116 I = new VAArgInst(Op, ResTy); 3117 InstructionList.push_back(I); 3118 break; 3119 } 3120 } 3121 3122 // Add instruction to end of current BB. If there is no current BB, reject 3123 // this file. 3124 if (!CurBB) { 3125 delete I; 3126 return Error(InvalidInstructionWithNoBB); 3127 } 3128 CurBB->getInstList().push_back(I); 3129 3130 // If this was a terminator instruction, move to the next block. 3131 if (isa<TerminatorInst>(I)) { 3132 ++CurBBNo; 3133 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3134 } 3135 3136 // Non-void values get registered in the value table for future use. 3137 if (I && !I->getType()->isVoidTy()) 3138 ValueList.AssignValue(I, NextValueNo++); 3139 } 3140 3141 OutOfRecordLoop: 3142 3143 // Check the function list for unresolved values. 3144 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3145 if (!A->getParent()) { 3146 // We found at least one unresolved value. Nuke them all to avoid leaks. 3147 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3148 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3149 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3150 delete A; 3151 } 3152 } 3153 return Error(NeverResolvedValueFoundInFunction); 3154 } 3155 } 3156 3157 // FIXME: Check for unresolved forward-declared metadata references 3158 // and clean up leaks. 3159 3160 // See if anything took the address of blocks in this function. If so, 3161 // resolve them now. 3162 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 3163 BlockAddrFwdRefs.find(F); 3164 if (BAFRI != BlockAddrFwdRefs.end()) { 3165 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 3166 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3167 unsigned BlockIdx = RefList[i].first; 3168 if (BlockIdx >= FunctionBBs.size()) 3169 return Error(InvalidID); 3170 3171 GlobalVariable *FwdRef = RefList[i].second; 3172 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3173 FwdRef->eraseFromParent(); 3174 } 3175 3176 BlockAddrFwdRefs.erase(BAFRI); 3177 } 3178 3179 // Trim the value list down to the size it was before we parsed this function. 3180 ValueList.shrinkTo(ModuleValueListSize); 3181 MDValueList.shrinkTo(ModuleMDValueListSize); 3182 std::vector<BasicBlock*>().swap(FunctionBBs); 3183 return std::error_code(); 3184 } 3185 3186 /// Find the function body in the bitcode stream 3187 std::error_code BitcodeReader::FindFunctionInStream( 3188 Function *F, 3189 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3190 while (DeferredFunctionInfoIterator->second == 0) { 3191 if (Stream.AtEndOfStream()) 3192 return Error(CouldNotFindFunctionInStream); 3193 // ParseModule will parse the next body in the stream and set its 3194 // position in the DeferredFunctionInfo map. 3195 if (std::error_code EC = ParseModule(true)) 3196 return EC; 3197 } 3198 return std::error_code(); 3199 } 3200 3201 //===----------------------------------------------------------------------===// 3202 // GVMaterializer implementation 3203 //===----------------------------------------------------------------------===// 3204 3205 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3206 3207 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3208 if (const Function *F = dyn_cast<Function>(GV)) { 3209 return F->isDeclaration() && 3210 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3211 } 3212 return false; 3213 } 3214 3215 std::error_code BitcodeReader::Materialize(GlobalValue *GV) { 3216 Function *F = dyn_cast<Function>(GV); 3217 // If it's not a function or is already material, ignore the request. 3218 if (!F || !F->isMaterializable()) 3219 return std::error_code(); 3220 3221 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3222 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3223 // If its position is recorded as 0, its body is somewhere in the stream 3224 // but we haven't seen it yet. 3225 if (DFII->second == 0 && LazyStreamer) 3226 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3227 return EC; 3228 3229 // Move the bit stream to the saved position of the deferred function body. 3230 Stream.JumpToBit(DFII->second); 3231 3232 if (std::error_code EC = ParseFunctionBody(F)) 3233 return EC; 3234 3235 // Upgrade any old intrinsic calls in the function. 