xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision a397baea8803fdaf2177dfb0c5678f0fc966bb6f)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/AutoUpgrade.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/OperandTraits.h"
27 using namespace llvm;
28 
29 void BitcodeReader::FreeState() {
30   delete Buffer;
31   Buffer = 0;
32   std::vector<PATypeHolder>().swap(TypeList);
33   ValueList.clear();
34 
35   std::vector<AttrListPtr>().swap(MAttributes);
36   std::vector<BasicBlock*>().swap(FunctionBBs);
37   std::vector<Function*>().swap(FunctionsWithBodies);
38   DeferredFunctionInfo.clear();
39 }
40 
41 //===----------------------------------------------------------------------===//
42 //  Helper functions to implement forward reference resolution, etc.
43 //===----------------------------------------------------------------------===//
44 
45 /// ConvertToString - Convert a string from a record into an std::string, return
46 /// true on failure.
47 template<typename StrTy>
48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                             StrTy &Result) {
50   if (Idx > Record.size())
51     return true;
52 
53   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54     Result += (char)Record[i];
55   return false;
56 }
57 
58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59   switch (Val) {
60   default: // Map unknown/new linkages to external
61   case 0: return GlobalValue::ExternalLinkage;
62   case 1: return GlobalValue::WeakLinkage;
63   case 2: return GlobalValue::AppendingLinkage;
64   case 3: return GlobalValue::InternalLinkage;
65   case 4: return GlobalValue::LinkOnceLinkage;
66   case 5: return GlobalValue::DLLImportLinkage;
67   case 6: return GlobalValue::DLLExportLinkage;
68   case 7: return GlobalValue::ExternalWeakLinkage;
69   case 8: return GlobalValue::CommonLinkage;
70   }
71 }
72 
73 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
74   switch (Val) {
75   default: // Map unknown visibilities to default.
76   case 0: return GlobalValue::DefaultVisibility;
77   case 1: return GlobalValue::HiddenVisibility;
78   case 2: return GlobalValue::ProtectedVisibility;
79   }
80 }
81 
82 static int GetDecodedCastOpcode(unsigned Val) {
83   switch (Val) {
84   default: return -1;
85   case bitc::CAST_TRUNC   : return Instruction::Trunc;
86   case bitc::CAST_ZEXT    : return Instruction::ZExt;
87   case bitc::CAST_SEXT    : return Instruction::SExt;
88   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
89   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
90   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
91   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
92   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
93   case bitc::CAST_FPEXT   : return Instruction::FPExt;
94   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
95   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
96   case bitc::CAST_BITCAST : return Instruction::BitCast;
97   }
98 }
99 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
100   switch (Val) {
101   default: return -1;
102   case bitc::BINOP_ADD:  return Instruction::Add;
103   case bitc::BINOP_SUB:  return Instruction::Sub;
104   case bitc::BINOP_MUL:  return Instruction::Mul;
105   case bitc::BINOP_UDIV: return Instruction::UDiv;
106   case bitc::BINOP_SDIV:
107     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
108   case bitc::BINOP_UREM: return Instruction::URem;
109   case bitc::BINOP_SREM:
110     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
111   case bitc::BINOP_SHL:  return Instruction::Shl;
112   case bitc::BINOP_LSHR: return Instruction::LShr;
113   case bitc::BINOP_ASHR: return Instruction::AShr;
114   case bitc::BINOP_AND:  return Instruction::And;
115   case bitc::BINOP_OR:   return Instruction::Or;
116   case bitc::BINOP_XOR:  return Instruction::Xor;
117   }
118 }
119 
120 namespace llvm {
121 namespace {
122   /// @brief A class for maintaining the slot number definition
123   /// as a placeholder for the actual definition for forward constants defs.
124   class ConstantPlaceHolder : public ConstantExpr {
125     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
126     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
127   public:
128     // allocate space for exactly one operand
129     void *operator new(size_t s) {
130       return User::operator new(s, 1);
131     }
132     explicit ConstantPlaceHolder(const Type *Ty)
133       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
134       Op<0>() = UndefValue::get(Type::Int32Ty);
135     }
136 
137     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
138     static inline bool classof(const ConstantPlaceHolder *) { return true; }
139     static bool classof(const Value *V) {
140       return isa<ConstantExpr>(V) &&
141              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
142     }
143 
144 
145     /// Provide fast operand accessors
146     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
147   };
148 }
149 
150 
151   // FIXME: can we inherit this from ConstantExpr?
152 template <>
153 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
154 };
155 
156 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
157 }
158 
159 void BitcodeReaderValueList::resize(unsigned Desired) {
160   if (Desired > Capacity) {
161     // Since we expect many values to come from the bitcode file we better
162     // allocate the double amount, so that the array size grows exponentially
163     // at each reallocation.  Also, add a small amount of 100 extra elements
164     // each time, to reallocate less frequently when the array is still small.
165     //
166     Capacity = Desired * 2 + 100;
167     Use *New = allocHungoffUses(Capacity);
168     Use *Old = OperandList;
169     unsigned Ops = getNumOperands();
170     for (int i(Ops - 1); i >= 0; --i)
171       New[i] = Old[i].get();
172     OperandList = New;
173     if (Old) Use::zap(Old, Old + Ops, true);
174   }
175 }
176 
177 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
178                                                     const Type *Ty) {
179   if (Idx >= size()) {
180     // Insert a bunch of null values.
181     resize(Idx + 1);
182     NumOperands = Idx+1;
183   }
184 
185   if (Value *V = OperandList[Idx]) {
186     assert(Ty == V->getType() && "Type mismatch in constant table!");
187     return cast<Constant>(V);
188   }
189 
190   // Create and return a placeholder, which will later be RAUW'd.
191   Constant *C = new ConstantPlaceHolder(Ty);
192   OperandList[Idx] = C;
193   return C;
194 }
195 
196 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
197   if (Idx >= size()) {
198     // Insert a bunch of null values.
199     resize(Idx + 1);
200     NumOperands = Idx+1;
201   }
202 
203   if (Value *V = OperandList[Idx]) {
204     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
205     return V;
206   }
207 
208   // No type specified, must be invalid reference.
209   if (Ty == 0) return 0;
210 
211   // Create and return a placeholder, which will later be RAUW'd.
212   Value *V = new Argument(Ty);
213   OperandList[Idx] = V;
214   return V;
215 }
216 
217 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
218 /// resolves any forward references.  The idea behind this is that we sometimes
219 /// get constants (such as large arrays) which reference *many* forward ref
220 /// constants.  Replacing each of these causes a lot of thrashing when
221 /// building/reuniquing the constant.  Instead of doing this, we look at all the
222 /// uses and rewrite all the place holders at once for any constant that uses
223 /// a placeholder.
224 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
225   // Sort the values by-pointer so that they are efficient to look up with a
226   // binary search.
227   std::sort(ResolveConstants.begin(), ResolveConstants.end());
228 
229   SmallVector<Constant*, 64> NewOps;
230 
231   while (!ResolveConstants.empty()) {
232     Value *RealVal = getOperand(ResolveConstants.back().second);
233     Constant *Placeholder = ResolveConstants.back().first;
234     ResolveConstants.pop_back();
235 
236     // Loop over all users of the placeholder, updating them to reference the
237     // new value.  If they reference more than one placeholder, update them all
238     // at once.
239     while (!Placeholder->use_empty()) {
240       Value::use_iterator UI = Placeholder->use_begin();
241 
242       // If the using object isn't uniqued, just update the operands.  This
243       // handles instructions and initializers for global variables.
244       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
245         UI.getUse().set(RealVal);
246         continue;
247       }
248 
249       // Otherwise, we have a constant that uses the placeholder.  Replace that
250       // constant with a new constant that has *all* placeholder uses updated.
251       Constant *UserC = cast<Constant>(*UI);
252       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
253            I != E; ++I) {
254         Value *NewOp;
255         if (!isa<ConstantPlaceHolder>(*I)) {
256           // Not a placeholder reference.
257           NewOp = *I;
258         } else if (*I == Placeholder) {
259           // Common case is that it just references this one placeholder.
260           NewOp = RealVal;
261         } else {
262           // Otherwise, look up the placeholder in ResolveConstants.
263           ResolveConstantsTy::iterator It =
264             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
265                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
266                                                             0));
267           assert(It != ResolveConstants.end() && It->first == *I);
268           NewOp = this->getOperand(It->second);
269         }
270 
271         NewOps.push_back(cast<Constant>(NewOp));
272       }
273 
274       // Make the new constant.
