1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 #include <utility> 41 42 using namespace llvm; 43 44 static cl::opt<bool> PrintSummaryGUIDs( 45 "print-summary-global-ids", cl::init(false), cl::Hidden, 46 cl::desc( 47 "Print the global id for each value when reading the module summary")); 48 49 namespace { 50 enum { 51 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 52 }; 53 54 class BitcodeReaderValueList { 55 std::vector<WeakVH> ValuePtrs; 56 57 /// As we resolve forward-referenced constants, we add information about them 58 /// to this vector. This allows us to resolve them in bulk instead of 59 /// resolving each reference at a time. See the code in 60 /// ResolveConstantForwardRefs for more information about this. 61 /// 62 /// The key of this vector is the placeholder constant, the value is the slot 63 /// number that holds the resolved value. 64 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 65 ResolveConstantsTy ResolveConstants; 66 LLVMContext &Context; 67 public: 68 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 69 ~BitcodeReaderValueList() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 } 72 73 // vector compatibility methods 74 unsigned size() const { return ValuePtrs.size(); } 75 void resize(unsigned N) { ValuePtrs.resize(N); } 76 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 77 78 void clear() { 79 assert(ResolveConstants.empty() && "Constants not resolved?"); 80 ValuePtrs.clear(); 81 } 82 83 Value *operator[](unsigned i) const { 84 assert(i < ValuePtrs.size()); 85 return ValuePtrs[i]; 86 } 87 88 Value *back() const { return ValuePtrs.back(); } 89 void pop_back() { ValuePtrs.pop_back(); } 90 bool empty() const { return ValuePtrs.empty(); } 91 void shrinkTo(unsigned N) { 92 assert(N <= size() && "Invalid shrinkTo request!"); 93 ValuePtrs.resize(N); 94 } 95 96 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 97 Value *getValueFwdRef(unsigned Idx, Type *Ty); 98 99 void assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMetadataList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 112 /// Array of metadata references. 113 /// 114 /// Don't use std::vector here. Some versions of libc++ copy (instead of 115 /// move) on resize, and TrackingMDRef is very expensive to copy. 116 SmallVector<TrackingMDRef, 1> MetadataPtrs; 117 118 /// Structures for resolving old type refs. 119 struct { 120 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 121 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 122 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 123 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 124 } OldTypeRefs; 125 126 LLVMContext &Context; 127 public: 128 BitcodeReaderMetadataList(LLVMContext &C) 129 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 130 131 // vector compatibility methods 132 unsigned size() const { return MetadataPtrs.size(); } 133 void resize(unsigned N) { MetadataPtrs.resize(N); } 134 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 135 void clear() { MetadataPtrs.clear(); } 136 Metadata *back() const { return MetadataPtrs.back(); } 137 void pop_back() { MetadataPtrs.pop_back(); } 138 bool empty() const { return MetadataPtrs.empty(); } 139 140 Metadata *operator[](unsigned i) const { 141 assert(i < MetadataPtrs.size()); 142 return MetadataPtrs[i]; 143 } 144 145 Metadata *lookup(unsigned I) const { 146 if (I < MetadataPtrs.size()) 147 return MetadataPtrs[I]; 148 return nullptr; 149 } 150 151 void shrinkTo(unsigned N) { 152 assert(N <= size() && "Invalid shrinkTo request!"); 153 assert(!AnyFwdRefs && "Unexpected forward refs"); 154 MetadataPtrs.resize(N); 155 } 156 157 /// Return the given metadata, creating a replaceable forward reference if 158 /// necessary. 159 Metadata *getMetadataFwdRef(unsigned Idx); 160 161 /// Return the the given metadata only if it is fully resolved. 162 /// 163 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 164 /// would give \c false. 165 Metadata *getMetadataIfResolved(unsigned Idx); 166 167 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 168 void assignValue(Metadata *MD, unsigned Idx); 169 void tryToResolveCycles(); 170 bool hasFwdRefs() const { return AnyFwdRefs; } 171 172 /// Upgrade a type that had an MDString reference. 173 void addTypeRef(MDString &UUID, DICompositeType &CT); 174 175 /// Upgrade a type that had an MDString reference. 176 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 177 178 /// Upgrade a type ref array that may have MDString references. 179 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 180 181 private: 182 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 183 }; 184 185 class BitcodeReader : public GVMaterializer { 186 LLVMContext &Context; 187 Module *TheModule = nullptr; 188 std::unique_ptr<MemoryBuffer> Buffer; 189 std::unique_ptr<BitstreamReader> StreamFile; 190 BitstreamCursor Stream; 191 // Next offset to start scanning for lazy parsing of function bodies. 192 uint64_t NextUnreadBit = 0; 193 // Last function offset found in the VST. 194 uint64_t LastFunctionBlockBit = 0; 195 bool SeenValueSymbolTable = false; 196 uint64_t VSTOffset = 0; 197 // Contains an arbitrary and optional string identifying the bitcode producer 198 std::string ProducerIdentification; 199 200 std::vector<Type*> TypeList; 201 BitcodeReaderValueList ValueList; 202 BitcodeReaderMetadataList MetadataList; 203 std::vector<Comdat *> ComdatList; 204 SmallVector<Instruction *, 64> InstructionList; 205 206 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 207 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 209 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 210 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 211 212 SmallVector<Instruction*, 64> InstsWithTBAATag; 213 214 bool HasSeenOldLoopTags = false; 215 216 /// The set of attributes by index. Index zero in the file is for null, and 217 /// is thus not represented here. As such all indices are off by one. 218 std::vector<AttributeSet> MAttributes; 219 220 /// The set of attribute groups. 221 std::map<unsigned, AttributeSet> MAttributeGroups; 222 223 /// While parsing a function body, this is a list of the basic blocks for the 224 /// function. 225 std::vector<BasicBlock*> FunctionBBs; 226 227 // When reading the module header, this list is populated with functions that 228 // have bodies later in the file. 229 std::vector<Function*> FunctionsWithBodies; 230 231 // When intrinsic functions are encountered which require upgrading they are 232 // stored here with their replacement function. 233 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 234 UpgradedIntrinsicMap UpgradedIntrinsics; 235 236 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 237 DenseMap<unsigned, unsigned> MDKindMap; 238 239 // Several operations happen after the module header has been read, but 240 // before function bodies are processed. This keeps track of whether 241 // we've done this yet. 242 bool SeenFirstFunctionBody = false; 243 244 /// When function bodies are initially scanned, this map contains info about 245 /// where to find deferred function body in the stream. 246 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 247 248 /// When Metadata block is initially scanned when parsing the module, we may 249 /// choose to defer parsing of the metadata. This vector contains info about 250 /// which Metadata blocks are deferred. 251 std::vector<uint64_t> DeferredMetadataInfo; 252 253 /// These are basic blocks forward-referenced by block addresses. They are 254 /// inserted lazily into functions when they're loaded. The basic block ID is 255 /// its index into the vector. 256 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 257 std::deque<Function *> BasicBlockFwdRefQueue; 258 259 /// Indicates that we are using a new encoding for instruction operands where 260 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 261 /// instruction number, for a more compact encoding. Some instruction 262 /// operands are not relative to the instruction ID: basic block numbers, and 263 /// types. Once the old style function blocks have been phased out, we would 264 /// not need this flag. 265 bool UseRelativeIDs = false; 266 267 /// True if all functions will be materialized, negating the need to process 268 /// (e.g.) blockaddress forward references. 269 bool WillMaterializeAllForwardRefs = false; 270 271 /// True if any Metadata block has been materialized. 272 bool IsMetadataMaterialized = false; 273 274 bool StripDebugInfo = false; 275 276 /// Functions that need to be matched with subprograms when upgrading old 277 /// metadata. 278 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 279 280 std::vector<std::string> BundleTags; 281 282 public: 283 std::error_code error(BitcodeError E, const Twine &Message); 284 std::error_code error(const Twine &Message); 285 286 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 287 BitcodeReader(LLVMContext &Context); 288 ~BitcodeReader() override { freeState(); } 289 290 std::error_code materializeForwardReferencedFunctions(); 291 292 void freeState(); 293 294 void releaseBuffer(); 295 296 std::error_code materialize(GlobalValue *GV) override; 297 std::error_code materializeModule() override; 298 std::vector<StructType *> getIdentifiedStructTypes() const override; 299 300 /// \brief Main interface to parsing a bitcode buffer. 301 /// \returns true if an error occurred. 302 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 303 Module *M, 304 bool ShouldLazyLoadMetadata = false); 305 306 /// \brief Cheap mechanism to just extract module triple 307 /// \returns true if an error occurred. 308 ErrorOr<std::string> parseTriple(); 309 310 /// Cheap mechanism to just extract the identification block out of bitcode. 311 ErrorOr<std::string> parseIdentificationBlock(); 312 313 static uint64_t decodeSignRotatedValue(uint64_t V); 314 315 /// Materialize any deferred Metadata block. 316 std::error_code materializeMetadata() override; 317 318 void setStripDebugInfo() override; 319 320 private: 321 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 322 // ProducerIdentification data member, and do some basic enforcement on the 323 // "epoch" encoded in the bitcode. 324 std::error_code parseBitcodeVersion(); 325 326 std::vector<StructType *> IdentifiedStructTypes; 327 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 328 StructType *createIdentifiedStructType(LLVMContext &Context); 329 330 Type *getTypeByID(unsigned ID); 331 Value *getFnValueByID(unsigned ID, Type *Ty) { 332 if (Ty && Ty->isMetadataTy()) 333 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 334 return ValueList.getValueFwdRef(ID, Ty); 335 } 336 Metadata *getFnMetadataByID(unsigned ID) { 337 return MetadataList.getMetadataFwdRef(ID); 338 } 339 BasicBlock *getBasicBlock(unsigned ID) const { 340 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 341 return FunctionBBs[ID]; 342 } 343 AttributeSet getAttributes(unsigned i) const { 344 if (i-1 < MAttributes.size()) 345 return MAttributes[i-1]; 346 return AttributeSet(); 347 } 348 349 /// Read a value/type pair out of the specified record from slot 'Slot'. 350 /// Increment Slot past the number of slots used in the record. Return true on 351 /// failure. 352 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 353 unsigned InstNum, Value *&ResVal) { 354 if (Slot == Record.size()) return true; 355 unsigned ValNo = (unsigned)Record[Slot++]; 356 // Adjust the ValNo, if it was encoded relative to the InstNum. 357 if (UseRelativeIDs) 358 ValNo = InstNum - ValNo; 359 if (ValNo < InstNum) { 360 // If this is not a forward reference, just return the value we already 361 // have. 362 ResVal = getFnValueByID(ValNo, nullptr); 363 return ResVal == nullptr; 364 } 365 if (Slot == Record.size()) 366 return true; 367 368 unsigned TypeNo = (unsigned)Record[Slot++]; 369 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 370 return ResVal == nullptr; 371 } 372 373 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 374 /// past the number of slots used by the value in the record. Return true if 375 /// there is an error. 376 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 377 unsigned InstNum, Type *Ty, Value *&ResVal) { 378 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 379 return true; 380 // All values currently take a single record slot. 381 ++Slot; 382 return false; 383 } 384 385 /// Like popValue, but does not increment the Slot number. 386 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 387 unsigned InstNum, Type *Ty, Value *&ResVal) { 388 ResVal = getValue(Record, Slot, InstNum, Ty); 389 return ResVal == nullptr; 390 } 391 392 /// Version of getValue that returns ResVal directly, or 0 if there is an 393 /// error. 394 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 395 unsigned InstNum, Type *Ty) { 396 if (Slot == Record.size()) return nullptr; 397 unsigned ValNo = (unsigned)Record[Slot]; 398 // Adjust the ValNo, if it was encoded relative to the InstNum. 399 if (UseRelativeIDs) 400 ValNo = InstNum - ValNo; 401 return getFnValueByID(ValNo, Ty); 402 } 403 404 /// Like getValue, but decodes signed VBRs. 405 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 406 unsigned InstNum, Type *Ty) { 407 if (Slot == Record.size()) return nullptr; 408 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 409 // Adjust the ValNo, if it was encoded relative to the InstNum. 410 if (UseRelativeIDs) 411 ValNo = InstNum - ValNo; 412 return getFnValueByID(ValNo, Ty); 413 } 414 415 /// Converts alignment exponent (i.e. power of two (or zero)) to the 416 /// corresponding alignment to use. If alignment is too large, returns 417 /// a corresponding error code. 418 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 419 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 420 std::error_code parseModule(uint64_t ResumeBit, 421 bool ShouldLazyLoadMetadata = false); 422 std::error_code parseAttributeBlock(); 423 std::error_code parseAttributeGroupBlock(); 424 std::error_code parseTypeTable(); 425 std::error_code parseTypeTableBody(); 426 std::error_code parseOperandBundleTags(); 427 428 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 429 unsigned NameIndex, Triple &TT); 430 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 431 std::error_code parseConstants(); 432 std::error_code rememberAndSkipFunctionBodies(); 433 std::error_code rememberAndSkipFunctionBody(); 434 /// Save the positions of the Metadata blocks and skip parsing the blocks. 435 std::error_code rememberAndSkipMetadata(); 436 std::error_code parseFunctionBody(Function *F); 437 std::error_code globalCleanup(); 438 std::error_code resolveGlobalAndIndirectSymbolInits(); 439 std::error_code parseMetadata(bool ModuleLevel = false); 440 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 441 StringRef Blob, 442 unsigned &NextMetadataNo); 443 std::error_code parseMetadataKinds(); 444 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 445 std::error_code 446 parseGlobalObjectAttachment(GlobalObject &GO, 447 ArrayRef<uint64_t> Record); 448 std::error_code parseMetadataAttachment(Function &F); 449 ErrorOr<std::string> parseModuleTriple(); 450 std::error_code parseUseLists(); 451 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 452 std::error_code initStreamFromBuffer(); 453 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 454 std::error_code findFunctionInStream( 455 Function *F, 456 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 457 }; 458 459 /// Class to manage reading and parsing function summary index bitcode 460 /// files/sections. 461 class ModuleSummaryIndexBitcodeReader { 462 DiagnosticHandlerFunction DiagnosticHandler; 463 464 /// Eventually points to the module index built during parsing. 465 ModuleSummaryIndex *TheIndex = nullptr; 466 467 std::unique_ptr<MemoryBuffer> Buffer; 468 std::unique_ptr<BitstreamReader> StreamFile; 469 BitstreamCursor Stream; 470 471 /// Used to indicate whether caller only wants to check for the presence 472 /// of the global value summary bitcode section. All blocks are skipped, 473 /// but the SeenGlobalValSummary boolean is set. 474 bool CheckGlobalValSummaryPresenceOnly = false; 475 476 /// Indicates whether we have encountered a global value summary section 477 /// yet during parsing, used when checking if file contains global value 478 /// summary section. 479 bool SeenGlobalValSummary = false; 480 481 /// Indicates whether we have already parsed the VST, used for error checking. 482 bool SeenValueSymbolTable = false; 483 484 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 485 /// Used to enable on-demand parsing of the VST. 486 uint64_t VSTOffset = 0; 487 488 // Map to save ValueId to GUID association that was recorded in the 489 // ValueSymbolTable. It is used after the VST is parsed to convert 490 // call graph edges read from the function summary from referencing 491 // callees by their ValueId to using the GUID instead, which is how 492 // they are recorded in the summary index being built. 493 // We save a second GUID which is the same as the first one, but ignoring the 494 // linkage, i.e. for value other than local linkage they are identical. 495 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 496 ValueIdToCallGraphGUIDMap; 497 498 /// Map populated during module path string table parsing, from the 499 /// module ID to a string reference owned by the index's module 500 /// path string table, used to correlate with combined index 501 /// summary records. 502 DenseMap<uint64_t, StringRef> ModuleIdMap; 503 504 /// Original source file name recorded in a bitcode record. 505 std::string SourceFileName; 506 507 public: 508 std::error_code error(const Twine &Message); 509 510 ModuleSummaryIndexBitcodeReader( 511 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 512 bool CheckGlobalValSummaryPresenceOnly = false); 513 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 514 515 void freeState(); 516 517 void releaseBuffer(); 518 519 /// Check if the parser has encountered a summary section. 520 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 521 522 /// \brief Main interface to parsing a bitcode buffer. 523 /// \returns true if an error occurred. 524 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 525 ModuleSummaryIndex *I); 526 527 private: 528 std::error_code parseModule(); 529 std::error_code parseValueSymbolTable( 530 uint64_t Offset, 531 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 532 std::error_code parseEntireSummary(); 533 std::error_code parseModuleStringTable(); 534 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 535 std::error_code initStreamFromBuffer(); 536 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 537 std::pair<GlobalValue::GUID, GlobalValue::GUID> 538 getGUIDFromValueId(unsigned ValueId); 539 }; 540 } // end anonymous namespace 541 542 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 543 DiagnosticSeverity Severity, 544 const Twine &Msg) 545 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 546 547 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 548 549 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 550 std::error_code EC, const Twine &Message) { 551 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 552 DiagnosticHandler(DI); 553 return EC; 554 } 555 556 static std::error_code error(LLVMContext &Context, std::error_code EC, 557 const Twine &Message) { 558 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 559 Message); 560 } 561 562 static std::error_code error(LLVMContext &Context, const Twine &Message) { 563 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 564 Message); 565 } 566 567 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 568 if (!ProducerIdentification.empty()) { 569 return ::error(Context, make_error_code(E), 570 Message + " (Producer: '" + ProducerIdentification + 571 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 572 } 573 return ::error(Context, make_error_code(E), Message); 574 } 575 576 std::error_code BitcodeReader::error(const Twine &Message) { 577 if (!ProducerIdentification.empty()) { 578 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 579 Message + " (Producer: '" + ProducerIdentification + 580 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 581 } 582 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 583 Message); 584 } 585 586 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 587 : Context(Context), Buffer(Buffer), ValueList(Context), 588 MetadataList(Context) {} 589 590 BitcodeReader::BitcodeReader(LLVMContext &Context) 591 : Context(Context), Buffer(nullptr), ValueList(Context), 592 MetadataList(Context) {} 593 594 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 595 if (WillMaterializeAllForwardRefs) 596 return std::error_code(); 597 598 // Prevent recursion. 599 WillMaterializeAllForwardRefs = true; 600 601 while (!BasicBlockFwdRefQueue.empty()) { 602 Function *F = BasicBlockFwdRefQueue.front(); 603 BasicBlockFwdRefQueue.pop_front(); 604 assert(F && "Expected valid function"); 605 if (!BasicBlockFwdRefs.count(F)) 606 // Already materialized. 607 continue; 608 609 // Check for a function that isn't materializable to prevent an infinite 610 // loop. When parsing a blockaddress stored in a global variable, there 611 // isn't a trivial way to check if a function will have a body without a 612 // linear search through FunctionsWithBodies, so just check it here. 613 if (!F->isMaterializable()) 614 return error("Never resolved function from blockaddress"); 615 616 // Try to materialize F. 617 if (std::error_code EC = materialize(F)) 618 return EC; 619 } 620 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 621 622 // Reset state. 623 WillMaterializeAllForwardRefs = false; 624 return std::error_code(); 625 } 626 627 void BitcodeReader::freeState() { 628 Buffer = nullptr; 629 std::vector<Type*>().swap(TypeList); 630 ValueList.clear(); 631 MetadataList.clear(); 632 std::vector<Comdat *>().swap(ComdatList); 633 634 std::vector<AttributeSet>().swap(MAttributes); 635 std::vector<BasicBlock*>().swap(FunctionBBs); 636 std::vector<Function*>().swap(FunctionsWithBodies); 637 DeferredFunctionInfo.clear(); 638 DeferredMetadataInfo.clear(); 639 MDKindMap.clear(); 640 641 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 642 BasicBlockFwdRefQueue.clear(); 643 } 644 645 //===----------------------------------------------------------------------===// 646 // Helper functions to implement forward reference resolution, etc. 647 //===----------------------------------------------------------------------===// 648 649 /// Convert a string from a record into an std::string, return true on failure. 650 template <typename StrTy> 651 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 652 StrTy &Result) { 653 if (Idx > Record.size()) 654 return true; 655 656 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 657 Result += (char)Record[i]; 658 return false; 659 } 660 661 static bool hasImplicitComdat(size_t Val) { 662 switch (Val) { 663 default: 664 return false; 665 case 1: // Old WeakAnyLinkage 666 case 4: // Old LinkOnceAnyLinkage 667 case 10: // Old WeakODRLinkage 668 case 11: // Old LinkOnceODRLinkage 669 return true; 670 } 671 } 672 673 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 674 switch (Val) { 675 default: // Map unknown/new linkages to external 676 case 0: 677 return GlobalValue::ExternalLinkage; 678 case 2: 679 return GlobalValue::AppendingLinkage; 680 case 3: 681 return GlobalValue::InternalLinkage; 682 case 5: 683 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 684 case 6: 685 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 686 case 7: 687 return GlobalValue::ExternalWeakLinkage; 688 case 8: 689 return GlobalValue::CommonLinkage; 690 case 9: 691 return GlobalValue::PrivateLinkage; 692 case 12: 693 return GlobalValue::AvailableExternallyLinkage; 694 case 13: 695 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 696 case 14: 697 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 698 case 15: 699 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 700 case 1: // Old value with implicit comdat. 701 case 16: 702 return GlobalValue::WeakAnyLinkage; 703 case 10: // Old value with implicit comdat. 704 case 17: 705 return GlobalValue::WeakODRLinkage; 706 case 4: // Old value with implicit comdat. 707 case 18: 708 return GlobalValue::LinkOnceAnyLinkage; 709 case 11: // Old value with implicit comdat. 710 case 19: 711 return GlobalValue::LinkOnceODRLinkage; 712 } 713 } 714 715 // Decode the flags for GlobalValue in the summary 716 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 717 uint64_t Version) { 718 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 719 // like getDecodedLinkage() above. Any future change to the linkage enum and 720 // to getDecodedLinkage() will need to be taken into account here as above. 721 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 722 RawFlags = RawFlags >> 4; 723 auto HasSection = RawFlags & 0x1; // bool 724 return GlobalValueSummary::GVFlags(Linkage, HasSection); 725 } 726 727 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 728 switch (Val) { 729 default: // Map unknown visibilities to default. 730 case 0: return GlobalValue::DefaultVisibility; 731 case 1: return GlobalValue::HiddenVisibility; 732 case 2: return GlobalValue::ProtectedVisibility; 733 } 734 } 735 736 static GlobalValue::DLLStorageClassTypes 737 getDecodedDLLStorageClass(unsigned Val) { 738 switch (Val) { 739 default: // Map unknown values to default. 740 case 0: return GlobalValue::DefaultStorageClass; 741 case 1: return GlobalValue::DLLImportStorageClass; 742 case 2: return GlobalValue::DLLExportStorageClass; 743 } 744 } 745 746 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 747 switch (Val) { 748 case 0: return GlobalVariable::NotThreadLocal; 749 default: // Map unknown non-zero value to general dynamic. 750 case 1: return GlobalVariable::GeneralDynamicTLSModel; 751 case 2: return GlobalVariable::LocalDynamicTLSModel; 752 case 3: return GlobalVariable::InitialExecTLSModel; 753 case 4: return GlobalVariable::LocalExecTLSModel; 754 } 755 } 756 757 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 758 switch (Val) { 759 default: // Map unknown to UnnamedAddr::None. 760 case 0: return GlobalVariable::UnnamedAddr::None; 761 case 1: return GlobalVariable::UnnamedAddr::Global; 762 case 2: return GlobalVariable::UnnamedAddr::Local; 763 } 764 } 765 766 static int getDecodedCastOpcode(unsigned Val) { 767 switch (Val) { 768 default: return -1; 769 case bitc::CAST_TRUNC : return Instruction::Trunc; 770 case bitc::CAST_ZEXT : return Instruction::ZExt; 771 case bitc::CAST_SEXT : return Instruction::SExt; 772 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 773 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 774 case bitc::CAST_UITOFP : return Instruction::UIToFP; 775 case bitc::CAST_SITOFP : return Instruction::SIToFP; 776 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 777 case bitc::CAST_FPEXT : return Instruction::FPExt; 778 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 779 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 780 case bitc::CAST_BITCAST : return Instruction::BitCast; 781 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 782 } 783 } 784 785 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 786 bool IsFP = Ty->isFPOrFPVectorTy(); 787 // BinOps are only valid for int/fp or vector of int/fp types 788 if (!IsFP && !Ty->isIntOrIntVectorTy()) 789 return -1; 790 791 switch (Val) { 792 default: 793 return -1; 794 case bitc::BINOP_ADD: 795 return IsFP ? Instruction::FAdd : Instruction::Add; 796 case bitc::BINOP_SUB: 797 return IsFP ? Instruction::FSub : Instruction::Sub; 798 case bitc::BINOP_MUL: 799 return IsFP ? Instruction::FMul : Instruction::Mul; 800 case bitc::BINOP_UDIV: 801 return IsFP ? -1 : Instruction::UDiv; 802 case bitc::BINOP_SDIV: 803 return IsFP ? Instruction::FDiv : Instruction::SDiv; 804 case bitc::BINOP_UREM: 805 return IsFP ? -1 : Instruction::URem; 806 case bitc::BINOP_SREM: 807 return IsFP ? Instruction::FRem : Instruction::SRem; 808 case bitc::BINOP_SHL: 809 return IsFP ? -1 : Instruction::Shl; 810 case bitc::BINOP_LSHR: 811 return IsFP ? -1 : Instruction::LShr; 812 case bitc::BINOP_ASHR: 813 return IsFP ? -1 : Instruction::AShr; 814 case bitc::BINOP_AND: 815 return IsFP ? -1 : Instruction::And; 816 case bitc::BINOP_OR: 817 return IsFP ? -1 : Instruction::Or; 818 case bitc::BINOP_XOR: 819 return IsFP ? -1 : Instruction::Xor; 820 } 821 } 822 823 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 824 switch (Val) { 825 default: return AtomicRMWInst::BAD_BINOP; 826 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 827 case bitc::RMW_ADD: return AtomicRMWInst::Add; 828 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 829 case bitc::RMW_AND: return AtomicRMWInst::And; 830 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 831 case bitc::RMW_OR: return AtomicRMWInst::Or; 832 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 833 case bitc::RMW_MAX: return AtomicRMWInst::Max; 834 case bitc::RMW_MIN: return AtomicRMWInst::Min; 835 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 836 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 837 } 838 } 839 840 static AtomicOrdering getDecodedOrdering(unsigned Val) { 841 switch (Val) { 842 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 843 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 844 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 845 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 846 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 847 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 848 default: // Map unknown orderings to sequentially-consistent. 