1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 // Number of module level metadata records specified by the 158 // MODULE_CODE_METADATA_VALUES record. 159 unsigned NumModuleMDs = 0; 160 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 161 bool SeenModuleValuesRecord = false; 162 163 std::vector<Type*> TypeList; 164 BitcodeReaderValueList ValueList; 165 BitcodeReaderMDValueList MDValueList; 166 std::vector<Comdat *> ComdatList; 167 SmallVector<Instruction *, 64> InstructionList; 168 169 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 170 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 171 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 172 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 173 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 174 175 SmallVector<Instruction*, 64> InstsWithTBAATag; 176 177 /// The set of attributes by index. Index zero in the file is for null, and 178 /// is thus not represented here. As such all indices are off by one. 179 std::vector<AttributeSet> MAttributes; 180 181 /// The set of attribute groups. 182 std::map<unsigned, AttributeSet> MAttributeGroups; 183 184 /// While parsing a function body, this is a list of the basic blocks for the 185 /// function. 186 std::vector<BasicBlock*> FunctionBBs; 187 188 // When reading the module header, this list is populated with functions that 189 // have bodies later in the file. 190 std::vector<Function*> FunctionsWithBodies; 191 192 // When intrinsic functions are encountered which require upgrading they are 193 // stored here with their replacement function. 194 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 195 UpgradedIntrinsicMap UpgradedIntrinsics; 196 197 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 198 DenseMap<unsigned, unsigned> MDKindMap; 199 200 // Several operations happen after the module header has been read, but 201 // before function bodies are processed. This keeps track of whether 202 // we've done this yet. 203 bool SeenFirstFunctionBody = false; 204 205 /// When function bodies are initially scanned, this map contains info about 206 /// where to find deferred function body in the stream. 207 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 208 209 /// When Metadata block is initially scanned when parsing the module, we may 210 /// choose to defer parsing of the metadata. This vector contains info about 211 /// which Metadata blocks are deferred. 212 std::vector<uint64_t> DeferredMetadataInfo; 213 214 /// These are basic blocks forward-referenced by block addresses. They are 215 /// inserted lazily into functions when they're loaded. The basic block ID is 216 /// its index into the vector. 217 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 218 std::deque<Function *> BasicBlockFwdRefQueue; 219 220 /// Indicates that we are using a new encoding for instruction operands where 221 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 222 /// instruction number, for a more compact encoding. Some instruction 223 /// operands are not relative to the instruction ID: basic block numbers, and 224 /// types. Once the old style function blocks have been phased out, we would 225 /// not need this flag. 226 bool UseRelativeIDs = false; 227 228 /// True if all functions will be materialized, negating the need to process 229 /// (e.g.) blockaddress forward references. 230 bool WillMaterializeAllForwardRefs = false; 231 232 /// Functions that have block addresses taken. This is usually empty. 233 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 234 235 /// True if any Metadata block has been materialized. 236 bool IsMetadataMaterialized = false; 237 238 bool StripDebugInfo = false; 239 240 /// Functions that need to be matched with subprograms when upgrading old 241 /// metadata. 242 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 243 244 std::vector<std::string> BundleTags; 245 246 public: 247 std::error_code error(BitcodeError E, const Twine &Message); 248 std::error_code error(BitcodeError E); 249 std::error_code error(const Twine &Message); 250 251 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 252 DiagnosticHandlerFunction DiagnosticHandler); 253 BitcodeReader(LLVMContext &Context, 254 DiagnosticHandlerFunction DiagnosticHandler); 255 ~BitcodeReader() override { freeState(); } 256 257 std::error_code materializeForwardReferencedFunctions(); 258 259 void freeState(); 260 261 void releaseBuffer(); 262 263 bool isDematerializable(const GlobalValue *GV) const override; 264 std::error_code materialize(GlobalValue *GV) override; 265 std::error_code materializeModule(Module *M) override; 266 std::vector<StructType *> getIdentifiedStructTypes() const override; 267 void dematerialize(GlobalValue *GV) override; 268 269 /// \brief Main interface to parsing a bitcode buffer. 270 /// \returns true if an error occurred. 271 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 272 Module *M, 273 bool ShouldLazyLoadMetadata = false); 274 275 /// \brief Cheap mechanism to just extract module triple 276 /// \returns true if an error occurred. 277 ErrorOr<std::string> parseTriple(); 278 279 /// Cheap mechanism to just extract the identification block out of bitcode. 280 ErrorOr<std::string> parseIdentificationBlock(); 281 282 static uint64_t decodeSignRotatedValue(uint64_t V); 283 284 /// Materialize any deferred Metadata block. 285 std::error_code materializeMetadata() override; 286 287 void setStripDebugInfo() override; 288 289 private: 290 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 291 // ProducerIdentification data member, and do some basic enforcement on the 292 // "epoch" encoded in the bitcode. 293 std::error_code parseBitcodeVersion(); 294 295 std::vector<StructType *> IdentifiedStructTypes; 296 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 297 StructType *createIdentifiedStructType(LLVMContext &Context); 298 299 Type *getTypeByID(unsigned ID); 300 Value *getFnValueByID(unsigned ID, Type *Ty, 301 OperatorConstraint OC = OC_None) { 302 if (Ty && Ty->isMetadataTy()) 303 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 304 return ValueList.getValueFwdRef(ID, Ty, OC); 305 } 306 Metadata *getFnMetadataByID(unsigned ID) { 307 return MDValueList.getValueFwdRef(ID); 308 } 309 BasicBlock *getBasicBlock(unsigned ID) const { 310 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 311 return FunctionBBs[ID]; 312 } 313 AttributeSet getAttributes(unsigned i) const { 314 if (i-1 < MAttributes.size()) 315 return MAttributes[i-1]; 316 return AttributeSet(); 317 } 318 319 /// Read a value/type pair out of the specified record from slot 'Slot'. 320 /// Increment Slot past the number of slots used in the record. Return true on 321 /// failure. 322 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 323 unsigned InstNum, Value *&ResVal) { 324 if (Slot == Record.size()) return true; 325 unsigned ValNo = (unsigned)Record[Slot++]; 326 // Adjust the ValNo, if it was encoded relative to the InstNum. 327 if (UseRelativeIDs) 328 ValNo = InstNum - ValNo; 329 if (ValNo < InstNum) { 330 // If this is not a forward reference, just return the value we already 331 // have. 332 ResVal = getFnValueByID(ValNo, nullptr); 333 return ResVal == nullptr; 334 } 335 if (Slot == Record.size()) 336 return true; 337 338 unsigned TypeNo = (unsigned)Record[Slot++]; 339 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 340 return ResVal == nullptr; 341 } 342 343 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 344 /// past the number of slots used by the value in the record. Return true if 345 /// there is an error. 346 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal, 348 OperatorConstraint OC = OC_None) { 349 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 350 return true; 351 // All values currently take a single record slot. 352 ++Slot; 353 return false; 354 } 355 356 /// Like popValue, but does not increment the Slot number. 357 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 358 unsigned InstNum, Type *Ty, Value *&ResVal, 359 OperatorConstraint OC = OC_None) { 360 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 361 return ResVal == nullptr; 362 } 363 364 /// Version of getValue that returns ResVal directly, or 0 if there is an 365 /// error. 366 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)Record[Slot]; 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty, OC); 374 } 375 376 /// Like getValue, but decodes signed VBRs. 377 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 378 unsigned InstNum, Type *Ty, 379 OperatorConstraint OC = OC_None) { 380 if (Slot == Record.size()) return nullptr; 381 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 382 // Adjust the ValNo, if it was encoded relative to the InstNum. 383 if (UseRelativeIDs) 384 ValNo = InstNum - ValNo; 385 return getFnValueByID(ValNo, Ty, OC); 386 } 387 388 /// Converts alignment exponent (i.e. power of two (or zero)) to the 389 /// corresponding alignment to use. If alignment is too large, returns 390 /// a corresponding error code. 391 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 392 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 393 std::error_code parseModule(uint64_t ResumeBit, 394 bool ShouldLazyLoadMetadata = false); 395 std::error_code parseAttributeBlock(); 396 std::error_code parseAttributeGroupBlock(); 397 std::error_code parseTypeTable(); 398 std::error_code parseTypeTableBody(); 399 std::error_code parseOperandBundleTags(); 400 401 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 402 unsigned NameIndex, Triple &TT); 403 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 404 std::error_code parseConstants(); 405 std::error_code rememberAndSkipFunctionBodies(); 406 std::error_code rememberAndSkipFunctionBody(); 407 /// Save the positions of the Metadata blocks and skip parsing the blocks. 408 std::error_code rememberAndSkipMetadata(); 409 std::error_code parseFunctionBody(Function *F); 410 std::error_code globalCleanup(); 411 std::error_code resolveGlobalAndAliasInits(); 412 std::error_code parseMetadata(bool ModuleLevel = false); 413 std::error_code parseMetadataKinds(); 414 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 415 std::error_code parseMetadataAttachment(Function &F); 416 ErrorOr<std::string> parseModuleTriple(); 417 std::error_code parseUseLists(); 418 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 419 std::error_code initStreamFromBuffer(); 420 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 421 std::error_code findFunctionInStream( 422 Function *F, 423 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 424 }; 425 426 /// Class to manage reading and parsing function summary index bitcode 427 /// files/sections. 428 class FunctionIndexBitcodeReader { 429 DiagnosticHandlerFunction DiagnosticHandler; 430 431 /// Eventually points to the function index built during parsing. 432 FunctionInfoIndex *TheIndex = nullptr; 433 434 std::unique_ptr<MemoryBuffer> Buffer; 435 std::unique_ptr<BitstreamReader> StreamFile; 436 BitstreamCursor Stream; 437 438 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 439 /// 440 /// If false, the summary section is fully parsed into the index during 441 /// the initial parse. Otherwise, if true, the caller is expected to 442 /// invoke \a readFunctionSummary for each summary needed, and the summary 443 /// section is thus parsed lazily. 444 bool IsLazy = false; 445 446 /// Used to indicate whether caller only wants to check for the presence 447 /// of the function summary bitcode section. All blocks are skipped, 448 /// but the SeenFuncSummary boolean is set. 449 bool CheckFuncSummaryPresenceOnly = false; 450 451 /// Indicates whether we have encountered a function summary section 452 /// yet during parsing, used when checking if file contains function 453 /// summary section. 454 bool SeenFuncSummary = false; 455 456 /// \brief Map populated during function summary section parsing, and 457 /// consumed during ValueSymbolTable parsing. 458 /// 459 /// Used to correlate summary records with VST entries. For the per-module 460 /// index this maps the ValueID to the parsed function summary, and 461 /// for the combined index this maps the summary record's bitcode 462 /// offset to the function summary (since in the combined index the 463 /// VST records do not hold value IDs but rather hold the function 464 /// summary record offset). 465 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 466 467 /// Map populated during module path string table parsing, from the 468 /// module ID to a string reference owned by the index's module 469 /// path string table, used to correlate with combined index function 470 /// summary records. 471 DenseMap<uint64_t, StringRef> ModuleIdMap; 472 473 public: 474 std::error_code error(BitcodeError E, const Twine &Message); 475 std::error_code error(BitcodeError E); 476 std::error_code error(const Twine &Message); 477 478 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 479 DiagnosticHandlerFunction DiagnosticHandler, 480 bool IsLazy = false, 481 bool CheckFuncSummaryPresenceOnly = false); 482 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 483 bool IsLazy = false, 484 bool CheckFuncSummaryPresenceOnly = false); 485 ~FunctionIndexBitcodeReader() { freeState(); } 486 487 void freeState(); 488 489 void releaseBuffer(); 490 491 /// Check if the parser has encountered a function summary section. 492 bool foundFuncSummary() { return SeenFuncSummary; } 493 494 /// \brief Main interface to parsing a bitcode buffer. 495 /// \returns true if an error occurred. 496 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 497 FunctionInfoIndex *I); 498 499 /// \brief Interface for parsing a function summary lazily. 500 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 501 FunctionInfoIndex *I, 502 size_t FunctionSummaryOffset); 503 504 private: 505 std::error_code parseModule(); 506 std::error_code parseValueSymbolTable(); 507 std::error_code parseEntireSummary(); 508 std::error_code parseModuleStringTable(); 509 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 510 std::error_code initStreamFromBuffer(); 511 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 512 }; 513 } // namespace 514 515 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 516 DiagnosticSeverity Severity, 517 const Twine &Msg) 518 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 519 520 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 521 522 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 523 std::error_code EC, const Twine &Message) { 524 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 525 DiagnosticHandler(DI); 526 return EC; 527 } 528 529 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 530 std::error_code EC) { 531 return error(DiagnosticHandler, EC, EC.message()); 532 } 533 534 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 535 const Twine &Message) { 536 return error(DiagnosticHandler, 537 make_error_code(BitcodeError::CorruptedBitcode), Message); 538 } 539 540 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 541 if (!ProducerIdentification.empty()) { 542 return ::error(DiagnosticHandler, make_error_code(E), 543 Message + " (Producer: '" + ProducerIdentification + 544 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 545 } 546 return ::error(DiagnosticHandler, make_error_code(E), Message); 547 } 548 549 std::error_code BitcodeReader::error(const Twine &Message) { 550 if (!ProducerIdentification.empty()) { 551 return ::error(DiagnosticHandler, 552 make_error_code(BitcodeError::CorruptedBitcode), 553 Message + " (Producer: '" + ProducerIdentification + 554 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 555 } 556 return ::error(DiagnosticHandler, 557 make_error_code(BitcodeError::CorruptedBitcode), Message); 558 } 559 560 std::error_code BitcodeReader::error(BitcodeError E) { 561 return ::error(DiagnosticHandler, make_error_code(E)); 562 } 563 564 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 565 LLVMContext &C) { 566 if (F) 567 return F; 568 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 569 } 570 571 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 572 DiagnosticHandlerFunction DiagnosticHandler) 573 : Context(Context), 574 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 575 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 576 577 BitcodeReader::BitcodeReader(LLVMContext &Context, 578 DiagnosticHandlerFunction DiagnosticHandler) 579 : Context(Context), 580 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 581 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 582 583 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 584 if (WillMaterializeAllForwardRefs) 585 return std::error_code(); 586 587 // Prevent recursion. 588 WillMaterializeAllForwardRefs = true; 589 590 while (!BasicBlockFwdRefQueue.empty()) { 591 Function *F = BasicBlockFwdRefQueue.front(); 592 BasicBlockFwdRefQueue.pop_front(); 593 assert(F && "Expected valid function"); 594 if (!BasicBlockFwdRefs.count(F)) 595 // Already materialized. 596 continue; 597 598 // Check for a function that isn't materializable to prevent an infinite 599 // loop. When parsing a blockaddress stored in a global variable, there 600 // isn't a trivial way to check if a function will have a body without a 601 // linear search through FunctionsWithBodies, so just check it here. 602 if (!F->isMaterializable()) 603 return error("Never resolved function from blockaddress"); 604 605 // Try to materialize F. 606 if (std::error_code EC = materialize(F)) 607 return EC; 608 } 609 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 610 611 // Reset state. 612 WillMaterializeAllForwardRefs = false; 613 return std::error_code(); 614 } 615 616 void BitcodeReader::freeState() { 617 Buffer = nullptr; 618 std::vector<Type*>().swap(TypeList); 619 ValueList.clear(); 620 MDValueList.clear(); 621 std::vector<Comdat *>().swap(ComdatList); 622 623 std::vector<AttributeSet>().swap(MAttributes); 624 std::vector<BasicBlock*>().swap(FunctionBBs); 625 std::vector<Function*>().swap(FunctionsWithBodies); 626 DeferredFunctionInfo.clear(); 627 DeferredMetadataInfo.clear(); 628 MDKindMap.clear(); 629 630 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 631 BasicBlockFwdRefQueue.clear(); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // Helper functions to implement forward reference resolution, etc. 636 //===----------------------------------------------------------------------===// 637 638 /// Convert a string from a record into an std::string, return true on failure. 639 template <typename StrTy> 640 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 641 StrTy &Result) { 642 if (Idx > Record.size()) 643 return true; 644 645 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 646 Result += (char)Record[i]; 647 return false; 648 } 649 650 static bool hasImplicitComdat(size_t Val) { 651 switch (Val) { 652 default: 653 return false; 654 case 1: // Old WeakAnyLinkage 655 case 4: // Old LinkOnceAnyLinkage 656 case 10: // Old WeakODRLinkage 657 case 11: // Old LinkOnceODRLinkage 658 return true; 659 } 660 } 661 662 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 663 switch (Val) { 664 default: // Map unknown/new linkages to external 665 case 0: 666 return GlobalValue::ExternalLinkage; 667 case 2: 668 return GlobalValue::AppendingLinkage; 669 case 3: 670 return GlobalValue::InternalLinkage; 671 case 5: 672 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 673 case 6: 674 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 675 case 7: 676 return GlobalValue::ExternalWeakLinkage; 677 case 8: 678 return GlobalValue::CommonLinkage; 679 case 9: 680 return GlobalValue::PrivateLinkage; 681 case 12: 682 return GlobalValue::AvailableExternallyLinkage; 683 case 13: 684 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 685 case 14: 686 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 687 case 15: 688 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 689 case 1: // Old value with implicit comdat. 690 case 16: 691 return GlobalValue::WeakAnyLinkage; 692 case 10: // Old value with implicit comdat. 693 case 17: 694 return GlobalValue::WeakODRLinkage; 695 case 4: // Old value with implicit comdat. 696 case 18: 697 return GlobalValue::LinkOnceAnyLinkage; 698 case 11: // Old value with implicit comdat. 699 case 19: 700 return GlobalValue::LinkOnceODRLinkage; 701 } 702 } 703 704 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 705 switch (Val) { 706 default: // Map unknown visibilities to default. 707 case 0: return GlobalValue::DefaultVisibility; 708 case 1: return GlobalValue::HiddenVisibility; 709 case 2: return GlobalValue::ProtectedVisibility; 710 } 711 } 712 713 static GlobalValue::DLLStorageClassTypes 714 getDecodedDLLStorageClass(unsigned Val) { 715 switch (Val) { 716 default: // Map unknown values to default. 717 case 0: return GlobalValue::DefaultStorageClass; 718 case 1: return GlobalValue::DLLImportStorageClass; 719 case 2: return GlobalValue::DLLExportStorageClass; 720 } 721 } 722 723 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 724 switch (Val) { 725 case 0: return GlobalVariable::NotThreadLocal; 726 default: // Map unknown non-zero value to general dynamic. 727 case 1: return GlobalVariable::GeneralDynamicTLSModel; 728 case 2: return GlobalVariable::LocalDynamicTLSModel; 729 case 3: return GlobalVariable::InitialExecTLSModel; 730 case 4: return GlobalVariable::LocalExecTLSModel; 731 } 732 } 733 734 static int getDecodedCastOpcode(unsigned Val) { 735 switch (Val) { 736 default: return -1; 737 case bitc::CAST_TRUNC : return Instruction::Trunc; 738 case bitc::CAST_ZEXT : return Instruction::ZExt; 739 case bitc::CAST_SEXT : return Instruction::SExt; 740 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 741 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 742 case bitc::CAST_UITOFP : return Instruction::UIToFP; 743 case bitc::CAST_SITOFP : return Instruction::SIToFP; 744 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 745 case bitc::CAST_FPEXT : return Instruction::FPExt; 746 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 747 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 748 case bitc::CAST_BITCAST : return Instruction::BitCast; 749 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 750 } 751 } 752 753 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 754 bool IsFP = Ty->isFPOrFPVectorTy(); 755 // BinOps are only valid for int/fp or vector of int/fp types 756 if (!IsFP && !Ty->isIntOrIntVectorTy()) 757 return -1; 758 759 switch (Val) { 760 default: 761 return -1; 762 case bitc::BINOP_ADD: 763 return IsFP ? Instruction::FAdd : Instruction::Add; 764 case bitc::BINOP_SUB: 765 return IsFP ? Instruction::FSub : Instruction::Sub; 766 case bitc::BINOP_MUL: 767 return IsFP ? Instruction::FMul : Instruction::Mul; 768 case bitc::BINOP_UDIV: 769 return IsFP ? -1 : Instruction::UDiv; 770 case bitc::BINOP_SDIV: 771 return IsFP ? Instruction::FDiv : Instruction::SDiv; 772 case bitc::BINOP_UREM: 773 return IsFP ? -1 : Instruction::URem; 774 case bitc::BINOP_SREM: 775 return IsFP ? Instruction::FRem : Instruction::SRem; 776 case bitc::BINOP_SHL: 777 return IsFP ? -1 : Instruction::Shl; 778 case bitc::BINOP_LSHR: 779 return IsFP ? -1 : Instruction::LShr; 780 case bitc::BINOP_ASHR: 781 return IsFP ? -1 : Instruction::AShr; 782 case bitc::BINOP_AND: 783 return IsFP ? -1 : Instruction::And; 784 case bitc::BINOP_OR: 785 return IsFP ? -1 : Instruction::Or; 786 case bitc::BINOP_XOR: 787 return IsFP ? -1 : Instruction::Xor; 788 } 789 } 790 791 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 792 switch (Val) { 793 default: return AtomicRMWInst::BAD_BINOP; 794 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 795 case bitc::RMW_ADD: return AtomicRMWInst::Add; 796 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 797 case bitc::RMW_AND: return AtomicRMWInst::And; 798 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 799 case bitc::RMW_OR: return AtomicRMWInst::Or; 800 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 801 case bitc::RMW_MAX: return AtomicRMWInst::Max; 802 case bitc::RMW_MIN: return AtomicRMWInst::Min; 803 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 804 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 805 } 806 } 807 808 static AtomicOrdering getDecodedOrdering(unsigned Val) { 809 switch (Val) { 810 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 811 case bitc::ORDERING_UNORDERED: return Unordered; 812 case bitc::ORDERING_MONOTONIC: return Monotonic; 813 case bitc::ORDERING_ACQUIRE: return Acquire; 814 case bitc::ORDERING_RELEASE: return Release; 815 case bitc::ORDERING_ACQREL: return AcquireRelease; 816 default: // Map unknown orderings to sequentially-consistent. 817 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 818 } 819 } 820 821 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 822 switch (Val) { 823 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 824 default: // Map unknown scopes to cross-thread. 