1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 delete Buffer; 32 Buffer = 0; 33 std::vector<PATypeHolder>().swap(TypeList); 34 ValueList.clear(); 35 MDValueList.clear(); 36 37 std::vector<AttrListPtr>().swap(MAttributes); 38 std::vector<BasicBlock*>().swap(FunctionBBs); 39 std::vector<Function*>().swap(FunctionsWithBodies); 40 DeferredFunctionInfo.clear(); 41 } 42 43 //===----------------------------------------------------------------------===// 44 // Helper functions to implement forward reference resolution, etc. 45 //===----------------------------------------------------------------------===// 46 47 /// ConvertToString - Convert a string from a record into an std::string, return 48 /// true on failure. 49 template<typename StrTy> 50 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 51 StrTy &Result) { 52 if (Idx > Record.size()) 53 return true; 54 55 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 56 Result += (char)Record[i]; 57 return false; 58 } 59 60 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 61 switch (Val) { 62 default: // Map unknown/new linkages to external 63 case 0: return GlobalValue::ExternalLinkage; 64 case 1: return GlobalValue::WeakAnyLinkage; 65 case 2: return GlobalValue::AppendingLinkage; 66 case 3: return GlobalValue::InternalLinkage; 67 case 4: return GlobalValue::LinkOnceAnyLinkage; 68 case 5: return GlobalValue::DLLImportLinkage; 69 case 6: return GlobalValue::DLLExportLinkage; 70 case 7: return GlobalValue::ExternalWeakLinkage; 71 case 8: return GlobalValue::CommonLinkage; 72 case 9: return GlobalValue::PrivateLinkage; 73 case 10: return GlobalValue::WeakODRLinkage; 74 case 11: return GlobalValue::LinkOnceODRLinkage; 75 case 12: return GlobalValue::AvailableExternallyLinkage; 76 case 13: return GlobalValue::LinkerPrivateLinkage; 77 } 78 } 79 80 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 81 switch (Val) { 82 default: // Map unknown visibilities to default. 83 case 0: return GlobalValue::DefaultVisibility; 84 case 1: return GlobalValue::HiddenVisibility; 85 case 2: return GlobalValue::ProtectedVisibility; 86 } 87 } 88 89 static int GetDecodedCastOpcode(unsigned Val) { 90 switch (Val) { 91 default: return -1; 92 case bitc::CAST_TRUNC : return Instruction::Trunc; 93 case bitc::CAST_ZEXT : return Instruction::ZExt; 94 case bitc::CAST_SEXT : return Instruction::SExt; 95 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 96 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 97 case bitc::CAST_UITOFP : return Instruction::UIToFP; 98 case bitc::CAST_SITOFP : return Instruction::SIToFP; 99 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 100 case bitc::CAST_FPEXT : return Instruction::FPExt; 101 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 102 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 103 case bitc::CAST_BITCAST : return Instruction::BitCast; 104 } 105 } 106 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 107 switch (Val) { 108 default: return -1; 109 case bitc::BINOP_ADD: 110 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 111 case bitc::BINOP_SUB: 112 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 113 case bitc::BINOP_MUL: 114 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 115 case bitc::BINOP_UDIV: return Instruction::UDiv; 116 case bitc::BINOP_SDIV: 117 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 118 case bitc::BINOP_UREM: return Instruction::URem; 119 case bitc::BINOP_SREM: 120 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 121 case bitc::BINOP_SHL: return Instruction::Shl; 122 case bitc::BINOP_LSHR: return Instruction::LShr; 123 case bitc::BINOP_ASHR: return Instruction::AShr; 124 case bitc::BINOP_AND: return Instruction::And; 125 case bitc::BINOP_OR: return Instruction::Or; 126 case bitc::BINOP_XOR: return Instruction::Xor; 127 } 128 } 129 130 namespace llvm { 131 namespace { 132 /// @brief A class for maintaining the slot number definition 133 /// as a placeholder for the actual definition for forward constants defs. 134 class ConstantPlaceHolder : public ConstantExpr { 135 ConstantPlaceHolder(); // DO NOT IMPLEMENT 136 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 137 public: 138 // allocate space for exactly one operand 139 void *operator new(size_t s) { 140 return User::operator new(s, 1); 141 } 142 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 143 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 144 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 145 } 146 147 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 148 static inline bool classof(const ConstantPlaceHolder *) { return true; } 149 static bool classof(const Value *V) { 150 return isa<ConstantExpr>(V) && 151 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 152 } 153 154 155 /// Provide fast operand accessors 156 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 157 }; 158 } 159 160 // FIXME: can we inherit this from ConstantExpr? 161 template <> 162 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 163 }; 164 } 165 166 167 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 168 if (Idx == size()) { 169 push_back(V); 170 return; 171 } 172 173 if (Idx >= size()) 174 resize(Idx+1); 175 176 WeakVH &OldV = ValuePtrs[Idx]; 177 if (OldV == 0) { 178 OldV = V; 179 return; 180 } 181 182 // Handle constants and non-constants (e.g. instrs) differently for 183 // efficiency. 184 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 185 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 186 OldV = V; 187 } else { 188 // If there was a forward reference to this value, replace it. 189 Value *PrevVal = OldV; 190 OldV->replaceAllUsesWith(V); 191 delete PrevVal; 192 } 193 } 194 195 196 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 197 const Type *Ty) { 198 if (Idx >= size()) 199 resize(Idx + 1); 200 201 if (Value *V = ValuePtrs[Idx]) { 202 assert(Ty == V->getType() && "Type mismatch in constant table!"); 203 return cast<Constant>(V); 204 } 205 206 // Create and return a placeholder, which will later be RAUW'd. 207 Constant *C = new ConstantPlaceHolder(Ty, Context); 208 ValuePtrs[Idx] = C; 209 return C; 210 } 211 212 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 213 if (Idx >= size()) 214 resize(Idx + 1); 215 216 if (Value *V = ValuePtrs[Idx]) { 217 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 218 return V; 219 } 220 221 // No type specified, must be invalid reference. 222 if (Ty == 0) return 0; 223 224 // Create and return a placeholder, which will later be RAUW'd. 225 Value *V = new Argument(Ty); 226 ValuePtrs[Idx] = V; 227 return V; 228 } 229 230 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 231 /// resolves any forward references. The idea behind this is that we sometimes 232 /// get constants (such as large arrays) which reference *many* forward ref 233 /// constants. Replacing each of these causes a lot of thrashing when 234 /// building/reuniquing the constant. Instead of doing this, we look at all the 235 /// uses and rewrite all the place holders at once for any constant that uses 236 /// a placeholder. 237 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 238 // Sort the values by-pointer so that they are efficient to look up with a 239 // binary search. 240 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 241 242 SmallVector<Constant*, 64> NewOps; 243 244 while (!ResolveConstants.empty()) { 245 Value *RealVal = operator[](ResolveConstants.back().second); 246 Constant *Placeholder = ResolveConstants.back().first; 247 ResolveConstants.pop_back(); 248 249 // Loop over all users of the placeholder, updating them to reference the 250 // new value. If they reference more than one placeholder, update them all 251 // at once. 252 while (!Placeholder->use_empty()) { 253 Value::use_iterator UI = Placeholder->use_begin(); 254 255 // If the using object isn't uniqued, just update the operands. This 256 // handles instructions and initializers for global variables. 257 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 258 UI.getUse().set(RealVal); 259 continue; 260 } 261 262 // Otherwise, we have a constant that uses the placeholder. Replace that 263 // constant with a new constant that has *all* placeholder uses updated. 264 Constant *UserC = cast<Constant>(*UI); 265 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 266 I != E; ++I) { 267 Value *NewOp; 268 if (!isa<ConstantPlaceHolder>(*I)) { 269 // Not a placeholder reference. 270 NewOp = *I; 271 } else if (*I == Placeholder) { 272 // Common case is that it just references this one placeholder. 273 NewOp = RealVal; 274 } else { 275 // Otherwise, look up the placeholder in ResolveConstants. 276 ResolveConstantsTy::iterator It = 277 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 278 std::pair<Constant*, unsigned>(cast<Constant>(*I), 279 0)); 280 assert(It != ResolveConstants.end() && It->first == *I); 281 NewOp = operator[](It->second); 282 } 283 284 NewOps.push_back(cast<Constant>(NewOp)); 285 } 286 287 // Make the new constant. 