xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision a01f29532289f5fbebcc4f9bc5399fec0c715807)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/GVMaterializer.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ModuleSummaryIndex.h"
30 #include "llvm/IR/OperandTraits.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/DataStream.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <deque>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 static cl::opt<bool> PrintSummaryGUIDs(
46     "print-summary-global-ids", cl::init(false), cl::Hidden,
47     cl::desc(
48         "Print the global id for each value when reading the module summary"));
49 
50 namespace {
51 enum {
52   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
53 };
54 
55 class BitcodeReaderValueList {
56   std::vector<WeakVH> ValuePtrs;
57 
58   /// As we resolve forward-referenced constants, we add information about them
59   /// to this vector.  This allows us to resolve them in bulk instead of
60   /// resolving each reference at a time.  See the code in
61   /// ResolveConstantForwardRefs for more information about this.
62   ///
63   /// The key of this vector is the placeholder constant, the value is the slot
64   /// number that holds the resolved value.
65   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
66   ResolveConstantsTy ResolveConstants;
67   LLVMContext &Context;
68 public:
69   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
70   ~BitcodeReaderValueList() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72   }
73 
74   // vector compatibility methods
75   unsigned size() const { return ValuePtrs.size(); }
76   void resize(unsigned N) { ValuePtrs.resize(N); }
77   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
78 
79   void clear() {
80     assert(ResolveConstants.empty() && "Constants not resolved?");
81     ValuePtrs.clear();
82   }
83 
84   Value *operator[](unsigned i) const {
85     assert(i < ValuePtrs.size());
86     return ValuePtrs[i];
87   }
88 
89   Value *back() const { return ValuePtrs.back(); }
90   void pop_back() { ValuePtrs.pop_back(); }
91   bool empty() const { return ValuePtrs.empty(); }
92   void shrinkTo(unsigned N) {
93     assert(N <= size() && "Invalid shrinkTo request!");
94     ValuePtrs.resize(N);
95   }
96 
97   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
98   Value *getValueFwdRef(unsigned Idx, Type *Ty);
99 
100   void assignValue(Value *V, unsigned Idx);
101 
102   /// Once all constants are read, this method bulk resolves any forward
103   /// references.
104   void resolveConstantForwardRefs();
105 };
106 
107 class BitcodeReaderMetadataList {
108   unsigned NumFwdRefs;
109   bool AnyFwdRefs;
110   unsigned MinFwdRef;
111   unsigned MaxFwdRef;
112 
113   /// Array of metadata references.
114   ///
115   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
116   /// move) on resize, and TrackingMDRef is very expensive to copy.
117   SmallVector<TrackingMDRef, 1> MetadataPtrs;
118 
119   /// Structures for resolving old type refs.
120   struct {
121     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
122     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
123     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
124     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
125   } OldTypeRefs;
126 
127   LLVMContext &Context;
128 public:
129   BitcodeReaderMetadataList(LLVMContext &C)
130       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
131 
132   // vector compatibility methods
133   unsigned size() const { return MetadataPtrs.size(); }
134   void resize(unsigned N) { MetadataPtrs.resize(N); }
135   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
136   void clear() { MetadataPtrs.clear(); }
137   Metadata *back() const { return MetadataPtrs.back(); }
138   void pop_back() { MetadataPtrs.pop_back(); }
139   bool empty() const { return MetadataPtrs.empty(); }
140 
141   Metadata *operator[](unsigned i) const {
142     assert(i < MetadataPtrs.size());
143     return MetadataPtrs[i];
144   }
145 
146   Metadata *lookup(unsigned I) const {
147     if (I < MetadataPtrs.size())
148       return MetadataPtrs[I];
149     return nullptr;
150   }
151 
152   void shrinkTo(unsigned N) {
153     assert(N <= size() && "Invalid shrinkTo request!");
154     assert(!AnyFwdRefs && "Unexpected forward refs");
155     MetadataPtrs.resize(N);
156   }
157 
158   /// Return the given metadata, creating a replaceable forward reference if
159   /// necessary.
160   Metadata *getMetadataFwdRef(unsigned Idx);
161 
162   /// Return the the given metadata only if it is fully resolved.
163   ///
164   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
165   /// would give \c false.
166   Metadata *getMetadataIfResolved(unsigned Idx);
167 
168   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
169   void assignValue(Metadata *MD, unsigned Idx);
170   void tryToResolveCycles();
171   bool hasFwdRefs() const { return AnyFwdRefs; }
172 
173   /// Upgrade a type that had an MDString reference.
174   void addTypeRef(MDString &UUID, DICompositeType &CT);
175 
176   /// Upgrade a type that had an MDString reference.
177   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
178 
179   /// Upgrade a type ref array that may have MDString references.
180   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
181 
182 private:
183   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
184 };
185 
186 class BitcodeReader : public GVMaterializer {
187   LLVMContext &Context;
188   Module *TheModule = nullptr;
189   std::unique_ptr<MemoryBuffer> Buffer;
190   std::unique_ptr<BitstreamReader> StreamFile;
191   BitstreamCursor Stream;
192   // Next offset to start scanning for lazy parsing of function bodies.
193   uint64_t NextUnreadBit = 0;
194   // Last function offset found in the VST.
195   uint64_t LastFunctionBlockBit = 0;
196   bool SeenValueSymbolTable = false;
197   uint64_t VSTOffset = 0;
198   // Contains an arbitrary and optional string identifying the bitcode producer
199   std::string ProducerIdentification;
200 
201   std::vector<Type*> TypeList;
202   BitcodeReaderValueList ValueList;
203   BitcodeReaderMetadataList MetadataList;
204   std::vector<Comdat *> ComdatList;
205   SmallVector<Instruction *, 64> InstructionList;
206 
207   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
208   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
209   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
210   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
211   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
212 
213   SmallVector<Instruction*, 64> InstsWithTBAATag;
214 
215   bool HasSeenOldLoopTags = false;
216 
217   /// The set of attributes by index.  Index zero in the file is for null, and
218   /// is thus not represented here.  As such all indices are off by one.
219   std::vector<AttributeSet> MAttributes;
220 
221   /// The set of attribute groups.
222   std::map<unsigned, AttributeSet> MAttributeGroups;
223 
224   /// While parsing a function body, this is a list of the basic blocks for the
225   /// function.
226   std::vector<BasicBlock*> FunctionBBs;
227 
228   // When reading the module header, this list is populated with functions that
229   // have bodies later in the file.
230   std::vector<Function*> FunctionsWithBodies;
231 
232   // When intrinsic functions are encountered which require upgrading they are
233   // stored here with their replacement function.
234   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
235   UpdatedIntrinsicMap UpgradedIntrinsics;
236   // Intrinsics which were remangled because of types rename
237   UpdatedIntrinsicMap RemangledIntrinsics;
238 
239   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
240   DenseMap<unsigned, unsigned> MDKindMap;
241 
242   // Several operations happen after the module header has been read, but
243   // before function bodies are processed. This keeps track of whether
244   // we've done this yet.
245   bool SeenFirstFunctionBody = false;
246 
247   /// When function bodies are initially scanned, this map contains info about
248   /// where to find deferred function body in the stream.
249   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
250 
251   /// When Metadata block is initially scanned when parsing the module, we may
252   /// choose to defer parsing of the metadata. This vector contains info about
253   /// which Metadata blocks are deferred.
254   std::vector<uint64_t> DeferredMetadataInfo;
255 
256   /// These are basic blocks forward-referenced by block addresses.  They are
257   /// inserted lazily into functions when they're loaded.  The basic block ID is
258   /// its index into the vector.
259   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
260   std::deque<Function *> BasicBlockFwdRefQueue;
261 
262   /// Indicates that we are using a new encoding for instruction operands where
263   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
264   /// instruction number, for a more compact encoding.  Some instruction
265   /// operands are not relative to the instruction ID: basic block numbers, and
266   /// types. Once the old style function blocks have been phased out, we would
267   /// not need this flag.
268   bool UseRelativeIDs = false;
269 
270   /// True if all functions will be materialized, negating the need to process
271   /// (e.g.) blockaddress forward references.
272   bool WillMaterializeAllForwardRefs = false;
273 
274   /// True if any Metadata block has been materialized.
275   bool IsMetadataMaterialized = false;
276 
277   bool StripDebugInfo = false;
278 
279   /// Functions that need to be matched with subprograms when upgrading old
280   /// metadata.
281   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
282 
283   std::vector<std::string> BundleTags;
284 
285 public:
286   std::error_code error(BitcodeError E, const Twine &Message);
287   std::error_code error(const Twine &Message);
288 
289   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
290   BitcodeReader(LLVMContext &Context);
291   ~BitcodeReader() override { freeState(); }
292 
293   std::error_code materializeForwardReferencedFunctions();
294 
295   void freeState();
296 
297   void releaseBuffer();
298 
299   std::error_code materialize(GlobalValue *GV) override;
300   std::error_code materializeModule() override;
301   std::vector<StructType *> getIdentifiedStructTypes() const override;
302 
303   /// \brief Main interface to parsing a bitcode buffer.
304   /// \returns true if an error occurred.
305   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
306                                    Module *M,
307                                    bool ShouldLazyLoadMetadata = false);
308 
309   /// \brief Cheap mechanism to just extract module triple
310   /// \returns true if an error occurred.
311   ErrorOr<std::string> parseTriple();
312 
313   /// Cheap mechanism to just extract the identification block out of bitcode.
314   ErrorOr<std::string> parseIdentificationBlock();
315 
316   /// Peak at the module content and return true if any ObjC category or class
317   /// is found.
318   ErrorOr<bool> hasObjCCategory();
319 
320   static uint64_t decodeSignRotatedValue(uint64_t V);
321 
322   /// Materialize any deferred Metadata block.
323   std::error_code materializeMetadata() override;
324 
325   void setStripDebugInfo() override;
326 
327 private:
328   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
329   // ProducerIdentification data member, and do some basic enforcement on the
330   // "epoch" encoded in the bitcode.
331   std::error_code parseBitcodeVersion();
332 
333   std::vector<StructType *> IdentifiedStructTypes;
334   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
335   StructType *createIdentifiedStructType(LLVMContext &Context);
336 
337   Type *getTypeByID(unsigned ID);
338   Value *getFnValueByID(unsigned ID, Type *Ty) {
339     if (Ty && Ty->isMetadataTy())
340       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
341     return ValueList.getValueFwdRef(ID, Ty);
342   }
343   Metadata *getFnMetadataByID(unsigned ID) {
344     return MetadataList.getMetadataFwdRef(ID);
345   }
346   BasicBlock *getBasicBlock(unsigned ID) const {
347     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
348     return FunctionBBs[ID];
349   }
350   AttributeSet getAttributes(unsigned i) const {
351     if (i-1 < MAttributes.size())
352       return MAttributes[i-1];
353     return AttributeSet();
354   }
355 
356   /// Read a value/type pair out of the specified record from slot 'Slot'.
357   /// Increment Slot past the number of slots used in the record. Return true on
358   /// failure.
359   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
360                         unsigned InstNum, Value *&ResVal) {
361     if (Slot == Record.size()) return true;
362     unsigned ValNo = (unsigned)Record[Slot++];
363     // Adjust the ValNo, if it was encoded relative to the InstNum.
364     if (UseRelativeIDs)
365       ValNo = InstNum - ValNo;
366     if (ValNo < InstNum) {
367       // If this is not a forward reference, just return the value we already
368       // have.
369       ResVal = getFnValueByID(ValNo, nullptr);
370       return ResVal == nullptr;
371     }
372     if (Slot == Record.size())
373       return true;
374 
375     unsigned TypeNo = (unsigned)Record[Slot++];
376     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
377     return ResVal == nullptr;
378   }
379 
380   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
381   /// past the number of slots used by the value in the record. Return true if
382   /// there is an error.
383   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
384                 unsigned InstNum, Type *Ty, Value *&ResVal) {
385     if (getValue(Record, Slot, InstNum, Ty, ResVal))
386       return true;
387     // All values currently take a single record slot.
388     ++Slot;
389     return false;
390   }
391 
392   /// Like popValue, but does not increment the Slot number.
393   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
394                 unsigned InstNum, Type *Ty, Value *&ResVal) {
395     ResVal = getValue(Record, Slot, InstNum, Ty);
396     return ResVal == nullptr;
397   }
398 
399   /// Version of getValue that returns ResVal directly, or 0 if there is an
400   /// error.
401   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
402                   unsigned InstNum, Type *Ty) {
403     if (Slot == Record.size()) return nullptr;
404     unsigned ValNo = (unsigned)Record[Slot];
405     // Adjust the ValNo, if it was encoded relative to the InstNum.
406     if (UseRelativeIDs)
407       ValNo = InstNum - ValNo;
408     return getFnValueByID(ValNo, Ty);
409   }
410 
411   /// Like getValue, but decodes signed VBRs.
412   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
413                         unsigned InstNum, Type *Ty) {
414     if (Slot == Record.size()) return nullptr;
415     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
416     // Adjust the ValNo, if it was encoded relative to the InstNum.
417     if (UseRelativeIDs)
418       ValNo = InstNum - ValNo;
419     return getFnValueByID(ValNo, Ty);
420   }
421 
422   /// Converts alignment exponent (i.e. power of two (or zero)) to the
423   /// corresponding alignment to use. If alignment is too large, returns
424   /// a corresponding error code.
425   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
426   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
427   std::error_code parseModule(uint64_t ResumeBit,
428                               bool ShouldLazyLoadMetadata = false);
429   std::error_code parseAttributeBlock();
430   std::error_code parseAttributeGroupBlock();
431   std::error_code parseTypeTable();
432   std::error_code parseTypeTableBody();
433   std::error_code parseOperandBundleTags();
434 
435   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
436                                unsigned NameIndex, Triple &TT);
437   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
438   std::error_code parseConstants();
439   std::error_code rememberAndSkipFunctionBodies();
440   std::error_code rememberAndSkipFunctionBody();
441   /// Save the positions of the Metadata blocks and skip parsing the blocks.
442   std::error_code rememberAndSkipMetadata();
443   std::error_code parseFunctionBody(Function *F);
444   std::error_code globalCleanup();
445   std::error_code resolveGlobalAndIndirectSymbolInits();
446   std::error_code parseMetadata(bool ModuleLevel = false);
447   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
448                                        StringRef Blob,
449                                        unsigned &NextMetadataNo);
450   std::error_code parseMetadataKinds();
451   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
452   std::error_code
453   parseGlobalObjectAttachment(GlobalObject &GO,
454                               ArrayRef<uint64_t> Record);
455   std::error_code parseMetadataAttachment(Function &F);
456   ErrorOr<std::string> parseModuleTriple();
457   ErrorOr<bool> hasObjCCategoryInModule();
458   std::error_code parseUseLists();
459   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
460   std::error_code initStreamFromBuffer();
461   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
462   std::error_code findFunctionInStream(
463       Function *F,
464       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
465 };
466 
467 /// Class to manage reading and parsing function summary index bitcode
468 /// files/sections.
469 class ModuleSummaryIndexBitcodeReader {
470   DiagnosticHandlerFunction DiagnosticHandler;
471 
472   /// Eventually points to the module index built during parsing.
473   ModuleSummaryIndex *TheIndex = nullptr;
474 
475   std::unique_ptr<MemoryBuffer> Buffer;
476   std::unique_ptr<BitstreamReader> StreamFile;
477   BitstreamCursor Stream;
478 
479   /// Used to indicate whether caller only wants to check for the presence
480   /// of the global value summary bitcode section. All blocks are skipped,
481   /// but the SeenGlobalValSummary boolean is set.
482   bool CheckGlobalValSummaryPresenceOnly = false;
483 
484   /// Indicates whether we have encountered a global value summary section
485   /// yet during parsing, used when checking if file contains global value
486   /// summary section.
487   bool SeenGlobalValSummary = false;
488 
489   /// Indicates whether we have already parsed the VST, used for error checking.
490   bool SeenValueSymbolTable = false;
491 
492   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
493   /// Used to enable on-demand parsing of the VST.
494   uint64_t VSTOffset = 0;
495 
496   // Map to save ValueId to GUID association that was recorded in the
497   // ValueSymbolTable. It is used after the VST is parsed to convert
498   // call graph edges read from the function summary from referencing
499   // callees by their ValueId to using the GUID instead, which is how
500   // they are recorded in the summary index being built.
501   // We save a second GUID which is the same as the first one, but ignoring the
502   // linkage, i.e. for value other than local linkage they are identical.
503   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
504       ValueIdToCallGraphGUIDMap;
505 
506   /// Map populated during module path string table parsing, from the
507   /// module ID to a string reference owned by the index's module
508   /// path string table, used to correlate with combined index
509   /// summary records.
510   DenseMap<uint64_t, StringRef> ModuleIdMap;
511 
512   /// Original source file name recorded in a bitcode record.
513   std::string SourceFileName;
514 
515 public:
516   std::error_code error(const Twine &Message);
517 
518   ModuleSummaryIndexBitcodeReader(
519       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
520       bool CheckGlobalValSummaryPresenceOnly = false);
521   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
522 
523   void freeState();
524 
525   void releaseBuffer();
526 
527   /// Check if the parser has encountered a summary section.
528   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
529 
530   /// \brief Main interface to parsing a bitcode buffer.
531   /// \returns true if an error occurred.
532   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
533                                         ModuleSummaryIndex *I);
534 
535 private:
536   std::error_code parseModule();
537   std::error_code parseValueSymbolTable(
538       uint64_t Offset,
539       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
540   std::error_code parseEntireSummary();
541   std::error_code parseModuleStringTable();
542   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
543   std::error_code initStreamFromBuffer();
544   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
545   std::pair<GlobalValue::GUID, GlobalValue::GUID>
546   getGUIDFromValueId(unsigned ValueId);
547 };
548 } // end anonymous namespace
549 
550 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
551                                              DiagnosticSeverity Severity,
552                                              const Twine &Msg)
553     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
554 
555 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
556 
557 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
558                              std::error_code EC, const Twine &Message) {
559   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
560   DiagnosticHandler(DI);
561   return EC;
562 }
563 
564 static std::error_code error(LLVMContext &Context, std::error_code EC,
565                              const Twine &Message) {
566   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
567                Message);
568 }
569 
570 static std::error_code error(LLVMContext &Context, const Twine &Message) {
571   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
572                Message);
573 }
574 
575 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
576   if (!ProducerIdentification.empty()) {
577     return ::error(Context, make_error_code(E),
578                    Message + " (Producer: '" + ProducerIdentification +
579                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
580   }
581   return ::error(Context, make_error_code(E), Message);
582 }
583 
584 std::error_code BitcodeReader::error(const Twine &Message) {
585   if (!ProducerIdentification.empty()) {
586     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
587                    Message + " (Producer: '" + ProducerIdentification +
588                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
589   }
590   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
591                  Message);
592 }
593 
594 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
595     : Context(Context), Buffer(Buffer), ValueList(Context),
596       MetadataList(Context) {}
597 
598 BitcodeReader::BitcodeReader(LLVMContext &Context)
599     : Context(Context), Buffer(nullptr), ValueList(Context),
600       MetadataList(Context) {}
601 
602 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
603   if (WillMaterializeAllForwardRefs)
604     return std::error_code();
605 
606   // Prevent recursion.
607   WillMaterializeAllForwardRefs = true;
608 
609   while (!BasicBlockFwdRefQueue.empty()) {
610     Function *F = BasicBlockFwdRefQueue.front();
611     BasicBlockFwdRefQueue.pop_front();
612     assert(F && "Expected valid function");
613     if (!BasicBlockFwdRefs.count(F))
614       // Already materialized.
615       continue;
616 
617     // Check for a function that isn't materializable to prevent an infinite
618     // loop.  When parsing a blockaddress stored in a global variable, there
619     // isn't a trivial way to check if a function will have a body without a
620     // linear search through FunctionsWithBodies, so just check it here.
621     if (!F->isMaterializable())
622       return error("Never resolved function from blockaddress");
623 
624     // Try to materialize F.
625     if (std::error_code EC = materialize(F))
626       return EC;
627   }
628   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
629 
630   // Reset state.
631   WillMaterializeAllForwardRefs = false;
632   return std::error_code();
633 }
634 
635 void BitcodeReader::freeState() {
636   Buffer = nullptr;
637   std::vector<Type*>().swap(TypeList);
638   ValueList.clear();
639   MetadataList.clear();
640   std::vector<Comdat *>().swap(ComdatList);
641 
642   std::vector<AttributeSet>().swap(MAttributes);
643   std::vector<BasicBlock*>().swap(FunctionBBs);
644   std::vector<Function*>().swap(FunctionsWithBodies);
645   DeferredFunctionInfo.clear();
646   DeferredMetadataInfo.clear();
647   MDKindMap.clear();
648 
649   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
650   BasicBlockFwdRefQueue.clear();
651 }
652 
653 //===----------------------------------------------------------------------===//
654 //  Helper functions to implement forward reference resolution, etc.
655 //===----------------------------------------------------------------------===//
656 
657 /// Convert a string from a record into an std::string, return true on failure.
658 template <typename StrTy>
659 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
660                             StrTy &Result) {
661   if (Idx > Record.size())
662     return true;
663 
664   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
665     Result += (char)Record[i];
666   return false;
667 }
668 
669 static bool hasImplicitComdat(size_t Val) {
670   switch (Val) {
671   default:
672     return false;
673   case 1:  // Old WeakAnyLinkage
674   case 4:  // Old LinkOnceAnyLinkage
675   case 10: // Old WeakODRLinkage
676   case 11: // Old LinkOnceODRLinkage
677     return true;
678   }
679 }
680 
681 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
682   switch (Val) {
683   default: // Map unknown/new linkages to external
684   case 0:
685     return GlobalValue::ExternalLinkage;
686   case 2:
687     return GlobalValue::AppendingLinkage;
688   case 3:
689     return GlobalValue::InternalLinkage;
690   case 5:
691     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
692   case 6:
693     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
694   case 7:
695     return GlobalValue::ExternalWeakLinkage;
696   case 8:
697     return GlobalValue::CommonLinkage;
698   case 9:
699     return GlobalValue::PrivateLinkage;
700   case 12:
701     return GlobalValue::AvailableExternallyLinkage;
702   case 13:
703     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
704   case 14:
705     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
706   case 15:
707     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
708   case 1: // Old value with implicit comdat.
709   case 16:
710     return GlobalValue::WeakAnyLinkage;
711   case 10: // Old value with implicit comdat.
712   case 17:
713     return GlobalValue::WeakODRLinkage;
714   case 4: // Old value with implicit comdat.
715   case 18:
716     return GlobalValue::LinkOnceAnyLinkage;
717   case 11: // Old value with implicit comdat.
718   case 19:
719     return GlobalValue::LinkOnceODRLinkage;
720   }
721 }
722 
723 /// Decode the flags for GlobalValue in the summary.
724 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
725                                                             uint64_t Version) {
726   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
727   // like getDecodedLinkage() above. Any future change to the linkage enum and
728   // to getDecodedLinkage() will need to be taken into account here as above.
729   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
730   RawFlags = RawFlags >> 4;
731   bool HasSection = RawFlags & 0x1;
732   bool IsNotViableToInline = RawFlags & 0x2;
733   return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline);
734 }
735 
736 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
737   switch (Val) {
738   default: // Map unknown visibilities to default.
739   case 0: return GlobalValue::DefaultVisibility;
740   case 1: return GlobalValue::HiddenVisibility;
741   case 2: return GlobalValue::ProtectedVisibility;
742   }
743 }
744 
745 static GlobalValue::DLLStorageClassTypes
746 getDecodedDLLStorageClass(unsigned Val) {
747   switch (Val) {
748   default: // Map unknown values to default.
749   case 0: return GlobalValue::DefaultStorageClass;
750   case 1: return GlobalValue::DLLImportStorageClass;
751   case 2: return GlobalValue::DLLExportStorageClass;
752   }
753 }
754 
755 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
756   switch (Val) {
757     case 0: return GlobalVariable::NotThreadLocal;
758     default: // Map unknown non-zero value to general dynamic.
759     case 1: return GlobalVariable::GeneralDynamicTLSModel;
760     case 2: return GlobalVariable::LocalDynamicTLSModel;
761     case 3: return GlobalVariable::InitialExecTLSModel;
762     case 4: return GlobalVariable::LocalExecTLSModel;
763   }
764 }
765 
766 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
767   switch (Val) {
768     default: // Map unknown to UnnamedAddr::None.
769     case 0: return GlobalVariable::UnnamedAddr::None;
770     case 1: return GlobalVariable::UnnamedAddr::Global;
771     case 2: return GlobalVariable::UnnamedAddr::Local;
772   }
773 }
774 
775 static int getDecodedCastOpcode(unsigned Val) {
776   switch (Val) {
777   default: return -1;
778   case bitc::CAST_TRUNC   : return Instruction::Trunc;
779   case bitc::CAST_ZEXT    : return Instruction::ZExt;
780   case bitc::CAST_SEXT    : return Instruction::SExt;
781   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
782   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
783   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
784   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
785   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
786   case bitc::CAST_FPEXT   : return Instruction::FPExt;
787   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
788   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
789   case bitc::CAST_BITCAST : return Instruction::BitCast;
790   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
791   }
792 }
793 
794 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
795   bool IsFP = Ty->isFPOrFPVectorTy();
796   // BinOps are only valid for int/fp or vector of int/fp types
797   if (!IsFP && !Ty->isIntOrIntVectorTy())
798     return -1;
799 
800   switch (Val) {
801   default:
802     return -1;
803   case bitc::BINOP_ADD:
804     return IsFP ? Instruction::FAdd : Instruction::Add;
805   case bitc::BINOP_SUB:
806     return IsFP ? Instruction::FSub : Instruction::Sub;
807   case bitc::BINOP_MUL:
808     return IsFP ? Instruction::FMul : Instruction::Mul;
809   case bitc::BINOP_UDIV:
810     return IsFP ? -1 : Instruction::UDiv;
811   case bitc::BINOP_SDIV:
812     return IsFP ? Instruction::FDiv : Instruction::SDiv;
813   case bitc::BINOP_UREM:
814     return IsFP ? -1 : Instruction::URem;
815   case bitc::BINOP_SREM:
816     return IsFP ? Instruction::FRem : Instruction::SRem;
817   case bitc::BINOP_SHL:
818     return IsFP ? -1 : Instruction::Shl;
819   case bitc::BINOP_LSHR:
820     return IsFP ? -1 : Instruction::LShr;
821   case bitc::BINOP_ASHR:
822     return IsFP ? -1 : Instruction::AShr;
823   case bitc::BINOP_AND:
824     return IsFP ? -1 : Instruction::And;
825   case bitc::BINOP_OR:
826     return IsFP ? -1 : Instruction::Or;
827   case bitc::BINOP_XOR:
828     return IsFP ? -1 : Instruction::Xor;
829   }
830 }
831 
832 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
833   switch (Val) {
834   default: return AtomicRMWInst::BAD_BINOP;
835   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
836   case bitc::RMW_ADD: return AtomicRMWInst::Add;
837   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
838   case bitc::RMW_AND: return AtomicRMWInst::And;
839   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
840   case bitc::RMW_OR: return AtomicRMWInst::Or;
841   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
842   case bitc::RMW_MAX: return AtomicRMWInst::Max;
843   case bitc::RMW_MIN: return AtomicRMWInst::Min;
844   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
845   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
846   }
847 }
848 
849 static AtomicOrdering getDecodedOrdering(unsigned Val) {
850   switch (Val) {
851   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
852   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
853   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
854   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
855   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
856   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
857   default: // Map unknown orderings to sequentially-consistent.