849 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 850 } 851 } 852 853 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 854 switch (Val) { 855 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 856 default: // Map unknown scopes to cross-thread. 857 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 858 } 859 } 860 861 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 862 switch (Val) { 863 default: // Map unknown selection kinds to any. 864 case bitc::COMDAT_SELECTION_KIND_ANY: 865 return Comdat::Any; 866 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 867 return Comdat::ExactMatch; 868 case bitc::COMDAT_SELECTION_KIND_LARGEST: 869 return Comdat::Largest; 870 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 871 return Comdat::NoDuplicates; 872 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 873 return Comdat::SameSize; 874 } 875 } 876 877 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 878 FastMathFlags FMF; 879 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 880 FMF.setUnsafeAlgebra(); 881 if (0 != (Val & FastMathFlags::NoNaNs)) 882 FMF.setNoNaNs(); 883 if (0 != (Val & FastMathFlags::NoInfs)) 884 FMF.setNoInfs(); 885 if (0 != (Val & FastMathFlags::NoSignedZeros)) 886 FMF.setNoSignedZeros(); 887 if (0 != (Val & FastMathFlags::AllowReciprocal)) 888 FMF.setAllowReciprocal(); 889 return FMF; 890 } 891 892 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 893 switch (Val) { 894 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 895 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 896 } 897 } 898 899 namespace llvm { 900 namespace { 901 /// \brief A class for maintaining the slot number definition 902 /// as a placeholder for the actual definition for forward constants defs. 903 class ConstantPlaceHolder : public ConstantExpr { 904 void operator=(const ConstantPlaceHolder &) = delete; 905 906 public: 907 // allocate space for exactly one operand 908 void *operator new(size_t s) { return User::operator new(s, 1); } 909 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 910 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 911 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 912 } 913 914 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 915 static bool classof(const Value *V) { 916 return isa<ConstantExpr>(V) && 917 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 918 } 919 920 /// Provide fast operand accessors 921 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 922 }; 923 } // end anonymous namespace 924 925 // FIXME: can we inherit this from ConstantExpr? 926 template <> 927 struct OperandTraits<ConstantPlaceHolder> : 928 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 929 }; 930 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 931 } // end namespace llvm 932 933 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 934 if (Idx == size()) { 935 push_back(V); 936 return; 937 } 938 939 if (Idx >= size()) 940 resize(Idx+1); 941 942 WeakVH &OldV = ValuePtrs[Idx]; 943 if (!OldV) { 944 OldV = V; 945 return; 946 } 947 948 // Handle constants and non-constants (e.g. instrs) differently for 949 // efficiency. 950 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 951 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 952 OldV = V; 953 } else { 954 // If there was a forward reference to this value, replace it. 955 Value *PrevVal = OldV; 956 OldV->replaceAllUsesWith(V); 957 delete PrevVal; 958 } 959 } 960 961 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 962 Type *Ty) { 963 if (Idx >= size()) 964 resize(Idx + 1); 965 966 if (Value *V = ValuePtrs[Idx]) { 967 if (Ty != V->getType()) 968 report_fatal_error("Type mismatch in constant table!"); 969 return cast<Constant>(V); 970 } 971 972 // Create and return a placeholder, which will later be RAUW'd. 973 Constant *C = new ConstantPlaceHolder(Ty, Context); 974 ValuePtrs[Idx] = C; 975 return C; 976 } 977 978 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 979 // Bail out for a clearly invalid value. This would make us call resize(0) 980 if (Idx == UINT_MAX) 981 return nullptr; 982 983 if (Idx >= size()) 984 resize(Idx + 1); 985 986 if (Value *V = ValuePtrs[Idx]) { 987 // If the types don't match, it's invalid. 988 if (Ty && Ty != V->getType()) 989 return nullptr; 990 return V; 991 } 992 993 // No type specified, must be invalid reference. 994 if (!Ty) return nullptr; 995 996 // Create and return a placeholder, which will later be RAUW'd. 997 Value *V = new Argument(Ty); 998 ValuePtrs[Idx] = V; 999 return V; 1000 } 1001 1002 /// Once all constants are read, this method bulk resolves any forward 1003 /// references. The idea behind this is that we sometimes get constants (such 1004 /// as large arrays) which reference *many* forward ref constants. Replacing 1005 /// each of these causes a lot of thrashing when building/reuniquing the 1006 /// constant. Instead of doing this, we look at all the uses and rewrite all 1007 /// the place holders at once for any constant that uses a placeholder. 1008 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1009 // Sort the values by-pointer so that they are efficient to look up with a 1010 // binary search. 1011 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1012 1013 SmallVector<Constant*, 64> NewOps; 1014 1015 while (!ResolveConstants.empty()) { 1016 Value *RealVal = operator[](ResolveConstants.back().second); 1017 Constant *Placeholder = ResolveConstants.back().first; 1018 ResolveConstants.pop_back(); 1019 1020 // Loop over all users of the placeholder, updating them to reference the 1021 // new value. If they reference more than one placeholder, update them all 1022 // at once. 1023 while (!Placeholder->use_empty()) { 1024 auto UI = Placeholder->user_begin(); 1025 User *U = *UI; 1026 1027 // If the using object isn't uniqued, just update the operands. This 1028 // handles instructions and initializers for global variables. 1029 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1030 UI.getUse().set(RealVal); 1031 continue; 1032 } 1033 1034 // Otherwise, we have a constant that uses the placeholder. Replace that 1035 // constant with a new constant that has *all* placeholder uses updated. 1036 Constant *UserC = cast<Constant>(U); 1037 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1038 I != E; ++I) { 1039 Value *NewOp; 1040 if (!isa<ConstantPlaceHolder>(*I)) { 1041 // Not a placeholder reference. 1042 NewOp = *I; 1043 } else if (*I == Placeholder) { 1044 // Common case is that it just references this one placeholder. 1045 NewOp = RealVal; 1046 } else { 1047 // Otherwise, look up the placeholder in ResolveConstants. 1048 ResolveConstantsTy::iterator It = 1049 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1050 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1051 0)); 1052 assert(It != ResolveConstants.end() && It->first == *I); 1053 NewOp = operator[](It->second); 1054 } 1055 1056 NewOps.push_back(cast<Constant>(NewOp)); 1057 } 1058 1059 // Make the new constant. 1060 Constant *NewC; 1061 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1062 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1063 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1064 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1065 } else if (isa<ConstantVector>(UserC)) { 1066 NewC = ConstantVector::get(NewOps); 1067 } else { 1068 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1069 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1070 } 1071 1072 UserC->replaceAllUsesWith(NewC); 1073 UserC->destroyConstant(); 1074 NewOps.clear(); 1075 } 1076 1077 // Update all ValueHandles, they should be the only users at this point. 1078 Placeholder->replaceAllUsesWith(RealVal); 1079 delete Placeholder; 1080 } 1081 } 1082 1083 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1084 if (Idx == size()) { 1085 push_back(MD); 1086 return; 1087 } 1088 1089 if (Idx >= size()) 1090 resize(Idx+1); 1091 1092 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1093 if (!OldMD) { 1094 OldMD.reset(MD); 1095 return; 1096 } 1097 1098 // If there was a forward reference to this value, replace it. 1099 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1100 PrevMD->replaceAllUsesWith(MD); 1101 --NumFwdRefs; 1102 } 1103 1104 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1105 if (Idx >= size()) 1106 resize(Idx + 1); 1107 1108 if (Metadata *MD = MetadataPtrs[Idx]) 1109 return MD; 1110 1111 // Track forward refs to be resolved later. 1112 if (AnyFwdRefs) { 1113 MinFwdRef = std::min(MinFwdRef, Idx); 1114 MaxFwdRef = std::max(MaxFwdRef, Idx); 1115 } else { 1116 AnyFwdRefs = true; 1117 MinFwdRef = MaxFwdRef = Idx; 1118 } 1119 ++NumFwdRefs; 1120 1121 // Create and return a placeholder, which will later be RAUW'd. 1122 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1123 MetadataPtrs[Idx].reset(MD); 1124 return MD; 1125 } 1126 1127 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1128 Metadata *MD = lookup(Idx); 1129 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1130 if (!N->isResolved()) 1131 return nullptr; 1132 return MD; 1133 } 1134 1135 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1136 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1137 } 1138 1139 void BitcodeReaderMetadataList::tryToResolveCycles() { 1140 if (NumFwdRefs) 1141 // Still forward references... can't resolve cycles. 1142 return; 1143 1144 bool DidReplaceTypeRefs = false; 1145 1146 // Give up on finding a full definition for any forward decls that remain. 1147 for (const auto &Ref : OldTypeRefs.FwdDecls) 1148 OldTypeRefs.Final.insert(Ref); 1149 OldTypeRefs.FwdDecls.clear(); 1150 1151 // Upgrade from old type ref arrays. In strange cases, this could add to 1152 // OldTypeRefs.Unknown. 1153 for (const auto &Array : OldTypeRefs.Arrays) { 1154 DidReplaceTypeRefs = true; 1155 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1156 } 1157 OldTypeRefs.Arrays.clear(); 1158 1159 // Replace old string-based type refs with the resolved node, if possible. 1160 // If we haven't seen the node, leave it to the verifier to complain about 1161 // the invalid string reference. 1162 for (const auto &Ref : OldTypeRefs.Unknown) { 1163 DidReplaceTypeRefs = true; 1164 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1165 Ref.second->replaceAllUsesWith(CT); 1166 else 1167 Ref.second->replaceAllUsesWith(Ref.first); 1168 } 1169 OldTypeRefs.Unknown.clear(); 1170 1171 // Make sure all the upgraded types are resolved. 1172 if (DidReplaceTypeRefs) { 1173 AnyFwdRefs = true; 1174 MinFwdRef = 0; 1175 MaxFwdRef = MetadataPtrs.size() - 1; 1176 } 1177 1178 if (!AnyFwdRefs) 1179 // Nothing to do. 1180 return; 1181 1182 // Resolve any cycles. 1183 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1184 auto &MD = MetadataPtrs[I]; 1185 auto *N = dyn_cast_or_null<MDNode>(MD); 1186 if (!N) 1187 continue; 1188 1189 assert(!N->isTemporary() && "Unexpected forward reference"); 1190 N->resolveCycles(); 1191 } 1192 1193 // Make sure we return early again until there's another forward ref. 1194 AnyFwdRefs = false; 1195 } 1196 1197 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1198 DICompositeType &CT) { 1199 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1200 if (CT.isForwardDecl()) 1201 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1202 else 1203 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1204 } 1205 1206 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1207 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1208 if (LLVM_LIKELY(!UUID)) 1209 return MaybeUUID; 1210 1211 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1212 return CT; 1213 1214 auto &Ref = OldTypeRefs.Unknown[UUID]; 1215 if (!Ref) 1216 Ref = MDNode::getTemporary(Context, None); 1217 return Ref.get(); 1218 } 1219 1220 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1221 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1222 if (!Tuple || Tuple->isDistinct()) 1223 return MaybeTuple; 1224 1225 // Look through the array immediately if possible. 1226 if (!Tuple->isTemporary()) 1227 return resolveTypeRefArray(Tuple); 1228 1229 // Create and return a placeholder to use for now. Eventually 1230 // resolveTypeRefArrays() will be resolve this forward reference. 1231 OldTypeRefs.Arrays.emplace_back( 1232 std::piecewise_construct, std::forward_as_tuple(Tuple), 1233 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1234 return OldTypeRefs.Arrays.back().second.get(); 1235 } 1236 1237 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1238 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1239 if (!Tuple || Tuple->isDistinct()) 1240 return MaybeTuple; 1241 1242 // Look through the DITypeRefArray, upgrading each DITypeRef. 1243 SmallVector<Metadata *, 32> Ops; 1244 Ops.reserve(Tuple->getNumOperands()); 1245 for (Metadata *MD : Tuple->operands()) 1246 Ops.push_back(upgradeTypeRef(MD)); 1247 1248 return MDTuple::get(Context, Ops); 1249 } 1250 1251 Type *BitcodeReader::getTypeByID(unsigned ID) { 1252 // The type table size is always specified correctly. 1253 if (ID >= TypeList.size()) 1254 return nullptr; 1255 1256 if (Type *Ty = TypeList[ID]) 1257 return Ty; 1258 1259 // If we have a forward reference, the only possible case is when it is to a 1260 // named struct. Just create a placeholder for now. 1261 return TypeList[ID] = createIdentifiedStructType(Context); 1262 } 1263 1264 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1265 StringRef Name) { 1266 auto *Ret = StructType::create(Context, Name); 1267 IdentifiedStructTypes.push_back(Ret); 1268 return Ret; 1269 } 1270 1271 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1272 auto *Ret = StructType::create(Context); 1273 IdentifiedStructTypes.push_back(Ret); 1274 return Ret; 1275 } 1276 1277 //===----------------------------------------------------------------------===// 1278 // Functions for parsing blocks from the bitcode file 1279 //===----------------------------------------------------------------------===// 1280 1281 1282 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1283 /// been decoded from the given integer. This function must stay in sync with 1284 /// 'encodeLLVMAttributesForBitcode'. 1285 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1286 uint64_t EncodedAttrs) { 1287 // FIXME: Remove in 4.0. 1288 1289 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1290 // the bits above 31 down by 11 bits. 1291 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1292 assert((!Alignment || isPowerOf2_32(Alignment)) && 1293 "Alignment must be a power of two."); 1294 1295 if (Alignment) 1296 B.addAlignmentAttr(Alignment); 1297 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1298 (EncodedAttrs & 0xffff)); 1299 } 1300 1301 std::error_code BitcodeReader::parseAttributeBlock() { 1302 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1303 return error("Invalid record"); 1304 1305 if (!MAttributes.empty()) 1306 return error("Invalid multiple blocks"); 1307 1308 SmallVector<uint64_t, 64> Record; 1309 1310 SmallVector<AttributeSet, 8> Attrs; 1311 1312 // Read all the records. 1313 while (1) { 1314 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1315 1316 switch (Entry.Kind) { 1317 case BitstreamEntry::SubBlock: // Handled for us already. 1318 case BitstreamEntry::Error: 1319 return error("Malformed block"); 1320 case BitstreamEntry::EndBlock: 1321 return std::error_code(); 1322 case BitstreamEntry::Record: 1323 // The interesting case. 1324 break; 1325 } 1326 1327 // Read a record. 1328 Record.clear(); 1329 switch (Stream.readRecord(Entry.ID, Record)) { 1330 default: // Default behavior: ignore. 1331 break; 1332 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1333 // FIXME: Remove in 4.0. 1334 if (Record.size() & 1) 1335 return error("Invalid record"); 1336 1337 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1338 AttrBuilder B; 1339 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1340 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1341 } 1342 1343 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1344 Attrs.clear(); 1345 break; 1346 } 1347 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1348 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1349 Attrs.push_back(MAttributeGroups[Record[i]]); 1350 1351 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1352 Attrs.clear(); 1353 break; 1354 } 1355 } 1356 } 1357 } 1358 1359 // Returns Attribute::None on unrecognized codes. 1360 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1361 switch (Code) { 1362 default: 1363 return Attribute::None; 1364 case bitc::ATTR_KIND_ALIGNMENT: 1365 return Attribute::Alignment; 1366 case bitc::ATTR_KIND_ALWAYS_INLINE: 1367 return Attribute::AlwaysInline; 1368 case bitc::ATTR_KIND_ARGMEMONLY: 1369 return Attribute::ArgMemOnly; 1370 case bitc::ATTR_KIND_BUILTIN: 1371 return Attribute::Builtin; 1372 case bitc::ATTR_KIND_BY_VAL: 1373 return Attribute::ByVal; 1374 case bitc::ATTR_KIND_IN_ALLOCA: 1375 return Attribute::InAlloca; 1376 case bitc::ATTR_KIND_COLD: 1377 return Attribute::Cold; 1378 case bitc::ATTR_KIND_CONVERGENT: 1379 return Attribute::Convergent; 1380 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1381 return Attribute::InaccessibleMemOnly; 1382 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1383 return Attribute::InaccessibleMemOrArgMemOnly; 1384 case bitc::ATTR_KIND_INLINE_HINT: 1385 return Attribute::InlineHint; 1386 case bitc::ATTR_KIND_IN_REG: 1387 return Attribute::InReg; 1388 case bitc::ATTR_KIND_JUMP_TABLE: 1389 return Attribute::JumpTable; 1390 case bitc::ATTR_KIND_MIN_SIZE: 1391 return Attribute::MinSize; 1392 case bitc::ATTR_KIND_NAKED: 1393 return Attribute::Naked; 1394 case bitc::ATTR_KIND_NEST: 1395 return Attribute::Nest; 1396 case bitc::ATTR_KIND_NO_ALIAS: 1397 return Attribute::NoAlias; 1398 case bitc::ATTR_KIND_NO_BUILTIN: 1399 return Attribute::NoBuiltin; 1400 case bitc::ATTR_KIND_NO_CAPTURE: 1401 return Attribute::NoCapture; 1402 case bitc::ATTR_KIND_NO_DUPLICATE: 1403 return Attribute::NoDuplicate; 1404 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1405 return Attribute::NoImplicitFloat; 1406 case bitc::ATTR_KIND_NO_INLINE: 1407 return Attribute::NoInline; 1408 case bitc::ATTR_KIND_NO_RECURSE: 1409 return Attribute::NoRecurse; 1410 case bitc::ATTR_KIND_NON_LAZY_BIND: 1411 return Attribute::NonLazyBind; 1412 case bitc::ATTR_KIND_NON_NULL: 1413 return Attribute::NonNull; 1414 case bitc::ATTR_KIND_DEREFERENCEABLE: 1415 return Attribute::Dereferenceable; 1416 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1417 return Attribute::DereferenceableOrNull; 1418 case bitc::ATTR_KIND_ALLOC_SIZE: 1419 return Attribute::AllocSize; 1420 case bitc::ATTR_KIND_NO_RED_ZONE: 1421 return Attribute::NoRedZone; 1422 case bitc::ATTR_KIND_NO_RETURN: 1423 return Attribute::NoReturn; 1424 case bitc::ATTR_KIND_NO_UNWIND: 1425 return Attribute::NoUnwind; 1426 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1427 return Attribute::OptimizeForSize; 1428 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1429 return Attribute::OptimizeNone; 1430 case bitc::ATTR_KIND_READ_NONE: 1431 return Attribute::ReadNone; 1432 case bitc::ATTR_KIND_READ_ONLY: 1433 return Attribute::ReadOnly; 1434 case bitc::ATTR_KIND_RETURNED: 1435 return Attribute::Returned; 1436 case bitc::ATTR_KIND_RETURNS_TWICE: 1437 return Attribute::ReturnsTwice; 1438 case bitc::ATTR_KIND_S_EXT: 1439 return Attribute::SExt; 1440 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1441 return Attribute::StackAlignment; 1442 case bitc::ATTR_KIND_STACK_PROTECT: 1443 return Attribute::StackProtect; 1444 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1445 return Attribute::StackProtectReq; 1446 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1447 return Attribute::StackProtectStrong; 1448 case bitc::ATTR_KIND_SAFESTACK: 1449 return Attribute::SafeStack; 1450 case bitc::ATTR_KIND_STRUCT_RET: 1451 return Attribute::StructRet; 1452 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1453 return Attribute::SanitizeAddress; 1454 case bitc::ATTR_KIND_SANITIZE_THREAD: 1455 return Attribute::SanitizeThread; 1456 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1457 return Attribute::SanitizeMemory; 1458 case bitc::ATTR_KIND_SWIFT_ERROR: 1459 return Attribute::SwiftError; 1460 case bitc::ATTR_KIND_SWIFT_SELF: 1461 return Attribute::SwiftSelf; 1462 case bitc::ATTR_KIND_UW_TABLE: 1463 return Attribute::UWTable; 1464 case bitc::ATTR_KIND_Z_EXT: 1465 return Attribute::ZExt; 1466 } 1467 } 1468 1469 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1470 unsigned &Alignment) { 1471 // Note: Alignment in bitcode files is incremented by 1, so that zero 1472 // can be used for default alignment. 1473 if (Exponent > Value::MaxAlignmentExponent + 1) 1474 return error("Invalid alignment value"); 1475 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1476 return std::error_code(); 1477 } 1478 1479 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1480 Attribute::AttrKind *Kind) { 1481 *Kind = getAttrFromCode(Code); 1482 if (*Kind == Attribute::None) 1483 return error(BitcodeError::CorruptedBitcode, 1484 "Unknown attribute kind (" + Twine(Code) + ")"); 1485 return std::error_code(); 1486 } 1487 1488 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1489 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1490 return error("Invalid record"); 1491 1492 if (!MAttributeGroups.empty()) 1493 return error("Invalid multiple blocks"); 1494 1495 SmallVector<uint64_t, 64> Record; 1496 1497 // Read all the records. 1498 while (1) { 1499 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1500 1501 switch (Entry.Kind) { 1502 case BitstreamEntry::SubBlock: // Handled for us already. 1503 case BitstreamEntry::Error: 1504 return error("Malformed block"); 1505 case BitstreamEntry::EndBlock: 1506 return std::error_code(); 1507 case BitstreamEntry::Record: 1508 // The interesting case. 1509 break; 1510 } 1511 1512 // Read a record. 1513 Record.clear(); 1514 switch (Stream.readRecord(Entry.ID, Record)) { 1515 default: // Default behavior: ignore. 1516 break; 1517 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1518 if (Record.size() < 3) 1519 return error("Invalid record"); 1520 1521 uint64_t GrpID = Record[0]; 1522 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1523 1524 AttrBuilder B; 1525 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1526 if (Record[i] == 0) { // Enum attribute 1527 Attribute::AttrKind Kind; 1528 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1529 return EC; 1530 1531 B.addAttribute(Kind); 1532 } else if (Record[i] == 1) { // Integer attribute 1533 Attribute::AttrKind Kind; 1534 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1535 return EC; 1536 if (Kind == Attribute::Alignment) 1537 B.addAlignmentAttr(Record[++i]); 1538 else if (Kind == Attribute::StackAlignment) 1539 B.addStackAlignmentAttr(Record[++i]); 1540 else if (Kind == Attribute::Dereferenceable) 1541 B.addDereferenceableAttr(Record[++i]); 1542 else if (Kind == Attribute::DereferenceableOrNull) 1543 B.addDereferenceableOrNullAttr(Record[++i]); 1544 else if (Kind == Attribute::AllocSize) 1545 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1546 } else { // String attribute 1547 assert((Record[i] == 3 || Record[i] == 4) && 1548 "Invalid attribute group entry"); 1549 bool HasValue = (Record[i++] == 4); 1550 SmallString<64> KindStr; 1551 SmallString<64> ValStr; 1552 1553 while (Record[i] != 0 && i != e) 1554 KindStr += Record[i++]; 1555 assert(Record[i] == 0 && "Kind string not null terminated"); 1556 1557 if (HasValue) { 1558 // Has a value associated with it. 1559 ++i; // Skip the '0' that terminates the "kind" string. 1560 while (Record[i] != 0 && i != e) 1561 ValStr += Record[i++]; 1562 assert(Record[i] == 0 && "Value string not null terminated"); 1563 } 1564 1565 B.addAttribute(KindStr.str(), ValStr.str()); 1566 } 1567 } 1568 1569 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1570 break; 1571 } 1572 } 1573 } 1574 } 1575 1576 std::error_code BitcodeReader::parseTypeTable() { 1577 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1578 return error("Invalid record"); 1579 1580 return parseTypeTableBody(); 1581 } 1582 1583 std::error_code BitcodeReader::parseTypeTableBody() { 1584 if (!TypeList.empty()) 1585 return error("Invalid multiple blocks"); 1586 1587 SmallVector<uint64_t, 64> Record; 1588 unsigned NumRecords = 0; 1589 1590 SmallString<64> TypeName; 1591 1592 // Read all the records for this type table. 1593 while (1) { 1594 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1595 1596 switch (Entry.Kind) { 1597 case BitstreamEntry::SubBlock: // Handled for us already. 1598 case BitstreamEntry::Error: 1599 return error("Malformed block"); 1600 case BitstreamEntry::EndBlock: 1601 if (NumRecords != TypeList.size()) 1602 return error("Malformed block"); 1603 return std::error_code(); 1604 case BitstreamEntry::Record: 1605 // The interesting case. 1606 break; 1607 } 1608 1609 // Read a record. 1610 Record.clear(); 1611 Type *ResultTy = nullptr; 1612 switch (Stream.readRecord(Entry.ID, Record)) { 1613 default: 1614 return error("Invalid value"); 1615 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1616 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1617 // type list. This allows us to reserve space. 