288 Constant *NewC; 289 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 290 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 291 NewOps.size()); 292 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 293 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 294 UserCS->getType()->isPacked()); 295 } else if (isa<ConstantVector>(UserC)) { 296 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 297 } else { 298 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 299 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 300 NewOps.size()); 301 } 302 303 UserC->replaceAllUsesWith(NewC); 304 UserC->destroyConstant(); 305 NewOps.clear(); 306 } 307 308 // Update all ValueHandles, they should be the only users at this point. 309 Placeholder->replaceAllUsesWith(RealVal); 310 delete Placeholder; 311 } 312 } 313 314 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 315 if (Idx == size()) { 316 push_back(V); 317 return; 318 } 319 320 if (Idx >= size()) 321 resize(Idx+1); 322 323 WeakVH &OldV = MDValuePtrs[Idx]; 324 if (OldV == 0) { 325 OldV = V; 326 return; 327 } 328 329 // If there was a forward reference to this value, replace it. 330 Value *PrevVal = OldV; 331 OldV->replaceAllUsesWith(V); 332 delete PrevVal; 333 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 334 // value for Idx. 335 MDValuePtrs[Idx] = V; 336 } 337 338 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 339 if (Idx >= size()) 340 resize(Idx + 1); 341 342 if (Value *V = MDValuePtrs[Idx]) { 343 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 344 return V; 345 } 346 347 // Create and return a placeholder, which will later be RAUW'd. 348 Value *V = new Argument(Type::getMetadataTy(Context)); 349 MDValuePtrs[Idx] = V; 350 return V; 351 } 352 353 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 354 // If the TypeID is in range, return it. 355 if (ID < TypeList.size()) 356 return TypeList[ID].get(); 357 if (!isTypeTable) return 0; 358 359 // The type table allows forward references. Push as many Opaque types as 360 // needed to get up to ID. 361 while (TypeList.size() <= ID) 362 TypeList.push_back(OpaqueType::get(Context)); 363 return TypeList.back().get(); 364 } 365 366 //===----------------------------------------------------------------------===// 367 // Functions for parsing blocks from the bitcode file 368 //===----------------------------------------------------------------------===// 369 370 bool BitcodeReader::ParseAttributeBlock() { 371 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 372 return Error("Malformed block record"); 373 374 if (!MAttributes.empty()) 375 return Error("Multiple PARAMATTR blocks found!"); 376 377 SmallVector<uint64_t, 64> Record; 378 379 SmallVector<AttributeWithIndex, 8> Attrs; 380 381 // Read all the records. 382 while (1) { 383 unsigned Code = Stream.ReadCode(); 384 if (Code == bitc::END_BLOCK) { 385 if (Stream.ReadBlockEnd()) 386 return Error("Error at end of PARAMATTR block"); 387 return false; 388 } 389 390 if (Code == bitc::ENTER_SUBBLOCK) { 391 // No known subblocks, always skip them. 392 Stream.ReadSubBlockID(); 393 if (Stream.SkipBlock()) 394 return Error("Malformed block record"); 395 continue; 396 } 397 398 if (Code == bitc::DEFINE_ABBREV) { 399 Stream.ReadAbbrevRecord(); 400 continue; 401 } 402 403 // Read a record. 404 Record.clear(); 405 switch (Stream.ReadRecord(Code, Record)) { 406 default: // Default behavior: ignore. 407 break; 408 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 409 if (Record.size() & 1) 410 return Error("Invalid ENTRY record"); 411 412 // FIXME : Remove this autoupgrade code in LLVM 3.0. 413 // If Function attributes are using index 0 then transfer them 414 // to index ~0. Index 0 is used for return value attributes but used to be 415 // used for function attributes. 416 Attributes RetAttribute = Attribute::None; 417 Attributes FnAttribute = Attribute::None; 418 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 419 // FIXME: remove in LLVM 3.0 420 // The alignment is stored as a 16-bit raw value from bits 31--16. 421 // We shift the bits above 31 down by 11 bits. 422 423 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 424 if (Alignment && !isPowerOf2_32(Alignment)) 425 return Error("Alignment is not a power of two."); 426 427 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 428 if (Alignment) 429 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 430 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 431 Record[i+1] = ReconstitutedAttr; 432 433 if (Record[i] == 0) 434 RetAttribute = Record[i+1]; 435 else if (Record[i] == ~0U) 436 FnAttribute = Record[i+1]; 437 } 438 439 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 440 Attribute::ReadOnly|Attribute::ReadNone); 441 442 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 443 (RetAttribute & OldRetAttrs) != 0) { 444 if (FnAttribute == Attribute::None) { // add a slot so they get added. 445 Record.push_back(~0U); 446 Record.push_back(0); 447 } 448 449 FnAttribute |= RetAttribute & OldRetAttrs; 450 RetAttribute &= ~OldRetAttrs; 451 } 452 453 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 454 if (Record[i] == 0) { 455 if (RetAttribute != Attribute::None) 456 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 457 } else if (Record[i] == ~0U) { 458 if (FnAttribute != Attribute::None) 459 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 460 } else if (Record[i+1] != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 462 } 463 464 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 465 Attrs.clear(); 466 break; 467 } 468 } 469 } 470 } 471 472 473 bool BitcodeReader::ParseTypeTable() { 474 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 475 return Error("Malformed block record"); 476 477 if (!TypeList.empty()) 478 return Error("Multiple TYPE_BLOCKs found!"); 479 480 SmallVector<uint64_t, 64> Record; 481 unsigned NumRecords = 0; 482 483 // Read all the records for this type table. 484 while (1) { 485 unsigned Code = Stream.ReadCode(); 486 if (Code == bitc::END_BLOCK) { 487 if (NumRecords != TypeList.size()) 488 return Error("Invalid type forward reference in TYPE_BLOCK"); 489 if (Stream.ReadBlockEnd()) 490 return Error("Error at end of type table block"); 491 return false; 492 } 493 494 if (Code == bitc::ENTER_SUBBLOCK) { 495 // No known subblocks, always skip them. 496 Stream.ReadSubBlockID(); 497 if (Stream.SkipBlock()) 498 return Error("Malformed block record"); 499 continue; 500 } 501 502 if (Code == bitc::DEFINE_ABBREV) { 503 Stream.ReadAbbrevRecord(); 504 continue; 505 } 506 507 // Read a record. 508 Record.clear(); 509 const Type *ResultTy = 0; 510 switch (Stream.ReadRecord(Code, Record)) { 511 default: // Default behavior: unknown type. 512 ResultTy = 0; 513 break; 514 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 515 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 516 // type list. This allows us to reserve space. 517 if (Record.size() < 1) 518 return Error("Invalid TYPE_CODE_NUMENTRY record"); 519 TypeList.reserve(Record[0]); 520 continue; 521 case bitc::TYPE_CODE_VOID: // VOID 522 ResultTy = Type::getVoidTy(Context); 523 break; 524 case bitc::TYPE_CODE_FLOAT: // FLOAT 525 ResultTy = Type::getFloatTy(Context); 526 break; 527 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 528 ResultTy = Type::getDoubleTy(Context); 529 break; 530 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 531 ResultTy = Type::getX86_FP80Ty(Context); 532 break; 533 case bitc::TYPE_CODE_FP128: // FP128 534 ResultTy = Type::getFP128Ty(Context); 535 break; 536 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 537 ResultTy = Type::getPPC_FP128Ty(Context); 538 break; 539 case bitc::TYPE_CODE_LABEL: // LABEL 540 ResultTy = Type::getLabelTy(Context); 541 break; 542 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 543 ResultTy = 0; 544 break; 545 case bitc::TYPE_CODE_METADATA: // METADATA 546 ResultTy = Type::getMetadataTy(Context); 547 break; 548 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 549 if (Record.size() < 1) 550 return Error("Invalid Integer type record"); 551 552 ResultTy = IntegerType::get(Context, Record[0]); 553 break; 554 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 555 // [pointee type, address space] 556 if (Record.size() < 1) 557 return Error("Invalid POINTER type record"); 558 unsigned AddressSpace = 0; 559 if (Record.size() == 2) 560 AddressSpace = Record[1]; 561 ResultTy = PointerType::get(getTypeByID(Record[0], true), 562 AddressSpace); 563 break; 564 } 565 case bitc::TYPE_CODE_FUNCTION: { 566 // FIXME: attrid is dead, remove it in LLVM 3.0 567 // FUNCTION: [vararg, attrid, retty, paramty x N] 568 if (Record.size() < 3) 569 return Error("Invalid FUNCTION type record"); 570 std::vector<const Type*> ArgTys; 571 for (unsigned i = 3, e = Record.size(); i != e; ++i) 572 ArgTys.push_back(getTypeByID(Record[i], true)); 573 574 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 575 Record[0]); 576 break; 577 } 578 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 579 if (Record.size() < 1) 580 return Error("Invalid STRUCT type record"); 581 std::vector<const Type*> EltTys; 582 for (unsigned i = 1, e = Record.size(); i != e; ++i) 583 EltTys.push_back(getTypeByID(Record[i], true)); 584 ResultTy = StructType::get(Context, EltTys, Record[0]); 585 break; 586 } 587 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 588 if (Record.size() < 2) 589 return Error("Invalid ARRAY type record"); 590 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 591 break; 592 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 593 if (Record.size() < 2) 594 return Error("Invalid VECTOR type record"); 595 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 596 break; 597 } 598 599 if (NumRecords == TypeList.size()) { 600 // If this is a new type slot, just append it. 601 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 602 ++NumRecords; 603 } else if (ResultTy == 0) { 604 // Otherwise, this was forward referenced, so an opaque type was created, 605 // but the result type is actually just an opaque. Leave the one we 606 // created previously. 