825 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 826 } 827 } 828 829 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown selection kinds to any. 832 case bitc::COMDAT_SELECTION_KIND_ANY: 833 return Comdat::Any; 834 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 835 return Comdat::ExactMatch; 836 case bitc::COMDAT_SELECTION_KIND_LARGEST: 837 return Comdat::Largest; 838 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 839 return Comdat::NoDuplicates; 840 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 841 return Comdat::SameSize; 842 } 843 } 844 845 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 846 FastMathFlags FMF; 847 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 848 FMF.setUnsafeAlgebra(); 849 if (0 != (Val & FastMathFlags::NoNaNs)) 850 FMF.setNoNaNs(); 851 if (0 != (Val & FastMathFlags::NoInfs)) 852 FMF.setNoInfs(); 853 if (0 != (Val & FastMathFlags::NoSignedZeros)) 854 FMF.setNoSignedZeros(); 855 if (0 != (Val & FastMathFlags::AllowReciprocal)) 856 FMF.setAllowReciprocal(); 857 return FMF; 858 } 859 860 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 861 switch (Val) { 862 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 863 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 864 } 865 } 866 867 namespace llvm { 868 namespace { 869 /// \brief A class for maintaining the slot number definition 870 /// as a placeholder for the actual definition for forward constants defs. 871 class ConstantPlaceHolder : public ConstantExpr { 872 void operator=(const ConstantPlaceHolder &) = delete; 873 874 public: 875 // allocate space for exactly one operand 876 void *operator new(size_t s) { return User::operator new(s, 1); } 877 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 878 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 879 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 880 } 881 882 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 883 static bool classof(const Value *V) { 884 return isa<ConstantExpr>(V) && 885 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 886 } 887 888 /// Provide fast operand accessors 889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 890 }; 891 } 892 893 // FIXME: can we inherit this from ConstantExpr? 894 template <> 895 struct OperandTraits<ConstantPlaceHolder> : 896 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 897 }; 898 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 899 } 900 901 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 902 if (Idx == size()) { 903 push_back(V); 904 return false; 905 } 906 907 if (Idx >= size()) 908 resize(Idx+1); 909 910 WeakVH &OldV = ValuePtrs[Idx]; 911 if (!OldV) { 912 OldV = V; 913 return false; 914 } 915 916 // Handle constants and non-constants (e.g. instrs) differently for 917 // efficiency. 918 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 919 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 920 OldV = V; 921 } else { 922 // If there was a forward reference to this value, replace it. 923 Value *PrevVal = OldV; 924 // Check operator constraints. We only put cleanuppads or catchpads in 925 // the forward value map if the value is constrained to match. 926 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 927 if (!isa<CatchPadInst>(V)) 928 return true; 929 // Delete the dummy basic block that was created with the sentinel 930 // catchpad. 931 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 932 assert(DummyBlock == CatchPad->getNormalDest()); 933 CatchPad->dropAllReferences(); 934 delete DummyBlock; 935 } else if (isa<CleanupPadInst>(PrevVal)) { 936 if (!isa<CleanupPadInst>(V)) 937 return true; 938 } 939 OldV->replaceAllUsesWith(V); 940 delete PrevVal; 941 } 942 943 return false; 944 } 945 946 947 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 948 Type *Ty) { 949 if (Idx >= size()) 950 resize(Idx + 1); 951 952 if (Value *V = ValuePtrs[Idx]) { 953 if (Ty != V->getType()) 954 report_fatal_error("Type mismatch in constant table!"); 955 return cast<Constant>(V); 956 } 957 958 // Create and return a placeholder, which will later be RAUW'd. 959 Constant *C = new ConstantPlaceHolder(Ty, Context); 960 ValuePtrs[Idx] = C; 961 return C; 962 } 963 964 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 965 OperatorConstraint OC) { 966 // Bail out for a clearly invalid value. This would make us call resize(0) 967 if (Idx == UINT_MAX) 968 return nullptr; 969 970 if (Idx >= size()) 971 resize(Idx + 1); 972 973 if (Value *V = ValuePtrs[Idx]) { 974 // If the types don't match, it's invalid. 975 if (Ty && Ty != V->getType()) 976 return nullptr; 977 if (!OC) 978 return V; 979 // Use dyn_cast to enforce operator constraints 980 switch (OC) { 981 case OC_CatchPad: 982 return dyn_cast<CatchPadInst>(V); 983 case OC_CleanupPad: 984 return dyn_cast<CleanupPadInst>(V); 985 default: 986 llvm_unreachable("Unexpected operator constraint"); 987 } 988 } 989 990 // No type specified, must be invalid reference. 991 if (!Ty) return nullptr; 992 993 // Create and return a placeholder, which will later be RAUW'd. 994 Value *V; 995 switch (OC) { 996 case OC_None: 997 V = new Argument(Ty); 998 break; 999 case OC_CatchPad: { 1000 BasicBlock *BB = BasicBlock::Create(Context); 1001 V = CatchPadInst::Create(BB, BB, {}); 1002 break; 1003 } 1004 default: 1005 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 1006 V = CleanupPadInst::Create(Context, {}); 1007 break; 1008 } 1009 1010 ValuePtrs[Idx] = V; 1011 return V; 1012 } 1013 1014 /// Once all constants are read, this method bulk resolves any forward 1015 /// references. The idea behind this is that we sometimes get constants (such 1016 /// as large arrays) which reference *many* forward ref constants. Replacing 1017 /// each of these causes a lot of thrashing when building/reuniquing the 1018 /// constant. Instead of doing this, we look at all the uses and rewrite all 1019 /// the place holders at once for any constant that uses a placeholder. 1020 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1021 // Sort the values by-pointer so that they are efficient to look up with a 1022 // binary search. 1023 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1024 1025 SmallVector<Constant*, 64> NewOps; 1026 1027 while (!ResolveConstants.empty()) { 1028 Value *RealVal = operator[](ResolveConstants.back().second); 1029 Constant *Placeholder = ResolveConstants.back().first; 1030 ResolveConstants.pop_back(); 1031 1032 // Loop over all users of the placeholder, updating them to reference the 1033 // new value. If they reference more than one placeholder, update them all 1034 // at once. 1035 while (!Placeholder->use_empty()) { 1036 auto UI = Placeholder->user_begin(); 1037 User *U = *UI; 1038 1039 // If the using object isn't uniqued, just update the operands. This 1040 // handles instructions and initializers for global variables. 1041 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1042 UI.getUse().set(RealVal); 1043 continue; 1044 } 1045 1046 // Otherwise, we have a constant that uses the placeholder. Replace that 1047 // constant with a new constant that has *all* placeholder uses updated. 1048 Constant *UserC = cast<Constant>(U); 1049 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1050 I != E; ++I) { 1051 Value *NewOp; 1052 if (!isa<ConstantPlaceHolder>(*I)) { 1053 // Not a placeholder reference. 1054 NewOp = *I; 1055 } else if (*I == Placeholder) { 1056 // Common case is that it just references this one placeholder. 1057 NewOp = RealVal; 1058 } else { 1059 // Otherwise, look up the placeholder in ResolveConstants. 1060 ResolveConstantsTy::iterator It = 1061 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1062 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1063 0)); 1064 assert(It != ResolveConstants.end() && It->first == *I); 1065 NewOp = operator[](It->second); 1066 } 1067 1068 NewOps.push_back(cast<Constant>(NewOp)); 1069 } 1070 1071 // Make the new constant. 1072 Constant *NewC; 1073 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1074 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1075 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1076 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1077 } else if (isa<ConstantVector>(UserC)) { 1078 NewC = ConstantVector::get(NewOps); 1079 } else { 1080 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1081 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1082 } 1083 1084 UserC->replaceAllUsesWith(NewC); 1085 UserC->destroyConstant(); 1086 NewOps.clear(); 1087 } 1088 1089 // Update all ValueHandles, they should be the only users at this point. 1090 Placeholder->replaceAllUsesWith(RealVal); 1091 delete Placeholder; 1092 } 1093 } 1094 1095 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1096 if (Idx == size()) { 1097 push_back(MD); 1098 return; 1099 } 1100 1101 if (Idx >= size()) 1102 resize(Idx+1); 1103 1104 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1105 if (!OldMD) { 1106 OldMD.reset(MD); 1107 return; 1108 } 1109 1110 // If there was a forward reference to this value, replace it. 1111 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1112 PrevMD->replaceAllUsesWith(MD); 1113 --NumFwdRefs; 1114 } 1115 1116 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1117 if (Idx >= size()) 1118 resize(Idx + 1); 1119 1120 if (Metadata *MD = MDValuePtrs[Idx]) 1121 return MD; 1122 1123 // Track forward refs to be resolved later. 1124 if (AnyFwdRefs) { 1125 MinFwdRef = std::min(MinFwdRef, Idx); 1126 MaxFwdRef = std::max(MaxFwdRef, Idx); 1127 } else { 1128 AnyFwdRefs = true; 1129 MinFwdRef = MaxFwdRef = Idx; 1130 } 1131 ++NumFwdRefs; 1132 1133 // Create and return a placeholder, which will later be RAUW'd. 1134 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1135 MDValuePtrs[Idx].reset(MD); 1136 return MD; 1137 } 1138 1139 void BitcodeReaderMDValueList::tryToResolveCycles() { 1140 if (!AnyFwdRefs) 1141 // Nothing to do. 1142 return; 1143 1144 if (NumFwdRefs) 1145 // Still forward references... can't resolve cycles. 1146 return; 1147 1148 // Resolve any cycles. 1149 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1150 auto &MD = MDValuePtrs[I]; 1151 auto *N = dyn_cast_or_null<MDNode>(MD); 1152 if (!N) 1153 continue; 1154 1155 assert(!N->isTemporary() && "Unexpected forward reference"); 1156 N->resolveCycles(); 1157 } 1158 1159 // Make sure we return early again until there's another forward ref. 1160 AnyFwdRefs = false; 1161 } 1162 1163 Type *BitcodeReader::getTypeByID(unsigned ID) { 1164 // The type table size is always specified correctly. 1165 if (ID >= TypeList.size()) 1166 return nullptr; 1167 1168 if (Type *Ty = TypeList[ID]) 1169 return Ty; 1170 1171 // If we have a forward reference, the only possible case is when it is to a 1172 // named struct. Just create a placeholder for now. 1173 return TypeList[ID] = createIdentifiedStructType(Context); 1174 } 1175 1176 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1177 StringRef Name) { 1178 auto *Ret = StructType::create(Context, Name); 1179 IdentifiedStructTypes.push_back(Ret); 1180 return Ret; 1181 } 1182 1183 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1184 auto *Ret = StructType::create(Context); 1185 IdentifiedStructTypes.push_back(Ret); 1186 return Ret; 1187 } 1188 1189 1190 //===----------------------------------------------------------------------===// 1191 // Functions for parsing blocks from the bitcode file 1192 //===----------------------------------------------------------------------===// 1193 1194 1195 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1196 /// been decoded from the given integer. This function must stay in sync with 1197 /// 'encodeLLVMAttributesForBitcode'. 1198 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1199 uint64_t EncodedAttrs) { 1200 // FIXME: Remove in 4.0. 1201 1202 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1203 // the bits above 31 down by 11 bits. 1204 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1205 assert((!Alignment || isPowerOf2_32(Alignment)) && 1206 "Alignment must be a power of two."); 1207 1208 if (Alignment) 1209 B.addAlignmentAttr(Alignment); 1210 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1211 (EncodedAttrs & 0xffff)); 1212 } 1213 1214 std::error_code BitcodeReader::parseAttributeBlock() { 1215 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1216 return error("Invalid record"); 1217 1218 if (!MAttributes.empty()) 1219 return error("Invalid multiple blocks"); 1220 1221 SmallVector<uint64_t, 64> Record; 1222 1223 SmallVector<AttributeSet, 8> Attrs; 1224 1225 // Read all the records. 1226 while (1) { 1227 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1228 1229 switch (Entry.Kind) { 1230 case BitstreamEntry::SubBlock: // Handled for us already. 1231 case BitstreamEntry::Error: 1232 return error("Malformed block"); 1233 case BitstreamEntry::EndBlock: 1234 return std::error_code(); 1235 case BitstreamEntry::Record: 1236 // The interesting case. 1237 break; 1238 } 1239 1240 // Read a record. 1241 Record.clear(); 1242 switch (Stream.readRecord(Entry.ID, Record)) { 1243 default: // Default behavior: ignore. 1244 break; 1245 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1246 // FIXME: Remove in 4.0. 1247 if (Record.size() & 1) 1248 return error("Invalid record"); 1249 1250 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1251 AttrBuilder B; 1252 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1253 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1254 } 1255 1256 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1257 Attrs.clear(); 1258 break; 1259 } 1260 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1261 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1262 Attrs.push_back(MAttributeGroups[Record[i]]); 1263 1264 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1265 Attrs.clear(); 1266 break; 1267 } 1268 } 1269 } 1270 } 1271 1272 // Returns Attribute::None on unrecognized codes. 1273 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1274 switch (Code) { 1275 default: 1276 return Attribute::None; 1277 case bitc::ATTR_KIND_ALIGNMENT: 1278 return Attribute::Alignment; 1279 case bitc::ATTR_KIND_ALWAYS_INLINE: 1280 return Attribute::AlwaysInline; 1281 case bitc::ATTR_KIND_ARGMEMONLY: 1282 return Attribute::ArgMemOnly; 1283 case bitc::ATTR_KIND_BUILTIN: 1284 return Attribute::Builtin; 1285 case bitc::ATTR_KIND_BY_VAL: 1286 return Attribute::ByVal; 1287 case bitc::ATTR_KIND_IN_ALLOCA: 1288 return Attribute::InAlloca; 1289 case bitc::ATTR_KIND_COLD: 1290 return Attribute::Cold; 1291 case bitc::ATTR_KIND_CONVERGENT: 1292 return Attribute::Convergent; 1293 case bitc::ATTR_KIND_INLINE_HINT: 1294 return Attribute::InlineHint; 1295 case bitc::ATTR_KIND_IN_REG: 1296 return Attribute::InReg; 1297 case bitc::ATTR_KIND_JUMP_TABLE: 1298 return Attribute::JumpTable; 1299 case bitc::ATTR_KIND_MIN_SIZE: 1300 return Attribute::MinSize; 1301 case bitc::ATTR_KIND_NAKED: 1302 return Attribute::Naked; 1303 case bitc::ATTR_KIND_NEST: 1304 return Attribute::Nest; 1305 case bitc::ATTR_KIND_NO_ALIAS: 1306 return Attribute::NoAlias; 1307 case bitc::ATTR_KIND_NO_BUILTIN: 1308 return Attribute::NoBuiltin; 1309 case bitc::ATTR_KIND_NO_CAPTURE: 1310 return Attribute::NoCapture; 1311 case bitc::ATTR_KIND_NO_DUPLICATE: 1312 return Attribute::NoDuplicate; 1313 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1314 return Attribute::NoImplicitFloat; 1315 case bitc::ATTR_KIND_NO_INLINE: 1316 return Attribute::NoInline; 1317 case bitc::ATTR_KIND_NO_RECURSE: 1318 return Attribute::NoRecurse; 1319 case bitc::ATTR_KIND_NON_LAZY_BIND: 1320 return Attribute::NonLazyBind; 1321 case bitc::ATTR_KIND_NON_NULL: 1322 return Attribute::NonNull; 1323 case bitc::ATTR_KIND_DEREFERENCEABLE: 1324 return Attribute::Dereferenceable; 1325 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1326 return Attribute::DereferenceableOrNull; 1327 case bitc::ATTR_KIND_NO_RED_ZONE: 1328 return Attribute::NoRedZone; 1329 case bitc::ATTR_KIND_NO_RETURN: 1330 return Attribute::NoReturn; 1331 case bitc::ATTR_KIND_NO_UNWIND: 1332 return Attribute::NoUnwind; 1333 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1334 return Attribute::OptimizeForSize; 1335 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1336 return Attribute::OptimizeNone; 1337 case bitc::ATTR_KIND_READ_NONE: 1338 return Attribute::ReadNone; 1339 case bitc::ATTR_KIND_READ_ONLY: 1340 return Attribute::ReadOnly; 1341 case bitc::ATTR_KIND_RETURNED: 1342 return Attribute::Returned; 1343 case bitc::ATTR_KIND_RETURNS_TWICE: 1344 return Attribute::ReturnsTwice; 1345 case bitc::ATTR_KIND_S_EXT: 1346 return Attribute::SExt; 1347 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1348 return Attribute::StackAlignment; 1349 case bitc::ATTR_KIND_STACK_PROTECT: 1350 return Attribute::StackProtect; 1351 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1352 return Attribute::StackProtectReq; 1353 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1354 return Attribute::StackProtectStrong; 1355 case bitc::ATTR_KIND_SAFESTACK: 1356 return Attribute::SafeStack; 1357 case bitc::ATTR_KIND_STRUCT_RET: 1358 return Attribute::StructRet; 1359 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1360 return Attribute::SanitizeAddress; 1361 case bitc::ATTR_KIND_SANITIZE_THREAD: 1362 return Attribute::SanitizeThread; 1363 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1364 return Attribute::SanitizeMemory; 1365 case bitc::ATTR_KIND_UW_TABLE: 1366 return Attribute::UWTable; 1367 case bitc::ATTR_KIND_Z_EXT: 1368 return Attribute::ZExt; 1369 } 1370 } 1371 1372 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1373 unsigned &Alignment) { 1374 // Note: Alignment in bitcode files is incremented by 1, so that zero 1375 // can be used for default alignment. 1376 if (Exponent > Value::MaxAlignmentExponent + 1) 1377 return error("Invalid alignment value"); 1378 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1379 return std::error_code(); 1380 } 1381 1382 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1383 Attribute::AttrKind *Kind) { 1384 *Kind = getAttrFromCode(Code); 1385 if (*Kind == Attribute::None) 1386 return error(BitcodeError::CorruptedBitcode, 1387 "Unknown attribute kind (" + Twine(Code) + ")"); 1388 return std::error_code(); 1389 } 1390 1391 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1392 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1393 return error("Invalid record"); 1394 1395 if (!MAttributeGroups.empty()) 1396 return error("Invalid multiple blocks"); 1397 1398 SmallVector<uint64_t, 64> Record; 1399 1400 // Read all the records. 1401 while (1) { 1402 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1403 1404 switch (Entry.Kind) { 1405 case BitstreamEntry::SubBlock: // Handled for us already. 1406 case BitstreamEntry::Error: 1407 return error("Malformed block"); 1408 case BitstreamEntry::EndBlock: 1409 return std::error_code(); 1410 case BitstreamEntry::Record: 1411 // The interesting case. 1412 break; 1413 } 1414 1415 // Read a record. 1416 Record.clear(); 1417 switch (Stream.readRecord(Entry.ID, Record)) { 1418 default: // Default behavior: ignore. 1419 break; 1420 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1421 if (Record.size() < 3) 1422 return error("Invalid record"); 1423 1424 uint64_t GrpID = Record[0]; 1425 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1426 1427 AttrBuilder B; 1428 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1429 if (Record[i] == 0) { // Enum attribute 1430 Attribute::AttrKind Kind; 1431 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1432 return EC; 1433 1434 B.addAttribute(Kind); 1435 } else if (Record[i] == 1) { // Integer attribute 1436 Attribute::AttrKind Kind; 1437 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1438 return EC; 1439 if (Kind == Attribute::Alignment) 1440 B.addAlignmentAttr(Record[++i]); 1441 else if (Kind == Attribute::StackAlignment) 1442 B.addStackAlignmentAttr(Record[++i]); 1443 else if (Kind == Attribute::Dereferenceable) 1444 B.addDereferenceableAttr(Record[++i]); 1445 else if (Kind == Attribute::DereferenceableOrNull) 1446 B.addDereferenceableOrNullAttr(Record[++i]); 1447 } else { // String attribute 1448 assert((Record[i] == 3 || Record[i] == 4) && 1449 "Invalid attribute group entry"); 1450 bool HasValue = (Record[i++] == 4); 1451 SmallString<64> KindStr; 1452 SmallString<64> ValStr; 1453 1454 while (Record[i] != 0 && i != e) 1455 KindStr += Record[i++]; 1456 assert(Record[i] == 0 && "Kind string not null terminated"); 1457 1458 if (HasValue) { 1459 // Has a value associated with it. 1460 ++i; // Skip the '0' that terminates the "kind" string. 1461 while (Record[i] != 0 && i != e) 1462 ValStr += Record[i++]; 1463 assert(Record[i] == 0 && "Value string not null terminated"); 1464 } 1465 1466 B.addAttribute(KindStr.str(), ValStr.str()); 1467 } 1468 } 1469 1470 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1471 break; 1472 } 1473 } 1474 } 1475 } 1476 1477 std::error_code BitcodeReader::parseTypeTable() { 1478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1479 return error("Invalid record"); 1480 1481 return parseTypeTableBody(); 1482 } 1483 1484 std::error_code BitcodeReader::parseTypeTableBody() { 1485 if (!TypeList.empty()) 1486 return error("Invalid multiple blocks"); 1487 1488 SmallVector<uint64_t, 64> Record; 1489 unsigned NumRecords = 0; 1490 1491 SmallString<64> TypeName; 1492 1493 // Read all the records for this type table. 1494 while (1) { 1495 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1496 1497 switch (Entry.Kind) { 1498 case BitstreamEntry::SubBlock: // Handled for us already. 1499 case BitstreamEntry::Error: 1500 return error("Malformed block"); 1501 case BitstreamEntry::EndBlock: 1502 if (NumRecords != TypeList.size()) 1503 return error("Malformed block"); 1504 return std::error_code(); 1505 case BitstreamEntry::Record: 1506 // The interesting case. 1507 break; 1508 } 1509 1510 // Read a record. 1511 Record.clear(); 1512 Type *ResultTy = nullptr; 1513 switch (Stream.readRecord(Entry.ID, Record)) { 1514 default: 1515 return error("Invalid value"); 1516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1518 // type list. This allows us to reserve space. 1519 if (Record.size() < 1) 1520 return error("Invalid record"); 1521 TypeList.resize(Record[0]); 1522 continue; 1523 case bitc::TYPE_CODE_VOID: // VOID 1524 ResultTy = Type::getVoidTy(Context); 1525 break; 1526 case bitc::TYPE_CODE_HALF: // HALF 1527 ResultTy = Type::getHalfTy(Context); 1528 break; 1529 case bitc::TYPE_CODE_FLOAT: // FLOAT 1530 ResultTy = Type::getFloatTy(Context); 1531 break; 1532 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1533 ResultTy = Type::getDoubleTy(Context); 1534 break; 1535 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1536 ResultTy = Type::getX86_FP80Ty(Context); 1537 break; 1538 case bitc::TYPE_CODE_FP128: // FP128 1539 ResultTy = Type::getFP128Ty(Context); 1540 break; 1541 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1542 ResultTy = Type::getPPC_FP128Ty(Context); 1543 break; 1544 case bitc::TYPE_CODE_LABEL: // LABEL 1545 ResultTy = Type::getLabelTy(Context); 1546 break; 1547 case bitc::TYPE_CODE_METADATA: // METADATA 1548 ResultTy = Type::getMetadataTy(Context); 1549 break; 1550 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1551 ResultTy = Type::getX86_MMXTy(Context); 1552 break; 1553 case bitc::TYPE_CODE_TOKEN: // TOKEN 1554 ResultTy = Type::getTokenTy(Context); 1555 break; 1556 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1557 if (Record.size() < 1) 1558 return error("Invalid record"); 1559 1560 uint64_t NumBits = Record[0]; 1561 if (NumBits < IntegerType::MIN_INT_BITS || 1562 NumBits > IntegerType::MAX_INT_BITS) 1563 return error("Bitwidth for integer type out of range"); 1564 ResultTy = IntegerType::get(Context, NumBits); 1565 break; 1566 } 1567 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1568 // [pointee type, address space] 1569 if (Record.size() < 1) 1570 return error("Invalid record"); 1571 unsigned AddressSpace = 0; 1572 if (Record.size() == 2) 1573 AddressSpace = Record[1]; 1574 ResultTy = getTypeByID(Record[0]); 1575 if (!ResultTy || 1576 !PointerType::isValidElementType(ResultTy)) 1577 return error("Invalid type"); 1578 ResultTy = PointerType::get(ResultTy, AddressSpace); 1579 break; 1580 } 1581 case bitc::TYPE_CODE_FUNCTION_OLD: { 1582 // FIXME: attrid is dead, remove it in LLVM 4.0 1583 // FUNCTION: [vararg, attrid, retty, paramty x N] 1584 if (Record.size() < 3) 1585 return error("Invalid record"); 1586 SmallVector<Type*, 8> ArgTys; 1587 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1588 if (Type *T = getTypeByID(Record[i])) 1589 ArgTys.push_back(T); 1590 else 1591 break; 1592 } 1593 1594 ResultTy = getTypeByID(Record[2]); 1595 if (!ResultTy || ArgTys.size() < Record.size()-3) 1596 return error("Invalid type"); 1597 1598 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1599 break; 1600 } 1601 case bitc::TYPE_CODE_FUNCTION: { 1602 // FUNCTION: [vararg, retty, paramty x N] 1603 if (Record.size() < 2) 1604 return error("Invalid record"); 1605 SmallVector<Type*, 8> ArgTys; 1606 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1607 if (Type *T = getTypeByID(Record[i])) { 1608 if (!FunctionType::isValidArgumentType(T)) 1609 return error("Invalid function argument type"); 1610 ArgTys.push_back(T); 1611 } 1612 else 1613 break; 1614 } 1615 1616 ResultTy = getTypeByID(Record[1]); 1617 if (!ResultTy || ArgTys.size() < Record.size()-2) 1618 return error("Invalid type"); 1619 1620 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1621 break; 1622 } 1623 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1624 if (Record.size() < 1) 1625 return error("Invalid record"); 1626 SmallVector<Type*, 8> EltTys; 1627 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1628 if (Type *T = getTypeByID(Record[i])) 1629 EltTys.push_back(T); 1630 else 1631 break; 1632 } 1633 if (EltTys.size() != Record.size()-1) 1634 return error("Invalid type"); 1635 ResultTy = StructType::get(Context, EltTys, Record[0]); 1636 break; 1637 } 1638 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1639 if (convertToString(Record, 0, TypeName)) 1640 return error("Invalid record"); 1641 continue; 1642 1643 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1644 if (Record.size() < 1) 1645 return error("Invalid record"); 1646 1647 if (NumRecords >= TypeList.size()) 1648 return error("Invalid TYPE table"); 1649 1650 // Check to see if this was forward referenced, if so fill in the temp. 1651 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1652 if (Res) { 1653 Res->setName(TypeName); 1654 TypeList[NumRecords] = nullptr; 1655 } else // Otherwise, create a new struct. 