275       Constant *NewC;
276       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
277         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
278       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
279         NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
280                                    UserCS->getType()->isPacked());
281       } else if (isa<ConstantVector>(UserC)) {
282         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
283       } else {
284         // Must be a constant expression.
285         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
286                                                           NewOps.size());
287       }
288 
289       UserC->replaceAllUsesWith(NewC);
290       UserC->destroyConstant();
291       NewOps.clear();
292     }
293 
294     delete Placeholder;
295   }
296 }
297 
298 
299 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
300   // If the TypeID is in range, return it.
301   if (ID < TypeList.size())
302     return TypeList[ID].get();
303   if (!isTypeTable) return 0;
304 
305   // The type table allows forward references.  Push as many Opaque types as
306   // needed to get up to ID.
307   while (TypeList.size() <= ID)
308     TypeList.push_back(OpaqueType::get());
309   return TypeList.back().get();
310 }
311 
312 //===----------------------------------------------------------------------===//
313 //  Functions for parsing blocks from the bitcode file
314 //===----------------------------------------------------------------------===//
315 
316 bool BitcodeReader::ParseAttributeBlock() {
317   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
318     return Error("Malformed block record");
319 
320   if (!MAttributes.empty())
321     return Error("Multiple PARAMATTR blocks found!");
322 
323   SmallVector<uint64_t, 64> Record;
324 
325   SmallVector<AttributeWithIndex, 8> Attrs;
326 
327   // Read all the records.
328   while (1) {
329     unsigned Code = Stream.ReadCode();
330     if (Code == bitc::END_BLOCK) {
331       if (Stream.ReadBlockEnd())
332         return Error("Error at end of PARAMATTR block");
333       return false;
334     }
335 
336     if (Code == bitc::ENTER_SUBBLOCK) {
337       // No known subblocks, always skip them.
338       Stream.ReadSubBlockID();
339       if (Stream.SkipBlock())
340         return Error("Malformed block record");
341       continue;
342     }
343 
344     if (Code == bitc::DEFINE_ABBREV) {
345       Stream.ReadAbbrevRecord();
346       continue;
347     }
348 
349     // Read a record.
350     Record.clear();
351     switch (Stream.ReadRecord(Code, Record)) {
352     default:  // Default behavior: ignore.
353       break;
354     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
355       if (Record.size() & 1)
356         return Error("Invalid ENTRY record");
357 
358       // FIXME : Remove this autoupgrade code in LLVM 3.0.
359       // If Function attributes are using index 0 then transfer them
360       // to index ~0. Index 0 is used for return value attributes but used to be
361       // used for function attributes.
362       Attributes RetAttribute = Attribute::None;
363       Attributes FnAttribute = Attribute::None;
364       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
365         if (Record[i] == 0)
366           RetAttribute = Record[i+1];
367         else if (Record[i] == ~0U)
368           FnAttribute = Record[i+1];
369       }
370 
371       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
372                               Attribute::ReadOnly|Attribute::ReadNone);
373 
374       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
375           (RetAttribute & OldRetAttrs) != 0) {
376         if (FnAttribute == Attribute::None) { // add a slot so they get added.
377           Record.push_back(~0U);
378           Record.push_back(0);
379         }
380 
381         FnAttribute  |= RetAttribute & OldRetAttrs;
382         RetAttribute &= ~OldRetAttrs;
383       }
384 
385       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
386         if (Record[i] == 0) {
387           if (RetAttribute != Attribute::None)
388             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
389         } else if (Record[i] == ~0U) {
390           if (FnAttribute != Attribute::None)
391             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
392         } else if (Record[i+1] != Attribute::None)
393           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
394       }
395 
396       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
397       Attrs.clear();
398       break;
399     }
400     }
401   }
402 }
403 
404 
405 bool BitcodeReader::ParseTypeTable() {
406   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
407     return Error("Malformed block record");
408 
409   if (!TypeList.empty())
410     return Error("Multiple TYPE_BLOCKs found!");
411 
412   SmallVector<uint64_t, 64> Record;
413   unsigned NumRecords = 0;
414 
415   // Read all the records for this type table.
416   while (1) {
417     unsigned Code = Stream.ReadCode();
418     if (Code == bitc::END_BLOCK) {
419       if (NumRecords != TypeList.size())
420         return Error("Invalid type forward reference in TYPE_BLOCK");
421       if (Stream.ReadBlockEnd())
422         return Error("Error at end of type table block");
423       return false;
424     }
425 
426     if (Code == bitc::ENTER_SUBBLOCK) {
427       // No known subblocks, always skip them.
428       Stream.ReadSubBlockID();
429       if (Stream.SkipBlock())
430         return Error("Malformed block record");
431       continue;
432     }
433 
434     if (Code == bitc::DEFINE_ABBREV) {
435       Stream.ReadAbbrevRecord();
436       continue;
437     }
438 
439     // Read a record.
440     Record.clear();
441     const Type *ResultTy = 0;
442     switch (Stream.ReadRecord(Code, Record)) {
443     default:  // Default behavior: unknown type.
444       ResultTy = 0;
445       break;
446     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
447       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
448       // type list.  This allows us to reserve space.
449       if (Record.size() < 1)
450         return Error("Invalid TYPE_CODE_NUMENTRY record");
451       TypeList.reserve(Record[0]);
452       continue;
453     case bitc::TYPE_CODE_VOID:      // VOID
454       ResultTy = Type::VoidTy;
455       break;
456     case bitc::TYPE_CODE_FLOAT:     // FLOAT
457       ResultTy = Type::FloatTy;
458       break;
459     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
460       ResultTy = Type::DoubleTy;
461       break;
462     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
463       ResultTy = Type::X86_FP80Ty;
464       break;
465     case bitc::TYPE_CODE_FP128:     // FP128
466       ResultTy = Type::FP128Ty;
467       break;
468     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
469       ResultTy = Type::PPC_FP128Ty;
470       break;
471     case bitc::TYPE_CODE_LABEL:     // LABEL
472       ResultTy = Type::LabelTy;
473       break;
474     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
475       ResultTy = 0;
476       break;
477     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
478       if (Record.size() < 1)
479         return Error("Invalid Integer type record");
480 
481       ResultTy = IntegerType::get(Record[0]);
482       break;
483     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
484                                     //          [pointee type, address space]
485       if (Record.size() < 1)
486         return Error("Invalid POINTER type record");
487       unsigned AddressSpace = 0;
488       if (Record.size() == 2)
489         AddressSpace = Record[1];
490       ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
491       break;
492     }
493     case bitc::TYPE_CODE_FUNCTION: {
494       // FIXME: attrid is dead, remove it in LLVM 3.0
495       // FUNCTION: [vararg, attrid, retty, paramty x N]
496       if (Record.size() < 3)
497         return Error("Invalid FUNCTION type record");
498       std::vector<const Type*> ArgTys;
499       for (unsigned i = 3, e = Record.size(); i != e; ++i)
500         ArgTys.push_back(getTypeByID(Record[i], true));
501 
502       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
503                                    Record[0]);
504       break;
505     }
506     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
507       if (Record.size() < 1)
508         return Error("Invalid STRUCT type record");
509       std::vector<const Type*> EltTys;
510       for (unsigned i = 1, e = Record.size(); i != e; ++i)
511         EltTys.push_back(getTypeByID(Record[i], true));
512       ResultTy = StructType::get(EltTys, Record[0]);
513       break;
514     }
515     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
516       if (Record.size() < 2)
517         return Error("Invalid ARRAY type record");
518       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
519       break;
520     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
521       if (Record.size() < 2)
522         return Error("Invalid VECTOR type record");
523       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
524       break;
525     }
526 
527     if (NumRecords == TypeList.size()) {
528       // If this is a new type slot, just append it.
529       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
530       ++NumRecords;
531     } else if (ResultTy == 0) {
532       // Otherwise, this was forward referenced, so an opaque type was created,
533       // but the result type is actually just an opaque.  Leave the one we
534       // created previously.
535       ++NumRecords;
536     } else {
537       // Otherwise, this was forward referenced, so an opaque type was created.
538       // Resolve the opaque type to the real type now.
539       assert(NumRecords < TypeList.size() && "Typelist imbalance");
540       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
541 
542       // Don't directly push the new type on the Tab. Instead we want to replace
543       // the opaque type we previously inserted with the new concrete value. The
544       // refinement from the abstract (opaque) type to the new type causes all
545       // uses of the abstract type to use the concrete type (NewTy). This will
546       // also cause the opaque type to be deleted.