607 ++NumRecords; 608 } else { 609 // Otherwise, this was forward referenced, so an opaque type was created. 610 // Resolve the opaque type to the real type now. 611 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 612 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 613 614 // Don't directly push the new type on the Tab. Instead we want to replace 615 // the opaque type we previously inserted with the new concrete value. The 616 // refinement from the abstract (opaque) type to the new type causes all 617 // uses of the abstract type to use the concrete type (NewTy). This will 618 // also cause the opaque type to be deleted. 619 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 620 621 // This should have replaced the old opaque type with the new type in the 622 // value table... or with a preexisting type that was already in the 623 // system. Let's just make sure it did. 624 assert(TypeList[NumRecords-1].get() != OldTy && 625 "refineAbstractType didn't work!"); 626 } 627 } 628 } 629 630 631 bool BitcodeReader::ParseTypeSymbolTable() { 632 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 633 return Error("Malformed block record"); 634 635 SmallVector<uint64_t, 64> Record; 636 637 // Read all the records for this type table. 638 std::string TypeName; 639 while (1) { 640 unsigned Code = Stream.ReadCode(); 641 if (Code == bitc::END_BLOCK) { 642 if (Stream.ReadBlockEnd()) 643 return Error("Error at end of type symbol table block"); 644 return false; 645 } 646 647 if (Code == bitc::ENTER_SUBBLOCK) { 648 // No known subblocks, always skip them. 649 Stream.ReadSubBlockID(); 650 if (Stream.SkipBlock()) 651 return Error("Malformed block record"); 652 continue; 653 } 654 655 if (Code == bitc::DEFINE_ABBREV) { 656 Stream.ReadAbbrevRecord(); 657 continue; 658 } 659 660 // Read a record. 661 Record.clear(); 662 switch (Stream.ReadRecord(Code, Record)) { 663 default: // Default behavior: unknown type. 664 break; 665 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 666 if (ConvertToString(Record, 1, TypeName)) 667 return Error("Invalid TST_ENTRY record"); 668 unsigned TypeID = Record[0]; 669 if (TypeID >= TypeList.size()) 670 return Error("Invalid Type ID in TST_ENTRY record"); 671 672 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 673 TypeName.clear(); 674 break; 675 } 676 } 677 } 678 679 bool BitcodeReader::ParseValueSymbolTable() { 680 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 681 return Error("Malformed block record"); 682 683 SmallVector<uint64_t, 64> Record; 684 685 // Read all the records for this value table. 686 SmallString<128> ValueName; 687 while (1) { 688 unsigned Code = Stream.ReadCode(); 689 if (Code == bitc::END_BLOCK) { 690 if (Stream.ReadBlockEnd()) 691 return Error("Error at end of value symbol table block"); 692 return false; 693 } 694 if (Code == bitc::ENTER_SUBBLOCK) { 695 // No known subblocks, always skip them. 696 Stream.ReadSubBlockID(); 697 if (Stream.SkipBlock()) 698 return Error("Malformed block record"); 699 continue; 700 } 701 702 if (Code == bitc::DEFINE_ABBREV) { 703 Stream.ReadAbbrevRecord(); 704 continue; 705 } 706 707 // Read a record. 708 Record.clear(); 709 switch (Stream.ReadRecord(Code, Record)) { 710 default: // Default behavior: unknown type. 711 break; 712 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 713 if (ConvertToString(Record, 1, ValueName)) 714 return Error("Invalid VST_ENTRY record"); 715 unsigned ValueID = Record[0]; 716 if (ValueID >= ValueList.size()) 717 return Error("Invalid Value ID in VST_ENTRY record"); 718 Value *V = ValueList[ValueID]; 719 720 V->setName(StringRef(ValueName.data(), ValueName.size())); 721 ValueName.clear(); 722 break; 723 } 724 case bitc::VST_CODE_BBENTRY: { 725 if (ConvertToString(Record, 1, ValueName)) 726 return Error("Invalid VST_BBENTRY record"); 727 BasicBlock *BB = getBasicBlock(Record[0]); 728 if (BB == 0) 729 return Error("Invalid BB ID in VST_BBENTRY record"); 730 731 BB->setName(StringRef(ValueName.data(), ValueName.size())); 732 ValueName.clear(); 733 break; 734 } 735 } 736 } 737 } 738 739 bool BitcodeReader::ParseMetadata() { 740 unsigned NextMDValueNo = MDValueList.size(); 741 742 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 743 return Error("Malformed block record"); 744 745 SmallVector<uint64_t, 64> Record; 746 747 // Read all the records. 748 while (1) { 749 unsigned Code = Stream.ReadCode(); 750 if (Code == bitc::END_BLOCK) { 751 if (Stream.ReadBlockEnd()) 752 return Error("Error at end of PARAMATTR block"); 753 return false; 754 } 755 756 if (Code == bitc::ENTER_SUBBLOCK) { 757 // No known subblocks, always skip them. 758 Stream.ReadSubBlockID(); 759 if (Stream.SkipBlock()) 760 return Error("Malformed block record"); 761 continue; 762 } 763 764 if (Code == bitc::DEFINE_ABBREV) { 765 Stream.ReadAbbrevRecord(); 766 continue; 767 } 768 769 bool IsFunctionLocal = false; 770 // Read a record. 771 Record.clear(); 772 switch (Stream.ReadRecord(Code, Record)) { 773 default: // Default behavior: ignore. 774 break; 775 case bitc::METADATA_NAME: { 776 // Read named of the named metadata. 777 unsigned NameLength = Record.size(); 778 SmallString<8> Name; 779 Name.resize(NameLength); 780 for (unsigned i = 0; i != NameLength; ++i) 781 Name[i] = Record[i]; 782 Record.clear(); 783 Code = Stream.ReadCode(); 784 785 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 786 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 787 assert ( 0 && "Inavlid Named Metadata record"); 788 789 // Read named metadata elements. 790 unsigned Size = Record.size(); 791 SmallVector<MDNode *, 8> Elts; 792 for (unsigned i = 0; i != Size; ++i) { 793 if (Record[i] == ~0U) { 794 Elts.push_back(NULL); 795 continue; 796 } 797 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 798 if (MD == 0) 799 return Error("Malformed metadata record"); 800 Elts.push_back(MD); 801 } 802 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 803 Elts.size(), TheModule); 804 MDValueList.AssignValue(V, NextMDValueNo++); 805 break; 806 } 807 case bitc::METADATA_FN_NODE: 808 IsFunctionLocal = true; 809 // fall-through 810 case bitc::METADATA_NODE: { 811 if (Record.empty() || Record.size() % 2 == 1) 812 return Error("Invalid METADATA_NODE record"); 813 814 unsigned Size = Record.size(); 815 SmallVector<Value*, 8> Elts; 816 for (unsigned i = 0; i != Size; i += 2) { 817 const Type *Ty = getTypeByID(Record[i], false); 818 if (Ty->isMetadataTy()) 819 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 820 else if (!Ty->isVoidTy()) 821 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 822 else 823 Elts.push_back(NULL); 824 } 825 Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(), 826 IsFunctionLocal); 827 IsFunctionLocal = false; 828 MDValueList.AssignValue(V, NextMDValueNo++); 829 break; 830 } 831 case bitc::METADATA_STRING: { 832 unsigned MDStringLength = Record.size(); 833 SmallString<8> String; 834 String.resize(MDStringLength); 835 for (unsigned i = 0; i != MDStringLength; ++i) 836 String[i] = Record[i]; 837 Value *V = MDString::get(Context, 838 StringRef(String.data(), String.size())); 839 MDValueList.AssignValue(V, NextMDValueNo++); 840 break; 841 } 842 case bitc::METADATA_KIND: { 843 unsigned RecordLength = Record.size(); 844 if (Record.empty() || RecordLength < 2) 845 return Error("Invalid METADATA_KIND record"); 846 SmallString<8> Name; 847 Name.resize(RecordLength-1); 848 unsigned Kind = Record[0]; 849 (void) Kind; 850 for (unsigned i = 1; i != RecordLength; ++i) 851 Name[i-1] = Record[i]; 852 853 unsigned NewKind = TheModule->getMDKindID(Name.str()); 854 assert(Kind == NewKind && 855 "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind; 856 break; 857 } 858 } 859 } 860 } 861 862 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 863 /// the LSB for dense VBR encoding. 