858   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
859   }
860 }
861 
862 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
863   switch (Val) {
864   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
865   default: // Map unknown scopes to cross-thread.
866   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
867   }
868 }
869 
870 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
871   switch (Val) {
872   default: // Map unknown selection kinds to any.
873   case bitc::COMDAT_SELECTION_KIND_ANY:
874     return Comdat::Any;
875   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
876     return Comdat::ExactMatch;
877   case bitc::COMDAT_SELECTION_KIND_LARGEST:
878     return Comdat::Largest;
879   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
880     return Comdat::NoDuplicates;
881   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
882     return Comdat::SameSize;
883   }
884 }
885 
886 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
887   FastMathFlags FMF;
888   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
889     FMF.setUnsafeAlgebra();
890   if (0 != (Val & FastMathFlags::NoNaNs))
891     FMF.setNoNaNs();
892   if (0 != (Val & FastMathFlags::NoInfs))
893     FMF.setNoInfs();
894   if (0 != (Val & FastMathFlags::NoSignedZeros))
895     FMF.setNoSignedZeros();
896   if (0 != (Val & FastMathFlags::AllowReciprocal))
897     FMF.setAllowReciprocal();
898   return FMF;
899 }
900 
901 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
902   switch (Val) {
903   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
904   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
905   }
906 }
907 
908 namespace llvm {
909 namespace {
910 /// \brief A class for maintaining the slot number definition
911 /// as a placeholder for the actual definition for forward constants defs.
912 class ConstantPlaceHolder : public ConstantExpr {
913   void operator=(const ConstantPlaceHolder &) = delete;
914 
915 public:
916   // allocate space for exactly one operand
917   void *operator new(size_t s) { return User::operator new(s, 1); }
918   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
919       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
920     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
921   }
922 
923   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
924   static bool classof(const Value *V) {
925     return isa<ConstantExpr>(V) &&
926            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
927   }
928 
929   /// Provide fast operand accessors
930   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
931 };
932 } // end anonymous namespace
933 
934 // FIXME: can we inherit this from ConstantExpr?
935 template <>
936 struct OperandTraits<ConstantPlaceHolder> :
937   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
938 };
939 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
940 } // end namespace llvm
941 
942 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
943   if (Idx == size()) {
944     push_back(V);
945     return;
946   }
947 
948   if (Idx >= size())
949     resize(Idx+1);
950 
951   WeakVH &OldV = ValuePtrs[Idx];
952   if (!OldV) {
953     OldV = V;
954     return;
955   }
956 
957   // Handle constants and non-constants (e.g. instrs) differently for
958   // efficiency.
959   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
960     ResolveConstants.push_back(std::make_pair(PHC, Idx));
961     OldV = V;
962   } else {
963     // If there was a forward reference to this value, replace it.
964     Value *PrevVal = OldV;
965     OldV->replaceAllUsesWith(V);
966     delete PrevVal;
967   }
968 }
969 
970 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
971                                                     Type *Ty) {
972   if (Idx >= size())
973     resize(Idx + 1);
974 
975   if (Value *V = ValuePtrs[Idx]) {
976     if (Ty != V->getType())
977       report_fatal_error("Type mismatch in constant table!");
978     return cast<Constant>(V);
979   }
980 
981   // Create and return a placeholder, which will later be RAUW'd.
982   Constant *C = new ConstantPlaceHolder(Ty, Context);
983   ValuePtrs[Idx] = C;
984   return C;
985 }
986 
987 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
988   // Bail out for a clearly invalid value. This would make us call resize(0)
989   if (Idx == UINT_MAX)
990     return nullptr;
991 
992   if (Idx >= size())
993     resize(Idx + 1);
994 
995   if (Value *V = ValuePtrs[Idx]) {
996     // If the types don't match, it's invalid.
997     if (Ty && Ty != V->getType())
998       return nullptr;
999     return V;
1000   }
1001 
1002   // No type specified, must be invalid reference.
1003   if (!Ty) return nullptr;
1004 
1005   // Create and return a placeholder, which will later be RAUW'd.
1006   Value *V = new Argument(Ty);
1007   ValuePtrs[Idx] = V;
1008   return V;
1009 }
1010 
1011 /// Once all constants are read, this method bulk resolves any forward
1012 /// references.  The idea behind this is that we sometimes get constants (such
1013 /// as large arrays) which reference *many* forward ref constants.  Replacing
1014 /// each of these causes a lot of thrashing when building/reuniquing the
1015 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1016 /// the place holders at once for any constant that uses a placeholder.
1017 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1018   // Sort the values by-pointer so that they are efficient to look up with a
1019   // binary search.
1020   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1021 
1022   SmallVector<Constant*, 64> NewOps;
1023 
1024   while (!ResolveConstants.empty()) {
1025     Value *RealVal = operator[](ResolveConstants.back().second);
1026     Constant *Placeholder = ResolveConstants.back().first;
1027     ResolveConstants.pop_back();
1028 
1029     // Loop over all users of the placeholder, updating them to reference the
1030     // new value.  If they reference more than one placeholder, update them all
1031     // at once.
1032     while (!Placeholder->use_empty()) {
1033       auto UI = Placeholder->user_begin();
1034       User *U = *UI;
1035 
1036       // If the using object isn't uniqued, just update the operands.  This
1037       // handles instructions and initializers for global variables.
1038       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1039         UI.getUse().set(RealVal);
1040         continue;
1041       }
1042 
1043       // Otherwise, we have a constant that uses the placeholder.  Replace that
1044       // constant with a new constant that has *all* placeholder uses updated.
1045       Constant *UserC = cast<Constant>(U);
1046       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1047            I != E; ++I) {
1048         Value *NewOp;
1049         if (!isa<ConstantPlaceHolder>(*I)) {
1050           // Not a placeholder reference.
1051           NewOp = *I;
1052         } else if (*I == Placeholder) {
1053           // Common case is that it just references this one placeholder.
1054           NewOp = RealVal;
1055         } else {
1056           // Otherwise, look up the placeholder in ResolveConstants.
1057           ResolveConstantsTy::iterator It =
1058             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1059                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1060                                                             0));
1061           assert(It != ResolveConstants.end() && It->first == *I);
1062           NewOp = operator[](It->second);
1063         }
1064 
1065         NewOps.push_back(cast<Constant>(NewOp));
1066       }
1067 
1068       // Make the new constant.
1069       Constant *NewC;
1070       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1071         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1072       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1073         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1074       } else if (isa<ConstantVector>(UserC)) {
1075         NewC = ConstantVector::get(NewOps);
1076       } else {
1077         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1078         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1079       }
1080 
1081       UserC->replaceAllUsesWith(NewC);
1082       UserC->destroyConstant();
1083       NewOps.clear();
1084     }
1085 
1086     // Update all ValueHandles, they should be the only users at this point.
1087     Placeholder->replaceAllUsesWith(RealVal);
1088     delete Placeholder;
1089   }
1090 }
1091 
1092 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1093   if (Idx == size()) {
1094     push_back(MD);
1095     return;
1096   }
1097 
1098   if (Idx >= size())
1099     resize(Idx+1);
1100 
1101   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1102   if (!OldMD) {
1103     OldMD.reset(MD);
1104     return;
1105   }
1106 
1107   // If there was a forward reference to this value, replace it.
1108   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1109   PrevMD->replaceAllUsesWith(MD);
1110   --NumFwdRefs;
1111 }
1112 
1113 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1114   if (Idx >= size())
1115     resize(Idx + 1);
1116 
1117   if (Metadata *MD = MetadataPtrs[Idx])
1118     return MD;
1119 
1120   // Track forward refs to be resolved later.
1121   if (AnyFwdRefs) {
1122     MinFwdRef = std::min(MinFwdRef, Idx);
1123     MaxFwdRef = std::max(MaxFwdRef, Idx);
1124   } else {
1125     AnyFwdRefs = true;
1126     MinFwdRef = MaxFwdRef = Idx;
1127   }
1128   ++NumFwdRefs;
1129 
1130   // Create and return a placeholder, which will later be RAUW'd.
1131   Metadata *MD = MDNode::getTemporary(Context, None).release();
1132   MetadataPtrs[Idx].reset(MD);
1133   return MD;
1134 }
1135 
1136 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1137   Metadata *MD = lookup(Idx);
1138   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1139     if (!N->isResolved())
1140       return nullptr;
1141   return MD;
1142 }
1143 
1144 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1145   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1146 }
1147 
1148 void BitcodeReaderMetadataList::tryToResolveCycles() {
1149   if (NumFwdRefs)
1150     // Still forward references... can't resolve cycles.
1151     return;
1152 
1153   bool DidReplaceTypeRefs = false;
1154 
1155   // Give up on finding a full definition for any forward decls that remain.
1156   for (const auto &Ref : OldTypeRefs.FwdDecls)
1157     OldTypeRefs.Final.insert(Ref);
1158   OldTypeRefs.FwdDecls.clear();
1159 
1160   // Upgrade from old type ref arrays.  In strange cases, this could add to
1161   // OldTypeRefs.Unknown.
1162   for (const auto &Array : OldTypeRefs.Arrays) {
1163     DidReplaceTypeRefs = true;
1164     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1165   }
1166   OldTypeRefs.Arrays.clear();
1167 
1168   // Replace old string-based type refs with the resolved node, if possible.
1169   // If we haven't seen the node, leave it to the verifier to complain about
1170   // the invalid string reference.
1171   for (const auto &Ref : OldTypeRefs.Unknown) {
1172     DidReplaceTypeRefs = true;
1173     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1174       Ref.second->replaceAllUsesWith(CT);
1175     else
1176       Ref.second->replaceAllUsesWith(Ref.first);
1177   }
1178   OldTypeRefs.Unknown.clear();
1179 
1180   // Make sure all the upgraded types are resolved.
1181   if (DidReplaceTypeRefs) {
1182     AnyFwdRefs = true;
1183     MinFwdRef = 0;
1184     MaxFwdRef = MetadataPtrs.size() - 1;
1185   }
1186 
1187   if (!AnyFwdRefs)
1188     // Nothing to do.
1189     return;
1190 
1191   // Resolve any cycles.
1192   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1193     auto &MD = MetadataPtrs[I];
1194     auto *N = dyn_cast_or_null<MDNode>(MD);
1195     if (!N)
1196       continue;
1197 
1198     assert(!N->isTemporary() && "Unexpected forward reference");
1199     N->resolveCycles();
1200   }
1201 
1202   // Make sure we return early again until there's another forward ref.
1203   AnyFwdRefs = false;
1204 }
1205 
1206 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1207                                            DICompositeType &CT) {
1208   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1209   if (CT.isForwardDecl())
1210     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1211   else
1212     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1213 }
1214 
1215 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1216   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1217   if (LLVM_LIKELY(!UUID))
1218     return MaybeUUID;
1219 
1220   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1221     return CT;
1222 
1223   auto &Ref = OldTypeRefs.Unknown[UUID];
1224   if (!Ref)
1225     Ref = MDNode::getTemporary(Context, None);
1226   return Ref.get();
1227 }
1228 
1229 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1230   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1231   if (!Tuple || Tuple->isDistinct())
1232     return MaybeTuple;
1233 
1234   // Look through the array immediately if possible.
1235   if (!Tuple->isTemporary())
1236     return resolveTypeRefArray(Tuple);
1237 
1238   // Create and return a placeholder to use for now.  Eventually
1239   // resolveTypeRefArrays() will be resolve this forward reference.
1240   OldTypeRefs.Arrays.emplace_back(
1241       std::piecewise_construct, std::forward_as_tuple(Tuple),
1242       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1243   return OldTypeRefs.Arrays.back().second.get();
1244 }
1245 
1246 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1247   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1248   if (!Tuple || Tuple->isDistinct())
1249     return MaybeTuple;
1250 
1251   // Look through the DITypeRefArray, upgrading each DITypeRef.
1252   SmallVector<Metadata *, 32> Ops;
1253   Ops.reserve(Tuple->getNumOperands());
1254   for (Metadata *MD : Tuple->operands())
1255     Ops.push_back(upgradeTypeRef(MD));
1256 
1257   return MDTuple::get(Context, Ops);
1258 }
1259 
1260 Type *BitcodeReader::getTypeByID(unsigned ID) {
1261   // The type table size is always specified correctly.
1262   if (ID >= TypeList.size())
1263     return nullptr;
1264 
1265   if (Type *Ty = TypeList[ID])
1266     return Ty;
1267 
1268   // If we have a forward reference, the only possible case is when it is to a
1269   // named struct.  Just create a placeholder for now.
1270   return TypeList[ID] = createIdentifiedStructType(Context);
1271 }
1272 
1273 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1274                                                       StringRef Name) {
1275   auto *Ret = StructType::create(Context, Name);
1276   IdentifiedStructTypes.push_back(Ret);
1277   return Ret;
1278 }
1279 
1280 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1281   auto *Ret = StructType::create(Context);
1282   IdentifiedStructTypes.push_back(Ret);
1283   return Ret;
1284 }
1285 
1286 //===----------------------------------------------------------------------===//
1287 //  Functions for parsing blocks from the bitcode file
1288 //===----------------------------------------------------------------------===//
1289 
1290 
1291 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1292 /// been decoded from the given integer. This function must stay in sync with
1293 /// 'encodeLLVMAttributesForBitcode'.
1294 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1295                                            uint64_t EncodedAttrs) {
1296   // FIXME: Remove in 4.0.
1297 
1298   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1299   // the bits above 31 down by 11 bits.
1300   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1301   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1302          "Alignment must be a power of two.");
1303 
1304   if (Alignment)
1305     B.addAlignmentAttr(Alignment);
1306   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1307                 (EncodedAttrs & 0xffff));
1308 }
1309 
1310 std::error_code BitcodeReader::parseAttributeBlock() {
1311   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1312     return error("Invalid record");
1313 
1314   if (!MAttributes.empty())
1315     return error("Invalid multiple blocks");
1316 
1317   SmallVector<uint64_t, 64> Record;
1318 
1319   SmallVector<AttributeSet, 8> Attrs;
1320 
1321   // Read all the records.
1322   while (1) {
1323     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1324 
1325     switch (Entry.Kind) {
1326     case BitstreamEntry::SubBlock: // Handled for us already.
1327     case BitstreamEntry::Error:
1328       return error("Malformed block");
1329     case BitstreamEntry::EndBlock:
1330       return std::error_code();
1331     case BitstreamEntry::Record:
1332       // The interesting case.
1333       break;
1334     }
1335 
1336     // Read a record.
1337     Record.clear();
1338     switch (Stream.readRecord(Entry.ID, Record)) {
1339     default:  // Default behavior: ignore.
1340       break;
1341     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1342       // FIXME: Remove in 4.0.
1343       if (Record.size() & 1)
1344         return error("Invalid record");
1345 
1346       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1347         AttrBuilder B;
1348         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1349         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1350       }
1351 
1352       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1353       Attrs.clear();
1354       break;
1355     }
1356     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1357       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1358         Attrs.push_back(MAttributeGroups[Record[i]]);
1359 
1360       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1361       Attrs.clear();
1362       break;
1363     }
1364     }
1365   }
1366 }
1367 
1368 // Returns Attribute::None on unrecognized codes.
1369 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1370   switch (Code) {
1371   default:
1372     return Attribute::None;
1373   case bitc::ATTR_KIND_ALIGNMENT:
1374     return Attribute::Alignment;
1375   case bitc::ATTR_KIND_ALWAYS_INLINE:
1376     return Attribute::AlwaysInline;
1377   case bitc::ATTR_KIND_ARGMEMONLY:
1378     return Attribute::ArgMemOnly;
1379   case bitc::ATTR_KIND_BUILTIN:
1380     return Attribute::Builtin;
1381   case bitc::ATTR_KIND_BY_VAL:
1382     return Attribute::ByVal;
1383   case bitc::ATTR_KIND_IN_ALLOCA:
1384     return Attribute::InAlloca;
1385   case bitc::ATTR_KIND_COLD:
1386     return Attribute::Cold;
1387   case bitc::ATTR_KIND_CONVERGENT:
1388     return Attribute::Convergent;
1389   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1390     return Attribute::InaccessibleMemOnly;
1391   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1392     return Attribute::InaccessibleMemOrArgMemOnly;
1393   case bitc::ATTR_KIND_INLINE_HINT:
1394     return Attribute::InlineHint;
1395   case bitc::ATTR_KIND_IN_REG:
1396     return Attribute::InReg;
1397   case bitc::ATTR_KIND_JUMP_TABLE:
1398     return Attribute::JumpTable;
1399   case bitc::ATTR_KIND_MIN_SIZE:
1400     return Attribute::MinSize;
1401   case bitc::ATTR_KIND_NAKED:
1402     return Attribute::Naked;
1403   case bitc::ATTR_KIND_NEST:
1404     return Attribute::Nest;
1405   case bitc::ATTR_KIND_NO_ALIAS:
1406     return Attribute::NoAlias;
1407   case bitc::ATTR_KIND_NO_BUILTIN:
1408     return Attribute::NoBuiltin;
1409   case bitc::ATTR_KIND_NO_CAPTURE:
1410     return Attribute::NoCapture;
1411   case bitc::ATTR_KIND_NO_DUPLICATE:
1412     return Attribute::NoDuplicate;
1413   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1414     return Attribute::NoImplicitFloat;
1415   case bitc::ATTR_KIND_NO_INLINE:
1416     return Attribute::NoInline;
1417   case bitc::ATTR_KIND_NO_RECURSE:
1418     return Attribute::NoRecurse;
1419   case bitc::ATTR_KIND_NON_LAZY_BIND:
1420     return Attribute::NonLazyBind;
1421   case bitc::ATTR_KIND_NON_NULL:
1422     return Attribute::NonNull;
1423   case bitc::ATTR_KIND_DEREFERENCEABLE:
1424     return Attribute::Dereferenceable;
1425   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1426     return Attribute::DereferenceableOrNull;
1427   case bitc::ATTR_KIND_ALLOC_SIZE:
1428     return Attribute::AllocSize;
1429   case bitc::ATTR_KIND_NO_RED_ZONE:
1430     return Attribute::NoRedZone;
1431   case bitc::ATTR_KIND_NO_RETURN:
1432     return Attribute::NoReturn;
1433   case bitc::ATTR_KIND_NO_UNWIND:
1434     return Attribute::NoUnwind;
1435   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1436     return Attribute::OptimizeForSize;
1437   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1438     return Attribute::OptimizeNone;
1439   case bitc::ATTR_KIND_READ_NONE:
1440     return Attribute::ReadNone;
1441   case bitc::ATTR_KIND_READ_ONLY:
1442     return Attribute::ReadOnly;
1443   case bitc::ATTR_KIND_RETURNED:
1444     return Attribute::Returned;
1445   case bitc::ATTR_KIND_RETURNS_TWICE:
1446     return Attribute::ReturnsTwice;
1447   case bitc::ATTR_KIND_S_EXT:
1448     return Attribute::SExt;
1449   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1450     return Attribute::StackAlignment;
1451   case bitc::ATTR_KIND_STACK_PROTECT:
1452     return Attribute::StackProtect;
1453   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1454     return Attribute::StackProtectReq;
1455   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1456     return Attribute::StackProtectStrong;
1457   case bitc::ATTR_KIND_SAFESTACK:
1458     return Attribute::SafeStack;
1459   case bitc::ATTR_KIND_STRUCT_RET:
1460     return Attribute::StructRet;
1461   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1462     return Attribute::SanitizeAddress;
1463   case bitc::ATTR_KIND_SANITIZE_THREAD:
1464     return Attribute::SanitizeThread;
1465   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1466     return Attribute::SanitizeMemory;
1467   case bitc::ATTR_KIND_SWIFT_ERROR:
1468     return Attribute::SwiftError;
1469   case bitc::ATTR_KIND_SWIFT_SELF:
1470     return Attribute::SwiftSelf;
1471   case bitc::ATTR_KIND_UW_TABLE:
1472     return Attribute::UWTable;
1473   case bitc::ATTR_KIND_WRITEONLY:
1474     return Attribute::WriteOnly;
1475   case bitc::ATTR_KIND_Z_EXT:
1476     return Attribute::ZExt;
1477   }
1478 }
1479 
1480 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1481                                                    unsigned &Alignment) {
1482   // Note: Alignment in bitcode files is incremented by 1, so that zero
1483   // can be used for default alignment.
1484   if (Exponent > Value::MaxAlignmentExponent + 1)
1485     return error("Invalid alignment value");
1486   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1487   return std::error_code();
1488 }
1489 
1490 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1491                                              Attribute::AttrKind *Kind) {
1492   *Kind = getAttrFromCode(Code);
1493   if (*Kind == Attribute::None)
1494     return error(BitcodeError::CorruptedBitcode,
1495                  "Unknown attribute kind (" + Twine(Code) + ")");
1496   return std::error_code();
1497 }
1498 
1499 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1500   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1501     return error("Invalid record");
1502 
1503   if (!MAttributeGroups.empty())
1504     return error("Invalid multiple blocks");
1505 
1506   SmallVector<uint64_t, 64> Record;
1507 
1508   // Read all the records.
1509   while (1) {
1510     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1511 
1512     switch (Entry.Kind) {
1513     case BitstreamEntry::SubBlock: // Handled for us already.
1514     case BitstreamEntry::Error:
1515       return error("Malformed block");
1516     case BitstreamEntry::EndBlock:
1517       return std::error_code();
1518     case BitstreamEntry::Record:
1519       // The interesting case.
1520       break;
1521     }
1522 
1523     // Read a record.
1524     Record.clear();
1525     switch (Stream.readRecord(Entry.ID, Record)) {
1526     default:  // Default behavior: ignore.
1527       break;
1528     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1529       if (Record.size() < 3)
1530         return error("Invalid record");
1531 
1532       uint64_t GrpID = Record[0];
1533       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1534 
1535       AttrBuilder B;
1536       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1537         if (Record[i] == 0) {        // Enum attribute
1538           Attribute::AttrKind Kind;
1539           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1540             return EC;
1541 
1542           B.addAttribute(Kind);
1543         } else if (Record[i] == 1) { // Integer attribute
1544           Attribute::AttrKind Kind;
1545           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1546             return EC;
1547           if (Kind == Attribute::Alignment)
1548             B.addAlignmentAttr(Record[++i]);
1549           else if (Kind == Attribute::StackAlignment)
1550             B.addStackAlignmentAttr(Record[++i]);
1551           else if (Kind == Attribute::Dereferenceable)
1552             B.addDereferenceableAttr(Record[++i]);
1553           else if (Kind == Attribute::DereferenceableOrNull)
1554             B.addDereferenceableOrNullAttr(Record[++i]);
1555           else if (Kind == Attribute::AllocSize)
1556             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1557         } else {                     // String attribute
1558           assert((Record[i] == 3 || Record[i] == 4) &&
1559                  "Invalid attribute group entry");
1560           bool HasValue = (Record[i++] == 4);
1561           SmallString<64> KindStr;
1562           SmallString<64> ValStr;
1563 
1564           while (Record[i] != 0 && i != e)
1565             KindStr += Record[i++];
1566           assert(Record[i] == 0 && "Kind string not null terminated");
1567 
1568           if (HasValue) {
1569             // Has a value associated with it.
1570             ++i; // Skip the '0' that terminates the "kind" string.
1571             while (Record[i] != 0 && i != e)
1572               ValStr += Record[i++];
1573             assert(Record[i] == 0 && "Value string not null terminated");
1574           }
1575 
1576           B.addAttribute(KindStr.str(), ValStr.str());
1577         }
1578       }
1579 
1580       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1581       break;
1582     }
1583     }
1584   }
1585 }
1586 
1587 std::error_code BitcodeReader::parseTypeTable() {
1588   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1589     return error("Invalid record");
1590 
1591   return parseTypeTableBody();
1592 }
1593 
1594 std::error_code BitcodeReader::parseTypeTableBody() {
1595   if (!TypeList.empty())
1596     return error("Invalid multiple blocks");
1597 
1598   SmallVector<uint64_t, 64> Record;
1599   unsigned NumRecords = 0;
1600 
1601   SmallString<64> TypeName;
1602 
1603   // Read all the records for this type table.
1604   while (1) {
1605     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1606 
1607     switch (Entry.Kind) {
1608     case BitstreamEntry::SubBlock: // Handled for us already.
1609     case BitstreamEntry::Error:
1610       return error("Malformed block");
1611     case BitstreamEntry::EndBlock:
1612       if (NumRecords != TypeList.size())
1613         return error("Malformed block");
1614       return std::error_code();
1615     case BitstreamEntry::Record:
1616       // The interesting case.
1617       break;
1618     }
1619 
1620     // Read a record.
1621     Record.clear();
1622     Type *ResultTy = nullptr;
1623     switch (Stream.readRecord(Entry.ID, Record)) {
1624     default:
1625       return error("Invalid value");
1626     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1627       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1628       // type list.  This allows us to reserve space.