547       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
548 
549       // This should have replaced the old opaque type with the new type in the
550       // value table... or with a preexisting type that was already in the
551       // system.  Let's just make sure it did.
552       assert(TypeList[NumRecords-1].get() != OldTy &&
553              "refineAbstractType didn't work!");
554     }
555   }
556 }
557 
558 
559 bool BitcodeReader::ParseTypeSymbolTable() {
560   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
561     return Error("Malformed block record");
562 
563   SmallVector<uint64_t, 64> Record;
564 
565   // Read all the records for this type table.
566   std::string TypeName;
567   while (1) {
568     unsigned Code = Stream.ReadCode();
569     if (Code == bitc::END_BLOCK) {
570       if (Stream.ReadBlockEnd())
571         return Error("Error at end of type symbol table block");
572       return false;
573     }
574 
575     if (Code == bitc::ENTER_SUBBLOCK) {
576       // No known subblocks, always skip them.
577       Stream.ReadSubBlockID();
578       if (Stream.SkipBlock())
579         return Error("Malformed block record");
580       continue;
581     }
582 
583     if (Code == bitc::DEFINE_ABBREV) {
584       Stream.ReadAbbrevRecord();
585       continue;
586     }
587 
588     // Read a record.
589     Record.clear();
590     switch (Stream.ReadRecord(Code, Record)) {
591     default:  // Default behavior: unknown type.
592       break;
593     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
594       if (ConvertToString(Record, 1, TypeName))
595         return Error("Invalid TST_ENTRY record");
596       unsigned TypeID = Record[0];
597       if (TypeID >= TypeList.size())
598         return Error("Invalid Type ID in TST_ENTRY record");
599 
600       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
601       TypeName.clear();
602       break;
603     }
604   }
605 }
606 
607 bool BitcodeReader::ParseValueSymbolTable() {
608   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
609     return Error("Malformed block record");
610 
611   SmallVector<uint64_t, 64> Record;
612 
613   // Read all the records for this value table.
614   SmallString<128> ValueName;
615   while (1) {
616     unsigned Code = Stream.ReadCode();
617     if (Code == bitc::END_BLOCK) {
618       if (Stream.ReadBlockEnd())
619         return Error("Error at end of value symbol table block");
620       return false;
621     }
622     if (Code == bitc::ENTER_SUBBLOCK) {
623       // No known subblocks, always skip them.
624       Stream.ReadSubBlockID();
625       if (Stream.SkipBlock())
626         return Error("Malformed block record");
627       continue;
628     }
629 
630     if (Code == bitc::DEFINE_ABBREV) {
631       Stream.ReadAbbrevRecord();
632       continue;
633     }
634 
635     // Read a record.
636     Record.clear();
637     switch (Stream.ReadRecord(Code, Record)) {
638     default:  // Default behavior: unknown type.
639       break;
640     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
641       if (ConvertToString(Record, 1, ValueName))
642         return Error("Invalid TST_ENTRY record");
643       unsigned ValueID = Record[0];
644       if (ValueID >= ValueList.size())
645         return Error("Invalid Value ID in VST_ENTRY record");
646       Value *V = ValueList[ValueID];
647 
648       V->setName(&ValueName[0], ValueName.size());
649       ValueName.clear();
650       break;
651     }
652     case bitc::VST_CODE_BBENTRY: {
653       if (ConvertToString(Record, 1, ValueName))
654         return Error("Invalid VST_BBENTRY record");
655       BasicBlock *BB = getBasicBlock(Record[0]);
656       if (BB == 0)
657         return Error("Invalid BB ID in VST_BBENTRY record");
658 
659       BB->setName(&ValueName[0], ValueName.size());
660       ValueName.clear();
661       break;
662     }
663     }
664   }
665 }
666 
667 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
668 /// the LSB for dense VBR encoding.
669 static uint64_t DecodeSignRotatedValue(uint64_t V) {
670   if ((V & 1) == 0)
671     return V >> 1;
672   if (V != 1)
673     return -(V >> 1);
674   // There is no such thing as -0 with integers.  "-0" really means MININT.
675   return 1ULL << 63;
676 }
677 
678 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
679 /// values and aliases that we can.
680 bool BitcodeReader::ResolveGlobalAndAliasInits() {
681   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
682   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
683 
684   GlobalInitWorklist.swap(GlobalInits);
685   AliasInitWorklist.swap(AliasInits);
686 
687   while (!GlobalInitWorklist.empty()) {
688     unsigned ValID = GlobalInitWorklist.back().second;
689     if (ValID >= ValueList.size()) {
690       // Not ready to resolve this yet, it requires something later in the file.
691       GlobalInits.push_back(GlobalInitWorklist.back());
692     } else {
693       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
694         GlobalInitWorklist.back().first->setInitializer(C);
695       else
696         return Error("Global variable initializer is not a constant!");
697     }
698     GlobalInitWorklist.pop_back();
699   }
700 
701   while (!AliasInitWorklist.empty()) {
702     unsigned ValID = AliasInitWorklist.back().second;
703     if (ValID >= ValueList.size()) {
704       AliasInits.push_back(AliasInitWorklist.back());
705     } else {
706       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
707         AliasInitWorklist.back().first->setAliasee(C);
708       else
709         return Error("Alias initializer is not a constant!");
710     }
711     AliasInitWorklist.pop_back();
712   }
713   return false;
714 }
715 
716 
717 bool BitcodeReader::ParseConstants() {
718   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
719     return Error("Malformed block record");
720 
721   SmallVector<uint64_t, 64> Record;
722 
723   // Read all the records for this value table.
724   const Type *CurTy = Type::Int32Ty;
725   unsigned NextCstNo = ValueList.size();
726   while (1) {
727     unsigned Code = Stream.ReadCode();
728     if (Code == bitc::END_BLOCK)
729       break;
730 
731     if (Code == bitc::ENTER_SUBBLOCK) {
732       // No known subblocks, always skip them.
733       Stream.ReadSubBlockID();
734       if (Stream.SkipBlock())
735         return Error("Malformed block record");
736       continue;
737     }
738 
739     if (Code == bitc::DEFINE_ABBREV) {
740       Stream.ReadAbbrevRecord();
741       continue;
742     }
743 
744     // Read a record.
745     Record.clear();
746     Value *V = 0;
747     switch (Stream.ReadRecord(Code, Record)) {
748     default:  // Default behavior: unknown constant
749     case bitc::CST_CODE_UNDEF:     // UNDEF
750       V = UndefValue::get(CurTy);
751       break;
752     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
753       if (Record.empty())
754         return Error("Malformed CST_SETTYPE record");
755       if (Record[0] >= TypeList.size())
756         return Error("Invalid Type ID in CST_SETTYPE record");
757       CurTy = TypeList[Record[0]];
758       continue;  // Skip the ValueList manipulation.