1618 if (Record.size() < 1) 1619 return error("Invalid record"); 1620 TypeList.resize(Record[0]); 1621 continue; 1622 case bitc::TYPE_CODE_VOID: // VOID 1623 ResultTy = Type::getVoidTy(Context); 1624 break; 1625 case bitc::TYPE_CODE_HALF: // HALF 1626 ResultTy = Type::getHalfTy(Context); 1627 break; 1628 case bitc::TYPE_CODE_FLOAT: // FLOAT 1629 ResultTy = Type::getFloatTy(Context); 1630 break; 1631 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1632 ResultTy = Type::getDoubleTy(Context); 1633 break; 1634 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1635 ResultTy = Type::getX86_FP80Ty(Context); 1636 break; 1637 case bitc::TYPE_CODE_FP128: // FP128 1638 ResultTy = Type::getFP128Ty(Context); 1639 break; 1640 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1641 ResultTy = Type::getPPC_FP128Ty(Context); 1642 break; 1643 case bitc::TYPE_CODE_LABEL: // LABEL 1644 ResultTy = Type::getLabelTy(Context); 1645 break; 1646 case bitc::TYPE_CODE_METADATA: // METADATA 1647 ResultTy = Type::getMetadataTy(Context); 1648 break; 1649 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1650 ResultTy = Type::getX86_MMXTy(Context); 1651 break; 1652 case bitc::TYPE_CODE_TOKEN: // TOKEN 1653 ResultTy = Type::getTokenTy(Context); 1654 break; 1655 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1656 if (Record.size() < 1) 1657 return error("Invalid record"); 1658 1659 uint64_t NumBits = Record[0]; 1660 if (NumBits < IntegerType::MIN_INT_BITS || 1661 NumBits > IntegerType::MAX_INT_BITS) 1662 return error("Bitwidth for integer type out of range"); 1663 ResultTy = IntegerType::get(Context, NumBits); 1664 break; 1665 } 1666 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1667 // [pointee type, address space] 1668 if (Record.size() < 1) 1669 return error("Invalid record"); 1670 unsigned AddressSpace = 0; 1671 if (Record.size() == 2) 1672 AddressSpace = Record[1]; 1673 ResultTy = getTypeByID(Record[0]); 1674 if (!ResultTy || 1675 !PointerType::isValidElementType(ResultTy)) 1676 return error("Invalid type"); 1677 ResultTy = PointerType::get(ResultTy, AddressSpace); 1678 break; 1679 } 1680 case bitc::TYPE_CODE_FUNCTION_OLD: { 1681 // FIXME: attrid is dead, remove it in LLVM 4.0 1682 // FUNCTION: [vararg, attrid, retty, paramty x N] 1683 if (Record.size() < 3) 1684 return error("Invalid record"); 1685 SmallVector<Type*, 8> ArgTys; 1686 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1687 if (Type *T = getTypeByID(Record[i])) 1688 ArgTys.push_back(T); 1689 else 1690 break; 1691 } 1692 1693 ResultTy = getTypeByID(Record[2]); 1694 if (!ResultTy || ArgTys.size() < Record.size()-3) 1695 return error("Invalid type"); 1696 1697 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1698 break; 1699 } 1700 case bitc::TYPE_CODE_FUNCTION: { 1701 // FUNCTION: [vararg, retty, paramty x N] 1702 if (Record.size() < 2) 1703 return error("Invalid record"); 1704 SmallVector<Type*, 8> ArgTys; 1705 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1706 if (Type *T = getTypeByID(Record[i])) { 1707 if (!FunctionType::isValidArgumentType(T)) 1708 return error("Invalid function argument type"); 1709 ArgTys.push_back(T); 1710 } 1711 else 1712 break; 1713 } 1714 1715 ResultTy = getTypeByID(Record[1]); 1716 if (!ResultTy || ArgTys.size() < Record.size()-2) 1717 return error("Invalid type"); 1718 1719 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1720 break; 1721 } 1722 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1723 if (Record.size() < 1) 1724 return error("Invalid record"); 1725 SmallVector<Type*, 8> EltTys; 1726 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1727 if (Type *T = getTypeByID(Record[i])) 1728 EltTys.push_back(T); 1729 else 1730 break; 1731 } 1732 if (EltTys.size() != Record.size()-1) 1733 return error("Invalid type"); 1734 ResultTy = StructType::get(Context, EltTys, Record[0]); 1735 break; 1736 } 1737 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1738 if (convertToString(Record, 0, TypeName)) 1739 return error("Invalid record"); 1740 continue; 1741 1742 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1743 if (Record.size() < 1) 1744 return error("Invalid record"); 1745 1746 if (NumRecords >= TypeList.size()) 1747 return error("Invalid TYPE table"); 1748 1749 // Check to see if this was forward referenced, if so fill in the temp. 1750 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1751 if (Res) { 1752 Res->setName(TypeName); 1753 TypeList[NumRecords] = nullptr; 1754 } else // Otherwise, create a new struct. 1755 Res = createIdentifiedStructType(Context, TypeName); 1756 TypeName.clear(); 1757 1758 SmallVector<Type*, 8> EltTys; 1759 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1760 if (Type *T = getTypeByID(Record[i])) 1761 EltTys.push_back(T); 1762 else 1763 break; 1764 } 1765 if (EltTys.size() != Record.size()-1) 1766 return error("Invalid record"); 1767 Res->setBody(EltTys, Record[0]); 1768 ResultTy = Res; 1769 break; 1770 } 1771 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1772 if (Record.size() != 1) 1773 return error("Invalid record"); 1774 1775 if (NumRecords >= TypeList.size()) 1776 return error("Invalid TYPE table"); 1777 1778 // Check to see if this was forward referenced, if so fill in the temp. 1779 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1780 if (Res) { 1781 Res->setName(TypeName); 1782 TypeList[NumRecords] = nullptr; 1783 } else // Otherwise, create a new struct with no body. 1784 Res = createIdentifiedStructType(Context, TypeName); 1785 TypeName.clear(); 1786 ResultTy = Res; 1787 break; 1788 } 1789 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1790 if (Record.size() < 2) 1791 return error("Invalid record"); 1792 ResultTy = getTypeByID(Record[1]); 1793 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1794 return error("Invalid type"); 1795 ResultTy = ArrayType::get(ResultTy, Record[0]); 1796 break; 1797 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1798 if (Record.size() < 2) 1799 return error("Invalid record"); 1800 if (Record[0] == 0) 1801 return error("Invalid vector length"); 1802 ResultTy = getTypeByID(Record[1]); 1803 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1804 return error("Invalid type"); 1805 ResultTy = VectorType::get(ResultTy, Record[0]); 1806 break; 1807 } 1808 1809 if (NumRecords >= TypeList.size()) 1810 return error("Invalid TYPE table"); 1811 if (TypeList[NumRecords]) 1812 return error( 1813 "Invalid TYPE table: Only named structs can be forward referenced"); 1814 assert(ResultTy && "Didn't read a type?"); 1815 TypeList[NumRecords++] = ResultTy; 1816 } 1817 } 1818 1819 std::error_code BitcodeReader::parseOperandBundleTags() { 1820 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1821 return error("Invalid record"); 1822 1823 if (!BundleTags.empty()) 1824 return error("Invalid multiple blocks"); 1825 1826 SmallVector<uint64_t, 64> Record; 1827 1828 while (1) { 1829 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1830 1831 switch (Entry.Kind) { 1832 case BitstreamEntry::SubBlock: // Handled for us already. 1833 case BitstreamEntry::Error: 1834 return error("Malformed block"); 1835 case BitstreamEntry::EndBlock: 1836 return std::error_code(); 1837 case BitstreamEntry::Record: 1838 // The interesting case. 1839 break; 1840 } 1841 1842 // Tags are implicitly mapped to integers by their order. 1843 1844 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1845 return error("Invalid record"); 1846 1847 // OPERAND_BUNDLE_TAG: [strchr x N] 1848 BundleTags.emplace_back(); 1849 if (convertToString(Record, 0, BundleTags.back())) 1850 return error("Invalid record"); 1851 Record.clear(); 1852 } 1853 } 1854 1855 /// Associate a value with its name from the given index in the provided record. 1856 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1857 unsigned NameIndex, Triple &TT) { 1858 SmallString<128> ValueName; 1859 if (convertToString(Record, NameIndex, ValueName)) 1860 return error("Invalid record"); 1861 unsigned ValueID = Record[0]; 1862 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1863 return error("Invalid record"); 1864 Value *V = ValueList[ValueID]; 1865 1866 StringRef NameStr(ValueName.data(), ValueName.size()); 1867 if (NameStr.find_first_of(0) != StringRef::npos) 1868 return error("Invalid value name"); 1869 V->setName(NameStr); 1870 auto *GO = dyn_cast<GlobalObject>(V); 1871 if (GO) { 1872 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1873 if (TT.isOSBinFormatMachO()) 1874 GO->setComdat(nullptr); 1875 else 1876 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1877 } 1878 } 1879 return V; 1880 } 1881 1882 /// Helper to note and return the current location, and jump to the given 1883 /// offset. 1884 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1885 BitstreamCursor &Stream) { 1886 // Save the current parsing location so we can jump back at the end 1887 // of the VST read. 1888 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1889 Stream.JumpToBit(Offset * 32); 1890 #ifndef NDEBUG 1891 // Do some checking if we are in debug mode. 1892 BitstreamEntry Entry = Stream.advance(); 1893 assert(Entry.Kind == BitstreamEntry::SubBlock); 1894 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1895 #else 1896 // In NDEBUG mode ignore the output so we don't get an unused variable 1897 // warning. 1898 Stream.advance(); 1899 #endif 1900 return CurrentBit; 1901 } 1902 1903 /// Parse the value symbol table at either the current parsing location or 1904 /// at the given bit offset if provided. 1905 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1906 uint64_t CurrentBit; 1907 // Pass in the Offset to distinguish between calling for the module-level 1908 // VST (where we want to jump to the VST offset) and the function-level 1909 // VST (where we don't). 1910 if (Offset > 0) 1911 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1912 1913 // Compute the delta between the bitcode indices in the VST (the word offset 1914 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1915 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1916 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1917 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1918 // just before entering the VST subblock because: 1) the EnterSubBlock 1919 // changes the AbbrevID width; 2) the VST block is nested within the same 1920 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1921 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1922 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1923 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1924 unsigned FuncBitcodeOffsetDelta = 1925 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1926 1927 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1928 return error("Invalid record"); 1929 1930 SmallVector<uint64_t, 64> Record; 1931 1932 Triple TT(TheModule->getTargetTriple()); 1933 1934 // Read all the records for this value table. 1935 SmallString<128> ValueName; 1936 while (1) { 1937 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1938 1939 switch (Entry.Kind) { 1940 case BitstreamEntry::SubBlock: // Handled for us already. 1941 case BitstreamEntry::Error: 1942 return error("Malformed block"); 1943 case BitstreamEntry::EndBlock: 1944 if (Offset > 0) 1945 Stream.JumpToBit(CurrentBit); 1946 return std::error_code(); 1947 case BitstreamEntry::Record: 1948 // The interesting case. 1949 break; 1950 } 1951 1952 // Read a record. 1953 Record.clear(); 1954 switch (Stream.readRecord(Entry.ID, Record)) { 1955 default: // Default behavior: unknown type. 1956 break; 1957 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1958 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1959 if (std::error_code EC = ValOrErr.getError()) 1960 return EC; 1961 ValOrErr.get(); 1962 break; 1963 } 1964 case bitc::VST_CODE_FNENTRY: { 1965 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1966 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1967 if (std::error_code EC = ValOrErr.getError()) 1968 return EC; 1969 Value *V = ValOrErr.get(); 1970 1971 auto *GO = dyn_cast<GlobalObject>(V); 1972 if (!GO) { 1973 // If this is an alias, need to get the actual Function object 1974 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1975 auto *GA = dyn_cast<GlobalAlias>(V); 1976 if (GA) 1977 GO = GA->getBaseObject(); 1978 assert(GO); 1979 } 1980 1981 uint64_t FuncWordOffset = Record[1]; 1982 Function *F = dyn_cast<Function>(GO); 1983 assert(F); 1984 uint64_t FuncBitOffset = FuncWordOffset * 32; 1985 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1986 // Set the LastFunctionBlockBit to point to the last function block. 1987 // Later when parsing is resumed after function materialization, 1988 // we can simply skip that last function block. 1989 if (FuncBitOffset > LastFunctionBlockBit) 1990 LastFunctionBlockBit = FuncBitOffset; 1991 break; 1992 } 1993 case bitc::VST_CODE_BBENTRY: { 1994 if (convertToString(Record, 1, ValueName)) 1995 return error("Invalid record"); 1996 BasicBlock *BB = getBasicBlock(Record[0]); 1997 if (!BB) 1998 return error("Invalid record"); 1999 2000 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2001 ValueName.clear(); 2002 break; 2003 } 2004 } 2005 } 2006 } 2007 2008 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2009 std::error_code 2010 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2011 if (Record.size() < 2) 2012 return error("Invalid record"); 2013 2014 unsigned Kind = Record[0]; 2015 SmallString<8> Name(Record.begin() + 1, Record.end()); 2016 2017 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2018 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2019 return error("Conflicting METADATA_KIND records"); 2020 return std::error_code(); 2021 } 2022 2023 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2024 2025 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2026 StringRef Blob, 2027 unsigned &NextMetadataNo) { 2028 // All the MDStrings in the block are emitted together in a single 2029 // record. The strings are concatenated and stored in a blob along with 2030 // their sizes. 2031 if (Record.size() != 2) 2032 return error("Invalid record: metadata strings layout"); 2033 2034 unsigned NumStrings = Record[0]; 2035 unsigned StringsOffset = Record[1]; 2036 if (!NumStrings) 2037 return error("Invalid record: metadata strings with no strings"); 2038 if (StringsOffset > Blob.size()) 2039 return error("Invalid record: metadata strings corrupt offset"); 2040 2041 StringRef Lengths = Blob.slice(0, StringsOffset); 2042 SimpleBitstreamCursor R(*StreamFile); 2043 R.jumpToPointer(Lengths.begin()); 2044 2045 // Ensure that Blob doesn't get invalidated, even if this is reading from 2046 // a StreamingMemoryObject with corrupt data. 2047 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2048 2049 StringRef Strings = Blob.drop_front(StringsOffset); 2050 do { 2051 if (R.AtEndOfStream()) 2052 return error("Invalid record: metadata strings bad length"); 2053 2054 unsigned Size = R.ReadVBR(6); 2055 if (Strings.size() < Size) 2056 return error("Invalid record: metadata strings truncated chars"); 2057 2058 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2059 NextMetadataNo++); 2060 Strings = Strings.drop_front(Size); 2061 } while (--NumStrings); 2062 2063 return std::error_code(); 2064 } 2065 2066 namespace { 2067 class PlaceholderQueue { 2068 // Placeholders would thrash around when moved, so store in a std::deque 2069 // instead of some sort of vector. 2070 std::deque<DistinctMDOperandPlaceholder> PHs; 2071 2072 public: 2073 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2074 void flush(BitcodeReaderMetadataList &MetadataList); 2075 }; 2076 } // end namespace 2077 2078 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2079 PHs.emplace_back(ID); 2080 return PHs.back(); 2081 } 2082 2083 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2084 while (!PHs.empty()) { 2085 PHs.front().replaceUseWith( 2086 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2087 PHs.pop_front(); 2088 } 2089 } 2090 2091 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2092 /// module level metadata. 2093 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2094 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2095 "Must read all module-level metadata before function-level"); 2096 2097 IsMetadataMaterialized = true; 2098 unsigned NextMetadataNo = MetadataList.size(); 2099 2100 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2101 return error("Invalid metadata: fwd refs into function blocks"); 2102 2103 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2104 return error("Invalid record"); 2105 2106 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2107 SmallVector<uint64_t, 64> Record; 2108 2109 PlaceholderQueue Placeholders; 2110 bool IsDistinct; 2111 auto getMD = [&](unsigned ID) -> Metadata * { 2112 if (!IsDistinct) 2113 return MetadataList.getMetadataFwdRef(ID); 2114 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2115 return MD; 2116 return &Placeholders.getPlaceholderOp(ID); 2117 }; 2118 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2119 if (ID) 2120 return getMD(ID - 1); 2121 return nullptr; 2122 }; 2123 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2124 if (ID) 2125 return MetadataList.getMetadataFwdRef(ID - 1); 2126 return nullptr; 2127 }; 2128 auto getMDString = [&](unsigned ID) -> MDString *{ 2129 // This requires that the ID is not really a forward reference. In 2130 // particular, the MDString must already have been resolved. 2131 return cast_or_null<MDString>(getMDOrNull(ID)); 2132 }; 2133 2134 // Support for old type refs. 2135 auto getDITypeRefOrNull = [&](unsigned ID) { 2136 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2137 }; 2138 2139 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2140 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2141 2142 // Read all the records. 2143 while (1) { 2144 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2145 2146 switch (Entry.Kind) { 2147 case BitstreamEntry::SubBlock: // Handled for us already. 2148 case BitstreamEntry::Error: 2149 return error("Malformed block"); 2150 case BitstreamEntry::EndBlock: 2151 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2152 for (auto CU_SP : CUSubprograms) 2153 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2154 for (auto &Op : SPs->operands()) 2155 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2156 SP->replaceOperandWith(7, CU_SP.first); 2157 2158 MetadataList.tryToResolveCycles(); 2159 Placeholders.flush(MetadataList); 2160 return std::error_code(); 2161 case BitstreamEntry::Record: 2162 // The interesting case. 2163 break; 2164 } 2165 2166 // Read a record. 2167 Record.clear(); 2168 StringRef Blob; 2169 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2170 IsDistinct = false; 2171 switch (Code) { 2172 default: // Default behavior: ignore. 2173 break; 2174 case bitc::METADATA_NAME: { 2175 // Read name of the named metadata. 2176 SmallString<8> Name(Record.begin(), Record.end()); 2177 Record.clear(); 2178 Code = Stream.ReadCode(); 2179 2180 unsigned NextBitCode = Stream.readRecord(Code, Record); 2181 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2182 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2183 2184 // Read named metadata elements. 2185 unsigned Size = Record.size(); 2186 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2187 for (unsigned i = 0; i != Size; ++i) { 2188 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2189 if (!MD) 2190 return error("Invalid record"); 2191 NMD->addOperand(MD); 2192 } 2193 break; 2194 } 2195 case bitc::METADATA_OLD_FN_NODE: { 2196 // FIXME: Remove in 4.0. 2197 // This is a LocalAsMetadata record, the only type of function-local 2198 // metadata. 2199 if (Record.size() % 2 == 1) 2200 return error("Invalid record"); 2201 2202 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2203 // to be legal, but there's no upgrade path. 2204 auto dropRecord = [&] { 2205 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2206 }; 2207 if (Record.size() != 2) { 2208 dropRecord(); 2209 break; 2210 } 2211 2212 Type *Ty = getTypeByID(Record[0]); 2213 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2214 dropRecord(); 2215 break; 2216 } 2217 2218 MetadataList.assignValue( 2219 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2220 NextMetadataNo++); 2221 break; 2222 } 2223 case bitc::METADATA_OLD_NODE: { 2224 // FIXME: Remove in 4.0. 2225 if (Record.size() % 2 == 1) 2226 return error("Invalid record"); 2227 2228 unsigned Size = Record.size(); 2229 SmallVector<Metadata *, 8> Elts; 2230 for (unsigned i = 0; i != Size; i += 2) { 2231 Type *Ty = getTypeByID(Record[i]); 2232 if (!Ty) 2233 return error("Invalid record"); 2234 if (Ty->isMetadataTy()) 2235 Elts.push_back(getMD(Record[i + 1])); 2236 else if (!Ty->isVoidTy()) { 2237 auto *MD = 2238 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2239 assert(isa<ConstantAsMetadata>(MD) && 2240 "Expected non-function-local metadata"); 2241 Elts.push_back(MD); 2242 } else 2243 Elts.push_back(nullptr); 2244 } 2245 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2246 break; 2247 } 2248 case bitc::METADATA_VALUE: { 2249 if (Record.size() != 2) 2250 return error("Invalid record"); 2251 2252 Type *Ty = getTypeByID(Record[0]); 2253 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2254 return error("Invalid record"); 2255 2256 MetadataList.assignValue( 2257 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2258 NextMetadataNo++); 2259 break; 2260 } 2261 case bitc::METADATA_DISTINCT_NODE: 2262 IsDistinct = true; 2263 // fallthrough... 2264 case bitc::METADATA_NODE: { 2265 SmallVector<Metadata *, 8> Elts; 2266 Elts.reserve(Record.size()); 2267 for (unsigned ID : Record) 2268 Elts.push_back(getMDOrNull(ID)); 2269 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2270 : MDNode::get(Context, Elts), 2271 NextMetadataNo++); 2272 break; 2273 } 2274 case bitc::METADATA_LOCATION: { 2275 if (Record.size() != 5) 2276 return error("Invalid record"); 2277 2278 IsDistinct = Record[0]; 2279 unsigned Line = Record[1]; 2280 unsigned Column = Record[2]; 2281 Metadata *Scope = getMD(Record[3]); 2282 Metadata *InlinedAt = getMDOrNull(Record[4]); 2283 MetadataList.assignValue( 2284 GET_OR_DISTINCT(DILocation, 2285 (Context, Line, Column, Scope, InlinedAt)), 2286 NextMetadataNo++); 2287 break; 2288 } 2289 case bitc::METADATA_GENERIC_DEBUG: { 2290 if (Record.size() < 4) 2291 return error("Invalid record"); 2292 2293 IsDistinct = Record[0]; 2294 unsigned Tag = Record[1]; 2295 unsigned Version = Record[2]; 2296 2297 if (Tag >= 1u << 16 || Version != 0) 2298 return error("Invalid record"); 2299 2300 auto *Header = getMDString(Record[3]); 2301 SmallVector<Metadata *, 8> DwarfOps; 2302 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2303 DwarfOps.push_back(getMDOrNull(Record[I])); 2304 MetadataList.assignValue( 2305 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2306 NextMetadataNo++); 2307 break; 2308 } 2309 case bitc::METADATA_SUBRANGE: { 2310 if (Record.size() != 3) 2311 return error("Invalid record"); 2312 2313 IsDistinct = Record[0]; 2314 MetadataList.assignValue( 2315 GET_OR_DISTINCT(DISubrange, 2316 (Context, Record[1], unrotateSign(Record[2]))), 2317 NextMetadataNo++); 2318 break; 2319 } 2320 case bitc::METADATA_ENUMERATOR: { 2321 if (Record.size() != 3) 2322 return error("Invalid record"); 2323 2324 IsDistinct = Record[0]; 2325 MetadataList.assignValue( 2326 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2327 getMDString(Record[2]))), 2328 NextMetadataNo++); 2329 break; 2330 } 2331 case bitc::METADATA_BASIC_TYPE: { 2332 if (Record.size() != 6) 2333 return error("Invalid record"); 2334 2335 IsDistinct = Record[0]; 2336 MetadataList.assignValue( 2337 GET_OR_DISTINCT(DIBasicType, 2338 (Context, Record[1], getMDString(Record[2]), 2339 Record[3], Record[4], Record[5])), 2340 NextMetadataNo++); 2341 break; 2342 } 2343 case bitc::METADATA_DERIVED_TYPE: { 2344 if (Record.size() != 12) 2345 return error("Invalid record"); 2346 2347 IsDistinct = Record[0]; 2348 MetadataList.assignValue( 2349 GET_OR_DISTINCT( 2350 DIDerivedType, 2351 (Context, Record[1], getMDString(Record[2]), 2352 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2353 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2354 Record[10], getDITypeRefOrNull(Record[11]))), 2355 NextMetadataNo++); 2356 break; 2357 } 2358 case bitc::METADATA_COMPOSITE_TYPE: { 2359 if (Record.size() != 16) 2360 return error("Invalid record"); 2361 2362 // If we have a UUID and this is not a forward declaration, lookup the 2363 // mapping. 2364 IsDistinct = Record[0] & 0x1; 2365 bool IsNotUsedInTypeRef = Record[0] >= 2; 2366 unsigned Tag = Record[1]; 2367 MDString *Name = getMDString(Record[2]); 2368 Metadata *File = getMDOrNull(Record[3]); 2369 unsigned Line = Record[4]; 2370 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2371 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2372 uint64_t SizeInBits = Record[7]; 2373 uint64_t AlignInBits = Record[8]; 2374 uint64_t OffsetInBits = Record[9]; 2375 unsigned Flags = Record[10]; 2376 Metadata *Elements = getMDOrNull(Record[11]); 2377 unsigned RuntimeLang = Record[12]; 2378 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2379 Metadata *TemplateParams = getMDOrNull(Record[14]); 2380 auto *Identifier = getMDString(Record[15]); 2381 DICompositeType *CT = nullptr; 2382 if (Identifier) 2383 CT = DICompositeType::buildODRType( 2384 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2385 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2386 VTableHolder, TemplateParams); 2387 2388 // Create a node if we didn't get a lazy ODR type. 2389 if (!CT) 2390 CT = GET_OR_DISTINCT(DICompositeType, 2391 (Context, Tag, Name, File, Line, Scope, BaseType, 2392 SizeInBits, AlignInBits, OffsetInBits, Flags, 2393 Elements, RuntimeLang, VTableHolder, 2394 TemplateParams, Identifier)); 2395 if (!IsNotUsedInTypeRef && Identifier) 2396 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2397 2398 MetadataList.assignValue(CT, NextMetadataNo++); 2399 break; 2400 } 2401 case bitc::METADATA_SUBROUTINE_TYPE: { 2402 if (Record.size() < 3 || Record.size() > 4) 2403 return error("Invalid record"); 2404 bool IsOldTypeRefArray = Record[0] < 2; 2405 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2406 2407 IsDistinct = Record[0] & 0x1; 2408 Metadata *Types = getMDOrNull(Record[2]); 2409 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2410 Types = MetadataList.upgradeTypeRefArray(Types); 2411 2412 MetadataList.assignValue( 2413 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)), 2414 NextMetadataNo++); 2415 break; 2416 } 2417 2418 case bitc::METADATA_MODULE: { 2419 if (Record.size() != 6) 2420 return error("Invalid record"); 2421 2422 IsDistinct = Record[0]; 2423 MetadataList.assignValue( 2424 GET_OR_DISTINCT(DIModule, 2425 (Context, getMDOrNull(Record[1]), 2426 getMDString(Record[2]), getMDString(Record[3]), 2427 getMDString(Record[4]), getMDString(Record[5]))), 2428 NextMetadataNo++); 2429 break; 2430 } 2431 2432 case bitc::METADATA_FILE: { 2433 if (Record.size() != 3) 2434 return error("Invalid record"); 2435 2436 IsDistinct = Record[0]; 2437 MetadataList.assignValue( 2438 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2439 getMDString(Record[2]))), 2440 NextMetadataNo++); 2441 break; 2442 } 2443 case bitc::METADATA_COMPILE_UNIT: { 2444 if (Record.size() < 14 || Record.size() > 16) 2445 return error("Invalid record"); 2446 2447 // Ignore Record[0], which indicates whether this compile unit is 2448 // distinct. It's always distinct. 2449 IsDistinct = true; 2450 auto *CU = DICompileUnit::getDistinct( 2451 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2452 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2453 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2454 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2455 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2456 Record.size() <= 14 ? 0 : Record[14]); 2457 2458 MetadataList.assignValue(CU, NextMetadataNo++); 2459 2460 // Move the Upgrade the list of subprograms. 2461 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2462 CUSubprograms.push_back({CU, SPs}); 2463 break; 2464 } 2465 case bitc::METADATA_SUBPROGRAM: { 2466 if (Record.size() != 18 && Record.size() != 19) 2467 return error("Invalid record"); 2468 2469 IsDistinct = 2470 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2471 // Version 1 has a Function as Record[15]. 2472 // Version 2 has removed Record[15]. 2473 // Version 3 has the Unit as Record[15]. 2474 bool HasUnit = Record[0] >= 2; 2475 if (HasUnit && Record.size() != 19) 2476 return error("Invalid record"); 2477 Metadata *CUorFn = getMDOrNull(Record[15]); 2478 unsigned Offset = Record.size() == 19 ? 1 : 0; 2479 bool HasFn = Offset && !HasUnit; 2480 DISubprogram *SP = GET_OR_DISTINCT( 2481 DISubprogram, 2482 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2483 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2484 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2485 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2486 Record[14], HasUnit ? CUorFn : nullptr, 2487 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2488 getMDOrNull(Record[17 + Offset]))); 2489 MetadataList.assignValue(SP, NextMetadataNo++); 2490 2491 // Upgrade sp->function mapping to function->sp mapping. 