1629       if (Record.size() < 1)
1630         return error("Invalid record");
1631       TypeList.resize(Record[0]);
1632       continue;
1633     case bitc::TYPE_CODE_VOID:      // VOID
1634       ResultTy = Type::getVoidTy(Context);
1635       break;
1636     case bitc::TYPE_CODE_HALF:     // HALF
1637       ResultTy = Type::getHalfTy(Context);
1638       break;
1639     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1640       ResultTy = Type::getFloatTy(Context);
1641       break;
1642     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1643       ResultTy = Type::getDoubleTy(Context);
1644       break;
1645     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1646       ResultTy = Type::getX86_FP80Ty(Context);
1647       break;
1648     case bitc::TYPE_CODE_FP128:     // FP128
1649       ResultTy = Type::getFP128Ty(Context);
1650       break;
1651     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1652       ResultTy = Type::getPPC_FP128Ty(Context);
1653       break;
1654     case bitc::TYPE_CODE_LABEL:     // LABEL
1655       ResultTy = Type::getLabelTy(Context);
1656       break;
1657     case bitc::TYPE_CODE_METADATA:  // METADATA
1658       ResultTy = Type::getMetadataTy(Context);
1659       break;
1660     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1661       ResultTy = Type::getX86_MMXTy(Context);
1662       break;
1663     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1664       ResultTy = Type::getTokenTy(Context);
1665       break;
1666     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1667       if (Record.size() < 1)
1668         return error("Invalid record");
1669 
1670       uint64_t NumBits = Record[0];
1671       if (NumBits < IntegerType::MIN_INT_BITS ||
1672           NumBits > IntegerType::MAX_INT_BITS)
1673         return error("Bitwidth for integer type out of range");
1674       ResultTy = IntegerType::get(Context, NumBits);
1675       break;
1676     }
1677     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1678                                     //          [pointee type, address space]
1679       if (Record.size() < 1)
1680         return error("Invalid record");
1681       unsigned AddressSpace = 0;
1682       if (Record.size() == 2)
1683         AddressSpace = Record[1];
1684       ResultTy = getTypeByID(Record[0]);
1685       if (!ResultTy ||
1686           !PointerType::isValidElementType(ResultTy))
1687         return error("Invalid type");
1688       ResultTy = PointerType::get(ResultTy, AddressSpace);
1689       break;
1690     }
1691     case bitc::TYPE_CODE_FUNCTION_OLD: {
1692       // FIXME: attrid is dead, remove it in LLVM 4.0
1693       // FUNCTION: [vararg, attrid, retty, paramty x N]
1694       if (Record.size() < 3)
1695         return error("Invalid record");
1696       SmallVector<Type*, 8> ArgTys;
1697       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1698         if (Type *T = getTypeByID(Record[i]))
1699           ArgTys.push_back(T);
1700         else
1701           break;
1702       }
1703 
1704       ResultTy = getTypeByID(Record[2]);
1705       if (!ResultTy || ArgTys.size() < Record.size()-3)
1706         return error("Invalid type");
1707 
1708       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1709       break;
1710     }
1711     case bitc::TYPE_CODE_FUNCTION: {
1712       // FUNCTION: [vararg, retty, paramty x N]
1713       if (Record.size() < 2)
1714         return error("Invalid record");
1715       SmallVector<Type*, 8> ArgTys;
1716       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1717         if (Type *T = getTypeByID(Record[i])) {
1718           if (!FunctionType::isValidArgumentType(T))
1719             return error("Invalid function argument type");
1720           ArgTys.push_back(T);
1721         }
1722         else
1723           break;
1724       }
1725 
1726       ResultTy = getTypeByID(Record[1]);
1727       if (!ResultTy || ArgTys.size() < Record.size()-2)
1728         return error("Invalid type");
1729 
1730       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1731       break;
1732     }
1733     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1734       if (Record.size() < 1)
1735         return error("Invalid record");
1736       SmallVector<Type*, 8> EltTys;
1737       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1738         if (Type *T = getTypeByID(Record[i]))
1739           EltTys.push_back(T);
1740         else
1741           break;
1742       }
1743       if (EltTys.size() != Record.size()-1)
1744         return error("Invalid type");
1745       ResultTy = StructType::get(Context, EltTys, Record[0]);
1746       break;
1747     }
1748     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1749       if (convertToString(Record, 0, TypeName))
1750         return error("Invalid record");
1751       continue;
1752 
1753     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1754       if (Record.size() < 1)
1755         return error("Invalid record");
1756 
1757       if (NumRecords >= TypeList.size())
1758         return error("Invalid TYPE table");
1759 
1760       // Check to see if this was forward referenced, if so fill in the temp.
1761       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1762       if (Res) {
1763         Res->setName(TypeName);
1764         TypeList[NumRecords] = nullptr;
1765       } else  // Otherwise, create a new struct.
1766         Res = createIdentifiedStructType(Context, TypeName);
1767       TypeName.clear();
1768 
1769       SmallVector<Type*, 8> EltTys;
1770       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1771         if (Type *T = getTypeByID(Record[i]))
1772           EltTys.push_back(T);
1773         else
1774           break;
1775       }
1776       if (EltTys.size() != Record.size()-1)
1777         return error("Invalid record");
1778       Res->setBody(EltTys, Record[0]);
1779       ResultTy = Res;
1780       break;
1781     }
1782     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1783       if (Record.size() != 1)
1784         return error("Invalid record");
1785 
1786       if (NumRecords >= TypeList.size())
1787         return error("Invalid TYPE table");
1788 
1789       // Check to see if this was forward referenced, if so fill in the temp.
1790       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1791       if (Res) {
1792         Res->setName(TypeName);
1793         TypeList[NumRecords] = nullptr;
1794       } else  // Otherwise, create a new struct with no body.
1795         Res = createIdentifiedStructType(Context, TypeName);
1796       TypeName.clear();
1797       ResultTy = Res;
1798       break;
1799     }
1800     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1801       if (Record.size() < 2)
1802         return error("Invalid record");
1803       ResultTy = getTypeByID(Record[1]);
1804       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1805         return error("Invalid type");
1806       ResultTy = ArrayType::get(ResultTy, Record[0]);
1807       break;
1808     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1809       if (Record.size() < 2)
1810         return error("Invalid record");
1811       if (Record[0] == 0)
1812         return error("Invalid vector length");
1813       ResultTy = getTypeByID(Record[1]);
1814       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1815         return error("Invalid type");
1816       ResultTy = VectorType::get(ResultTy, Record[0]);
1817       break;
1818     }
1819 
1820     if (NumRecords >= TypeList.size())
1821       return error("Invalid TYPE table");
1822     if (TypeList[NumRecords])
1823       return error(
1824           "Invalid TYPE table: Only named structs can be forward referenced");
1825     assert(ResultTy && "Didn't read a type?");
1826     TypeList[NumRecords++] = ResultTy;
1827   }
1828 }
1829 
1830 std::error_code BitcodeReader::parseOperandBundleTags() {
1831   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1832     return error("Invalid record");
1833 
1834   if (!BundleTags.empty())
1835     return error("Invalid multiple blocks");
1836 
1837   SmallVector<uint64_t, 64> Record;
1838 
1839   while (1) {
1840     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1841 
1842     switch (Entry.Kind) {
1843     case BitstreamEntry::SubBlock: // Handled for us already.
1844     case BitstreamEntry::Error:
1845       return error("Malformed block");
1846     case BitstreamEntry::EndBlock:
1847       return std::error_code();
1848     case BitstreamEntry::Record:
1849       // The interesting case.
1850       break;
1851     }
1852 
1853     // Tags are implicitly mapped to integers by their order.
1854 
1855     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1856       return error("Invalid record");
1857 
1858     // OPERAND_BUNDLE_TAG: [strchr x N]
1859     BundleTags.emplace_back();
1860     if (convertToString(Record, 0, BundleTags.back()))
1861       return error("Invalid record");
1862     Record.clear();
1863   }
1864 }
1865 
1866 /// Associate a value with its name from the given index in the provided record.
1867 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1868                                             unsigned NameIndex, Triple &TT) {
1869   SmallString<128> ValueName;
1870   if (convertToString(Record, NameIndex, ValueName))
1871     return error("Invalid record");
1872   unsigned ValueID = Record[0];
1873   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1874     return error("Invalid record");
1875   Value *V = ValueList[ValueID];
1876 
1877   StringRef NameStr(ValueName.data(), ValueName.size());
1878   if (NameStr.find_first_of(0) != StringRef::npos)
1879     return error("Invalid value name");
1880   V->setName(NameStr);
1881   auto *GO = dyn_cast<GlobalObject>(V);
1882   if (GO) {
1883     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1884       if (TT.isOSBinFormatMachO())
1885         GO->setComdat(nullptr);
1886       else
1887         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1888     }
1889   }
1890   return V;
1891 }
1892 
1893 /// Helper to note and return the current location, and jump to the given
1894 /// offset.
1895 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1896                                        BitstreamCursor &Stream) {
1897   // Save the current parsing location so we can jump back at the end
1898   // of the VST read.
1899   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1900   Stream.JumpToBit(Offset * 32);
1901 #ifndef NDEBUG
1902   // Do some checking if we are in debug mode.
1903   BitstreamEntry Entry = Stream.advance();
1904   assert(Entry.Kind == BitstreamEntry::SubBlock);
1905   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1906 #else
1907   // In NDEBUG mode ignore the output so we don't get an unused variable
1908   // warning.
1909   Stream.advance();
1910 #endif
1911   return CurrentBit;
1912 }
1913 
1914 /// Parse the value symbol table at either the current parsing location or
1915 /// at the given bit offset if provided.
1916 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1917   uint64_t CurrentBit;
1918   // Pass in the Offset to distinguish between calling for the module-level
1919   // VST (where we want to jump to the VST offset) and the function-level
1920   // VST (where we don't).
1921   if (Offset > 0)
1922     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1923 
1924   // Compute the delta between the bitcode indices in the VST (the word offset
1925   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1926   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1927   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1928   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1929   // just before entering the VST subblock because: 1) the EnterSubBlock
1930   // changes the AbbrevID width; 2) the VST block is nested within the same
1931   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1932   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1933   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1934   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1935   unsigned FuncBitcodeOffsetDelta =
1936       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1937 
1938   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1939     return error("Invalid record");
1940 
1941   SmallVector<uint64_t, 64> Record;
1942 
1943   Triple TT(TheModule->getTargetTriple());
1944 
1945   // Read all the records for this value table.
1946   SmallString<128> ValueName;
1947   while (1) {
1948     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1949 
1950     switch (Entry.Kind) {
1951     case BitstreamEntry::SubBlock: // Handled for us already.
1952     case BitstreamEntry::Error:
1953       return error("Malformed block");
1954     case BitstreamEntry::EndBlock:
1955       if (Offset > 0)
1956         Stream.JumpToBit(CurrentBit);
1957       return std::error_code();
1958     case BitstreamEntry::Record:
1959       // The interesting case.
1960       break;
1961     }
1962 
1963     // Read a record.
1964     Record.clear();
1965     switch (Stream.readRecord(Entry.ID, Record)) {
1966     default:  // Default behavior: unknown type.
1967       break;
1968     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1969       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1970       if (std::error_code EC = ValOrErr.getError())
1971         return EC;
1972       ValOrErr.get();
1973       break;
1974     }
1975     case bitc::VST_CODE_FNENTRY: {
1976       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1977       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1978       if (std::error_code EC = ValOrErr.getError())
1979         return EC;
1980       Value *V = ValOrErr.get();
1981 
1982       auto *GO = dyn_cast<GlobalObject>(V);
1983       if (!GO) {
1984         // If this is an alias, need to get the actual Function object
1985         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1986         auto *GA = dyn_cast<GlobalAlias>(V);
1987         if (GA)
1988           GO = GA->getBaseObject();
1989         assert(GO);
1990       }
1991 
1992       uint64_t FuncWordOffset = Record[1];
1993       Function *F = dyn_cast<Function>(GO);
1994       assert(F);
1995       uint64_t FuncBitOffset = FuncWordOffset * 32;
1996       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1997       // Set the LastFunctionBlockBit to point to the last function block.
1998       // Later when parsing is resumed after function materialization,
1999       // we can simply skip that last function block.
2000       if (FuncBitOffset > LastFunctionBlockBit)
2001         LastFunctionBlockBit = FuncBitOffset;
2002       break;
2003     }
2004     case bitc::VST_CODE_BBENTRY: {
2005       if (convertToString(Record, 1, ValueName))
2006         return error("Invalid record");
2007       BasicBlock *BB = getBasicBlock(Record[0]);
2008       if (!BB)
2009         return error("Invalid record");
2010 
2011       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2012       ValueName.clear();
2013       break;
2014     }
2015     }
2016   }
2017 }
2018 
2019 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2020 std::error_code
2021 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2022   if (Record.size() < 2)
2023     return error("Invalid record");
2024 
2025   unsigned Kind = Record[0];
2026   SmallString<8> Name(Record.begin() + 1, Record.end());
2027 
2028   unsigned NewKind = TheModule->getMDKindID(Name.str());
2029   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2030     return error("Conflicting METADATA_KIND records");
2031   return std::error_code();
2032 }
2033 
2034 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2035 
2036 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2037                                                     StringRef Blob,
2038                                                     unsigned &NextMetadataNo) {
2039   // All the MDStrings in the block are emitted together in a single
2040   // record.  The strings are concatenated and stored in a blob along with
2041   // their sizes.
2042   if (Record.size() != 2)
2043     return error("Invalid record: metadata strings layout");
2044 
2045   unsigned NumStrings = Record[0];
2046   unsigned StringsOffset = Record[1];
2047   if (!NumStrings)
2048     return error("Invalid record: metadata strings with no strings");
2049   if (StringsOffset > Blob.size())
2050     return error("Invalid record: metadata strings corrupt offset");
2051 
2052   StringRef Lengths = Blob.slice(0, StringsOffset);
2053   SimpleBitstreamCursor R(*StreamFile);
2054   R.jumpToPointer(Lengths.begin());
2055 
2056   // Ensure that Blob doesn't get invalidated, even if this is reading from
2057   // a StreamingMemoryObject with corrupt data.
2058   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2059 
2060   StringRef Strings = Blob.drop_front(StringsOffset);
2061   do {
2062     if (R.AtEndOfStream())
2063       return error("Invalid record: metadata strings bad length");
2064 
2065     unsigned Size = R.ReadVBR(6);
2066     if (Strings.size() < Size)
2067       return error("Invalid record: metadata strings truncated chars");
2068 
2069     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2070                              NextMetadataNo++);
2071     Strings = Strings.drop_front(Size);
2072   } while (--NumStrings);
2073 
2074   return std::error_code();
2075 }
2076 
2077 namespace {
2078 class PlaceholderQueue {
2079   // Placeholders would thrash around when moved, so store in a std::deque
2080   // instead of some sort of vector.
2081   std::deque<DistinctMDOperandPlaceholder> PHs;
2082 
2083 public:
2084   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2085   void flush(BitcodeReaderMetadataList &MetadataList);
2086 };
2087 } // end namespace
2088 
2089 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2090   PHs.emplace_back(ID);
2091   return PHs.back();
2092 }
2093 
2094 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2095   while (!PHs.empty()) {
2096     PHs.front().replaceUseWith(
2097         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2098     PHs.pop_front();
2099   }
2100 }
2101 
2102 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2103 /// module level metadata.
2104 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2105   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2106          "Must read all module-level metadata before function-level");
2107 
2108   IsMetadataMaterialized = true;
2109   unsigned NextMetadataNo = MetadataList.size();
2110 
2111   if (!ModuleLevel && MetadataList.hasFwdRefs())
2112     return error("Invalid metadata: fwd refs into function blocks");
2113 
2114   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2115     return error("Invalid record");
2116 
2117   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2118   SmallVector<uint64_t, 64> Record;
2119 
2120   PlaceholderQueue Placeholders;
2121   bool IsDistinct;
2122   auto getMD = [&](unsigned ID) -> Metadata * {
2123     if (!IsDistinct)
2124       return MetadataList.getMetadataFwdRef(ID);
2125     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2126       return MD;
2127     return &Placeholders.getPlaceholderOp(ID);
2128   };
2129   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2130     if (ID)
2131       return getMD(ID - 1);
2132     return nullptr;
2133   };
2134   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2135     if (ID)
2136       return MetadataList.getMetadataFwdRef(ID - 1);
2137     return nullptr;
2138   };
2139   auto getMDString = [&](unsigned ID) -> MDString *{
2140     // This requires that the ID is not really a forward reference.  In
2141     // particular, the MDString must already have been resolved.
2142     return cast_or_null<MDString>(getMDOrNull(ID));
2143   };
2144 
2145   // Support for old type refs.
2146   auto getDITypeRefOrNull = [&](unsigned ID) {
2147     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2148   };
2149 
2150 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2151   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2152 
2153   // Read all the records.
2154   while (1) {
2155     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2156 
2157     switch (Entry.Kind) {
2158     case BitstreamEntry::SubBlock: // Handled for us already.
2159     case BitstreamEntry::Error:
2160       return error("Malformed block");
2161     case BitstreamEntry::EndBlock:
2162       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2163       for (auto CU_SP : CUSubprograms)
2164         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2165           for (auto &Op : SPs->operands())
2166             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2167               SP->replaceOperandWith(7, CU_SP.first);
2168 
2169       MetadataList.tryToResolveCycles();
2170       Placeholders.flush(MetadataList);
2171       return std::error_code();
2172     case BitstreamEntry::Record:
2173       // The interesting case.
2174       break;
2175     }
2176 
2177     // Read a record.
2178     Record.clear();
2179     StringRef Blob;
2180     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2181     IsDistinct = false;
2182     switch (Code) {
2183     default:  // Default behavior: ignore.
2184       break;
2185     case bitc::METADATA_NAME: {
2186       // Read name of the named metadata.
2187       SmallString<8> Name(Record.begin(), Record.end());
2188       Record.clear();
2189       Code = Stream.ReadCode();
2190 
2191       unsigned NextBitCode = Stream.readRecord(Code, Record);
2192       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2193         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2194 
2195       // Read named metadata elements.
2196       unsigned Size = Record.size();
2197       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2198       for (unsigned i = 0; i != Size; ++i) {
2199         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2200         if (!MD)
2201           return error("Invalid record");
2202         NMD->addOperand(MD);
2203       }
2204       break;
2205     }
2206     case bitc::METADATA_OLD_FN_NODE: {
2207       // FIXME: Remove in 4.0.
2208       // This is a LocalAsMetadata record, the only type of function-local
2209       // metadata.
2210       if (Record.size() % 2 == 1)
2211         return error("Invalid record");
2212 
2213       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2214       // to be legal, but there's no upgrade path.
2215       auto dropRecord = [&] {
2216         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2217       };
2218       if (Record.size() != 2) {
2219         dropRecord();
2220         break;
2221       }
2222 
2223       Type *Ty = getTypeByID(Record[0]);
2224       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2225         dropRecord();
2226         break;
2227       }
2228 
2229       MetadataList.assignValue(
2230           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2231           NextMetadataNo++);
2232       break;
2233     }
2234     case bitc::METADATA_OLD_NODE: {
2235       // FIXME: Remove in 4.0.
2236       if (Record.size() % 2 == 1)
2237         return error("Invalid record");
2238 
2239       unsigned Size = Record.size();
2240       SmallVector<Metadata *, 8> Elts;
2241       for (unsigned i = 0; i != Size; i += 2) {
2242         Type *Ty = getTypeByID(Record[i]);
2243         if (!Ty)
2244           return error("Invalid record");
2245         if (Ty->isMetadataTy())
2246           Elts.push_back(getMD(Record[i + 1]));
2247         else if (!Ty->isVoidTy()) {
2248           auto *MD =
2249               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2250           assert(isa<ConstantAsMetadata>(MD) &&
2251                  "Expected non-function-local metadata");
2252           Elts.push_back(MD);
2253         } else
2254           Elts.push_back(nullptr);
2255       }
2256       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2257       break;
2258     }
2259     case bitc::METADATA_VALUE: {
2260       if (Record.size() != 2)
2261         return error("Invalid record");
2262 
2263       Type *Ty = getTypeByID(Record[0]);
2264       if (Ty->isMetadataTy() || Ty->isVoidTy())
2265         return error("Invalid record");
2266 
2267       MetadataList.assignValue(
2268           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2269           NextMetadataNo++);
2270       break;
2271     }
2272     case bitc::METADATA_DISTINCT_NODE:
2273       IsDistinct = true;
2274       LLVM_FALLTHROUGH;
2275     case bitc::METADATA_NODE: {
2276       SmallVector<Metadata *, 8> Elts;
2277       Elts.reserve(Record.size());
2278       for (unsigned ID : Record)
2279         Elts.push_back(getMDOrNull(ID));
2280       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2281                                           : MDNode::get(Context, Elts),
2282                                NextMetadataNo++);
2283       break;
2284     }
2285     case bitc::METADATA_LOCATION: {
2286       if (Record.size() != 5)
2287         return error("Invalid record");
2288 
2289       IsDistinct = Record[0];
2290       unsigned Line = Record[1];
2291       unsigned Column = Record[2];
2292       Metadata *Scope = getMD(Record[3]);
2293       Metadata *InlinedAt = getMDOrNull(Record[4]);
2294       MetadataList.assignValue(
2295           GET_OR_DISTINCT(DILocation,
2296                           (Context, Line, Column, Scope, InlinedAt)),
2297           NextMetadataNo++);
2298       break;
2299     }
2300     case bitc::METADATA_GENERIC_DEBUG: {
2301       if (Record.size() < 4)
2302         return error("Invalid record");
2303 
2304       IsDistinct = Record[0];
2305       unsigned Tag = Record[1];
2306       unsigned Version = Record[2];
2307 
2308       if (Tag >= 1u << 16 || Version != 0)
2309         return error("Invalid record");
2310 
2311       auto *Header = getMDString(Record[3]);
2312       SmallVector<Metadata *, 8> DwarfOps;
2313       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2314         DwarfOps.push_back(getMDOrNull(Record[I]));
2315       MetadataList.assignValue(
2316           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2317           NextMetadataNo++);
2318       break;
2319     }
2320     case bitc::METADATA_SUBRANGE: {
2321       if (Record.size() != 3)
2322         return error("Invalid record");
2323 
2324       IsDistinct = Record[0];
2325       MetadataList.assignValue(
2326           GET_OR_DISTINCT(DISubrange,
2327                           (Context, Record[1], unrotateSign(Record[2]))),
2328           NextMetadataNo++);
2329       break;
2330     }
2331     case bitc::METADATA_ENUMERATOR: {
2332       if (Record.size() != 3)
2333         return error("Invalid record");
2334 
2335       IsDistinct = Record[0];
2336       MetadataList.assignValue(
2337           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2338                                          getMDString(Record[2]))),
2339           NextMetadataNo++);
2340       break;
2341     }
2342     case bitc::METADATA_BASIC_TYPE: {
2343       if (Record.size() != 6)
2344         return error("Invalid record");
2345 
2346       IsDistinct = Record[0];
2347       MetadataList.assignValue(
2348           GET_OR_DISTINCT(DIBasicType,
2349                           (Context, Record[1], getMDString(Record[2]),
2350                            Record[3], Record[4], Record[5])),
2351           NextMetadataNo++);
2352       break;
2353     }
2354     case bitc::METADATA_DERIVED_TYPE: {
2355       if (Record.size() != 12)
2356         return error("Invalid record");
2357 
2358       IsDistinct = Record[0];
2359       MetadataList.assignValue(
2360           GET_OR_DISTINCT(
2361               DIDerivedType,
2362               (Context, Record[1], getMDString(Record[2]),
2363                getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]),
2364                getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9],
2365                Record[10], getDITypeRefOrNull(Record[11]))),
2366           NextMetadataNo++);
2367       break;
2368     }
2369     case bitc::METADATA_COMPOSITE_TYPE: {
2370       if (Record.size() != 16)
2371         return error("Invalid record");
2372 
2373       // If we have a UUID and this is not a forward declaration, lookup the
2374       // mapping.
2375       IsDistinct = Record[0] & 0x1;
2376       bool IsNotUsedInTypeRef = Record[0] >= 2;
2377       unsigned Tag = Record[1];
2378       MDString *Name = getMDString(Record[2]);
2379       Metadata *File = getMDOrNull(Record[3]);
2380       unsigned Line = Record[4];
2381       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2382       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2383       uint64_t SizeInBits = Record[7];
2384       uint64_t AlignInBits = Record[8];
2385       uint64_t OffsetInBits = Record[9];
2386       unsigned Flags = Record[10];
2387       Metadata *Elements = getMDOrNull(Record[11]);
2388       unsigned RuntimeLang = Record[12];
2389       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2390       Metadata *TemplateParams = getMDOrNull(Record[14]);
2391       auto *Identifier = getMDString(Record[15]);
2392       DICompositeType *CT = nullptr;
2393       if (Identifier)
2394         CT = DICompositeType::buildODRType(
2395             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2396             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2397             VTableHolder, TemplateParams);
2398 
2399       // Create a node if we didn't get a lazy ODR type.
2400       if (!CT)
2401         CT = GET_OR_DISTINCT(DICompositeType,
2402                              (Context, Tag, Name, File, Line, Scope, BaseType,
2403                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2404                               Elements, RuntimeLang, VTableHolder,
2405                               TemplateParams, Identifier));
2406       if (!IsNotUsedInTypeRef && Identifier)
2407         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2408 
2409       MetadataList.assignValue(CT, NextMetadataNo++);
2410       break;
2411     }
2412     case bitc::METADATA_SUBROUTINE_TYPE: {
2413       if (Record.size() < 3 || Record.size() > 4)
2414         return error("Invalid record");
2415       bool IsOldTypeRefArray = Record[0] < 2;
2416       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2417 
2418       IsDistinct = Record[0] & 0x1;
2419       Metadata *Types = getMDOrNull(Record[2]);
2420       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2421         Types = MetadataList.upgradeTypeRefArray(Types);
2422 
2423       MetadataList.assignValue(
2424           GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)),
2425           NextMetadataNo++);
2426       break;
2427     }
2428 
2429     case bitc::METADATA_MODULE: {
2430       if (Record.size() != 6)
2431         return error("Invalid record");
2432 
2433       IsDistinct = Record[0];
2434       MetadataList.assignValue(
2435           GET_OR_DISTINCT(DIModule,
2436                           (Context, getMDOrNull(Record[1]),
2437                            getMDString(Record[2]), getMDString(Record[3]),
2438                            getMDString(Record[4]), getMDString(Record[5]))),
2439           NextMetadataNo++);
2440       break;
2441     }
2442 
2443     case bitc::METADATA_FILE: {
2444       if (Record.size() != 3)
2445         return error("Invalid record");
2446 
2447       IsDistinct = Record[0];
2448       MetadataList.assignValue(
2449           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2450                                    getMDString(Record[2]))),
2451           NextMetadataNo++);
2452       break;
2453     }
2454     case bitc::METADATA_COMPILE_UNIT: {
2455       if (Record.size() < 14 || Record.size() > 17)
2456         return error("Invalid record");
2457 
2458       // Ignore Record[0], which indicates whether this compile unit is
2459       // distinct.  It's always distinct.
2460       IsDistinct = true;
2461       auto *CU = DICompileUnit::getDistinct(
2462           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2463           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2464           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2465           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2466           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2467           Record.size() <= 14 ? 0 : Record[14],
2468           Record.size() <= 16 ? true : Record[16]);
2469 
2470       MetadataList.assignValue(CU, NextMetadataNo++);
2471 
2472       // Move the Upgrade the list of subprograms.
2473       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2474         CUSubprograms.push_back({CU, SPs});
2475       break;
2476     }
2477     case bitc::METADATA_SUBPROGRAM: {
2478       if (Record.size() < 18 || Record.size() > 20)
2479         return error("Invalid record");
2480 
2481       IsDistinct =
2482           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2483       // Version 1 has a Function as Record[15].
2484       // Version 2 has removed Record[15].
2485       // Version 3 has the Unit as Record[15].
2486       // Version 4 added thisAdjustment.