1656 Res = createIdentifiedStructType(Context, TypeName); 1657 TypeName.clear(); 1658 1659 SmallVector<Type*, 8> EltTys; 1660 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1661 if (Type *T = getTypeByID(Record[i])) 1662 EltTys.push_back(T); 1663 else 1664 break; 1665 } 1666 if (EltTys.size() != Record.size()-1) 1667 return error("Invalid record"); 1668 Res->setBody(EltTys, Record[0]); 1669 ResultTy = Res; 1670 break; 1671 } 1672 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1673 if (Record.size() != 1) 1674 return error("Invalid record"); 1675 1676 if (NumRecords >= TypeList.size()) 1677 return error("Invalid TYPE table"); 1678 1679 // Check to see if this was forward referenced, if so fill in the temp. 1680 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1681 if (Res) { 1682 Res->setName(TypeName); 1683 TypeList[NumRecords] = nullptr; 1684 } else // Otherwise, create a new struct with no body. 1685 Res = createIdentifiedStructType(Context, TypeName); 1686 TypeName.clear(); 1687 ResultTy = Res; 1688 break; 1689 } 1690 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1691 if (Record.size() < 2) 1692 return error("Invalid record"); 1693 ResultTy = getTypeByID(Record[1]); 1694 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1695 return error("Invalid type"); 1696 ResultTy = ArrayType::get(ResultTy, Record[0]); 1697 break; 1698 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1699 if (Record.size() < 2) 1700 return error("Invalid record"); 1701 if (Record[0] == 0) 1702 return error("Invalid vector length"); 1703 ResultTy = getTypeByID(Record[1]); 1704 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1705 return error("Invalid type"); 1706 ResultTy = VectorType::get(ResultTy, Record[0]); 1707 break; 1708 } 1709 1710 if (NumRecords >= TypeList.size()) 1711 return error("Invalid TYPE table"); 1712 if (TypeList[NumRecords]) 1713 return error( 1714 "Invalid TYPE table: Only named structs can be forward referenced"); 1715 assert(ResultTy && "Didn't read a type?"); 1716 TypeList[NumRecords++] = ResultTy; 1717 } 1718 } 1719 1720 std::error_code BitcodeReader::parseOperandBundleTags() { 1721 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1722 return error("Invalid record"); 1723 1724 if (!BundleTags.empty()) 1725 return error("Invalid multiple blocks"); 1726 1727 SmallVector<uint64_t, 64> Record; 1728 1729 while (1) { 1730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1731 1732 switch (Entry.Kind) { 1733 case BitstreamEntry::SubBlock: // Handled for us already. 1734 case BitstreamEntry::Error: 1735 return error("Malformed block"); 1736 case BitstreamEntry::EndBlock: 1737 return std::error_code(); 1738 case BitstreamEntry::Record: 1739 // The interesting case. 1740 break; 1741 } 1742 1743 // Tags are implicitly mapped to integers by their order. 1744 1745 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1746 return error("Invalid record"); 1747 1748 // OPERAND_BUNDLE_TAG: [strchr x N] 1749 BundleTags.emplace_back(); 1750 if (convertToString(Record, 0, BundleTags.back())) 1751 return error("Invalid record"); 1752 Record.clear(); 1753 } 1754 } 1755 1756 /// Associate a value with its name from the given index in the provided record. 1757 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1758 unsigned NameIndex, Triple &TT) { 1759 SmallString<128> ValueName; 1760 if (convertToString(Record, NameIndex, ValueName)) 1761 return error("Invalid record"); 1762 unsigned ValueID = Record[0]; 1763 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1764 return error("Invalid record"); 1765 Value *V = ValueList[ValueID]; 1766 1767 StringRef NameStr(ValueName.data(), ValueName.size()); 1768 if (NameStr.find_first_of(0) != StringRef::npos) 1769 return error("Invalid value name"); 1770 V->setName(NameStr); 1771 auto *GO = dyn_cast<GlobalObject>(V); 1772 if (GO) { 1773 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1774 if (TT.isOSBinFormatMachO()) 1775 GO->setComdat(nullptr); 1776 else 1777 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1778 } 1779 } 1780 return V; 1781 } 1782 1783 /// Parse the value symbol table at either the current parsing location or 1784 /// at the given bit offset if provided. 1785 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1786 uint64_t CurrentBit; 1787 // Pass in the Offset to distinguish between calling for the module-level 1788 // VST (where we want to jump to the VST offset) and the function-level 1789 // VST (where we don't). 1790 if (Offset > 0) { 1791 // Save the current parsing location so we can jump back at the end 1792 // of the VST read. 1793 CurrentBit = Stream.GetCurrentBitNo(); 1794 Stream.JumpToBit(Offset * 32); 1795 #ifndef NDEBUG 1796 // Do some checking if we are in debug mode. 1797 BitstreamEntry Entry = Stream.advance(); 1798 assert(Entry.Kind == BitstreamEntry::SubBlock); 1799 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1800 #else 1801 // In NDEBUG mode ignore the output so we don't get an unused variable 1802 // warning. 1803 Stream.advance(); 1804 #endif 1805 } 1806 1807 // Compute the delta between the bitcode indices in the VST (the word offset 1808 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1809 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1810 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1811 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1812 // just before entering the VST subblock because: 1) the EnterSubBlock 1813 // changes the AbbrevID width; 2) the VST block is nested within the same 1814 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1815 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1816 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1817 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1818 unsigned FuncBitcodeOffsetDelta = 1819 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1820 1821 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1822 return error("Invalid record"); 1823 1824 SmallVector<uint64_t, 64> Record; 1825 1826 Triple TT(TheModule->getTargetTriple()); 1827 1828 // Read all the records for this value table. 1829 SmallString<128> ValueName; 1830 while (1) { 1831 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1832 1833 switch (Entry.Kind) { 1834 case BitstreamEntry::SubBlock: // Handled for us already. 1835 case BitstreamEntry::Error: 1836 return error("Malformed block"); 1837 case BitstreamEntry::EndBlock: 1838 if (Offset > 0) 1839 Stream.JumpToBit(CurrentBit); 1840 return std::error_code(); 1841 case BitstreamEntry::Record: 1842 // The interesting case. 1843 break; 1844 } 1845 1846 // Read a record. 1847 Record.clear(); 1848 switch (Stream.readRecord(Entry.ID, Record)) { 1849 default: // Default behavior: unknown type. 1850 break; 1851 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1852 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1853 if (std::error_code EC = ValOrErr.getError()) 1854 return EC; 1855 ValOrErr.get(); 1856 break; 1857 } 1858 case bitc::VST_CODE_FNENTRY: { 1859 // VST_FNENTRY: [valueid, offset, namechar x N] 1860 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1861 if (std::error_code EC = ValOrErr.getError()) 1862 return EC; 1863 Value *V = ValOrErr.get(); 1864 1865 auto *GO = dyn_cast<GlobalObject>(V); 1866 if (!GO) { 1867 // If this is an alias, need to get the actual Function object 1868 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1869 auto *GA = dyn_cast<GlobalAlias>(V); 1870 if (GA) 1871 GO = GA->getBaseObject(); 1872 assert(GO); 1873 } 1874 1875 uint64_t FuncWordOffset = Record[1]; 1876 Function *F = dyn_cast<Function>(GO); 1877 assert(F); 1878 uint64_t FuncBitOffset = FuncWordOffset * 32; 1879 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1880 // Set the LastFunctionBlockBit to point to the last function block. 1881 // Later when parsing is resumed after function materialization, 1882 // we can simply skip that last function block. 1883 if (FuncBitOffset > LastFunctionBlockBit) 1884 LastFunctionBlockBit = FuncBitOffset; 1885 break; 1886 } 1887 case bitc::VST_CODE_BBENTRY: { 1888 if (convertToString(Record, 1, ValueName)) 1889 return error("Invalid record"); 1890 BasicBlock *BB = getBasicBlock(Record[0]); 1891 if (!BB) 1892 return error("Invalid record"); 1893 1894 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1895 ValueName.clear(); 1896 break; 1897 } 1898 } 1899 } 1900 } 1901 1902 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1903 std::error_code 1904 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1905 if (Record.size() < 2) 1906 return error("Invalid record"); 1907 1908 unsigned Kind = Record[0]; 1909 SmallString<8> Name(Record.begin() + 1, Record.end()); 1910 1911 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1912 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1913 return error("Conflicting METADATA_KIND records"); 1914 return std::error_code(); 1915 } 1916 1917 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1918 1919 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1920 /// module level metadata. 1921 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1922 IsMetadataMaterialized = true; 1923 unsigned NextMDValueNo = MDValueList.size(); 1924 if (ModuleLevel && SeenModuleValuesRecord) { 1925 // Now that we are parsing the module level metadata, we want to restart 1926 // the numbering of the MD values, and replace temp MD created earlier 1927 // with their real values. If we saw a METADATA_VALUE record then we 1928 // would have set the MDValueList size to the number specified in that 1929 // record, to support parsing function-level metadata first, and we need 1930 // to reset back to 0 to fill the MDValueList in with the parsed module 1931 // The function-level metadata parsing should have reset the MDValueList 1932 // size back to the value reported by the METADATA_VALUE record, saved in 1933 // NumModuleMDs. 1934 assert(NumModuleMDs == MDValueList.size() && 1935 "Expected MDValueList to only contain module level values"); 1936 NextMDValueNo = 0; 1937 } 1938 1939 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1940 return error("Invalid record"); 1941 1942 SmallVector<uint64_t, 64> Record; 1943 1944 auto getMD = 1945 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1946 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1947 if (ID) 1948 return getMD(ID - 1); 1949 return nullptr; 1950 }; 1951 auto getMDString = [&](unsigned ID) -> MDString *{ 1952 // This requires that the ID is not really a forward reference. In 1953 // particular, the MDString must already have been resolved. 1954 return cast_or_null<MDString>(getMDOrNull(ID)); 1955 }; 1956 1957 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1958 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1959 1960 // Read all the records. 1961 while (1) { 1962 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1963 1964 switch (Entry.Kind) { 1965 case BitstreamEntry::SubBlock: // Handled for us already. 1966 case BitstreamEntry::Error: 1967 return error("Malformed block"); 1968 case BitstreamEntry::EndBlock: 1969 MDValueList.tryToResolveCycles(); 1970 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1971 NumModuleMDs == MDValueList.size()) && 1972 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1973 return std::error_code(); 1974 case BitstreamEntry::Record: 1975 // The interesting case. 1976 break; 1977 } 1978 1979 // Read a record. 1980 Record.clear(); 1981 unsigned Code = Stream.readRecord(Entry.ID, Record); 1982 bool IsDistinct = false; 1983 switch (Code) { 1984 default: // Default behavior: ignore. 1985 break; 1986 case bitc::METADATA_NAME: { 1987 // Read name of the named metadata. 1988 SmallString<8> Name(Record.begin(), Record.end()); 1989 Record.clear(); 1990 Code = Stream.ReadCode(); 1991 1992 unsigned NextBitCode = Stream.readRecord(Code, Record); 1993 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1994 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1995 1996 // Read named metadata elements. 1997 unsigned Size = Record.size(); 1998 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1999 for (unsigned i = 0; i != Size; ++i) { 2000 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 2001 if (!MD) 2002 return error("Invalid record"); 2003 NMD->addOperand(MD); 2004 } 2005 break; 2006 } 2007 case bitc::METADATA_OLD_FN_NODE: { 2008 // FIXME: Remove in 4.0. 2009 // This is a LocalAsMetadata record, the only type of function-local 2010 // metadata. 2011 if (Record.size() % 2 == 1) 2012 return error("Invalid record"); 2013 2014 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2015 // to be legal, but there's no upgrade path. 2016 auto dropRecord = [&] { 2017 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 2018 }; 2019 if (Record.size() != 2) { 2020 dropRecord(); 2021 break; 2022 } 2023 2024 Type *Ty = getTypeByID(Record[0]); 2025 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2026 dropRecord(); 2027 break; 2028 } 2029 2030 MDValueList.assignValue( 2031 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2032 NextMDValueNo++); 2033 break; 2034 } 2035 case bitc::METADATA_OLD_NODE: { 2036 // FIXME: Remove in 4.0. 2037 if (Record.size() % 2 == 1) 2038 return error("Invalid record"); 2039 2040 unsigned Size = Record.size(); 2041 SmallVector<Metadata *, 8> Elts; 2042 for (unsigned i = 0; i != Size; i += 2) { 2043 Type *Ty = getTypeByID(Record[i]); 2044 if (!Ty) 2045 return error("Invalid record"); 2046 if (Ty->isMetadataTy()) 2047 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 2048 else if (!Ty->isVoidTy()) { 2049 auto *MD = 2050 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2051 assert(isa<ConstantAsMetadata>(MD) && 2052 "Expected non-function-local metadata"); 2053 Elts.push_back(MD); 2054 } else 2055 Elts.push_back(nullptr); 2056 } 2057 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2058 break; 2059 } 2060 case bitc::METADATA_VALUE: { 2061 if (Record.size() != 2) 2062 return error("Invalid record"); 2063 2064 Type *Ty = getTypeByID(Record[0]); 2065 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2066 return error("Invalid record"); 2067 2068 MDValueList.assignValue( 2069 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2070 NextMDValueNo++); 2071 break; 2072 } 2073 case bitc::METADATA_DISTINCT_NODE: 2074 IsDistinct = true; 2075 // fallthrough... 2076 case bitc::METADATA_NODE: { 2077 SmallVector<Metadata *, 8> Elts; 2078 Elts.reserve(Record.size()); 2079 for (unsigned ID : Record) 2080 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2081 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2082 : MDNode::get(Context, Elts), 2083 NextMDValueNo++); 2084 break; 2085 } 2086 case bitc::METADATA_LOCATION: { 2087 if (Record.size() != 5) 2088 return error("Invalid record"); 2089 2090 unsigned Line = Record[1]; 2091 unsigned Column = Record[2]; 2092 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2093 Metadata *InlinedAt = 2094 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2095 MDValueList.assignValue( 2096 GET_OR_DISTINCT(DILocation, Record[0], 2097 (Context, Line, Column, Scope, InlinedAt)), 2098 NextMDValueNo++); 2099 break; 2100 } 2101 case bitc::METADATA_GENERIC_DEBUG: { 2102 if (Record.size() < 4) 2103 return error("Invalid record"); 2104 2105 unsigned Tag = Record[1]; 2106 unsigned Version = Record[2]; 2107 2108 if (Tag >= 1u << 16 || Version != 0) 2109 return error("Invalid record"); 2110 2111 auto *Header = getMDString(Record[3]); 2112 SmallVector<Metadata *, 8> DwarfOps; 2113 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2114 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2115 : nullptr); 2116 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2117 (Context, Tag, Header, DwarfOps)), 2118 NextMDValueNo++); 2119 break; 2120 } 2121 case bitc::METADATA_SUBRANGE: { 2122 if (Record.size() != 3) 2123 return error("Invalid record"); 2124 2125 MDValueList.assignValue( 2126 GET_OR_DISTINCT(DISubrange, Record[0], 2127 (Context, Record[1], unrotateSign(Record[2]))), 2128 NextMDValueNo++); 2129 break; 2130 } 2131 case bitc::METADATA_ENUMERATOR: { 2132 if (Record.size() != 3) 2133 return error("Invalid record"); 2134 2135 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2136 (Context, unrotateSign(Record[1]), 2137 getMDString(Record[2]))), 2138 NextMDValueNo++); 2139 break; 2140 } 2141 case bitc::METADATA_BASIC_TYPE: { 2142 if (Record.size() != 6) 2143 return error("Invalid record"); 2144 2145 MDValueList.assignValue( 2146 GET_OR_DISTINCT(DIBasicType, Record[0], 2147 (Context, Record[1], getMDString(Record[2]), 2148 Record[3], Record[4], Record[5])), 2149 NextMDValueNo++); 2150 break; 2151 } 2152 case bitc::METADATA_DERIVED_TYPE: { 2153 if (Record.size() != 12) 2154 return error("Invalid record"); 2155 2156 MDValueList.assignValue( 2157 GET_OR_DISTINCT(DIDerivedType, Record[0], 2158 (Context, Record[1], getMDString(Record[2]), 2159 getMDOrNull(Record[3]), Record[4], 2160 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2161 Record[7], Record[8], Record[9], Record[10], 2162 getMDOrNull(Record[11]))), 2163 NextMDValueNo++); 2164 break; 2165 } 2166 case bitc::METADATA_COMPOSITE_TYPE: { 2167 if (Record.size() != 16) 2168 return error("Invalid record"); 2169 2170 MDValueList.assignValue( 2171 GET_OR_DISTINCT(DICompositeType, Record[0], 2172 (Context, Record[1], getMDString(Record[2]), 2173 getMDOrNull(Record[3]), Record[4], 2174 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2175 Record[7], Record[8], Record[9], Record[10], 2176 getMDOrNull(Record[11]), Record[12], 2177 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2178 getMDString(Record[15]))), 2179 NextMDValueNo++); 2180 break; 2181 } 2182 case bitc::METADATA_SUBROUTINE_TYPE: { 2183 if (Record.size() != 3) 2184 return error("Invalid record"); 2185 2186 MDValueList.assignValue( 2187 GET_OR_DISTINCT(DISubroutineType, Record[0], 2188 (Context, Record[1], getMDOrNull(Record[2]))), 2189 NextMDValueNo++); 2190 break; 2191 } 2192 2193 case bitc::METADATA_MODULE: { 2194 if (Record.size() != 6) 2195 return error("Invalid record"); 2196 2197 MDValueList.assignValue( 2198 GET_OR_DISTINCT(DIModule, Record[0], 2199 (Context, getMDOrNull(Record[1]), 2200 getMDString(Record[2]), getMDString(Record[3]), 2201 getMDString(Record[4]), getMDString(Record[5]))), 2202 NextMDValueNo++); 2203 break; 2204 } 2205 2206 case bitc::METADATA_FILE: { 2207 if (Record.size() != 3) 2208 return error("Invalid record"); 2209 2210 MDValueList.assignValue( 2211 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2212 getMDString(Record[2]))), 2213 NextMDValueNo++); 2214 break; 2215 } 2216 case bitc::METADATA_COMPILE_UNIT: { 2217 if (Record.size() < 14 || Record.size() > 16) 2218 return error("Invalid record"); 2219 2220 // Ignore Record[0], which indicates whether this compile unit is 2221 // distinct. It's always distinct. 2222 MDValueList.assignValue( 2223 DICompileUnit::getDistinct( 2224 Context, Record[1], getMDOrNull(Record[2]), 2225 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2226 Record[6], getMDString(Record[7]), Record[8], 2227 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2228 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2229 getMDOrNull(Record[13]), 2230 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2231 Record.size() <= 14 ? 0 : Record[14]), 2232 NextMDValueNo++); 2233 break; 2234 } 2235 case bitc::METADATA_SUBPROGRAM: { 2236 if (Record.size() != 18 && Record.size() != 19) 2237 return error("Invalid record"); 2238 2239 bool HasFn = Record.size() == 19; 2240 DISubprogram *SP = GET_OR_DISTINCT( 2241 DISubprogram, 2242 Record[0] || Record[8], // All definitions should be distinct. 2243 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2244 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2245 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2246 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2247 Record[14], getMDOrNull(Record[15 + HasFn]), 2248 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2249 MDValueList.assignValue(SP, NextMDValueNo++); 2250 2251 // Upgrade sp->function mapping to function->sp mapping. 2252 if (HasFn && Record[15]) { 2253 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2254 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2255 if (F->isMaterializable()) 2256 // Defer until materialized; unmaterialized functions may not have 2257 // metadata. 2258 FunctionsWithSPs[F] = SP; 2259 else if (!F->empty()) 2260 F->setSubprogram(SP); 2261 } 2262 } 2263 break; 2264 } 2265 case bitc::METADATA_LEXICAL_BLOCK: { 2266 if (Record.size() != 5) 2267 return error("Invalid record"); 2268 2269 MDValueList.assignValue( 2270 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2271 (Context, getMDOrNull(Record[1]), 2272 getMDOrNull(Record[2]), Record[3], Record[4])), 2273 NextMDValueNo++); 2274 break; 2275 } 2276 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2277 if (Record.size() != 4) 2278 return error("Invalid record"); 2279 2280 MDValueList.assignValue( 2281 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2282 (Context, getMDOrNull(Record[1]), 2283 getMDOrNull(Record[2]), Record[3])), 2284 NextMDValueNo++); 2285 break; 2286 } 2287 case bitc::METADATA_NAMESPACE: { 2288 if (Record.size() != 5) 2289 return error("Invalid record"); 2290 2291 MDValueList.assignValue( 2292 GET_OR_DISTINCT(DINamespace, Record[0], 2293 (Context, getMDOrNull(Record[1]), 2294 getMDOrNull(Record[2]), getMDString(Record[3]), 2295 Record[4])), 2296 NextMDValueNo++); 2297 break; 2298 } 2299 case bitc::METADATA_MACRO: { 2300 if (Record.size() != 5) 2301 return error("Invalid record"); 2302 2303 MDValueList.assignValue( 2304 GET_OR_DISTINCT(DIMacro, Record[0], 2305 (Context, Record[1], Record[2], 2306 getMDString(Record[3]), getMDString(Record[4]))), 2307 NextMDValueNo++); 2308 break; 2309 } 2310 case bitc::METADATA_MACRO_FILE: { 2311 if (Record.size() != 5) 2312 return error("Invalid record"); 2313 2314 MDValueList.assignValue( 2315 GET_OR_DISTINCT(DIMacroFile, Record[0], 2316 (Context, Record[1], Record[2], 2317 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2318 NextMDValueNo++); 2319 break; 2320 } 2321 case bitc::METADATA_TEMPLATE_TYPE: { 2322 if (Record.size() != 3) 2323 return error("Invalid record"); 2324 2325 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2326 Record[0], 2327 (Context, getMDString(Record[1]), 2328 getMDOrNull(Record[2]))), 2329 NextMDValueNo++); 2330 break; 2331 } 2332 case bitc::METADATA_TEMPLATE_VALUE: { 2333 if (Record.size() != 5) 2334 return error("Invalid record"); 2335 2336 MDValueList.assignValue( 2337 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2338 (Context, Record[1], getMDString(Record[2]), 2339 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2340 NextMDValueNo++); 2341 break; 2342 } 2343 case bitc::METADATA_GLOBAL_VAR: { 2344 if (Record.size() != 11) 2345 return error("Invalid record"); 2346 2347 MDValueList.assignValue( 2348 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2349 (Context, getMDOrNull(Record[1]), 2350 getMDString(Record[2]), getMDString(Record[3]), 2351 getMDOrNull(Record[4]), Record[5], 2352 getMDOrNull(Record[6]), Record[7], Record[8], 2353 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2354 NextMDValueNo++); 2355 break; 2356 } 2357 case bitc::METADATA_LOCAL_VAR: { 2358 // 10th field is for the obseleted 'inlinedAt:' field. 2359 if (Record.size() < 8 || Record.size() > 10) 2360 return error("Invalid record"); 2361 2362 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2363 // DW_TAG_arg_variable. 