2492 if (HasFn) { 2493 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2494 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2495 if (F->isMaterializable()) 2496 // Defer until materialized; unmaterialized functions may not have 2497 // metadata. 2498 FunctionsWithSPs[F] = SP; 2499 else if (!F->empty()) 2500 F->setSubprogram(SP); 2501 } 2502 } 2503 break; 2504 } 2505 case bitc::METADATA_LEXICAL_BLOCK: { 2506 if (Record.size() != 5) 2507 return error("Invalid record"); 2508 2509 IsDistinct = Record[0]; 2510 MetadataList.assignValue( 2511 GET_OR_DISTINCT(DILexicalBlock, 2512 (Context, getMDOrNull(Record[1]), 2513 getMDOrNull(Record[2]), Record[3], Record[4])), 2514 NextMetadataNo++); 2515 break; 2516 } 2517 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2518 if (Record.size() != 4) 2519 return error("Invalid record"); 2520 2521 IsDistinct = Record[0]; 2522 MetadataList.assignValue( 2523 GET_OR_DISTINCT(DILexicalBlockFile, 2524 (Context, getMDOrNull(Record[1]), 2525 getMDOrNull(Record[2]), Record[3])), 2526 NextMetadataNo++); 2527 break; 2528 } 2529 case bitc::METADATA_NAMESPACE: { 2530 if (Record.size() != 5) 2531 return error("Invalid record"); 2532 2533 IsDistinct = Record[0]; 2534 MetadataList.assignValue( 2535 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2536 getMDOrNull(Record[2]), 2537 getMDString(Record[3]), Record[4])), 2538 NextMetadataNo++); 2539 break; 2540 } 2541 case bitc::METADATA_MACRO: { 2542 if (Record.size() != 5) 2543 return error("Invalid record"); 2544 2545 IsDistinct = Record[0]; 2546 MetadataList.assignValue( 2547 GET_OR_DISTINCT(DIMacro, 2548 (Context, Record[1], Record[2], 2549 getMDString(Record[3]), getMDString(Record[4]))), 2550 NextMetadataNo++); 2551 break; 2552 } 2553 case bitc::METADATA_MACRO_FILE: { 2554 if (Record.size() != 5) 2555 return error("Invalid record"); 2556 2557 IsDistinct = Record[0]; 2558 MetadataList.assignValue( 2559 GET_OR_DISTINCT(DIMacroFile, 2560 (Context, Record[1], Record[2], 2561 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2562 NextMetadataNo++); 2563 break; 2564 } 2565 case bitc::METADATA_TEMPLATE_TYPE: { 2566 if (Record.size() != 3) 2567 return error("Invalid record"); 2568 2569 IsDistinct = Record[0]; 2570 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2571 (Context, getMDString(Record[1]), 2572 getDITypeRefOrNull(Record[2]))), 2573 NextMetadataNo++); 2574 break; 2575 } 2576 case bitc::METADATA_TEMPLATE_VALUE: { 2577 if (Record.size() != 5) 2578 return error("Invalid record"); 2579 2580 IsDistinct = Record[0]; 2581 MetadataList.assignValue( 2582 GET_OR_DISTINCT(DITemplateValueParameter, 2583 (Context, Record[1], getMDString(Record[2]), 2584 getDITypeRefOrNull(Record[3]), 2585 getMDOrNull(Record[4]))), 2586 NextMetadataNo++); 2587 break; 2588 } 2589 case bitc::METADATA_GLOBAL_VAR: { 2590 if (Record.size() != 11) 2591 return error("Invalid record"); 2592 2593 IsDistinct = Record[0]; 2594 MetadataList.assignValue( 2595 GET_OR_DISTINCT(DIGlobalVariable, 2596 (Context, getMDOrNull(Record[1]), 2597 getMDString(Record[2]), getMDString(Record[3]), 2598 getMDOrNull(Record[4]), Record[5], 2599 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2600 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2601 NextMetadataNo++); 2602 break; 2603 } 2604 case bitc::METADATA_LOCAL_VAR: { 2605 // 10th field is for the obseleted 'inlinedAt:' field. 2606 if (Record.size() < 8 || Record.size() > 10) 2607 return error("Invalid record"); 2608 2609 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2610 // DW_TAG_arg_variable. 2611 IsDistinct = Record[0]; 2612 bool HasTag = Record.size() > 8; 2613 MetadataList.assignValue( 2614 GET_OR_DISTINCT(DILocalVariable, 2615 (Context, getMDOrNull(Record[1 + HasTag]), 2616 getMDString(Record[2 + HasTag]), 2617 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2618 getDITypeRefOrNull(Record[5 + HasTag]), 2619 Record[6 + HasTag], Record[7 + HasTag])), 2620 NextMetadataNo++); 2621 break; 2622 } 2623 case bitc::METADATA_EXPRESSION: { 2624 if (Record.size() < 1) 2625 return error("Invalid record"); 2626 2627 IsDistinct = Record[0]; 2628 MetadataList.assignValue( 2629 GET_OR_DISTINCT(DIExpression, 2630 (Context, makeArrayRef(Record).slice(1))), 2631 NextMetadataNo++); 2632 break; 2633 } 2634 case bitc::METADATA_OBJC_PROPERTY: { 2635 if (Record.size() != 8) 2636 return error("Invalid record"); 2637 2638 IsDistinct = Record[0]; 2639 MetadataList.assignValue( 2640 GET_OR_DISTINCT(DIObjCProperty, 2641 (Context, getMDString(Record[1]), 2642 getMDOrNull(Record[2]), Record[3], 2643 getMDString(Record[4]), getMDString(Record[5]), 2644 Record[6], getDITypeRefOrNull(Record[7]))), 2645 NextMetadataNo++); 2646 break; 2647 } 2648 case bitc::METADATA_IMPORTED_ENTITY: { 2649 if (Record.size() != 6) 2650 return error("Invalid record"); 2651 2652 IsDistinct = Record[0]; 2653 MetadataList.assignValue( 2654 GET_OR_DISTINCT(DIImportedEntity, 2655 (Context, Record[1], getMDOrNull(Record[2]), 2656 getDITypeRefOrNull(Record[3]), Record[4], 2657 getMDString(Record[5]))), 2658 NextMetadataNo++); 2659 break; 2660 } 2661 case bitc::METADATA_STRING_OLD: { 2662 std::string String(Record.begin(), Record.end()); 2663 2664 // Test for upgrading !llvm.loop. 2665 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2666 2667 Metadata *MD = MDString::get(Context, String); 2668 MetadataList.assignValue(MD, NextMetadataNo++); 2669 break; 2670 } 2671 case bitc::METADATA_STRINGS: 2672 if (std::error_code EC = 2673 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2674 return EC; 2675 break; 2676 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2677 if (Record.size() % 2 == 0) 2678 return error("Invalid record"); 2679 unsigned ValueID = Record[0]; 2680 if (ValueID >= ValueList.size()) 2681 return error("Invalid record"); 2682 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2683 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2684 break; 2685 } 2686 case bitc::METADATA_KIND: { 2687 // Support older bitcode files that had METADATA_KIND records in a 2688 // block with METADATA_BLOCK_ID. 2689 if (std::error_code EC = parseMetadataKindRecord(Record)) 2690 return EC; 2691 break; 2692 } 2693 } 2694 } 2695 #undef GET_OR_DISTINCT 2696 } 2697 2698 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2699 std::error_code BitcodeReader::parseMetadataKinds() { 2700 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2701 return error("Invalid record"); 2702 2703 SmallVector<uint64_t, 64> Record; 2704 2705 // Read all the records. 2706 while (1) { 2707 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2708 2709 switch (Entry.Kind) { 2710 case BitstreamEntry::SubBlock: // Handled for us already. 2711 case BitstreamEntry::Error: 2712 return error("Malformed block"); 2713 case BitstreamEntry::EndBlock: 2714 return std::error_code(); 2715 case BitstreamEntry::Record: 2716 // The interesting case. 2717 break; 2718 } 2719 2720 // Read a record. 2721 Record.clear(); 2722 unsigned Code = Stream.readRecord(Entry.ID, Record); 2723 switch (Code) { 2724 default: // Default behavior: ignore. 2725 break; 2726 case bitc::METADATA_KIND: { 2727 if (std::error_code EC = parseMetadataKindRecord(Record)) 2728 return EC; 2729 break; 2730 } 2731 } 2732 } 2733 } 2734 2735 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2736 /// encoding. 2737 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2738 if ((V & 1) == 0) 2739 return V >> 1; 2740 if (V != 1) 2741 return -(V >> 1); 2742 // There is no such thing as -0 with integers. "-0" really means MININT. 2743 return 1ULL << 63; 2744 } 2745 2746 /// Resolve all of the initializers for global values and aliases that we can. 2747 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2748 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2749 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2750 IndirectSymbolInitWorklist; 2751 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2752 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2753 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2754 2755 GlobalInitWorklist.swap(GlobalInits); 2756 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2757 FunctionPrefixWorklist.swap(FunctionPrefixes); 2758 FunctionPrologueWorklist.swap(FunctionPrologues); 2759 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2760 2761 while (!GlobalInitWorklist.empty()) { 2762 unsigned ValID = GlobalInitWorklist.back().second; 2763 if (ValID >= ValueList.size()) { 2764 // Not ready to resolve this yet, it requires something later in the file. 2765 GlobalInits.push_back(GlobalInitWorklist.back()); 2766 } else { 2767 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2768 GlobalInitWorklist.back().first->setInitializer(C); 2769 else 2770 return error("Expected a constant"); 2771 } 2772 GlobalInitWorklist.pop_back(); 2773 } 2774 2775 while (!IndirectSymbolInitWorklist.empty()) { 2776 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2777 if (ValID >= ValueList.size()) { 2778 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2779 } else { 2780 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2781 if (!C) 2782 return error("Expected a constant"); 2783 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2784 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2785 return error("Alias and aliasee types don't match"); 2786 GIS->setIndirectSymbol(C); 2787 } 2788 IndirectSymbolInitWorklist.pop_back(); 2789 } 2790 2791 while (!FunctionPrefixWorklist.empty()) { 2792 unsigned ValID = FunctionPrefixWorklist.back().second; 2793 if (ValID >= ValueList.size()) { 2794 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2795 } else { 2796 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2797 FunctionPrefixWorklist.back().first->setPrefixData(C); 2798 else 2799 return error("Expected a constant"); 2800 } 2801 FunctionPrefixWorklist.pop_back(); 2802 } 2803 2804 while (!FunctionPrologueWorklist.empty()) { 2805 unsigned ValID = FunctionPrologueWorklist.back().second; 2806 if (ValID >= ValueList.size()) { 2807 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2808 } else { 2809 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2810 FunctionPrologueWorklist.back().first->setPrologueData(C); 2811 else 2812 return error("Expected a constant"); 2813 } 2814 FunctionPrologueWorklist.pop_back(); 2815 } 2816 2817 while (!FunctionPersonalityFnWorklist.empty()) { 2818 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2819 if (ValID >= ValueList.size()) { 2820 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2821 } else { 2822 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2823 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2824 else 2825 return error("Expected a constant"); 2826 } 2827 FunctionPersonalityFnWorklist.pop_back(); 2828 } 2829 2830 return std::error_code(); 2831 } 2832 2833 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2834 SmallVector<uint64_t, 8> Words(Vals.size()); 2835 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2836 BitcodeReader::decodeSignRotatedValue); 2837 2838 return APInt(TypeBits, Words); 2839 } 2840 2841 std::error_code BitcodeReader::parseConstants() { 2842 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2843 return error("Invalid record"); 2844 2845 SmallVector<uint64_t, 64> Record; 2846 2847 // Read all the records for this value table. 2848 Type *CurTy = Type::getInt32Ty(Context); 2849 unsigned NextCstNo = ValueList.size(); 2850 while (1) { 2851 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2852 2853 switch (Entry.Kind) { 2854 case BitstreamEntry::SubBlock: // Handled for us already. 2855 case BitstreamEntry::Error: 2856 return error("Malformed block"); 2857 case BitstreamEntry::EndBlock: 2858 if (NextCstNo != ValueList.size()) 2859 return error("Invalid constant reference"); 2860 2861 // Once all the constants have been read, go through and resolve forward 2862 // references. 2863 ValueList.resolveConstantForwardRefs(); 2864 return std::error_code(); 2865 case BitstreamEntry::Record: 2866 // The interesting case. 2867 break; 2868 } 2869 2870 // Read a record. 2871 Record.clear(); 2872 Type *VoidType = Type::getVoidTy(Context); 2873 Value *V = nullptr; 2874 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2875 switch (BitCode) { 2876 default: // Default behavior: unknown constant 2877 case bitc::CST_CODE_UNDEF: // UNDEF 2878 V = UndefValue::get(CurTy); 2879 break; 2880 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2881 if (Record.empty()) 2882 return error("Invalid record"); 2883 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2884 return error("Invalid record"); 2885 if (TypeList[Record[0]] == VoidType) 2886 return error("Invalid constant type"); 2887 CurTy = TypeList[Record[0]]; 2888 continue; // Skip the ValueList manipulation. 2889 case bitc::CST_CODE_NULL: // NULL 2890 V = Constant::getNullValue(CurTy); 2891 break; 2892 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2893 if (!CurTy->isIntegerTy() || Record.empty()) 2894 return error("Invalid record"); 2895 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2896 break; 2897 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2898 if (!CurTy->isIntegerTy() || Record.empty()) 2899 return error("Invalid record"); 2900 2901 APInt VInt = 2902 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2903 V = ConstantInt::get(Context, VInt); 2904 2905 break; 2906 } 2907 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2908 if (Record.empty()) 2909 return error("Invalid record"); 2910 if (CurTy->isHalfTy()) 2911 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2912 APInt(16, (uint16_t)Record[0]))); 2913 else if (CurTy->isFloatTy()) 2914 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2915 APInt(32, (uint32_t)Record[0]))); 2916 else if (CurTy->isDoubleTy()) 2917 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2918 APInt(64, Record[0]))); 2919 else if (CurTy->isX86_FP80Ty()) { 2920 // Bits are not stored the same way as a normal i80 APInt, compensate. 2921 uint64_t Rearrange[2]; 2922 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2923 Rearrange[1] = Record[0] >> 48; 2924 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2925 APInt(80, Rearrange))); 2926 } else if (CurTy->isFP128Ty()) 2927 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2928 APInt(128, Record))); 2929 else if (CurTy->isPPC_FP128Ty()) 2930 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2931 APInt(128, Record))); 2932 else 2933 V = UndefValue::get(CurTy); 2934 break; 2935 } 2936 2937 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2938 if (Record.empty()) 2939 return error("Invalid record"); 2940 2941 unsigned Size = Record.size(); 2942 SmallVector<Constant*, 16> Elts; 2943 2944 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2945 for (unsigned i = 0; i != Size; ++i) 2946 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2947 STy->getElementType(i))); 2948 V = ConstantStruct::get(STy, Elts); 2949 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2950 Type *EltTy = ATy->getElementType(); 2951 for (unsigned i = 0; i != Size; ++i) 2952 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2953 V = ConstantArray::get(ATy, Elts); 2954 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2955 Type *EltTy = VTy->getElementType(); 2956 for (unsigned i = 0; i != Size; ++i) 2957 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2958 V = ConstantVector::get(Elts); 2959 } else { 2960 V = UndefValue::get(CurTy); 2961 } 2962 break; 2963 } 2964 case bitc::CST_CODE_STRING: // STRING: [values] 2965 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2966 if (Record.empty()) 2967 return error("Invalid record"); 2968 2969 SmallString<16> Elts(Record.begin(), Record.end()); 2970 V = ConstantDataArray::getString(Context, Elts, 2971 BitCode == bitc::CST_CODE_CSTRING); 2972 break; 2973 } 2974 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2975 if (Record.empty()) 2976 return error("Invalid record"); 2977 2978 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2979 if (EltTy->isIntegerTy(8)) { 2980 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2981 if (isa<VectorType>(CurTy)) 2982 V = ConstantDataVector::get(Context, Elts); 2983 else 2984 V = ConstantDataArray::get(Context, Elts); 2985 } else if (EltTy->isIntegerTy(16)) { 2986 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2987 if (isa<VectorType>(CurTy)) 2988 V = ConstantDataVector::get(Context, Elts); 2989 else 2990 V = ConstantDataArray::get(Context, Elts); 2991 } else if (EltTy->isIntegerTy(32)) { 2992 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2993 if (isa<VectorType>(CurTy)) 2994 V = ConstantDataVector::get(Context, Elts); 2995 else 2996 V = ConstantDataArray::get(Context, Elts); 2997 } else if (EltTy->isIntegerTy(64)) { 2998 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2999 if (isa<VectorType>(CurTy)) 3000 V = ConstantDataVector::get(Context, Elts); 3001 else 3002 V = ConstantDataArray::get(Context, Elts); 3003 } else if (EltTy->isHalfTy()) { 3004 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3005 if (isa<VectorType>(CurTy)) 3006 V = ConstantDataVector::getFP(Context, Elts); 3007 else 3008 V = ConstantDataArray::getFP(Context, Elts); 3009 } else if (EltTy->isFloatTy()) { 3010 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3011 if (isa<VectorType>(CurTy)) 3012 V = ConstantDataVector::getFP(Context, Elts); 3013 else 3014 V = ConstantDataArray::getFP(Context, Elts); 3015 } else if (EltTy->isDoubleTy()) { 3016 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3017 if (isa<VectorType>(CurTy)) 3018 V = ConstantDataVector::getFP(Context, Elts); 3019 else 3020 V = ConstantDataArray::getFP(Context, Elts); 3021 } else { 3022 return error("Invalid type for value"); 3023 } 3024 break; 3025 } 3026 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3027 if (Record.size() < 3) 3028 return error("Invalid record"); 3029 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3030 if (Opc < 0) { 3031 V = UndefValue::get(CurTy); // Unknown binop. 3032 } else { 3033 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3034 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3035 unsigned Flags = 0; 3036 if (Record.size() >= 4) { 3037 if (Opc == Instruction::Add || 3038 Opc == Instruction::Sub || 3039 Opc == Instruction::Mul || 3040 Opc == Instruction::Shl) { 3041 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3042 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3043 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3044 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3045 } else if (Opc == Instruction::SDiv || 3046 Opc == Instruction::UDiv || 3047 Opc == Instruction::LShr || 3048 Opc == Instruction::AShr) { 3049 if (Record[3] & (1 << bitc::PEO_EXACT)) 3050 Flags |= SDivOperator::IsExact; 3051 } 3052 } 3053 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3054 } 3055 break; 3056 } 3057 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3058 if (Record.size() < 3) 3059 return error("Invalid record"); 3060 int Opc = getDecodedCastOpcode(Record[0]); 3061 if (Opc < 0) { 3062 V = UndefValue::get(CurTy); // Unknown cast. 3063 } else { 3064 Type *OpTy = getTypeByID(Record[1]); 3065 if (!OpTy) 3066 return error("Invalid record"); 3067 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3068 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3069 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3070 } 3071 break; 3072 } 3073 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3074 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3075 unsigned OpNum = 0; 3076 Type *PointeeType = nullptr; 3077 if (Record.size() % 2) 3078 PointeeType = getTypeByID(Record[OpNum++]); 3079 SmallVector<Constant*, 16> Elts; 3080 while (OpNum != Record.size()) { 3081 Type *ElTy = getTypeByID(Record[OpNum++]); 3082 if (!ElTy) 3083 return error("Invalid record"); 3084 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3085 } 3086 3087 if (PointeeType && 3088 PointeeType != 3089 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3090 ->getElementType()) 3091 return error("Explicit gep operator type does not match pointee type " 3092 "of pointer operand"); 3093 3094 if (Elts.size() < 1) 3095 return error("Invalid gep with no operands"); 3096 3097 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3098 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3099 BitCode == 3100 bitc::CST_CODE_CE_INBOUNDS_GEP); 3101 break; 3102 } 3103 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3104 if (Record.size() < 3) 3105 return error("Invalid record"); 3106 3107 Type *SelectorTy = Type::getInt1Ty(Context); 3108 3109 // The selector might be an i1 or an <n x i1> 3110 // Get the type from the ValueList before getting a forward ref. 3111 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3112 if (Value *V = ValueList[Record[0]]) 3113 if (SelectorTy != V->getType()) 3114 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3115 3116 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3117 SelectorTy), 3118 ValueList.getConstantFwdRef(Record[1],CurTy), 3119 ValueList.getConstantFwdRef(Record[2],CurTy)); 3120 break; 3121 } 3122 case bitc::CST_CODE_CE_EXTRACTELT 3123 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3124 if (Record.size() < 3) 3125 return error("Invalid record"); 3126 VectorType *OpTy = 3127 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3128 if (!OpTy) 3129 return error("Invalid record"); 3130 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3131 Constant *Op1 = nullptr; 3132 if (Record.size() == 4) { 3133 Type *IdxTy = getTypeByID(Record[2]); 3134 if (!IdxTy) 3135 return error("Invalid record"); 3136 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3137 } else // TODO: Remove with llvm 4.0 3138 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3139 if (!Op1) 3140 return error("Invalid record"); 3141 V = ConstantExpr::getExtractElement(Op0, Op1); 3142 break; 3143 } 3144 case bitc::CST_CODE_CE_INSERTELT 3145 : { // CE_INSERTELT: [opval, opval, opty, opval] 3146 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3147 if (Record.size() < 3 || !OpTy) 3148 return error("Invalid record"); 3149 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3150 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3151 OpTy->getElementType()); 3152 Constant *Op2 = nullptr; 3153 if (Record.size() == 4) { 3154 Type *IdxTy = getTypeByID(Record[2]); 3155 if (!IdxTy) 3156 return error("Invalid record"); 3157 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3158 } else // TODO: Remove with llvm 4.0 3159 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3160 if (!Op2) 3161 return error("Invalid record"); 3162 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3163 break; 3164 } 3165 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3166 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3167 if (Record.size() < 3 || !OpTy) 3168 return error("Invalid record"); 3169 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3170 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3171 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3172 OpTy->getNumElements()); 3173 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3174 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3175 break; 3176 } 3177 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3178 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3179 VectorType *OpTy = 3180 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3181 if (Record.size() < 4 || !RTy || !OpTy) 3182 return error("Invalid record"); 3183 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3184 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3185 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3186 RTy->getNumElements()); 3187 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3188 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3189 break; 3190 } 3191 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3192 if (Record.size() < 4) 3193 return error("Invalid record"); 3194 Type *OpTy = getTypeByID(Record[0]); 3195 if (!OpTy) 3196 return error("Invalid record"); 3197 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3198 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3199 3200 if (OpTy->isFPOrFPVectorTy()) 3201 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3202 else 3203 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3204 break; 3205 } 3206 // This maintains backward compatibility, pre-asm dialect keywords. 3207 // FIXME: Remove with the 4.0 release. 3208 case bitc::CST_CODE_INLINEASM_OLD: { 3209 if (Record.size() < 2) 3210 return error("Invalid record"); 3211 std::string AsmStr, ConstrStr; 3212 bool HasSideEffects = Record[0] & 1; 3213 bool IsAlignStack = Record[0] >> 1; 3214 unsigned AsmStrSize = Record[1]; 3215 if (2+AsmStrSize >= Record.size()) 3216 return error("Invalid record"); 3217 unsigned ConstStrSize = Record[2+AsmStrSize]; 3218 if (3+AsmStrSize+ConstStrSize > Record.size()) 3219 return error("Invalid record"); 3220 3221 for (unsigned i = 0; i != AsmStrSize; ++i) 3222 AsmStr += (char)Record[2+i]; 3223 for (unsigned i = 0; i != ConstStrSize; ++i) 3224 ConstrStr += (char)Record[3+AsmStrSize+i]; 3225 PointerType *PTy = cast<PointerType>(CurTy); 3226 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3227 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3228 break; 3229 } 3230 // This version adds support for the asm dialect keywords (e.g., 3231 // inteldialect). 3232 case bitc::CST_CODE_INLINEASM: { 3233 if (Record.size() < 2) 3234 return error("Invalid record"); 3235 std::string AsmStr, ConstrStr; 3236 bool HasSideEffects = Record[0] & 1; 3237 bool IsAlignStack = (Record[0] >> 1) & 1; 3238 unsigned AsmDialect = Record[0] >> 2; 3239 unsigned AsmStrSize = Record[1]; 3240 if (2+AsmStrSize >= Record.size()) 3241 return error("Invalid record"); 3242 unsigned ConstStrSize = Record[2+AsmStrSize]; 3243 if (3+AsmStrSize+ConstStrSize > Record.size()) 3244 return error("Invalid record"); 3245 3246 for (unsigned i = 0; i != AsmStrSize; ++i) 3247 AsmStr += (char)Record[2+i]; 3248 for (unsigned i = 0; i != ConstStrSize; ++i) 3249 ConstrStr += (char)Record[3+AsmStrSize+i]; 3250 PointerType *PTy = cast<PointerType>(CurTy); 3251 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3252 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3253 InlineAsm::AsmDialect(AsmDialect)); 3254 break; 3255 } 3256 case bitc::CST_CODE_BLOCKADDRESS:{ 3257 if (Record.size() < 3) 3258 return error("Invalid record"); 3259 Type *FnTy = getTypeByID(Record[0]); 3260 if (!FnTy) 3261 return error("Invalid record"); 3262 Function *Fn = 3263 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3264 if (!Fn) 3265 return error("Invalid record"); 3266 3267 // If the function is already parsed we can insert the block address right 3268 // away. 3269 BasicBlock *BB; 3270 unsigned BBID = Record[2]; 3271 if (!BBID) 3272 // Invalid reference to entry block. 3273 return error("Invalid ID"); 3274 if (!Fn->empty()) { 3275 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3276 for (size_t I = 0, E = BBID; I != E; ++I) { 3277 if (BBI == BBE) 3278 return error("Invalid ID"); 3279 ++BBI; 3280 } 3281 BB = &*BBI; 3282 } else { 3283 // Otherwise insert a placeholder and remember it so it can be inserted 3284 // when the function is parsed. 3285 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3286 if (FwdBBs.empty()) 3287 BasicBlockFwdRefQueue.push_back(Fn); 3288 if (FwdBBs.size() < BBID + 1) 3289 FwdBBs.resize(BBID + 1); 3290 if (!FwdBBs[BBID]) 3291 FwdBBs[BBID] = BasicBlock::Create(Context); 3292 BB = FwdBBs[BBID]; 3293 } 3294 V = BlockAddress::get(Fn, BB); 3295 break; 3296 } 3297 } 3298 3299 ValueList.assignValue(V, NextCstNo); 3300 ++NextCstNo; 3301 } 3302 } 3303 3304 std::error_code BitcodeReader::parseUseLists() { 3305 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3306 return error("Invalid record"); 3307 3308 // Read all the records. 3309 SmallVector<uint64_t, 64> Record; 3310 while (1) { 3311 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3312 3313 switch (Entry.Kind) { 3314 case BitstreamEntry::SubBlock: // Handled for us already. 