2487       bool HasUnit = Record[0] >= 2;
2488       if (HasUnit && Record.size() < 19)
2489         return error("Invalid record");
2490       Metadata *CUorFn = getMDOrNull(Record[15]);
2491       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2492       bool HasFn = Offset && !HasUnit;
2493       bool HasThisAdj = Record.size() >= 20;
2494       DISubprogram *SP = GET_OR_DISTINCT(
2495           DISubprogram, (Context,
2496                          getDITypeRefOrNull(Record[1]),    // scope
2497                          getMDString(Record[2]),           // name
2498                          getMDString(Record[3]),           // linkageName
2499                          getMDOrNull(Record[4]),           // file
2500                          Record[5],                        // line
2501                          getMDOrNull(Record[6]),           // type
2502                          Record[7],                        // isLocal
2503                          Record[8],                        // isDefinition
2504                          Record[9],                        // scopeLine
2505                          getDITypeRefOrNull(Record[10]),   // containingType
2506                          Record[11],                       // virtuality
2507                          Record[12],                       // virtualIndex
2508                          HasThisAdj ? Record[19] : 0,      // thisAdjustment
2509                          Record[13],                       // flags
2510                          Record[14],                       // isOptimized
2511                          HasUnit ? CUorFn : nullptr,       // unit
2512                          getMDOrNull(Record[15 + Offset]), // templateParams
2513                          getMDOrNull(Record[16 + Offset]), // declaration
2514                          getMDOrNull(Record[17 + Offset])  // variables
2515                          ));
2516       MetadataList.assignValue(SP, NextMetadataNo++);
2517 
2518       // Upgrade sp->function mapping to function->sp mapping.
2519       if (HasFn) {
2520         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2521           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2522             if (F->isMaterializable())
2523               // Defer until materialized; unmaterialized functions may not have
2524               // metadata.
2525               FunctionsWithSPs[F] = SP;
2526             else if (!F->empty())
2527               F->setSubprogram(SP);
2528           }
2529       }
2530       break;
2531     }
2532     case bitc::METADATA_LEXICAL_BLOCK: {
2533       if (Record.size() != 5)
2534         return error("Invalid record");
2535 
2536       IsDistinct = Record[0];
2537       MetadataList.assignValue(
2538           GET_OR_DISTINCT(DILexicalBlock,
2539                           (Context, getMDOrNull(Record[1]),
2540                            getMDOrNull(Record[2]), Record[3], Record[4])),
2541           NextMetadataNo++);
2542       break;
2543     }
2544     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2545       if (Record.size() != 4)
2546         return error("Invalid record");
2547 
2548       IsDistinct = Record[0];
2549       MetadataList.assignValue(
2550           GET_OR_DISTINCT(DILexicalBlockFile,
2551                           (Context, getMDOrNull(Record[1]),
2552                            getMDOrNull(Record[2]), Record[3])),
2553           NextMetadataNo++);
2554       break;
2555     }
2556     case bitc::METADATA_NAMESPACE: {
2557       if (Record.size() != 5)
2558         return error("Invalid record");
2559 
2560       IsDistinct = Record[0];
2561       MetadataList.assignValue(
2562           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2563                                         getMDOrNull(Record[2]),
2564                                         getMDString(Record[3]), Record[4])),
2565           NextMetadataNo++);
2566       break;
2567     }
2568     case bitc::METADATA_MACRO: {
2569       if (Record.size() != 5)
2570         return error("Invalid record");
2571 
2572       IsDistinct = Record[0];
2573       MetadataList.assignValue(
2574           GET_OR_DISTINCT(DIMacro,
2575                           (Context, Record[1], Record[2],
2576                            getMDString(Record[3]), getMDString(Record[4]))),
2577           NextMetadataNo++);
2578       break;
2579     }
2580     case bitc::METADATA_MACRO_FILE: {
2581       if (Record.size() != 5)
2582         return error("Invalid record");
2583 
2584       IsDistinct = Record[0];
2585       MetadataList.assignValue(
2586           GET_OR_DISTINCT(DIMacroFile,
2587                           (Context, Record[1], Record[2],
2588                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2589           NextMetadataNo++);
2590       break;
2591     }
2592     case bitc::METADATA_TEMPLATE_TYPE: {
2593       if (Record.size() != 3)
2594         return error("Invalid record");
2595 
2596       IsDistinct = Record[0];
2597       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2598                                                (Context, getMDString(Record[1]),
2599                                                 getDITypeRefOrNull(Record[2]))),
2600                                NextMetadataNo++);
2601       break;
2602     }
2603     case bitc::METADATA_TEMPLATE_VALUE: {
2604       if (Record.size() != 5)
2605         return error("Invalid record");
2606 
2607       IsDistinct = Record[0];
2608       MetadataList.assignValue(
2609           GET_OR_DISTINCT(DITemplateValueParameter,
2610                           (Context, Record[1], getMDString(Record[2]),
2611                            getDITypeRefOrNull(Record[3]),
2612                            getMDOrNull(Record[4]))),
2613           NextMetadataNo++);
2614       break;
2615     }
2616     case bitc::METADATA_GLOBAL_VAR: {
2617       if (Record.size() != 11)
2618         return error("Invalid record");
2619 
2620       IsDistinct = Record[0];
2621       MetadataList.assignValue(
2622           GET_OR_DISTINCT(DIGlobalVariable,
2623                           (Context, getMDOrNull(Record[1]),
2624                            getMDString(Record[2]), getMDString(Record[3]),
2625                            getMDOrNull(Record[4]), Record[5],
2626                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2627                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2628           NextMetadataNo++);
2629       break;
2630     }
2631     case bitc::METADATA_LOCAL_VAR: {
2632       // 10th field is for the obseleted 'inlinedAt:' field.
2633       if (Record.size() < 8 || Record.size() > 10)
2634         return error("Invalid record");
2635 
2636       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2637       // DW_TAG_arg_variable.
2638       IsDistinct = Record[0];
2639       bool HasTag = Record.size() > 8;
2640       MetadataList.assignValue(
2641           GET_OR_DISTINCT(DILocalVariable,
2642                           (Context, getMDOrNull(Record[1 + HasTag]),
2643                            getMDString(Record[2 + HasTag]),
2644                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2645                            getDITypeRefOrNull(Record[5 + HasTag]),
2646                            Record[6 + HasTag], Record[7 + HasTag])),
2647           NextMetadataNo++);
2648       break;
2649     }
2650     case bitc::METADATA_EXPRESSION: {
2651       if (Record.size() < 1)
2652         return error("Invalid record");
2653 
2654       IsDistinct = Record[0];
2655       MetadataList.assignValue(
2656           GET_OR_DISTINCT(DIExpression,
2657                           (Context, makeArrayRef(Record).slice(1))),
2658           NextMetadataNo++);
2659       break;
2660     }
2661     case bitc::METADATA_OBJC_PROPERTY: {
2662       if (Record.size() != 8)
2663         return error("Invalid record");
2664 
2665       IsDistinct = Record[0];
2666       MetadataList.assignValue(
2667           GET_OR_DISTINCT(DIObjCProperty,
2668                           (Context, getMDString(Record[1]),
2669                            getMDOrNull(Record[2]), Record[3],
2670                            getMDString(Record[4]), getMDString(Record[5]),
2671                            Record[6], getDITypeRefOrNull(Record[7]))),
2672           NextMetadataNo++);
2673       break;
2674     }
2675     case bitc::METADATA_IMPORTED_ENTITY: {
2676       if (Record.size() != 6)
2677         return error("Invalid record");
2678 
2679       IsDistinct = Record[0];
2680       MetadataList.assignValue(
2681           GET_OR_DISTINCT(DIImportedEntity,
2682                           (Context, Record[1], getMDOrNull(Record[2]),
2683                            getDITypeRefOrNull(Record[3]), Record[4],
2684                            getMDString(Record[5]))),
2685           NextMetadataNo++);
2686       break;
2687     }
2688     case bitc::METADATA_STRING_OLD: {
2689       std::string String(Record.begin(), Record.end());
2690 
2691       // Test for upgrading !llvm.loop.
2692       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2693 
2694       Metadata *MD = MDString::get(Context, String);
2695       MetadataList.assignValue(MD, NextMetadataNo++);
2696       break;
2697     }
2698     case bitc::METADATA_STRINGS:
2699       if (std::error_code EC =
2700               parseMetadataStrings(Record, Blob, NextMetadataNo))
2701         return EC;
2702       break;
2703     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2704       if (Record.size() % 2 == 0)
2705         return error("Invalid record");
2706       unsigned ValueID = Record[0];
2707       if (ValueID >= ValueList.size())
2708         return error("Invalid record");
2709       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2710         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2711       break;
2712     }
2713     case bitc::METADATA_KIND: {
2714       // Support older bitcode files that had METADATA_KIND records in a
2715       // block with METADATA_BLOCK_ID.
2716       if (std::error_code EC = parseMetadataKindRecord(Record))
2717         return EC;
2718       break;
2719     }
2720     }
2721   }
2722 #undef GET_OR_DISTINCT
2723 }
2724 
2725 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2726 std::error_code BitcodeReader::parseMetadataKinds() {
2727   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2728     return error("Invalid record");
2729 
2730   SmallVector<uint64_t, 64> Record;
2731 
2732   // Read all the records.
2733   while (1) {
2734     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2735 
2736     switch (Entry.Kind) {
2737     case BitstreamEntry::SubBlock: // Handled for us already.
2738     case BitstreamEntry::Error:
2739       return error("Malformed block");
2740     case BitstreamEntry::EndBlock:
2741       return std::error_code();
2742     case BitstreamEntry::Record:
2743       // The interesting case.
2744       break;
2745     }
2746 
2747     // Read a record.
2748     Record.clear();
2749     unsigned Code = Stream.readRecord(Entry.ID, Record);
2750     switch (Code) {
2751     default: // Default behavior: ignore.
2752       break;
2753     case bitc::METADATA_KIND: {
2754       if (std::error_code EC = parseMetadataKindRecord(Record))
2755         return EC;
2756       break;
2757     }
2758     }
2759   }
2760 }
2761 
2762 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2763 /// encoding.
2764 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2765   if ((V & 1) == 0)
2766     return V >> 1;
2767   if (V != 1)
2768     return -(V >> 1);
2769   // There is no such thing as -0 with integers.  "-0" really means MININT.
2770   return 1ULL << 63;
2771 }
2772 
2773 /// Resolve all of the initializers for global values and aliases that we can.
2774 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2775   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2776   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2777       IndirectSymbolInitWorklist;
2778   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2779   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2780   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2781 
2782   GlobalInitWorklist.swap(GlobalInits);
2783   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2784   FunctionPrefixWorklist.swap(FunctionPrefixes);
2785   FunctionPrologueWorklist.swap(FunctionPrologues);
2786   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2787 
2788   while (!GlobalInitWorklist.empty()) {
2789     unsigned ValID = GlobalInitWorklist.back().second;
2790     if (ValID >= ValueList.size()) {
2791       // Not ready to resolve this yet, it requires something later in the file.
2792       GlobalInits.push_back(GlobalInitWorklist.back());
2793     } else {
2794       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2795         GlobalInitWorklist.back().first->setInitializer(C);
2796       else
2797         return error("Expected a constant");
2798     }
2799     GlobalInitWorklist.pop_back();
2800   }
2801 
2802   while (!IndirectSymbolInitWorklist.empty()) {
2803     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2804     if (ValID >= ValueList.size()) {
2805       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2806     } else {
2807       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2808       if (!C)
2809         return error("Expected a constant");
2810       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2811       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2812         return error("Alias and aliasee types don't match");
2813       GIS->setIndirectSymbol(C);
2814     }
2815     IndirectSymbolInitWorklist.pop_back();
2816   }
2817 
2818   while (!FunctionPrefixWorklist.empty()) {
2819     unsigned ValID = FunctionPrefixWorklist.back().second;
2820     if (ValID >= ValueList.size()) {
2821       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2822     } else {
2823       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2824         FunctionPrefixWorklist.back().first->setPrefixData(C);
2825       else
2826         return error("Expected a constant");
2827     }
2828     FunctionPrefixWorklist.pop_back();
2829   }
2830 
2831   while (!FunctionPrologueWorklist.empty()) {
2832     unsigned ValID = FunctionPrologueWorklist.back().second;
2833     if (ValID >= ValueList.size()) {
2834       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2835     } else {
2836       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2837         FunctionPrologueWorklist.back().first->setPrologueData(C);
2838       else
2839         return error("Expected a constant");
2840     }
2841     FunctionPrologueWorklist.pop_back();
2842   }
2843 
2844   while (!FunctionPersonalityFnWorklist.empty()) {
2845     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2846     if (ValID >= ValueList.size()) {
2847       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2848     } else {
2849       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2850         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2851       else
2852         return error("Expected a constant");
2853     }
2854     FunctionPersonalityFnWorklist.pop_back();
2855   }
2856 
2857   return std::error_code();
2858 }
2859 
2860 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2861   SmallVector<uint64_t, 8> Words(Vals.size());
2862   transform(Vals, Words.begin(),
2863                  BitcodeReader::decodeSignRotatedValue);
2864 
2865   return APInt(TypeBits, Words);
2866 }
2867 
2868 std::error_code BitcodeReader::parseConstants() {
2869   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2870     return error("Invalid record");
2871 
2872   SmallVector<uint64_t, 64> Record;
2873 
2874   // Read all the records for this value table.
2875   Type *CurTy = Type::getInt32Ty(Context);
2876   unsigned NextCstNo = ValueList.size();
2877   while (1) {
2878     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2879 
2880     switch (Entry.Kind) {
2881     case BitstreamEntry::SubBlock: // Handled for us already.
2882     case BitstreamEntry::Error:
2883       return error("Malformed block");
2884     case BitstreamEntry::EndBlock:
2885       if (NextCstNo != ValueList.size())
2886         return error("Invalid constant reference");
2887 
2888       // Once all the constants have been read, go through and resolve forward
2889       // references.
2890       ValueList.resolveConstantForwardRefs();
2891       return std::error_code();
2892     case BitstreamEntry::Record:
2893       // The interesting case.
2894       break;
2895     }
2896 
2897     // Read a record.
2898     Record.clear();
2899     Type *VoidType = Type::getVoidTy(Context);
2900     Value *V = nullptr;
2901     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2902     switch (BitCode) {
2903     default:  // Default behavior: unknown constant
2904     case bitc::CST_CODE_UNDEF:     // UNDEF
2905       V = UndefValue::get(CurTy);
2906       break;
2907     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2908       if (Record.empty())
2909         return error("Invalid record");
2910       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2911         return error("Invalid record");
2912       if (TypeList[Record[0]] == VoidType)
2913         return error("Invalid constant type");
2914       CurTy = TypeList[Record[0]];
2915       continue;  // Skip the ValueList manipulation.
2916     case bitc::CST_CODE_NULL:      // NULL
2917       V = Constant::getNullValue(CurTy);
2918       break;
2919     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2920       if (!CurTy->isIntegerTy() || Record.empty())
2921         return error("Invalid record");
2922       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2923       break;
2924     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2925       if (!CurTy->isIntegerTy() || Record.empty())
2926         return error("Invalid record");
2927 
2928       APInt VInt =
2929           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2930       V = ConstantInt::get(Context, VInt);
2931 
2932       break;
2933     }
2934     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2935       if (Record.empty())
2936         return error("Invalid record");
2937       if (CurTy->isHalfTy())
2938         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2939                                              APInt(16, (uint16_t)Record[0])));
2940       else if (CurTy->isFloatTy())
2941         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2942                                              APInt(32, (uint32_t)Record[0])));
2943       else if (CurTy->isDoubleTy())
2944         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2945                                              APInt(64, Record[0])));
2946       else if (CurTy->isX86_FP80Ty()) {
2947         // Bits are not stored the same way as a normal i80 APInt, compensate.
2948         uint64_t Rearrange[2];
2949         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2950         Rearrange[1] = Record[0] >> 48;
2951         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2952                                              APInt(80, Rearrange)));
2953       } else if (CurTy->isFP128Ty())
2954         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2955                                              APInt(128, Record)));
2956       else if (CurTy->isPPC_FP128Ty())
2957         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2958                                              APInt(128, Record)));
2959       else
2960         V = UndefValue::get(CurTy);
2961       break;
2962     }
2963 
2964     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2965       if (Record.empty())
2966         return error("Invalid record");
2967 
2968       unsigned Size = Record.size();
2969       SmallVector<Constant*, 16> Elts;
2970 
2971       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2972         for (unsigned i = 0; i != Size; ++i)
2973           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2974                                                      STy->getElementType(i)));
2975         V = ConstantStruct::get(STy, Elts);
2976       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2977         Type *EltTy = ATy->getElementType();
2978         for (unsigned i = 0; i != Size; ++i)
2979           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2980         V = ConstantArray::get(ATy, Elts);
2981       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2982         Type *EltTy = VTy->getElementType();
2983         for (unsigned i = 0; i != Size; ++i)
2984           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2985         V = ConstantVector::get(Elts);
2986       } else {
2987         V = UndefValue::get(CurTy);
2988       }
2989       break;
2990     }
2991     case bitc::CST_CODE_STRING:    // STRING: [values]
2992     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2993       if (Record.empty())
2994         return error("Invalid record");
2995 
2996       SmallString<16> Elts(Record.begin(), Record.end());
2997       V = ConstantDataArray::getString(Context, Elts,
2998                                        BitCode == bitc::CST_CODE_CSTRING);
2999       break;
3000     }
3001     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3002       if (Record.empty())
3003         return error("Invalid record");
3004 
3005       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3006       if (EltTy->isIntegerTy(8)) {
3007         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3008         if (isa<VectorType>(CurTy))
3009           V = ConstantDataVector::get(Context, Elts);
3010         else
3011           V = ConstantDataArray::get(Context, Elts);
3012       } else if (EltTy->isIntegerTy(16)) {
3013         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3014         if (isa<VectorType>(CurTy))
3015           V = ConstantDataVector::get(Context, Elts);
3016         else
3017           V = ConstantDataArray::get(Context, Elts);
3018       } else if (EltTy->isIntegerTy(32)) {
3019         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3020         if (isa<VectorType>(CurTy))
3021           V = ConstantDataVector::get(Context, Elts);
3022         else
3023           V = ConstantDataArray::get(Context, Elts);
3024       } else if (EltTy->isIntegerTy(64)) {
3025         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3026         if (isa<VectorType>(CurTy))
3027           V = ConstantDataVector::get(Context, Elts);
3028         else
3029           V = ConstantDataArray::get(Context, Elts);
3030       } else if (EltTy->isHalfTy()) {
3031         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3032         if (isa<VectorType>(CurTy))
3033           V = ConstantDataVector::getFP(Context, Elts);
3034         else
3035           V = ConstantDataArray::getFP(Context, Elts);
3036       } else if (EltTy->isFloatTy()) {
3037         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3038         if (isa<VectorType>(CurTy))
3039           V = ConstantDataVector::getFP(Context, Elts);
3040         else
3041           V = ConstantDataArray::getFP(Context, Elts);
3042       } else if (EltTy->isDoubleTy()) {
3043         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3044         if (isa<VectorType>(CurTy))
3045           V = ConstantDataVector::getFP(Context, Elts);
3046         else
3047           V = ConstantDataArray::getFP(Context, Elts);
3048       } else {
3049         return error("Invalid type for value");
3050       }
3051       break;
3052     }
3053     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3054       if (Record.size() < 3)
3055         return error("Invalid record");
3056       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3057       if (Opc < 0) {
3058         V = UndefValue::get(CurTy);  // Unknown binop.
3059       } else {
3060         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3061         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3062         unsigned Flags = 0;
3063         if (Record.size() >= 4) {
3064           if (Opc == Instruction::Add ||
3065               Opc == Instruction::Sub ||
3066               Opc == Instruction::Mul ||
3067               Opc == Instruction::Shl) {
3068             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3069               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3070             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3071               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3072           } else if (Opc == Instruction::SDiv ||
3073                      Opc == Instruction::UDiv ||
3074                      Opc == Instruction::LShr ||
3075                      Opc == Instruction::AShr) {
3076             if (Record[3] & (1 << bitc::PEO_EXACT))
3077               Flags |= SDivOperator::IsExact;
3078           }
3079         }
3080         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3081       }
3082       break;
3083     }
3084     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3085       if (Record.size() < 3)
3086         return error("Invalid record");
3087       int Opc = getDecodedCastOpcode(Record[0]);
3088       if (Opc < 0) {
3089         V = UndefValue::get(CurTy);  // Unknown cast.
3090       } else {
3091         Type *OpTy = getTypeByID(Record[1]);
3092         if (!OpTy)
3093           return error("Invalid record");
3094         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3095         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3096         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3097       }
3098       break;
3099     }
3100     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3101     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3102       unsigned OpNum = 0;
3103       Type *PointeeType = nullptr;
3104       if (Record.size() % 2)
3105         PointeeType = getTypeByID(Record[OpNum++]);
3106       SmallVector<Constant*, 16> Elts;
3107       while (OpNum != Record.size()) {
3108         Type *ElTy = getTypeByID(Record[OpNum++]);
3109         if (!ElTy)
3110           return error("Invalid record");
3111         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3112       }
3113 
3114       if (PointeeType &&
3115           PointeeType !=
3116               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3117                   ->getElementType())
3118         return error("Explicit gep operator type does not match pointee type "
3119                      "of pointer operand");
3120 
3121       if (Elts.size() < 1)
3122         return error("Invalid gep with no operands");
3123 
3124       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3125       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3126                                          BitCode ==
3127                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3128       break;
3129     }
3130     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3131       if (Record.size() < 3)
3132         return error("Invalid record");
3133 
3134       Type *SelectorTy = Type::getInt1Ty(Context);
3135 
3136       // The selector might be an i1 or an <n x i1>
3137       // Get the type from the ValueList before getting a forward ref.
3138       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3139         if (Value *V = ValueList[Record[0]])
3140           if (SelectorTy != V->getType())
3141             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3142 
3143       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3144                                                               SelectorTy),
3145                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3146                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3147       break;
3148     }
3149     case bitc::CST_CODE_CE_EXTRACTELT
3150         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3151       if (Record.size() < 3)
3152         return error("Invalid record");
3153       VectorType *OpTy =
3154         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3155       if (!OpTy)
3156         return error("Invalid record");
3157       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3158       Constant *Op1 = nullptr;
3159       if (Record.size() == 4) {
3160         Type *IdxTy = getTypeByID(Record[2]);
3161         if (!IdxTy)
3162           return error("Invalid record");
3163         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3164       } else // TODO: Remove with llvm 4.0
3165         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3166       if (!Op1)
3167         return error("Invalid record");
3168       V = ConstantExpr::getExtractElement(Op0, Op1);
3169       break;
3170     }
3171     case bitc::CST_CODE_CE_INSERTELT
3172         : { // CE_INSERTELT: [opval, opval, opty, opval]
3173       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3174       if (Record.size() < 3 || !OpTy)
3175         return error("Invalid record");
3176       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3177       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3178                                                   OpTy->getElementType());
3179       Constant *Op2 = nullptr;
3180       if (Record.size() == 4) {
3181         Type *IdxTy = getTypeByID(Record[2]);
3182         if (!IdxTy)
3183           return error("Invalid record");
3184         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3185       } else // TODO: Remove with llvm 4.0
3186         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3187       if (!Op2)
3188         return error("Invalid record");
3189       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3190       break;
3191     }
3192     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3193       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3194       if (Record.size() < 3 || !OpTy)
3195         return error("Invalid record");
3196       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3197       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3198       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3199                                                  OpTy->getNumElements());
3200       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3201       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3202       break;
3203     }
3204     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3205       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3206       VectorType *OpTy =
3207         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3208       if (Record.size() < 4 || !RTy || !OpTy)
3209         return error("Invalid record");
3210       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3211       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3212       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3213                                                  RTy->getNumElements());
3214       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3215       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3216       break;
3217     }
3218     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3219       if (Record.size() < 4)
3220         return error("Invalid record");
3221       Type *OpTy = getTypeByID(Record[0]);
3222       if (!OpTy)
3223         return error("Invalid record");
3224       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3225       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3226 
3227       if (OpTy->isFPOrFPVectorTy())
3228         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3229       else
3230         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3231       break;
3232     }
3233     // This maintains backward compatibility, pre-asm dialect keywords.
3234     // FIXME: Remove with the 4.0 release.
3235     case bitc::CST_CODE_INLINEASM_OLD: {
3236       if (Record.size() < 2)
3237         return error("Invalid record");
3238       std::string AsmStr, ConstrStr;
3239       bool HasSideEffects = Record[0] & 1;
3240       bool IsAlignStack = Record[0] >> 1;
3241       unsigned AsmStrSize = Record[1];
3242       if (2+AsmStrSize >= Record.size())
3243         return error("Invalid record");
3244       unsigned ConstStrSize = Record[2+AsmStrSize];
3245       if (3+AsmStrSize+ConstStrSize > Record.size())
3246         return error("Invalid record");
3247 
3248       for (unsigned i = 0; i != AsmStrSize; ++i)
3249         AsmStr += (char)Record[2+i];
3250       for (unsigned i = 0; i != ConstStrSize; ++i)
3251         ConstrStr += (char)Record[3+AsmStrSize+i];
3252       PointerType *PTy = cast<PointerType>(CurTy);
3253       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3254                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3255       break;
3256     }
3257     // This version adds support for the asm dialect keywords (e.g.,
3258     // inteldialect).
3259     case bitc::CST_CODE_INLINEASM: {
3260       if (Record.size() < 2)
3261         return error("Invalid record");
3262       std::string AsmStr, ConstrStr;
3263       bool HasSideEffects = Record[0] & 1;
3264       bool IsAlignStack = (Record[0] >> 1) & 1;
3265       unsigned AsmDialect = Record[0] >> 2;
3266       unsigned AsmStrSize = Record[1];
3267       if (2+AsmStrSize >= Record.size())
3268         return error("Invalid record");
3269       unsigned ConstStrSize = Record[2+AsmStrSize];
3270       if (3+AsmStrSize+ConstStrSize > Record.size())
3271         return error("Invalid record");
3272 
3273       for (unsigned i = 0; i != AsmStrSize; ++i)
3274         AsmStr += (char)Record[2+i];
3275       for (unsigned i = 0; i != ConstStrSize; ++i)
3276         ConstrStr += (char)Record[3+AsmStrSize+i];
3277       PointerType *PTy = cast<PointerType>(CurTy);
3278       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3279                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3280                          InlineAsm::AsmDialect(AsmDialect));
3281       break;
3282     }
3283     case bitc::CST_CODE_BLOCKADDRESS:{
3284       if (Record.size() < 3)
3285         return error("Invalid record");
3286       Type *FnTy = getTypeByID(Record[0]);
3287       if (!FnTy)
3288         return error("Invalid record");
3289       Function *Fn =
3290         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3291       if (!Fn)
3292         return error("Invalid record");
3293 
3294       // If the function is already parsed we can insert the block address right
3295       // away.