2364 bool HasTag = Record.size() > 8; 2365 MDValueList.assignValue( 2366 GET_OR_DISTINCT(DILocalVariable, Record[0], 2367 (Context, getMDOrNull(Record[1 + HasTag]), 2368 getMDString(Record[2 + HasTag]), 2369 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2370 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2371 Record[7 + HasTag])), 2372 NextMDValueNo++); 2373 break; 2374 } 2375 case bitc::METADATA_EXPRESSION: { 2376 if (Record.size() < 1) 2377 return error("Invalid record"); 2378 2379 MDValueList.assignValue( 2380 GET_OR_DISTINCT(DIExpression, Record[0], 2381 (Context, makeArrayRef(Record).slice(1))), 2382 NextMDValueNo++); 2383 break; 2384 } 2385 case bitc::METADATA_OBJC_PROPERTY: { 2386 if (Record.size() != 8) 2387 return error("Invalid record"); 2388 2389 MDValueList.assignValue( 2390 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2391 (Context, getMDString(Record[1]), 2392 getMDOrNull(Record[2]), Record[3], 2393 getMDString(Record[4]), getMDString(Record[5]), 2394 Record[6], getMDOrNull(Record[7]))), 2395 NextMDValueNo++); 2396 break; 2397 } 2398 case bitc::METADATA_IMPORTED_ENTITY: { 2399 if (Record.size() != 6) 2400 return error("Invalid record"); 2401 2402 MDValueList.assignValue( 2403 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2404 (Context, Record[1], getMDOrNull(Record[2]), 2405 getMDOrNull(Record[3]), Record[4], 2406 getMDString(Record[5]))), 2407 NextMDValueNo++); 2408 break; 2409 } 2410 case bitc::METADATA_STRING: { 2411 std::string String(Record.begin(), Record.end()); 2412 llvm::UpgradeMDStringConstant(String); 2413 Metadata *MD = MDString::get(Context, String); 2414 MDValueList.assignValue(MD, NextMDValueNo++); 2415 break; 2416 } 2417 case bitc::METADATA_KIND: { 2418 // Support older bitcode files that had METADATA_KIND records in a 2419 // block with METADATA_BLOCK_ID. 2420 if (std::error_code EC = parseMetadataKindRecord(Record)) 2421 return EC; 2422 break; 2423 } 2424 } 2425 } 2426 #undef GET_OR_DISTINCT 2427 } 2428 2429 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2430 std::error_code BitcodeReader::parseMetadataKinds() { 2431 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2432 return error("Invalid record"); 2433 2434 SmallVector<uint64_t, 64> Record; 2435 2436 // Read all the records. 2437 while (1) { 2438 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2439 2440 switch (Entry.Kind) { 2441 case BitstreamEntry::SubBlock: // Handled for us already. 2442 case BitstreamEntry::Error: 2443 return error("Malformed block"); 2444 case BitstreamEntry::EndBlock: 2445 return std::error_code(); 2446 case BitstreamEntry::Record: 2447 // The interesting case. 2448 break; 2449 } 2450 2451 // Read a record. 2452 Record.clear(); 2453 unsigned Code = Stream.readRecord(Entry.ID, Record); 2454 switch (Code) { 2455 default: // Default behavior: ignore. 2456 break; 2457 case bitc::METADATA_KIND: { 2458 if (std::error_code EC = parseMetadataKindRecord(Record)) 2459 return EC; 2460 break; 2461 } 2462 } 2463 } 2464 } 2465 2466 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2467 /// encoding. 2468 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2469 if ((V & 1) == 0) 2470 return V >> 1; 2471 if (V != 1) 2472 return -(V >> 1); 2473 // There is no such thing as -0 with integers. "-0" really means MININT. 2474 return 1ULL << 63; 2475 } 2476 2477 /// Resolve all of the initializers for global values and aliases that we can. 2478 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2479 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2480 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2481 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2482 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2483 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2484 2485 GlobalInitWorklist.swap(GlobalInits); 2486 AliasInitWorklist.swap(AliasInits); 2487 FunctionPrefixWorklist.swap(FunctionPrefixes); 2488 FunctionPrologueWorklist.swap(FunctionPrologues); 2489 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2490 2491 while (!GlobalInitWorklist.empty()) { 2492 unsigned ValID = GlobalInitWorklist.back().second; 2493 if (ValID >= ValueList.size()) { 2494 // Not ready to resolve this yet, it requires something later in the file. 2495 GlobalInits.push_back(GlobalInitWorklist.back()); 2496 } else { 2497 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2498 GlobalInitWorklist.back().first->setInitializer(C); 2499 else 2500 return error("Expected a constant"); 2501 } 2502 GlobalInitWorklist.pop_back(); 2503 } 2504 2505 while (!AliasInitWorklist.empty()) { 2506 unsigned ValID = AliasInitWorklist.back().second; 2507 if (ValID >= ValueList.size()) { 2508 AliasInits.push_back(AliasInitWorklist.back()); 2509 } else { 2510 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2511 if (!C) 2512 return error("Expected a constant"); 2513 GlobalAlias *Alias = AliasInitWorklist.back().first; 2514 if (C->getType() != Alias->getType()) 2515 return error("Alias and aliasee types don't match"); 2516 Alias->setAliasee(C); 2517 } 2518 AliasInitWorklist.pop_back(); 2519 } 2520 2521 while (!FunctionPrefixWorklist.empty()) { 2522 unsigned ValID = FunctionPrefixWorklist.back().second; 2523 if (ValID >= ValueList.size()) { 2524 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2525 } else { 2526 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2527 FunctionPrefixWorklist.back().first->setPrefixData(C); 2528 else 2529 return error("Expected a constant"); 2530 } 2531 FunctionPrefixWorklist.pop_back(); 2532 } 2533 2534 while (!FunctionPrologueWorklist.empty()) { 2535 unsigned ValID = FunctionPrologueWorklist.back().second; 2536 if (ValID >= ValueList.size()) { 2537 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2538 } else { 2539 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2540 FunctionPrologueWorklist.back().first->setPrologueData(C); 2541 else 2542 return error("Expected a constant"); 2543 } 2544 FunctionPrologueWorklist.pop_back(); 2545 } 2546 2547 while (!FunctionPersonalityFnWorklist.empty()) { 2548 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2549 if (ValID >= ValueList.size()) { 2550 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2551 } else { 2552 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2553 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2554 else 2555 return error("Expected a constant"); 2556 } 2557 FunctionPersonalityFnWorklist.pop_back(); 2558 } 2559 2560 return std::error_code(); 2561 } 2562 2563 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2564 SmallVector<uint64_t, 8> Words(Vals.size()); 2565 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2566 BitcodeReader::decodeSignRotatedValue); 2567 2568 return APInt(TypeBits, Words); 2569 } 2570 2571 std::error_code BitcodeReader::parseConstants() { 2572 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2573 return error("Invalid record"); 2574 2575 SmallVector<uint64_t, 64> Record; 2576 2577 // Read all the records for this value table. 2578 Type *CurTy = Type::getInt32Ty(Context); 2579 unsigned NextCstNo = ValueList.size(); 2580 while (1) { 2581 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2582 2583 switch (Entry.Kind) { 2584 case BitstreamEntry::SubBlock: // Handled for us already. 2585 case BitstreamEntry::Error: 2586 return error("Malformed block"); 2587 case BitstreamEntry::EndBlock: 2588 if (NextCstNo != ValueList.size()) 2589 return error("Invalid ronstant reference"); 2590 2591 // Once all the constants have been read, go through and resolve forward 2592 // references. 2593 ValueList.resolveConstantForwardRefs(); 2594 return std::error_code(); 2595 case BitstreamEntry::Record: 2596 // The interesting case. 2597 break; 2598 } 2599 2600 // Read a record. 2601 Record.clear(); 2602 Value *V = nullptr; 2603 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2604 switch (BitCode) { 2605 default: // Default behavior: unknown constant 2606 case bitc::CST_CODE_UNDEF: // UNDEF 2607 V = UndefValue::get(CurTy); 2608 break; 2609 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2610 if (Record.empty()) 2611 return error("Invalid record"); 2612 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2613 return error("Invalid record"); 2614 CurTy = TypeList[Record[0]]; 2615 continue; // Skip the ValueList manipulation. 2616 case bitc::CST_CODE_NULL: // NULL 2617 V = Constant::getNullValue(CurTy); 2618 break; 2619 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2620 if (!CurTy->isIntegerTy() || Record.empty()) 2621 return error("Invalid record"); 2622 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2623 break; 2624 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2625 if (!CurTy->isIntegerTy() || Record.empty()) 2626 return error("Invalid record"); 2627 2628 APInt VInt = 2629 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2630 V = ConstantInt::get(Context, VInt); 2631 2632 break; 2633 } 2634 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2635 if (Record.empty()) 2636 return error("Invalid record"); 2637 if (CurTy->isHalfTy()) 2638 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2639 APInt(16, (uint16_t)Record[0]))); 2640 else if (CurTy->isFloatTy()) 2641 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2642 APInt(32, (uint32_t)Record[0]))); 2643 else if (CurTy->isDoubleTy()) 2644 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2645 APInt(64, Record[0]))); 2646 else if (CurTy->isX86_FP80Ty()) { 2647 // Bits are not stored the same way as a normal i80 APInt, compensate. 2648 uint64_t Rearrange[2]; 2649 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2650 Rearrange[1] = Record[0] >> 48; 2651 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2652 APInt(80, Rearrange))); 2653 } else if (CurTy->isFP128Ty()) 2654 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2655 APInt(128, Record))); 2656 else if (CurTy->isPPC_FP128Ty()) 2657 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2658 APInt(128, Record))); 2659 else 2660 V = UndefValue::get(CurTy); 2661 break; 2662 } 2663 2664 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2665 if (Record.empty()) 2666 return error("Invalid record"); 2667 2668 unsigned Size = Record.size(); 2669 SmallVector<Constant*, 16> Elts; 2670 2671 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2672 for (unsigned i = 0; i != Size; ++i) 2673 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2674 STy->getElementType(i))); 2675 V = ConstantStruct::get(STy, Elts); 2676 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2677 Type *EltTy = ATy->getElementType(); 2678 for (unsigned i = 0; i != Size; ++i) 2679 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2680 V = ConstantArray::get(ATy, Elts); 2681 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2682 Type *EltTy = VTy->getElementType(); 2683 for (unsigned i = 0; i != Size; ++i) 2684 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2685 V = ConstantVector::get(Elts); 2686 } else { 2687 V = UndefValue::get(CurTy); 2688 } 2689 break; 2690 } 2691 case bitc::CST_CODE_STRING: // STRING: [values] 2692 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2693 if (Record.empty()) 2694 return error("Invalid record"); 2695 2696 SmallString<16> Elts(Record.begin(), Record.end()); 2697 V = ConstantDataArray::getString(Context, Elts, 2698 BitCode == bitc::CST_CODE_CSTRING); 2699 break; 2700 } 2701 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2702 if (Record.empty()) 2703 return error("Invalid record"); 2704 2705 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2706 unsigned Size = Record.size(); 2707 2708 if (EltTy->isIntegerTy(8)) { 2709 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2710 if (isa<VectorType>(CurTy)) 2711 V = ConstantDataVector::get(Context, Elts); 2712 else 2713 V = ConstantDataArray::get(Context, Elts); 2714 } else if (EltTy->isIntegerTy(16)) { 2715 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2716 if (isa<VectorType>(CurTy)) 2717 V = ConstantDataVector::get(Context, Elts); 2718 else 2719 V = ConstantDataArray::get(Context, Elts); 2720 } else if (EltTy->isIntegerTy(32)) { 2721 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2722 if (isa<VectorType>(CurTy)) 2723 V = ConstantDataVector::get(Context, Elts); 2724 else 2725 V = ConstantDataArray::get(Context, Elts); 2726 } else if (EltTy->isIntegerTy(64)) { 2727 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2728 if (isa<VectorType>(CurTy)) 2729 V = ConstantDataVector::get(Context, Elts); 2730 else 2731 V = ConstantDataArray::get(Context, Elts); 2732 } else if (EltTy->isFloatTy()) { 2733 SmallVector<float, 16> Elts(Size); 2734 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2735 if (isa<VectorType>(CurTy)) 2736 V = ConstantDataVector::get(Context, Elts); 2737 else 2738 V = ConstantDataArray::get(Context, Elts); 2739 } else if (EltTy->isDoubleTy()) { 2740 SmallVector<double, 16> Elts(Size); 2741 std::transform(Record.begin(), Record.end(), Elts.begin(), 2742 BitsToDouble); 2743 if (isa<VectorType>(CurTy)) 2744 V = ConstantDataVector::get(Context, Elts); 2745 else 2746 V = ConstantDataArray::get(Context, Elts); 2747 } else { 2748 return error("Invalid type for value"); 2749 } 2750 break; 2751 } 2752 2753 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2754 if (Record.size() < 3) 2755 return error("Invalid record"); 2756 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2757 if (Opc < 0) { 2758 V = UndefValue::get(CurTy); // Unknown binop. 2759 } else { 2760 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2761 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2762 unsigned Flags = 0; 2763 if (Record.size() >= 4) { 2764 if (Opc == Instruction::Add || 2765 Opc == Instruction::Sub || 2766 Opc == Instruction::Mul || 2767 Opc == Instruction::Shl) { 2768 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2769 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2770 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2771 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2772 } else if (Opc == Instruction::SDiv || 2773 Opc == Instruction::UDiv || 2774 Opc == Instruction::LShr || 2775 Opc == Instruction::AShr) { 2776 if (Record[3] & (1 << bitc::PEO_EXACT)) 2777 Flags |= SDivOperator::IsExact; 2778 } 2779 } 2780 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2781 } 2782 break; 2783 } 2784 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2785 if (Record.size() < 3) 2786 return error("Invalid record"); 2787 int Opc = getDecodedCastOpcode(Record[0]); 2788 if (Opc < 0) { 2789 V = UndefValue::get(CurTy); // Unknown cast. 2790 } else { 2791 Type *OpTy = getTypeByID(Record[1]); 2792 if (!OpTy) 2793 return error("Invalid record"); 2794 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2795 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2796 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2797 } 2798 break; 2799 } 2800 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2801 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2802 unsigned OpNum = 0; 2803 Type *PointeeType = nullptr; 2804 if (Record.size() % 2) 2805 PointeeType = getTypeByID(Record[OpNum++]); 2806 SmallVector<Constant*, 16> Elts; 2807 while (OpNum != Record.size()) { 2808 Type *ElTy = getTypeByID(Record[OpNum++]); 2809 if (!ElTy) 2810 return error("Invalid record"); 2811 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2812 } 2813 2814 if (PointeeType && 2815 PointeeType != 2816 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2817 ->getElementType()) 2818 return error("Explicit gep operator type does not match pointee type " 2819 "of pointer operand"); 2820 2821 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2822 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2823 BitCode == 2824 bitc::CST_CODE_CE_INBOUNDS_GEP); 2825 break; 2826 } 2827 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2828 if (Record.size() < 3) 2829 return error("Invalid record"); 2830 2831 Type *SelectorTy = Type::getInt1Ty(Context); 2832 2833 // The selector might be an i1 or an <n x i1> 2834 // Get the type from the ValueList before getting a forward ref. 2835 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2836 if (Value *V = ValueList[Record[0]]) 2837 if (SelectorTy != V->getType()) 2838 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2839 2840 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2841 SelectorTy), 2842 ValueList.getConstantFwdRef(Record[1],CurTy), 2843 ValueList.getConstantFwdRef(Record[2],CurTy)); 2844 break; 2845 } 2846 case bitc::CST_CODE_CE_EXTRACTELT 2847 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2848 if (Record.size() < 3) 2849 return error("Invalid record"); 2850 VectorType *OpTy = 2851 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2852 if (!OpTy) 2853 return error("Invalid record"); 2854 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2855 Constant *Op1 = nullptr; 2856 if (Record.size() == 4) { 2857 Type *IdxTy = getTypeByID(Record[2]); 2858 if (!IdxTy) 2859 return error("Invalid record"); 2860 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2861 } else // TODO: Remove with llvm 4.0 2862 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2863 if (!Op1) 2864 return error("Invalid record"); 2865 V = ConstantExpr::getExtractElement(Op0, Op1); 2866 break; 2867 } 2868 case bitc::CST_CODE_CE_INSERTELT 2869 : { // CE_INSERTELT: [opval, opval, opty, opval] 2870 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2871 if (Record.size() < 3 || !OpTy) 2872 return error("Invalid record"); 2873 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2874 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2875 OpTy->getElementType()); 2876 Constant *Op2 = nullptr; 2877 if (Record.size() == 4) { 2878 Type *IdxTy = getTypeByID(Record[2]); 2879 if (!IdxTy) 2880 return error("Invalid record"); 2881 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2882 } else // TODO: Remove with llvm 4.0 2883 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2884 if (!Op2) 2885 return error("Invalid record"); 2886 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2887 break; 2888 } 2889 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2890 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2891 if (Record.size() < 3 || !OpTy) 2892 return error("Invalid record"); 2893 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2894 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2895 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2896 OpTy->getNumElements()); 2897 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2898 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2899 break; 2900 } 2901 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2902 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2903 VectorType *OpTy = 2904 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2905 if (Record.size() < 4 || !RTy || !OpTy) 2906 return error("Invalid record"); 2907 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2908 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2909 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2910 RTy->getNumElements()); 2911 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2912 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2913 break; 2914 } 2915 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2916 if (Record.size() < 4) 2917 return error("Invalid record"); 2918 Type *OpTy = getTypeByID(Record[0]); 2919 if (!OpTy) 2920 return error("Invalid record"); 2921 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2922 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2923 2924 if (OpTy->isFPOrFPVectorTy()) 2925 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2926 else 2927 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2928 break; 2929 } 2930 // This maintains backward compatibility, pre-asm dialect keywords. 2931 // FIXME: Remove with the 4.0 release. 2932 case bitc::CST_CODE_INLINEASM_OLD: { 2933 if (Record.size() < 2) 2934 return error("Invalid record"); 2935 std::string AsmStr, ConstrStr; 2936 bool HasSideEffects = Record[0] & 1; 2937 bool IsAlignStack = Record[0] >> 1; 2938 unsigned AsmStrSize = Record[1]; 2939 if (2+AsmStrSize >= Record.size()) 2940 return error("Invalid record"); 2941 unsigned ConstStrSize = Record[2+AsmStrSize]; 2942 if (3+AsmStrSize+ConstStrSize > Record.size()) 2943 return error("Invalid record"); 2944 2945 for (unsigned i = 0; i != AsmStrSize; ++i) 2946 AsmStr += (char)Record[2+i]; 2947 for (unsigned i = 0; i != ConstStrSize; ++i) 2948 ConstrStr += (char)Record[3+AsmStrSize+i]; 2949 PointerType *PTy = cast<PointerType>(CurTy); 2950 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2951 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2952 break; 2953 } 2954 // This version adds support for the asm dialect keywords (e.g., 2955 // inteldialect). 2956 case bitc::CST_CODE_INLINEASM: { 2957 if (Record.size() < 2) 2958 return error("Invalid record"); 2959 std::string AsmStr, ConstrStr; 2960 bool HasSideEffects = Record[0] & 1; 2961 bool IsAlignStack = (Record[0] >> 1) & 1; 2962 unsigned AsmDialect = Record[0] >> 2; 2963 unsigned AsmStrSize = Record[1]; 2964 if (2+AsmStrSize >= Record.size()) 2965 return error("Invalid record"); 2966 unsigned ConstStrSize = Record[2+AsmStrSize]; 2967 if (3+AsmStrSize+ConstStrSize > Record.size()) 2968 return error("Invalid record"); 2969 2970 for (unsigned i = 0; i != AsmStrSize; ++i) 2971 AsmStr += (char)Record[2+i]; 2972 for (unsigned i = 0; i != ConstStrSize; ++i) 2973 ConstrStr += (char)Record[3+AsmStrSize+i]; 2974 PointerType *PTy = cast<PointerType>(CurTy); 2975 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2976 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2977 InlineAsm::AsmDialect(AsmDialect)); 2978 break; 2979 } 2980 case bitc::CST_CODE_BLOCKADDRESS:{ 2981 if (Record.size() < 3) 2982 return error("Invalid record"); 2983 Type *FnTy = getTypeByID(Record[0]); 2984 if (!FnTy) 2985 return error("Invalid record"); 2986 Function *Fn = 2987 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2988 if (!Fn) 2989 return error("Invalid record"); 2990 2991 // Don't let Fn get dematerialized. 2992 BlockAddressesTaken.insert(Fn); 2993 2994 // If the function is already parsed we can insert the block address right 2995 // away. 2996 BasicBlock *BB; 2997 unsigned BBID = Record[2]; 2998 if (!BBID) 2999 // Invalid reference to entry block. 3000 return error("Invalid ID"); 3001 if (!Fn->empty()) { 3002 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3003 for (size_t I = 0, E = BBID; I != E; ++I) { 3004 if (BBI == BBE) 3005 return error("Invalid ID"); 3006 ++BBI; 3007 } 3008 BB = &*BBI; 3009 } else { 3010 // Otherwise insert a placeholder and remember it so it can be inserted 3011 // when the function is parsed. 3012 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3013 if (FwdBBs.empty()) 3014 BasicBlockFwdRefQueue.push_back(Fn); 3015 if (FwdBBs.size() < BBID + 1) 3016 FwdBBs.resize(BBID + 1); 3017 if (!FwdBBs[BBID]) 3018 FwdBBs[BBID] = BasicBlock::Create(Context); 3019 BB = FwdBBs[BBID]; 3020 } 3021 V = BlockAddress::get(Fn, BB); 3022 break; 3023 } 3024 } 3025 3026 if (ValueList.assignValue(V, NextCstNo)) 3027 return error("Invalid forward reference"); 3028 ++NextCstNo; 3029 } 3030 } 3031 3032 std::error_code BitcodeReader::parseUseLists() { 3033 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3034 return error("Invalid record"); 3035 3036 // Read all the records. 3037 SmallVector<uint64_t, 64> Record; 3038 while (1) { 3039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3040 3041 switch (Entry.Kind) { 3042 case BitstreamEntry::SubBlock: // Handled for us already. 3043 case BitstreamEntry::Error: 3044 return error("Malformed block"); 3045 case BitstreamEntry::EndBlock: 3046 return std::error_code(); 3047 case BitstreamEntry::Record: 3048 // The interesting case. 3049 break; 3050 } 3051 3052 // Read a use list record. 3053 Record.clear(); 3054 bool IsBB = false; 3055 switch (Stream.readRecord(Entry.ID, Record)) { 3056 default: // Default behavior: unknown type. 3057 break; 3058 case bitc::USELIST_CODE_BB: 3059 IsBB = true; 3060 // fallthrough 3061 case bitc::USELIST_CODE_DEFAULT: { 3062 unsigned RecordLength = Record.size(); 3063 if (RecordLength < 3) 3064 // Records should have at least an ID and two indexes. 3065 return error("Invalid record"); 3066 unsigned ID = Record.back(); 3067 Record.pop_back(); 3068 3069 Value *V; 3070 if (IsBB) { 3071 assert(ID < FunctionBBs.size() && "Basic block not found"); 3072 V = FunctionBBs[ID]; 3073 } else 3074 V = ValueList[ID]; 3075 unsigned NumUses = 0; 3076 SmallDenseMap<const Use *, unsigned, 16> Order; 3077 for (const Use &U : V->uses()) { 3078 if (++NumUses > Record.size()) 3079 break; 3080 Order[&U] = Record[NumUses - 1]; 3081 } 3082 if (Order.size() != Record.size() || NumUses > Record.size()) 3083 // Mismatches can happen if the functions are being materialized lazily 3084 // (out-of-order), or a value has been upgraded. 3085 break; 3086 3087 V->sortUseList([&](const Use &L, const Use &R) { 3088 return Order.lookup(&L) < Order.lookup(&R); 3089 }); 3090 break; 3091 } 3092 } 3093 } 3094 } 3095 3096 /// When we see the block for metadata, remember where it is and then skip it. 3097 /// This lets us lazily deserialize the metadata. 3098 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3099 // Save the current stream state. 3100 uint64_t CurBit = Stream.GetCurrentBitNo(); 3101 DeferredMetadataInfo.push_back(CurBit); 3102 3103 // Skip over the block for now. 3104 if (Stream.SkipBlock()) 3105 return error("Invalid record"); 3106 return std::error_code(); 3107 } 3108 3109 std::error_code BitcodeReader::materializeMetadata() { 3110 for (uint64_t BitPos : DeferredMetadataInfo) { 3111 // Move the bit stream to the saved position. 3112 Stream.JumpToBit(BitPos); 3113 if (std::error_code EC = parseMetadata(true)) 3114 return EC; 3115 } 3116 DeferredMetadataInfo.clear(); 3117 return std::error_code(); 3118 } 3119 3120 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3121 3122 /// When we see the block for a function body, remember where it is and then 3123 /// skip it. This lets us lazily deserialize the functions. 3124 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3125 // Get the function we are talking about. 