3315 case BitstreamEntry::Error: 3316 return error("Malformed block"); 3317 case BitstreamEntry::EndBlock: 3318 return std::error_code(); 3319 case BitstreamEntry::Record: 3320 // The interesting case. 3321 break; 3322 } 3323 3324 // Read a use list record. 3325 Record.clear(); 3326 bool IsBB = false; 3327 switch (Stream.readRecord(Entry.ID, Record)) { 3328 default: // Default behavior: unknown type. 3329 break; 3330 case bitc::USELIST_CODE_BB: 3331 IsBB = true; 3332 // fallthrough 3333 case bitc::USELIST_CODE_DEFAULT: { 3334 unsigned RecordLength = Record.size(); 3335 if (RecordLength < 3) 3336 // Records should have at least an ID and two indexes. 3337 return error("Invalid record"); 3338 unsigned ID = Record.back(); 3339 Record.pop_back(); 3340 3341 Value *V; 3342 if (IsBB) { 3343 assert(ID < FunctionBBs.size() && "Basic block not found"); 3344 V = FunctionBBs[ID]; 3345 } else 3346 V = ValueList[ID]; 3347 unsigned NumUses = 0; 3348 SmallDenseMap<const Use *, unsigned, 16> Order; 3349 for (const Use &U : V->materialized_uses()) { 3350 if (++NumUses > Record.size()) 3351 break; 3352 Order[&U] = Record[NumUses - 1]; 3353 } 3354 if (Order.size() != Record.size() || NumUses > Record.size()) 3355 // Mismatches can happen if the functions are being materialized lazily 3356 // (out-of-order), or a value has been upgraded. 3357 break; 3358 3359 V->sortUseList([&](const Use &L, const Use &R) { 3360 return Order.lookup(&L) < Order.lookup(&R); 3361 }); 3362 break; 3363 } 3364 } 3365 } 3366 } 3367 3368 /// When we see the block for metadata, remember where it is and then skip it. 3369 /// This lets us lazily deserialize the metadata. 3370 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3371 // Save the current stream state. 3372 uint64_t CurBit = Stream.GetCurrentBitNo(); 3373 DeferredMetadataInfo.push_back(CurBit); 3374 3375 // Skip over the block for now. 3376 if (Stream.SkipBlock()) 3377 return error("Invalid record"); 3378 return std::error_code(); 3379 } 3380 3381 std::error_code BitcodeReader::materializeMetadata() { 3382 for (uint64_t BitPos : DeferredMetadataInfo) { 3383 // Move the bit stream to the saved position. 3384 Stream.JumpToBit(BitPos); 3385 if (std::error_code EC = parseMetadata(true)) 3386 return EC; 3387 } 3388 DeferredMetadataInfo.clear(); 3389 return std::error_code(); 3390 } 3391 3392 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3393 3394 /// When we see the block for a function body, remember where it is and then 3395 /// skip it. This lets us lazily deserialize the functions. 3396 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3397 // Get the function we are talking about. 3398 if (FunctionsWithBodies.empty()) 3399 return error("Insufficient function protos"); 3400 3401 Function *Fn = FunctionsWithBodies.back(); 3402 FunctionsWithBodies.pop_back(); 3403 3404 // Save the current stream state. 3405 uint64_t CurBit = Stream.GetCurrentBitNo(); 3406 assert( 3407 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3408 "Mismatch between VST and scanned function offsets"); 3409 DeferredFunctionInfo[Fn] = CurBit; 3410 3411 // Skip over the function block for now. 3412 if (Stream.SkipBlock()) 3413 return error("Invalid record"); 3414 return std::error_code(); 3415 } 3416 3417 std::error_code BitcodeReader::globalCleanup() { 3418 // Patch the initializers for globals and aliases up. 3419 resolveGlobalAndIndirectSymbolInits(); 3420 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3421 return error("Malformed global initializer set"); 3422 3423 // Look for intrinsic functions which need to be upgraded at some point 3424 for (Function &F : *TheModule) { 3425 Function *NewFn; 3426 if (UpgradeIntrinsicFunction(&F, NewFn)) 3427 UpgradedIntrinsics[&F] = NewFn; 3428 } 3429 3430 // Look for global variables which need to be renamed. 3431 for (GlobalVariable &GV : TheModule->globals()) 3432 UpgradeGlobalVariable(&GV); 3433 3434 // Force deallocation of memory for these vectors to favor the client that 3435 // want lazy deserialization. 3436 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3437 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3438 IndirectSymbolInits); 3439 return std::error_code(); 3440 } 3441 3442 /// Support for lazy parsing of function bodies. This is required if we 3443 /// either have an old bitcode file without a VST forward declaration record, 3444 /// or if we have an anonymous function being materialized, since anonymous 3445 /// functions do not have a name and are therefore not in the VST. 3446 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3447 Stream.JumpToBit(NextUnreadBit); 3448 3449 if (Stream.AtEndOfStream()) 3450 return error("Could not find function in stream"); 3451 3452 if (!SeenFirstFunctionBody) 3453 return error("Trying to materialize functions before seeing function blocks"); 3454 3455 // An old bitcode file with the symbol table at the end would have 3456 // finished the parse greedily. 3457 assert(SeenValueSymbolTable); 3458 3459 SmallVector<uint64_t, 64> Record; 3460 3461 while (1) { 3462 BitstreamEntry Entry = Stream.advance(); 3463 switch (Entry.Kind) { 3464 default: 3465 return error("Expect SubBlock"); 3466 case BitstreamEntry::SubBlock: 3467 switch (Entry.ID) { 3468 default: 3469 return error("Expect function block"); 3470 case bitc::FUNCTION_BLOCK_ID: 3471 if (std::error_code EC = rememberAndSkipFunctionBody()) 3472 return EC; 3473 NextUnreadBit = Stream.GetCurrentBitNo(); 3474 return std::error_code(); 3475 } 3476 } 3477 } 3478 } 3479 3480 std::error_code BitcodeReader::parseBitcodeVersion() { 3481 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3482 return error("Invalid record"); 3483 3484 // Read all the records. 3485 SmallVector<uint64_t, 64> Record; 3486 while (1) { 3487 BitstreamEntry Entry = Stream.advance(); 3488 3489 switch (Entry.Kind) { 3490 default: 3491 case BitstreamEntry::Error: 3492 return error("Malformed block"); 3493 case BitstreamEntry::EndBlock: 3494 return std::error_code(); 3495 case BitstreamEntry::Record: 3496 // The interesting case. 3497 break; 3498 } 3499 3500 // Read a record. 3501 Record.clear(); 3502 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3503 switch (BitCode) { 3504 default: // Default behavior: reject 3505 return error("Invalid value"); 3506 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3507 // N] 3508 convertToString(Record, 0, ProducerIdentification); 3509 break; 3510 } 3511 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3512 unsigned epoch = (unsigned)Record[0]; 3513 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3514 return error( 3515 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3516 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3517 } 3518 } 3519 } 3520 } 3521 } 3522 3523 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3524 bool ShouldLazyLoadMetadata) { 3525 if (ResumeBit) 3526 Stream.JumpToBit(ResumeBit); 3527 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3528 return error("Invalid record"); 3529 3530 SmallVector<uint64_t, 64> Record; 3531 std::vector<std::string> SectionTable; 3532 std::vector<std::string> GCTable; 3533 3534 // Read all the records for this module. 3535 while (1) { 3536 BitstreamEntry Entry = Stream.advance(); 3537 3538 switch (Entry.Kind) { 3539 case BitstreamEntry::Error: 3540 return error("Malformed block"); 3541 case BitstreamEntry::EndBlock: 3542 return globalCleanup(); 3543 3544 case BitstreamEntry::SubBlock: 3545 switch (Entry.ID) { 3546 default: // Skip unknown content. 3547 if (Stream.SkipBlock()) 3548 return error("Invalid record"); 3549 break; 3550 case bitc::BLOCKINFO_BLOCK_ID: 3551 if (Stream.ReadBlockInfoBlock()) 3552 return error("Malformed block"); 3553 break; 3554 case bitc::PARAMATTR_BLOCK_ID: 3555 if (std::error_code EC = parseAttributeBlock()) 3556 return EC; 3557 break; 3558 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3559 if (std::error_code EC = parseAttributeGroupBlock()) 3560 return EC; 3561 break; 3562 case bitc::TYPE_BLOCK_ID_NEW: 3563 if (std::error_code EC = parseTypeTable()) 3564 return EC; 3565 break; 3566 case bitc::VALUE_SYMTAB_BLOCK_ID: 3567 if (!SeenValueSymbolTable) { 3568 // Either this is an old form VST without function index and an 3569 // associated VST forward declaration record (which would have caused 3570 // the VST to be jumped to and parsed before it was encountered 3571 // normally in the stream), or there were no function blocks to 3572 // trigger an earlier parsing of the VST. 3573 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3574 if (std::error_code EC = parseValueSymbolTable()) 3575 return EC; 3576 SeenValueSymbolTable = true; 3577 } else { 3578 // We must have had a VST forward declaration record, which caused 3579 // the parser to jump to and parse the VST earlier. 3580 assert(VSTOffset > 0); 3581 if (Stream.SkipBlock()) 3582 return error("Invalid record"); 3583 } 3584 break; 3585 case bitc::CONSTANTS_BLOCK_ID: 3586 if (std::error_code EC = parseConstants()) 3587 return EC; 3588 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3589 return EC; 3590 break; 3591 case bitc::METADATA_BLOCK_ID: 3592 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3593 if (std::error_code EC = rememberAndSkipMetadata()) 3594 return EC; 3595 break; 3596 } 3597 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3598 if (std::error_code EC = parseMetadata(true)) 3599 return EC; 3600 break; 3601 case bitc::METADATA_KIND_BLOCK_ID: 3602 if (std::error_code EC = parseMetadataKinds()) 3603 return EC; 3604 break; 3605 case bitc::FUNCTION_BLOCK_ID: 3606 // If this is the first function body we've seen, reverse the 3607 // FunctionsWithBodies list. 3608 if (!SeenFirstFunctionBody) { 3609 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3610 if (std::error_code EC = globalCleanup()) 3611 return EC; 3612 SeenFirstFunctionBody = true; 3613 } 3614 3615 if (VSTOffset > 0) { 3616 // If we have a VST forward declaration record, make sure we 3617 // parse the VST now if we haven't already. It is needed to 3618 // set up the DeferredFunctionInfo vector for lazy reading. 3619 if (!SeenValueSymbolTable) { 3620 if (std::error_code EC = 3621 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3622 return EC; 3623 SeenValueSymbolTable = true; 3624 // Fall through so that we record the NextUnreadBit below. 3625 // This is necessary in case we have an anonymous function that 3626 // is later materialized. Since it will not have a VST entry we 3627 // need to fall back to the lazy parse to find its offset. 3628 } else { 3629 // If we have a VST forward declaration record, but have already 3630 // parsed the VST (just above, when the first function body was 3631 // encountered here), then we are resuming the parse after 3632 // materializing functions. The ResumeBit points to the 3633 // start of the last function block recorded in the 3634 // DeferredFunctionInfo map. Skip it. 3635 if (Stream.SkipBlock()) 3636 return error("Invalid record"); 3637 continue; 3638 } 3639 } 3640 3641 // Support older bitcode files that did not have the function 3642 // index in the VST, nor a VST forward declaration record, as 3643 // well as anonymous functions that do not have VST entries. 3644 // Build the DeferredFunctionInfo vector on the fly. 3645 if (std::error_code EC = rememberAndSkipFunctionBody()) 3646 return EC; 3647 3648 // Suspend parsing when we reach the function bodies. Subsequent 3649 // materialization calls will resume it when necessary. If the bitcode 3650 // file is old, the symbol table will be at the end instead and will not 3651 // have been seen yet. In this case, just finish the parse now. 3652 if (SeenValueSymbolTable) { 3653 NextUnreadBit = Stream.GetCurrentBitNo(); 3654 return std::error_code(); 3655 } 3656 break; 3657 case bitc::USELIST_BLOCK_ID: 3658 if (std::error_code EC = parseUseLists()) 3659 return EC; 3660 break; 3661 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3662 if (std::error_code EC = parseOperandBundleTags()) 3663 return EC; 3664 break; 3665 } 3666 continue; 3667 3668 case BitstreamEntry::Record: 3669 // The interesting case. 3670 break; 3671 } 3672 3673 // Read a record. 3674 auto BitCode = Stream.readRecord(Entry.ID, Record); 3675 switch (BitCode) { 3676 default: break; // Default behavior, ignore unknown content. 3677 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3678 if (Record.size() < 1) 3679 return error("Invalid record"); 3680 // Only version #0 and #1 are supported so far. 3681 unsigned module_version = Record[0]; 3682 switch (module_version) { 3683 default: 3684 return error("Invalid value"); 3685 case 0: 3686 UseRelativeIDs = false; 3687 break; 3688 case 1: 3689 UseRelativeIDs = true; 3690 break; 3691 } 3692 break; 3693 } 3694 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3695 std::string S; 3696 if (convertToString(Record, 0, S)) 3697 return error("Invalid record"); 3698 TheModule->setTargetTriple(S); 3699 break; 3700 } 3701 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3702 std::string S; 3703 if (convertToString(Record, 0, S)) 3704 return error("Invalid record"); 3705 TheModule->setDataLayout(S); 3706 break; 3707 } 3708 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3709 std::string S; 3710 if (convertToString(Record, 0, S)) 3711 return error("Invalid record"); 3712 TheModule->setModuleInlineAsm(S); 3713 break; 3714 } 3715 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3716 // FIXME: Remove in 4.0. 3717 std::string S; 3718 if (convertToString(Record, 0, S)) 3719 return error("Invalid record"); 3720 // Ignore value. 3721 break; 3722 } 3723 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3724 std::string S; 3725 if (convertToString(Record, 0, S)) 3726 return error("Invalid record"); 3727 SectionTable.push_back(S); 3728 break; 3729 } 3730 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3731 std::string S; 3732 if (convertToString(Record, 0, S)) 3733 return error("Invalid record"); 3734 GCTable.push_back(S); 3735 break; 3736 } 3737 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3738 if (Record.size() < 2) 3739 return error("Invalid record"); 3740 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3741 unsigned ComdatNameSize = Record[1]; 3742 std::string ComdatName; 3743 ComdatName.reserve(ComdatNameSize); 3744 for (unsigned i = 0; i != ComdatNameSize; ++i) 3745 ComdatName += (char)Record[2 + i]; 3746 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3747 C->setSelectionKind(SK); 3748 ComdatList.push_back(C); 3749 break; 3750 } 3751 // GLOBALVAR: [pointer type, isconst, initid, 3752 // linkage, alignment, section, visibility, threadlocal, 3753 // unnamed_addr, externally_initialized, dllstorageclass, 3754 // comdat] 3755 case bitc::MODULE_CODE_GLOBALVAR: { 3756 if (Record.size() < 6) 3757 return error("Invalid record"); 3758 Type *Ty = getTypeByID(Record[0]); 3759 if (!Ty) 3760 return error("Invalid record"); 3761 bool isConstant = Record[1] & 1; 3762 bool explicitType = Record[1] & 2; 3763 unsigned AddressSpace; 3764 if (explicitType) { 3765 AddressSpace = Record[1] >> 2; 3766 } else { 3767 if (!Ty->isPointerTy()) 3768 return error("Invalid type for value"); 3769 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3770 Ty = cast<PointerType>(Ty)->getElementType(); 3771 } 3772 3773 uint64_t RawLinkage = Record[3]; 3774 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3775 unsigned Alignment; 3776 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3777 return EC; 3778 std::string Section; 3779 if (Record[5]) { 3780 if (Record[5]-1 >= SectionTable.size()) 3781 return error("Invalid ID"); 3782 Section = SectionTable[Record[5]-1]; 3783 } 3784 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3785 // Local linkage must have default visibility. 3786 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3787 // FIXME: Change to an error if non-default in 4.0. 3788 Visibility = getDecodedVisibility(Record[6]); 3789 3790 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3791 if (Record.size() > 7) 3792 TLM = getDecodedThreadLocalMode(Record[7]); 3793 3794 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3795 if (Record.size() > 8) 3796 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3797 3798 bool ExternallyInitialized = false; 3799 if (Record.size() > 9) 3800 ExternallyInitialized = Record[9]; 3801 3802 GlobalVariable *NewGV = 3803 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3804 TLM, AddressSpace, ExternallyInitialized); 3805 NewGV->setAlignment(Alignment); 3806 if (!Section.empty()) 3807 NewGV->setSection(Section); 3808 NewGV->setVisibility(Visibility); 3809 NewGV->setUnnamedAddr(UnnamedAddr); 3810 3811 if (Record.size() > 10) 3812 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3813 else 3814 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3815 3816 ValueList.push_back(NewGV); 3817 3818 // Remember which value to use for the global initializer. 3819 if (unsigned InitID = Record[2]) 3820 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3821 3822 if (Record.size() > 11) { 3823 if (unsigned ComdatID = Record[11]) { 3824 if (ComdatID > ComdatList.size()) 3825 return error("Invalid global variable comdat ID"); 3826 NewGV->setComdat(ComdatList[ComdatID - 1]); 3827 } 3828 } else if (hasImplicitComdat(RawLinkage)) { 3829 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3830 } 3831 3832 break; 3833 } 3834 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3835 // alignment, section, visibility, gc, unnamed_addr, 3836 // prologuedata, dllstorageclass, comdat, prefixdata] 3837 case bitc::MODULE_CODE_FUNCTION: { 3838 if (Record.size() < 8) 3839 return error("Invalid record"); 3840 Type *Ty = getTypeByID(Record[0]); 3841 if (!Ty) 3842 return error("Invalid record"); 3843 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3844 Ty = PTy->getElementType(); 3845 auto *FTy = dyn_cast<FunctionType>(Ty); 3846 if (!FTy) 3847 return error("Invalid type for value"); 3848 auto CC = static_cast<CallingConv::ID>(Record[1]); 3849 if (CC & ~CallingConv::MaxID) 3850 return error("Invalid calling convention ID"); 3851 3852 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3853 "", TheModule); 3854 3855 Func->setCallingConv(CC); 3856 bool isProto = Record[2]; 3857 uint64_t RawLinkage = Record[3]; 3858 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3859 Func->setAttributes(getAttributes(Record[4])); 3860 3861 unsigned Alignment; 3862 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3863 return EC; 3864 Func->setAlignment(Alignment); 3865 if (Record[6]) { 3866 if (Record[6]-1 >= SectionTable.size()) 3867 return error("Invalid ID"); 3868 Func->setSection(SectionTable[Record[6]-1]); 3869 } 3870 // Local linkage must have default visibility. 3871 if (!Func->hasLocalLinkage()) 3872 // FIXME: Change to an error if non-default in 4.0. 3873 Func->setVisibility(getDecodedVisibility(Record[7])); 3874 if (Record.size() > 8 && Record[8]) { 3875 if (Record[8]-1 >= GCTable.size()) 3876 return error("Invalid ID"); 3877 Func->setGC(GCTable[Record[8] - 1]); 3878 } 3879 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3880 if (Record.size() > 9) 3881 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3882 Func->setUnnamedAddr(UnnamedAddr); 3883 if (Record.size() > 10 && Record[10] != 0) 3884 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3885 3886 if (Record.size() > 11) 3887 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3888 else 3889 upgradeDLLImportExportLinkage(Func, RawLinkage); 3890 3891 if (Record.size() > 12) { 3892 if (unsigned ComdatID = Record[12]) { 3893 if (ComdatID > ComdatList.size()) 3894 return error("Invalid function comdat ID"); 3895 Func->setComdat(ComdatList[ComdatID - 1]); 3896 } 3897 } else if (hasImplicitComdat(RawLinkage)) { 3898 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3899 } 3900 3901 if (Record.size() > 13 && Record[13] != 0) 3902 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3903 3904 if (Record.size() > 14 && Record[14] != 0) 3905 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3906 3907 ValueList.push_back(Func); 3908 3909 // If this is a function with a body, remember the prototype we are 3910 // creating now, so that we can match up the body with them later. 3911 if (!isProto) { 3912 Func->setIsMaterializable(true); 3913 FunctionsWithBodies.push_back(Func); 3914 DeferredFunctionInfo[Func] = 0; 3915 } 3916 break; 3917 } 3918 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3919 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3920 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3921 case bitc::MODULE_CODE_IFUNC: 3922 case bitc::MODULE_CODE_ALIAS: 3923 case bitc::MODULE_CODE_ALIAS_OLD: { 3924 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3925 if (Record.size() < (3 + (unsigned)NewRecord)) 3926 return error("Invalid record"); 3927 unsigned OpNum = 0; 3928 Type *Ty = getTypeByID(Record[OpNum++]); 3929 if (!Ty) 3930 return error("Invalid record"); 3931 3932 unsigned AddrSpace; 3933 if (!NewRecord) { 3934 auto *PTy = dyn_cast<PointerType>(Ty); 3935 if (!PTy) 3936 return error("Invalid type for value"); 3937 Ty = PTy->getElementType(); 3938 AddrSpace = PTy->getAddressSpace(); 3939 } else { 3940 AddrSpace = Record[OpNum++]; 3941 } 3942 3943 auto Val = Record[OpNum++]; 3944 auto Linkage = Record[OpNum++]; 3945 GlobalIndirectSymbol *NewGA; 3946 if (BitCode == bitc::MODULE_CODE_ALIAS || 3947 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3948 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3949 "", TheModule); 3950 else 3951 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3952 "", nullptr, TheModule); 3953 // Old bitcode files didn't have visibility field. 3954 // Local linkage must have default visibility. 3955 if (OpNum != Record.size()) { 3956 auto VisInd = OpNum++; 3957 if (!NewGA->hasLocalLinkage()) 3958 // FIXME: Change to an error if non-default in 4.0. 3959 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3960 } 3961 if (OpNum != Record.size()) 3962 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3963 else 3964 upgradeDLLImportExportLinkage(NewGA, Linkage); 3965 if (OpNum != Record.size()) 3966 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3967 if (OpNum != Record.size()) 3968 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3969 ValueList.push_back(NewGA); 3970 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3971 break; 3972 } 3973 /// MODULE_CODE_PURGEVALS: [numvals] 3974 case bitc::MODULE_CODE_PURGEVALS: 3975 // Trim down the value list to the specified size. 3976 if (Record.size() < 1 || Record[0] > ValueList.size()) 3977 return error("Invalid record"); 3978 ValueList.shrinkTo(Record[0]); 3979 break; 3980 /// MODULE_CODE_VSTOFFSET: [offset] 3981 case bitc::MODULE_CODE_VSTOFFSET: 3982 if (Record.size() < 1) 3983 return error("Invalid record"); 3984 VSTOffset = Record[0]; 3985 break; 3986 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3987 case bitc::MODULE_CODE_SOURCE_FILENAME: 3988 SmallString<128> ValueName; 3989 if (convertToString(Record, 0, ValueName)) 3990 return error("Invalid record"); 3991 TheModule->setSourceFileName(ValueName); 3992 break; 3993 } 3994 Record.clear(); 3995 } 3996 } 3997 3998 /// Helper to read the header common to all bitcode files. 3999 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4000 // Sniff for the signature. 4001 if (Stream.Read(8) != 'B' || 4002 Stream.Read(8) != 'C' || 4003 Stream.Read(4) != 0x0 || 4004 Stream.Read(4) != 0xC || 4005 Stream.Read(4) != 0xE || 4006 Stream.Read(4) != 0xD) 4007 return false; 4008 return true; 4009 } 4010 4011 std::error_code 4012 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4013 Module *M, bool ShouldLazyLoadMetadata) { 4014 TheModule = M; 4015 4016 if (std::error_code EC = initStream(std::move(Streamer))) 4017 return EC; 4018 4019 // Sniff for the signature. 4020 if (!hasValidBitcodeHeader(Stream)) 4021 return error("Invalid bitcode signature"); 4022 4023 // We expect a number of well-defined blocks, though we don't necessarily 4024 // need to understand them all. 4025 while (1) { 4026 if (Stream.AtEndOfStream()) { 4027 // We didn't really read a proper Module. 4028 return error("Malformed IR file"); 4029 } 4030 4031 BitstreamEntry Entry = 4032 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4033 4034 if (Entry.Kind != BitstreamEntry::SubBlock) 4035 return error("Malformed block"); 4036 4037 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4038 parseBitcodeVersion(); 4039 continue; 4040 } 4041 4042 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4043 return parseModule(0, ShouldLazyLoadMetadata); 4044 4045 if (Stream.SkipBlock()) 4046 return error("Invalid record"); 4047 } 4048 } 4049 4050 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4051 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4052 return error("Invalid record"); 4053 4054 SmallVector<uint64_t, 64> Record; 4055 4056 std::string Triple; 4057 // Read all the records for this module. 4058 while (1) { 4059 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4060 4061 switch (Entry.Kind) { 4062 case BitstreamEntry::SubBlock: // Handled for us already. 4063 case BitstreamEntry::Error: 4064 return error("Malformed block"); 4065 case BitstreamEntry::EndBlock: 4066 return Triple; 4067 case BitstreamEntry::Record: 4068 // The interesting case. 4069 break; 4070 } 4071 4072 // Read a record. 4073 switch (Stream.readRecord(Entry.ID, Record)) { 4074 default: break; // Default behavior, ignore unknown content. 4075 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4076 std::string S; 4077 if (convertToString(Record, 0, S)) 4078 return error("Invalid record"); 4079 Triple = S; 4080 break; 4081 } 4082 } 4083 Record.clear(); 4084 } 4085 llvm_unreachable("Exit infinite loop"); 4086 } 4087 4088 ErrorOr<std::string> BitcodeReader::parseTriple() { 4089 if (std::error_code EC = initStream(nullptr)) 4090 return EC; 4091 4092 // Sniff for the signature. 4093 if (!hasValidBitcodeHeader(Stream)) 4094 return error("Invalid bitcode signature"); 4095 4096 // We expect a number of well-defined blocks, though we don't necessarily 4097 // need to understand them all. 4098 while (1) { 4099 BitstreamEntry Entry = Stream.advance(); 4100 4101 switch (Entry.Kind) { 4102 case BitstreamEntry::Error: 4103 return error("Malformed block"); 4104 case BitstreamEntry::EndBlock: 4105 return std::error_code(); 4106 4107 case BitstreamEntry::SubBlock: 4108 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4109 return parseModuleTriple(); 4110 4111 // Ignore other sub-blocks. 4112 if (Stream.SkipBlock()) 4113 return error("Malformed block"); 4114 continue; 4115 4116 case BitstreamEntry::Record: 4117 Stream.skipRecord(Entry.ID); 4118 continue; 4119 } 4120 } 4121 } 4122 4123 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4124 if (std::error_code EC = initStream(nullptr)) 4125 return EC; 4126 4127 // Sniff for the signature. 4128 if (!hasValidBitcodeHeader(Stream)) 4129 return error("Invalid bitcode signature"); 4130 4131 // We expect a number of well-defined blocks, though we don't necessarily 4132 // need to understand them all. 4133 while (1) { 4134 BitstreamEntry Entry = Stream.advance(); 4135 switch (Entry.Kind) { 4136 case BitstreamEntry::Error: 4137 return error("Malformed block"); 4138 case BitstreamEntry::EndBlock: 4139 return std::error_code(); 4140 4141 case BitstreamEntry::SubBlock: 4142 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4143 if (std::error_code EC = parseBitcodeVersion()) 4144 return EC; 4145 return ProducerIdentification; 4146 } 4147 // Ignore other sub-blocks. 4148 if (Stream.SkipBlock()) 4149 return error("Malformed block"); 4150 continue; 4151 case BitstreamEntry::Record: 4152 Stream.skipRecord(Entry.ID); 4153 continue; 4154 } 4155 } 4156 } 4157 4158 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4159 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4160 assert(Record.size() % 2 == 0); 4161 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4162 auto K = MDKindMap.find(Record[I]); 4163 if (K == MDKindMap.end()) 4164 return error("Invalid ID"); 4165 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4166 if (!MD) 4167 return error("Invalid metadata attachment"); 4168 GO.addMetadata(K->second, *MD); 4169 } 4170 return std::error_code(); 4171 } 4172 4173 /// Parse metadata attachments. 