3296       BasicBlock *BB;
3297       unsigned BBID = Record[2];
3298       if (!BBID)
3299         // Invalid reference to entry block.
3300         return error("Invalid ID");
3301       if (!Fn->empty()) {
3302         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3303         for (size_t I = 0, E = BBID; I != E; ++I) {
3304           if (BBI == BBE)
3305             return error("Invalid ID");
3306           ++BBI;
3307         }
3308         BB = &*BBI;
3309       } else {
3310         // Otherwise insert a placeholder and remember it so it can be inserted
3311         // when the function is parsed.
3312         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3313         if (FwdBBs.empty())
3314           BasicBlockFwdRefQueue.push_back(Fn);
3315         if (FwdBBs.size() < BBID + 1)
3316           FwdBBs.resize(BBID + 1);
3317         if (!FwdBBs[BBID])
3318           FwdBBs[BBID] = BasicBlock::Create(Context);
3319         BB = FwdBBs[BBID];
3320       }
3321       V = BlockAddress::get(Fn, BB);
3322       break;
3323     }
3324     }
3325 
3326     ValueList.assignValue(V, NextCstNo);
3327     ++NextCstNo;
3328   }
3329 }
3330 
3331 std::error_code BitcodeReader::parseUseLists() {
3332   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3333     return error("Invalid record");
3334 
3335   // Read all the records.
3336   SmallVector<uint64_t, 64> Record;
3337   while (1) {
3338     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3339 
3340     switch (Entry.Kind) {
3341     case BitstreamEntry::SubBlock: // Handled for us already.
3342     case BitstreamEntry::Error:
3343       return error("Malformed block");
3344     case BitstreamEntry::EndBlock:
3345       return std::error_code();
3346     case BitstreamEntry::Record:
3347       // The interesting case.
3348       break;
3349     }
3350 
3351     // Read a use list record.
3352     Record.clear();
3353     bool IsBB = false;
3354     switch (Stream.readRecord(Entry.ID, Record)) {
3355     default:  // Default behavior: unknown type.
3356       break;
3357     case bitc::USELIST_CODE_BB:
3358       IsBB = true;
3359       LLVM_FALLTHROUGH;
3360     case bitc::USELIST_CODE_DEFAULT: {
3361       unsigned RecordLength = Record.size();
3362       if (RecordLength < 3)
3363         // Records should have at least an ID and two indexes.
3364         return error("Invalid record");
3365       unsigned ID = Record.back();
3366       Record.pop_back();
3367 
3368       Value *V;
3369       if (IsBB) {
3370         assert(ID < FunctionBBs.size() && "Basic block not found");
3371         V = FunctionBBs[ID];
3372       } else
3373         V = ValueList[ID];
3374       unsigned NumUses = 0;
3375       SmallDenseMap<const Use *, unsigned, 16> Order;
3376       for (const Use &U : V->materialized_uses()) {
3377         if (++NumUses > Record.size())
3378           break;
3379         Order[&U] = Record[NumUses - 1];
3380       }
3381       if (Order.size() != Record.size() || NumUses > Record.size())
3382         // Mismatches can happen if the functions are being materialized lazily
3383         // (out-of-order), or a value has been upgraded.
3384         break;
3385 
3386       V->sortUseList([&](const Use &L, const Use &R) {
3387         return Order.lookup(&L) < Order.lookup(&R);
3388       });
3389       break;
3390     }
3391     }
3392   }
3393 }
3394 
3395 /// When we see the block for metadata, remember where it is and then skip it.
3396 /// This lets us lazily deserialize the metadata.
3397 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3398   // Save the current stream state.
3399   uint64_t CurBit = Stream.GetCurrentBitNo();
3400   DeferredMetadataInfo.push_back(CurBit);
3401 
3402   // Skip over the block for now.
3403   if (Stream.SkipBlock())
3404     return error("Invalid record");
3405   return std::error_code();
3406 }
3407 
3408 std::error_code BitcodeReader::materializeMetadata() {
3409   for (uint64_t BitPos : DeferredMetadataInfo) {
3410     // Move the bit stream to the saved position.
3411     Stream.JumpToBit(BitPos);
3412     if (std::error_code EC = parseMetadata(true))
3413       return EC;
3414   }
3415   DeferredMetadataInfo.clear();
3416   return std::error_code();
3417 }
3418 
3419 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3420 
3421 /// When we see the block for a function body, remember where it is and then
3422 /// skip it.  This lets us lazily deserialize the functions.
3423 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3424   // Get the function we are talking about.
3425   if (FunctionsWithBodies.empty())
3426     return error("Insufficient function protos");
3427 
3428   Function *Fn = FunctionsWithBodies.back();
3429   FunctionsWithBodies.pop_back();
3430 
3431   // Save the current stream state.
3432   uint64_t CurBit = Stream.GetCurrentBitNo();
3433   assert(
3434       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3435       "Mismatch between VST and scanned function offsets");
3436   DeferredFunctionInfo[Fn] = CurBit;
3437 
3438   // Skip over the function block for now.
3439   if (Stream.SkipBlock())
3440     return error("Invalid record");
3441   return std::error_code();
3442 }
3443 
3444 std::error_code BitcodeReader::globalCleanup() {
3445   // Patch the initializers for globals and aliases up.
3446   resolveGlobalAndIndirectSymbolInits();
3447   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3448     return error("Malformed global initializer set");
3449 
3450   // Look for intrinsic functions which need to be upgraded at some point
3451   for (Function &F : *TheModule) {
3452     Function *NewFn;
3453     if (UpgradeIntrinsicFunction(&F, NewFn))
3454       UpgradedIntrinsics[&F] = NewFn;
3455     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3456       // Some types could be renamed during loading if several modules are
3457       // loaded in the same LLVMContext (LTO scenario). In this case we should
3458       // remangle intrinsics names as well.
3459       RemangledIntrinsics[&F] = Remangled.getValue();
3460   }
3461 
3462   // Look for global variables which need to be renamed.
3463   for (GlobalVariable &GV : TheModule->globals())
3464     UpgradeGlobalVariable(&GV);
3465 
3466   // Force deallocation of memory for these vectors to favor the client that
3467   // want lazy deserialization.
3468   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3469   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3470       IndirectSymbolInits);
3471   return std::error_code();
3472 }
3473 
3474 /// Support for lazy parsing of function bodies. This is required if we
3475 /// either have an old bitcode file without a VST forward declaration record,
3476 /// or if we have an anonymous function being materialized, since anonymous
3477 /// functions do not have a name and are therefore not in the VST.
3478 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3479   Stream.JumpToBit(NextUnreadBit);
3480 
3481   if (Stream.AtEndOfStream())
3482     return error("Could not find function in stream");
3483 
3484   if (!SeenFirstFunctionBody)
3485     return error("Trying to materialize functions before seeing function blocks");
3486 
3487   // An old bitcode file with the symbol table at the end would have
3488   // finished the parse greedily.
3489   assert(SeenValueSymbolTable);
3490 
3491   SmallVector<uint64_t, 64> Record;
3492 
3493   while (1) {
3494     BitstreamEntry Entry = Stream.advance();
3495     switch (Entry.Kind) {
3496     default:
3497       return error("Expect SubBlock");
3498     case BitstreamEntry::SubBlock:
3499       switch (Entry.ID) {
3500       default:
3501         return error("Expect function block");
3502       case bitc::FUNCTION_BLOCK_ID:
3503         if (std::error_code EC = rememberAndSkipFunctionBody())
3504           return EC;
3505         NextUnreadBit = Stream.GetCurrentBitNo();
3506         return std::error_code();
3507       }
3508     }
3509   }
3510 }
3511 
3512 std::error_code BitcodeReader::parseBitcodeVersion() {
3513   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3514     return error("Invalid record");
3515 
3516   // Read all the records.
3517   SmallVector<uint64_t, 64> Record;
3518   while (1) {
3519     BitstreamEntry Entry = Stream.advance();
3520 
3521     switch (Entry.Kind) {
3522     default:
3523     case BitstreamEntry::Error:
3524       return error("Malformed block");
3525     case BitstreamEntry::EndBlock:
3526       return std::error_code();
3527     case BitstreamEntry::Record:
3528       // The interesting case.
3529       break;
3530     }
3531 
3532     // Read a record.
3533     Record.clear();
3534     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3535     switch (BitCode) {
3536     default: // Default behavior: reject
3537       return error("Invalid value");
3538     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3539                                              // N]
3540       convertToString(Record, 0, ProducerIdentification);
3541       break;
3542     }
3543     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3544       unsigned epoch = (unsigned)Record[0];
3545       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3546         return error(
3547           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3548           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3549       }
3550     }
3551     }
3552   }
3553 }
3554 
3555 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3556                                            bool ShouldLazyLoadMetadata) {
3557   if (ResumeBit)
3558     Stream.JumpToBit(ResumeBit);
3559   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3560     return error("Invalid record");
3561 
3562   SmallVector<uint64_t, 64> Record;
3563   std::vector<std::string> SectionTable;
3564   std::vector<std::string> GCTable;
3565 
3566   // Read all the records for this module.
3567   while (1) {
3568     BitstreamEntry Entry = Stream.advance();
3569 
3570     switch (Entry.Kind) {
3571     case BitstreamEntry::Error:
3572       return error("Malformed block");
3573     case BitstreamEntry::EndBlock:
3574       return globalCleanup();
3575 
3576     case BitstreamEntry::SubBlock:
3577       switch (Entry.ID) {
3578       default:  // Skip unknown content.
3579         if (Stream.SkipBlock())
3580           return error("Invalid record");
3581         break;
3582       case bitc::BLOCKINFO_BLOCK_ID:
3583         if (Stream.ReadBlockInfoBlock())
3584           return error("Malformed block");
3585         break;
3586       case bitc::PARAMATTR_BLOCK_ID:
3587         if (std::error_code EC = parseAttributeBlock())
3588           return EC;
3589         break;
3590       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3591         if (std::error_code EC = parseAttributeGroupBlock())
3592           return EC;
3593         break;
3594       case bitc::TYPE_BLOCK_ID_NEW:
3595         if (std::error_code EC = parseTypeTable())
3596           return EC;
3597         break;
3598       case bitc::VALUE_SYMTAB_BLOCK_ID:
3599         if (!SeenValueSymbolTable) {
3600           // Either this is an old form VST without function index and an
3601           // associated VST forward declaration record (which would have caused
3602           // the VST to be jumped to and parsed before it was encountered
3603           // normally in the stream), or there were no function blocks to
3604           // trigger an earlier parsing of the VST.
3605           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3606           if (std::error_code EC = parseValueSymbolTable())
3607             return EC;
3608           SeenValueSymbolTable = true;
3609         } else {
3610           // We must have had a VST forward declaration record, which caused
3611           // the parser to jump to and parse the VST earlier.
3612           assert(VSTOffset > 0);
3613           if (Stream.SkipBlock())
3614             return error("Invalid record");
3615         }
3616         break;
3617       case bitc::CONSTANTS_BLOCK_ID:
3618         if (std::error_code EC = parseConstants())
3619           return EC;
3620         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3621           return EC;
3622         break;
3623       case bitc::METADATA_BLOCK_ID:
3624         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3625           if (std::error_code EC = rememberAndSkipMetadata())
3626             return EC;
3627           break;
3628         }
3629         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3630         if (std::error_code EC = parseMetadata(true))
3631           return EC;
3632         break;
3633       case bitc::METADATA_KIND_BLOCK_ID:
3634         if (std::error_code EC = parseMetadataKinds())
3635           return EC;
3636         break;
3637       case bitc::FUNCTION_BLOCK_ID:
3638         // If this is the first function body we've seen, reverse the
3639         // FunctionsWithBodies list.
3640         if (!SeenFirstFunctionBody) {
3641           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3642           if (std::error_code EC = globalCleanup())
3643             return EC;
3644           SeenFirstFunctionBody = true;
3645         }
3646 
3647         if (VSTOffset > 0) {
3648           // If we have a VST forward declaration record, make sure we
3649           // parse the VST now if we haven't already. It is needed to
3650           // set up the DeferredFunctionInfo vector for lazy reading.
3651           if (!SeenValueSymbolTable) {
3652             if (std::error_code EC =
3653                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3654               return EC;
3655             SeenValueSymbolTable = true;
3656             // Fall through so that we record the NextUnreadBit below.
3657             // This is necessary in case we have an anonymous function that
3658             // is later materialized. Since it will not have a VST entry we
3659             // need to fall back to the lazy parse to find its offset.
3660           } else {
3661             // If we have a VST forward declaration record, but have already
3662             // parsed the VST (just above, when the first function body was
3663             // encountered here), then we are resuming the parse after
3664             // materializing functions. The ResumeBit points to the
3665             // start of the last function block recorded in the
3666             // DeferredFunctionInfo map. Skip it.
3667             if (Stream.SkipBlock())
3668               return error("Invalid record");
3669             continue;
3670           }
3671         }
3672 
3673         // Support older bitcode files that did not have the function
3674         // index in the VST, nor a VST forward declaration record, as
3675         // well as anonymous functions that do not have VST entries.
3676         // Build the DeferredFunctionInfo vector on the fly.
3677         if (std::error_code EC = rememberAndSkipFunctionBody())
3678           return EC;
3679 
3680         // Suspend parsing when we reach the function bodies. Subsequent
3681         // materialization calls will resume it when necessary. If the bitcode
3682         // file is old, the symbol table will be at the end instead and will not
3683         // have been seen yet. In this case, just finish the parse now.
3684         if (SeenValueSymbolTable) {
3685           NextUnreadBit = Stream.GetCurrentBitNo();
3686           // After the VST has been parsed, we need to make sure intrinsic name
3687           // are auto-upgraded.
3688           return globalCleanup();
3689         }
3690         break;
3691       case bitc::USELIST_BLOCK_ID:
3692         if (std::error_code EC = parseUseLists())
3693           return EC;
3694         break;
3695       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3696         if (std::error_code EC = parseOperandBundleTags())
3697           return EC;
3698         break;
3699       }
3700       continue;
3701 
3702     case BitstreamEntry::Record:
3703       // The interesting case.
3704       break;
3705     }
3706 
3707     // Read a record.
3708     auto BitCode = Stream.readRecord(Entry.ID, Record);
3709     switch (BitCode) {
3710     default: break;  // Default behavior, ignore unknown content.
3711     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3712       if (Record.size() < 1)
3713         return error("Invalid record");
3714       // Only version #0 and #1 are supported so far.
3715       unsigned module_version = Record[0];
3716       switch (module_version) {
3717         default:
3718           return error("Invalid value");
3719         case 0:
3720           UseRelativeIDs = false;
3721           break;
3722         case 1:
3723           UseRelativeIDs = true;
3724           break;
3725       }
3726       break;
3727     }
3728     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3729       std::string S;
3730       if (convertToString(Record, 0, S))
3731         return error("Invalid record");
3732       TheModule->setTargetTriple(S);
3733       break;
3734     }
3735     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3736       std::string S;
3737       if (convertToString(Record, 0, S))
3738         return error("Invalid record");
3739       TheModule->setDataLayout(S);
3740       break;
3741     }
3742     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3743       std::string S;
3744       if (convertToString(Record, 0, S))
3745         return error("Invalid record");
3746       TheModule->setModuleInlineAsm(S);
3747       break;
3748     }
3749     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3750       // FIXME: Remove in 4.0.
3751       std::string S;
3752       if (convertToString(Record, 0, S))
3753         return error("Invalid record");
3754       // Ignore value.
3755       break;
3756     }
3757     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3758       std::string S;
3759       if (convertToString(Record, 0, S))
3760         return error("Invalid record");
3761       SectionTable.push_back(S);
3762       break;
3763     }
3764     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3765       std::string S;
3766       if (convertToString(Record, 0, S))
3767         return error("Invalid record");
3768       GCTable.push_back(S);
3769       break;
3770     }
3771     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3772       if (Record.size() < 2)
3773         return error("Invalid record");
3774       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3775       unsigned ComdatNameSize = Record[1];
3776       std::string ComdatName;
3777       ComdatName.reserve(ComdatNameSize);
3778       for (unsigned i = 0; i != ComdatNameSize; ++i)
3779         ComdatName += (char)Record[2 + i];
3780       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3781       C->setSelectionKind(SK);
3782       ComdatList.push_back(C);
3783       break;
3784     }
3785     // GLOBALVAR: [pointer type, isconst, initid,
3786     //             linkage, alignment, section, visibility, threadlocal,
3787     //             unnamed_addr, externally_initialized, dllstorageclass,
3788     //             comdat]
3789     case bitc::MODULE_CODE_GLOBALVAR: {
3790       if (Record.size() < 6)
3791         return error("Invalid record");
3792       Type *Ty = getTypeByID(Record[0]);
3793       if (!Ty)
3794         return error("Invalid record");
3795       bool isConstant = Record[1] & 1;
3796       bool explicitType = Record[1] & 2;
3797       unsigned AddressSpace;
3798       if (explicitType) {
3799         AddressSpace = Record[1] >> 2;
3800       } else {
3801         if (!Ty->isPointerTy())
3802           return error("Invalid type for value");
3803         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3804         Ty = cast<PointerType>(Ty)->getElementType();
3805       }
3806 
3807       uint64_t RawLinkage = Record[3];
3808       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3809       unsigned Alignment;
3810       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3811         return EC;
3812       std::string Section;
3813       if (Record[5]) {
3814         if (Record[5]-1 >= SectionTable.size())
3815           return error("Invalid ID");
3816         Section = SectionTable[Record[5]-1];
3817       }
3818       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3819       // Local linkage must have default visibility.
3820       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3821         // FIXME: Change to an error if non-default in 4.0.
3822         Visibility = getDecodedVisibility(Record[6]);
3823 
3824       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3825       if (Record.size() > 7)
3826         TLM = getDecodedThreadLocalMode(Record[7]);
3827 
3828       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3829       if (Record.size() > 8)
3830         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3831 
3832       bool ExternallyInitialized = false;
3833       if (Record.size() > 9)
3834         ExternallyInitialized = Record[9];
3835 
3836       GlobalVariable *NewGV =
3837         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3838                            TLM, AddressSpace, ExternallyInitialized);
3839       NewGV->setAlignment(Alignment);
3840       if (!Section.empty())
3841         NewGV->setSection(Section);
3842       NewGV->setVisibility(Visibility);
3843       NewGV->setUnnamedAddr(UnnamedAddr);
3844 
3845       if (Record.size() > 10)
3846         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3847       else
3848         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3849 
3850       ValueList.push_back(NewGV);
3851 
3852       // Remember which value to use for the global initializer.
3853       if (unsigned InitID = Record[2])
3854         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3855 
3856       if (Record.size() > 11) {
3857         if (unsigned ComdatID = Record[11]) {
3858           if (ComdatID > ComdatList.size())
3859             return error("Invalid global variable comdat ID");
3860           NewGV->setComdat(ComdatList[ComdatID - 1]);
3861         }
3862       } else if (hasImplicitComdat(RawLinkage)) {
3863         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3864       }
3865 
3866       break;
3867     }
3868     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3869     //             alignment, section, visibility, gc, unnamed_addr,
3870     //             prologuedata, dllstorageclass, comdat, prefixdata]
3871     case bitc::MODULE_CODE_FUNCTION: {
3872       if (Record.size() < 8)
3873         return error("Invalid record");
3874       Type *Ty = getTypeByID(Record[0]);
3875       if (!Ty)
3876         return error("Invalid record");
3877       if (auto *PTy = dyn_cast<PointerType>(Ty))
3878         Ty = PTy->getElementType();
3879       auto *FTy = dyn_cast<FunctionType>(Ty);
3880       if (!FTy)
3881         return error("Invalid type for value");
3882       auto CC = static_cast<CallingConv::ID>(Record[1]);
3883       if (CC & ~CallingConv::MaxID)
3884         return error("Invalid calling convention ID");
3885 
3886       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3887                                         "", TheModule);
3888 
3889       Func->setCallingConv(CC);
3890       bool isProto = Record[2];
3891       uint64_t RawLinkage = Record[3];
3892       Func->setLinkage(getDecodedLinkage(RawLinkage));
3893       Func->setAttributes(getAttributes(Record[4]));
3894 
3895       unsigned Alignment;
3896       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3897         return EC;
3898       Func->setAlignment(Alignment);
3899       if (Record[6]) {
3900         if (Record[6]-1 >= SectionTable.size())
3901           return error("Invalid ID");
3902         Func->setSection(SectionTable[Record[6]-1]);
3903       }
3904       // Local linkage must have default visibility.
3905       if (!Func->hasLocalLinkage())
3906         // FIXME: Change to an error if non-default in 4.0.
3907         Func->setVisibility(getDecodedVisibility(Record[7]));
3908       if (Record.size() > 8 && Record[8]) {
3909         if (Record[8]-1 >= GCTable.size())
3910           return error("Invalid ID");
3911         Func->setGC(GCTable[Record[8] - 1]);
3912       }
3913       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3914       if (Record.size() > 9)
3915         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3916       Func->setUnnamedAddr(UnnamedAddr);
3917       if (Record.size() > 10 && Record[10] != 0)
3918         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3919 
3920       if (Record.size() > 11)
3921         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3922       else
3923         upgradeDLLImportExportLinkage(Func, RawLinkage);
3924 
3925       if (Record.size() > 12) {
3926         if (unsigned ComdatID = Record[12]) {
3927           if (ComdatID > ComdatList.size())
3928             return error("Invalid function comdat ID");
3929           Func->setComdat(ComdatList[ComdatID - 1]);
3930         }
3931       } else if (hasImplicitComdat(RawLinkage)) {
3932         Func->setComdat(reinterpret_cast<Comdat *>(1));
3933       }
3934 
3935       if (Record.size() > 13 && Record[13] != 0)
3936         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3937 
3938       if (Record.size() > 14 && Record[14] != 0)
3939         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3940 
3941       ValueList.push_back(Func);
3942 
3943       // If this is a function with a body, remember the prototype we are
3944       // creating now, so that we can match up the body with them later.
3945       if (!isProto) {
3946         Func->setIsMaterializable(true);
3947         FunctionsWithBodies.push_back(Func);
3948         DeferredFunctionInfo[Func] = 0;
3949       }
3950       break;
3951     }
3952     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3953     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3954     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3955     case bitc::MODULE_CODE_IFUNC:
3956     case bitc::MODULE_CODE_ALIAS:
3957     case bitc::MODULE_CODE_ALIAS_OLD: {
3958       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3959       if (Record.size() < (3 + (unsigned)NewRecord))
3960         return error("Invalid record");
3961       unsigned OpNum = 0;
3962       Type *Ty = getTypeByID(Record[OpNum++]);
3963       if (!Ty)
3964         return error("Invalid record");
3965 
3966       unsigned AddrSpace;
3967       if (!NewRecord) {
3968         auto *PTy = dyn_cast<PointerType>(Ty);
3969         if (!PTy)
3970           return error("Invalid type for value");
3971         Ty = PTy->getElementType();
3972         AddrSpace = PTy->getAddressSpace();
3973       } else {
3974         AddrSpace = Record[OpNum++];
3975       }
3976 
3977       auto Val = Record[OpNum++];
3978       auto Linkage = Record[OpNum++];
3979       GlobalIndirectSymbol *NewGA;
3980       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3981           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3982         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3983                                     "", TheModule);
3984       else
3985         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3986                                     "", nullptr, TheModule);
3987       // Old bitcode files didn't have visibility field.
3988       // Local linkage must have default visibility.
3989       if (OpNum != Record.size()) {
3990         auto VisInd = OpNum++;
3991         if (!NewGA->hasLocalLinkage())
3992           // FIXME: Change to an error if non-default in 4.0.
3993           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3994       }
3995       if (OpNum != Record.size())
3996         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3997       else
3998         upgradeDLLImportExportLinkage(NewGA, Linkage);
3999       if (OpNum != Record.size())
4000         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4001       if (OpNum != Record.size())
4002         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4003       ValueList.push_back(NewGA);
4004       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4005       break;
4006     }
4007     /// MODULE_CODE_PURGEVALS: [numvals]
4008     case bitc::MODULE_CODE_PURGEVALS:
4009       // Trim down the value list to the specified size.
4010       if (Record.size() < 1 || Record[0] > ValueList.size())
4011         return error("Invalid record");
4012       ValueList.shrinkTo(Record[0]);
4013       break;
4014     /// MODULE_CODE_VSTOFFSET: [offset]
4015     case bitc::MODULE_CODE_VSTOFFSET:
4016       if (Record.size() < 1)
4017         return error("Invalid record");
4018       VSTOffset = Record[0];
4019       break;
4020     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4021     case bitc::MODULE_CODE_SOURCE_FILENAME:
4022       SmallString<128> ValueName;
4023       if (convertToString(Record, 0, ValueName))
4024         return error("Invalid record");
4025       TheModule->setSourceFileName(ValueName);
4026       break;
4027     }
4028     Record.clear();
4029   }
4030 }
4031 
4032 /// Helper to read the header common to all bitcode files.
4033 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4034   // Sniff for the signature.
4035   if (Stream.Read(8) != 'B' ||
4036       Stream.Read(8) != 'C' ||
4037       Stream.Read(4) != 0x0 ||
4038       Stream.Read(4) != 0xC ||
4039       Stream.Read(4) != 0xE ||
4040       Stream.Read(4) != 0xD)
4041     return false;
4042   return true;
4043 }
4044 
4045 std::error_code
4046 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4047                                 Module *M, bool ShouldLazyLoadMetadata) {
4048   TheModule = M;
4049 
4050   if (std::error_code EC = initStream(std::move(Streamer)))
4051     return EC;
4052 
4053   // Sniff for the signature.
4054   if (!hasValidBitcodeHeader(Stream))
4055     return error("Invalid bitcode signature");
4056 
4057   // We expect a number of well-defined blocks, though we don't necessarily
4058   // need to understand them all.
4059   while (1) {
4060     if (Stream.AtEndOfStream()) {
4061       // We didn't really read a proper Module.
4062       return error("Malformed IR file");
4063     }
4064 
4065     BitstreamEntry Entry =
4066       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4067 
4068     if (Entry.Kind != BitstreamEntry::SubBlock)
4069       return error("Malformed block");
4070 
4071     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4072       parseBitcodeVersion();
4073       continue;
4074     }
4075 
4076     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4077       return parseModule(0, ShouldLazyLoadMetadata);
4078 
4079     if (Stream.SkipBlock())
4080       return error("Invalid record");
4081   }
4082 }
4083 
4084 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4085   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4086     return error("Invalid record");
4087 
4088   SmallVector<uint64_t, 64> Record;
4089 
4090   std::string Triple;
4091   // Read all the records for this module.
4092   while (1) {
4093     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4094 
4095     switch (Entry.Kind) {
4096     case BitstreamEntry::SubBlock: // Handled for us already.