759     case bitc::CST_CODE_NULL:      // NULL
760       V = Constant::getNullValue(CurTy);
761       break;
762     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
763       if (!isa<IntegerType>(CurTy) || Record.empty())
764         return Error("Invalid CST_INTEGER record");
765       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
766       break;
767     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
768       if (!isa<IntegerType>(CurTy) || Record.empty())
769         return Error("Invalid WIDE_INTEGER record");
770 
771       unsigned NumWords = Record.size();
772       SmallVector<uint64_t, 8> Words;
773       Words.resize(NumWords);
774       for (unsigned i = 0; i != NumWords; ++i)
775         Words[i] = DecodeSignRotatedValue(Record[i]);
776       V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
777                                  NumWords, &Words[0]));
778       break;
779     }
780     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
781       if (Record.empty())
782         return Error("Invalid FLOAT record");
783       if (CurTy == Type::FloatTy)
784         V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
785       else if (CurTy == Type::DoubleTy)
786         V = ConstantFP::get(APFloat(APInt(64, Record[0])));
787       else if (CurTy == Type::X86_FP80Ty)
788         V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
789       else if (CurTy == Type::FP128Ty)
790         V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
791       else if (CurTy == Type::PPC_FP128Ty)
792         V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
793       else
794         V = UndefValue::get(CurTy);
795       break;
796     }
797 
798     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
799       if (Record.empty())
800         return Error("Invalid CST_AGGREGATE record");
801 
802       unsigned Size = Record.size();
803       std::vector<Constant*> Elts;
804 
805       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
806         for (unsigned i = 0; i != Size; ++i)
807           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
808                                                      STy->getElementType(i)));
809         V = ConstantStruct::get(STy, Elts);
810       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
811         const Type *EltTy = ATy->getElementType();
812         for (unsigned i = 0; i != Size; ++i)
813           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
814         V = ConstantArray::get(ATy, Elts);
815       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
816         const Type *EltTy = VTy->getElementType();
817         for (unsigned i = 0; i != Size; ++i)
818           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
819         V = ConstantVector::get(Elts);
820       } else {
821         V = UndefValue::get(CurTy);
822       }
823       break;
824     }
825     case bitc::CST_CODE_STRING: { // STRING: [values]
826       if (Record.empty())
827         return Error("Invalid CST_AGGREGATE record");
828 
829       const ArrayType *ATy = cast<ArrayType>(CurTy);
830       const Type *EltTy = ATy->getElementType();
831 
832       unsigned Size = Record.size();
833       std::vector<Constant*> Elts;
834       for (unsigned i = 0; i != Size; ++i)
835         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
836       V = ConstantArray::get(ATy, Elts);
837       break;
838     }
839     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
840       if (Record.empty())
841         return Error("Invalid CST_AGGREGATE record");
842 
843       const ArrayType *ATy = cast<ArrayType>(CurTy);
844       const Type *EltTy = ATy->getElementType();
845 
846       unsigned Size = Record.size();
847       std::vector<Constant*> Elts;
848       for (unsigned i = 0; i != Size; ++i)
849         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
850       Elts.push_back(Constant::getNullValue(EltTy));
851       V = ConstantArray::get(ATy, Elts);
852       break;
853     }
854     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
855       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
856       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
857       if (Opc < 0) {
858         V = UndefValue::get(CurTy);  // Unknown binop.
859       } else {
860         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
861         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
862         V = ConstantExpr::get(Opc, LHS, RHS);
863       }
864       break;
865     }
866     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
867       if (Record.size() < 3) return Error("Invalid CE_CAST record");
868       int Opc = GetDecodedCastOpcode(Record[0]);
869       if (Opc < 0) {
870         V = UndefValue::get(CurTy);  // Unknown cast.
871       } else {
872         const Type *OpTy = getTypeByID(Record[1]);
873         if (!OpTy) return Error("Invalid CE_CAST record");
874         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
875         V = ConstantExpr::getCast(Opc, Op, CurTy);
876       }
877       break;
878     }
879     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
880       if (Record.size() & 1) return Error("Invalid CE_GEP record");
881       SmallVector<Constant*, 16> Elts;
882       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
883         const Type *ElTy = getTypeByID(Record[i]);
884         if (!ElTy) return Error("Invalid CE_GEP record");
885         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
886       }
887       V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
888       break;
889     }
890     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
891       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
892       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
893                                                               Type::Int1Ty),
894                                   ValueList.getConstantFwdRef(Record[1],CurTy),
895                                   ValueList.getConstantFwdRef(Record[2],CurTy));
896       break;
897     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
898       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
899       const VectorType *OpTy =
900         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
901       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
902       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
903       Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
904                                                   OpTy->getElementType());
905       V = ConstantExpr::getExtractElement(Op0, Op1);
906       break;
907     }
908     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
909       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
910       if (Record.size() < 3 || OpTy == 0)
911         return Error("Invalid CE_INSERTELT record");
912       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
913       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
914                                                   OpTy->getElementType());
915       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
916       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
917       break;
918     }
919     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
920       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
921       if (Record.size() < 3 || OpTy == 0)
922         return Error("Invalid CE_INSERTELT record");
923       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
924       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
925       const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
926       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
927       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
928       break;
929     }
930     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
931       if (Record.size() < 4) return Error("Invalid CE_CMP record");
932       const Type *OpTy = getTypeByID(Record[0]);
933       if (OpTy == 0) return Error("Invalid CE_CMP record");
934       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
935       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
936 
937       if (OpTy->isFloatingPoint())
938         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
939       else if (!isa<VectorType>(OpTy))
940         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
941       else if (OpTy->isFPOrFPVector())
942         V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
943       else
944         V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
945       break;
946     }
947     case bitc::CST_CODE_INLINEASM: {
948       if (Record.size() < 2) return Error("Invalid INLINEASM record");
949       std::string AsmStr, ConstrStr;
950       bool HasSideEffects = Record[0];
951       unsigned AsmStrSize = Record[1];
952       if (2+AsmStrSize >= Record.size())
953         return Error("Invalid INLINEASM record");
954       unsigned ConstStrSize = Record[2+AsmStrSize];
955       if (3+AsmStrSize+ConstStrSize > Record.size())
956         return Error("Invalid INLINEASM record");
957 
958       for (unsigned i = 0; i != AsmStrSize; ++i)
959         AsmStr += (char)Record[2+i];
960       for (unsigned i = 0; i != ConstStrSize; ++i)
961         ConstrStr += (char)Record[3+AsmStrSize+i];
962       const PointerType *PTy = cast<PointerType>(CurTy);
963       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
964                          AsmStr, ConstrStr, HasSideEffects);
965       break;
966     }
967     }
968 
969     ValueList.AssignValue(V, NextCstNo);
970     ++NextCstNo;
971   }
972 
973   if (NextCstNo != ValueList.size())
974     return Error("Invalid constant reference!");
975 
976   if (Stream.ReadBlockEnd())
977     return Error("Error at end of constants block");
978 
979   // Once all the constants have been read, go through and resolve forward
980   // references.
981   ValueList.ResolveConstantForwardRefs();
982   return false;
983 }
984 
985 /// RememberAndSkipFunctionBody - When we see the block for a function body,
986 /// remember where it is and then skip it.  This lets us lazily deserialize the
987 /// functions.
988 bool BitcodeReader::RememberAndSkipFunctionBody() {
989   // Get the function we are talking about.
990   if (FunctionsWithBodies.empty())
991     return Error("Insufficient function protos");
992 
993   Function *Fn = FunctionsWithBodies.back();
994   FunctionsWithBodies.pop_back();
995 
996   // Save the current stream state.
997   uint64_t CurBit = Stream.GetCurrentBitNo();
998   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
999 
1000   // Set the functions linkage to GhostLinkage so we know it is lazily
1001   // deserialized.
1002   Fn->setLinkage(GlobalValue::GhostLinkage);
1003 
1004   // Skip over the function block for now.
1005   if (Stream.SkipBlock())
1006     return Error("Malformed block record");
1007   return false;
1008 }
1009 
1010 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1011   // Reject multiple MODULE_BLOCK's in a single bitstream.
1012   if (TheModule)
1013     return Error("Multiple MODULE_BLOCKs in same stream");
1014 
1015   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1016     return Error("Malformed block record");
1017 
1018   // Otherwise, create the module.
1019   TheModule = new Module(ModuleID);
1020 
1021   SmallVector<uint64_t, 64> Record;
1022   std::vector<std::string> SectionTable;
1023   std::vector<std::string> GCTable;
1024 
1025   // Read all the records for this module.
1026   while (!Stream.AtEndOfStream()) {
1027     unsigned Code = Stream.ReadCode();
1028     if (Code == bitc::END_BLOCK) {
1029       if (Stream.ReadBlockEnd())
1030         return Error("Error at end of module block");
1031 
1032       // Patch the initializers for globals and aliases up.
1033       ResolveGlobalAndAliasInits();
1034       if (!GlobalInits.empty() || !AliasInits.empty())
1035         return Error("Malformed global initializer set");
1036       if (!FunctionsWithBodies.empty())
1037         return Error("Too few function bodies found");
1038 
1039       // Look for intrinsic functions which need to be upgraded at some point
1040       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1041            FI != FE; ++FI) {
1042         Function* NewFn;
1043         if (UpgradeIntrinsicFunction(FI, NewFn))
1044           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1045       }
1046 
1047       // Force deallocation of memory for these vectors to favor the client that
1048       // want lazy deserialization.
1049       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1050       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1051       std::vector<Function*>().swap(FunctionsWithBodies);
1052       return false;
1053     }
1054 
1055     if (Code == bitc::ENTER_SUBBLOCK) {
1056       switch (Stream.ReadSubBlockID()) {
1057       default:  // Skip unknown content.