864 static uint64_t DecodeSignRotatedValue(uint64_t V) { 865 if ((V & 1) == 0) 866 return V >> 1; 867 if (V != 1) 868 return -(V >> 1); 869 // There is no such thing as -0 with integers. "-0" really means MININT. 870 return 1ULL << 63; 871 } 872 873 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 874 /// values and aliases that we can. 875 bool BitcodeReader::ResolveGlobalAndAliasInits() { 876 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 877 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 878 879 GlobalInitWorklist.swap(GlobalInits); 880 AliasInitWorklist.swap(AliasInits); 881 882 while (!GlobalInitWorklist.empty()) { 883 unsigned ValID = GlobalInitWorklist.back().second; 884 if (ValID >= ValueList.size()) { 885 // Not ready to resolve this yet, it requires something later in the file. 886 GlobalInits.push_back(GlobalInitWorklist.back()); 887 } else { 888 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 889 GlobalInitWorklist.back().first->setInitializer(C); 890 else 891 return Error("Global variable initializer is not a constant!"); 892 } 893 GlobalInitWorklist.pop_back(); 894 } 895 896 while (!AliasInitWorklist.empty()) { 897 unsigned ValID = AliasInitWorklist.back().second; 898 if (ValID >= ValueList.size()) { 899 AliasInits.push_back(AliasInitWorklist.back()); 900 } else { 901 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 902 AliasInitWorklist.back().first->setAliasee(C); 903 else 904 return Error("Alias initializer is not a constant!"); 905 } 906 AliasInitWorklist.pop_back(); 907 } 908 return false; 909 } 910 911 bool BitcodeReader::ParseConstants() { 912 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 913 return Error("Malformed block record"); 914 915 SmallVector<uint64_t, 64> Record; 916 917 // Read all the records for this value table. 918 const Type *CurTy = Type::getInt32Ty(Context); 919 unsigned NextCstNo = ValueList.size(); 920 while (1) { 921 unsigned Code = Stream.ReadCode(); 922 if (Code == bitc::END_BLOCK) 923 break; 924 925 if (Code == bitc::ENTER_SUBBLOCK) { 926 // No known subblocks, always skip them. 927 Stream.ReadSubBlockID(); 928 if (Stream.SkipBlock()) 929 return Error("Malformed block record"); 930 continue; 931 } 932 933 if (Code == bitc::DEFINE_ABBREV) { 934 Stream.ReadAbbrevRecord(); 935 continue; 936 } 937 938 // Read a record. 939 Record.clear(); 940 Value *V = 0; 941 unsigned BitCode = Stream.ReadRecord(Code, Record); 942 switch (BitCode) { 943 default: // Default behavior: unknown constant 944 case bitc::CST_CODE_UNDEF: // UNDEF 945 V = UndefValue::get(CurTy); 946 break; 947 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 948 if (Record.empty()) 949 return Error("Malformed CST_SETTYPE record"); 950 if (Record[0] >= TypeList.size()) 951 return Error("Invalid Type ID in CST_SETTYPE record"); 952 CurTy = TypeList[Record[0]]; 953 continue; // Skip the ValueList manipulation. 954 case bitc::CST_CODE_NULL: // NULL 955 V = Constant::getNullValue(CurTy); 956 break; 957 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 958 if (!isa<IntegerType>(CurTy) || Record.empty()) 959 return Error("Invalid CST_INTEGER record"); 960 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 961 break; 962 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 963 if (!isa<IntegerType>(CurTy) || Record.empty()) 964 return Error("Invalid WIDE_INTEGER record"); 965 966 unsigned NumWords = Record.size(); 967 SmallVector<uint64_t, 8> Words; 968 Words.resize(NumWords); 969 for (unsigned i = 0; i != NumWords; ++i) 970 Words[i] = DecodeSignRotatedValue(Record[i]); 971 V = ConstantInt::get(Context, 972 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 973 NumWords, &Words[0])); 974 break; 975 } 976 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 977 if (Record.empty()) 978 return Error("Invalid FLOAT record"); 979 if (CurTy->isFloatTy()) 980 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 981 else if (CurTy->isDoubleTy()) 982 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 983 else if (CurTy->isX86_FP80Ty()) { 984 // Bits are not stored the same way as a normal i80 APInt, compensate. 985 uint64_t Rearrange[2]; 986 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 987 Rearrange[1] = Record[0] >> 48; 988 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 989 } else if (CurTy->isFP128Ty()) 990 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 991 else if (CurTy->isPPC_FP128Ty()) 992 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 993 else 994 V = UndefValue::get(CurTy); 995 break; 996 } 997 998 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 999 if (Record.empty()) 1000 return Error("Invalid CST_AGGREGATE record"); 1001 1002 unsigned Size = Record.size(); 1003 std::vector<Constant*> Elts; 1004 1005 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1006 for (unsigned i = 0; i != Size; ++i) 1007 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1008 STy->getElementType(i))); 1009 V = ConstantStruct::get(STy, Elts); 1010 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1011 const Type *EltTy = ATy->getElementType(); 1012 for (unsigned i = 0; i != Size; ++i) 1013 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1014 V = ConstantArray::get(ATy, Elts); 1015 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1016 const Type *EltTy = VTy->getElementType(); 1017 for (unsigned i = 0; i != Size; ++i) 1018 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1019 V = ConstantVector::get(Elts); 1020 } else { 1021 V = UndefValue::get(CurTy); 1022 } 1023 break; 1024 } 1025 case bitc::CST_CODE_STRING: { // STRING: [values] 1026 if (Record.empty()) 1027 return Error("Invalid CST_AGGREGATE record"); 1028 1029 const ArrayType *ATy = cast<ArrayType>(CurTy); 1030 const Type *EltTy = ATy->getElementType(); 1031 1032 unsigned Size = Record.size(); 1033 std::vector<Constant*> Elts; 1034 for (unsigned i = 0; i != Size; ++i) 1035 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1036 V = ConstantArray::get(ATy, Elts); 1037 break; 1038 } 1039 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1040 if (Record.empty()) 1041 return Error("Invalid CST_AGGREGATE record"); 1042 1043 const ArrayType *ATy = cast<ArrayType>(CurTy); 1044 const Type *EltTy = ATy->getElementType(); 1045 1046 unsigned Size = Record.size(); 1047 std::vector<Constant*> Elts; 1048 for (unsigned i = 0; i != Size; ++i) 1049 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1050 Elts.push_back(Constant::getNullValue(EltTy)); 1051 V = ConstantArray::get(ATy, Elts); 1052 break; 1053 } 1054 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1055 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1056 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1057 if (Opc < 0) { 1058 V = UndefValue::get(CurTy); // Unknown binop. 1059 } else { 1060 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1061 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1062 unsigned Flags = 0; 1063 if (Record.size() >= 4) { 1064 if (Opc == Instruction::Add || 1065 Opc == Instruction::Sub || 1066 Opc == Instruction::Mul) { 1067 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1068 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1069 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1070 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1071 } else if (Opc == Instruction::SDiv) { 1072 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1073 Flags |= SDivOperator::IsExact; 1074 } 1075 } 1076 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1077 } 1078 break; 1079 } 1080 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1081 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1082 int Opc = GetDecodedCastOpcode(Record[0]); 1083 if (Opc < 0) { 1084 V = UndefValue::get(CurTy); // Unknown cast. 1085 } else { 1086 const Type *OpTy = getTypeByID(Record[1]); 1087 if (!OpTy) return Error("Invalid CE_CAST record"); 1088 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1089 V = ConstantExpr::getCast(Opc, Op, CurTy); 1090 } 1091 break; 1092 } 1093 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1094 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1095 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1096 SmallVector<Constant*, 16> Elts; 1097 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1098 const Type *ElTy = getTypeByID(Record[i]); 1099 if (!ElTy) return Error("Invalid CE_GEP record"); 1100 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1101 } 1102 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1103 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1104 Elts.size()-1); 1105 else 1106 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1107 Elts.size()-1); 1108 break; 1109 } 1110 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1111 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1112 