3126 if (FunctionsWithBodies.empty()) 3127 return error("Insufficient function protos"); 3128 3129 Function *Fn = FunctionsWithBodies.back(); 3130 FunctionsWithBodies.pop_back(); 3131 3132 // Save the current stream state. 3133 uint64_t CurBit = Stream.GetCurrentBitNo(); 3134 assert( 3135 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3136 "Mismatch between VST and scanned function offsets"); 3137 DeferredFunctionInfo[Fn] = CurBit; 3138 3139 // Skip over the function block for now. 3140 if (Stream.SkipBlock()) 3141 return error("Invalid record"); 3142 return std::error_code(); 3143 } 3144 3145 std::error_code BitcodeReader::globalCleanup() { 3146 // Patch the initializers for globals and aliases up. 3147 resolveGlobalAndAliasInits(); 3148 if (!GlobalInits.empty() || !AliasInits.empty()) 3149 return error("Malformed global initializer set"); 3150 3151 // Look for intrinsic functions which need to be upgraded at some point 3152 for (Function &F : *TheModule) { 3153 Function *NewFn; 3154 if (UpgradeIntrinsicFunction(&F, NewFn)) 3155 UpgradedIntrinsics[&F] = NewFn; 3156 } 3157 3158 // Look for global variables which need to be renamed. 3159 for (GlobalVariable &GV : TheModule->globals()) 3160 UpgradeGlobalVariable(&GV); 3161 3162 // Force deallocation of memory for these vectors to favor the client that 3163 // want lazy deserialization. 3164 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3165 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3166 return std::error_code(); 3167 } 3168 3169 /// Support for lazy parsing of function bodies. This is required if we 3170 /// either have an old bitcode file without a VST forward declaration record, 3171 /// or if we have an anonymous function being materialized, since anonymous 3172 /// functions do not have a name and are therefore not in the VST. 3173 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3174 Stream.JumpToBit(NextUnreadBit); 3175 3176 if (Stream.AtEndOfStream()) 3177 return error("Could not find function in stream"); 3178 3179 if (!SeenFirstFunctionBody) 3180 return error("Trying to materialize functions before seeing function blocks"); 3181 3182 // An old bitcode file with the symbol table at the end would have 3183 // finished the parse greedily. 3184 assert(SeenValueSymbolTable); 3185 3186 SmallVector<uint64_t, 64> Record; 3187 3188 while (1) { 3189 BitstreamEntry Entry = Stream.advance(); 3190 switch (Entry.Kind) { 3191 default: 3192 return error("Expect SubBlock"); 3193 case BitstreamEntry::SubBlock: 3194 switch (Entry.ID) { 3195 default: 3196 return error("Expect function block"); 3197 case bitc::FUNCTION_BLOCK_ID: 3198 if (std::error_code EC = rememberAndSkipFunctionBody()) 3199 return EC; 3200 NextUnreadBit = Stream.GetCurrentBitNo(); 3201 return std::error_code(); 3202 } 3203 } 3204 } 3205 } 3206 3207 std::error_code BitcodeReader::parseBitcodeVersion() { 3208 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3209 return error("Invalid record"); 3210 3211 // Read all the records. 3212 SmallVector<uint64_t, 64> Record; 3213 while (1) { 3214 BitstreamEntry Entry = Stream.advance(); 3215 3216 switch (Entry.Kind) { 3217 default: 3218 case BitstreamEntry::Error: 3219 return error("Malformed block"); 3220 case BitstreamEntry::EndBlock: 3221 return std::error_code(); 3222 case BitstreamEntry::Record: 3223 // The interesting case. 3224 break; 3225 } 3226 3227 // Read a record. 3228 Record.clear(); 3229 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3230 switch (BitCode) { 3231 default: // Default behavior: reject 3232 return error("Invalid value"); 3233 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3234 // N] 3235 convertToString(Record, 0, ProducerIdentification); 3236 break; 3237 } 3238 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3239 unsigned epoch = (unsigned)Record[0]; 3240 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3241 return error( 3242 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3243 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3244 } 3245 } 3246 } 3247 } 3248 } 3249 3250 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3251 bool ShouldLazyLoadMetadata) { 3252 if (ResumeBit) 3253 Stream.JumpToBit(ResumeBit); 3254 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3255 return error("Invalid record"); 3256 3257 SmallVector<uint64_t, 64> Record; 3258 std::vector<std::string> SectionTable; 3259 std::vector<std::string> GCTable; 3260 3261 // Read all the records for this module. 3262 while (1) { 3263 BitstreamEntry Entry = Stream.advance(); 3264 3265 switch (Entry.Kind) { 3266 case BitstreamEntry::Error: 3267 return error("Malformed block"); 3268 case BitstreamEntry::EndBlock: 3269 return globalCleanup(); 3270 3271 case BitstreamEntry::SubBlock: 3272 switch (Entry.ID) { 3273 default: // Skip unknown content. 3274 if (Stream.SkipBlock()) 3275 return error("Invalid record"); 3276 break; 3277 case bitc::BLOCKINFO_BLOCK_ID: 3278 if (Stream.ReadBlockInfoBlock()) 3279 return error("Malformed block"); 3280 break; 3281 case bitc::PARAMATTR_BLOCK_ID: 3282 if (std::error_code EC = parseAttributeBlock()) 3283 return EC; 3284 break; 3285 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3286 if (std::error_code EC = parseAttributeGroupBlock()) 3287 return EC; 3288 break; 3289 case bitc::TYPE_BLOCK_ID_NEW: 3290 if (std::error_code EC = parseTypeTable()) 3291 return EC; 3292 break; 3293 case bitc::VALUE_SYMTAB_BLOCK_ID: 3294 if (!SeenValueSymbolTable) { 3295 // Either this is an old form VST without function index and an 3296 // associated VST forward declaration record (which would have caused 3297 // the VST to be jumped to and parsed before it was encountered 3298 // normally in the stream), or there were no function blocks to 3299 // trigger an earlier parsing of the VST. 3300 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3301 if (std::error_code EC = parseValueSymbolTable()) 3302 return EC; 3303 SeenValueSymbolTable = true; 3304 } else { 3305 // We must have had a VST forward declaration record, which caused 3306 // the parser to jump to and parse the VST earlier. 3307 assert(VSTOffset > 0); 3308 if (Stream.SkipBlock()) 3309 return error("Invalid record"); 3310 } 3311 break; 3312 case bitc::CONSTANTS_BLOCK_ID: 3313 if (std::error_code EC = parseConstants()) 3314 return EC; 3315 if (std::error_code EC = resolveGlobalAndAliasInits()) 3316 return EC; 3317 break; 3318 case bitc::METADATA_BLOCK_ID: 3319 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3320 if (std::error_code EC = rememberAndSkipMetadata()) 3321 return EC; 3322 break; 3323 } 3324 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3325 if (std::error_code EC = parseMetadata(true)) 3326 return EC; 3327 break; 3328 case bitc::METADATA_KIND_BLOCK_ID: 3329 if (std::error_code EC = parseMetadataKinds()) 3330 return EC; 3331 break; 3332 case bitc::FUNCTION_BLOCK_ID: 3333 // If this is the first function body we've seen, reverse the 3334 // FunctionsWithBodies list. 3335 if (!SeenFirstFunctionBody) { 3336 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3337 if (std::error_code EC = globalCleanup()) 3338 return EC; 3339 SeenFirstFunctionBody = true; 3340 } 3341 3342 if (VSTOffset > 0) { 3343 // If we have a VST forward declaration record, make sure we 3344 // parse the VST now if we haven't already. It is needed to 3345 // set up the DeferredFunctionInfo vector for lazy reading. 3346 if (!SeenValueSymbolTable) { 3347 if (std::error_code EC = 3348 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3349 return EC; 3350 SeenValueSymbolTable = true; 3351 // Fall through so that we record the NextUnreadBit below. 3352 // This is necessary in case we have an anonymous function that 3353 // is later materialized. Since it will not have a VST entry we 3354 // need to fall back to the lazy parse to find its offset. 3355 } else { 3356 // If we have a VST forward declaration record, but have already 3357 // parsed the VST (just above, when the first function body was 3358 // encountered here), then we are resuming the parse after 3359 // materializing functions. The ResumeBit points to the 3360 // start of the last function block recorded in the 3361 // DeferredFunctionInfo map. Skip it. 3362 if (Stream.SkipBlock()) 3363 return error("Invalid record"); 3364 continue; 3365 } 3366 } 3367 3368 // Support older bitcode files that did not have the function 3369 // index in the VST, nor a VST forward declaration record, as 3370 // well as anonymous functions that do not have VST entries. 3371 // Build the DeferredFunctionInfo vector on the fly. 3372 if (std::error_code EC = rememberAndSkipFunctionBody()) 3373 return EC; 3374 3375 // Suspend parsing when we reach the function bodies. Subsequent 3376 // materialization calls will resume it when necessary. If the bitcode 3377 // file is old, the symbol table will be at the end instead and will not 3378 // have been seen yet. In this case, just finish the parse now. 3379 if (SeenValueSymbolTable) { 3380 NextUnreadBit = Stream.GetCurrentBitNo(); 3381 return std::error_code(); 3382 } 3383 break; 3384 case bitc::USELIST_BLOCK_ID: 3385 if (std::error_code EC = parseUseLists()) 3386 return EC; 3387 break; 3388 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3389 if (std::error_code EC = parseOperandBundleTags()) 3390 return EC; 3391 break; 3392 } 3393 continue; 3394 3395 case BitstreamEntry::Record: 3396 // The interesting case. 3397 break; 3398 } 3399 3400 3401 // Read a record. 3402 auto BitCode = Stream.readRecord(Entry.ID, Record); 3403 switch (BitCode) { 3404 default: break; // Default behavior, ignore unknown content. 3405 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3406 if (Record.size() < 1) 3407 return error("Invalid record"); 3408 // Only version #0 and #1 are supported so far. 3409 unsigned module_version = Record[0]; 3410 switch (module_version) { 3411 default: 3412 return error("Invalid value"); 3413 case 0: 3414 UseRelativeIDs = false; 3415 break; 3416 case 1: 3417 UseRelativeIDs = true; 3418 break; 3419 } 3420 break; 3421 } 3422 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3423 std::string S; 3424 if (convertToString(Record, 0, S)) 3425 return error("Invalid record"); 3426 TheModule->setTargetTriple(S); 3427 break; 3428 } 3429 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3430 std::string S; 3431 if (convertToString(Record, 0, S)) 3432 return error("Invalid record"); 3433 TheModule->setDataLayout(S); 3434 break; 3435 } 3436 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3437 std::string S; 3438 if (convertToString(Record, 0, S)) 3439 return error("Invalid record"); 3440 TheModule->setModuleInlineAsm(S); 3441 break; 3442 } 3443 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3444 // FIXME: Remove in 4.0. 3445 std::string S; 3446 if (convertToString(Record, 0, S)) 3447 return error("Invalid record"); 3448 // Ignore value. 3449 break; 3450 } 3451 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3452 std::string S; 3453 if (convertToString(Record, 0, S)) 3454 return error("Invalid record"); 3455 SectionTable.push_back(S); 3456 break; 3457 } 3458 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3459 std::string S; 3460 if (convertToString(Record, 0, S)) 3461 return error("Invalid record"); 3462 GCTable.push_back(S); 3463 break; 3464 } 3465 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3466 if (Record.size() < 2) 3467 return error("Invalid record"); 3468 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3469 unsigned ComdatNameSize = Record[1]; 3470 std::string ComdatName; 3471 ComdatName.reserve(ComdatNameSize); 3472 for (unsigned i = 0; i != ComdatNameSize; ++i) 3473 ComdatName += (char)Record[2 + i]; 3474 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3475 C->setSelectionKind(SK); 3476 ComdatList.push_back(C); 3477 break; 3478 } 3479 // GLOBALVAR: [pointer type, isconst, initid, 3480 // linkage, alignment, section, visibility, threadlocal, 3481 // unnamed_addr, externally_initialized, dllstorageclass, 3482 // comdat] 3483 case bitc::MODULE_CODE_GLOBALVAR: { 3484 if (Record.size() < 6) 3485 return error("Invalid record"); 3486 Type *Ty = getTypeByID(Record[0]); 3487 if (!Ty) 3488 return error("Invalid record"); 3489 bool isConstant = Record[1] & 1; 3490 bool explicitType = Record[1] & 2; 3491 unsigned AddressSpace; 3492 if (explicitType) { 3493 AddressSpace = Record[1] >> 2; 3494 } else { 3495 if (!Ty->isPointerTy()) 3496 return error("Invalid type for value"); 3497 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3498 Ty = cast<PointerType>(Ty)->getElementType(); 3499 } 3500 3501 uint64_t RawLinkage = Record[3]; 3502 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3503 unsigned Alignment; 3504 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3505 return EC; 3506 std::string Section; 3507 if (Record[5]) { 3508 if (Record[5]-1 >= SectionTable.size()) 3509 return error("Invalid ID"); 3510 Section = SectionTable[Record[5]-1]; 3511 } 3512 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3513 // Local linkage must have default visibility. 3514 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3515 // FIXME: Change to an error if non-default in 4.0. 3516 Visibility = getDecodedVisibility(Record[6]); 3517 3518 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3519 if (Record.size() > 7) 3520 TLM = getDecodedThreadLocalMode(Record[7]); 3521 3522 bool UnnamedAddr = false; 3523 if (Record.size() > 8) 3524 UnnamedAddr = Record[8]; 3525 3526 bool ExternallyInitialized = false; 3527 if (Record.size() > 9) 3528 ExternallyInitialized = Record[9]; 3529 3530 GlobalVariable *NewGV = 3531 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3532 TLM, AddressSpace, ExternallyInitialized); 3533 NewGV->setAlignment(Alignment); 3534 if (!Section.empty()) 3535 NewGV->setSection(Section); 3536 NewGV->setVisibility(Visibility); 3537 NewGV->setUnnamedAddr(UnnamedAddr); 3538 3539 if (Record.size() > 10) 3540 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3541 else 3542 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3543 3544 ValueList.push_back(NewGV); 3545 3546 // Remember which value to use for the global initializer. 3547 if (unsigned InitID = Record[2]) 3548 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3549 3550 if (Record.size() > 11) { 3551 if (unsigned ComdatID = Record[11]) { 3552 if (ComdatID > ComdatList.size()) 3553 return error("Invalid global variable comdat ID"); 3554 NewGV->setComdat(ComdatList[ComdatID - 1]); 3555 } 3556 } else if (hasImplicitComdat(RawLinkage)) { 3557 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3558 } 3559 break; 3560 } 3561 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3562 // alignment, section, visibility, gc, unnamed_addr, 3563 // prologuedata, dllstorageclass, comdat, prefixdata] 3564 case bitc::MODULE_CODE_FUNCTION: { 3565 if (Record.size() < 8) 3566 return error("Invalid record"); 3567 Type *Ty = getTypeByID(Record[0]); 3568 if (!Ty) 3569 return error("Invalid record"); 3570 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3571 Ty = PTy->getElementType(); 3572 auto *FTy = dyn_cast<FunctionType>(Ty); 3573 if (!FTy) 3574 return error("Invalid type for value"); 3575 auto CC = static_cast<CallingConv::ID>(Record[1]); 3576 if (CC & ~CallingConv::MaxID) 3577 return error("Invalid calling convention ID"); 3578 3579 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3580 "", TheModule); 3581 3582 Func->setCallingConv(CC); 3583 bool isProto = Record[2]; 3584 uint64_t RawLinkage = Record[3]; 3585 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3586 Func->setAttributes(getAttributes(Record[4])); 3587 3588 unsigned Alignment; 3589 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3590 return EC; 3591 Func->setAlignment(Alignment); 3592 if (Record[6]) { 3593 if (Record[6]-1 >= SectionTable.size()) 3594 return error("Invalid ID"); 3595 Func->setSection(SectionTable[Record[6]-1]); 3596 } 3597 // Local linkage must have default visibility. 3598 if (!Func->hasLocalLinkage()) 3599 // FIXME: Change to an error if non-default in 4.0. 3600 Func->setVisibility(getDecodedVisibility(Record[7])); 3601 if (Record.size() > 8 && Record[8]) { 3602 if (Record[8]-1 >= GCTable.size()) 3603 return error("Invalid ID"); 3604 Func->setGC(GCTable[Record[8]-1].c_str()); 3605 } 3606 bool UnnamedAddr = false; 3607 if (Record.size() > 9) 3608 UnnamedAddr = Record[9]; 3609 Func->setUnnamedAddr(UnnamedAddr); 3610 if (Record.size() > 10 && Record[10] != 0) 3611 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3612 3613 if (Record.size() > 11) 3614 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3615 else 3616 upgradeDLLImportExportLinkage(Func, RawLinkage); 3617 3618 if (Record.size() > 12) { 3619 if (unsigned ComdatID = Record[12]) { 3620 if (ComdatID > ComdatList.size()) 3621 return error("Invalid function comdat ID"); 3622 Func->setComdat(ComdatList[ComdatID - 1]); 3623 } 3624 } else if (hasImplicitComdat(RawLinkage)) { 3625 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3626 } 3627 3628 if (Record.size() > 13 && Record[13] != 0) 3629 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3630 3631 if (Record.size() > 14 && Record[14] != 0) 3632 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3633 3634 ValueList.push_back(Func); 3635 3636 // If this is a function with a body, remember the prototype we are 3637 // creating now, so that we can match up the body with them later. 3638 if (!isProto) { 3639 Func->setIsMaterializable(true); 3640 FunctionsWithBodies.push_back(Func); 3641 DeferredFunctionInfo[Func] = 0; 3642 } 3643 break; 3644 } 3645 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3646 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3647 case bitc::MODULE_CODE_ALIAS: 3648 case bitc::MODULE_CODE_ALIAS_OLD: { 3649 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3650 if (Record.size() < (3 + (unsigned)NewRecord)) 3651 return error("Invalid record"); 3652 unsigned OpNum = 0; 3653 Type *Ty = getTypeByID(Record[OpNum++]); 3654 if (!Ty) 3655 return error("Invalid record"); 3656 3657 unsigned AddrSpace; 3658 if (!NewRecord) { 3659 auto *PTy = dyn_cast<PointerType>(Ty); 3660 if (!PTy) 3661 return error("Invalid type for value"); 3662 Ty = PTy->getElementType(); 3663 AddrSpace = PTy->getAddressSpace(); 3664 } else { 3665 AddrSpace = Record[OpNum++]; 3666 } 3667 3668 auto Val = Record[OpNum++]; 3669 auto Linkage = Record[OpNum++]; 3670 auto *NewGA = GlobalAlias::create( 3671 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3672 // Old bitcode files didn't have visibility field. 3673 // Local linkage must have default visibility. 3674 if (OpNum != Record.size()) { 3675 auto VisInd = OpNum++; 3676 if (!NewGA->hasLocalLinkage()) 3677 // FIXME: Change to an error if non-default in 4.0. 3678 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3679 } 3680 if (OpNum != Record.size()) 3681 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3682 else 3683 upgradeDLLImportExportLinkage(NewGA, Linkage); 3684 if (OpNum != Record.size()) 3685 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3686 if (OpNum != Record.size()) 3687 NewGA->setUnnamedAddr(Record[OpNum++]); 3688 ValueList.push_back(NewGA); 3689 AliasInits.push_back(std::make_pair(NewGA, Val)); 3690 break; 3691 } 3692 /// MODULE_CODE_PURGEVALS: [numvals] 3693 case bitc::MODULE_CODE_PURGEVALS: 3694 // Trim down the value list to the specified size. 3695 if (Record.size() < 1 || Record[0] > ValueList.size()) 3696 return error("Invalid record"); 3697 ValueList.shrinkTo(Record[0]); 3698 break; 3699 /// MODULE_CODE_VSTOFFSET: [offset] 3700 case bitc::MODULE_CODE_VSTOFFSET: 3701 if (Record.size() < 1) 3702 return error("Invalid record"); 3703 VSTOffset = Record[0]; 3704 break; 3705 /// MODULE_CODE_METADATA_VALUES: [numvals] 3706 case bitc::MODULE_CODE_METADATA_VALUES: 3707 if (Record.size() < 1) 3708 return error("Invalid record"); 3709 assert(!IsMetadataMaterialized); 3710 // This record contains the number of metadata values in the module-level 3711 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3712 // a postpass, where we will parse function-level metadata first. 3713 // This is needed because the ids of metadata are assigned implicitly 3714 // based on their ordering in the bitcode, with the function-level 3715 // metadata ids starting after the module-level metadata ids. Otherwise, 3716 // we would have to parse the module-level metadata block to prime the 3717 // MDValueList when we are lazy loading metadata during function 3718 // importing. Initialize the MDValueList size here based on the 3719 // record value, regardless of whether we are doing lazy metadata 3720 // loading, so that we have consistent handling and assertion 3721 // checking in parseMetadata for module-level metadata. 3722 NumModuleMDs = Record[0]; 3723 SeenModuleValuesRecord = true; 3724 assert(MDValueList.size() == 0); 3725 MDValueList.resize(NumModuleMDs); 3726 break; 3727 } 3728 Record.clear(); 3729 } 3730 } 3731 3732 /// Helper to read the header common to all bitcode files. 3733 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3734 // Sniff for the signature. 3735 if (Stream.Read(8) != 'B' || 3736 Stream.Read(8) != 'C' || 3737 Stream.Read(4) != 0x0 || 3738 Stream.Read(4) != 0xC || 3739 Stream.Read(4) != 0xE || 3740 Stream.Read(4) != 0xD) 3741 return false; 3742 return true; 3743 } 3744 3745 std::error_code 3746 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3747 Module *M, bool ShouldLazyLoadMetadata) { 3748 TheModule = M; 3749 3750 if (std::error_code EC = initStream(std::move(Streamer))) 3751 return EC; 3752 3753 // Sniff for the signature. 3754 if (!hasValidBitcodeHeader(Stream)) 3755 return error("Invalid bitcode signature"); 3756 3757 // We expect a number of well-defined blocks, though we don't necessarily 3758 // need to understand them all. 3759 while (1) { 3760 if (Stream.AtEndOfStream()) { 3761 // We didn't really read a proper Module. 3762 return error("Malformed IR file"); 3763 } 3764 3765 BitstreamEntry Entry = 3766 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3767 3768 if (Entry.Kind != BitstreamEntry::SubBlock) 3769 return error("Malformed block"); 3770 3771 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3772 parseBitcodeVersion(); 3773 continue; 3774 } 3775 3776 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3777 return parseModule(0, ShouldLazyLoadMetadata); 3778 3779 if (Stream.SkipBlock()) 3780 return error("Invalid record"); 3781 } 3782 } 3783 3784 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3785 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3786 return error("Invalid record"); 3787 3788 SmallVector<uint64_t, 64> Record; 3789 3790 std::string Triple; 3791 // Read all the records for this module. 3792 while (1) { 3793 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3794 3795 switch (Entry.Kind) { 3796 case BitstreamEntry::SubBlock: // Handled for us already. 3797 case BitstreamEntry::Error: 3798 return error("Malformed block"); 3799 case BitstreamEntry::EndBlock: 3800 return Triple; 3801 case BitstreamEntry::Record: 3802 // The interesting case. 3803 break; 3804 } 3805 3806 // Read a record. 3807 switch (Stream.readRecord(Entry.ID, Record)) { 3808 default: break; // Default behavior, ignore unknown content. 3809 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3810 std::string S; 3811 if (convertToString(Record, 0, S)) 3812 return error("Invalid record"); 3813 Triple = S; 3814 break; 3815 } 3816 } 3817 Record.clear(); 3818 } 3819 llvm_unreachable("Exit infinite loop"); 3820 } 3821 3822 ErrorOr<std::string> BitcodeReader::parseTriple() { 3823 if (std::error_code EC = initStream(nullptr)) 3824 return EC; 3825 3826 // Sniff for the signature. 3827 if (!hasValidBitcodeHeader(Stream)) 3828 return error("Invalid bitcode signature"); 3829 3830 // We expect a number of well-defined blocks, though we don't necessarily 3831 // need to understand them all. 3832 while (1) { 3833 BitstreamEntry Entry = Stream.advance(); 3834 3835 switch (Entry.Kind) { 3836 case BitstreamEntry::Error: 3837 return error("Malformed block"); 3838 case BitstreamEntry::EndBlock: 3839 return std::error_code(); 3840 3841 case BitstreamEntry::SubBlock: 3842 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3843 return parseModuleTriple(); 3844 3845 // Ignore other sub-blocks. 3846 if (Stream.SkipBlock()) 3847 return error("Malformed block"); 3848 continue; 3849 3850 case BitstreamEntry::Record: 3851 Stream.skipRecord(Entry.ID); 3852 continue; 3853 } 3854 } 3855 } 3856 3857 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3858 if (std::error_code EC = initStream(nullptr)) 3859 return EC; 3860 3861 // Sniff for the signature. 3862 if (!hasValidBitcodeHeader(Stream)) 3863 return error("Invalid bitcode signature"); 3864 3865 // We expect a number of well-defined blocks, though we don't necessarily 3866 // need to understand them all. 3867 while (1) { 3868 BitstreamEntry Entry = Stream.advance(); 3869 switch (Entry.Kind) { 3870 case BitstreamEntry::Error: 3871 return error("Malformed block"); 3872 case BitstreamEntry::EndBlock: 3873 return std::error_code(); 3874 3875 case BitstreamEntry::SubBlock: 3876 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3877 if (std::error_code EC = parseBitcodeVersion()) 3878 return EC; 3879 return ProducerIdentification; 3880 } 3881 // Ignore other sub-blocks. 