4174 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4175 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4176 return error("Invalid record"); 4177 4178 SmallVector<uint64_t, 64> Record; 4179 while (1) { 4180 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4181 4182 switch (Entry.Kind) { 4183 case BitstreamEntry::SubBlock: // Handled for us already. 4184 case BitstreamEntry::Error: 4185 return error("Malformed block"); 4186 case BitstreamEntry::EndBlock: 4187 return std::error_code(); 4188 case BitstreamEntry::Record: 4189 // The interesting case. 4190 break; 4191 } 4192 4193 // Read a metadata attachment record. 4194 Record.clear(); 4195 switch (Stream.readRecord(Entry.ID, Record)) { 4196 default: // Default behavior: ignore. 4197 break; 4198 case bitc::METADATA_ATTACHMENT: { 4199 unsigned RecordLength = Record.size(); 4200 if (Record.empty()) 4201 return error("Invalid record"); 4202 if (RecordLength % 2 == 0) { 4203 // A function attachment. 4204 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4205 return EC; 4206 continue; 4207 } 4208 4209 // An instruction attachment. 4210 Instruction *Inst = InstructionList[Record[0]]; 4211 for (unsigned i = 1; i != RecordLength; i = i+2) { 4212 unsigned Kind = Record[i]; 4213 DenseMap<unsigned, unsigned>::iterator I = 4214 MDKindMap.find(Kind); 4215 if (I == MDKindMap.end()) 4216 return error("Invalid ID"); 4217 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4218 if (isa<LocalAsMetadata>(Node)) 4219 // Drop the attachment. This used to be legal, but there's no 4220 // upgrade path. 4221 break; 4222 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4223 if (!MD) 4224 return error("Invalid metadata attachment"); 4225 4226 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4227 MD = upgradeInstructionLoopAttachment(*MD); 4228 4229 Inst->setMetadata(I->second, MD); 4230 if (I->second == LLVMContext::MD_tbaa) { 4231 InstsWithTBAATag.push_back(Inst); 4232 continue; 4233 } 4234 } 4235 break; 4236 } 4237 } 4238 } 4239 } 4240 4241 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4242 LLVMContext &Context = PtrType->getContext(); 4243 if (!isa<PointerType>(PtrType)) 4244 return error(Context, "Load/Store operand is not a pointer type"); 4245 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4246 4247 if (ValType && ValType != ElemType) 4248 return error(Context, "Explicit load/store type does not match pointee " 4249 "type of pointer operand"); 4250 if (!PointerType::isLoadableOrStorableType(ElemType)) 4251 return error(Context, "Cannot load/store from pointer"); 4252 return std::error_code(); 4253 } 4254 4255 /// Lazily parse the specified function body block. 4256 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4257 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4258 return error("Invalid record"); 4259 4260 // Unexpected unresolved metadata when parsing function. 4261 if (MetadataList.hasFwdRefs()) 4262 return error("Invalid function metadata: incoming forward references"); 4263 4264 InstructionList.clear(); 4265 unsigned ModuleValueListSize = ValueList.size(); 4266 unsigned ModuleMetadataListSize = MetadataList.size(); 4267 4268 // Add all the function arguments to the value table. 4269 for (Argument &I : F->args()) 4270 ValueList.push_back(&I); 4271 4272 unsigned NextValueNo = ValueList.size(); 4273 BasicBlock *CurBB = nullptr; 4274 unsigned CurBBNo = 0; 4275 4276 DebugLoc LastLoc; 4277 auto getLastInstruction = [&]() -> Instruction * { 4278 if (CurBB && !CurBB->empty()) 4279 return &CurBB->back(); 4280 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4281 !FunctionBBs[CurBBNo - 1]->empty()) 4282 return &FunctionBBs[CurBBNo - 1]->back(); 4283 return nullptr; 4284 }; 4285 4286 std::vector<OperandBundleDef> OperandBundles; 4287 4288 // Read all the records. 4289 SmallVector<uint64_t, 64> Record; 4290 while (1) { 4291 BitstreamEntry Entry = Stream.advance(); 4292 4293 switch (Entry.Kind) { 4294 case BitstreamEntry::Error: 4295 return error("Malformed block"); 4296 case BitstreamEntry::EndBlock: 4297 goto OutOfRecordLoop; 4298 4299 case BitstreamEntry::SubBlock: 4300 switch (Entry.ID) { 4301 default: // Skip unknown content. 4302 if (Stream.SkipBlock()) 4303 return error("Invalid record"); 4304 break; 4305 case bitc::CONSTANTS_BLOCK_ID: 4306 if (std::error_code EC = parseConstants()) 4307 return EC; 4308 NextValueNo = ValueList.size(); 4309 break; 4310 case bitc::VALUE_SYMTAB_BLOCK_ID: 4311 if (std::error_code EC = parseValueSymbolTable()) 4312 return EC; 4313 break; 4314 case bitc::METADATA_ATTACHMENT_ID: 4315 if (std::error_code EC = parseMetadataAttachment(*F)) 4316 return EC; 4317 break; 4318 case bitc::METADATA_BLOCK_ID: 4319 if (std::error_code EC = parseMetadata()) 4320 return EC; 4321 break; 4322 case bitc::USELIST_BLOCK_ID: 4323 if (std::error_code EC = parseUseLists()) 4324 return EC; 4325 break; 4326 } 4327 continue; 4328 4329 case BitstreamEntry::Record: 4330 // The interesting case. 4331 break; 4332 } 4333 4334 // Read a record. 4335 Record.clear(); 4336 Instruction *I = nullptr; 4337 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4338 switch (BitCode) { 4339 default: // Default behavior: reject 4340 return error("Invalid value"); 4341 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4342 if (Record.size() < 1 || Record[0] == 0) 4343 return error("Invalid record"); 4344 // Create all the basic blocks for the function. 4345 FunctionBBs.resize(Record[0]); 4346 4347 // See if anything took the address of blocks in this function. 4348 auto BBFRI = BasicBlockFwdRefs.find(F); 4349 if (BBFRI == BasicBlockFwdRefs.end()) { 4350 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4351 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4352 } else { 4353 auto &BBRefs = BBFRI->second; 4354 // Check for invalid basic block references. 4355 if (BBRefs.size() > FunctionBBs.size()) 4356 return error("Invalid ID"); 4357 assert(!BBRefs.empty() && "Unexpected empty array"); 4358 assert(!BBRefs.front() && "Invalid reference to entry block"); 4359 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4360 ++I) 4361 if (I < RE && BBRefs[I]) { 4362 BBRefs[I]->insertInto(F); 4363 FunctionBBs[I] = BBRefs[I]; 4364 } else { 4365 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4366 } 4367 4368 // Erase from the table. 4369 BasicBlockFwdRefs.erase(BBFRI); 4370 } 4371 4372 CurBB = FunctionBBs[0]; 4373 continue; 4374 } 4375 4376 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4377 // This record indicates that the last instruction is at the same 4378 // location as the previous instruction with a location. 4379 I = getLastInstruction(); 4380 4381 if (!I) 4382 return error("Invalid record"); 4383 I->setDebugLoc(LastLoc); 4384 I = nullptr; 4385 continue; 4386 4387 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4388 I = getLastInstruction(); 4389 if (!I || Record.size() < 4) 4390 return error("Invalid record"); 4391 4392 unsigned Line = Record[0], Col = Record[1]; 4393 unsigned ScopeID = Record[2], IAID = Record[3]; 4394 4395 MDNode *Scope = nullptr, *IA = nullptr; 4396 if (ScopeID) { 4397 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4398 if (!Scope) 4399 return error("Invalid record"); 4400 } 4401 if (IAID) { 4402 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4403 if (!IA) 4404 return error("Invalid record"); 4405 } 4406 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4407 I->setDebugLoc(LastLoc); 4408 I = nullptr; 4409 continue; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4413 unsigned OpNum = 0; 4414 Value *LHS, *RHS; 4415 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4416 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4417 OpNum+1 > Record.size()) 4418 return error("Invalid record"); 4419 4420 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4421 if (Opc == -1) 4422 return error("Invalid record"); 4423 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4424 InstructionList.push_back(I); 4425 if (OpNum < Record.size()) { 4426 if (Opc == Instruction::Add || 4427 Opc == Instruction::Sub || 4428 Opc == Instruction::Mul || 4429 Opc == Instruction::Shl) { 4430 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4431 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4432 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4433 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4434 } else if (Opc == Instruction::SDiv || 4435 Opc == Instruction::UDiv || 4436 Opc == Instruction::LShr || 4437 Opc == Instruction::AShr) { 4438 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4439 cast<BinaryOperator>(I)->setIsExact(true); 4440 } else if (isa<FPMathOperator>(I)) { 4441 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4442 if (FMF.any()) 4443 I->setFastMathFlags(FMF); 4444 } 4445 4446 } 4447 break; 4448 } 4449 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4450 unsigned OpNum = 0; 4451 Value *Op; 4452 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4453 OpNum+2 != Record.size()) 4454 return error("Invalid record"); 4455 4456 Type *ResTy = getTypeByID(Record[OpNum]); 4457 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4458 if (Opc == -1 || !ResTy) 4459 return error("Invalid record"); 4460 Instruction *Temp = nullptr; 4461 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4462 if (Temp) { 4463 InstructionList.push_back(Temp); 4464 CurBB->getInstList().push_back(Temp); 4465 } 4466 } else { 4467 auto CastOp = (Instruction::CastOps)Opc; 4468 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4469 return error("Invalid cast"); 4470 I = CastInst::Create(CastOp, Op, ResTy); 4471 } 4472 InstructionList.push_back(I); 4473 break; 4474 } 4475 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4476 case bitc::FUNC_CODE_INST_GEP_OLD: 4477 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4478 unsigned OpNum = 0; 4479 4480 Type *Ty; 4481 bool InBounds; 4482 4483 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4484 InBounds = Record[OpNum++]; 4485 Ty = getTypeByID(Record[OpNum++]); 4486 } else { 4487 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4488 Ty = nullptr; 4489 } 4490 4491 Value *BasePtr; 4492 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4493 return error("Invalid record"); 4494 4495 if (!Ty) 4496 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4497 ->getElementType(); 4498 else if (Ty != 4499 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4500 ->getElementType()) 4501 return error( 4502 "Explicit gep type does not match pointee type of pointer operand"); 4503 4504 SmallVector<Value*, 16> GEPIdx; 4505 while (OpNum != Record.size()) { 4506 Value *Op; 4507 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4508 return error("Invalid record"); 4509 GEPIdx.push_back(Op); 4510 } 4511 4512 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4513 4514 InstructionList.push_back(I); 4515 if (InBounds) 4516 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4517 break; 4518 } 4519 4520 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4521 // EXTRACTVAL: [opty, opval, n x indices] 4522 unsigned OpNum = 0; 4523 Value *Agg; 4524 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4525 return error("Invalid record"); 4526 4527 unsigned RecSize = Record.size(); 4528 if (OpNum == RecSize) 4529 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4530 4531 SmallVector<unsigned, 4> EXTRACTVALIdx; 4532 Type *CurTy = Agg->getType(); 4533 for (; OpNum != RecSize; ++OpNum) { 4534 bool IsArray = CurTy->isArrayTy(); 4535 bool IsStruct = CurTy->isStructTy(); 4536 uint64_t Index = Record[OpNum]; 4537 4538 if (!IsStruct && !IsArray) 4539 return error("EXTRACTVAL: Invalid type"); 4540 if ((unsigned)Index != Index) 4541 return error("Invalid value"); 4542 if (IsStruct && Index >= CurTy->subtypes().size()) 4543 return error("EXTRACTVAL: Invalid struct index"); 4544 if (IsArray && Index >= CurTy->getArrayNumElements()) 4545 return error("EXTRACTVAL: Invalid array index"); 4546 EXTRACTVALIdx.push_back((unsigned)Index); 4547 4548 if (IsStruct) 4549 CurTy = CurTy->subtypes()[Index]; 4550 else 4551 CurTy = CurTy->subtypes()[0]; 4552 } 4553 4554 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4555 InstructionList.push_back(I); 4556 break; 4557 } 4558 4559 case bitc::FUNC_CODE_INST_INSERTVAL: { 4560 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4561 unsigned OpNum = 0; 4562 Value *Agg; 4563 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4564 return error("Invalid record"); 4565 Value *Val; 4566 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4567 return error("Invalid record"); 4568 4569 unsigned RecSize = Record.size(); 4570 if (OpNum == RecSize) 4571 return error("INSERTVAL: Invalid instruction with 0 indices"); 4572 4573 SmallVector<unsigned, 4> INSERTVALIdx; 4574 Type *CurTy = Agg->getType(); 4575 for (; OpNum != RecSize; ++OpNum) { 4576 bool IsArray = CurTy->isArrayTy(); 4577 bool IsStruct = CurTy->isStructTy(); 4578 uint64_t Index = Record[OpNum]; 4579 4580 if (!IsStruct && !IsArray) 4581 return error("INSERTVAL: Invalid type"); 4582 if ((unsigned)Index != Index) 4583 return error("Invalid value"); 4584 if (IsStruct && Index >= CurTy->subtypes().size()) 4585 return error("INSERTVAL: Invalid struct index"); 4586 if (IsArray && Index >= CurTy->getArrayNumElements()) 4587 return error("INSERTVAL: Invalid array index"); 4588 4589 INSERTVALIdx.push_back((unsigned)Index); 4590 if (IsStruct) 4591 CurTy = CurTy->subtypes()[Index]; 4592 else 4593 CurTy = CurTy->subtypes()[0]; 4594 } 4595 4596 if (CurTy != Val->getType()) 4597 return error("Inserted value type doesn't match aggregate type"); 4598 4599 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4600 InstructionList.push_back(I); 4601 break; 4602 } 4603 4604 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4605 // obsolete form of select 4606 // handles select i1 ... in old bitcode 4607 unsigned OpNum = 0; 4608 Value *TrueVal, *FalseVal, *Cond; 4609 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4610 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4611 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4612 return error("Invalid record"); 4613 4614 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4615 InstructionList.push_back(I); 4616 break; 4617 } 4618 4619 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4620 // new form of select 4621 // handles select i1 or select [N x i1] 4622 unsigned OpNum = 0; 4623 Value *TrueVal, *FalseVal, *Cond; 4624 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4625 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4626 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4627 return error("Invalid record"); 4628 4629 // select condition can be either i1 or [N x i1] 4630 if (VectorType* vector_type = 4631 dyn_cast<VectorType>(Cond->getType())) { 4632 // expect <n x i1> 4633 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4634 return error("Invalid type for value"); 4635 } else { 4636 // expect i1 4637 if (Cond->getType() != Type::getInt1Ty(Context)) 4638 return error("Invalid type for value"); 4639 } 4640 4641 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4642 InstructionList.push_back(I); 4643 break; 4644 } 4645 4646 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4647 unsigned OpNum = 0; 4648 Value *Vec, *Idx; 4649 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4650 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4651 return error("Invalid record"); 4652 if (!Vec->getType()->isVectorTy()) 4653 return error("Invalid type for value"); 4654 I = ExtractElementInst::Create(Vec, Idx); 4655 InstructionList.push_back(I); 4656 break; 4657 } 4658 4659 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4660 unsigned OpNum = 0; 4661 Value *Vec, *Elt, *Idx; 4662 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4663 return error("Invalid record"); 4664 if (!Vec->getType()->isVectorTy()) 4665 return error("Invalid type for value"); 4666 if (popValue(Record, OpNum, NextValueNo, 4667 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4668 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4669 return error("Invalid record"); 4670 I = InsertElementInst::Create(Vec, Elt, Idx); 4671 InstructionList.push_back(I); 4672 break; 4673 } 4674 4675 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4676 unsigned OpNum = 0; 4677 Value *Vec1, *Vec2, *Mask; 4678 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4679 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4680 return error("Invalid record"); 4681 4682 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4683 return error("Invalid record"); 4684 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4685 return error("Invalid type for value"); 4686 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4687 InstructionList.push_back(I); 4688 break; 4689 } 4690 4691 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4692 // Old form of ICmp/FCmp returning bool 4693 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4694 // both legal on vectors but had different behaviour. 4695 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4696 // FCmp/ICmp returning bool or vector of bool 4697 4698 unsigned OpNum = 0; 4699 Value *LHS, *RHS; 4700 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4701 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4702 return error("Invalid record"); 4703 4704 unsigned PredVal = Record[OpNum]; 4705 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4706 FastMathFlags FMF; 4707 if (IsFP && Record.size() > OpNum+1) 4708 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4709 4710 if (OpNum+1 != Record.size()) 4711 return error("Invalid record"); 4712 4713 if (LHS->getType()->isFPOrFPVectorTy()) 4714 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4715 else 4716 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4717 4718 if (FMF.any()) 4719 I->setFastMathFlags(FMF); 4720 InstructionList.push_back(I); 4721 break; 4722 } 4723 4724 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4725 { 4726 unsigned Size = Record.size(); 4727 if (Size == 0) { 4728 I = ReturnInst::Create(Context); 4729 InstructionList.push_back(I); 4730 break; 4731 } 4732 4733 unsigned OpNum = 0; 4734 Value *Op = nullptr; 4735 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4736 return error("Invalid record"); 4737 if (OpNum != Record.size()) 4738 return error("Invalid record"); 4739 4740 I = ReturnInst::Create(Context, Op); 4741 InstructionList.push_back(I); 4742 break; 4743 } 4744 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4745 if (Record.size() != 1 && Record.size() != 3) 4746 return error("Invalid record"); 4747 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4748 if (!TrueDest) 4749 return error("Invalid record"); 4750 4751 if (Record.size() == 1) { 4752 I = BranchInst::Create(TrueDest); 4753 InstructionList.push_back(I); 4754 } 4755 else { 4756 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4757 Value *Cond = getValue(Record, 2, NextValueNo, 4758 Type::getInt1Ty(Context)); 4759 if (!FalseDest || !Cond) 4760 return error("Invalid record"); 4761 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4762 InstructionList.push_back(I); 4763 } 4764 break; 4765 } 4766 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4767 if (Record.size() != 1 && Record.size() != 2) 4768 return error("Invalid record"); 4769 unsigned Idx = 0; 4770 Value *CleanupPad = 4771 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4772 if (!CleanupPad) 4773 return error("Invalid record"); 4774 BasicBlock *UnwindDest = nullptr; 4775 if (Record.size() == 2) { 4776 UnwindDest = getBasicBlock(Record[Idx++]); 4777 if (!UnwindDest) 4778 return error("Invalid record"); 4779 } 4780 4781 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4782 InstructionList.push_back(I); 4783 break; 4784 } 4785 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4786 if (Record.size() != 2) 4787 return error("Invalid record"); 4788 unsigned Idx = 0; 4789 Value *CatchPad = 4790 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4791 if (!CatchPad) 4792 return error("Invalid record"); 4793 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4794 if (!BB) 4795 return error("Invalid record"); 4796 4797 I = CatchReturnInst::Create(CatchPad, BB); 4798 InstructionList.push_back(I); 4799 break; 4800 } 4801 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4802 // We must have, at minimum, the outer scope and the number of arguments. 4803 if (Record.size() < 2) 4804 return error("Invalid record"); 4805 4806 unsigned Idx = 0; 4807 4808 Value *ParentPad = 4809 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4810 4811 unsigned NumHandlers = Record[Idx++]; 4812 4813 SmallVector<BasicBlock *, 2> Handlers; 4814 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4815 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4816 if (!BB) 4817 return error("Invalid record"); 4818 Handlers.push_back(BB); 4819 } 4820 4821 BasicBlock *UnwindDest = nullptr; 4822 if (Idx + 1 == Record.size()) { 4823 UnwindDest = getBasicBlock(Record[Idx++]); 4824 if (!UnwindDest) 4825 return error("Invalid record"); 4826 } 4827 4828 if (Record.size() != Idx) 4829 return error("Invalid record"); 4830 4831 auto *CatchSwitch = 4832 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4833 for (BasicBlock *Handler : Handlers) 4834 CatchSwitch->addHandler(Handler); 4835 I = CatchSwitch; 4836 InstructionList.push_back(I); 4837 break; 4838 } 4839 case bitc::FUNC_CODE_INST_CATCHPAD: 4840 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4841 // We must have, at minimum, the outer scope and the number of arguments. 4842 if (Record.size() < 2) 4843 return error("Invalid record"); 4844 4845 unsigned Idx = 0; 4846 4847 Value *ParentPad = 4848 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4849 4850 unsigned NumArgOperands = Record[Idx++]; 4851 4852 SmallVector<Value *, 2> Args; 4853 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4854 Value *Val; 4855 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4856 return error("Invalid record"); 4857 Args.push_back(Val); 4858 } 4859 4860 if (Record.size() != Idx) 4861 return error("Invalid record"); 4862 4863 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4864 I = CleanupPadInst::Create(ParentPad, Args); 4865 else 4866 I = CatchPadInst::Create(ParentPad, Args); 4867 InstructionList.push_back(I); 4868 break; 4869 } 4870 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4871 // Check magic 4872 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4873 // "New" SwitchInst format with case ranges. The changes to write this 4874 // format were reverted but we still recognize bitcode that uses it. 4875 // Hopefully someday we will have support for case ranges and can use 4876 // this format again. 4877 4878 Type *OpTy = getTypeByID(Record[1]); 4879 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4880 4881 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4882 BasicBlock *Default = getBasicBlock(Record[3]); 4883 if (!OpTy || !Cond || !Default) 4884 return error("Invalid record"); 4885 4886 unsigned NumCases = Record[4]; 4887 4888 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4889 InstructionList.push_back(SI); 4890 4891 unsigned CurIdx = 5; 4892 for (unsigned i = 0; i != NumCases; ++i) { 4893 SmallVector<ConstantInt*, 1> CaseVals; 4894 unsigned NumItems = Record[CurIdx++]; 4895 for (unsigned ci = 0; ci != NumItems; ++ci) { 4896 bool isSingleNumber = Record[CurIdx++]; 4897 4898 APInt Low; 4899 unsigned ActiveWords = 1; 4900 if (ValueBitWidth > 64) 4901 ActiveWords = Record[CurIdx++]; 4902 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4903 ValueBitWidth); 4904 CurIdx += ActiveWords; 4905 4906 if (!isSingleNumber) { 4907 ActiveWords = 1; 4908 if (ValueBitWidth > 64) 4909 ActiveWords = Record[CurIdx++]; 4910 APInt High = readWideAPInt( 4911 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4912 CurIdx += ActiveWords; 4913 4914 // FIXME: It is not clear whether values in the range should be 4915 // compared as signed or unsigned values. The partially 4916 // implemented changes that used this format in the past used 4917 // unsigned comparisons. 4918 for ( ; Low.ule(High); ++Low) 4919 CaseVals.push_back(ConstantInt::get(Context, Low)); 4920 } else 4921 CaseVals.push_back(ConstantInt::get(Context, Low)); 4922 } 4923 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4924 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4925 cve = CaseVals.end(); cvi != cve; ++cvi) 4926 SI->addCase(*cvi, DestBB); 4927 } 4928 I = SI; 4929 break; 4930 } 4931 4932 // Old SwitchInst format without case ranges. 4933 4934 if (Record.size() < 3 || (Record.size() & 1) == 0) 4935 return error("Invalid record"); 4936 Type *OpTy = getTypeByID(Record[0]); 4937 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4938 BasicBlock *Default = getBasicBlock(Record[2]); 4939 if (!OpTy || !Cond || !Default) 4940 return error("Invalid record"); 4941 unsigned NumCases = (Record.size()-3)/2; 4942 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4943 InstructionList.push_back(SI); 4944 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4945 ConstantInt *CaseVal = 4946 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4947 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4948 if (!CaseVal || !DestBB) { 4949 delete SI; 4950 return error("Invalid record"); 4951 } 4952 SI->addCase(CaseVal, DestBB); 4953 } 4954 I = SI; 4955 break; 4956 } 4957 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4958 if (Record.size() < 2) 4959 return error("Invalid record"); 4960 Type *OpTy = getTypeByID(Record[0]); 4961 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4962 if (!OpTy || !Address) 4963 return error("Invalid record"); 4964 unsigned NumDests = Record.size()-2; 4965 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4966 InstructionList.push_back(IBI); 4967 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4968 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4969 IBI->addDestination(DestBB); 4970 } else { 4971 delete IBI; 4972 return error("Invalid record"); 4973 } 4974 } 4975 I = IBI; 4976 break; 4977 } 4978 4979 case bitc::FUNC_CODE_INST_INVOKE: { 4980 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4981 if (Record.size() < 4) 4982 return error("Invalid record"); 4983 unsigned OpNum = 0; 4984 AttributeSet PAL = getAttributes(Record[OpNum++]); 4985 unsigned CCInfo = Record[OpNum++]; 4986 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4987 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4988 4989 FunctionType *FTy = nullptr; 4990 if (CCInfo >> 13 & 1 && 4991 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4992 return error("Explicit invoke type is not a function type"); 4993 4994 Value *Callee; 4995 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4996 return error("Invalid record"); 4997 4998 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4999 if (!CalleeTy) 5000 return error("Callee is not a pointer"); 5001 if (!FTy) { 5002 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5003 if (!FTy) 5004 return error("Callee is not of pointer to function type"); 5005 } else if (CalleeTy->getElementType() != FTy) 5006 return error("Explicit invoke type does not match pointee type of " 5007 "callee operand"); 5008 if (Record.size() < FTy->getNumParams() + OpNum) 5009 return error("Insufficient operands to call"); 5010 5011 SmallVector<Value*, 16> Ops; 5012 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5013 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5014 FTy->getParamType(i))); 5015 if (!Ops.back()) 5016 return error("Invalid record"); 5017 } 5018 5019 if (!FTy->isVarArg()) { 5020 if (Record.size() != OpNum) 5021 return error("Invalid record"); 5022 } else { 5023 // Read type/value pairs for varargs params. 