4097     case BitstreamEntry::Error:
4098       return error("Malformed block");
4099     case BitstreamEntry::EndBlock:
4100       return Triple;
4101     case BitstreamEntry::Record:
4102       // The interesting case.
4103       break;
4104     }
4105 
4106     // Read a record.
4107     switch (Stream.readRecord(Entry.ID, Record)) {
4108     default: break;  // Default behavior, ignore unknown content.
4109     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4110       std::string S;
4111       if (convertToString(Record, 0, S))
4112         return error("Invalid record");
4113       Triple = S;
4114       break;
4115     }
4116     }
4117     Record.clear();
4118   }
4119   llvm_unreachable("Exit infinite loop");
4120 }
4121 
4122 ErrorOr<std::string> BitcodeReader::parseTriple() {
4123   if (std::error_code EC = initStream(nullptr))
4124     return EC;
4125 
4126   // Sniff for the signature.
4127   if (!hasValidBitcodeHeader(Stream))
4128     return error("Invalid bitcode signature");
4129 
4130   // We expect a number of well-defined blocks, though we don't necessarily
4131   // need to understand them all.
4132   while (1) {
4133     BitstreamEntry Entry = Stream.advance();
4134 
4135     switch (Entry.Kind) {
4136     case BitstreamEntry::Error:
4137       return error("Malformed block");
4138     case BitstreamEntry::EndBlock:
4139       return std::error_code();
4140 
4141     case BitstreamEntry::SubBlock:
4142       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4143         return parseModuleTriple();
4144 
4145       // Ignore other sub-blocks.
4146       if (Stream.SkipBlock())
4147         return error("Malformed block");
4148       continue;
4149 
4150     case BitstreamEntry::Record:
4151       Stream.skipRecord(Entry.ID);
4152       continue;
4153     }
4154   }
4155 }
4156 
4157 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4158   if (std::error_code EC = initStream(nullptr))
4159     return EC;
4160 
4161   // Sniff for the signature.
4162   if (!hasValidBitcodeHeader(Stream))
4163     return error("Invalid bitcode signature");
4164 
4165   // We expect a number of well-defined blocks, though we don't necessarily
4166   // need to understand them all.
4167   while (1) {
4168     BitstreamEntry Entry = Stream.advance();
4169     switch (Entry.Kind) {
4170     case BitstreamEntry::Error:
4171       return error("Malformed block");
4172     case BitstreamEntry::EndBlock:
4173       return std::error_code();
4174 
4175     case BitstreamEntry::SubBlock:
4176       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4177         if (std::error_code EC = parseBitcodeVersion())
4178           return EC;
4179         return ProducerIdentification;
4180       }
4181       // Ignore other sub-blocks.
4182       if (Stream.SkipBlock())
4183         return error("Malformed block");
4184       continue;
4185     case BitstreamEntry::Record:
4186       Stream.skipRecord(Entry.ID);
4187       continue;
4188     }
4189   }
4190 }
4191 
4192 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4193     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4194   assert(Record.size() % 2 == 0);
4195   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4196     auto K = MDKindMap.find(Record[I]);
4197     if (K == MDKindMap.end())
4198       return error("Invalid ID");
4199     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4200     if (!MD)
4201       return error("Invalid metadata attachment");
4202     GO.addMetadata(K->second, *MD);
4203   }
4204   return std::error_code();
4205 }
4206 
4207 ErrorOr<bool> BitcodeReader::hasObjCCategory() {
4208   if (std::error_code EC = initStream(nullptr))
4209     return EC;
4210 
4211   // Sniff for the signature.
4212   if (!hasValidBitcodeHeader(Stream))
4213     return error("Invalid bitcode signature");
4214 
4215   // We expect a number of well-defined blocks, though we don't necessarily
4216   // need to understand them all.
4217   while (1) {
4218     BitstreamEntry Entry = Stream.advance();
4219 
4220     switch (Entry.Kind) {
4221     case BitstreamEntry::Error:
4222       return error("Malformed block");
4223     case BitstreamEntry::EndBlock:
4224       return std::error_code();
4225 
4226     case BitstreamEntry::SubBlock:
4227       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4228         return hasObjCCategoryInModule();
4229 
4230       // Ignore other sub-blocks.
4231       if (Stream.SkipBlock())
4232         return error("Malformed block");
4233       continue;
4234 
4235     case BitstreamEntry::Record:
4236       Stream.skipRecord(Entry.ID);
4237       continue;
4238     }
4239   }
4240 }
4241 
4242 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() {
4243   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4244     return error("Invalid record");
4245 
4246   SmallVector<uint64_t, 64> Record;
4247   // Read all the records for this module.
4248   while (1) {
4249     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4250 
4251     switch (Entry.Kind) {
4252     case BitstreamEntry::SubBlock: // Handled for us already.
4253     case BitstreamEntry::Error:
4254       return error("Malformed block");
4255     case BitstreamEntry::EndBlock:
4256       return false;
4257     case BitstreamEntry::Record:
4258       // The interesting case.
4259       break;
4260     }
4261 
4262     // Read a record.
4263     switch (Stream.readRecord(Entry.ID, Record)) {
4264     default:
4265       break; // Default behavior, ignore unknown content.
4266     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4267       std::string S;
4268       if (convertToString(Record, 0, S))
4269         return error("Invalid record");
4270       // Check for the i386 and other (x86_64, ARM) conventions
4271       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
4272           S.find("__OBJC,__category") != std::string::npos)
4273         return true;
4274       break;
4275     }
4276     }
4277     Record.clear();
4278   }
4279   llvm_unreachable("Exit infinite loop");
4280 }
4281 
4282 /// Parse metadata attachments.
4283 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4284   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4285     return error("Invalid record");
4286 
4287   SmallVector<uint64_t, 64> Record;
4288   while (1) {
4289     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4290 
4291     switch (Entry.Kind) {
4292     case BitstreamEntry::SubBlock: // Handled for us already.
4293     case BitstreamEntry::Error:
4294       return error("Malformed block");
4295     case BitstreamEntry::EndBlock:
4296       return std::error_code();
4297     case BitstreamEntry::Record:
4298       // The interesting case.
4299       break;
4300     }
4301 
4302     // Read a metadata attachment record.
4303     Record.clear();
4304     switch (Stream.readRecord(Entry.ID, Record)) {
4305     default:  // Default behavior: ignore.
4306       break;
4307     case bitc::METADATA_ATTACHMENT: {
4308       unsigned RecordLength = Record.size();
4309       if (Record.empty())
4310         return error("Invalid record");
4311       if (RecordLength % 2 == 0) {
4312         // A function attachment.
4313         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4314           return EC;
4315         continue;
4316       }
4317 
4318       // An instruction attachment.
4319       Instruction *Inst = InstructionList[Record[0]];
4320       for (unsigned i = 1; i != RecordLength; i = i+2) {
4321         unsigned Kind = Record[i];
4322         DenseMap<unsigned, unsigned>::iterator I =
4323           MDKindMap.find(Kind);
4324         if (I == MDKindMap.end())
4325           return error("Invalid ID");
4326         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4327         if (isa<LocalAsMetadata>(Node))
4328           // Drop the attachment.  This used to be legal, but there's no
4329           // upgrade path.
4330           break;
4331         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4332         if (!MD)
4333           return error("Invalid metadata attachment");
4334 
4335         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4336           MD = upgradeInstructionLoopAttachment(*MD);
4337 
4338         Inst->setMetadata(I->second, MD);
4339         if (I->second == LLVMContext::MD_tbaa) {
4340           InstsWithTBAATag.push_back(Inst);
4341           continue;
4342         }
4343       }
4344       break;
4345     }
4346     }
4347   }
4348 }
4349 
4350 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4351   LLVMContext &Context = PtrType->getContext();
4352   if (!isa<PointerType>(PtrType))
4353     return error(Context, "Load/Store operand is not a pointer type");
4354   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4355 
4356   if (ValType && ValType != ElemType)
4357     return error(Context, "Explicit load/store type does not match pointee "
4358                           "type of pointer operand");
4359   if (!PointerType::isLoadableOrStorableType(ElemType))
4360     return error(Context, "Cannot load/store from pointer");
4361   return std::error_code();
4362 }
4363 
4364 /// Lazily parse the specified function body block.
4365 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4366   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4367     return error("Invalid record");
4368 
4369   // Unexpected unresolved metadata when parsing function.
4370   if (MetadataList.hasFwdRefs())
4371     return error("Invalid function metadata: incoming forward references");
4372 
4373   InstructionList.clear();
4374   unsigned ModuleValueListSize = ValueList.size();
4375   unsigned ModuleMetadataListSize = MetadataList.size();
4376 
4377   // Add all the function arguments to the value table.
4378   for (Argument &I : F->args())
4379     ValueList.push_back(&I);
4380 
4381   unsigned NextValueNo = ValueList.size();
4382   BasicBlock *CurBB = nullptr;
4383   unsigned CurBBNo = 0;
4384 
4385   DebugLoc LastLoc;
4386   auto getLastInstruction = [&]() -> Instruction * {
4387     if (CurBB && !CurBB->empty())
4388       return &CurBB->back();
4389     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4390              !FunctionBBs[CurBBNo - 1]->empty())
4391       return &FunctionBBs[CurBBNo - 1]->back();
4392     return nullptr;
4393   };
4394 
4395   std::vector<OperandBundleDef> OperandBundles;
4396 
4397   // Read all the records.
4398   SmallVector<uint64_t, 64> Record;
4399   while (1) {
4400     BitstreamEntry Entry = Stream.advance();
4401 
4402     switch (Entry.Kind) {
4403     case BitstreamEntry::Error:
4404       return error("Malformed block");
4405     case BitstreamEntry::EndBlock:
4406       goto OutOfRecordLoop;
4407 
4408     case BitstreamEntry::SubBlock:
4409       switch (Entry.ID) {
4410       default:  // Skip unknown content.
4411         if (Stream.SkipBlock())
4412           return error("Invalid record");
4413         break;
4414       case bitc::CONSTANTS_BLOCK_ID:
4415         if (std::error_code EC = parseConstants())
4416           return EC;
4417         NextValueNo = ValueList.size();
4418         break;
4419       case bitc::VALUE_SYMTAB_BLOCK_ID:
4420         if (std::error_code EC = parseValueSymbolTable())
4421           return EC;
4422         break;
4423       case bitc::METADATA_ATTACHMENT_ID:
4424         if (std::error_code EC = parseMetadataAttachment(*F))
4425           return EC;
4426         break;
4427       case bitc::METADATA_BLOCK_ID:
4428         if (std::error_code EC = parseMetadata())
4429           return EC;
4430         break;
4431       case bitc::USELIST_BLOCK_ID:
4432         if (std::error_code EC = parseUseLists())
4433           return EC;
4434         break;
4435       }
4436       continue;
4437 
4438     case BitstreamEntry::Record:
4439       // The interesting case.
4440       break;
4441     }
4442 
4443     // Read a record.
4444     Record.clear();
4445     Instruction *I = nullptr;
4446     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4447     switch (BitCode) {
4448     default: // Default behavior: reject
4449       return error("Invalid value");
4450     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4451       if (Record.size() < 1 || Record[0] == 0)
4452         return error("Invalid record");
4453       // Create all the basic blocks for the function.
4454       FunctionBBs.resize(Record[0]);
4455 
4456       // See if anything took the address of blocks in this function.
4457       auto BBFRI = BasicBlockFwdRefs.find(F);
4458       if (BBFRI == BasicBlockFwdRefs.end()) {
4459         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4460           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4461       } else {
4462         auto &BBRefs = BBFRI->second;
4463         // Check for invalid basic block references.
4464         if (BBRefs.size() > FunctionBBs.size())
4465           return error("Invalid ID");
4466         assert(!BBRefs.empty() && "Unexpected empty array");
4467         assert(!BBRefs.front() && "Invalid reference to entry block");
4468         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4469              ++I)
4470           if (I < RE && BBRefs[I]) {
4471             BBRefs[I]->insertInto(F);
4472             FunctionBBs[I] = BBRefs[I];
4473           } else {
4474             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4475           }
4476 
4477         // Erase from the table.
4478         BasicBlockFwdRefs.erase(BBFRI);
4479       }
4480 
4481       CurBB = FunctionBBs[0];
4482       continue;
4483     }
4484 
4485     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4486       // This record indicates that the last instruction is at the same
4487       // location as the previous instruction with a location.
4488       I = getLastInstruction();
4489 
4490       if (!I)
4491         return error("Invalid record");
4492       I->setDebugLoc(LastLoc);
4493       I = nullptr;
4494       continue;
4495 
4496     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4497       I = getLastInstruction();
4498       if (!I || Record.size() < 4)
4499         return error("Invalid record");
4500 
4501       unsigned Line = Record[0], Col = Record[1];
4502       unsigned ScopeID = Record[2], IAID = Record[3];
4503 
4504       MDNode *Scope = nullptr, *IA = nullptr;
4505       if (ScopeID) {
4506         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4507         if (!Scope)
4508           return error("Invalid record");
4509       }
4510       if (IAID) {
4511         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4512         if (!IA)
4513           return error("Invalid record");
4514       }
4515       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4516       I->setDebugLoc(LastLoc);
4517       I = nullptr;
4518       continue;
4519     }
4520 
4521     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4522       unsigned OpNum = 0;
4523       Value *LHS, *RHS;
4524       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4525           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4526           OpNum+1 > Record.size())
4527         return error("Invalid record");
4528 
4529       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4530       if (Opc == -1)
4531         return error("Invalid record");
4532       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4533       InstructionList.push_back(I);
4534       if (OpNum < Record.size()) {
4535         if (Opc == Instruction::Add ||
4536             Opc == Instruction::Sub ||
4537             Opc == Instruction::Mul ||
4538             Opc == Instruction::Shl) {
4539           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4540             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4541           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4542             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4543         } else if (Opc == Instruction::SDiv ||
4544                    Opc == Instruction::UDiv ||
4545                    Opc == Instruction::LShr ||
4546                    Opc == Instruction::AShr) {
4547           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4548             cast<BinaryOperator>(I)->setIsExact(true);
4549         } else if (isa<FPMathOperator>(I)) {
4550           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4551           if (FMF.any())
4552             I->setFastMathFlags(FMF);
4553         }
4554 
4555       }
4556       break;
4557     }
4558     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4559       unsigned OpNum = 0;
4560       Value *Op;
4561       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4562           OpNum+2 != Record.size())
4563         return error("Invalid record");
4564 
4565       Type *ResTy = getTypeByID(Record[OpNum]);
4566       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4567       if (Opc == -1 || !ResTy)
4568         return error("Invalid record");
4569       Instruction *Temp = nullptr;
4570       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4571         if (Temp) {
4572           InstructionList.push_back(Temp);
4573           CurBB->getInstList().push_back(Temp);
4574         }
4575       } else {
4576         auto CastOp = (Instruction::CastOps)Opc;
4577         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4578           return error("Invalid cast");
4579         I = CastInst::Create(CastOp, Op, ResTy);
4580       }
4581       InstructionList.push_back(I);
4582       break;
4583     }
4584     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4585     case bitc::FUNC_CODE_INST_GEP_OLD:
4586     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4587       unsigned OpNum = 0;
4588 
4589       Type *Ty;
4590       bool InBounds;
4591 
4592       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4593         InBounds = Record[OpNum++];
4594         Ty = getTypeByID(Record[OpNum++]);
4595       } else {
4596         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4597         Ty = nullptr;
4598       }
4599 
4600       Value *BasePtr;
4601       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4602         return error("Invalid record");
4603 
4604       if (!Ty)
4605         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4606                  ->getElementType();
4607       else if (Ty !=
4608                cast<SequentialType>(BasePtr->getType()->getScalarType())
4609                    ->getElementType())
4610         return error(
4611             "Explicit gep type does not match pointee type of pointer operand");
4612 
4613       SmallVector<Value*, 16> GEPIdx;
4614       while (OpNum != Record.size()) {
4615         Value *Op;
4616         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4617           return error("Invalid record");
4618         GEPIdx.push_back(Op);
4619       }
4620 
4621       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4622 
4623       InstructionList.push_back(I);
4624       if (InBounds)
4625         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4626       break;
4627     }
4628 
4629     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4630                                        // EXTRACTVAL: [opty, opval, n x indices]
4631       unsigned OpNum = 0;
4632       Value *Agg;
4633       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4634         return error("Invalid record");
4635 
4636       unsigned RecSize = Record.size();
4637       if (OpNum == RecSize)
4638         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4639 
4640       SmallVector<unsigned, 4> EXTRACTVALIdx;
4641       Type *CurTy = Agg->getType();
4642       for (; OpNum != RecSize; ++OpNum) {
4643         bool IsArray = CurTy->isArrayTy();
4644         bool IsStruct = CurTy->isStructTy();
4645         uint64_t Index = Record[OpNum];
4646 
4647         if (!IsStruct && !IsArray)
4648           return error("EXTRACTVAL: Invalid type");
4649         if ((unsigned)Index != Index)
4650           return error("Invalid value");
4651         if (IsStruct && Index >= CurTy->subtypes().size())
4652           return error("EXTRACTVAL: Invalid struct index");
4653         if (IsArray && Index >= CurTy->getArrayNumElements())
4654           return error("EXTRACTVAL: Invalid array index");
4655         EXTRACTVALIdx.push_back((unsigned)Index);
4656 
4657         if (IsStruct)
4658           CurTy = CurTy->subtypes()[Index];
4659         else
4660           CurTy = CurTy->subtypes()[0];
4661       }
4662 
4663       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4664       InstructionList.push_back(I);
4665       break;
4666     }
4667 
4668     case bitc::FUNC_CODE_INST_INSERTVAL: {
4669                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4670       unsigned OpNum = 0;
4671       Value *Agg;
4672       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4673         return error("Invalid record");
4674       Value *Val;
4675       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4676         return error("Invalid record");
4677 
4678       unsigned RecSize = Record.size();
4679       if (OpNum == RecSize)
4680         return error("INSERTVAL: Invalid instruction with 0 indices");
4681 
4682       SmallVector<unsigned, 4> INSERTVALIdx;
4683       Type *CurTy = Agg->getType();
4684       for (; OpNum != RecSize; ++OpNum) {
4685         bool IsArray = CurTy->isArrayTy();
4686         bool IsStruct = CurTy->isStructTy();
4687         uint64_t Index = Record[OpNum];
4688 
4689         if (!IsStruct && !IsArray)
4690           return error("INSERTVAL: Invalid type");
4691         if ((unsigned)Index != Index)
4692           return error("Invalid value");
4693         if (IsStruct && Index >= CurTy->subtypes().size())
4694           return error("INSERTVAL: Invalid struct index");
4695         if (IsArray && Index >= CurTy->getArrayNumElements())
4696           return error("INSERTVAL: Invalid array index");
4697 
4698         INSERTVALIdx.push_back((unsigned)Index);
4699         if (IsStruct)
4700           CurTy = CurTy->subtypes()[Index];
4701         else
4702           CurTy = CurTy->subtypes()[0];
4703       }
4704 
4705       if (CurTy != Val->getType())
4706         return error("Inserted value type doesn't match aggregate type");
4707 
4708       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4709       InstructionList.push_back(I);
4710       break;
4711     }
4712 
4713     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4714       // obsolete form of select
4715       // handles select i1 ... in old bitcode
4716       unsigned OpNum = 0;
4717       Value *TrueVal, *FalseVal, *Cond;
4718       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4719           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4720           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4721         return error("Invalid record");
4722 
4723       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4724       InstructionList.push_back(I);
4725       break;
4726     }
4727 
4728     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4729       // new form of select
4730       // handles select i1 or select [N x i1]
4731       unsigned OpNum = 0;
4732       Value *TrueVal, *FalseVal, *Cond;
4733       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4734           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4735           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4736         return error("Invalid record");
4737 
4738       // select condition can be either i1 or [N x i1]
4739       if (VectorType* vector_type =
4740           dyn_cast<VectorType>(Cond->getType())) {
4741         // expect <n x i1>
4742         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4743           return error("Invalid type for value");
4744       } else {
4745         // expect i1
4746         if (Cond->getType() != Type::getInt1Ty(Context))
4747           return error("Invalid type for value");
4748       }
4749 
4750       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4751       InstructionList.push_back(I);
4752       break;
4753     }
4754 
4755     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4756       unsigned OpNum = 0;
4757       Value *Vec, *Idx;
4758       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4759           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4760         return error("Invalid record");
4761       if (!Vec->getType()->isVectorTy())
4762         return error("Invalid type for value");
4763       I = ExtractElementInst::Create(Vec, Idx);
4764       InstructionList.push_back(I);
4765       break;
4766     }
4767 
4768     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4769       unsigned OpNum = 0;
4770       Value *Vec, *Elt, *Idx;
4771       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4772         return error("Invalid record");
4773       if (!Vec->getType()->isVectorTy())
4774         return error("Invalid type for value");
4775       if (popValue(Record, OpNum, NextValueNo,
4776                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4777           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4778         return error("Invalid record");
4779       I = InsertElementInst::Create(Vec, Elt, Idx);
4780       InstructionList.push_back(I);
4781       break;
4782     }
4783 
4784     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4785       unsigned OpNum = 0;
4786       Value *Vec1, *Vec2, *Mask;
4787       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4788           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4789         return error("Invalid record");
4790 
4791       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4792         return error("Invalid record");
4793       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4794         return error("Invalid type for value");
4795       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4796       InstructionList.push_back(I);
4797       break;
4798     }
4799 
4800     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4801       // Old form of ICmp/FCmp returning bool
4802       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4803       // both legal on vectors but had different behaviour.
4804     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4805       // FCmp/ICmp returning bool or vector of bool
4806 
4807       unsigned OpNum = 0;
4808       Value *LHS, *RHS;
4809       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4810           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4811         return error("Invalid record");
4812 
4813       unsigned PredVal = Record[OpNum];
4814       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4815       FastMathFlags FMF;
4816       if (IsFP && Record.size() > OpNum+1)
4817         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4818 
4819       if (OpNum+1 != Record.size())
4820         return error("Invalid record");
4821 
4822       if (LHS->getType()->isFPOrFPVectorTy())
4823         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4824       else
4825         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4826 
4827       if (FMF.any())
4828         I->setFastMathFlags(FMF);
4829       InstructionList.push_back(I);
4830       break;
4831     }
4832 
4833     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4834       {
4835         unsigned Size = Record.size();
4836         if (Size == 0) {
4837           I = ReturnInst::Create(Context);
4838           InstructionList.push_back(I);
4839           break;
4840         }
4841 
4842         unsigned OpNum = 0;
4843         Value *Op = nullptr;
4844         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4845           return error("Invalid record");
4846         if (OpNum != Record.size())
4847           return error("Invalid record");
4848 
4849         I = ReturnInst::Create(Context, Op);
4850         InstructionList.push_back(I);
4851         break;
4852       }
4853     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4854       if (Record.size() != 1 && Record.size() != 3)
4855         return error("Invalid record");
4856       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4857       if (!TrueDest)
4858         return error("Invalid record");
4859 
4860       if (Record.size() == 1) {
4861         I = BranchInst::Create(TrueDest);
4862         InstructionList.push_back(I);
4863       }
4864       else {
4865         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4866         Value *Cond = getValue(Record, 2, NextValueNo,
4867                                Type::getInt1Ty(Context));
4868         if (!FalseDest || !Cond)
4869           return error("Invalid record");
4870         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4871         InstructionList.push_back(I);
4872       }
4873       break;
4874     }
4875     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4876       if (Record.size() != 1 && Record.size() != 2)
4877         return error("Invalid record");
4878       unsigned Idx = 0;
4879       Value *CleanupPad =
4880           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4881       if (!CleanupPad)
4882         return error("Invalid record");
4883       BasicBlock *UnwindDest = nullptr;
4884       if (Record.size() == 2) {
4885         UnwindDest = getBasicBlock(Record[Idx++]);
4886         if (!UnwindDest)
4887           return error("Invalid record");
4888       }
4889 
4890       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4891       InstructionList.push_back(I);
4892       break;
4893     }
4894     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4895       if (Record.size() != 2)
4896         return error("Invalid record");
4897       unsigned Idx = 0;
4898       Value *CatchPad =
4899           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4900       if (!CatchPad)
4901         return error("Invalid record");
4902       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4903       if (!BB)
4904         return error("Invalid record");
4905 
4906       I = CatchReturnInst::Create(CatchPad, BB);
4907       InstructionList.push_back(I);
4908       break;
4909     }
4910     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4911       // We must have, at minimum, the outer scope and the number of arguments.
4912       if (Record.size() < 2)
4913         return error("Invalid record");
4914 
4915       unsigned Idx = 0;
4916 
4917       Value *ParentPad =
4918           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4919 
4920       unsigned NumHandlers = Record[Idx++];
4921 
4922       SmallVector<BasicBlock *, 2> Handlers;
4923       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4924         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4925         if (!BB)
4926           return error("Invalid record");
4927         Handlers.push_back(BB);
4928       }
4929 
4930       BasicBlock *UnwindDest = nullptr;
4931       if (Idx + 1 == Record.size()) {
4932         UnwindDest = getBasicBlock(Record[Idx++]);
4933         if (!UnwindDest)
4934           return error("Invalid record");
4935       }
4936 
4937       if (Record.size() != Idx)
4938         return error("Invalid record");
4939 
4940       auto *CatchSwitch =
4941           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4942       for (BasicBlock *Handler : Handlers)
4943         CatchSwitch->addHandler(Handler);
4944       I = CatchSwitch;
4945       InstructionList.push_back(I);
4946       break;
4947     }
4948     case bitc::FUNC_CODE_INST_CATCHPAD:
4949     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4950       // We must have, at minimum, the outer scope and the number of arguments.
4951       if (Record.size() < 2)
4952         return error("Invalid record");
4953 
4954       unsigned Idx = 0;
4955 
4956       Value *ParentPad =
4957           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4958 
4959       unsigned NumArgOperands = Record[Idx++];
4960 
4961       SmallVector<Value *, 2> Args;
4962       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4963         Value *Val;
4964         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4965           return error("Invalid record");
4966         Args.push_back(Val);
4967       }
4968 
4969       if (Record.size() != Idx)
4970         return error("Invalid record");
4971 
4972       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4973         I = CleanupPadInst::Create(ParentPad, Args);
4974       else
4975         I = CatchPadInst::Create(ParentPad, Args);
4976       InstructionList.push_back(I);
4977       break;
4978     }
4979     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4980       // Check magic
4981       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4982         // "New" SwitchInst format with case ranges. The changes to write this
4983         // format were reverted but we still recognize bitcode that uses it.
4984         // Hopefully someday we will have support for case ranges and can use
4985         // this format again.