3882 if (Stream.SkipBlock()) 3883 return error("Malformed block"); 3884 continue; 3885 case BitstreamEntry::Record: 3886 Stream.skipRecord(Entry.ID); 3887 continue; 3888 } 3889 } 3890 } 3891 3892 /// Parse metadata attachments. 3893 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3894 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3895 return error("Invalid record"); 3896 3897 SmallVector<uint64_t, 64> Record; 3898 while (1) { 3899 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3900 3901 switch (Entry.Kind) { 3902 case BitstreamEntry::SubBlock: // Handled for us already. 3903 case BitstreamEntry::Error: 3904 return error("Malformed block"); 3905 case BitstreamEntry::EndBlock: 3906 return std::error_code(); 3907 case BitstreamEntry::Record: 3908 // The interesting case. 3909 break; 3910 } 3911 3912 // Read a metadata attachment record. 3913 Record.clear(); 3914 switch (Stream.readRecord(Entry.ID, Record)) { 3915 default: // Default behavior: ignore. 3916 break; 3917 case bitc::METADATA_ATTACHMENT: { 3918 unsigned RecordLength = Record.size(); 3919 if (Record.empty()) 3920 return error("Invalid record"); 3921 if (RecordLength % 2 == 0) { 3922 // A function attachment. 3923 for (unsigned I = 0; I != RecordLength; I += 2) { 3924 auto K = MDKindMap.find(Record[I]); 3925 if (K == MDKindMap.end()) 3926 return error("Invalid ID"); 3927 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3928 F.setMetadata(K->second, cast<MDNode>(MD)); 3929 } 3930 continue; 3931 } 3932 3933 // An instruction attachment. 3934 Instruction *Inst = InstructionList[Record[0]]; 3935 for (unsigned i = 1; i != RecordLength; i = i+2) { 3936 unsigned Kind = Record[i]; 3937 DenseMap<unsigned, unsigned>::iterator I = 3938 MDKindMap.find(Kind); 3939 if (I == MDKindMap.end()) 3940 return error("Invalid ID"); 3941 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3942 if (isa<LocalAsMetadata>(Node)) 3943 // Drop the attachment. This used to be legal, but there's no 3944 // upgrade path. 3945 break; 3946 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3947 if (I->second == LLVMContext::MD_tbaa) 3948 InstsWithTBAATag.push_back(Inst); 3949 } 3950 break; 3951 } 3952 } 3953 } 3954 } 3955 3956 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3957 Type *ValType, Type *PtrType) { 3958 if (!isa<PointerType>(PtrType)) 3959 return error(DH, "Load/Store operand is not a pointer type"); 3960 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3961 3962 if (ValType && ValType != ElemType) 3963 return error(DH, "Explicit load/store type does not match pointee type of " 3964 "pointer operand"); 3965 if (!PointerType::isLoadableOrStorableType(ElemType)) 3966 return error(DH, "Cannot load/store from pointer"); 3967 return std::error_code(); 3968 } 3969 3970 /// Lazily parse the specified function body block. 3971 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3972 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3973 return error("Invalid record"); 3974 3975 InstructionList.clear(); 3976 unsigned ModuleValueListSize = ValueList.size(); 3977 unsigned ModuleMDValueListSize = MDValueList.size(); 3978 3979 // Add all the function arguments to the value table. 3980 for (Argument &I : F->args()) 3981 ValueList.push_back(&I); 3982 3983 unsigned NextValueNo = ValueList.size(); 3984 BasicBlock *CurBB = nullptr; 3985 unsigned CurBBNo = 0; 3986 3987 DebugLoc LastLoc; 3988 auto getLastInstruction = [&]() -> Instruction * { 3989 if (CurBB && !CurBB->empty()) 3990 return &CurBB->back(); 3991 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3992 !FunctionBBs[CurBBNo - 1]->empty()) 3993 return &FunctionBBs[CurBBNo - 1]->back(); 3994 return nullptr; 3995 }; 3996 3997 std::vector<OperandBundleDef> OperandBundles; 3998 3999 // Read all the records. 4000 SmallVector<uint64_t, 64> Record; 4001 while (1) { 4002 BitstreamEntry Entry = Stream.advance(); 4003 4004 switch (Entry.Kind) { 4005 case BitstreamEntry::Error: 4006 return error("Malformed block"); 4007 case BitstreamEntry::EndBlock: 4008 goto OutOfRecordLoop; 4009 4010 case BitstreamEntry::SubBlock: 4011 switch (Entry.ID) { 4012 default: // Skip unknown content. 4013 if (Stream.SkipBlock()) 4014 return error("Invalid record"); 4015 break; 4016 case bitc::CONSTANTS_BLOCK_ID: 4017 if (std::error_code EC = parseConstants()) 4018 return EC; 4019 NextValueNo = ValueList.size(); 4020 break; 4021 case bitc::VALUE_SYMTAB_BLOCK_ID: 4022 if (std::error_code EC = parseValueSymbolTable()) 4023 return EC; 4024 break; 4025 case bitc::METADATA_ATTACHMENT_ID: 4026 if (std::error_code EC = parseMetadataAttachment(*F)) 4027 return EC; 4028 break; 4029 case bitc::METADATA_BLOCK_ID: 4030 if (std::error_code EC = parseMetadata()) 4031 return EC; 4032 break; 4033 case bitc::USELIST_BLOCK_ID: 4034 if (std::error_code EC = parseUseLists()) 4035 return EC; 4036 break; 4037 } 4038 continue; 4039 4040 case BitstreamEntry::Record: 4041 // The interesting case. 4042 break; 4043 } 4044 4045 // Read a record. 4046 Record.clear(); 4047 Instruction *I = nullptr; 4048 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4049 switch (BitCode) { 4050 default: // Default behavior: reject 4051 return error("Invalid value"); 4052 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4053 if (Record.size() < 1 || Record[0] == 0) 4054 return error("Invalid record"); 4055 // Create all the basic blocks for the function. 4056 FunctionBBs.resize(Record[0]); 4057 4058 // See if anything took the address of blocks in this function. 4059 auto BBFRI = BasicBlockFwdRefs.find(F); 4060 if (BBFRI == BasicBlockFwdRefs.end()) { 4061 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4062 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4063 } else { 4064 auto &BBRefs = BBFRI->second; 4065 // Check for invalid basic block references. 4066 if (BBRefs.size() > FunctionBBs.size()) 4067 return error("Invalid ID"); 4068 assert(!BBRefs.empty() && "Unexpected empty array"); 4069 assert(!BBRefs.front() && "Invalid reference to entry block"); 4070 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4071 ++I) 4072 if (I < RE && BBRefs[I]) { 4073 BBRefs[I]->insertInto(F); 4074 FunctionBBs[I] = BBRefs[I]; 4075 } else { 4076 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4077 } 4078 4079 // Erase from the table. 4080 BasicBlockFwdRefs.erase(BBFRI); 4081 } 4082 4083 CurBB = FunctionBBs[0]; 4084 continue; 4085 } 4086 4087 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4088 // This record indicates that the last instruction is at the same 4089 // location as the previous instruction with a location. 4090 I = getLastInstruction(); 4091 4092 if (!I) 4093 return error("Invalid record"); 4094 I->setDebugLoc(LastLoc); 4095 I = nullptr; 4096 continue; 4097 4098 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4099 I = getLastInstruction(); 4100 if (!I || Record.size() < 4) 4101 return error("Invalid record"); 4102 4103 unsigned Line = Record[0], Col = Record[1]; 4104 unsigned ScopeID = Record[2], IAID = Record[3]; 4105 4106 MDNode *Scope = nullptr, *IA = nullptr; 4107 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4108 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4109 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4110 I->setDebugLoc(LastLoc); 4111 I = nullptr; 4112 continue; 4113 } 4114 4115 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4116 unsigned OpNum = 0; 4117 Value *LHS, *RHS; 4118 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4119 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4120 OpNum+1 > Record.size()) 4121 return error("Invalid record"); 4122 4123 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4124 if (Opc == -1) 4125 return error("Invalid record"); 4126 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4127 InstructionList.push_back(I); 4128 if (OpNum < Record.size()) { 4129 if (Opc == Instruction::Add || 4130 Opc == Instruction::Sub || 4131 Opc == Instruction::Mul || 4132 Opc == Instruction::Shl) { 4133 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4134 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4135 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4136 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4137 } else if (Opc == Instruction::SDiv || 4138 Opc == Instruction::UDiv || 4139 Opc == Instruction::LShr || 4140 Opc == Instruction::AShr) { 4141 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4142 cast<BinaryOperator>(I)->setIsExact(true); 4143 } else if (isa<FPMathOperator>(I)) { 4144 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4145 if (FMF.any()) 4146 I->setFastMathFlags(FMF); 4147 } 4148 4149 } 4150 break; 4151 } 4152 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4153 unsigned OpNum = 0; 4154 Value *Op; 4155 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4156 OpNum+2 != Record.size()) 4157 return error("Invalid record"); 4158 4159 Type *ResTy = getTypeByID(Record[OpNum]); 4160 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4161 if (Opc == -1 || !ResTy) 4162 return error("Invalid record"); 4163 Instruction *Temp = nullptr; 4164 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4165 if (Temp) { 4166 InstructionList.push_back(Temp); 4167 CurBB->getInstList().push_back(Temp); 4168 } 4169 } else { 4170 auto CastOp = (Instruction::CastOps)Opc; 4171 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4172 return error("Invalid cast"); 4173 I = CastInst::Create(CastOp, Op, ResTy); 4174 } 4175 InstructionList.push_back(I); 4176 break; 4177 } 4178 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4179 case bitc::FUNC_CODE_INST_GEP_OLD: 4180 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4181 unsigned OpNum = 0; 4182 4183 Type *Ty; 4184 bool InBounds; 4185 4186 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4187 InBounds = Record[OpNum++]; 4188 Ty = getTypeByID(Record[OpNum++]); 4189 } else { 4190 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4191 Ty = nullptr; 4192 } 4193 4194 Value *BasePtr; 4195 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4196 return error("Invalid record"); 4197 4198 if (!Ty) 4199 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4200 ->getElementType(); 4201 else if (Ty != 4202 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4203 ->getElementType()) 4204 return error( 4205 "Explicit gep type does not match pointee type of pointer operand"); 4206 4207 SmallVector<Value*, 16> GEPIdx; 4208 while (OpNum != Record.size()) { 4209 Value *Op; 4210 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4211 return error("Invalid record"); 4212 GEPIdx.push_back(Op); 4213 } 4214 4215 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4216 4217 InstructionList.push_back(I); 4218 if (InBounds) 4219 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4220 break; 4221 } 4222 4223 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4224 // EXTRACTVAL: [opty, opval, n x indices] 4225 unsigned OpNum = 0; 4226 Value *Agg; 4227 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4228 return error("Invalid record"); 4229 4230 unsigned RecSize = Record.size(); 4231 if (OpNum == RecSize) 4232 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4233 4234 SmallVector<unsigned, 4> EXTRACTVALIdx; 4235 Type *CurTy = Agg->getType(); 4236 for (; OpNum != RecSize; ++OpNum) { 4237 bool IsArray = CurTy->isArrayTy(); 4238 bool IsStruct = CurTy->isStructTy(); 4239 uint64_t Index = Record[OpNum]; 4240 4241 if (!IsStruct && !IsArray) 4242 return error("EXTRACTVAL: Invalid type"); 4243 if ((unsigned)Index != Index) 4244 return error("Invalid value"); 4245 if (IsStruct && Index >= CurTy->subtypes().size()) 4246 return error("EXTRACTVAL: Invalid struct index"); 4247 if (IsArray && Index >= CurTy->getArrayNumElements()) 4248 return error("EXTRACTVAL: Invalid array index"); 4249 EXTRACTVALIdx.push_back((unsigned)Index); 4250 4251 if (IsStruct) 4252 CurTy = CurTy->subtypes()[Index]; 4253 else 4254 CurTy = CurTy->subtypes()[0]; 4255 } 4256 4257 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4258 InstructionList.push_back(I); 4259 break; 4260 } 4261 4262 case bitc::FUNC_CODE_INST_INSERTVAL: { 4263 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4264 unsigned OpNum = 0; 4265 Value *Agg; 4266 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4267 return error("Invalid record"); 4268 Value *Val; 4269 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4270 return error("Invalid record"); 4271 4272 unsigned RecSize = Record.size(); 4273 if (OpNum == RecSize) 4274 return error("INSERTVAL: Invalid instruction with 0 indices"); 4275 4276 SmallVector<unsigned, 4> INSERTVALIdx; 4277 Type *CurTy = Agg->getType(); 4278 for (; OpNum != RecSize; ++OpNum) { 4279 bool IsArray = CurTy->isArrayTy(); 4280 bool IsStruct = CurTy->isStructTy(); 4281 uint64_t Index = Record[OpNum]; 4282 4283 if (!IsStruct && !IsArray) 4284 return error("INSERTVAL: Invalid type"); 4285 if ((unsigned)Index != Index) 4286 return error("Invalid value"); 4287 if (IsStruct && Index >= CurTy->subtypes().size()) 4288 return error("INSERTVAL: Invalid struct index"); 4289 if (IsArray && Index >= CurTy->getArrayNumElements()) 4290 return error("INSERTVAL: Invalid array index"); 4291 4292 INSERTVALIdx.push_back((unsigned)Index); 4293 if (IsStruct) 4294 CurTy = CurTy->subtypes()[Index]; 4295 else 4296 CurTy = CurTy->subtypes()[0]; 4297 } 4298 4299 if (CurTy != Val->getType()) 4300 return error("Inserted value type doesn't match aggregate type"); 4301 4302 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4303 InstructionList.push_back(I); 4304 break; 4305 } 4306 4307 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4308 // obsolete form of select 4309 // handles select i1 ... in old bitcode 4310 unsigned OpNum = 0; 4311 Value *TrueVal, *FalseVal, *Cond; 4312 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4313 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4314 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4315 return error("Invalid record"); 4316 4317 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4318 InstructionList.push_back(I); 4319 break; 4320 } 4321 4322 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4323 // new form of select 4324 // handles select i1 or select [N x i1] 4325 unsigned OpNum = 0; 4326 Value *TrueVal, *FalseVal, *Cond; 4327 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4328 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4329 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4330 return error("Invalid record"); 4331 4332 // select condition can be either i1 or [N x i1] 4333 if (VectorType* vector_type = 4334 dyn_cast<VectorType>(Cond->getType())) { 4335 // expect <n x i1> 4336 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4337 return error("Invalid type for value"); 4338 } else { 4339 // expect i1 4340 if (Cond->getType() != Type::getInt1Ty(Context)) 4341 return error("Invalid type for value"); 4342 } 4343 4344 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4345 InstructionList.push_back(I); 4346 break; 4347 } 4348 4349 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4350 unsigned OpNum = 0; 4351 Value *Vec, *Idx; 4352 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4353 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4354 return error("Invalid record"); 4355 if (!Vec->getType()->isVectorTy()) 4356 return error("Invalid type for value"); 4357 I = ExtractElementInst::Create(Vec, Idx); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 4362 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4363 unsigned OpNum = 0; 4364 Value *Vec, *Elt, *Idx; 4365 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4366 return error("Invalid record"); 4367 if (!Vec->getType()->isVectorTy()) 4368 return error("Invalid type for value"); 4369 if (popValue(Record, OpNum, NextValueNo, 4370 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4371 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4372 return error("Invalid record"); 4373 I = InsertElementInst::Create(Vec, Elt, Idx); 4374 InstructionList.push_back(I); 4375 break; 4376 } 4377 4378 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4379 unsigned OpNum = 0; 4380 Value *Vec1, *Vec2, *Mask; 4381 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4382 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4383 return error("Invalid record"); 4384 4385 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4386 return error("Invalid record"); 4387 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4388 return error("Invalid type for value"); 4389 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4390 InstructionList.push_back(I); 4391 break; 4392 } 4393 4394 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4395 // Old form of ICmp/FCmp returning bool 4396 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4397 // both legal on vectors but had different behaviour. 4398 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4399 // FCmp/ICmp returning bool or vector of bool 4400 4401 unsigned OpNum = 0; 4402 Value *LHS, *RHS; 4403 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4404 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4405 return error("Invalid record"); 4406 4407 unsigned PredVal = Record[OpNum]; 4408 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4409 FastMathFlags FMF; 4410 if (IsFP && Record.size() > OpNum+1) 4411 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4412 4413 if (OpNum+1 != Record.size()) 4414 return error("Invalid record"); 4415 4416 if (LHS->getType()->isFPOrFPVectorTy()) 4417 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4418 else 4419 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4420 4421 if (FMF.any()) 4422 I->setFastMathFlags(FMF); 4423 InstructionList.push_back(I); 4424 break; 4425 } 4426 4427 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4428 { 4429 unsigned Size = Record.size(); 4430 if (Size == 0) { 4431 I = ReturnInst::Create(Context); 4432 InstructionList.push_back(I); 4433 break; 4434 } 4435 4436 unsigned OpNum = 0; 4437 Value *Op = nullptr; 4438 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4439 return error("Invalid record"); 4440 if (OpNum != Record.size()) 4441 return error("Invalid record"); 4442 4443 I = ReturnInst::Create(Context, Op); 4444 InstructionList.push_back(I); 4445 break; 4446 } 4447 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4448 if (Record.size() != 1 && Record.size() != 3) 4449 return error("Invalid record"); 4450 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4451 if (!TrueDest) 4452 return error("Invalid record"); 4453 4454 if (Record.size() == 1) { 4455 I = BranchInst::Create(TrueDest); 4456 InstructionList.push_back(I); 4457 } 4458 else { 4459 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4460 Value *Cond = getValue(Record, 2, NextValueNo, 4461 Type::getInt1Ty(Context)); 4462 if (!FalseDest || !Cond) 4463 return error("Invalid record"); 4464 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4465 InstructionList.push_back(I); 4466 } 4467 break; 4468 } 4469 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4470 if (Record.size() != 1 && Record.size() != 2) 4471 return error("Invalid record"); 4472 unsigned Idx = 0; 4473 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4474 Type::getTokenTy(Context), OC_CleanupPad); 4475 if (!CleanupPad) 4476 return error("Invalid record"); 4477 BasicBlock *UnwindDest = nullptr; 4478 if (Record.size() == 2) { 4479 UnwindDest = getBasicBlock(Record[Idx++]); 4480 if (!UnwindDest) 4481 return error("Invalid record"); 4482 } 4483 4484 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4485 UnwindDest); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4490 if (Record.size() != 2) 4491 return error("Invalid record"); 4492 unsigned Idx = 0; 4493 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4494 Type::getTokenTy(Context), OC_CatchPad); 4495 if (!CatchPad) 4496 return error("Invalid record"); 4497 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4498 if (!BB) 4499 return error("Invalid record"); 4500 4501 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4502 InstructionList.push_back(I); 4503 break; 4504 } 4505 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4506 if (Record.size() < 3) 4507 return error("Invalid record"); 4508 unsigned Idx = 0; 4509 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4510 if (!NormalBB) 4511 return error("Invalid record"); 4512 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4513 if (!UnwindBB) 4514 return error("Invalid record"); 4515 unsigned NumArgOperands = Record[Idx++]; 4516 SmallVector<Value *, 2> Args; 4517 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4518 Value *Val; 4519 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4520 return error("Invalid record"); 4521 Args.push_back(Val); 4522 } 4523 if (Record.size() != Idx) 4524 return error("Invalid record"); 4525 4526 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4527 InstructionList.push_back(I); 4528 break; 4529 } 4530 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4531 if (Record.size() < 1) 4532 return error("Invalid record"); 4533 unsigned Idx = 0; 4534 bool HasUnwindDest = !!Record[Idx++]; 4535 BasicBlock *UnwindDest = nullptr; 4536 if (HasUnwindDest) { 4537 if (Idx == Record.size()) 4538 return error("Invalid record"); 4539 UnwindDest = getBasicBlock(Record[Idx++]); 4540 if (!UnwindDest) 4541 return error("Invalid record"); 4542 } 4543 unsigned NumArgOperands = Record[Idx++]; 4544 SmallVector<Value *, 2> Args; 4545 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4546 Value *Val; 4547 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4548 return error("Invalid record"); 4549 Args.push_back(Val); 4550 } 4551 if (Record.size() != Idx) 4552 return error("Invalid record"); 4553 4554 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4555 InstructionList.push_back(I); 4556 break; 4557 } 4558 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4559 if (Record.size() < 1) 4560 return error("Invalid record"); 4561 unsigned Idx = 0; 4562 unsigned NumArgOperands = Record[Idx++]; 4563 SmallVector<Value *, 2> Args; 4564 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4565 Value *Val; 4566 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4567 return error("Invalid record"); 4568 Args.push_back(Val); 4569 } 4570 if (Record.size() != Idx) 4571 return error("Invalid record"); 4572 4573 I = CleanupPadInst::Create(Context, Args); 4574 InstructionList.push_back(I); 4575 break; 4576 } 4577 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4578 if (Record.size() > 1) 4579 return error("Invalid record"); 4580 BasicBlock *BB = nullptr; 4581 if (Record.size() == 1) { 4582 BB = getBasicBlock(Record[0]); 4583 if (!BB) 4584 return error("Invalid record"); 4585 } 4586 I = CatchEndPadInst::Create(Context, BB); 4587 InstructionList.push_back(I); 4588 break; 4589 } 4590 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4591 if (Record.size() != 1 && Record.size() != 2) 4592 return error("Invalid record"); 4593 unsigned Idx = 0; 4594 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4595 Type::getTokenTy(Context), OC_CleanupPad); 4596 if (!CleanupPad) 4597 return error("Invalid record"); 4598 4599 BasicBlock *BB = nullptr; 4600 if (Record.size() == 2) { 4601 BB = getBasicBlock(Record[Idx++]); 4602 if (!BB) 4603 return error("Invalid record"); 4604 } 4605 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4606 InstructionList.push_back(I); 4607 break; 4608 } 4609 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4610 // Check magic 4611 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4612 // "New" SwitchInst format with case ranges. The changes to write this 4613 // format were reverted but we still recognize bitcode that uses it. 4614 // Hopefully someday we will have support for case ranges and can use 4615 // this format again. 4616 4617 Type *OpTy = getTypeByID(Record[1]); 4618 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4619 4620 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4621 BasicBlock *Default = getBasicBlock(Record[3]); 4622 if (!OpTy || !Cond || !Default) 4623 return error("Invalid record"); 4624 4625 unsigned NumCases = Record[4]; 4626 4627 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4628 InstructionList.push_back(SI); 4629 4630 unsigned CurIdx = 5; 4631 for (unsigned i = 0; i != NumCases; ++i) { 4632 SmallVector<ConstantInt*, 1> CaseVals; 4633 unsigned NumItems = Record[CurIdx++]; 4634 for (unsigned ci = 0; ci != NumItems; ++ci) { 4635 bool isSingleNumber = Record[CurIdx++]; 4636 4637 APInt Low; 4638 unsigned ActiveWords = 1; 4639 if (ValueBitWidth > 64) 4640 ActiveWords = Record[CurIdx++]; 4641 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4642 ValueBitWidth); 4643 CurIdx += ActiveWords; 4644 4645 if (!isSingleNumber) { 4646 ActiveWords = 1; 4647 if (ValueBitWidth > 64) 4648 ActiveWords = Record[CurIdx++]; 4649 APInt High = readWideAPInt( 4650 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4651 CurIdx += ActiveWords; 4652 4653 // FIXME: It is not clear whether values in the range should be 4654 // compared as signed or unsigned values. The partially 4655 // implemented changes that used this format in the past used 4656 // unsigned comparisons. 