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1113 Type::getInt1Ty(Context)), 1114 ValueList.getConstantFwdRef(Record[1],CurTy), 1115 ValueList.getConstantFwdRef(Record[2],CurTy)); 1116 break; 1117 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1118 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1119 const VectorType *OpTy = 1120 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1121 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1122 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1123 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1124 V = ConstantExpr::getExtractElement(Op0, Op1); 1125 break; 1126 } 1127 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1128 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1129 if (Record.size() < 3 || OpTy == 0) 1130 return Error("Invalid CE_INSERTELT record"); 1131 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1132 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1133 OpTy->getElementType()); 1134 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1135 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1136 break; 1137 } 1138 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1139 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1140 if (Record.size() < 3 || OpTy == 0) 1141 return Error("Invalid CE_SHUFFLEVEC record"); 1142 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1143 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1144 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1145 OpTy->getNumElements()); 1146 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1147 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1148 break; 1149 } 1150 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1151 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1152 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1153 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1154 return Error("Invalid CE_SHUFVEC_EX record"); 1155 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1156 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1157 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1158 RTy->getNumElements()); 1159 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1160 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1161 break; 1162 } 1163 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1164 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1165 const Type *OpTy = getTypeByID(Record[0]); 1166 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1167 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1168 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1169 1170 if (OpTy->isFPOrFPVector()) 1171 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1172 else 1173 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1174 break; 1175 } 1176 case bitc::CST_CODE_INLINEASM: { 1177 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1178 std::string AsmStr, ConstrStr; 1179 bool HasSideEffects = Record[0] & 1; 1180 bool IsAlignStack = Record[0] >> 1; 1181 unsigned AsmStrSize = Record[1]; 1182 if (2+AsmStrSize >= Record.size()) 1183 return Error("Invalid INLINEASM record"); 1184 unsigned ConstStrSize = Record[2+AsmStrSize]; 1185 if (3+AsmStrSize+ConstStrSize > Record.size()) 1186 return Error("Invalid INLINEASM record"); 1187 1188 for (unsigned i = 0; i != AsmStrSize; ++i) 1189 AsmStr += (char)Record[2+i]; 1190 for (unsigned i = 0; i != ConstStrSize; ++i) 1191 ConstrStr += (char)Record[3+AsmStrSize+i]; 1192 const PointerType *PTy = cast<PointerType>(CurTy); 1193 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1194 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1195 break; 1196 } 1197 case bitc::CST_CODE_BLOCKADDRESS:{ 1198 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1199 const Type *FnTy = getTypeByID(Record[0]); 1200 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1201 Function *Fn = 1202 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1203 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1204 1205 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1206 Type::getInt8Ty(Context), 1207 false, GlobalValue::InternalLinkage, 1208 0, ""); 1209 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1210 V = FwdRef; 1211 break; 1212 } 1213 } 1214 1215 ValueList.AssignValue(V, NextCstNo); 1216 ++NextCstNo; 1217 } 1218 1219 if (NextCstNo != ValueList.size()) 1220 return Error("Invalid constant reference!"); 1221 1222 if (Stream.ReadBlockEnd()) 1223 return Error("Error at end of constants block"); 1224 1225 // Once all the constants have been read, go through and resolve forward 1226 // references. 1227 ValueList.ResolveConstantForwardRefs(); 1228 return false; 1229 } 1230 1231 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1232 /// remember where it is and then skip it. This lets us lazily deserialize the 1233 /// functions. 1234 bool BitcodeReader::RememberAndSkipFunctionBody() { 1235 // Get the function we are talking about. 1236 if (FunctionsWithBodies.empty()) 1237 return Error("Insufficient function protos"); 1238 1239 Function *Fn = FunctionsWithBodies.back(); 1240 FunctionsWithBodies.pop_back(); 1241 1242 // Save the current stream state. 1243 uint64_t CurBit = Stream.GetCurrentBitNo(); 1244 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1245 1246 // Set the functions linkage to GhostLinkage so we know it is lazily 1247 // deserialized. 1248 Fn->setLinkage(GlobalValue::GhostLinkage); 1249 1250 // Skip over the function block for now. 1251 if (Stream.SkipBlock()) 1252 return Error("Malformed block record"); 1253 return false; 1254 } 1255 1256 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1257 // Reject multiple MODULE_BLOCK's in a single bitstream. 1258 if (TheModule) 1259 return Error("Multiple MODULE_BLOCKs in same stream"); 1260 1261 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1262 return Error("Malformed block record"); 1263 1264 // Otherwise, create the module. 1265 TheModule = new Module(ModuleID, Context); 1266 1267 SmallVector<uint64_t, 64> Record; 1268 std::vector<std::string> SectionTable; 1269 std::vector<std::string> GCTable; 1270 1271 // Read all the records for this module. 1272 while (!Stream.AtEndOfStream()) { 1273 unsigned Code = Stream.ReadCode(); 1274 if (Code == bitc::END_BLOCK) { 1275 if (Stream.ReadBlockEnd()) 1276 return Error("Error at end of module block"); 1277 1278 // Patch the initializers for globals and aliases up. 1279 ResolveGlobalAndAliasInits(); 1280 if (!GlobalInits.empty() || !AliasInits.empty()) 1281 return Error("Malformed global initializer set"); 1282 if (!FunctionsWithBodies.empty()) 1283 return Error("Too few function bodies found"); 1284 1285 // Look for intrinsic functions which need to be upgraded at some point 1286 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1287 FI != FE; ++FI) { 1288 Function* NewFn; 1289 if (UpgradeIntrinsicFunction(FI, NewFn)) 1290 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1291 } 1292 1293 // Force deallocation of memory for these vectors to favor the client that 1294 // want lazy deserialization. 1295 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1296 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1297 std::vector<Function*>().swap(FunctionsWithBodies); 1298 return false; 1299 } 1300 1301 if (Code == bitc::ENTER_SUBBLOCK) { 1302 switch (Stream.ReadSubBlockID()) { 1303 default: // Skip unknown content. 1304 if (Stream.SkipBlock()) 1305 return Error("Malformed block record"); 1306 break; 1307 case bitc::BLOCKINFO_BLOCK_ID: 1308 if (Stream.ReadBlockInfoBlock()) 1309 return Error("Malformed BlockInfoBlock"); 1310 break; 1311 case bitc::PARAMATTR_BLOCK_ID: 1312 if (ParseAttributeBlock()) 1313 return true; 1314 break; 1315 case bitc::TYPE_BLOCK_ID: 1316 if (ParseTypeTable()) 1317 return true; 1318 break; 1319 case bitc::TYPE_SYMTAB_BLOCK_ID: 1320 if (ParseTypeSymbolTable()) 1321 return true; 1322 break; 1323 case bitc::VALUE_SYMTAB_BLOCK_ID: 1324 if (ParseValueSymbolTable()) 1325 return true; 1326 break; 1327 case bitc::CONSTANTS_BLOCK_ID: 1328 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1329 return true; 1330 break; 1331 case bitc::METADATA_BLOCK_ID: 1332 if (ParseMetadata()) 1333 return true; 1334 break; 1335 case bitc::FUNCTION_BLOCK_ID: 1336 // If this is the first function body we've seen, reverse the 1337 // FunctionsWithBodies list. 1338 if (!HasReversedFunctionsWithBodies) { 1339 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1340 HasReversedFunctionsWithBodies = true; 1341 } 1342 1343 if (RememberAndSkipFunctionBody()) 1344 return true; 1345 break; 1346 } 1347 continue; 1348 } 1349 1350 if (Code == bitc::DEFINE_ABBREV) { 1351 Stream.ReadAbbrevRecord(); 1352 continue; 1353 } 1354 1355 // Read a record. 1356 switch (Stream.ReadRecord(Code, Record)) { 1357 default: break; // Default behavior, ignore unknown content. 