1058         if (Stream.SkipBlock())
1059           return Error("Malformed block record");
1060         break;
1061       case bitc::BLOCKINFO_BLOCK_ID:
1062         if (Stream.ReadBlockInfoBlock())
1063           return Error("Malformed BlockInfoBlock");
1064         break;
1065       case bitc::PARAMATTR_BLOCK_ID:
1066         if (ParseAttributeBlock())
1067           return true;
1068         break;
1069       case bitc::TYPE_BLOCK_ID:
1070         if (ParseTypeTable())
1071           return true;
1072         break;
1073       case bitc::TYPE_SYMTAB_BLOCK_ID:
1074         if (ParseTypeSymbolTable())
1075           return true;
1076         break;
1077       case bitc::VALUE_SYMTAB_BLOCK_ID:
1078         if (ParseValueSymbolTable())
1079           return true;
1080         break;
1081       case bitc::CONSTANTS_BLOCK_ID:
1082         if (ParseConstants() || ResolveGlobalAndAliasInits())
1083           return true;
1084         break;
1085       case bitc::FUNCTION_BLOCK_ID:
1086         // If this is the first function body we've seen, reverse the
1087         // FunctionsWithBodies list.
1088         if (!HasReversedFunctionsWithBodies) {
1089           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1090           HasReversedFunctionsWithBodies = true;
1091         }
1092 
1093         if (RememberAndSkipFunctionBody())
1094           return true;
1095         break;
1096       }
1097       continue;
1098     }
1099 
1100     if (Code == bitc::DEFINE_ABBREV) {
1101       Stream.ReadAbbrevRecord();
1102       continue;
1103     }
1104 
1105     // Read a record.
1106     switch (Stream.ReadRecord(Code, Record)) {
1107     default: break;  // Default behavior, ignore unknown content.
1108     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1109       if (Record.size() < 1)
1110         return Error("Malformed MODULE_CODE_VERSION");
1111       // Only version #0 is supported so far.
1112       if (Record[0] != 0)
1113         return Error("Unknown bitstream version!");
1114       break;
1115     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1116       std::string S;
1117       if (ConvertToString(Record, 0, S))
1118         return Error("Invalid MODULE_CODE_TRIPLE record");
1119       TheModule->setTargetTriple(S);
1120       break;
1121     }
1122     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1123       std::string S;
1124       if (ConvertToString(Record, 0, S))
1125         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1126       TheModule->setDataLayout(S);
1127       break;
1128     }
1129     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1130       std::string S;
1131       if (ConvertToString(Record, 0, S))
1132         return Error("Invalid MODULE_CODE_ASM record");
1133       TheModule->setModuleInlineAsm(S);
1134       break;
1135     }
1136     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1137       std::string S;
1138       if (ConvertToString(Record, 0, S))
1139         return Error("Invalid MODULE_CODE_DEPLIB record");
1140       TheModule->addLibrary(S);
1141       break;
1142     }
1143     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1144       std::string S;
1145       if (ConvertToString(Record, 0, S))
1146         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1147       SectionTable.push_back(S);
1148       break;
1149     }
1150     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1151       std::string S;
1152       if (ConvertToString(Record, 0, S))
1153         return Error("Invalid MODULE_CODE_GCNAME record");
1154       GCTable.push_back(S);
1155       break;
1156     }
1157     // GLOBALVAR: [pointer type, isconst, initid,
1158     //             linkage, alignment, section, visibility, threadlocal]
1159     case bitc::MODULE_CODE_GLOBALVAR: {
1160       if (Record.size() < 6)
1161         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1162       const Type *Ty = getTypeByID(Record[0]);
1163       if (!isa<PointerType>(Ty))
1164         return Error("Global not a pointer type!");
1165       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1166       Ty = cast<PointerType>(Ty)->getElementType();
1167 
1168       bool isConstant = Record[1];
1169       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1170       unsigned Alignment = (1 << Record[4]) >> 1;
1171       std::string Section;
1172       if (Record[5]) {
1173         if (Record[5]-1 >= SectionTable.size())
1174           return Error("Invalid section ID");
1175         Section = SectionTable[Record[5]-1];
1176       }
1177       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1178       if (Record.size() > 6)
1179         Visibility = GetDecodedVisibility(Record[6]);
1180       bool isThreadLocal = false;
1181       if (Record.size() > 7)
1182         isThreadLocal = Record[7];
1183 
1184       GlobalVariable *NewGV =
1185         new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1186                            isThreadLocal, AddressSpace);
1187       NewGV->setAlignment(Alignment);
1188       if (!Section.empty())
1189         NewGV->setSection(Section);
1190       NewGV->setVisibility(Visibility);
1191       NewGV->setThreadLocal(isThreadLocal);
1192 
1193       ValueList.push_back(NewGV);
1194 
1195       // Remember which value to use for the global initializer.
1196       if (unsigned InitID = Record[2])
1197         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1198       break;
1199     }
1200     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1201     //             alignment, section, visibility, gc]
1202     case bitc::MODULE_CODE_FUNCTION: {
1203       if (Record.size() < 8)
1204         return Error("Invalid MODULE_CODE_FUNCTION record");
1205       const Type *Ty = getTypeByID(Record[0]);
1206       if (!isa<PointerType>(Ty))
1207         return Error("Function not a pointer type!");
1208       const FunctionType *FTy =
1209         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1210       if (!FTy)
1211         return Error("Function not a pointer to function type!");
1212 
1213       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1214                                         "", TheModule);
1215 
1216       Func->setCallingConv(Record[1]);
1217       bool isProto = Record[2];
1218       Func->setLinkage(GetDecodedLinkage(Record[3]));
1219       Func->setAttributes(getAttributes(Record[4]));
1220 
1221       Func->setAlignment((1 << Record[5]) >> 1);
1222       if (Record[6]) {
1223         if (Record[6]-1 >= SectionTable.size())
1224           return Error("Invalid section ID");
1225         Func->setSection(SectionTable[Record[6]-1]);
1226       }
1227       Func->setVisibility(GetDecodedVisibility(Record[7]));
1228       if (Record.size() > 8 && Record[8]) {
1229         if (Record[8]-1 > GCTable.size())
1230           return Error("Invalid GC ID");
1231         Func->setGC(GCTable[Record[8]-1].c_str());
1232       }
1233       ValueList.push_back(Func);
1234 
1235       // If this is a function with a body, remember the prototype we are
1236       // creating now, so that we can match up the body with them later.
1237       if (!isProto)
1238         FunctionsWithBodies.push_back(Func);
1239       break;
1240     }
1241     // ALIAS: [alias type, aliasee val#, linkage]
1242     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1243     case bitc::MODULE_CODE_ALIAS: {
1244       if (Record.size() < 3)
1245         return Error("Invalid MODULE_ALIAS record");
1246       const Type *Ty = getTypeByID(Record[0]);
1247       if (!isa<PointerType>(Ty))
1248         return Error("Function not a pointer type!");
1249 
1250       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1251                                            "", 0, TheModule);
1252       // Old bitcode files didn't have visibility field.
1253       if (Record.size() > 3)
1254         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1255       ValueList.push_back(NewGA);
1256       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1257       break;
1258     }
1259     /// MODULE_CODE_PURGEVALS: [numvals]
1260     case bitc::MODULE_CODE_PURGEVALS:
1261       // Trim down the value list to the specified size.
1262       if (Record.size() < 1 || Record[0] > ValueList.size())
1263         return Error("Invalid MODULE_PURGEVALS record");
1264       ValueList.shrinkTo(Record[0]);
1265       break;
1266     }
1267     Record.clear();
1268   }
1269 
1270   return Error("Premature end of bitstream");
1271 }
1272 
1273 /// SkipWrapperHeader - Some systems wrap bc files with a special header for
1274 /// padding or other reasons.  The format of this header is:
1275 ///
1276 /// struct bc_header {
1277 ///   uint32_t Magic;         // 0x0B17C0DE
1278 ///   uint32_t Version;       // Version, currently always 0.
1279 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1280 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1281 ///   ... potentially other gunk ...
1282 /// };
1283 ///
1284 /// This function is called when we find a file with a matching magic number.
1285 /// In this case, skip down to the subsection of the file that is actually a BC
1286 /// file.
1287 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1288   enum {
1289     KnownHeaderSize = 4*4,  // Size of header we read.
1290     OffsetField = 2*4,      // Offset in bytes to Offset field.
1291     SizeField = 3*4         // Offset in bytes to Size field.
1292   };
1293 
1294 
1295   // Must contain the header!