4657 for ( ; Low.ule(High); ++Low) 4658 CaseVals.push_back(ConstantInt::get(Context, Low)); 4659 } else 4660 CaseVals.push_back(ConstantInt::get(Context, Low)); 4661 } 4662 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4663 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4664 cve = CaseVals.end(); cvi != cve; ++cvi) 4665 SI->addCase(*cvi, DestBB); 4666 } 4667 I = SI; 4668 break; 4669 } 4670 4671 // Old SwitchInst format without case ranges. 4672 4673 if (Record.size() < 3 || (Record.size() & 1) == 0) 4674 return error("Invalid record"); 4675 Type *OpTy = getTypeByID(Record[0]); 4676 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4677 BasicBlock *Default = getBasicBlock(Record[2]); 4678 if (!OpTy || !Cond || !Default) 4679 return error("Invalid record"); 4680 unsigned NumCases = (Record.size()-3)/2; 4681 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4682 InstructionList.push_back(SI); 4683 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4684 ConstantInt *CaseVal = 4685 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4686 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4687 if (!CaseVal || !DestBB) { 4688 delete SI; 4689 return error("Invalid record"); 4690 } 4691 SI->addCase(CaseVal, DestBB); 4692 } 4693 I = SI; 4694 break; 4695 } 4696 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4697 if (Record.size() < 2) 4698 return error("Invalid record"); 4699 Type *OpTy = getTypeByID(Record[0]); 4700 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4701 if (!OpTy || !Address) 4702 return error("Invalid record"); 4703 unsigned NumDests = Record.size()-2; 4704 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4705 InstructionList.push_back(IBI); 4706 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4707 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4708 IBI->addDestination(DestBB); 4709 } else { 4710 delete IBI; 4711 return error("Invalid record"); 4712 } 4713 } 4714 I = IBI; 4715 break; 4716 } 4717 4718 case bitc::FUNC_CODE_INST_INVOKE: { 4719 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4720 if (Record.size() < 4) 4721 return error("Invalid record"); 4722 unsigned OpNum = 0; 4723 AttributeSet PAL = getAttributes(Record[OpNum++]); 4724 unsigned CCInfo = Record[OpNum++]; 4725 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4726 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4727 4728 FunctionType *FTy = nullptr; 4729 if (CCInfo >> 13 & 1 && 4730 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4731 return error("Explicit invoke type is not a function type"); 4732 4733 Value *Callee; 4734 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4735 return error("Invalid record"); 4736 4737 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4738 if (!CalleeTy) 4739 return error("Callee is not a pointer"); 4740 if (!FTy) { 4741 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4742 if (!FTy) 4743 return error("Callee is not of pointer to function type"); 4744 } else if (CalleeTy->getElementType() != FTy) 4745 return error("Explicit invoke type does not match pointee type of " 4746 "callee operand"); 4747 if (Record.size() < FTy->getNumParams() + OpNum) 4748 return error("Insufficient operands to call"); 4749 4750 SmallVector<Value*, 16> Ops; 4751 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4752 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4753 FTy->getParamType(i))); 4754 if (!Ops.back()) 4755 return error("Invalid record"); 4756 } 4757 4758 if (!FTy->isVarArg()) { 4759 if (Record.size() != OpNum) 4760 return error("Invalid record"); 4761 } else { 4762 // Read type/value pairs for varargs params. 4763 while (OpNum != Record.size()) { 4764 Value *Op; 4765 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4766 return error("Invalid record"); 4767 Ops.push_back(Op); 4768 } 4769 } 4770 4771 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4772 OperandBundles.clear(); 4773 InstructionList.push_back(I); 4774 cast<InvokeInst>(I)->setCallingConv( 4775 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4776 cast<InvokeInst>(I)->setAttributes(PAL); 4777 break; 4778 } 4779 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4780 unsigned Idx = 0; 4781 Value *Val = nullptr; 4782 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4783 return error("Invalid record"); 4784 I = ResumeInst::Create(Val); 4785 InstructionList.push_back(I); 4786 break; 4787 } 4788 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4789 I = new UnreachableInst(Context); 4790 InstructionList.push_back(I); 4791 break; 4792 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4793 if (Record.size() < 1 || ((Record.size()-1)&1)) 4794 return error("Invalid record"); 4795 Type *Ty = getTypeByID(Record[0]); 4796 if (!Ty) 4797 return error("Invalid record"); 4798 4799 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4800 InstructionList.push_back(PN); 4801 4802 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4803 Value *V; 4804 // With the new function encoding, it is possible that operands have 4805 // negative IDs (for forward references). Use a signed VBR 4806 // representation to keep the encoding small. 4807 if (UseRelativeIDs) 4808 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4809 else 4810 V = getValue(Record, 1+i, NextValueNo, Ty); 4811 BasicBlock *BB = getBasicBlock(Record[2+i]); 4812 if (!V || !BB) 4813 return error("Invalid record"); 4814 PN->addIncoming(V, BB); 4815 } 4816 I = PN; 4817 break; 4818 } 4819 4820 case bitc::FUNC_CODE_INST_LANDINGPAD: 4821 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4822 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4823 unsigned Idx = 0; 4824 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4825 if (Record.size() < 3) 4826 return error("Invalid record"); 4827 } else { 4828 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4829 if (Record.size() < 4) 4830 return error("Invalid record"); 4831 } 4832 Type *Ty = getTypeByID(Record[Idx++]); 4833 if (!Ty) 4834 return error("Invalid record"); 4835 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4836 Value *PersFn = nullptr; 4837 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4838 return error("Invalid record"); 4839 4840 if (!F->hasPersonalityFn()) 4841 F->setPersonalityFn(cast<Constant>(PersFn)); 4842 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4843 return error("Personality function mismatch"); 4844 } 4845 4846 bool IsCleanup = !!Record[Idx++]; 4847 unsigned NumClauses = Record[Idx++]; 4848 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4849 LP->setCleanup(IsCleanup); 4850 for (unsigned J = 0; J != NumClauses; ++J) { 4851 LandingPadInst::ClauseType CT = 4852 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4853 Value *Val; 4854 4855 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4856 delete LP; 4857 return error("Invalid record"); 4858 } 4859 4860 assert((CT != LandingPadInst::Catch || 4861 !isa<ArrayType>(Val->getType())) && 4862 "Catch clause has a invalid type!"); 4863 assert((CT != LandingPadInst::Filter || 4864 isa<ArrayType>(Val->getType())) && 4865 "Filter clause has invalid type!"); 4866 LP->addClause(cast<Constant>(Val)); 4867 } 4868 4869 I = LP; 4870 InstructionList.push_back(I); 4871 break; 4872 } 4873 4874 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4875 if (Record.size() != 4) 4876 return error("Invalid record"); 4877 uint64_t AlignRecord = Record[3]; 4878 const uint64_t InAllocaMask = uint64_t(1) << 5; 4879 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4880 // Reserve bit 7 for SwiftError flag. 4881 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4882 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4883 bool InAlloca = AlignRecord & InAllocaMask; 4884 Type *Ty = getTypeByID(Record[0]); 4885 if ((AlignRecord & ExplicitTypeMask) == 0) { 4886 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4887 if (!PTy) 4888 return error("Old-style alloca with a non-pointer type"); 4889 Ty = PTy->getElementType(); 4890 } 4891 Type *OpTy = getTypeByID(Record[1]); 4892 Value *Size = getFnValueByID(Record[2], OpTy); 4893 unsigned Align; 4894 if (std::error_code EC = 4895 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4896 return EC; 4897 } 4898 if (!Ty || !Size) 4899 return error("Invalid record"); 4900 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4901 AI->setUsedWithInAlloca(InAlloca); 4902 I = AI; 4903 InstructionList.push_back(I); 4904 break; 4905 } 4906 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4907 unsigned OpNum = 0; 4908 Value *Op; 4909 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4910 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4911 return error("Invalid record"); 4912 4913 Type *Ty = nullptr; 4914 if (OpNum + 3 == Record.size()) 4915 Ty = getTypeByID(Record[OpNum++]); 4916 if (std::error_code EC = 4917 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4918 return EC; 4919 if (!Ty) 4920 Ty = cast<PointerType>(Op->getType())->getElementType(); 4921 4922 unsigned Align; 4923 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4924 return EC; 4925 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4926 4927 InstructionList.push_back(I); 4928 break; 4929 } 4930 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4931 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4932 unsigned OpNum = 0; 4933 Value *Op; 4934 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4935 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4936 return error("Invalid record"); 4937 4938 Type *Ty = nullptr; 4939 if (OpNum + 5 == Record.size()) 4940 Ty = getTypeByID(Record[OpNum++]); 4941 if (std::error_code EC = 4942 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4943 return EC; 4944 if (!Ty) 4945 Ty = cast<PointerType>(Op->getType())->getElementType(); 4946 4947 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4948 if (Ordering == NotAtomic || Ordering == Release || 4949 Ordering == AcquireRelease) 4950 return error("Invalid record"); 4951 if (Ordering != NotAtomic && Record[OpNum] == 0) 4952 return error("Invalid record"); 4953 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4954 4955 unsigned Align; 4956 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4957 return EC; 4958 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4959 4960 InstructionList.push_back(I); 4961 break; 4962 } 4963 case bitc::FUNC_CODE_INST_STORE: 4964 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4965 unsigned OpNum = 0; 4966 Value *Val, *Ptr; 4967 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4968 (BitCode == bitc::FUNC_CODE_INST_STORE 4969 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4970 : popValue(Record, OpNum, NextValueNo, 4971 cast<PointerType>(Ptr->getType())->getElementType(), 4972 Val)) || 4973 OpNum + 2 != Record.size()) 4974 return error("Invalid record"); 4975 4976 if (std::error_code EC = typeCheckLoadStoreInst( 4977 DiagnosticHandler, Val->getType(), Ptr->getType())) 4978 return EC; 4979 unsigned Align; 4980 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4981 return EC; 4982 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4983 InstructionList.push_back(I); 4984 break; 4985 } 4986 case bitc::FUNC_CODE_INST_STOREATOMIC: 4987 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4988 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4989 unsigned OpNum = 0; 4990 Value *Val, *Ptr; 4991 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4992 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4993 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4994 : popValue(Record, OpNum, NextValueNo, 4995 cast<PointerType>(Ptr->getType())->getElementType(), 4996 Val)) || 4997 OpNum + 4 != Record.size()) 4998 return error("Invalid record"); 4999 5000 if (std::error_code EC = typeCheckLoadStoreInst( 5001 DiagnosticHandler, Val->getType(), Ptr->getType())) 5002 return EC; 5003 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5004 if (Ordering == NotAtomic || Ordering == Acquire || 5005 Ordering == AcquireRelease) 5006 return error("Invalid record"); 5007 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5008 if (Ordering != NotAtomic && Record[OpNum] == 0) 5009 return error("Invalid record"); 5010 5011 unsigned Align; 5012 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5013 return EC; 5014 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5015 InstructionList.push_back(I); 5016 break; 5017 } 5018 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5019 case bitc::FUNC_CODE_INST_CMPXCHG: { 5020 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5021 // failureordering?, isweak?] 5022 unsigned OpNum = 0; 5023 Value *Ptr, *Cmp, *New; 5024 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5025 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5026 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5027 : popValue(Record, OpNum, NextValueNo, 5028 cast<PointerType>(Ptr->getType())->getElementType(), 5029 Cmp)) || 5030 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5031 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5032 return error("Invalid record"); 5033 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5034 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5035 return error("Invalid record"); 5036 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5037 5038 if (std::error_code EC = typeCheckLoadStoreInst( 5039 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 5040 return EC; 5041 AtomicOrdering FailureOrdering; 5042 if (Record.size() < 7) 5043 FailureOrdering = 5044 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5045 else 5046 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5047 5048 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5049 SynchScope); 5050 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5051 5052 if (Record.size() < 8) { 5053 // Before weak cmpxchgs existed, the instruction simply returned the 5054 // value loaded from memory, so bitcode files from that era will be 5055 // expecting the first component of a modern cmpxchg. 5056 CurBB->getInstList().push_back(I); 5057 I = ExtractValueInst::Create(I, 0); 5058 } else { 5059 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5060 } 5061 5062 InstructionList.push_back(I); 5063 break; 5064 } 5065 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5066 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5067 unsigned OpNum = 0; 5068 Value *Ptr, *Val; 5069 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5070 popValue(Record, OpNum, NextValueNo, 5071 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5072 OpNum+4 != Record.size()) 5073 return error("Invalid record"); 5074 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5075 if (Operation < AtomicRMWInst::FIRST_BINOP || 5076 Operation > AtomicRMWInst::LAST_BINOP) 5077 return error("Invalid record"); 5078 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5079 if (Ordering == NotAtomic || Ordering == Unordered) 5080 return error("Invalid record"); 5081 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5082 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5083 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5084 InstructionList.push_back(I); 5085 break; 5086 } 5087 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5088 if (2 != Record.size()) 5089 return error("Invalid record"); 5090 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5091 if (Ordering == NotAtomic || Ordering == Unordered || 5092 Ordering == Monotonic) 5093 return error("Invalid record"); 5094 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5095 I = new FenceInst(Context, Ordering, SynchScope); 5096 InstructionList.push_back(I); 5097 break; 5098 } 5099 case bitc::FUNC_CODE_INST_CALL: { 5100 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 5101 if (Record.size() < 3) 5102 return error("Invalid record"); 5103 5104 unsigned OpNum = 0; 5105 AttributeSet PAL = getAttributes(Record[OpNum++]); 5106 unsigned CCInfo = Record[OpNum++]; 5107 5108 FunctionType *FTy = nullptr; 5109 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5110 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5111 return error("Explicit call type is not a function type"); 5112 5113 Value *Callee; 5114 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5115 return error("Invalid record"); 5116 5117 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5118 if (!OpTy) 5119 return error("Callee is not a pointer type"); 5120 if (!FTy) { 5121 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5122 if (!FTy) 5123 return error("Callee is not of pointer to function type"); 5124 } else if (OpTy->getElementType() != FTy) 5125 return error("Explicit call type does not match pointee type of " 5126 "callee operand"); 5127 if (Record.size() < FTy->getNumParams() + OpNum) 5128 return error("Insufficient operands to call"); 5129 5130 SmallVector<Value*, 16> Args; 5131 // Read the fixed params. 5132 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5133 if (FTy->getParamType(i)->isLabelTy()) 5134 Args.push_back(getBasicBlock(Record[OpNum])); 5135 else 5136 Args.push_back(getValue(Record, OpNum, NextValueNo, 5137 FTy->getParamType(i))); 5138 if (!Args.back()) 5139 return error("Invalid record"); 5140 } 5141 5142 // Read type/value pairs for varargs params. 5143 if (!FTy->isVarArg()) { 5144 if (OpNum != Record.size()) 5145 return error("Invalid record"); 5146 } else { 5147 while (OpNum != Record.size()) { 5148 Value *Op; 5149 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5150 return error("Invalid record"); 5151 Args.push_back(Op); 5152 } 5153 } 5154 5155 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5156 OperandBundles.clear(); 5157 InstructionList.push_back(I); 5158 cast<CallInst>(I)->setCallingConv( 5159 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5160 CallInst::TailCallKind TCK = CallInst::TCK_None; 5161 if (CCInfo & 1 << bitc::CALL_TAIL) 5162 TCK = CallInst::TCK_Tail; 5163 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5164 TCK = CallInst::TCK_MustTail; 5165 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5166 TCK = CallInst::TCK_NoTail; 5167 cast<CallInst>(I)->setTailCallKind(TCK); 5168 cast<CallInst>(I)->setAttributes(PAL); 5169 break; 5170 } 5171 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5172 if (Record.size() < 3) 5173 return error("Invalid record"); 5174 Type *OpTy = getTypeByID(Record[0]); 5175 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5176 Type *ResTy = getTypeByID(Record[2]); 5177 if (!OpTy || !Op || !ResTy) 5178 return error("Invalid record"); 5179 I = new VAArgInst(Op, ResTy); 5180 InstructionList.push_back(I); 5181 break; 5182 } 5183 5184 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5185 // A call or an invoke can be optionally prefixed with some variable 5186 // number of operand bundle blocks. These blocks are read into 5187 // OperandBundles and consumed at the next call or invoke instruction. 5188 5189 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5190 return error("Invalid record"); 5191 5192 std::vector<Value *> Inputs; 5193 5194 unsigned OpNum = 1; 5195 while (OpNum != Record.size()) { 5196 Value *Op; 5197 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5198 return error("Invalid record"); 5199 Inputs.push_back(Op); 5200 } 5201 5202 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5203 continue; 5204 } 5205 } 5206 5207 // Add instruction to end of current BB. If there is no current BB, reject 5208 // this file. 5209 if (!CurBB) { 5210 delete I; 5211 return error("Invalid instruction with no BB"); 5212 } 5213 if (!OperandBundles.empty()) { 5214 delete I; 5215 return error("Operand bundles found with no consumer"); 5216 } 5217 CurBB->getInstList().push_back(I); 5218 5219 // If this was a terminator instruction, move to the next block. 5220 if (isa<TerminatorInst>(I)) { 5221 ++CurBBNo; 5222 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5223 } 5224 5225 // Non-void values get registered in the value table for future use. 5226 if (I && !I->getType()->isVoidTy()) 5227 if (ValueList.assignValue(I, NextValueNo++)) 5228 return error("Invalid forward reference"); 5229 } 5230 5231 OutOfRecordLoop: 5232 5233 if (!OperandBundles.empty()) 5234 return error("Operand bundles found with no consumer"); 5235 5236 // Check the function list for unresolved values. 5237 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5238 if (!A->getParent()) { 5239 // We found at least one unresolved value. Nuke them all to avoid leaks. 5240 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5241 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5242 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5243 delete A; 5244 } 5245 } 5246 return error("Never resolved value found in function"); 5247 } 5248 } 5249 5250 // FIXME: Check for unresolved forward-declared metadata references 5251 // and clean up leaks. 5252 5253 // Trim the value list down to the size it was before we parsed this function. 5254 ValueList.shrinkTo(ModuleValueListSize); 5255 MDValueList.shrinkTo(ModuleMDValueListSize); 5256 std::vector<BasicBlock*>().swap(FunctionBBs); 5257 return std::error_code(); 5258 } 5259 5260 /// Find the function body in the bitcode stream 5261 std::error_code BitcodeReader::findFunctionInStream( 5262 Function *F, 5263 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5264 while (DeferredFunctionInfoIterator->second == 0) { 5265 // This is the fallback handling for the old format bitcode that 5266 // didn't contain the function index in the VST, or when we have 5267 // an anonymous function which would not have a VST entry. 5268 // Assert that we have one of those two cases. 5269 assert(VSTOffset == 0 || !F->hasName()); 5270 // Parse the next body in the stream and set its position in the 5271 // DeferredFunctionInfo map. 5272 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5273 return EC; 5274 } 5275 return std::error_code(); 5276 } 5277 5278 //===----------------------------------------------------------------------===// 5279 // GVMaterializer implementation 5280 //===----------------------------------------------------------------------===// 5281 5282 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5283 5284 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5285 // In older bitcode we must materialize the metadata before parsing 5286 // any functions, in order to set up the MDValueList properly. 5287 if (!SeenModuleValuesRecord) { 5288 if (std::error_code EC = materializeMetadata()) 5289 return EC; 5290 } 5291 5292 Function *F = dyn_cast<Function>(GV); 5293 // If it's not a function or is already material, ignore the request. 5294 if (!F || !F->isMaterializable()) 5295 return std::error_code(); 5296 5297 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5298 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5299 // If its position is recorded as 0, its body is somewhere in the stream 5300 // but we haven't seen it yet. 5301 if (DFII->second == 0) 5302 if (std::error_code EC = findFunctionInStream(F, DFII)) 5303 return EC; 5304 5305 // Move the bit stream to the saved position of the deferred function body. 5306 Stream.JumpToBit(DFII->second); 5307 5308 if (std::error_code EC = parseFunctionBody(F)) 5309 return EC; 5310 F->setIsMaterializable(false); 5311 5312 if (StripDebugInfo) 5313 stripDebugInfo(*F); 5314 5315 // Upgrade any old intrinsic calls in the function. 5316 for (auto &I : UpgradedIntrinsics) { 5317 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5318 User *U = *UI; 5319 ++UI; 5320 if (CallInst *CI = dyn_cast<CallInst>(U)) 5321 UpgradeIntrinsicCall(CI, I.second); 5322 } 5323 } 5324 5325 // Finish fn->subprogram upgrade for materialized functions. 5326 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5327 F->setSubprogram(SP); 5328 5329 // Bring in any functions that this function forward-referenced via 5330 // blockaddresses. 5331 return materializeForwardReferencedFunctions(); 5332 } 5333 5334 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5335 const Function *F = dyn_cast<Function>(GV); 5336 if (!F || F->isDeclaration()) 5337 return false; 5338 5339 // Dematerializing F would leave dangling references that wouldn't be 5340 // reconnected on re-materialization. 5341 if (BlockAddressesTaken.count(F)) 5342 return false; 5343 5344 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5345 } 5346 5347 void BitcodeReader::dematerialize(GlobalValue *GV) { 5348 Function *F = dyn_cast<Function>(GV); 5349 // If this function isn't dematerializable, this is a noop. 5350 if (!F || !isDematerializable(F)) 5351 return; 5352 5353 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5354 5355 // Just forget the function body, we can remat it later. 5356 F->dropAllReferences(); 5357 F->setIsMaterializable(true); 5358 } 5359 5360 std::error_code BitcodeReader::materializeModule(Module *M) { 5361 assert(M == TheModule && 5362 "Can only Materialize the Module this BitcodeReader is attached to."); 5363 5364 if (std::error_code EC = materializeMetadata()) 5365 return EC; 5366 5367 // Promise to materialize all forward references. 5368 WillMaterializeAllForwardRefs = true; 5369 5370 // Iterate over the module, deserializing any functions that are still on 5371 // disk. 5372 for (Function &F : *TheModule) { 5373 if (std::error_code EC = materialize(&F)) 5374 return EC; 5375 } 5376 // At this point, if there are any function bodies, parse the rest of 5377 // the bits in the module past the last function block we have recorded 5378 // through either lazy scanning or the VST. 5379 if (LastFunctionBlockBit || NextUnreadBit) 5380 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5381 : NextUnreadBit); 5382 5383 // Check that all block address forward references got resolved (as we 5384 // promised above). 