1358 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1359 if (Record.size() < 1) 1360 return Error("Malformed MODULE_CODE_VERSION"); 1361 // Only version #0 is supported so far. 1362 if (Record[0] != 0) 1363 return Error("Unknown bitstream version!"); 1364 break; 1365 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1366 std::string S; 1367 if (ConvertToString(Record, 0, S)) 1368 return Error("Invalid MODULE_CODE_TRIPLE record"); 1369 TheModule->setTargetTriple(S); 1370 break; 1371 } 1372 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1373 std::string S; 1374 if (ConvertToString(Record, 0, S)) 1375 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1376 TheModule->setDataLayout(S); 1377 break; 1378 } 1379 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1380 std::string S; 1381 if (ConvertToString(Record, 0, S)) 1382 return Error("Invalid MODULE_CODE_ASM record"); 1383 TheModule->setModuleInlineAsm(S); 1384 break; 1385 } 1386 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1387 std::string S; 1388 if (ConvertToString(Record, 0, S)) 1389 return Error("Invalid MODULE_CODE_DEPLIB record"); 1390 TheModule->addLibrary(S); 1391 break; 1392 } 1393 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1394 std::string S; 1395 if (ConvertToString(Record, 0, S)) 1396 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1397 SectionTable.push_back(S); 1398 break; 1399 } 1400 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1401 std::string S; 1402 if (ConvertToString(Record, 0, S)) 1403 return Error("Invalid MODULE_CODE_GCNAME record"); 1404 GCTable.push_back(S); 1405 break; 1406 } 1407 // GLOBALVAR: [pointer type, isconst, initid, 1408 // linkage, alignment, section, visibility, threadlocal] 1409 case bitc::MODULE_CODE_GLOBALVAR: { 1410 if (Record.size() < 6) 1411 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1412 const Type *Ty = getTypeByID(Record[0]); 1413 if (!isa<PointerType>(Ty)) 1414 return Error("Global not a pointer type!"); 1415 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1416 Ty = cast<PointerType>(Ty)->getElementType(); 1417 1418 bool isConstant = Record[1]; 1419 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1420 unsigned Alignment = (1 << Record[4]) >> 1; 1421 std::string Section; 1422 if (Record[5]) { 1423 if (Record[5]-1 >= SectionTable.size()) 1424 return Error("Invalid section ID"); 1425 Section = SectionTable[Record[5]-1]; 1426 } 1427 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1428 if (Record.size() > 6) 1429 Visibility = GetDecodedVisibility(Record[6]); 1430 bool isThreadLocal = false; 1431 if (Record.size() > 7) 1432 isThreadLocal = Record[7]; 1433 1434 GlobalVariable *NewGV = 1435 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1436 isThreadLocal, AddressSpace); 1437 NewGV->setAlignment(Alignment); 1438 if (!Section.empty()) 1439 NewGV->setSection(Section); 1440 NewGV->setVisibility(Visibility); 1441 NewGV->setThreadLocal(isThreadLocal); 1442 1443 ValueList.push_back(NewGV); 1444 1445 // Remember which value to use for the global initializer. 1446 if (unsigned InitID = Record[2]) 1447 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1448 break; 1449 } 1450 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1451 // alignment, section, visibility, gc] 1452 case bitc::MODULE_CODE_FUNCTION: { 1453 if (Record.size() < 8) 1454 return Error("Invalid MODULE_CODE_FUNCTION record"); 1455 const Type *Ty = getTypeByID(Record[0]); 1456 if (!isa<PointerType>(Ty)) 1457 return Error("Function not a pointer type!"); 1458 const FunctionType *FTy = 1459 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1460 if (!FTy) 1461 return Error("Function not a pointer to function type!"); 1462 1463 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1464 "", TheModule); 1465 1466 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1467 bool isProto = Record[2]; 1468 Func->setLinkage(GetDecodedLinkage(Record[3])); 1469 Func->setAttributes(getAttributes(Record[4])); 1470 1471 Func->setAlignment((1 << Record[5]) >> 1); 1472 if (Record[6]) { 1473 if (Record[6]-1 >= SectionTable.size()) 1474 return Error("Invalid section ID"); 1475 Func->setSection(SectionTable[Record[6]-1]); 1476 } 1477 Func->setVisibility(GetDecodedVisibility(Record[7])); 1478 if (Record.size() > 8 && Record[8]) { 1479 if (Record[8]-1 > GCTable.size()) 1480 return Error("Invalid GC ID"); 1481 Func->setGC(GCTable[Record[8]-1].c_str()); 1482 } 1483 ValueList.push_back(Func); 1484 1485 // If this is a function with a body, remember the prototype we are 1486 // creating now, so that we can match up the body with them later. 1487 if (!isProto) 1488 FunctionsWithBodies.push_back(Func); 1489 break; 1490 } 1491 // ALIAS: [alias type, aliasee val#, linkage] 1492 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1493 case bitc::MODULE_CODE_ALIAS: { 1494 if (Record.size() < 3) 1495 return Error("Invalid MODULE_ALIAS record"); 1496 const Type *Ty = getTypeByID(Record[0]); 1497 if (!isa<PointerType>(Ty)) 1498 return Error("Function not a pointer type!"); 1499 1500 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1501 "", 0, TheModule); 1502 // Old bitcode files didn't have visibility field. 1503 if (Record.size() > 3) 1504 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1505 ValueList.push_back(NewGA); 1506 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1507 break; 1508 } 1509 /// MODULE_CODE_PURGEVALS: [numvals] 1510 case bitc::MODULE_CODE_PURGEVALS: 1511 // Trim down the value list to the specified size. 1512 if (Record.size() < 1 || Record[0] > ValueList.size()) 1513 return Error("Invalid MODULE_PURGEVALS record"); 1514 ValueList.shrinkTo(Record[0]); 1515 break; 1516 } 1517 Record.clear(); 1518 } 1519 1520 return Error("Premature end of bitstream"); 1521 } 1522 1523 bool BitcodeReader::ParseBitcode() { 1524 TheModule = 0; 1525 1526 if (Buffer->getBufferSize() & 3) 1527 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1528 1529 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1530 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1531 1532 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1533 // The magic number is 0x0B17C0DE stored in little endian. 1534 if (isBitcodeWrapper(BufPtr, BufEnd)) 1535 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1536 return Error("Invalid bitcode wrapper header"); 1537 1538 StreamFile.init(BufPtr, BufEnd); 1539 Stream.init(StreamFile); 1540 1541 // Sniff for the signature. 1542 if (Stream.Read(8) != 'B' || 1543 Stream.Read(8) != 'C' || 1544 Stream.Read(4) != 0x0 || 1545 Stream.Read(4) != 0xC || 1546 Stream.Read(4) != 0xE || 1547 Stream.Read(4) != 0xD) 1548 return Error("Invalid bitcode signature"); 1549 1550 // We expect a number of well-defined blocks, though we don't necessarily 1551 // need to understand them all. 1552 while (!Stream.AtEndOfStream()) { 1553 unsigned Code = Stream.ReadCode(); 1554 1555 if (Code != bitc::ENTER_SUBBLOCK) 1556 return Error("Invalid record at top-level"); 1557 1558 unsigned BlockID = Stream.ReadSubBlockID(); 1559 1560 // We only know the MODULE subblock ID. 1561 switch (BlockID) { 1562 case bitc::BLOCKINFO_BLOCK_ID: 1563 if (Stream.ReadBlockInfoBlock()) 1564 return Error("Malformed BlockInfoBlock"); 1565 break; 1566 case bitc::MODULE_BLOCK_ID: 1567 if (ParseModule(Buffer->getBufferIdentifier())) 1568 return true; 1569 break; 1570 default: 1571 if (Stream.SkipBlock()) 1572 return Error("Malformed block record"); 1573 break; 1574 } 1575 } 1576 1577 return false; 1578 } 1579 1580 /// ParseMetadataAttachment - Parse metadata attachments. 1581 bool BitcodeReader::ParseMetadataAttachment() { 1582 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1583 return Error("Malformed block record"); 1584 1585 SmallVector<uint64_t, 64> Record; 1586 while(1) { 1587 unsigned Code = Stream.ReadCode(); 1588 if (Code == bitc::END_BLOCK) { 1589 if (Stream.ReadBlockEnd()) 1590 return Error("Error at end of PARAMATTR block"); 1591 break; 1592 } 1593 if (Code == bitc::DEFINE_ABBREV) { 1594 Stream.ReadAbbrevRecord(); 1595 continue; 1596 } 1597 // Read a metadata attachment record. 1598 Record.clear(); 1599 switch (Stream.ReadRecord(Code, Record)) { 1600 default: // Default behavior: ignore. 1601 break; 1602 case bitc::METADATA_ATTACHMENT: { 1603 unsigned RecordLength = Record.size(); 1604 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1605 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1606 Instruction *Inst = InstructionList[Record[0]]; 1607 for (unsigned i = 1; i != RecordLength; i = i+2) { 1608 unsigned Kind = Record[i]; 1609 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1610 Inst->setMetadata(Kind, cast<MDNode>(Node)); 1611 } 1612 break; 1613 } 1614 } 1615 } 1616 return false; 1617 } 1618 1619 /// ParseFunctionBody - Lazily parse the specified function body block. 1620 bool BitcodeReader::ParseFunctionBody(Function *F) { 1621 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1622 return Error("Malformed block record"); 1623 1624 unsigned ModuleValueListSize = ValueList.size(); 1625 1626 // Add all the function arguments to the value table. 