5024 while (OpNum != Record.size()) { 5025 Value *Op; 5026 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5027 return error("Invalid record"); 5028 Ops.push_back(Op); 5029 } 5030 } 5031 5032 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5033 OperandBundles.clear(); 5034 InstructionList.push_back(I); 5035 cast<InvokeInst>(I)->setCallingConv( 5036 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5037 cast<InvokeInst>(I)->setAttributes(PAL); 5038 break; 5039 } 5040 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5041 unsigned Idx = 0; 5042 Value *Val = nullptr; 5043 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5044 return error("Invalid record"); 5045 I = ResumeInst::Create(Val); 5046 InstructionList.push_back(I); 5047 break; 5048 } 5049 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5050 I = new UnreachableInst(Context); 5051 InstructionList.push_back(I); 5052 break; 5053 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5054 if (Record.size() < 1 || ((Record.size()-1)&1)) 5055 return error("Invalid record"); 5056 Type *Ty = getTypeByID(Record[0]); 5057 if (!Ty) 5058 return error("Invalid record"); 5059 5060 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5061 InstructionList.push_back(PN); 5062 5063 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5064 Value *V; 5065 // With the new function encoding, it is possible that operands have 5066 // negative IDs (for forward references). Use a signed VBR 5067 // representation to keep the encoding small. 5068 if (UseRelativeIDs) 5069 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5070 else 5071 V = getValue(Record, 1+i, NextValueNo, Ty); 5072 BasicBlock *BB = getBasicBlock(Record[2+i]); 5073 if (!V || !BB) 5074 return error("Invalid record"); 5075 PN->addIncoming(V, BB); 5076 } 5077 I = PN; 5078 break; 5079 } 5080 5081 case bitc::FUNC_CODE_INST_LANDINGPAD: 5082 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5083 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5084 unsigned Idx = 0; 5085 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5086 if (Record.size() < 3) 5087 return error("Invalid record"); 5088 } else { 5089 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5090 if (Record.size() < 4) 5091 return error("Invalid record"); 5092 } 5093 Type *Ty = getTypeByID(Record[Idx++]); 5094 if (!Ty) 5095 return error("Invalid record"); 5096 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5097 Value *PersFn = nullptr; 5098 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5099 return error("Invalid record"); 5100 5101 if (!F->hasPersonalityFn()) 5102 F->setPersonalityFn(cast<Constant>(PersFn)); 5103 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5104 return error("Personality function mismatch"); 5105 } 5106 5107 bool IsCleanup = !!Record[Idx++]; 5108 unsigned NumClauses = Record[Idx++]; 5109 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5110 LP->setCleanup(IsCleanup); 5111 for (unsigned J = 0; J != NumClauses; ++J) { 5112 LandingPadInst::ClauseType CT = 5113 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5114 Value *Val; 5115 5116 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5117 delete LP; 5118 return error("Invalid record"); 5119 } 5120 5121 assert((CT != LandingPadInst::Catch || 5122 !isa<ArrayType>(Val->getType())) && 5123 "Catch clause has a invalid type!"); 5124 assert((CT != LandingPadInst::Filter || 5125 isa<ArrayType>(Val->getType())) && 5126 "Filter clause has invalid type!"); 5127 LP->addClause(cast<Constant>(Val)); 5128 } 5129 5130 I = LP; 5131 InstructionList.push_back(I); 5132 break; 5133 } 5134 5135 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5136 if (Record.size() != 4) 5137 return error("Invalid record"); 5138 uint64_t AlignRecord = Record[3]; 5139 const uint64_t InAllocaMask = uint64_t(1) << 5; 5140 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5141 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5142 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5143 SwiftErrorMask; 5144 bool InAlloca = AlignRecord & InAllocaMask; 5145 bool SwiftError = AlignRecord & SwiftErrorMask; 5146 Type *Ty = getTypeByID(Record[0]); 5147 if ((AlignRecord & ExplicitTypeMask) == 0) { 5148 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5149 if (!PTy) 5150 return error("Old-style alloca with a non-pointer type"); 5151 Ty = PTy->getElementType(); 5152 } 5153 Type *OpTy = getTypeByID(Record[1]); 5154 Value *Size = getFnValueByID(Record[2], OpTy); 5155 unsigned Align; 5156 if (std::error_code EC = 5157 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5158 return EC; 5159 } 5160 if (!Ty || !Size) 5161 return error("Invalid record"); 5162 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5163 AI->setUsedWithInAlloca(InAlloca); 5164 AI->setSwiftError(SwiftError); 5165 I = AI; 5166 InstructionList.push_back(I); 5167 break; 5168 } 5169 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5170 unsigned OpNum = 0; 5171 Value *Op; 5172 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5173 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5174 return error("Invalid record"); 5175 5176 Type *Ty = nullptr; 5177 if (OpNum + 3 == Record.size()) 5178 Ty = getTypeByID(Record[OpNum++]); 5179 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5180 return EC; 5181 if (!Ty) 5182 Ty = cast<PointerType>(Op->getType())->getElementType(); 5183 5184 unsigned Align; 5185 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5186 return EC; 5187 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5188 5189 InstructionList.push_back(I); 5190 break; 5191 } 5192 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5193 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5194 unsigned OpNum = 0; 5195 Value *Op; 5196 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5197 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5198 return error("Invalid record"); 5199 5200 Type *Ty = nullptr; 5201 if (OpNum + 5 == Record.size()) 5202 Ty = getTypeByID(Record[OpNum++]); 5203 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5204 return EC; 5205 if (!Ty) 5206 Ty = cast<PointerType>(Op->getType())->getElementType(); 5207 5208 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5209 if (Ordering == AtomicOrdering::NotAtomic || 5210 Ordering == AtomicOrdering::Release || 5211 Ordering == AtomicOrdering::AcquireRelease) 5212 return error("Invalid record"); 5213 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5214 return error("Invalid record"); 5215 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5216 5217 unsigned Align; 5218 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5219 return EC; 5220 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5221 5222 InstructionList.push_back(I); 5223 break; 5224 } 5225 case bitc::FUNC_CODE_INST_STORE: 5226 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5227 unsigned OpNum = 0; 5228 Value *Val, *Ptr; 5229 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5230 (BitCode == bitc::FUNC_CODE_INST_STORE 5231 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5232 : popValue(Record, OpNum, NextValueNo, 5233 cast<PointerType>(Ptr->getType())->getElementType(), 5234 Val)) || 5235 OpNum + 2 != Record.size()) 5236 return error("Invalid record"); 5237 5238 if (std::error_code EC = 5239 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5240 return EC; 5241 unsigned Align; 5242 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5243 return EC; 5244 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5245 InstructionList.push_back(I); 5246 break; 5247 } 5248 case bitc::FUNC_CODE_INST_STOREATOMIC: 5249 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5250 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5251 unsigned OpNum = 0; 5252 Value *Val, *Ptr; 5253 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5254 !isa<PointerType>(Ptr->getType()) || 5255 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5256 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5257 : popValue(Record, OpNum, NextValueNo, 5258 cast<PointerType>(Ptr->getType())->getElementType(), 5259 Val)) || 5260 OpNum + 4 != Record.size()) 5261 return error("Invalid record"); 5262 5263 if (std::error_code EC = 5264 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5265 return EC; 5266 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5267 if (Ordering == AtomicOrdering::NotAtomic || 5268 Ordering == AtomicOrdering::Acquire || 5269 Ordering == AtomicOrdering::AcquireRelease) 5270 return error("Invalid record"); 5271 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5272 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5273 return error("Invalid record"); 5274 5275 unsigned Align; 5276 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5277 return EC; 5278 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5279 InstructionList.push_back(I); 5280 break; 5281 } 5282 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5283 case bitc::FUNC_CODE_INST_CMPXCHG: { 5284 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5285 // failureordering?, isweak?] 5286 unsigned OpNum = 0; 5287 Value *Ptr, *Cmp, *New; 5288 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5289 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5290 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5291 : popValue(Record, OpNum, NextValueNo, 5292 cast<PointerType>(Ptr->getType())->getElementType(), 5293 Cmp)) || 5294 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5295 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5296 return error("Invalid record"); 5297 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5298 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5299 SuccessOrdering == AtomicOrdering::Unordered) 5300 return error("Invalid record"); 5301 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5302 5303 if (std::error_code EC = 5304 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5305 return EC; 5306 AtomicOrdering FailureOrdering; 5307 if (Record.size() < 7) 5308 FailureOrdering = 5309 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5310 else 5311 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5312 5313 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5314 SynchScope); 5315 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5316 5317 if (Record.size() < 8) { 5318 // Before weak cmpxchgs existed, the instruction simply returned the 5319 // value loaded from memory, so bitcode files from that era will be 5320 // expecting the first component of a modern cmpxchg. 5321 CurBB->getInstList().push_back(I); 5322 I = ExtractValueInst::Create(I, 0); 5323 } else { 5324 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5325 } 5326 5327 InstructionList.push_back(I); 5328 break; 5329 } 5330 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5331 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5332 unsigned OpNum = 0; 5333 Value *Ptr, *Val; 5334 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5335 !isa<PointerType>(Ptr->getType()) || 5336 popValue(Record, OpNum, NextValueNo, 5337 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5338 OpNum+4 != Record.size()) 5339 return error("Invalid record"); 5340 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5341 if (Operation < AtomicRMWInst::FIRST_BINOP || 5342 Operation > AtomicRMWInst::LAST_BINOP) 5343 return error("Invalid record"); 5344 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5345 if (Ordering == AtomicOrdering::NotAtomic || 5346 Ordering == AtomicOrdering::Unordered) 5347 return error("Invalid record"); 5348 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5349 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5350 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5351 InstructionList.push_back(I); 5352 break; 5353 } 5354 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5355 if (2 != Record.size()) 5356 return error("Invalid record"); 5357 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5358 if (Ordering == AtomicOrdering::NotAtomic || 5359 Ordering == AtomicOrdering::Unordered || 5360 Ordering == AtomicOrdering::Monotonic) 5361 return error("Invalid record"); 5362 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5363 I = new FenceInst(Context, Ordering, SynchScope); 5364 InstructionList.push_back(I); 5365 break; 5366 } 5367 case bitc::FUNC_CODE_INST_CALL: { 5368 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5369 if (Record.size() < 3) 5370 return error("Invalid record"); 5371 5372 unsigned OpNum = 0; 5373 AttributeSet PAL = getAttributes(Record[OpNum++]); 5374 unsigned CCInfo = Record[OpNum++]; 5375 5376 FastMathFlags FMF; 5377 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5378 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5379 if (!FMF.any()) 5380 return error("Fast math flags indicator set for call with no FMF"); 5381 } 5382 5383 FunctionType *FTy = nullptr; 5384 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5385 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5386 return error("Explicit call type is not a function type"); 5387 5388 Value *Callee; 5389 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5390 return error("Invalid record"); 5391 5392 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5393 if (!OpTy) 5394 return error("Callee is not a pointer type"); 5395 if (!FTy) { 5396 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5397 if (!FTy) 5398 return error("Callee is not of pointer to function type"); 5399 } else if (OpTy->getElementType() != FTy) 5400 return error("Explicit call type does not match pointee type of " 5401 "callee operand"); 5402 if (Record.size() < FTy->getNumParams() + OpNum) 5403 return error("Insufficient operands to call"); 5404 5405 SmallVector<Value*, 16> Args; 5406 // Read the fixed params. 5407 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5408 if (FTy->getParamType(i)->isLabelTy()) 5409 Args.push_back(getBasicBlock(Record[OpNum])); 5410 else 5411 Args.push_back(getValue(Record, OpNum, NextValueNo, 5412 FTy->getParamType(i))); 5413 if (!Args.back()) 5414 return error("Invalid record"); 5415 } 5416 5417 // Read type/value pairs for varargs params. 5418 if (!FTy->isVarArg()) { 5419 if (OpNum != Record.size()) 5420 return error("Invalid record"); 5421 } else { 5422 while (OpNum != Record.size()) { 5423 Value *Op; 5424 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5425 return error("Invalid record"); 5426 Args.push_back(Op); 5427 } 5428 } 5429 5430 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5431 OperandBundles.clear(); 5432 InstructionList.push_back(I); 5433 cast<CallInst>(I)->setCallingConv( 5434 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5435 CallInst::TailCallKind TCK = CallInst::TCK_None; 5436 if (CCInfo & 1 << bitc::CALL_TAIL) 5437 TCK = CallInst::TCK_Tail; 5438 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5439 TCK = CallInst::TCK_MustTail; 5440 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5441 TCK = CallInst::TCK_NoTail; 5442 cast<CallInst>(I)->setTailCallKind(TCK); 5443 cast<CallInst>(I)->setAttributes(PAL); 5444 if (FMF.any()) { 5445 if (!isa<FPMathOperator>(I)) 5446 return error("Fast-math-flags specified for call without " 5447 "floating-point scalar or vector return type"); 5448 I->setFastMathFlags(FMF); 5449 } 5450 break; 5451 } 5452 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5453 if (Record.size() < 3) 5454 return error("Invalid record"); 5455 Type *OpTy = getTypeByID(Record[0]); 5456 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5457 Type *ResTy = getTypeByID(Record[2]); 5458 if (!OpTy || !Op || !ResTy) 5459 return error("Invalid record"); 5460 I = new VAArgInst(Op, ResTy); 5461 InstructionList.push_back(I); 5462 break; 5463 } 5464 5465 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5466 // A call or an invoke can be optionally prefixed with some variable 5467 // number of operand bundle blocks. These blocks are read into 5468 // OperandBundles and consumed at the next call or invoke instruction. 5469 5470 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5471 return error("Invalid record"); 5472 5473 std::vector<Value *> Inputs; 5474 5475 unsigned OpNum = 1; 5476 while (OpNum != Record.size()) { 5477 Value *Op; 5478 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5479 return error("Invalid record"); 5480 Inputs.push_back(Op); 5481 } 5482 5483 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5484 continue; 5485 } 5486 } 5487 5488 // Add instruction to end of current BB. If there is no current BB, reject 5489 // this file. 5490 if (!CurBB) { 5491 delete I; 5492 return error("Invalid instruction with no BB"); 5493 } 5494 if (!OperandBundles.empty()) { 5495 delete I; 5496 return error("Operand bundles found with no consumer"); 5497 } 5498 CurBB->getInstList().push_back(I); 5499 5500 // If this was a terminator instruction, move to the next block. 5501 if (isa<TerminatorInst>(I)) { 5502 ++CurBBNo; 5503 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5504 } 5505 5506 // Non-void values get registered in the value table for future use. 5507 if (I && !I->getType()->isVoidTy()) 5508 ValueList.assignValue(I, NextValueNo++); 5509 } 5510 5511 OutOfRecordLoop: 5512 5513 if (!OperandBundles.empty()) 5514 return error("Operand bundles found with no consumer"); 5515 5516 // Check the function list for unresolved values. 5517 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5518 if (!A->getParent()) { 5519 // We found at least one unresolved value. Nuke them all to avoid leaks. 5520 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5521 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5522 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5523 delete A; 5524 } 5525 } 5526 return error("Never resolved value found in function"); 5527 } 5528 } 5529 5530 // Unexpected unresolved metadata about to be dropped. 5531 if (MetadataList.hasFwdRefs()) 5532 return error("Invalid function metadata: outgoing forward refs"); 5533 5534 // Trim the value list down to the size it was before we parsed this function. 5535 ValueList.shrinkTo(ModuleValueListSize); 5536 MetadataList.shrinkTo(ModuleMetadataListSize); 5537 std::vector<BasicBlock*>().swap(FunctionBBs); 5538 return std::error_code(); 5539 } 5540 5541 /// Find the function body in the bitcode stream 5542 std::error_code BitcodeReader::findFunctionInStream( 5543 Function *F, 5544 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5545 while (DeferredFunctionInfoIterator->second == 0) { 5546 // This is the fallback handling for the old format bitcode that 5547 // didn't contain the function index in the VST, or when we have 5548 // an anonymous function which would not have a VST entry. 5549 // Assert that we have one of those two cases. 5550 assert(VSTOffset == 0 || !F->hasName()); 5551 // Parse the next body in the stream and set its position in the 5552 // DeferredFunctionInfo map. 5553 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5554 return EC; 5555 } 5556 return std::error_code(); 5557 } 5558 5559 //===----------------------------------------------------------------------===// 5560 // GVMaterializer implementation 5561 //===----------------------------------------------------------------------===// 5562 5563 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5564 5565 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5566 Function *F = dyn_cast<Function>(GV); 5567 // If it's not a function or is already material, ignore the request. 5568 if (!F || !F->isMaterializable()) 5569 return std::error_code(); 5570 5571 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5572 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5573 // If its position is recorded as 0, its body is somewhere in the stream 5574 // but we haven't seen it yet. 5575 if (DFII->second == 0) 5576 if (std::error_code EC = findFunctionInStream(F, DFII)) 5577 return EC; 5578 5579 // Materialize metadata before parsing any function bodies. 5580 if (std::error_code EC = materializeMetadata()) 5581 return EC; 5582 5583 // Move the bit stream to the saved position of the deferred function body. 5584 Stream.JumpToBit(DFII->second); 5585 5586 if (std::error_code EC = parseFunctionBody(F)) 5587 return EC; 5588 F->setIsMaterializable(false); 5589 5590 if (StripDebugInfo) 5591 stripDebugInfo(*F); 5592 5593 // Upgrade any old intrinsic calls in the function. 5594 for (auto &I : UpgradedIntrinsics) { 5595 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5596 UI != UE;) { 5597 User *U = *UI; 5598 ++UI; 5599 if (CallInst *CI = dyn_cast<CallInst>(U)) 5600 UpgradeIntrinsicCall(CI, I.second); 5601 } 5602 } 5603 5604 // Finish fn->subprogram upgrade for materialized functions. 5605 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5606 F->setSubprogram(SP); 5607 5608 // Bring in any functions that this function forward-referenced via 5609 // blockaddresses. 5610 return materializeForwardReferencedFunctions(); 5611 } 5612 5613 std::error_code BitcodeReader::materializeModule() { 5614 if (std::error_code EC = materializeMetadata()) 5615 return EC; 5616 5617 // Promise to materialize all forward references. 5618 WillMaterializeAllForwardRefs = true; 5619 5620 // Iterate over the module, deserializing any functions that are still on 5621 // disk. 5622 for (Function &F : *TheModule) { 5623 if (std::error_code EC = materialize(&F)) 5624 return EC; 5625 } 5626 // At this point, if there are any function bodies, parse the rest of 5627 // the bits in the module past the last function block we have recorded 5628 // through either lazy scanning or the VST. 5629 if (LastFunctionBlockBit || NextUnreadBit) 5630 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5631 : NextUnreadBit); 5632 5633 // Check that all block address forward references got resolved (as we 5634 // promised above). 5635 if (!BasicBlockFwdRefs.empty()) 5636 return error("Never resolved function from blockaddress"); 5637 5638 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5639 // to prevent this instructions with TBAA tags should be upgraded first. 5640 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5641 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5642 5643 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5644 // delete the old functions to clean up. We can't do this unless the entire 5645 // module is materialized because there could always be another function body 5646 // with calls to the old function. 5647 for (auto &I : UpgradedIntrinsics) { 5648 for (auto *U : I.first->users()) { 5649 if (CallInst *CI = dyn_cast<CallInst>(U)) 5650 UpgradeIntrinsicCall(CI, I.second); 5651 } 5652 if (!I.first->use_empty()) 5653 I.first->replaceAllUsesWith(I.second); 5654 I.first->eraseFromParent(); 5655 } 5656 UpgradedIntrinsics.clear(); 5657 5658 UpgradeDebugInfo(*TheModule); 5659 5660 UpgradeModuleFlags(*TheModule); 5661 return std::error_code(); 5662 } 5663 5664 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5665 return IdentifiedStructTypes; 5666 } 5667 5668 std::error_code 5669 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5670 if (Streamer) 5671 return initLazyStream(std::move(Streamer)); 5672 return initStreamFromBuffer(); 5673 } 5674 5675 std::error_code BitcodeReader::initStreamFromBuffer() { 5676 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5677 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5678 5679 if (Buffer->getBufferSize() & 3) 5680 return error("Invalid bitcode signature"); 5681 5682 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5683 // The magic number is 0x0B17C0DE stored in little endian. 5684 if (isBitcodeWrapper(BufPtr, BufEnd)) 5685 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5686 return error("Invalid bitcode wrapper header"); 5687 5688 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5689 Stream.init(&*StreamFile); 5690 5691 return std::error_code(); 5692 } 5693 5694 std::error_code 5695 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5696 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5697 // see it. 5698 auto OwnedBytes = 5699 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5700 StreamingMemoryObject &Bytes = *OwnedBytes; 5701 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5702 Stream.init(&*StreamFile); 5703 5704 unsigned char buf[16]; 5705 if (Bytes.readBytes(buf, 16, 0) != 16) 5706 return error("Invalid bitcode signature"); 5707 5708 if (!isBitcode(buf, buf + 16)) 5709 return error("Invalid bitcode signature"); 5710 5711 if (isBitcodeWrapper(buf, buf + 4)) { 5712 const unsigned char *bitcodeStart = buf; 5713 const unsigned char *bitcodeEnd = buf + 16; 5714 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5715 Bytes.dropLeadingBytes(bitcodeStart - buf); 5716 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5717 } 5718 return std::error_code(); 5719 } 5720 5721 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5722 return ::error(DiagnosticHandler, 5723 make_error_code(BitcodeError::CorruptedBitcode), Message); 5724 } 5725 5726 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5727 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5728 bool CheckGlobalValSummaryPresenceOnly) 5729 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5730 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5731 5732 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5733 5734 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5735 5736 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5737 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5738 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5739 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5740 return VGI->second; 5741 } 5742 5743 // Specialized value symbol table parser used when reading module index 5744 // blocks where we don't actually create global values. The parsed information 5745 // is saved in the bitcode reader for use when later parsing summaries. 5746 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5747 uint64_t Offset, 5748 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5749 assert(Offset > 0 && "Expected non-zero VST offset"); 5750 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5751 5752 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5753 return error("Invalid record"); 5754 5755 SmallVector<uint64_t, 64> Record; 5756 5757 // Read all the records for this value table. 5758 SmallString<128> ValueName; 5759 while (1) { 5760 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5761 5762 switch (Entry.Kind) { 5763 case BitstreamEntry::SubBlock: // Handled for us already. 5764 case BitstreamEntry::Error: 5765 return error("Malformed block"); 5766 case BitstreamEntry::EndBlock: 5767 // Done parsing VST, jump back to wherever we came from. 5768 Stream.JumpToBit(CurrentBit); 5769 return std::error_code(); 5770 case BitstreamEntry::Record: 5771 // The interesting case. 5772 break; 5773 } 5774 5775 // Read a record. 