5385 if (!BasicBlockFwdRefs.empty()) 5386 return error("Never resolved function from blockaddress"); 5387 5388 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5389 // delete the old functions to clean up. We can't do this unless the entire 5390 // module is materialized because there could always be another function body 5391 // with calls to the old function. 5392 for (auto &I : UpgradedIntrinsics) { 5393 for (auto *U : I.first->users()) { 5394 if (CallInst *CI = dyn_cast<CallInst>(U)) 5395 UpgradeIntrinsicCall(CI, I.second); 5396 } 5397 if (!I.first->use_empty()) 5398 I.first->replaceAllUsesWith(I.second); 5399 I.first->eraseFromParent(); 5400 } 5401 UpgradedIntrinsics.clear(); 5402 5403 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5404 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5405 5406 UpgradeDebugInfo(*M); 5407 return std::error_code(); 5408 } 5409 5410 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5411 return IdentifiedStructTypes; 5412 } 5413 5414 std::error_code 5415 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5416 if (Streamer) 5417 return initLazyStream(std::move(Streamer)); 5418 return initStreamFromBuffer(); 5419 } 5420 5421 std::error_code BitcodeReader::initStreamFromBuffer() { 5422 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5423 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5424 5425 if (Buffer->getBufferSize() & 3) 5426 return error("Invalid bitcode signature"); 5427 5428 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5429 // The magic number is 0x0B17C0DE stored in little endian. 5430 if (isBitcodeWrapper(BufPtr, BufEnd)) 5431 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5432 return error("Invalid bitcode wrapper header"); 5433 5434 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5435 Stream.init(&*StreamFile); 5436 5437 return std::error_code(); 5438 } 5439 5440 std::error_code 5441 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5442 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5443 // see it. 5444 auto OwnedBytes = 5445 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5446 StreamingMemoryObject &Bytes = *OwnedBytes; 5447 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5448 Stream.init(&*StreamFile); 5449 5450 unsigned char buf[16]; 5451 if (Bytes.readBytes(buf, 16, 0) != 16) 5452 return error("Invalid bitcode signature"); 5453 5454 if (!isBitcode(buf, buf + 16)) 5455 return error("Invalid bitcode signature"); 5456 5457 if (isBitcodeWrapper(buf, buf + 4)) { 5458 const unsigned char *bitcodeStart = buf; 5459 const unsigned char *bitcodeEnd = buf + 16; 5460 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5461 Bytes.dropLeadingBytes(bitcodeStart - buf); 5462 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5463 } 5464 return std::error_code(); 5465 } 5466 5467 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5468 const Twine &Message) { 5469 return ::error(DiagnosticHandler, make_error_code(E), Message); 5470 } 5471 5472 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5473 return ::error(DiagnosticHandler, 5474 make_error_code(BitcodeError::CorruptedBitcode), Message); 5475 } 5476 5477 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5478 return ::error(DiagnosticHandler, make_error_code(E)); 5479 } 5480 5481 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5482 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5483 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5484 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5485 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5486 5487 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5488 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5489 bool CheckFuncSummaryPresenceOnly) 5490 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5491 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5492 5493 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5494 5495 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5496 5497 // Specialized value symbol table parser used when reading function index 5498 // blocks where we don't actually create global values. 5499 // At the end of this routine the function index is populated with a map 5500 // from function name to FunctionInfo. The function info contains 5501 // the function block's bitcode offset as well as the offset into the 5502 // function summary section. 5503 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5504 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5505 return error("Invalid record"); 5506 5507 SmallVector<uint64_t, 64> Record; 5508 5509 // Read all the records for this value table. 5510 SmallString<128> ValueName; 5511 while (1) { 5512 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5513 5514 switch (Entry.Kind) { 5515 case BitstreamEntry::SubBlock: // Handled for us already. 5516 case BitstreamEntry::Error: 5517 return error("Malformed block"); 5518 case BitstreamEntry::EndBlock: 5519 return std::error_code(); 5520 case BitstreamEntry::Record: 5521 // The interesting case. 5522 break; 5523 } 5524 5525 // Read a record. 5526 Record.clear(); 5527 switch (Stream.readRecord(Entry.ID, Record)) { 5528 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5529 break; 5530 case bitc::VST_CODE_FNENTRY: { 5531 // VST_FNENTRY: [valueid, offset, namechar x N] 5532 if (convertToString(Record, 2, ValueName)) 5533 return error("Invalid record"); 5534 unsigned ValueID = Record[0]; 5535 uint64_t FuncOffset = Record[1]; 5536 std::unique_ptr<FunctionInfo> FuncInfo = 5537 llvm::make_unique<FunctionInfo>(FuncOffset); 5538 if (foundFuncSummary() && !IsLazy) { 5539 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5540 SummaryMap.find(ValueID); 5541 assert(SMI != SummaryMap.end() && "Summary info not found"); 5542 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5543 } 5544 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5545 5546 ValueName.clear(); 5547 break; 5548 } 5549 case bitc::VST_CODE_COMBINED_FNENTRY: { 5550 // VST_FNENTRY: [offset, namechar x N] 5551 if (convertToString(Record, 1, ValueName)) 5552 return error("Invalid record"); 5553 uint64_t FuncSummaryOffset = Record[0]; 5554 std::unique_ptr<FunctionInfo> FuncInfo = 5555 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5556 if (foundFuncSummary() && !IsLazy) { 5557 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5558 SummaryMap.find(FuncSummaryOffset); 5559 assert(SMI != SummaryMap.end() && "Summary info not found"); 5560 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5561 } 5562 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5563 5564 ValueName.clear(); 5565 break; 5566 } 5567 } 5568 } 5569 } 5570 5571 // Parse just the blocks needed for function index building out of the module. 5572 // At the end of this routine the function Index is populated with a map 5573 // from function name to FunctionInfo. The function info contains 5574 // either the parsed function summary information (when parsing summaries 5575 // eagerly), or just to the function summary record's offset 5576 // if parsing lazily (IsLazy). 5577 std::error_code FunctionIndexBitcodeReader::parseModule() { 5578 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5579 return error("Invalid record"); 5580 5581 // Read the function index for this module. 5582 while (1) { 5583 BitstreamEntry Entry = Stream.advance(); 5584 5585 switch (Entry.Kind) { 5586 case BitstreamEntry::Error: 5587 return error("Malformed block"); 5588 case BitstreamEntry::EndBlock: 5589 return std::error_code(); 5590 5591 case BitstreamEntry::SubBlock: 5592 if (CheckFuncSummaryPresenceOnly) { 5593 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5594 SeenFuncSummary = true; 5595 // No need to parse the rest since we found the summary. 5596 return std::error_code(); 5597 } 5598 if (Stream.SkipBlock()) 5599 return error("Invalid record"); 5600 continue; 5601 } 5602 switch (Entry.ID) { 5603 default: // Skip unknown content. 5604 if (Stream.SkipBlock()) 5605 return error("Invalid record"); 5606 break; 5607 case bitc::BLOCKINFO_BLOCK_ID: 5608 // Need to parse these to get abbrev ids (e.g. for VST) 5609 if (Stream.ReadBlockInfoBlock()) 5610 return error("Malformed block"); 5611 break; 5612 case bitc::VALUE_SYMTAB_BLOCK_ID: 5613 if (std::error_code EC = parseValueSymbolTable()) 5614 return EC; 5615 break; 5616 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5617 SeenFuncSummary = true; 5618 if (IsLazy) { 5619 // Lazy parsing of summary info, skip it. 5620 if (Stream.SkipBlock()) 5621 return error("Invalid record"); 5622 } else if (std::error_code EC = parseEntireSummary()) 5623 return EC; 5624 break; 5625 case bitc::MODULE_STRTAB_BLOCK_ID: 5626 if (std::error_code EC = parseModuleStringTable()) 5627 return EC; 5628 break; 5629 } 5630 continue; 5631 5632 case BitstreamEntry::Record: 5633 Stream.skipRecord(Entry.ID); 5634 continue; 5635 } 5636 } 5637 } 5638 5639 // Eagerly parse the entire function summary block (i.e. for all functions 5640 // in the index). This populates the FunctionSummary objects in 5641 // the index. 5642 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5643 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5644 return error("Invalid record"); 5645 5646 SmallVector<uint64_t, 64> Record; 5647 5648 while (1) { 5649 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5650 5651 switch (Entry.Kind) { 5652 case BitstreamEntry::SubBlock: // Handled for us already. 5653 case BitstreamEntry::Error: 5654 return error("Malformed block"); 5655 case BitstreamEntry::EndBlock: 5656 return std::error_code(); 5657 case BitstreamEntry::Record: 5658 // The interesting case. 5659 break; 5660 } 5661 5662 // Read a record. The record format depends on whether this 5663 // is a per-module index or a combined index file. In the per-module 5664 // case the records contain the associated value's ID for correlation 5665 // with VST entries. In the combined index the correlation is done 5666 // via the bitcode offset of the summary records (which were saved 5667 // in the combined index VST entries). The records also contain 5668 // information used for ThinLTO renaming and importing. 5669 Record.clear(); 5670 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5671 switch (Stream.readRecord(Entry.ID, Record)) { 5672 default: // Default behavior: ignore. 5673 break; 5674 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5675 case bitc::FS_CODE_PERMODULE_ENTRY: { 5676 unsigned ValueID = Record[0]; 5677 bool IsLocal = Record[1]; 5678 unsigned InstCount = Record[2]; 5679 std::unique_ptr<FunctionSummary> FS = 5680 llvm::make_unique<FunctionSummary>(InstCount); 5681 FS->setLocalFunction(IsLocal); 5682 // The module path string ref set in the summary must be owned by the 5683 // index's module string table. Since we don't have a module path 5684 // string table section in the per-module index, we create a single 5685 // module path string table entry with an empty (0) ID to take 5686 // ownership. 5687 FS->setModulePath( 5688 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5689 SummaryMap[ValueID] = std::move(FS); 5690 } 5691 // FS_COMBINED_ENTRY: [modid, instcount] 5692 case bitc::FS_CODE_COMBINED_ENTRY: { 5693 uint64_t ModuleId = Record[0]; 5694 unsigned InstCount = Record[1]; 5695 std::unique_ptr<FunctionSummary> FS = 5696 llvm::make_unique<FunctionSummary>(InstCount); 5697 FS->setModulePath(ModuleIdMap[ModuleId]); 5698 SummaryMap[CurRecordBit] = std::move(FS); 5699 } 5700 } 5701 } 5702 llvm_unreachable("Exit infinite loop"); 5703 } 5704 5705 // Parse the module string table block into the Index. 5706 // This populates the ModulePathStringTable map in the index. 5707 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5708 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5709 return error("Invalid record"); 5710 5711 SmallVector<uint64_t, 64> Record; 5712 5713 SmallString<128> ModulePath; 5714 while (1) { 5715 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5716 5717 switch (Entry.Kind) { 5718 case BitstreamEntry::SubBlock: // Handled for us already. 5719 case BitstreamEntry::Error: 5720 return error("Malformed block"); 5721 case BitstreamEntry::EndBlock: 5722 return std::error_code(); 5723 case BitstreamEntry::Record: 5724 // The interesting case. 5725 break; 5726 } 5727 5728 Record.clear(); 5729 switch (Stream.readRecord(Entry.ID, Record)) { 5730 default: // Default behavior: ignore. 5731 break; 5732 case bitc::MST_CODE_ENTRY: { 5733 // MST_ENTRY: [modid, namechar x N] 5734 if (convertToString(Record, 1, ModulePath)) 5735 return error("Invalid record"); 5736 uint64_t ModuleId = Record[0]; 5737 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5738 ModuleIdMap[ModuleId] = ModulePathInMap; 5739 ModulePath.clear(); 5740 break; 5741 } 5742 } 5743 } 5744 llvm_unreachable("Exit infinite loop"); 5745 } 5746 5747 // Parse the function info index from the bitcode streamer into the given index. 5748 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5749 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5750 TheIndex = I; 5751 5752 if (std::error_code EC = initStream(std::move(Streamer))) 5753 return EC; 5754 5755 // Sniff for the signature. 5756 if (!hasValidBitcodeHeader(Stream)) 5757 return error("Invalid bitcode signature"); 5758 5759 // We expect a number of well-defined blocks, though we don't necessarily 5760 // need to understand them all. 5761 while (1) { 5762 if (Stream.AtEndOfStream()) { 5763 // We didn't really read a proper Module block. 5764 return error("Malformed block"); 5765 } 5766 5767 BitstreamEntry Entry = 5768 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5769 5770 if (Entry.Kind != BitstreamEntry::SubBlock) 5771 return error("Malformed block"); 5772 5773 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5774 // building the function summary index. 5775 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5776 return parseModule(); 5777 5778 if (Stream.SkipBlock()) 5779 return error("Invalid record"); 5780 } 5781 } 5782 5783 // Parse the function information at the given offset in the buffer into 5784 // the index. Used to support lazy parsing of function summaries from the 5785 // combined index during importing. 5786 // TODO: This function is not yet complete as it won't have a consumer 5787 // until ThinLTO function importing is added. 5788 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5789 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5790 size_t FunctionSummaryOffset) { 5791 TheIndex = I; 5792 5793 if (std::error_code EC = initStream(std::move(Streamer))) 5794 return EC; 5795 5796 // Sniff for the signature. 5797 if (!hasValidBitcodeHeader(Stream)) 5798 return error("Invalid bitcode signature"); 5799 5800 Stream.JumpToBit(FunctionSummaryOffset); 5801 5802 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5803 5804 switch (Entry.Kind) { 5805 default: 5806 return error("Malformed block"); 5807 case BitstreamEntry::Record: 5808 // The expected case. 5809 break; 5810 } 5811 5812 // TODO: Read a record. This interface will be completed when ThinLTO 5813 // importing is added so that it can be tested. 5814 SmallVector<uint64_t, 64> Record; 5815 switch (Stream.readRecord(Entry.ID, Record)) { 5816 case bitc::FS_CODE_COMBINED_ENTRY: 5817 default: 5818 return error("Invalid record"); 5819 } 5820 5821 return std::error_code(); 5822 } 5823 5824 std::error_code 5825 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5826 if (Streamer) 5827 return initLazyStream(std::move(Streamer)); 5828 return initStreamFromBuffer(); 5829 } 5830 5831 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5832 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5833 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5834 5835 if (Buffer->getBufferSize() & 3) 5836 return error("Invalid bitcode signature"); 5837 5838 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5839 // The magic number is 0x0B17C0DE stored in little endian. 5840 if (isBitcodeWrapper(BufPtr, BufEnd)) 5841 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5842 return error("Invalid bitcode wrapper header"); 5843 5844 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5845 Stream.init(&*StreamFile); 5846 5847 return std::error_code(); 5848 } 5849 5850 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5851 std::unique_ptr<DataStreamer> Streamer) { 5852 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5853 // see it. 5854 auto OwnedBytes = 5855 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5856 StreamingMemoryObject &Bytes = *OwnedBytes; 5857 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5858 Stream.init(&*StreamFile); 5859 5860 unsigned char buf[16]; 5861 if (Bytes.readBytes(buf, 16, 0) != 16) 5862 return error("Invalid bitcode signature"); 5863 5864 if (!isBitcode(buf, buf + 16)) 5865 return error("Invalid bitcode signature"); 5866 5867 if (isBitcodeWrapper(buf, buf + 4)) { 5868 const unsigned char *bitcodeStart = buf; 5869 const unsigned char *bitcodeEnd = buf + 16; 5870 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5871 Bytes.dropLeadingBytes(bitcodeStart - buf); 5872 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5873 } 5874 return std::error_code(); 5875 } 5876 5877 namespace { 5878 class BitcodeErrorCategoryType : public std::error_category { 5879 const char *name() const LLVM_NOEXCEPT override { 5880 return "llvm.bitcode"; 5881 } 5882 std::string message(int IE) const override { 5883 BitcodeError E = static_cast<BitcodeError>(IE); 5884 switch (E) { 5885 case BitcodeError::InvalidBitcodeSignature: 5886 return "Invalid bitcode signature"; 5887 case BitcodeError::CorruptedBitcode: 5888 return "Corrupted bitcode"; 5889 } 5890 llvm_unreachable("Unknown error type!"); 5891 } 5892 }; 5893 } 5894 5895 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5896 5897 const std::error_category &llvm::BitcodeErrorCategory() { 5898 return *ErrorCategory; 5899 } 5900 5901 //===----------------------------------------------------------------------===// 5902 // External interface 5903 //===----------------------------------------------------------------------===// 5904 5905 static ErrorOr<std::unique_ptr<Module>> 5906 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5907 BitcodeReader *R, LLVMContext &Context, 5908 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5909 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5910 M->setMaterializer(R); 5911 5912 auto cleanupOnError = [&](std::error_code EC) { 5913 R->releaseBuffer(); // Never take ownership on error. 5914 return EC; 5915 }; 5916 5917 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5918 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5919 ShouldLazyLoadMetadata)) 5920 return cleanupOnError(EC); 5921 5922 if (MaterializeAll) { 5923 // Read in the entire module, and destroy the BitcodeReader. 5924 if (std::error_code EC = M->materializeAllPermanently()) 5925 return cleanupOnError(EC); 5926 } else { 5927 // Resolve forward references from blockaddresses. 5928 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5929 return cleanupOnError(EC); 5930 } 5931 return std::move(M); 5932 } 5933 5934 /// \brief Get a lazy one-at-time loading module from bitcode. 5935 /// 5936 /// This isn't always used in a lazy context. In particular, it's also used by 5937 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5938 /// in forward-referenced functions from block address references. 5939 /// 5940 /// \param[in] MaterializeAll Set to \c true if we should materialize 5941 /// everything. 5942 static ErrorOr<std::unique_ptr<Module>> 5943 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5944 LLVMContext &Context, bool MaterializeAll, 5945 DiagnosticHandlerFunction DiagnosticHandler, 5946 bool ShouldLazyLoadMetadata = false) { 5947 BitcodeReader *R = 5948 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5949 5950 ErrorOr<std::unique_ptr<Module>> Ret = 5951 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5952 MaterializeAll, ShouldLazyLoadMetadata); 5953 if (!Ret) 5954 return Ret; 5955 5956 Buffer.release(); // The BitcodeReader owns it now. 5957 return Ret; 5958 } 5959 5960 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5961 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5962 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5963 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5964 DiagnosticHandler, ShouldLazyLoadMetadata); 5965 } 5966 5967 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5968 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5969 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5970 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5971 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5972 5973 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5974 false); 5975 } 5976 5977 ErrorOr<std::unique_ptr<Module>> 5978 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5979 DiagnosticHandlerFunction DiagnosticHandler) { 5980 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5981 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5982 DiagnosticHandler); 5983 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5984 // written. We must defer until the Module has been fully materialized. 5985 } 5986 5987 std::string 5988 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5989 DiagnosticHandlerFunction DiagnosticHandler) { 5990 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5991 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5992 DiagnosticHandler); 5993 ErrorOr<std::string> Triple = R->parseTriple(); 5994 if (Triple.getError()) 5995 return ""; 5996 return Triple.get(); 5997 } 5998 5999 std::string 6000 llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context, 6001 DiagnosticHandlerFunction DiagnosticHandler) { 6002 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6003 BitcodeReader R(Buf.release(), Context, DiagnosticHandler); 6004 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6005 if (ProducerString.getError()) 6006 return ""; 6007 return ProducerString.get(); 6008 } 6009 6010 // Parse the specified bitcode buffer, returning the function info index. 6011 // If IsLazy is false, parse the entire function summary into 6012 // the index. Otherwise skip the function summary section, and only create 6013 // an index object with a map from function name to function summary offset. 6014 // The index is used to perform lazy function summary reading later. 6015 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 6016 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 6017 DiagnosticHandlerFunction DiagnosticHandler, 6018 bool IsLazy) { 6019 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6020 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6021 6022 auto Index = llvm::make_unique<FunctionInfoIndex>(); 6023 6024 auto cleanupOnError = [&](std::error_code EC) { 6025 R.releaseBuffer(); // Never take ownership on error. 6026 return EC; 6027 }; 6028 6029 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6030 return cleanupOnError(EC); 6031 6032 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6033 return std::move(Index); 6034 } 6035 6036 // Check if the given bitcode buffer contains a function summary block. 6037 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 6038 DiagnosticHandlerFunction DiagnosticHandler) { 6039 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6040 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6041 6042 auto cleanupOnError = [&](std::error_code EC) { 6043 R.releaseBuffer(); // Never take ownership on error. 6044 return false; 6045 }; 6046 6047 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6048 return cleanupOnError(EC); 6049 6050 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6051 return R.foundFuncSummary(); 6052 } 6053 6054 // This method supports lazy reading of function summary data from the combined 6055 // index during ThinLTO function importing. When reading the combined index 6056 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 6057 // Then this method is called for each function considered for importing, 6058 // to parse the summary information for the given function name into 6059 // the index. 6060 std::error_code llvm::readFunctionSummary( 6061 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6062 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 6063 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6064 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6065 6066 auto cleanupOnError = [&](std::error_code EC) { 6067 R.releaseBuffer(); // Never take ownership on error. 6068 return EC; 6069 }; 6070 6071 // Lookup the given function name in the FunctionMap, which may 6072 // contain a list of function infos in the case of a COMDAT. Walk through 6073 // and parse each function summary info at the function summary offset 6074 // recorded when parsing the value symbol table. 6075 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 6076 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6077 if (std::error_code EC = 6078 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6079 return cleanupOnError(EC); 6080 } 6081 6082 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6083 return std::error_code(); 6084 } 6085