1296   if (BufEnd-BufPtr < KnownHeaderSize) return true;
1297 
1298   unsigned Offset = ( BufPtr[OffsetField  ]        |
1299                      (BufPtr[OffsetField+1] << 8)  |
1300                      (BufPtr[OffsetField+2] << 16) |
1301                      (BufPtr[OffsetField+3] << 24));
1302   unsigned Size   = ( BufPtr[SizeField    ]        |
1303                      (BufPtr[SizeField  +1] << 8)  |
1304                      (BufPtr[SizeField  +2] << 16) |
1305                      (BufPtr[SizeField  +3] << 24));
1306 
1307   // Verify that Offset+Size fits in the file.
1308   if (Offset+Size > unsigned(BufEnd-BufPtr))
1309     return true;
1310   BufPtr += Offset;
1311   BufEnd = BufPtr+Size;
1312   return false;
1313 }
1314 
1315 bool BitcodeReader::ParseBitcode() {
1316   TheModule = 0;
1317 
1318   if (Buffer->getBufferSize() & 3)
1319     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1320 
1321   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1322   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1323 
1324   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1325   // The magic number is 0x0B17C0DE stored in little endian.
1326   if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1327       BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1328     if (SkipWrapperHeader(BufPtr, BufEnd))
1329       return Error("Invalid bitcode wrapper header");
1330 
1331   Stream.init(BufPtr, BufEnd);
1332 
1333   // Sniff for the signature.
1334   if (Stream.Read(8) != 'B' ||
1335       Stream.Read(8) != 'C' ||
1336       Stream.Read(4) != 0x0 ||
1337       Stream.Read(4) != 0xC ||
1338       Stream.Read(4) != 0xE ||
1339       Stream.Read(4) != 0xD)
1340     return Error("Invalid bitcode signature");
1341 
1342   // We expect a number of well-defined blocks, though we don't necessarily
1343   // need to understand them all.
1344   while (!Stream.AtEndOfStream()) {
1345     unsigned Code = Stream.ReadCode();
1346 
1347     if (Code != bitc::ENTER_SUBBLOCK)
1348       return Error("Invalid record at top-level");
1349 
1350     unsigned BlockID = Stream.ReadSubBlockID();
1351 
1352     // We only know the MODULE subblock ID.
1353     switch (BlockID) {
1354     case bitc::BLOCKINFO_BLOCK_ID:
1355       if (Stream.ReadBlockInfoBlock())
1356         return Error("Malformed BlockInfoBlock");
1357       break;
1358     case bitc::MODULE_BLOCK_ID:
1359       if (ParseModule(Buffer->getBufferIdentifier()))
1360         return true;
1361       break;
1362     default:
1363       if (Stream.SkipBlock())
1364         return Error("Malformed block record");
1365       break;
1366     }
1367   }
1368 
1369   return false;
1370 }
1371 
1372 
1373 /// ParseFunctionBody - Lazily parse the specified function body block.
1374 bool BitcodeReader::ParseFunctionBody(Function *F) {
1375   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1376     return Error("Malformed block record");
1377 
1378   unsigned ModuleValueListSize = ValueList.size();
1379 
1380   // Add all the function arguments to the value table.
1381   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1382     ValueList.push_back(I);
1383 
1384   unsigned NextValueNo = ValueList.size();
1385   BasicBlock *CurBB = 0;
1386   unsigned CurBBNo = 0;
1387 
1388   // Read all the records.
1389   SmallVector<uint64_t, 64> Record;
1390   while (1) {
1391     unsigned Code = Stream.ReadCode();
1392     if (Code == bitc::END_BLOCK) {
1393       if (Stream.ReadBlockEnd())
1394         return Error("Error at end of function block");
1395       break;
1396     }
1397 
1398     if (Code == bitc::ENTER_SUBBLOCK) {
1399       switch (Stream.ReadSubBlockID()) {
1400       default:  // Skip unknown content.
1401         if (Stream.SkipBlock())
1402           return Error("Malformed block record");
1403         break;
1404       case bitc::CONSTANTS_BLOCK_ID:
1405         if (ParseConstants()) return true;
1406         NextValueNo = ValueList.size();
1407         break;
1408       case bitc::VALUE_SYMTAB_BLOCK_ID:
1409         if (ParseValueSymbolTable()) return true;
1410         break;
1411       }
1412       continue;
1413     }
1414 
1415     if (Code == bitc::DEFINE_ABBREV) {
1416       Stream.ReadAbbrevRecord();
1417       continue;
1418     }
1419 
1420     // Read a record.
1421     Record.clear();
1422     Instruction *I = 0;
1423     switch (Stream.ReadRecord(Code, Record)) {
1424     default: // Default behavior: reject
1425       return Error("Unknown instruction");
1426     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1427       if (Record.size() < 1 || Record[0] == 0)
1428         return Error("Invalid DECLAREBLOCKS record");
1429       // Create all the basic blocks for the function.
1430       FunctionBBs.resize(Record[0]);
1431       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1432         FunctionBBs[i] = BasicBlock::Create("", F);
1433       CurBB = FunctionBBs[0];
1434       continue;
1435 
1436     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1437       unsigned OpNum = 0;
1438       Value *LHS, *RHS;
1439       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1440           getValue(Record, OpNum, LHS->getType(), RHS) ||
1441           OpNum+1 != Record.size())
1442         return Error("Invalid BINOP record");
1443 
1444       int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1445       if (Opc == -1) return Error("Invalid BINOP record");
1446       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1447       break;
1448     }
1449     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1450       unsigned OpNum = 0;
1451       Value *Op;
1452       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1453           OpNum+2 != Record.size())
1454         return Error("Invalid CAST record");
1455 
1456       const Type *ResTy = getTypeByID(Record[OpNum]);
1457       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1458       if (Opc == -1 || ResTy == 0)
1459         return Error("Invalid CAST record");
1460       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1461       break;
1462     }
1463     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1464       unsigned OpNum = 0;
1465       Value *BasePtr;
1466       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1467         return Error("Invalid GEP record");
1468 
1469       SmallVector<Value*, 16> GEPIdx;
1470       while (OpNum != Record.size()) {
1471         Value *Op;
1472         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1473           return Error("Invalid GEP record");
1474         GEPIdx.push_back(Op);
1475       }
1476 
1477       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1478       break;
1479     }
1480 
1481     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1482                                        // EXTRACTVAL: [opty, opval, n x indices]
1483       unsigned OpNum = 0;
1484       Value *Agg;
1485       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1486         return Error("Invalid EXTRACTVAL record");
1487 
1488       SmallVector<unsigned, 4> EXTRACTVALIdx;
1489       for (unsigned RecSize = Record.size();
1490            OpNum != RecSize; ++OpNum) {
1491         uint64_t Index = Record[OpNum];
1492         if ((unsigned)Index != Index)
1493           return Error("Invalid EXTRACTVAL index");
1494         EXTRACTVALIdx.push_back((unsigned)Index);
1495       }
1496 
1497       I = ExtractValueInst::Create(Agg,
1498                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1499       break;
1500     }
1501 
1502     case bitc::FUNC_CODE_INST_INSERTVAL: {
1503                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1504       unsigned OpNum = 0;
1505       Value *Agg;
1506       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1507         return Error("Invalid INSERTVAL record");
1508       Value *Val;
1509       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1510         return Error("Invalid INSERTVAL record");
1511 
1512       SmallVector<unsigned, 4> INSERTVALIdx;
1513       for (unsigned RecSize = Record.size();
1514            OpNum != RecSize; ++OpNum) {
1515         uint64_t Index = Record[OpNum];
1516         if ((unsigned)Index != Index)
1517           return Error("Invalid INSERTVAL index");
1518         INSERTVALIdx.push_back((unsigned)Index);
1519       }
1520 
1521       I = InsertValueInst::Create(Agg, Val,
1522                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1523       break;
1524     }
1525 
1526     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1527       // obsolete form of select
1528       // handles select i1 ... in old bitcode
1529       unsigned OpNum = 0;
1530       Value *TrueVal, *FalseVal, *Cond;
1531       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1532           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1533           getValue(Record, OpNum, Type::Int1Ty, Cond))
1534         return Error("Invalid SELECT record");
1535 
1536       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1537       break;