3236 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3237 E = UpgradedIntrinsics.end(); I != E; ++I) { 3238 if (I->first != I->second) { 3239 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3240 UI != UE;) { 3241 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3242 UpgradeIntrinsicCall(CI, I->second); 3243 } 3244 } 3245 } 3246 3247 return std::error_code(); 3248 } 3249 3250 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3251 const Function *F = dyn_cast<Function>(GV); 3252 if (!F || F->isDeclaration()) 3253 return false; 3254 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3255 } 3256 3257 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3258 Function *F = dyn_cast<Function>(GV); 3259 // If this function isn't dematerializable, this is a noop. 3260 if (!F || !isDematerializable(F)) 3261 return; 3262 3263 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3264 3265 // Just forget the function body, we can remat it later. 3266 F->deleteBody(); 3267 } 3268 3269 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3270 assert(M == TheModule && 3271 "Can only Materialize the Module this BitcodeReader is attached to."); 3272 // Iterate over the module, deserializing any functions that are still on 3273 // disk. 3274 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3275 F != E; ++F) { 3276 if (F->isMaterializable()) { 3277 if (std::error_code EC = Materialize(F)) 3278 return EC; 3279 } 3280 } 3281 // At this point, if there are any function bodies, the current bit is 3282 // pointing to the END_BLOCK record after them. Now make sure the rest 3283 // of the bits in the module have been read. 3284 if (NextUnreadBit) 3285 ParseModule(true); 3286 3287 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3288 // delete the old functions to clean up. We can't do this unless the entire 3289 // module is materialized because there could always be another function body 3290 // with calls to the old function. 3291 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3292 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3293 if (I->first != I->second) { 3294 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3295 UI != UE;) { 3296 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3297 UpgradeIntrinsicCall(CI, I->second); 3298 } 3299 if (!I->first->use_empty()) 3300 I->first->replaceAllUsesWith(I->second); 3301 I->first->eraseFromParent(); 3302 } 3303 } 3304 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3305 3306 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3307 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3308 3309 UpgradeDebugInfo(*M); 3310 return std::error_code(); 3311 } 3312 3313 std::error_code BitcodeReader::InitStream() { 3314 if (LazyStreamer) 3315 return InitLazyStream(); 3316 return InitStreamFromBuffer(); 3317 } 3318 3319 std::error_code BitcodeReader::InitStreamFromBuffer() { 3320 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3321 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3322 3323 if (Buffer->getBufferSize() & 3) { 3324 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3325 return Error(InvalidBitcodeSignature); 3326 else 3327 return Error(BitcodeStreamInvalidSize); 3328 } 3329 3330 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3331 // The magic number is 0x0B17C0DE stored in little endian. 3332 if (isBitcodeWrapper(BufPtr, BufEnd)) 3333 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3334 return Error(InvalidBitcodeWrapperHeader); 3335 3336 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3337 Stream.init(*StreamFile); 3338 3339 return std::error_code(); 3340 } 3341 3342 std::error_code BitcodeReader::InitLazyStream() { 3343 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3344 // see it. 3345 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3346 StreamFile.reset(new BitstreamReader(Bytes)); 3347 Stream.init(*StreamFile); 3348 3349 unsigned char buf[16]; 3350 if (Bytes->readBytes(0, 16, buf) == -1) 3351 return Error(BitcodeStreamInvalidSize); 3352 3353 if (!isBitcode(buf, buf + 16)) 3354 return Error(InvalidBitcodeSignature); 3355 3356 if (isBitcodeWrapper(buf, buf + 4)) { 3357 const unsigned char *bitcodeStart = buf; 3358 const unsigned char *bitcodeEnd = buf + 16; 3359 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3360 Bytes->dropLeadingBytes(bitcodeStart - buf); 3361 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3362 } 3363 return std::error_code(); 3364 } 3365 3366 