5776 Record.clear(); 5777 switch (Stream.readRecord(Entry.ID, Record)) { 5778 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5779 break; 5780 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5781 if (convertToString(Record, 1, ValueName)) 5782 return error("Invalid record"); 5783 unsigned ValueID = Record[0]; 5784 assert(!SourceFileName.empty()); 5785 auto VLI = ValueIdToLinkageMap.find(ValueID); 5786 assert(VLI != ValueIdToLinkageMap.end() && 5787 "No linkage found for VST entry?"); 5788 auto Linkage = VLI->second; 5789 std::string GlobalId = 5790 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5791 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5792 auto OriginalNameID = ValueGUID; 5793 if (GlobalValue::isLocalLinkage(Linkage)) 5794 OriginalNameID = GlobalValue::getGUID(ValueName); 5795 if (PrintSummaryGUIDs) 5796 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5797 << ValueName << "\n"; 5798 ValueIdToCallGraphGUIDMap[ValueID] = 5799 std::make_pair(ValueGUID, OriginalNameID); 5800 ValueName.clear(); 5801 break; 5802 } 5803 case bitc::VST_CODE_FNENTRY: { 5804 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5805 if (convertToString(Record, 2, ValueName)) 5806 return error("Invalid record"); 5807 unsigned ValueID = Record[0]; 5808 assert(!SourceFileName.empty()); 5809 auto VLI = ValueIdToLinkageMap.find(ValueID); 5810 assert(VLI != ValueIdToLinkageMap.end() && 5811 "No linkage found for VST entry?"); 5812 auto Linkage = VLI->second; 5813 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5814 ValueName, VLI->second, SourceFileName); 5815 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5816 auto OriginalNameID = FunctionGUID; 5817 if (GlobalValue::isLocalLinkage(Linkage)) 5818 OriginalNameID = GlobalValue::getGUID(ValueName); 5819 if (PrintSummaryGUIDs) 5820 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5821 << ValueName << "\n"; 5822 ValueIdToCallGraphGUIDMap[ValueID] = 5823 std::make_pair(FunctionGUID, OriginalNameID); 5824 5825 ValueName.clear(); 5826 break; 5827 } 5828 case bitc::VST_CODE_COMBINED_ENTRY: { 5829 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5830 unsigned ValueID = Record[0]; 5831 GlobalValue::GUID RefGUID = Record[1]; 5832 // The "original name", which is the second value of the pair will be 5833 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5834 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5835 break; 5836 } 5837 } 5838 } 5839 } 5840 5841 // Parse just the blocks needed for building the index out of the module. 5842 // At the end of this routine the module Index is populated with a map 5843 // from global value id to GlobalValueSummary objects. 5844 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5845 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5846 return error("Invalid record"); 5847 5848 SmallVector<uint64_t, 64> Record; 5849 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5850 unsigned ValueId = 0; 5851 5852 // Read the index for this module. 5853 while (1) { 5854 BitstreamEntry Entry = Stream.advance(); 5855 5856 switch (Entry.Kind) { 5857 case BitstreamEntry::Error: 5858 return error("Malformed block"); 5859 case BitstreamEntry::EndBlock: 5860 return std::error_code(); 5861 5862 case BitstreamEntry::SubBlock: 5863 if (CheckGlobalValSummaryPresenceOnly) { 5864 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5865 SeenGlobalValSummary = true; 5866 // No need to parse the rest since we found the summary. 5867 return std::error_code(); 5868 } 5869 if (Stream.SkipBlock()) 5870 return error("Invalid record"); 5871 continue; 5872 } 5873 switch (Entry.ID) { 5874 default: // Skip unknown content. 5875 if (Stream.SkipBlock()) 5876 return error("Invalid record"); 5877 break; 5878 case bitc::BLOCKINFO_BLOCK_ID: 5879 // Need to parse these to get abbrev ids (e.g. for VST) 5880 if (Stream.ReadBlockInfoBlock()) 5881 return error("Malformed block"); 5882 break; 5883 case bitc::VALUE_SYMTAB_BLOCK_ID: 5884 // Should have been parsed earlier via VSTOffset, unless there 5885 // is no summary section. 5886 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5887 !SeenGlobalValSummary) && 5888 "Expected early VST parse via VSTOffset record"); 5889 if (Stream.SkipBlock()) 5890 return error("Invalid record"); 5891 break; 5892 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5893 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5894 assert(!SeenValueSymbolTable && 5895 "Already read VST when parsing summary block?"); 5896 if (std::error_code EC = 5897 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5898 return EC; 5899 SeenValueSymbolTable = true; 5900 SeenGlobalValSummary = true; 5901 if (std::error_code EC = parseEntireSummary()) 5902 return EC; 5903 break; 5904 case bitc::MODULE_STRTAB_BLOCK_ID: 5905 if (std::error_code EC = parseModuleStringTable()) 5906 return EC; 5907 break; 5908 } 5909 continue; 5910 5911 case BitstreamEntry::Record: { 5912 Record.clear(); 5913 auto BitCode = Stream.readRecord(Entry.ID, Record); 5914 switch (BitCode) { 5915 default: 5916 break; // Default behavior, ignore unknown content. 5917 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5918 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5919 SmallString<128> ValueName; 5920 if (convertToString(Record, 0, ValueName)) 5921 return error("Invalid record"); 5922 SourceFileName = ValueName.c_str(); 5923 break; 5924 } 5925 /// MODULE_CODE_HASH: [5*i32] 5926 case bitc::MODULE_CODE_HASH: { 5927 if (Record.size() != 5) 5928 return error("Invalid hash length " + Twine(Record.size()).str()); 5929 if (!TheIndex) 5930 break; 5931 if (TheIndex->modulePaths().empty()) 5932 // Does not have any summary emitted. 5933 break; 5934 if (TheIndex->modulePaths().size() != 1) 5935 return error("Don't expect multiple modules defined?"); 5936 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5937 int Pos = 0; 5938 for (auto &Val : Record) { 5939 assert(!(Val >> 32) && "Unexpected high bits set"); 5940 Hash[Pos++] = Val; 5941 } 5942 break; 5943 } 5944 /// MODULE_CODE_VSTOFFSET: [offset] 5945 case bitc::MODULE_CODE_VSTOFFSET: 5946 if (Record.size() < 1) 5947 return error("Invalid record"); 5948 VSTOffset = Record[0]; 5949 break; 5950 // GLOBALVAR: [pointer type, isconst, initid, 5951 // linkage, alignment, section, visibility, threadlocal, 5952 // unnamed_addr, externally_initialized, dllstorageclass, 5953 // comdat] 5954 case bitc::MODULE_CODE_GLOBALVAR: { 5955 if (Record.size() < 6) 5956 return error("Invalid record"); 5957 uint64_t RawLinkage = Record[3]; 5958 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5959 ValueIdToLinkageMap[ValueId++] = Linkage; 5960 break; 5961 } 5962 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5963 // alignment, section, visibility, gc, unnamed_addr, 5964 // prologuedata, dllstorageclass, comdat, prefixdata] 5965 case bitc::MODULE_CODE_FUNCTION: { 5966 if (Record.size() < 8) 5967 return error("Invalid record"); 5968 uint64_t RawLinkage = Record[3]; 5969 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5970 ValueIdToLinkageMap[ValueId++] = Linkage; 5971 break; 5972 } 5973 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5974 // dllstorageclass] 5975 case bitc::MODULE_CODE_ALIAS: { 5976 if (Record.size() < 6) 5977 return error("Invalid record"); 5978 uint64_t RawLinkage = Record[3]; 5979 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5980 ValueIdToLinkageMap[ValueId++] = Linkage; 5981 break; 5982 } 5983 } 5984 } 5985 continue; 5986 } 5987 } 5988 } 5989 5990 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5991 // objects in the index. 5992 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5993 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5994 return error("Invalid record"); 5995 SmallVector<uint64_t, 64> Record; 5996 5997 // Parse version 5998 { 5999 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6000 if (Entry.Kind != BitstreamEntry::Record) 6001 return error("Invalid Summary Block: record for version expected"); 6002 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6003 return error("Invalid Summary Block: version expected"); 6004 } 6005 const uint64_t Version = Record[0]; 6006 if (Version != 1) 6007 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6008 Record.clear(); 6009 6010 // Keep around the last seen summary to be used when we see an optional 6011 // "OriginalName" attachement. 6012 GlobalValueSummary *LastSeenSummary = nullptr; 6013 bool Combined = false; 6014 while (1) { 6015 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6016 6017 switch (Entry.Kind) { 6018 case BitstreamEntry::SubBlock: // Handled for us already. 6019 case BitstreamEntry::Error: 6020 return error("Malformed block"); 6021 case BitstreamEntry::EndBlock: 6022 // For a per-module index, remove any entries that still have empty 6023 // summaries. The VST parsing creates entries eagerly for all symbols, 6024 // but not all have associated summaries (e.g. it doesn't know how to 6025 // distinguish between VST_CODE_ENTRY for function declarations vs global 6026 // variables with initializers that end up with a summary). Remove those 6027 // entries now so that we don't need to rely on the combined index merger 6028 // to clean them up (especially since that may not run for the first 6029 // module's index if we merge into that). 6030 if (!Combined) 6031 TheIndex->removeEmptySummaryEntries(); 6032 return std::error_code(); 6033 case BitstreamEntry::Record: 6034 // The interesting case. 6035 break; 6036 } 6037 6038 // Read a record. The record format depends on whether this 6039 // is a per-module index or a combined index file. In the per-module 6040 // case the records contain the associated value's ID for correlation 6041 // with VST entries. In the combined index the correlation is done 6042 // via the bitcode offset of the summary records (which were saved 6043 // in the combined index VST entries). The records also contain 6044 // information used for ThinLTO renaming and importing. 6045 Record.clear(); 6046 auto BitCode = Stream.readRecord(Entry.ID, Record); 6047 switch (BitCode) { 6048 default: // Default behavior: ignore. 6049 break; 6050 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6051 // n x (valueid, callsitecount)] 6052 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6053 // numrefs x valueid, 6054 // n x (valueid, callsitecount, profilecount)] 6055 case bitc::FS_PERMODULE: 6056 case bitc::FS_PERMODULE_PROFILE: { 6057 unsigned ValueID = Record[0]; 6058 uint64_t RawFlags = Record[1]; 6059 unsigned InstCount = Record[2]; 6060 unsigned NumRefs = Record[3]; 6061 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6062 std::unique_ptr<FunctionSummary> FS = 6063 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6064 // The module path string ref set in the summary must be owned by the 6065 // index's module string table. Since we don't have a module path 6066 // string table section in the per-module index, we create a single 6067 // module path string table entry with an empty (0) ID to take 6068 // ownership. 6069 FS->setModulePath( 6070 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6071 static int RefListStartIndex = 4; 6072 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6073 assert(Record.size() >= RefListStartIndex + NumRefs && 6074 "Record size inconsistent with number of references"); 6075 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6076 unsigned RefValueId = Record[I]; 6077 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6078 FS->addRefEdge(RefGUID); 6079 } 6080 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6081 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6082 ++I) { 6083 unsigned CalleeValueId = Record[I]; 6084 unsigned CallsiteCount = Record[++I]; 6085 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6086 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6087 FS->addCallGraphEdge(CalleeGUID, 6088 CalleeInfo(CallsiteCount, ProfileCount)); 6089 } 6090 auto GUID = getGUIDFromValueId(ValueID); 6091 FS->setOriginalName(GUID.second); 6092 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6093 break; 6094 } 6095 // FS_ALIAS: [valueid, flags, valueid] 6096 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6097 // they expect all aliasee summaries to be available. 6098 case bitc::FS_ALIAS: { 6099 unsigned ValueID = Record[0]; 6100 uint64_t RawFlags = Record[1]; 6101 unsigned AliaseeID = Record[2]; 6102 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6103 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6104 // The module path string ref set in the summary must be owned by the 6105 // index's module string table. Since we don't have a module path 6106 // string table section in the per-module index, we create a single 6107 // module path string table entry with an empty (0) ID to take 6108 // ownership. 6109 AS->setModulePath( 6110 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6111 6112 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6113 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6114 if (!AliaseeSummary) 6115 return error("Alias expects aliasee summary to be parsed"); 6116 AS->setAliasee(AliaseeSummary); 6117 6118 auto GUID = getGUIDFromValueId(ValueID); 6119 AS->setOriginalName(GUID.second); 6120 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6121 break; 6122 } 6123 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6124 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6125 unsigned ValueID = Record[0]; 6126 uint64_t RawFlags = Record[1]; 6127 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6128 std::unique_ptr<GlobalVarSummary> FS = 6129 llvm::make_unique<GlobalVarSummary>(Flags); 6130 FS->setModulePath( 6131 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6132 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6133 unsigned RefValueId = Record[I]; 6134 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6135 FS->addRefEdge(RefGUID); 6136 } 6137 auto GUID = getGUIDFromValueId(ValueID); 6138 FS->setOriginalName(GUID.second); 6139 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6140 break; 6141 } 6142 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6143 // numrefs x valueid, n x (valueid, callsitecount)] 6144 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6145 // numrefs x valueid, 6146 // n x (valueid, callsitecount, profilecount)] 6147 case bitc::FS_COMBINED: 6148 case bitc::FS_COMBINED_PROFILE: { 6149 unsigned ValueID = Record[0]; 6150 uint64_t ModuleId = Record[1]; 6151 uint64_t RawFlags = Record[2]; 6152 unsigned InstCount = Record[3]; 6153 unsigned NumRefs = Record[4]; 6154 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6155 std::unique_ptr<FunctionSummary> FS = 6156 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6157 LastSeenSummary = FS.get(); 6158 FS->setModulePath(ModuleIdMap[ModuleId]); 6159 static int RefListStartIndex = 5; 6160 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6161 assert(Record.size() >= RefListStartIndex + NumRefs && 6162 "Record size inconsistent with number of references"); 6163 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6164 ++I) { 6165 unsigned RefValueId = Record[I]; 6166 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6167 FS->addRefEdge(RefGUID); 6168 } 6169 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6170 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6171 ++I) { 6172 unsigned CalleeValueId = Record[I]; 6173 unsigned CallsiteCount = Record[++I]; 6174 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6175 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6176 FS->addCallGraphEdge(CalleeGUID, 6177 CalleeInfo(CallsiteCount, ProfileCount)); 6178 } 6179 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6180 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6181 Combined = true; 6182 break; 6183 } 6184 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6185 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6186 // they expect all aliasee summaries to be available. 6187 case bitc::FS_COMBINED_ALIAS: { 6188 unsigned ValueID = Record[0]; 6189 uint64_t ModuleId = Record[1]; 6190 uint64_t RawFlags = Record[2]; 6191 unsigned AliaseeValueId = Record[3]; 6192 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6193 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6194 LastSeenSummary = AS.get(); 6195 AS->setModulePath(ModuleIdMap[ModuleId]); 6196 6197 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6198 auto AliaseeInModule = 6199 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6200 if (!AliaseeInModule) 6201 return error("Alias expects aliasee summary to be parsed"); 6202 AS->setAliasee(AliaseeInModule); 6203 6204 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6205 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6206 Combined = true; 6207 break; 6208 } 6209 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6210 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6211 unsigned ValueID = Record[0]; 6212 uint64_t ModuleId = Record[1]; 6213 uint64_t RawFlags = Record[2]; 6214 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6215 std::unique_ptr<GlobalVarSummary> FS = 6216 llvm::make_unique<GlobalVarSummary>(Flags); 6217 LastSeenSummary = FS.get(); 6218 FS->setModulePath(ModuleIdMap[ModuleId]); 6219 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6220 unsigned RefValueId = Record[I]; 6221 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6222 FS->addRefEdge(RefGUID); 6223 } 6224 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6225 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6226 Combined = true; 6227 break; 6228 } 6229 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6230 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6231 uint64_t OriginalName = Record[0]; 6232 if (!LastSeenSummary) 6233 return error("Name attachment that does not follow a combined record"); 6234 LastSeenSummary->setOriginalName(OriginalName); 6235 // Reset the LastSeenSummary 6236 LastSeenSummary = nullptr; 6237 } 6238 } 6239 } 6240 llvm_unreachable("Exit infinite loop"); 6241 } 6242 6243 // Parse the module string table block into the Index. 6244 // This populates the ModulePathStringTable map in the index. 6245 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6246 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6247 return error("Invalid record"); 6248 6249 SmallVector<uint64_t, 64> Record; 6250 6251 SmallString<128> ModulePath; 6252 ModulePathStringTableTy::iterator LastSeenModulePath; 6253 while (1) { 6254 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6255 6256 switch (Entry.Kind) { 6257 case BitstreamEntry::SubBlock: // Handled for us already. 6258 case BitstreamEntry::Error: 6259 return error("Malformed block"); 6260 case BitstreamEntry::EndBlock: 6261 return std::error_code(); 6262 case BitstreamEntry::Record: 6263 // The interesting case. 6264 break; 6265 } 6266 6267 Record.clear(); 6268 switch (Stream.readRecord(Entry.ID, Record)) { 6269 default: // Default behavior: ignore. 6270 break; 6271 case bitc::MST_CODE_ENTRY: { 6272 // MST_ENTRY: [modid, namechar x N] 6273 uint64_t ModuleId = Record[0]; 6274 6275 if (convertToString(Record, 1, ModulePath)) 6276 return error("Invalid record"); 6277 6278 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6279 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6280 6281 ModulePath.clear(); 6282 break; 6283 } 6284 /// MST_CODE_HASH: [5*i32] 6285 case bitc::MST_CODE_HASH: { 6286 if (Record.size() != 5) 6287 return error("Invalid hash length " + Twine(Record.size()).str()); 6288 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6289 return error("Invalid hash that does not follow a module path"); 6290 int Pos = 0; 6291 for (auto &Val : Record) { 6292 assert(!(Val >> 32) && "Unexpected high bits set"); 6293 LastSeenModulePath->second.second[Pos++] = Val; 6294 } 6295 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6296 LastSeenModulePath = TheIndex->modulePaths().end(); 6297 break; 6298 } 6299 } 6300 } 6301 llvm_unreachable("Exit infinite loop"); 6302 } 6303 6304 // Parse the function info index from the bitcode streamer into the given index. 6305 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6306 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6307 TheIndex = I; 6308 6309 if (std::error_code EC = initStream(std::move(Streamer))) 6310 return EC; 6311 6312 // Sniff for the signature. 6313 if (!hasValidBitcodeHeader(Stream)) 6314 return error("Invalid bitcode signature"); 6315 6316 // We expect a number of well-defined blocks, though we don't necessarily 6317 // need to understand them all. 6318 while (1) { 6319 if (Stream.AtEndOfStream()) { 6320 // We didn't really read a proper Module block. 6321 return error("Malformed block"); 6322 } 6323 6324 BitstreamEntry Entry = 6325 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6326 6327 if (Entry.Kind != BitstreamEntry::SubBlock) 6328 return error("Malformed block"); 6329 6330 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6331 // building the function summary index. 6332 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6333 return parseModule(); 6334 6335 if (Stream.SkipBlock()) 6336 return error("Invalid record"); 6337 } 6338 } 6339 6340 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6341 std::unique_ptr<DataStreamer> Streamer) { 6342 if (Streamer) 6343 return initLazyStream(std::move(Streamer)); 6344 return initStreamFromBuffer(); 6345 } 6346 6347 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6348 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6349 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6350 6351 if (Buffer->getBufferSize() & 3) 6352 return error("Invalid bitcode signature"); 6353 6354 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6355 // The magic number is 0x0B17C0DE stored in little endian. 6356 if (isBitcodeWrapper(BufPtr, BufEnd)) 6357 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6358 return error("Invalid bitcode wrapper header"); 6359 6360 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6361 Stream.init(&*StreamFile); 6362 6363 return std::error_code(); 6364 } 6365 6366 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6367 std::unique_ptr<DataStreamer> Streamer) { 6368 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6369 // see it. 6370 auto OwnedBytes = 6371 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6372 StreamingMemoryObject &Bytes = *OwnedBytes; 6373 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6374 Stream.init(&*StreamFile); 6375 6376 unsigned char buf[16]; 6377 if (Bytes.readBytes(buf, 16, 0) != 16) 6378 return error("Invalid bitcode signature"); 6379 6380 if (!isBitcode(buf, buf + 16)) 6381 return error("Invalid bitcode signature"); 6382 6383 if (isBitcodeWrapper(buf, buf + 4)) { 6384 const unsigned char *bitcodeStart = buf; 6385 const unsigned char *bitcodeEnd = buf + 16; 6386 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6387 Bytes.dropLeadingBytes(bitcodeStart - buf); 6388 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6389 } 6390 return std::error_code(); 6391 } 6392 6393 namespace { 6394 // FIXME: This class is only here to support the transition to llvm::Error. It 6395 // will be removed once this transition is complete. Clients should prefer to 6396 // deal with the Error value directly, rather than converting to error_code. 6397 class BitcodeErrorCategoryType : public std::error_category { 6398 const char *name() const LLVM_NOEXCEPT override { 6399 return "llvm.bitcode"; 6400 } 6401 std::string message(int IE) const override { 6402 BitcodeError E = static_cast<BitcodeError>(IE); 6403 switch (E) { 6404 case BitcodeError::InvalidBitcodeSignature: 6405 return "Invalid bitcode signature"; 6406 case BitcodeError::CorruptedBitcode: 6407 return "Corrupted bitcode"; 6408 } 6409 llvm_unreachable("Unknown error type!"); 6410 } 6411 }; 6412 } // end anonymous namespace 6413 6414 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6415 6416 const std::error_category &llvm::BitcodeErrorCategory() { 6417 return *ErrorCategory; 6418 } 6419 6420 //===----------------------------------------------------------------------===// 6421 // External interface 6422 //===----------------------------------------------------------------------===// 6423 6424 static ErrorOr<std::unique_ptr<Module>> 6425 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6426 BitcodeReader *R, LLVMContext &Context, 6427 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6428 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6429 M->setMaterializer(R); 6430 6431 auto cleanupOnError = [&](std::error_code EC) { 6432 R->releaseBuffer(); // Never take ownership on error. 6433 return EC; 6434 }; 6435 6436 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6437 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6438 ShouldLazyLoadMetadata)) 6439 return cleanupOnError(EC); 6440 6441 if (MaterializeAll) { 6442 // Read in the entire module, and destroy the BitcodeReader. 6443 if (std::error_code EC = M->materializeAll()) 6444 return cleanupOnError(EC); 6445 } else { 6446 // Resolve forward references from blockaddresses. 6447 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6448 return cleanupOnError(EC); 6449 } 6450 return std::move(M); 6451 } 6452 6453 /// \brief Get a lazy one-at-time loading module from bitcode. 6454 /// 6455 /// This isn't always used in a lazy context. In particular, it's also used by 6456 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6457 /// in forward-referenced functions from block address references. 6458 /// 6459 /// \param[in] MaterializeAll Set to \c true if we should materialize 6460 /// everything. 6461 static ErrorOr<std::unique_ptr<Module>> 6462 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6463 LLVMContext &Context, bool MaterializeAll, 6464 bool ShouldLazyLoadMetadata = false) { 6465 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6466 6467 ErrorOr<std::unique_ptr<Module>> Ret = 6468 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6469 MaterializeAll, ShouldLazyLoadMetadata); 6470 if (!Ret) 6471 return Ret; 6472 6473 Buffer.release(); // The BitcodeReader owns it now. 6474 return Ret; 6475 } 6476 6477 ErrorOr<std::unique_ptr<Module>> 6478 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6479 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6480 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6481 ShouldLazyLoadMetadata); 6482 } 6483 6484 ErrorOr<std::unique_ptr<Module>> 6485 llvm::getStreamedBitcodeModule(StringRef Name, 6486 std::unique_ptr<DataStreamer> Streamer, 6487 LLVMContext &Context) { 6488 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6489 BitcodeReader *R = new BitcodeReader(Context); 6490 6491 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6492 false); 6493 } 6494 6495 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6496 LLVMContext &Context) { 6497 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6498 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6499 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6500 // written. We must defer until the Module has been fully materialized. 6501 } 6502 6503 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6504 LLVMContext &Context) { 6505 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6506 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6507 ErrorOr<std::string> Triple = R->parseTriple(); 6508 if (Triple.getError()) 6509 return ""; 6510 return Triple.get(); 6511 } 6512 6513 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6514 LLVMContext &Context) { 6515 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6516 BitcodeReader R(Buf.release(), Context); 6517 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6518 if (ProducerString.getError()) 6519 return ""; 6520 return ProducerString.get(); 6521 } 6522 6523 // Parse the specified bitcode buffer, returning the function info index. 6524 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6525 MemoryBufferRef Buffer, 6526 const DiagnosticHandlerFunction &DiagnosticHandler) { 6527 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6528 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6529 6530 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6531 6532 auto cleanupOnError = [&](std::error_code EC) { 6533 R.releaseBuffer(); // Never take ownership on error. 6534 return EC; 6535 }; 6536 6537 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6538 return cleanupOnError(EC); 6539 6540 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6541 return std::move(Index); 6542 } 6543 6544 // Check if the given bitcode buffer contains a global value summary block. 6545 bool llvm::hasGlobalValueSummary( 6546 MemoryBufferRef Buffer, 6547 const DiagnosticHandlerFunction &DiagnosticHandler) { 6548 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6549 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6550 6551 auto cleanupOnError = [&](std::error_code EC) { 6552 R.releaseBuffer(); // Never take ownership on error. 6553 return false; 6554 }; 6555 6556 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6557 return cleanupOnError(EC); 6558 6559 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6560 return R.foundGlobalValSummary(); 6561 } 6562