1538     }
1539 
1540     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1541       // new form of select
1542       // handles select i1 or select [N x i1]
1543       unsigned OpNum = 0;
1544       Value *TrueVal, *FalseVal, *Cond;
1545       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1546           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1547           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1548         return Error("Invalid SELECT record");
1549 
1550       // select condition can be either i1 or [N x i1]
1551       if (const VectorType* vector_type =
1552           dyn_cast<const VectorType>(Cond->getType())) {
1553         // expect <n x i1>
1554         if (vector_type->getElementType() != Type::Int1Ty)
1555           return Error("Invalid SELECT condition type");
1556       } else {
1557         // expect i1
1558         if (Cond->getType() != Type::Int1Ty)
1559           return Error("Invalid SELECT condition type");
1560       }
1561 
1562       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1563       break;
1564     }
1565 
1566     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1567       unsigned OpNum = 0;
1568       Value *Vec, *Idx;
1569       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1570           getValue(Record, OpNum, Type::Int32Ty, Idx))
1571         return Error("Invalid EXTRACTELT record");
1572       I = new ExtractElementInst(Vec, Idx);
1573       break;
1574     }
1575 
1576     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1577       unsigned OpNum = 0;
1578       Value *Vec, *Elt, *Idx;
1579       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1580           getValue(Record, OpNum,
1581                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1582           getValue(Record, OpNum, Type::Int32Ty, Idx))
1583         return Error("Invalid INSERTELT record");
1584       I = InsertElementInst::Create(Vec, Elt, Idx);
1585       break;
1586     }
1587 
1588     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1589       unsigned OpNum = 0;
1590       Value *Vec1, *Vec2, *Mask;
1591       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1592           getValue(Record, OpNum, Vec1->getType(), Vec2))
1593         return Error("Invalid SHUFFLEVEC record");
1594 
1595       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1596         return Error("Invalid SHUFFLEVEC record");
1597       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1598       break;
1599     }
1600 
1601     case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1602       // VFCmp/VICmp
1603       // or old form of ICmp/FCmp returning bool
1604       unsigned OpNum = 0;
1605       Value *LHS, *RHS;
1606       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1607           getValue(Record, OpNum, LHS->getType(), RHS) ||
1608           OpNum+1 != Record.size())
1609         return Error("Invalid CMP record");
1610 
1611       if (LHS->getType()->isFloatingPoint())
1612         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1613       else if (!isa<VectorType>(LHS->getType()))
1614         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1615       else if (LHS->getType()->isFPOrFPVector())
1616         I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1617       else
1618         I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1619       break;
1620     }
1621     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1622       // Fcmp/ICmp returning bool or vector of bool
1623       unsigned OpNum = 0;
1624       Value *LHS, *RHS;
1625       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1626           getValue(Record, OpNum, LHS->getType(), RHS) ||
1627           OpNum+1 != Record.size())
1628         return Error("Invalid CMP2 record");
1629 
1630       if (LHS->getType()->isFPOrFPVector())
1631         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1632       else
1633         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1634       break;
1635     }
1636     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1637       if (Record.size() != 2)
1638         return Error("Invalid GETRESULT record");
1639       unsigned OpNum = 0;
1640       Value *Op;
1641       getValueTypePair(Record, OpNum, NextValueNo, Op);
1642       unsigned Index = Record[1];
1643       I = ExtractValueInst::Create(Op, Index);
1644       break;
1645     }
1646 
1647     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1648       {
1649         unsigned Size = Record.size();
1650         if (Size == 0) {
1651           I = ReturnInst::Create();
1652           break;
1653         }
1654 
1655         unsigned OpNum = 0;
1656         SmallVector<Value *,4> Vs;
1657         do {
1658           Value *Op = NULL;
1659           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1660             return Error("Invalid RET record");
1661           Vs.push_back(Op);
1662         } while(OpNum != Record.size());
1663 
1664         const Type *ReturnType = F->getReturnType();
1665         if (Vs.size() > 1 ||
1666             (isa<StructType>(ReturnType) &&
1667              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1668           Value *RV = UndefValue::get(ReturnType);
1669           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1670             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1671             CurBB->getInstList().push_back(I);
1672             ValueList.AssignValue(I, NextValueNo++);
1673             RV = I;
1674           }
1675           I = ReturnInst::Create(RV);
1676           break;
1677         }
1678 
1679         I = ReturnInst::Create(Vs[0]);
1680         break;
1681       }
1682     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1683       if (Record.size() != 1 && Record.size() != 3)
1684         return Error("Invalid BR record");
1685       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1686       if (TrueDest == 0)
1687         return Error("Invalid BR record");
1688 
1689       if (Record.size() == 1)
1690         I = BranchInst::Create(TrueDest);
1691       else {
1692         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1693         Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1694         if (FalseDest == 0 || Cond == 0)
1695           return Error("Invalid BR record");
1696         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1697       }
1698       break;
1699     }
1700     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1701       if (Record.size() < 3 || (Record.size() & 1) == 0)
1702         return Error("Invalid SWITCH record");
1703       const Type *OpTy = getTypeByID(Record[0]);
1704       Value *Cond = getFnValueByID(Record[1], OpTy);
1705       BasicBlock *Default = getBasicBlock(Record[2]);
1706       if (OpTy == 0 || Cond == 0 || Default == 0)
1707         return Error("Invalid SWITCH record");
1708       unsigned NumCases = (Record.size()-3)/2;
1709       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1710       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1711         ConstantInt *CaseVal =
1712           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1713         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1714         if (CaseVal == 0 || DestBB == 0) {
1715           delete SI;
1716           return Error("Invalid SWITCH record!");
1717         }
1718         SI->addCase(CaseVal, DestBB);
1719       }
1720       I = SI;
1721       break;
1722     }
1723 
1724     case bitc::FUNC_CODE_INST_INVOKE: {
1725       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1726       if (Record.size() < 4) return Error("Invalid INVOKE record");
1727       AttrListPtr PAL = getAttributes(Record[0]);
1728       unsigned CCInfo = Record[1];
1729       BasicBlock *NormalBB = getBasicBlock(Record[2]);
1730       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1731 
1732       unsigned OpNum = 4;
1733       Value *Callee;
1734       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1735         return Error("Invalid INVOKE record");
1736 
1737       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1738       const FunctionType *FTy = !CalleeTy ? 0 :
1739         dyn_cast<FunctionType>(CalleeTy->getElementType());
1740 
1741       // Check that the right number of fixed parameters are here.
1742       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1743           Record.size() < OpNum+FTy->getNumParams())
1744         return Error("Invalid INVOKE record");
1745 
1746       SmallVector<Value*, 16> Ops;
1747       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1748         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1749         if (Ops.back() == 0) return Error("Invalid INVOKE record");
1750       }
1751 
1752       if (!FTy->isVarArg()) {
1753         if (Record.size() != OpNum)
1754           return Error("Invalid INVOKE record");
1755       } else {
1756         // Read type/value pairs for varargs params.