namespace { 3367 class BitcodeErrorCategoryType : public std::error_category { 3368 const char *name() const LLVM_NOEXCEPT override { 3369 return "llvm.bitcode"; 3370 } 3371 std::string message(int IE) const override { 3372 BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); 3373 switch (E) { 3374 case BitcodeReader::BitcodeStreamInvalidSize: 3375 return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; 3376 case BitcodeReader::ConflictingMETADATA_KINDRecords: 3377 return "Conflicting METADATA_KIND records"; 3378 case BitcodeReader::CouldNotFindFunctionInStream: 3379 return "Could not find function in stream"; 3380 case BitcodeReader::ExpectedConstant: 3381 return "Expected a constant"; 3382 case BitcodeReader::InsufficientFunctionProtos: 3383 return "Insufficient function protos"; 3384 case BitcodeReader::InvalidBitcodeSignature: 3385 return "Invalid bitcode signature"; 3386 case BitcodeReader::InvalidBitcodeWrapperHeader: 3387 return "Invalid bitcode wrapper header"; 3388 case BitcodeReader::InvalidConstantReference: 3389 return "Invalid ronstant reference"; 3390 case BitcodeReader::InvalidID: 3391 return "Invalid ID"; 3392 case BitcodeReader::InvalidInstructionWithNoBB: 3393 return "Invalid instruction with no BB"; 3394 case BitcodeReader::InvalidRecord: 3395 return "Invalid record"; 3396 case BitcodeReader::InvalidTypeForValue: 3397 return "Invalid type for value"; 3398 case BitcodeReader::InvalidTYPETable: 3399 return "Invalid TYPE table"; 3400 case BitcodeReader::InvalidType: 3401 return "Invalid type"; 3402 case BitcodeReader::MalformedBlock: 3403 return "Malformed block"; 3404 case BitcodeReader::MalformedGlobalInitializerSet: 3405 return "Malformed global initializer set"; 3406 case BitcodeReader::InvalidMultipleBlocks: 3407 return "Invalid multiple blocks"; 3408 case BitcodeReader::NeverResolvedValueFoundInFunction: 3409 return "Never resolved value found in function"; 3410 case BitcodeReader::InvalidValue: 3411 return "Invalid value"; 3412 } 3413 llvm_unreachable("Unknown error type!"); 3414 } 3415 }; 3416 } 3417 3418 const std::error_category &BitcodeReader::BitcodeErrorCategory() { 3419 static BitcodeErrorCategoryType O; 3420 return O; 3421 } 3422 3423 //===----------------------------------------------------------------------===// 3424 // External interface 3425 //===----------------------------------------------------------------------===// 3426 3427 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3428 /// 3429 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3430 LLVMContext &Context) { 3431 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3432 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3433 M->setMaterializer(R); 3434 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3435 R->releaseBuffer(); // Never take ownership on error. 3436 delete M; // Also deletes R. 3437 return EC; 3438 } 3439 3440 R->materializeForwardReferencedFunctions(); 3441 3442 return M; 3443 } 3444 3445 3446 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3447 DataStreamer *streamer, 3448 LLVMContext &Context, 3449 std::string *ErrMsg) { 3450 Module *M = new Module(name, Context); 3451 BitcodeReader *R = new BitcodeReader(streamer, Context); 3452 M->setMaterializer(R); 3453 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3454 if (ErrMsg) 3455 *ErrMsg = EC.message(); 3456 delete M; // Also deletes R. 3457 return nullptr; 3458 } 3459 return M; 3460 } 3461 3462 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer, 3463 LLVMContext &Context) { 3464 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context); 3465 if (!ModuleOrErr) 3466 return ModuleOrErr; 3467 Module *M = ModuleOrErr.get(); 3468 // Read in the entire module, and destroy the BitcodeReader. 3469 if (std::error_code EC = M->materializeAllPermanently(true)) { 3470 delete M; 3471 return EC; 3472 } 3473 3474 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3475 // written. We must defer until the Module has been fully materialized. 3476 3477 return M; 3478 } 3479 3480 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3481 LLVMContext &Context) { 3482 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3483 ErrorOr<std::string> Triple = R->parseTriple(); 3484 R->releaseBuffer(); 3485 delete R; 3486 if (Triple.getError()) 3487 return ""; 3488 return Triple.get(); 3489 } 3490