4986 
4987         Type *OpTy = getTypeByID(Record[1]);
4988         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4989 
4990         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4991         BasicBlock *Default = getBasicBlock(Record[3]);
4992         if (!OpTy || !Cond || !Default)
4993           return error("Invalid record");
4994 
4995         unsigned NumCases = Record[4];
4996 
4997         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4998         InstructionList.push_back(SI);
4999 
5000         unsigned CurIdx = 5;
5001         for (unsigned i = 0; i != NumCases; ++i) {
5002           SmallVector<ConstantInt*, 1> CaseVals;
5003           unsigned NumItems = Record[CurIdx++];
5004           for (unsigned ci = 0; ci != NumItems; ++ci) {
5005             bool isSingleNumber = Record[CurIdx++];
5006 
5007             APInt Low;
5008             unsigned ActiveWords = 1;
5009             if (ValueBitWidth > 64)
5010               ActiveWords = Record[CurIdx++];
5011             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5012                                 ValueBitWidth);
5013             CurIdx += ActiveWords;
5014 
5015             if (!isSingleNumber) {
5016               ActiveWords = 1;
5017               if (ValueBitWidth > 64)
5018                 ActiveWords = Record[CurIdx++];
5019               APInt High = readWideAPInt(
5020                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5021               CurIdx += ActiveWords;
5022 
5023               // FIXME: It is not clear whether values in the range should be
5024               // compared as signed or unsigned values. The partially
5025               // implemented changes that used this format in the past used
5026               // unsigned comparisons.
5027               for ( ; Low.ule(High); ++Low)
5028                 CaseVals.push_back(ConstantInt::get(Context, Low));
5029             } else
5030               CaseVals.push_back(ConstantInt::get(Context, Low));
5031           }
5032           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5033           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5034                  cve = CaseVals.end(); cvi != cve; ++cvi)
5035             SI->addCase(*cvi, DestBB);
5036         }
5037         I = SI;
5038         break;
5039       }
5040 
5041       // Old SwitchInst format without case ranges.
5042 
5043       if (Record.size() < 3 || (Record.size() & 1) == 0)
5044         return error("Invalid record");
5045       Type *OpTy = getTypeByID(Record[0]);
5046       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5047       BasicBlock *Default = getBasicBlock(Record[2]);
5048       if (!OpTy || !Cond || !Default)
5049         return error("Invalid record");
5050       unsigned NumCases = (Record.size()-3)/2;
5051       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5052       InstructionList.push_back(SI);
5053       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5054         ConstantInt *CaseVal =
5055           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5056         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5057         if (!CaseVal || !DestBB) {
5058           delete SI;
5059           return error("Invalid record");
5060         }
5061         SI->addCase(CaseVal, DestBB);
5062       }
5063       I = SI;
5064       break;
5065     }
5066     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5067       if (Record.size() < 2)
5068         return error("Invalid record");
5069       Type *OpTy = getTypeByID(Record[0]);
5070       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5071       if (!OpTy || !Address)
5072         return error("Invalid record");
5073       unsigned NumDests = Record.size()-2;
5074       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5075       InstructionList.push_back(IBI);
5076       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5077         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5078           IBI->addDestination(DestBB);
5079         } else {
5080           delete IBI;
5081           return error("Invalid record");
5082         }
5083       }
5084       I = IBI;
5085       break;
5086     }
5087 
5088     case bitc::FUNC_CODE_INST_INVOKE: {
5089       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5090       if (Record.size() < 4)
5091         return error("Invalid record");
5092       unsigned OpNum = 0;
5093       AttributeSet PAL = getAttributes(Record[OpNum++]);
5094       unsigned CCInfo = Record[OpNum++];
5095       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5096       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5097 
5098       FunctionType *FTy = nullptr;
5099       if (CCInfo >> 13 & 1 &&
5100           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5101         return error("Explicit invoke type is not a function type");
5102 
5103       Value *Callee;
5104       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5105         return error("Invalid record");
5106 
5107       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5108       if (!CalleeTy)
5109         return error("Callee is not a pointer");
5110       if (!FTy) {
5111         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5112         if (!FTy)
5113           return error("Callee is not of pointer to function type");
5114       } else if (CalleeTy->getElementType() != FTy)
5115         return error("Explicit invoke type does not match pointee type of "
5116                      "callee operand");
5117       if (Record.size() < FTy->getNumParams() + OpNum)
5118         return error("Insufficient operands to call");
5119 
5120       SmallVector<Value*, 16> Ops;
5121       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5122         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5123                                FTy->getParamType(i)));
5124         if (!Ops.back())
5125           return error("Invalid record");
5126       }
5127 
5128       if (!FTy->isVarArg()) {
5129         if (Record.size() != OpNum)
5130           return error("Invalid record");
5131       } else {
5132         // Read type/value pairs for varargs params.
5133         while (OpNum != Record.size()) {
5134           Value *Op;
5135           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5136             return error("Invalid record");
5137           Ops.push_back(Op);
5138         }
5139       }
5140 
5141       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5142       OperandBundles.clear();
5143       InstructionList.push_back(I);
5144       cast<InvokeInst>(I)->setCallingConv(
5145           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5146       cast<InvokeInst>(I)->setAttributes(PAL);
5147       break;
5148     }
5149     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5150       unsigned Idx = 0;
5151       Value *Val = nullptr;
5152       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5153         return error("Invalid record");
5154       I = ResumeInst::Create(Val);
5155       InstructionList.push_back(I);
5156       break;
5157     }
5158     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5159       I = new UnreachableInst(Context);
5160       InstructionList.push_back(I);
5161       break;
5162     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5163       if (Record.size() < 1 || ((Record.size()-1)&1))
5164         return error("Invalid record");
5165       Type *Ty = getTypeByID(Record[0]);
5166       if (!Ty)
5167         return error("Invalid record");
5168 
5169       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5170       InstructionList.push_back(PN);
5171 
5172       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5173         Value *V;
5174         // With the new function encoding, it is possible that operands have
5175         // negative IDs (for forward references).  Use a signed VBR
5176         // representation to keep the encoding small.
5177         if (UseRelativeIDs)
5178           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5179         else
5180           V = getValue(Record, 1+i, NextValueNo, Ty);
5181         BasicBlock *BB = getBasicBlock(Record[2+i]);
5182         if (!V || !BB)
5183           return error("Invalid record");
5184         PN->addIncoming(V, BB);
5185       }
5186       I = PN;
5187       break;
5188     }
5189 
5190     case bitc::FUNC_CODE_INST_LANDINGPAD:
5191     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5192       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5193       unsigned Idx = 0;
5194       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5195         if (Record.size() < 3)
5196           return error("Invalid record");
5197       } else {
5198         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5199         if (Record.size() < 4)
5200           return error("Invalid record");
5201       }
5202       Type *Ty = getTypeByID(Record[Idx++]);
5203       if (!Ty)
5204         return error("Invalid record");
5205       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5206         Value *PersFn = nullptr;
5207         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5208           return error("Invalid record");
5209 
5210         if (!F->hasPersonalityFn())
5211           F->setPersonalityFn(cast<Constant>(PersFn));
5212         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5213           return error("Personality function mismatch");
5214       }
5215 
5216       bool IsCleanup = !!Record[Idx++];
5217       unsigned NumClauses = Record[Idx++];
5218       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5219       LP->setCleanup(IsCleanup);
5220       for (unsigned J = 0; J != NumClauses; ++J) {
5221         LandingPadInst::ClauseType CT =
5222           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5223         Value *Val;
5224 
5225         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5226           delete LP;
5227           return error("Invalid record");
5228         }
5229 
5230         assert((CT != LandingPadInst::Catch ||
5231                 !isa<ArrayType>(Val->getType())) &&
5232                "Catch clause has a invalid type!");
5233         assert((CT != LandingPadInst::Filter ||
5234                 isa<ArrayType>(Val->getType())) &&
5235                "Filter clause has invalid type!");
5236         LP->addClause(cast<Constant>(Val));
5237       }
5238 
5239       I = LP;
5240       InstructionList.push_back(I);
5241       break;
5242     }
5243 
5244     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5245       if (Record.size() != 4)
5246         return error("Invalid record");
5247       uint64_t AlignRecord = Record[3];
5248       const uint64_t InAllocaMask = uint64_t(1) << 5;
5249       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5250       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5251       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5252                                 SwiftErrorMask;
5253       bool InAlloca = AlignRecord & InAllocaMask;
5254       bool SwiftError = AlignRecord & SwiftErrorMask;
5255       Type *Ty = getTypeByID(Record[0]);
5256       if ((AlignRecord & ExplicitTypeMask) == 0) {
5257         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5258         if (!PTy)
5259           return error("Old-style alloca with a non-pointer type");
5260         Ty = PTy->getElementType();
5261       }
5262       Type *OpTy = getTypeByID(Record[1]);
5263       Value *Size = getFnValueByID(Record[2], OpTy);
5264       unsigned Align;
5265       if (std::error_code EC =
5266               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5267         return EC;
5268       }
5269       if (!Ty || !Size)
5270         return error("Invalid record");
5271       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5272       AI->setUsedWithInAlloca(InAlloca);
5273       AI->setSwiftError(SwiftError);
5274       I = AI;
5275       InstructionList.push_back(I);
5276       break;
5277     }
5278     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5279       unsigned OpNum = 0;
5280       Value *Op;
5281       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5282           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5283         return error("Invalid record");
5284 
5285       Type *Ty = nullptr;
5286       if (OpNum + 3 == Record.size())
5287         Ty = getTypeByID(Record[OpNum++]);
5288       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5289         return EC;
5290       if (!Ty)
5291         Ty = cast<PointerType>(Op->getType())->getElementType();
5292 
5293       unsigned Align;
5294       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5295         return EC;
5296       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5297 
5298       InstructionList.push_back(I);
5299       break;
5300     }
5301     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5302        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5303       unsigned OpNum = 0;
5304       Value *Op;
5305       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5306           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5307         return error("Invalid record");
5308 
5309       Type *Ty = nullptr;
5310       if (OpNum + 5 == Record.size())
5311         Ty = getTypeByID(Record[OpNum++]);
5312       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5313         return EC;
5314       if (!Ty)
5315         Ty = cast<PointerType>(Op->getType())->getElementType();
5316 
5317       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5318       if (Ordering == AtomicOrdering::NotAtomic ||
5319           Ordering == AtomicOrdering::Release ||
5320           Ordering == AtomicOrdering::AcquireRelease)
5321         return error("Invalid record");
5322       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5323         return error("Invalid record");
5324       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5325 
5326       unsigned Align;
5327       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5328         return EC;
5329       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5330 
5331       InstructionList.push_back(I);
5332       break;
5333     }
5334     case bitc::FUNC_CODE_INST_STORE:
5335     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5336       unsigned OpNum = 0;
5337       Value *Val, *Ptr;
5338       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5339           (BitCode == bitc::FUNC_CODE_INST_STORE
5340                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5341                : popValue(Record, OpNum, NextValueNo,
5342                           cast<PointerType>(Ptr->getType())->getElementType(),
5343                           Val)) ||
5344           OpNum + 2 != Record.size())
5345         return error("Invalid record");
5346 
5347       if (std::error_code EC =
5348               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5349         return EC;
5350       unsigned Align;
5351       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5352         return EC;
5353       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5354       InstructionList.push_back(I);
5355       break;
5356     }
5357     case bitc::FUNC_CODE_INST_STOREATOMIC:
5358     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5359       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5360       unsigned OpNum = 0;
5361       Value *Val, *Ptr;
5362       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5363           !isa<PointerType>(Ptr->getType()) ||
5364           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5365                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5366                : popValue(Record, OpNum, NextValueNo,
5367                           cast<PointerType>(Ptr->getType())->getElementType(),
5368                           Val)) ||
5369           OpNum + 4 != Record.size())
5370         return error("Invalid record");
5371 
5372       if (std::error_code EC =
5373               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5374         return EC;
5375       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5376       if (Ordering == AtomicOrdering::NotAtomic ||
5377           Ordering == AtomicOrdering::Acquire ||
5378           Ordering == AtomicOrdering::AcquireRelease)
5379         return error("Invalid record");
5380       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5381       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5382         return error("Invalid record");
5383 
5384       unsigned Align;
5385       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5386         return EC;
5387       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5388       InstructionList.push_back(I);
5389       break;
5390     }
5391     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5392     case bitc::FUNC_CODE_INST_CMPXCHG: {
5393       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5394       //          failureordering?, isweak?]
5395       unsigned OpNum = 0;
5396       Value *Ptr, *Cmp, *New;
5397       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5398           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5399                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5400                : popValue(Record, OpNum, NextValueNo,
5401                           cast<PointerType>(Ptr->getType())->getElementType(),
5402                           Cmp)) ||
5403           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5404           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5405         return error("Invalid record");
5406       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5407       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5408           SuccessOrdering == AtomicOrdering::Unordered)
5409         return error("Invalid record");
5410       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5411 
5412       if (std::error_code EC =
5413               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5414         return EC;
5415       AtomicOrdering FailureOrdering;
5416       if (Record.size() < 7)
5417         FailureOrdering =
5418             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5419       else
5420         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5421 
5422       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5423                                 SynchScope);
5424       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5425 
5426       if (Record.size() < 8) {
5427         // Before weak cmpxchgs existed, the instruction simply returned the
5428         // value loaded from memory, so bitcode files from that era will be
5429         // expecting the first component of a modern cmpxchg.
5430         CurBB->getInstList().push_back(I);
5431         I = ExtractValueInst::Create(I, 0);
5432       } else {
5433         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5434       }
5435 
5436       InstructionList.push_back(I);
5437       break;
5438     }
5439     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5440       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5441       unsigned OpNum = 0;
5442       Value *Ptr, *Val;
5443       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5444           !isa<PointerType>(Ptr->getType()) ||
5445           popValue(Record, OpNum, NextValueNo,
5446                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5447           OpNum+4 != Record.size())
5448         return error("Invalid record");
5449       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5450       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5451           Operation > AtomicRMWInst::LAST_BINOP)
5452         return error("Invalid record");
5453       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5454       if (Ordering == AtomicOrdering::NotAtomic ||
5455           Ordering == AtomicOrdering::Unordered)
5456         return error("Invalid record");
5457       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5458       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5459       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5460       InstructionList.push_back(I);
5461       break;
5462     }
5463     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5464       if (2 != Record.size())
5465         return error("Invalid record");
5466       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5467       if (Ordering == AtomicOrdering::NotAtomic ||
5468           Ordering == AtomicOrdering::Unordered ||
5469           Ordering == AtomicOrdering::Monotonic)
5470         return error("Invalid record");
5471       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5472       I = new FenceInst(Context, Ordering, SynchScope);
5473       InstructionList.push_back(I);
5474       break;
5475     }
5476     case bitc::FUNC_CODE_INST_CALL: {
5477       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5478       if (Record.size() < 3)
5479         return error("Invalid record");
5480 
5481       unsigned OpNum = 0;
5482       AttributeSet PAL = getAttributes(Record[OpNum++]);
5483       unsigned CCInfo = Record[OpNum++];
5484 
5485       FastMathFlags FMF;
5486       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5487         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5488         if (!FMF.any())
5489           return error("Fast math flags indicator set for call with no FMF");
5490       }
5491 
5492       FunctionType *FTy = nullptr;
5493       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5494           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5495         return error("Explicit call type is not a function type");
5496 
5497       Value *Callee;
5498       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5499         return error("Invalid record");
5500 
5501       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5502       if (!OpTy)
5503         return error("Callee is not a pointer type");
5504       if (!FTy) {
5505         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5506         if (!FTy)
5507           return error("Callee is not of pointer to function type");
5508       } else if (OpTy->getElementType() != FTy)
5509         return error("Explicit call type does not match pointee type of "
5510                      "callee operand");
5511       if (Record.size() < FTy->getNumParams() + OpNum)
5512         return error("Insufficient operands to call");
5513 
5514       SmallVector<Value*, 16> Args;
5515       // Read the fixed params.
5516       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5517         if (FTy->getParamType(i)->isLabelTy())
5518           Args.push_back(getBasicBlock(Record[OpNum]));
5519         else
5520           Args.push_back(getValue(Record, OpNum, NextValueNo,
5521                                   FTy->getParamType(i)));
5522         if (!Args.back())
5523           return error("Invalid record");
5524       }
5525 
5526       // Read type/value pairs for varargs params.
5527       if (!FTy->isVarArg()) {
5528         if (OpNum != Record.size())
5529           return error("Invalid record");
5530       } else {
5531         while (OpNum != Record.size()) {
5532           Value *Op;
5533           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5534             return error("Invalid record");
5535           Args.push_back(Op);
5536         }
5537       }
5538 
5539       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5540       OperandBundles.clear();
5541       InstructionList.push_back(I);
5542       cast<CallInst>(I)->setCallingConv(
5543           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5544       CallInst::TailCallKind TCK = CallInst::TCK_None;
5545       if (CCInfo & 1 << bitc::CALL_TAIL)
5546         TCK = CallInst::TCK_Tail;
5547       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5548         TCK = CallInst::TCK_MustTail;
5549       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5550         TCK = CallInst::TCK_NoTail;
5551       cast<CallInst>(I)->setTailCallKind(TCK);
5552       cast<CallInst>(I)->setAttributes(PAL);
5553       if (FMF.any()) {
5554         if (!isa<FPMathOperator>(I))
5555           return error("Fast-math-flags specified for call without "
5556                        "floating-point scalar or vector return type");
5557         I->setFastMathFlags(FMF);
5558       }
5559       break;
5560     }
5561     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5562       if (Record.size() < 3)
5563         return error("Invalid record");
5564       Type *OpTy = getTypeByID(Record[0]);
5565       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5566       Type *ResTy = getTypeByID(Record[2]);
5567       if (!OpTy || !Op || !ResTy)
5568         return error("Invalid record");
5569       I = new VAArgInst(Op, ResTy);
5570       InstructionList.push_back(I);
5571       break;
5572     }
5573 
5574     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5575       // A call or an invoke can be optionally prefixed with some variable
5576       // number of operand bundle blocks.  These blocks are read into
5577       // OperandBundles and consumed at the next call or invoke instruction.
5578 
5579       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5580         return error("Invalid record");
5581 
5582       std::vector<Value *> Inputs;
5583 
5584       unsigned OpNum = 1;
5585       while (OpNum != Record.size()) {
5586         Value *Op;
5587         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5588           return error("Invalid record");
5589         Inputs.push_back(Op);
5590       }
5591 
5592       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5593       continue;
5594     }
5595     }
5596 
5597     // Add instruction to end of current BB.  If there is no current BB, reject
5598     // this file.
5599     if (!CurBB) {
5600       delete I;
5601       return error("Invalid instruction with no BB");
5602     }
5603     if (!OperandBundles.empty()) {
5604       delete I;
5605       return error("Operand bundles found with no consumer");
5606     }
5607     CurBB->getInstList().push_back(I);
5608 
5609     // If this was a terminator instruction, move to the next block.
5610     if (isa<TerminatorInst>(I)) {
5611       ++CurBBNo;
5612       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5613     }
5614 
5615     // Non-void values get registered in the value table for future use.
5616     if (I && !I->getType()->isVoidTy())
5617       ValueList.assignValue(I, NextValueNo++);
5618   }
5619 
5620 OutOfRecordLoop:
5621 
5622   if (!OperandBundles.empty())
5623     return error("Operand bundles found with no consumer");
5624 
5625   // Check the function list for unresolved values.
5626   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5627     if (!A->getParent()) {
5628       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5629       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5630         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5631           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5632           delete A;
5633         }
5634       }
5635       return error("Never resolved value found in function");
5636     }
5637   }
5638 
5639   // Unexpected unresolved metadata about to be dropped.
5640   if (MetadataList.hasFwdRefs())
5641     return error("Invalid function metadata: outgoing forward refs");
5642 
5643   // Trim the value list down to the size it was before we parsed this function.
5644   ValueList.shrinkTo(ModuleValueListSize);
5645   MetadataList.shrinkTo(ModuleMetadataListSize);
5646   std::vector<BasicBlock*>().swap(FunctionBBs);
5647   return std::error_code();
5648 }
5649 
5650 /// Find the function body in the bitcode stream
5651 std::error_code BitcodeReader::findFunctionInStream(
5652     Function *F,
5653     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5654   while (DeferredFunctionInfoIterator->second == 0) {
5655     // This is the fallback handling for the old format bitcode that
5656     // didn't contain the function index in the VST, or when we have
5657     // an anonymous function which would not have a VST entry.
5658     // Assert that we have one of those two cases.
5659     assert(VSTOffset == 0 || !F->hasName());
5660     // Parse the next body in the stream and set its position in the
5661     // DeferredFunctionInfo map.
5662     if (std::error_code EC = rememberAndSkipFunctionBodies())
5663       return EC;
5664   }
5665   return std::error_code();
5666 }
5667 
5668 //===----------------------------------------------------------------------===//
5669 // GVMaterializer implementation
5670 //===----------------------------------------------------------------------===//
5671 
5672 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5673 
5674 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5675   Function *F = dyn_cast<Function>(GV);
5676   // If it's not a function or is already material, ignore the request.
5677   if (!F || !F->isMaterializable())
5678     return std::error_code();
5679 
5680   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5681   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5682   // If its position is recorded as 0, its body is somewhere in the stream
5683   // but we haven't seen it yet.
5684   if (DFII->second == 0)
5685     if (std::error_code EC = findFunctionInStream(F, DFII))
5686       return EC;
5687 
5688   // Materialize metadata before parsing any function bodies.
5689   if (std::error_code EC = materializeMetadata())
5690     return EC;
5691 
5692   // Move the bit stream to the saved position of the deferred function body.
5693   Stream.JumpToBit(DFII->second);
5694 
5695   if (std::error_code EC = parseFunctionBody(F))
5696     return EC;
5697   F->setIsMaterializable(false);
5698 
5699   if (StripDebugInfo)
5700     stripDebugInfo(*F);
5701 
5702   // Upgrade any old intrinsic calls in the function.
5703   for (auto &I : UpgradedIntrinsics) {
5704     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5705          UI != UE;) {
5706       User *U = *UI;
5707       ++UI;
5708       if (CallInst *CI = dyn_cast<CallInst>(U))
5709         UpgradeIntrinsicCall(CI, I.second);
5710     }
5711   }
5712 
5713   // Update calls to the remangled intrinsics
5714   for (auto &I : RemangledIntrinsics)
5715     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5716          UI != UE;)
5717       // Don't expect any other users than call sites
5718       CallSite(*UI++).setCalledFunction(I.second);
5719 
5720   // Finish fn->subprogram upgrade for materialized functions.
5721   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5722     F->setSubprogram(SP);
5723 
5724   // Bring in any functions that this function forward-referenced via
5725   // blockaddresses.
5726   return materializeForwardReferencedFunctions();
5727 }
5728 
5729 std::error_code BitcodeReader::materializeModule() {
5730   if (std::error_code EC = materializeMetadata())
5731     return EC;
5732 
5733   // Promise to materialize all forward references.
5734   WillMaterializeAllForwardRefs = true;
5735 
5736   // Iterate over the module, deserializing any functions that are still on
5737   // disk.
5738   for (Function &F : *TheModule) {
5739     if (std::error_code EC = materialize(&F))
5740       return EC;
5741   }
5742   // At this point, if there are any function bodies, parse the rest of
5743   // the bits in the module past the last function block we have recorded
5744   // through either lazy scanning or the VST.
5745   if (LastFunctionBlockBit || NextUnreadBit)
5746     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5747                                                      : NextUnreadBit);
5748 
5749   // Check that all block address forward references got resolved (as we
5750   // promised above).
5751   if (!BasicBlockFwdRefs.empty())
5752     return error("Never resolved function from blockaddress");
5753 
5754   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5755   // to prevent this instructions with TBAA tags should be upgraded first.
5756   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5757     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5758 
5759   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5760   // delete the old functions to clean up. We can't do this unless the entire
5761   // module is materialized because there could always be another function body
5762   // with calls to the old function.
5763   for (auto &I : UpgradedIntrinsics) {
5764     for (auto *U : I.first->users()) {
5765       if (CallInst *CI = dyn_cast<CallInst>(U))
5766         UpgradeIntrinsicCall(CI, I.second);
5767     }
5768     if (!I.first->use_empty())
5769       I.first->replaceAllUsesWith(I.second);
5770     I.first->eraseFromParent();
5771   }
5772   UpgradedIntrinsics.clear();
5773   // Do the same for remangled intrinsics
5774   for (auto &I : RemangledIntrinsics) {
5775     I.first->replaceAllUsesWith(I.second);
5776     I.first->eraseFromParent();
5777   }
5778   RemangledIntrinsics.clear();
5779 
5780   UpgradeDebugInfo(*TheModule);
5781 
5782   UpgradeModuleFlags(*TheModule);
5783   return std::error_code();
5784 }
5785 
5786 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5787   return IdentifiedStructTypes;
5788 }
5789 
5790 std::error_code
5791 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5792   if (Streamer)
5793     return initLazyStream(std::move(Streamer));
5794   return initStreamFromBuffer();
5795 }
5796 
5797 std::error_code BitcodeReader::initStreamFromBuffer() {
5798   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5799   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5800 
5801   if (Buffer->getBufferSize() & 3)
5802     return error("Invalid bitcode signature");
5803 
5804   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5805   // The magic number is 0x0B17C0DE stored in little endian.
5806   if (isBitcodeWrapper(BufPtr, BufEnd))
5807     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5808       return error("Invalid bitcode wrapper header");
5809 
5810   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5811   Stream.init(&*StreamFile);
5812 
5813   return std::error_code();
5814 }
5815 
5816 std::error_code
5817 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5818   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5819   // see it.
5820   auto OwnedBytes =
5821       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5822   StreamingMemoryObject &Bytes = *OwnedBytes;
5823   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5824   Stream.init(&*StreamFile);
5825 
5826   unsigned char buf[16];
5827   if (Bytes.readBytes(buf, 16, 0) != 16)
5828     return error("Invalid bitcode signature");
5829 
5830   if (!isBitcode(buf, buf + 16))
5831     return error("Invalid bitcode signature");
5832 
5833   if (isBitcodeWrapper(buf, buf + 4)) {
5834     const unsigned char *bitcodeStart = buf;
5835     const unsigned char *bitcodeEnd = buf + 16;
5836     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5837     Bytes.dropLeadingBytes(bitcodeStart - buf);
5838     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5839   }
5840   return std::error_code();
5841 }
5842 
5843 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5844   return ::error(DiagnosticHandler,
5845                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5846 }
5847 
5848 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5849     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5850     bool CheckGlobalValSummaryPresenceOnly)
5851     : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer),
5852       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5853 
5854 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5855 
5856 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5857 
5858 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5859 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5860   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5861   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5862   return VGI->second;
5863 }
5864 
5865 // Specialized value symbol table parser used when reading module index
5866 // blocks where we don't actually create global values. The parsed information
5867 // is saved in the bitcode reader for use when later parsing summaries.