1757         while (OpNum != Record.size()) {
1758           Value *Op;
1759           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1760             return Error("Invalid INVOKE record");
1761           Ops.push_back(Op);
1762         }
1763       }
1764 
1765       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1766                              Ops.begin(), Ops.end());
1767       cast<InvokeInst>(I)->setCallingConv(CCInfo);
1768       cast<InvokeInst>(I)->setAttributes(PAL);
1769       break;
1770     }
1771     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1772       I = new UnwindInst();
1773       break;
1774     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1775       I = new UnreachableInst();
1776       break;
1777     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1778       if (Record.size() < 1 || ((Record.size()-1)&1))
1779         return Error("Invalid PHI record");
1780       const Type *Ty = getTypeByID(Record[0]);
1781       if (!Ty) return Error("Invalid PHI record");
1782 
1783       PHINode *PN = PHINode::Create(Ty);
1784       PN->reserveOperandSpace((Record.size()-1)/2);
1785 
1786       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1787         Value *V = getFnValueByID(Record[1+i], Ty);
1788         BasicBlock *BB = getBasicBlock(Record[2+i]);
1789         if (!V || !BB) return Error("Invalid PHI record");
1790         PN->addIncoming(V, BB);
1791       }
1792       I = PN;
1793       break;
1794     }
1795 
1796     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1797       if (Record.size() < 3)
1798         return Error("Invalid MALLOC record");
1799       const PointerType *Ty =
1800         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1801       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1802       unsigned Align = Record[2];
1803       if (!Ty || !Size) return Error("Invalid MALLOC record");
1804       I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1805       break;
1806     }
1807     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1808       unsigned OpNum = 0;
1809       Value *Op;
1810       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1811           OpNum != Record.size())
1812         return Error("Invalid FREE record");
1813       I = new FreeInst(Op);
1814       break;
1815     }
1816     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1817       if (Record.size() < 3)
1818         return Error("Invalid ALLOCA record");
1819       const PointerType *Ty =
1820         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1821       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1822       unsigned Align = Record[2];
1823       if (!Ty || !Size) return Error("Invalid ALLOCA record");
1824       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1825       break;
1826     }
1827     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1828       unsigned OpNum = 0;
1829       Value *Op;
1830       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1831           OpNum+2 != Record.size())
1832         return Error("Invalid LOAD record");
1833 
1834       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1835       break;
1836     }
1837     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1838       unsigned OpNum = 0;
1839       Value *Val, *Ptr;
1840       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1841           getValue(Record, OpNum,
1842                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1843           OpNum+2 != Record.size())
1844         return Error("Invalid STORE record");
1845 
1846       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1847       break;
1848     }
1849     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1850       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1851       unsigned OpNum = 0;
1852       Value *Val, *Ptr;
1853       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1854           getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1855           OpNum+2 != Record.size())
1856         return Error("Invalid STORE record");
1857 
1858       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1859       break;
1860     }
1861     case bitc::FUNC_CODE_INST_CALL: {
1862       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1863       if (Record.size() < 3)
1864         return Error("Invalid CALL record");
1865 
1866       AttrListPtr PAL = getAttributes(Record[0]);
1867       unsigned CCInfo = Record[1];
1868 
1869       unsigned OpNum = 2;
1870       Value *Callee;
1871       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1872         return Error("Invalid CALL record");
1873 
1874       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1875       const FunctionType *FTy = 0;
1876       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1877       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1878         return Error("Invalid CALL record");
1879 
1880       SmallVector<Value*, 16> Args;
1881       // Read the fixed params.
1882       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1883         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1884           Args.push_back(getBasicBlock(Record[OpNum]));
1885         else
1886           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1887         if (Args.back() == 0) return Error("Invalid CALL record");
1888       }
1889 
1890       // Read type/value pairs for varargs params.
1891       if (!FTy->isVarArg()) {
1892         if (OpNum != Record.size())
1893           return Error("Invalid CALL record");
1894       } else {
1895         while (OpNum != Record.size()) {
1896           Value *Op;
1897           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1898             return Error("Invalid CALL record");
1899           Args.push_back(Op);
1900         }
1901       }
1902 
1903       I = CallInst::Create(Callee, Args.begin(), Args.end());
1904       cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1905       cast<CallInst>(I)->setTailCall(CCInfo & 1);
1906       cast<CallInst>(I)->setAttributes(PAL);
1907       break;
1908     }
1909     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1910       if (Record.size() < 3)
1911         return Error("Invalid VAARG record");
1912       const Type *OpTy = getTypeByID(Record[0]);
1913       Value *Op = getFnValueByID(Record[1], OpTy);
1914       const Type *ResTy = getTypeByID(Record[2]);
1915       if (!OpTy || !Op || !ResTy)
1916         return Error("Invalid VAARG record");
1917       I = new VAArgInst(Op, ResTy);
1918       break;
1919     }
1920     }
1921 
1922     // Add instruction to end of current BB.  If there is no current BB, reject
1923     // this file.
1924     if (CurBB == 0) {
1925       delete I;
1926       return Error("Invalid instruction with no BB");
1927     }
1928     CurBB->getInstList().push_back(I);
1929 
1930     // If this was a terminator instruction, move to the next block.
1931     if (isa<TerminatorInst>(I)) {
1932       ++CurBBNo;
1933       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1934     }
1935 
1936     // Non-void values get registered in the value table for future use.
1937     if (I && I->getType() != Type::VoidTy)
1938       ValueList.AssignValue(I, NextValueNo++);
1939   }
1940 
1941   // Check the function list for unresolved values.
1942   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1943     if (A->getParent() == 0) {
1944       // We found at least one unresolved value.  Nuke them all to avoid leaks.
1945       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1946         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1947           A->replaceAllUsesWith(UndefValue::get(A->getType()));
1948           delete A;
1949         }
1950       }
1951       return Error("Never resolved value found in function!");
1952     }
1953   }
1954 
1955   // Trim the value list down to the size it was before we parsed this function.
1956   ValueList.shrinkTo(ModuleValueListSize);
1957   std::vector<BasicBlock*>().swap(FunctionBBs);
1958 
1959   return false;
1960 }
1961 
1962 //===----------------------------------------------------------------------===//
1963 // ModuleProvider implementation
1964 //===----------------------------------------------------------------------===//
1965 
1966 
1967 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1968   // If it already is material, ignore the request.
1969   if (!F->hasNotBeenReadFromBitcode()) return false;
1970 
1971   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1972     DeferredFunctionInfo.find(F);
1973   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1974 
1975   // Move the bit stream to the saved position of the deferred function body and
1976   // restore the real linkage type for the function.
1977   Stream.JumpToBit(DFII->second.first);
1978   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
1979 
1980   if (ParseFunctionBody(F)) {
1981     if (ErrInfo) *ErrInfo = ErrorString;
1982     return true;
1983   }
1984 
1985   // Upgrade any old intrinsic calls in the function.
1986   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
1987        E = UpgradedIntrinsics.end(); I != E; ++I) {
1988     if (I->first != I->second) {
1989       for (Value::use_iterator UI = I->first->use_begin(),
1990            UE = I->first->use_end(); UI != UE; ) {
1991         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
1992           UpgradeIntrinsicCall(CI, I->second);
1993       }
1994     }
1995   }
1996 
1997   return false;
1998 }
1999 
2000 void BitcodeReader::dematerializeFunction(Function *F) {
2001   // If this function isn't materialized, or if it is a proto, this is a noop.
2002   if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2003     return;
2004 
2005   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2006 
2007   // Just forget the function body, we can remat it later.
2008   F->deleteBody();
2009   F->setLinkage(GlobalValue::GhostLinkage);
2010 }
2011 
2012 
2013 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2014   for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2015        DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2016        ++I) {
2017     Function *F = I->first;
2018     if (F->hasNotBeenReadFromBitcode() &&
2019         materializeFunction(F, ErrInfo))
2020       return 0;
2021   }
2022 
2023   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2024   // delete the old functions to clean up. We can't do this unless the entire
2025   // module is materialized because there could always be another function body
2026   // with calls to the old function.
2027   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2028        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2029     if (I->first != I->second) {
2030       for (Value::use_iterator UI = I->first->use_begin(),
2031            UE = I->first->use_end(); UI != UE; ) {
2032         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2033           UpgradeIntrinsicCall(CI, I->second);
2034       }
2035       ValueList.replaceUsesOfWith(I->first, I->second);
2036       I->first->eraseFromParent();
2037     }
2038   }
2039   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2040 
2041   return TheModule;
2042 }
2043 
2044 
2045 /// This method is provided by the parent ModuleProvde class and overriden
2046 /// here. It simply releases the module from its provided and frees up our
2047 /// state.
2048 /// @brief Release our hold on the generated module
2049 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2050   // Since we're losing control of this Module, we must hand it back complete
2051   Module *M = ModuleProvider::releaseModule(ErrInfo);
2052   FreeState();
2053   return M;
2054 }
2055 
2056 
2057 //===----------------------------------------------------------------------===//
2058 // External interface
2059 //===----------------------------------------------------------------------===//
2060 
2061 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2062 ///
2063 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2064                                                std::string *ErrMsg) {
2065   BitcodeReader *R = new BitcodeReader(Buffer);
2066   if (R->ParseBitcode()) {
2067     if (ErrMsg)
2068       *ErrMsg = R->getErrorString();
2069 
2070     // Don't let the BitcodeReader dtor delete 'Buffer'.
2071     R->releaseMemoryBuffer();
2072     delete R;
2073     return 0;
2074   }
2075   return R;
2076 }
2077 
2078 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2079 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2080 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2081   BitcodeReader *R;
2082   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2083   if (!R) return 0;
2084 
2085   // Read in the entire module.
2086   Module *M = R->materializeModule(ErrMsg);
2087 
2088   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2089   // there was an error.
2090   R->releaseMemoryBuffer();
2091 
2092   // If there was no error, tell ModuleProvider not to delete it when its dtor
2093   // is run.
2094   if (M)
2095     M = R->releaseModule(ErrMsg);
2096 
2097   delete R;
2098   return M;
2099 }
2100