1627 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1628 ValueList.push_back(I); 1629 1630 unsigned NextValueNo = ValueList.size(); 1631 BasicBlock *CurBB = 0; 1632 unsigned CurBBNo = 0; 1633 1634 // Read all the records. 1635 SmallVector<uint64_t, 64> Record; 1636 while (1) { 1637 unsigned Code = Stream.ReadCode(); 1638 if (Code == bitc::END_BLOCK) { 1639 if (Stream.ReadBlockEnd()) 1640 return Error("Error at end of function block"); 1641 break; 1642 } 1643 1644 if (Code == bitc::ENTER_SUBBLOCK) { 1645 switch (Stream.ReadSubBlockID()) { 1646 default: // Skip unknown content. 1647 if (Stream.SkipBlock()) 1648 return Error("Malformed block record"); 1649 break; 1650 case bitc::CONSTANTS_BLOCK_ID: 1651 if (ParseConstants()) return true; 1652 NextValueNo = ValueList.size(); 1653 break; 1654 case bitc::VALUE_SYMTAB_BLOCK_ID: 1655 if (ParseValueSymbolTable()) return true; 1656 break; 1657 case bitc::METADATA_ATTACHMENT_ID: 1658 if (ParseMetadataAttachment()) return true; 1659 break; 1660 case bitc::METADATA_BLOCK_ID: 1661 if (ParseMetadata()) return true; 1662 break; 1663 } 1664 continue; 1665 } 1666 1667 if (Code == bitc::DEFINE_ABBREV) { 1668 Stream.ReadAbbrevRecord(); 1669 continue; 1670 } 1671 1672 // Read a record. 1673 Record.clear(); 1674 Instruction *I = 0; 1675 unsigned BitCode = Stream.ReadRecord(Code, Record); 1676 switch (BitCode) { 1677 default: // Default behavior: reject 1678 return Error("Unknown instruction"); 1679 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1680 if (Record.size() < 1 || Record[0] == 0) 1681 return Error("Invalid DECLAREBLOCKS record"); 1682 // Create all the basic blocks for the function. 1683 FunctionBBs.resize(Record[0]); 1684 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1685 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1686 CurBB = FunctionBBs[0]; 1687 continue; 1688 1689 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1690 unsigned OpNum = 0; 1691 Value *LHS, *RHS; 1692 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1693 getValue(Record, OpNum, LHS->getType(), RHS) || 1694 OpNum+1 > Record.size()) 1695 return Error("Invalid BINOP record"); 1696 1697 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1698 if (Opc == -1) return Error("Invalid BINOP record"); 1699 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1700 InstructionList.push_back(I); 1701 if (OpNum < Record.size()) { 1702 if (Opc == Instruction::Add || 1703 Opc == Instruction::Sub || 1704 Opc == Instruction::Mul) { 1705 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1706 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1707 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1708 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1709 } else if (Opc == Instruction::SDiv) { 1710 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1711 cast<BinaryOperator>(I)->setIsExact(true); 1712 } 1713 } 1714 break; 1715 } 1716 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1717 unsigned OpNum = 0; 1718 Value *Op; 1719 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1720 OpNum+2 != Record.size()) 1721 return Error("Invalid CAST record"); 1722 1723 const Type *ResTy = getTypeByID(Record[OpNum]); 1724 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1725 if (Opc == -1 || ResTy == 0) 1726 return Error("Invalid CAST record"); 1727 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1728 InstructionList.push_back(I); 1729 break; 1730 } 1731 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1732 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1733 unsigned OpNum = 0; 1734 Value *BasePtr; 1735 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1736 return Error("Invalid GEP record"); 1737 1738 SmallVector<Value*, 16> GEPIdx; 1739 while (OpNum != Record.size()) { 1740 Value *Op; 1741 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1742 return Error("Invalid GEP record"); 1743 GEPIdx.push_back(Op); 1744 } 1745 1746 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1747 InstructionList.push_back(I); 1748 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1749 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1750 break; 1751 } 1752 1753 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1754 // EXTRACTVAL: [opty, opval, n x indices] 1755 unsigned OpNum = 0; 1756 Value *Agg; 1757 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1758 return Error("Invalid EXTRACTVAL record"); 1759 1760 SmallVector<unsigned, 4> EXTRACTVALIdx; 1761 for (unsigned RecSize = Record.size(); 1762 OpNum != RecSize; ++OpNum) { 1763 uint64_t Index = Record[OpNum]; 1764 if ((unsigned)Index != Index) 1765 return Error("Invalid EXTRACTVAL index"); 1766 EXTRACTVALIdx.push_back((unsigned)Index); 1767 } 1768 1769 I = ExtractValueInst::Create(Agg, 1770 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1771 InstructionList.push_back(I); 1772 break; 1773 } 1774 1775 case bitc::FUNC_CODE_INST_INSERTVAL: { 1776 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1777 unsigned OpNum = 0; 1778 Value *Agg; 1779 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1780 return Error("Invalid INSERTVAL record"); 1781 Value *Val; 1782 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1783 return Error("Invalid INSERTVAL record"); 1784 1785 SmallVector<unsigned, 4> INSERTVALIdx; 1786 for (unsigned RecSize = Record.size(); 1787 OpNum != RecSize; ++OpNum) { 1788 uint64_t Index = Record[OpNum]; 1789 if ((unsigned)Index != Index) 1790 return Error("Invalid INSERTVAL index"); 1791 INSERTVALIdx.push_back((unsigned)Index); 1792 } 1793 1794 I = InsertValueInst::Create(Agg, Val, 1795 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1796 InstructionList.push_back(I); 1797 break; 1798 } 1799 1800 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1801 // obsolete form of select 1802 // handles select i1 ... in old bitcode 1803 unsigned OpNum = 0; 1804 Value *TrueVal, *FalseVal, *Cond; 1805 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1806 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1807 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1808 return Error("Invalid SELECT record"); 1809 1810 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1811 InstructionList.push_back(I); 1812 break; 1813 } 1814 1815 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1816 // new form of select 1817 // handles select i1 or select [N x i1] 1818 unsigned OpNum = 0; 1819 Value *TrueVal, *FalseVal, *Cond; 1820 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1821 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1822 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1823 return Error("Invalid SELECT record"); 1824 1825 // select condition can be either i1 or [N x i1] 1826 if (const VectorType* vector_type = 1827 dyn_cast<const VectorType>(Cond->getType())) { 1828 // expect <n x i1> 1829 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1830 return Error("Invalid SELECT condition type"); 1831 } else { 1832 // expect i1 1833 if (Cond->getType() != Type::getInt1Ty(Context)) 1834 return Error("Invalid SELECT condition type"); 1835 } 1836 1837 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1838 InstructionList.push_back(I); 1839 break; 1840 } 1841 1842 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1843 unsigned OpNum = 0; 1844 Value *Vec, *Idx; 1845 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1846 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1847 return Error("Invalid EXTRACTELT record"); 1848 I = ExtractElementInst::Create(Vec, Idx); 1849 InstructionList.push_back(I); 1850 break; 1851 } 1852 1853 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1854 unsigned OpNum = 0; 1855 Value *Vec, *Elt, *Idx; 1856 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1857 getValue(Record, OpNum, 1858 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1859 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1860 return Error("Invalid INSERTELT record"); 1861 I = InsertElementInst::Create(Vec, Elt, Idx); 1862 InstructionList.push_back(I); 1863 break; 1864 } 1865 1866 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1867 unsigned OpNum = 0; 1868 Value *Vec1, *Vec2, *Mask; 1869 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1870 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1871 return Error("Invalid SHUFFLEVEC record"); 1872 1873 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1874 return Error("Invalid SHUFFLEVEC record"); 1875 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1876 InstructionList.push_back(I); 1877 break; 1878 } 1879 1880 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1881 // Old form of ICmp/FCmp returning bool 1882 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1883 // both legal on vectors but had different behaviour. 