5868 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5869     uint64_t Offset,
5870     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5871   assert(Offset > 0 && "Expected non-zero VST offset");
5872   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5873 
5874   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5875     return error("Invalid record");
5876 
5877   SmallVector<uint64_t, 64> Record;
5878 
5879   // Read all the records for this value table.
5880   SmallString<128> ValueName;
5881   while (1) {
5882     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5883 
5884     switch (Entry.Kind) {
5885     case BitstreamEntry::SubBlock: // Handled for us already.
5886     case BitstreamEntry::Error:
5887       return error("Malformed block");
5888     case BitstreamEntry::EndBlock:
5889       // Done parsing VST, jump back to wherever we came from.
5890       Stream.JumpToBit(CurrentBit);
5891       return std::error_code();
5892     case BitstreamEntry::Record:
5893       // The interesting case.
5894       break;
5895     }
5896 
5897     // Read a record.
5898     Record.clear();
5899     switch (Stream.readRecord(Entry.ID, Record)) {
5900     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5901       break;
5902     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5903       if (convertToString(Record, 1, ValueName))
5904         return error("Invalid record");
5905       unsigned ValueID = Record[0];
5906       assert(!SourceFileName.empty());
5907       auto VLI = ValueIdToLinkageMap.find(ValueID);
5908       assert(VLI != ValueIdToLinkageMap.end() &&
5909              "No linkage found for VST entry?");
5910       auto Linkage = VLI->second;
5911       std::string GlobalId =
5912           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5913       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5914       auto OriginalNameID = ValueGUID;
5915       if (GlobalValue::isLocalLinkage(Linkage))
5916         OriginalNameID = GlobalValue::getGUID(ValueName);
5917       if (PrintSummaryGUIDs)
5918         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5919                << ValueName << "\n";
5920       ValueIdToCallGraphGUIDMap[ValueID] =
5921           std::make_pair(ValueGUID, OriginalNameID);
5922       ValueName.clear();
5923       break;
5924     }
5925     case bitc::VST_CODE_FNENTRY: {
5926       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5927       if (convertToString(Record, 2, ValueName))
5928         return error("Invalid record");
5929       unsigned ValueID = Record[0];
5930       assert(!SourceFileName.empty());
5931       auto VLI = ValueIdToLinkageMap.find(ValueID);
5932       assert(VLI != ValueIdToLinkageMap.end() &&
5933              "No linkage found for VST entry?");
5934       auto Linkage = VLI->second;
5935       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5936           ValueName, VLI->second, SourceFileName);
5937       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5938       auto OriginalNameID = FunctionGUID;
5939       if (GlobalValue::isLocalLinkage(Linkage))
5940         OriginalNameID = GlobalValue::getGUID(ValueName);
5941       if (PrintSummaryGUIDs)
5942         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5943                << ValueName << "\n";
5944       ValueIdToCallGraphGUIDMap[ValueID] =
5945           std::make_pair(FunctionGUID, OriginalNameID);
5946 
5947       ValueName.clear();
5948       break;
5949     }
5950     case bitc::VST_CODE_COMBINED_ENTRY: {
5951       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5952       unsigned ValueID = Record[0];
5953       GlobalValue::GUID RefGUID = Record[1];
5954       // The "original name", which is the second value of the pair will be
5955       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5956       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5957       break;
5958     }
5959     }
5960   }
5961 }
5962 
5963 // Parse just the blocks needed for building the index out of the module.
5964 // At the end of this routine the module Index is populated with a map
5965 // from global value id to GlobalValueSummary objects.
5966 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5967   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5968     return error("Invalid record");
5969 
5970   SmallVector<uint64_t, 64> Record;
5971   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5972   unsigned ValueId = 0;
5973 
5974   // Read the index for this module.
5975   while (1) {
5976     BitstreamEntry Entry = Stream.advance();
5977 
5978     switch (Entry.Kind) {
5979     case BitstreamEntry::Error:
5980       return error("Malformed block");
5981     case BitstreamEntry::EndBlock:
5982       return std::error_code();
5983 
5984     case BitstreamEntry::SubBlock:
5985       if (CheckGlobalValSummaryPresenceOnly) {
5986         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5987           SeenGlobalValSummary = true;
5988           // No need to parse the rest since we found the summary.
5989           return std::error_code();
5990         }
5991         if (Stream.SkipBlock())
5992           return error("Invalid record");
5993         continue;
5994       }
5995       switch (Entry.ID) {
5996       default: // Skip unknown content.
5997         if (Stream.SkipBlock())
5998           return error("Invalid record");
5999         break;
6000       case bitc::BLOCKINFO_BLOCK_ID:
6001         // Need to parse these to get abbrev ids (e.g. for VST)
6002         if (Stream.ReadBlockInfoBlock())
6003           return error("Malformed block");
6004         break;
6005       case bitc::VALUE_SYMTAB_BLOCK_ID:
6006         // Should have been parsed earlier via VSTOffset, unless there
6007         // is no summary section.
6008         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6009                 !SeenGlobalValSummary) &&
6010                "Expected early VST parse via VSTOffset record");
6011         if (Stream.SkipBlock())
6012           return error("Invalid record");
6013         break;
6014       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6015         assert(VSTOffset > 0 && "Expected non-zero VST offset");
6016         assert(!SeenValueSymbolTable &&
6017                "Already read VST when parsing summary block?");
6018         if (std::error_code EC =
6019                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6020           return EC;
6021         SeenValueSymbolTable = true;
6022         SeenGlobalValSummary = true;
6023         if (std::error_code EC = parseEntireSummary())
6024           return EC;
6025         break;
6026       case bitc::MODULE_STRTAB_BLOCK_ID:
6027         if (std::error_code EC = parseModuleStringTable())
6028           return EC;
6029         break;
6030       }
6031       continue;
6032 
6033     case BitstreamEntry::Record: {
6034         Record.clear();
6035         auto BitCode = Stream.readRecord(Entry.ID, Record);
6036         switch (BitCode) {
6037         default:
6038           break; // Default behavior, ignore unknown content.
6039         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6040         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6041           SmallString<128> ValueName;
6042           if (convertToString(Record, 0, ValueName))
6043             return error("Invalid record");
6044           SourceFileName = ValueName.c_str();
6045           break;
6046         }
6047         /// MODULE_CODE_HASH: [5*i32]
6048         case bitc::MODULE_CODE_HASH: {
6049           if (Record.size() != 5)
6050             return error("Invalid hash length " + Twine(Record.size()).str());
6051           if (!TheIndex)
6052             break;
6053           if (TheIndex->modulePaths().empty())
6054             // Does not have any summary emitted.
6055             break;
6056           if (TheIndex->modulePaths().size() != 1)
6057             return error("Don't expect multiple modules defined?");
6058           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6059           int Pos = 0;
6060           for (auto &Val : Record) {
6061             assert(!(Val >> 32) && "Unexpected high bits set");
6062             Hash[Pos++] = Val;
6063           }
6064           break;
6065         }
6066         /// MODULE_CODE_VSTOFFSET: [offset]
6067         case bitc::MODULE_CODE_VSTOFFSET:
6068           if (Record.size() < 1)
6069             return error("Invalid record");
6070           VSTOffset = Record[0];
6071           break;
6072         // GLOBALVAR: [pointer type, isconst, initid,
6073         //             linkage, alignment, section, visibility, threadlocal,
6074         //             unnamed_addr, externally_initialized, dllstorageclass,
6075         //             comdat]
6076         case bitc::MODULE_CODE_GLOBALVAR: {
6077           if (Record.size() < 6)
6078             return error("Invalid record");
6079           uint64_t RawLinkage = Record[3];
6080           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6081           ValueIdToLinkageMap[ValueId++] = Linkage;
6082           break;
6083         }
6084         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6085         //             alignment, section, visibility, gc, unnamed_addr,
6086         //             prologuedata, dllstorageclass, comdat, prefixdata]
6087         case bitc::MODULE_CODE_FUNCTION: {
6088           if (Record.size() < 8)
6089             return error("Invalid record");
6090           uint64_t RawLinkage = Record[3];
6091           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6092           ValueIdToLinkageMap[ValueId++] = Linkage;
6093           break;
6094         }
6095         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6096         // dllstorageclass]
6097         case bitc::MODULE_CODE_ALIAS: {
6098           if (Record.size() < 6)
6099             return error("Invalid record");
6100           uint64_t RawLinkage = Record[3];
6101           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6102           ValueIdToLinkageMap[ValueId++] = Linkage;
6103           break;
6104         }
6105         }
6106       }
6107       continue;
6108     }
6109   }
6110 }
6111 
6112 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6113 // objects in the index.
6114 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6115   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6116     return error("Invalid record");
6117   SmallVector<uint64_t, 64> Record;
6118 
6119   // Parse version
6120   {
6121     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6122     if (Entry.Kind != BitstreamEntry::Record)
6123       return error("Invalid Summary Block: record for version expected");
6124     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6125       return error("Invalid Summary Block: version expected");
6126   }
6127   const uint64_t Version = Record[0];
6128   if (Version != 1)
6129     return error("Invalid summary version " + Twine(Version) + ", 1 expected");
6130   Record.clear();
6131 
6132   // Keep around the last seen summary to be used when we see an optional
6133   // "OriginalName" attachement.
6134   GlobalValueSummary *LastSeenSummary = nullptr;
6135   bool Combined = false;
6136   while (1) {
6137     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6138 
6139     switch (Entry.Kind) {
6140     case BitstreamEntry::SubBlock: // Handled for us already.
6141     case BitstreamEntry::Error:
6142       return error("Malformed block");
6143     case BitstreamEntry::EndBlock:
6144       // For a per-module index, remove any entries that still have empty
6145       // summaries. The VST parsing creates entries eagerly for all symbols,
6146       // but not all have associated summaries (e.g. it doesn't know how to
6147       // distinguish between VST_CODE_ENTRY for function declarations vs global
6148       // variables with initializers that end up with a summary). Remove those
6149       // entries now so that we don't need to rely on the combined index merger
6150       // to clean them up (especially since that may not run for the first
6151       // module's index if we merge into that).
6152       if (!Combined)
6153         TheIndex->removeEmptySummaryEntries();
6154       return std::error_code();
6155     case BitstreamEntry::Record:
6156       // The interesting case.
6157       break;
6158     }
6159 
6160     // Read a record. The record format depends on whether this
6161     // is a per-module index or a combined index file. In the per-module
6162     // case the records contain the associated value's ID for correlation
6163     // with VST entries. In the combined index the correlation is done
6164     // via the bitcode offset of the summary records (which were saved
6165     // in the combined index VST entries). The records also contain
6166     // information used for ThinLTO renaming and importing.
6167     Record.clear();
6168     auto BitCode = Stream.readRecord(Entry.ID, Record);
6169     switch (BitCode) {
6170     default: // Default behavior: ignore.
6171       break;
6172     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6173     //                n x (valueid, callsitecount)]
6174     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6175     //                        numrefs x valueid,
6176     //                        n x (valueid, callsitecount, profilecount)]
6177     case bitc::FS_PERMODULE:
6178     case bitc::FS_PERMODULE_PROFILE: {
6179       unsigned ValueID = Record[0];
6180       uint64_t RawFlags = Record[1];
6181       unsigned InstCount = Record[2];
6182       unsigned NumRefs = Record[3];
6183       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6184       std::unique_ptr<FunctionSummary> FS =
6185           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6186       // The module path string ref set in the summary must be owned by the
6187       // index's module string table. Since we don't have a module path
6188       // string table section in the per-module index, we create a single
6189       // module path string table entry with an empty (0) ID to take
6190       // ownership.
6191       FS->setModulePath(
6192           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6193       static int RefListStartIndex = 4;
6194       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6195       assert(Record.size() >= RefListStartIndex + NumRefs &&
6196              "Record size inconsistent with number of references");
6197       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6198         unsigned RefValueId = Record[I];
6199         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6200         FS->addRefEdge(RefGUID);
6201       }
6202       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6203       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6204            ++I) {
6205         unsigned CalleeValueId = Record[I];
6206         unsigned CallsiteCount = Record[++I];
6207         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6208         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6209         FS->addCallGraphEdge(CalleeGUID,
6210                              CalleeInfo(CallsiteCount, ProfileCount));
6211       }
6212       auto GUID = getGUIDFromValueId(ValueID);
6213       FS->setOriginalName(GUID.second);
6214       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6215       break;
6216     }
6217     // FS_ALIAS: [valueid, flags, valueid]
6218     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6219     // they expect all aliasee summaries to be available.
6220     case bitc::FS_ALIAS: {
6221       unsigned ValueID = Record[0];
6222       uint64_t RawFlags = Record[1];
6223       unsigned AliaseeID = Record[2];
6224       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6225       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6226       // The module path string ref set in the summary must be owned by the
6227       // index's module string table. Since we don't have a module path
6228       // string table section in the per-module index, we create a single
6229       // module path string table entry with an empty (0) ID to take
6230       // ownership.
6231       AS->setModulePath(
6232           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6233 
6234       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6235       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6236       if (!AliaseeSummary)
6237         return error("Alias expects aliasee summary to be parsed");
6238       AS->setAliasee(AliaseeSummary);
6239 
6240       auto GUID = getGUIDFromValueId(ValueID);
6241       AS->setOriginalName(GUID.second);
6242       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6243       break;
6244     }
6245     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6246     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6247       unsigned ValueID = Record[0];
6248       uint64_t RawFlags = Record[1];
6249       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6250       std::unique_ptr<GlobalVarSummary> FS =
6251           llvm::make_unique<GlobalVarSummary>(Flags);
6252       FS->setModulePath(
6253           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6254       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6255         unsigned RefValueId = Record[I];
6256         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6257         FS->addRefEdge(RefGUID);
6258       }
6259       auto GUID = getGUIDFromValueId(ValueID);
6260       FS->setOriginalName(GUID.second);
6261       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6262       break;
6263     }
6264     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6265     //               numrefs x valueid, n x (valueid, callsitecount)]
6266     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6267     //                       numrefs x valueid,
6268     //                       n x (valueid, callsitecount, profilecount)]
6269     case bitc::FS_COMBINED:
6270     case bitc::FS_COMBINED_PROFILE: {
6271       unsigned ValueID = Record[0];
6272       uint64_t ModuleId = Record[1];
6273       uint64_t RawFlags = Record[2];
6274       unsigned InstCount = Record[3];
6275       unsigned NumRefs = Record[4];
6276       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6277       std::unique_ptr<FunctionSummary> FS =
6278           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6279       LastSeenSummary = FS.get();
6280       FS->setModulePath(ModuleIdMap[ModuleId]);
6281       static int RefListStartIndex = 5;
6282       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6283       assert(Record.size() >= RefListStartIndex + NumRefs &&
6284              "Record size inconsistent with number of references");
6285       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6286            ++I) {
6287         unsigned RefValueId = Record[I];
6288         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6289         FS->addRefEdge(RefGUID);
6290       }
6291       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6292       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6293            ++I) {
6294         unsigned CalleeValueId = Record[I];
6295         unsigned CallsiteCount = Record[++I];
6296         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6297         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6298         FS->addCallGraphEdge(CalleeGUID,
6299                              CalleeInfo(CallsiteCount, ProfileCount));
6300       }
6301       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6302       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6303       Combined = true;
6304       break;
6305     }
6306     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6307     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6308     // they expect all aliasee summaries to be available.
6309     case bitc::FS_COMBINED_ALIAS: {
6310       unsigned ValueID = Record[0];
6311       uint64_t ModuleId = Record[1];
6312       uint64_t RawFlags = Record[2];
6313       unsigned AliaseeValueId = Record[3];
6314       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6315       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6316       LastSeenSummary = AS.get();
6317       AS->setModulePath(ModuleIdMap[ModuleId]);
6318 
6319       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6320       auto AliaseeInModule =
6321           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6322       if (!AliaseeInModule)
6323         return error("Alias expects aliasee summary to be parsed");
6324       AS->setAliasee(AliaseeInModule);
6325 
6326       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6327       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6328       Combined = true;
6329       break;
6330     }
6331     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6332     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6333       unsigned ValueID = Record[0];
6334       uint64_t ModuleId = Record[1];
6335       uint64_t RawFlags = Record[2];
6336       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6337       std::unique_ptr<GlobalVarSummary> FS =
6338           llvm::make_unique<GlobalVarSummary>(Flags);
6339       LastSeenSummary = FS.get();
6340       FS->setModulePath(ModuleIdMap[ModuleId]);
6341       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6342         unsigned RefValueId = Record[I];
6343         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6344         FS->addRefEdge(RefGUID);
6345       }
6346       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6347       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6348       Combined = true;
6349       break;
6350     }
6351     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6352     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6353       uint64_t OriginalName = Record[0];
6354       if (!LastSeenSummary)
6355         return error("Name attachment that does not follow a combined record");
6356       LastSeenSummary->setOriginalName(OriginalName);
6357       // Reset the LastSeenSummary
6358       LastSeenSummary = nullptr;
6359     }
6360     }
6361   }
6362   llvm_unreachable("Exit infinite loop");
6363 }
6364 
6365 // Parse the  module string table block into the Index.
6366 // This populates the ModulePathStringTable map in the index.
6367 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6368   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6369     return error("Invalid record");
6370 
6371   SmallVector<uint64_t, 64> Record;
6372 
6373   SmallString<128> ModulePath;
6374   ModulePathStringTableTy::iterator LastSeenModulePath;
6375   while (1) {
6376     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6377 
6378     switch (Entry.Kind) {
6379     case BitstreamEntry::SubBlock: // Handled for us already.
6380     case BitstreamEntry::Error:
6381       return error("Malformed block");
6382     case BitstreamEntry::EndBlock:
6383       return std::error_code();
6384     case BitstreamEntry::Record:
6385       // The interesting case.
6386       break;
6387     }
6388 
6389     Record.clear();
6390     switch (Stream.readRecord(Entry.ID, Record)) {
6391     default: // Default behavior: ignore.
6392       break;
6393     case bitc::MST_CODE_ENTRY: {
6394       // MST_ENTRY: [modid, namechar x N]
6395       uint64_t ModuleId = Record[0];
6396 
6397       if (convertToString(Record, 1, ModulePath))
6398         return error("Invalid record");
6399 
6400       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6401       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6402 
6403       ModulePath.clear();
6404       break;
6405     }
6406     /// MST_CODE_HASH: [5*i32]
6407     case bitc::MST_CODE_HASH: {
6408       if (Record.size() != 5)
6409         return error("Invalid hash length " + Twine(Record.size()).str());
6410       if (LastSeenModulePath == TheIndex->modulePaths().end())
6411         return error("Invalid hash that does not follow a module path");
6412       int Pos = 0;
6413       for (auto &Val : Record) {
6414         assert(!(Val >> 32) && "Unexpected high bits set");
6415         LastSeenModulePath->second.second[Pos++] = Val;
6416       }
6417       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6418       LastSeenModulePath = TheIndex->modulePaths().end();
6419       break;
6420     }
6421     }
6422   }
6423   llvm_unreachable("Exit infinite loop");
6424 }
6425 
6426 // Parse the function info index from the bitcode streamer into the given index.
6427 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6428     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6429   TheIndex = I;
6430 
6431   if (std::error_code EC = initStream(std::move(Streamer)))
6432     return EC;
6433 
6434   // Sniff for the signature.
6435   if (!hasValidBitcodeHeader(Stream))
6436     return error("Invalid bitcode signature");
6437 
6438   // We expect a number of well-defined blocks, though we don't necessarily
6439   // need to understand them all.
6440   while (1) {
6441     if (Stream.AtEndOfStream()) {
6442       // We didn't really read a proper Module block.
6443       return error("Malformed block");
6444     }
6445 
6446     BitstreamEntry Entry =
6447         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6448 
6449     if (Entry.Kind != BitstreamEntry::SubBlock)
6450       return error("Malformed block");
6451 
6452     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6453     // building the function summary index.
6454     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6455       return parseModule();
6456 
6457     if (Stream.SkipBlock())
6458       return error("Invalid record");
6459   }
6460 }
6461 
6462 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6463     std::unique_ptr<DataStreamer> Streamer) {
6464   if (Streamer)
6465     return initLazyStream(std::move(Streamer));
6466   return initStreamFromBuffer();
6467 }
6468 
6469 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6470   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6471   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6472 
6473   if (Buffer->getBufferSize() & 3)
6474     return error("Invalid bitcode signature");
6475 
6476   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6477   // The magic number is 0x0B17C0DE stored in little endian.
6478   if (isBitcodeWrapper(BufPtr, BufEnd))
6479     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6480       return error("Invalid bitcode wrapper header");
6481 
6482   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6483   Stream.init(&*StreamFile);
6484 
6485   return std::error_code();
6486 }
6487 
6488 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6489     std::unique_ptr<DataStreamer> Streamer) {
6490   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6491   // see it.
6492   auto OwnedBytes =
6493       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6494   StreamingMemoryObject &Bytes = *OwnedBytes;
6495   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6496   Stream.init(&*StreamFile);
6497 
6498   unsigned char buf[16];
6499   if (Bytes.readBytes(buf, 16, 0) != 16)
6500     return error("Invalid bitcode signature");
6501 
6502   if (!isBitcode(buf, buf + 16))
6503     return error("Invalid bitcode signature");
6504 
6505   if (isBitcodeWrapper(buf, buf + 4)) {
6506     const unsigned char *bitcodeStart = buf;
6507     const unsigned char *bitcodeEnd = buf + 16;
6508     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6509     Bytes.dropLeadingBytes(bitcodeStart - buf);
6510     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6511   }
6512   return std::error_code();
6513 }
6514 
6515 namespace {
6516 // FIXME: This class is only here to support the transition to llvm::Error. It
6517 // will be removed once this transition is complete. Clients should prefer to
6518 // deal with the Error value directly, rather than converting to error_code.
6519 class BitcodeErrorCategoryType : public std::error_category {
6520   const char *name() const LLVM_NOEXCEPT override {
6521     return "llvm.bitcode";
6522   }
6523   std::string message(int IE) const override {
6524     BitcodeError E = static_cast<BitcodeError>(IE);
6525     switch (E) {
6526     case BitcodeError::InvalidBitcodeSignature:
6527       return "Invalid bitcode signature";
6528     case BitcodeError::CorruptedBitcode:
6529       return "Corrupted bitcode";
6530     }
6531     llvm_unreachable("Unknown error type!");
6532   }
6533 };
6534 } // end anonymous namespace
6535 
6536 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6537 
6538 const std::error_category &llvm::BitcodeErrorCategory() {
6539   return *ErrorCategory;
6540 }
6541 
6542 //===----------------------------------------------------------------------===//
6543 // External interface
6544 //===----------------------------------------------------------------------===//
6545 
6546 static ErrorOr<std::unique_ptr<Module>>
6547 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6548                      BitcodeReader *R, LLVMContext &Context,
6549                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6550   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6551   M->setMaterializer(R);
6552 
6553   auto cleanupOnError = [&](std::error_code EC) {
6554     R->releaseBuffer(); // Never take ownership on error.
6555     return EC;
6556   };
6557 
6558   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6559   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6560                                                ShouldLazyLoadMetadata))
6561     return cleanupOnError(EC);
6562 
6563   if (MaterializeAll) {
6564     // Read in the entire module, and destroy the BitcodeReader.
6565     if (std::error_code EC = M->materializeAll())
6566       return cleanupOnError(EC);
6567   } else {
6568     // Resolve forward references from blockaddresses.
6569     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6570       return cleanupOnError(EC);
6571   }
6572   return std::move(M);
6573 }
6574 
6575 /// \brief Get a lazy one-at-time loading module from bitcode.
6576 ///
6577 /// This isn't always used in a lazy context.  In particular, it's also used by
6578 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6579 /// in forward-referenced functions from block address references.
6580 ///
6581 /// \param[in] MaterializeAll Set to \c true if we should materialize
6582 /// everything.
6583 static ErrorOr<std::unique_ptr<Module>>
6584 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6585                          LLVMContext &Context, bool MaterializeAll,
6586                          bool ShouldLazyLoadMetadata = false) {
6587   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6588 
6589   ErrorOr<std::unique_ptr<Module>> Ret =
6590       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6591                            MaterializeAll, ShouldLazyLoadMetadata);
6592   if (!Ret)
6593     return Ret;
6594 
6595   Buffer.release(); // The BitcodeReader owns it now.
6596   return Ret;
6597 }
6598 
6599 ErrorOr<std::unique_ptr<Module>>
6600 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6601                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6602   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6603                                   ShouldLazyLoadMetadata);
6604 }
6605 
6606 ErrorOr<std::unique_ptr<Module>>
6607 llvm::getStreamedBitcodeModule(StringRef Name,
6608                                std::unique_ptr<DataStreamer> Streamer,
6609                                LLVMContext &Context) {
6610   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6611   BitcodeReader *R = new BitcodeReader(Context);
6612 
6613   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6614                               false);
6615 }
6616 
6617 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6618                                                         LLVMContext &Context) {
6619   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6620   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6621   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6622   // written.  We must defer until the Module has been fully materialized.
6623 }
6624 
6625 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6626                                          LLVMContext &Context) {
6627   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6628   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6629   ErrorOr<std::string> Triple = R->parseTriple();
6630   if (Triple.getError())
6631     return "";
6632   return Triple.get();
6633 }
6634 
6635 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
6636                                            LLVMContext &Context) {
6637   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6638   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6639   ErrorOr<bool> hasObjCCategory = R->hasObjCCategory();
6640   if (hasObjCCategory.getError())
6641     return false;
6642   return hasObjCCategory.get();
6643 }
6644 
6645 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6646                                            LLVMContext &Context) {
6647   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6648   BitcodeReader R(Buf.release(), Context);
6649   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6650   if (ProducerString.getError())
6651     return "";
6652   return ProducerString.get();
6653 }
6654 
6655 // Parse the specified bitcode buffer, returning the function info index.
6656 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6657     MemoryBufferRef Buffer,
6658     const DiagnosticHandlerFunction &DiagnosticHandler) {
6659   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6660   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6661 
6662   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6663 
6664   auto cleanupOnError = [&](std::error_code EC) {
6665     R.releaseBuffer(); // Never take ownership on error.
6666     return EC;
6667   };
6668 
6669   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6670     return cleanupOnError(EC);
6671 
6672   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6673   return std::move(Index);
6674 }
6675 
6676 // Check if the given bitcode buffer contains a global value summary block.
6677 bool llvm::hasGlobalValueSummary(
6678     MemoryBufferRef Buffer,
6679     const DiagnosticHandlerFunction &DiagnosticHandler) {
6680   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6681   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6682 
6683   auto cleanupOnError = [&](std::error_code EC) {
6684     R.releaseBuffer(); // Never take ownership on error.
6685     return false;
6686   };
6687 
6688   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6689     return cleanupOnError(EC);
6690 
6691   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6692   return R.foundGlobalValSummary();
6693 }
6694