1884 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1885 // FCmp/ICmp returning bool or vector of bool 1886 1887 unsigned OpNum = 0; 1888 Value *LHS, *RHS; 1889 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1890 getValue(Record, OpNum, LHS->getType(), RHS) || 1891 OpNum+1 != Record.size()) 1892 return Error("Invalid CMP record"); 1893 1894 if (LHS->getType()->isFPOrFPVector()) 1895 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1896 else 1897 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1898 InstructionList.push_back(I); 1899 break; 1900 } 1901 1902 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1903 if (Record.size() != 2) 1904 return Error("Invalid GETRESULT record"); 1905 unsigned OpNum = 0; 1906 Value *Op; 1907 getValueTypePair(Record, OpNum, NextValueNo, Op); 1908 unsigned Index = Record[1]; 1909 I = ExtractValueInst::Create(Op, Index); 1910 InstructionList.push_back(I); 1911 break; 1912 } 1913 1914 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1915 { 1916 unsigned Size = Record.size(); 1917 if (Size == 0) { 1918 I = ReturnInst::Create(Context); 1919 InstructionList.push_back(I); 1920 break; 1921 } 1922 1923 unsigned OpNum = 0; 1924 SmallVector<Value *,4> Vs; 1925 do { 1926 Value *Op = NULL; 1927 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1928 return Error("Invalid RET record"); 1929 Vs.push_back(Op); 1930 } while(OpNum != Record.size()); 1931 1932 const Type *ReturnType = F->getReturnType(); 1933 if (Vs.size() > 1 || 1934 (isa<StructType>(ReturnType) && 1935 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1936 Value *RV = UndefValue::get(ReturnType); 1937 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1938 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1939 InstructionList.push_back(I); 1940 CurBB->getInstList().push_back(I); 1941 ValueList.AssignValue(I, NextValueNo++); 1942 RV = I; 1943 } 1944 I = ReturnInst::Create(Context, RV); 1945 InstructionList.push_back(I); 1946 break; 1947 } 1948 1949 I = ReturnInst::Create(Context, Vs[0]); 1950 InstructionList.push_back(I); 1951 break; 1952 } 1953 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1954 if (Record.size() != 1 && Record.size() != 3) 1955 return Error("Invalid BR record"); 1956 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1957 if (TrueDest == 0) 1958 return Error("Invalid BR record"); 1959 1960 if (Record.size() == 1) { 1961 I = BranchInst::Create(TrueDest); 1962 InstructionList.push_back(I); 1963 } 1964 else { 1965 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1966 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 1967 if (FalseDest == 0 || Cond == 0) 1968 return Error("Invalid BR record"); 1969 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1970 InstructionList.push_back(I); 1971 } 1972 break; 1973 } 1974 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 1975 if (Record.size() < 3 || (Record.size() & 1) == 0) 1976 return Error("Invalid SWITCH record"); 1977 const Type *OpTy = getTypeByID(Record[0]); 1978 Value *Cond = getFnValueByID(Record[1], OpTy); 1979 BasicBlock *Default = getBasicBlock(Record[2]); 1980 if (OpTy == 0 || Cond == 0 || Default == 0) 1981 return Error("Invalid SWITCH record"); 1982 unsigned NumCases = (Record.size()-3)/2; 1983 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1984 InstructionList.push_back(SI); 1985 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1986 ConstantInt *CaseVal = 1987 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1988 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1989 if (CaseVal == 0 || DestBB == 0) { 1990 delete SI; 1991 return Error("Invalid SWITCH record!"); 1992 } 1993 SI->addCase(CaseVal, DestBB); 1994 } 1995 I = SI; 1996 break; 1997 } 1998 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 1999 if (Record.size() < 2) 2000 return Error("Invalid INDIRECTBR record"); 2001 const Type *OpTy = getTypeByID(Record[0]); 2002 Value *Address = getFnValueByID(Record[1], OpTy); 2003 if (OpTy == 0 || Address == 0) 2004 return Error("Invalid INDIRECTBR record"); 2005 unsigned NumDests = Record.size()-2; 2006 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2007 InstructionList.push_back(IBI); 2008 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2009 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2010 IBI->addDestination(DestBB); 2011 } else { 2012 delete IBI; 2013 return Error("Invalid INDIRECTBR record!"); 2014 } 2015 } 2016 I = IBI; 2017 break; 2018 } 2019 2020 case bitc::FUNC_CODE_INST_INVOKE: { 2021 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2022 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2023 AttrListPtr PAL = getAttributes(Record[0]); 2024 unsigned CCInfo = Record[1]; 2025 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2026 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2027 2028 unsigned OpNum = 4; 2029 Value *Callee; 2030 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2031 return Error("Invalid INVOKE record"); 2032 2033 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2034 const FunctionType *FTy = !CalleeTy ? 0 : 2035 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2036 2037 // Check that the right number of fixed parameters are here. 2038 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2039 Record.size() < OpNum+FTy->getNumParams()) 2040 return Error("Invalid INVOKE record"); 2041 2042 SmallVector<Value*, 16> Ops; 2043 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2044 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2045 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2046 } 2047 2048 if (!FTy->isVarArg()) { 2049 if (Record.size() != OpNum) 2050 return Error("Invalid INVOKE record"); 2051 } else { 2052 // Read type/value pairs for varargs params. 2053 while (OpNum != Record.size()) { 2054 Value *Op; 2055 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2056 return Error("Invalid INVOKE record"); 2057 Ops.push_back(Op); 2058 } 2059 } 2060 2061 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2062 Ops.begin(), Ops.end()); 2063 InstructionList.push_back(I); 2064 cast<InvokeInst>(I)->setCallingConv( 2065 static_cast<CallingConv::ID>(CCInfo)); 2066 cast<InvokeInst>(I)->setAttributes(PAL); 2067 break; 2068 } 2069 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2070 I = new UnwindInst(Context); 2071 InstructionList.push_back(I); 2072 break; 2073 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2074 I = new UnreachableInst(Context); 2075 InstructionList.push_back(I); 2076 break; 2077 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2078 if (Record.size() < 1 || ((Record.size()-1)&1)) 2079 return Error("Invalid PHI record"); 2080 const Type *Ty = getTypeByID(Record[0]); 2081 if (!Ty) return Error("Invalid PHI record"); 2082 2083 PHINode *PN = PHINode::Create(Ty); 2084 InstructionList.push_back(PN); 2085 PN->reserveOperandSpace((Record.size()-1)/2); 2086 2087 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2088 Value *V = getFnValueByID(Record[1+i], Ty); 2089 BasicBlock *BB = getBasicBlock(Record[2+i]); 2090 if (!V || !BB) return Error("Invalid PHI record"); 2091 PN->addIncoming(V, BB); 2092 } 2093 I = PN; 2094 break; 2095 } 2096 2097 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2098 // Autoupgrade malloc instruction to malloc call. 2099 // FIXME: Remove in LLVM 3.0. 2100 if (Record.size() < 3) 2101 return Error("Invalid MALLOC record"); 2102 const PointerType *Ty = 2103 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2104 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2105 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2106 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2107 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2108 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2109 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2110 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2111 AllocSize, Size, NULL); 2112 InstructionList.push_back(I); 2113 break; 2114 } 2115 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2116 unsigned OpNum = 0; 2117 Value *Op; 2118 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2119 OpNum != Record.size()) 2120 return Error("Invalid FREE record"); 2121 if (!CurBB) return Error("Invalid free instruction with no BB"); 2122 I = CallInst::CreateFree(Op, CurBB); 2123 InstructionList.push_back(I); 2124 break; 2125 } 2126 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 2127 if (Record.size() < 3) 2128 return Error("Invalid ALLOCA record"); 2129 const PointerType *Ty = 2130 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2131 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2132 unsigned Align = Record[2]; 2133 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2134 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2135 InstructionList.push_back(I); 2136 break; 2137 } 2138 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2139 unsigned OpNum = 0; 2140 Value *Op; 2141 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2142 OpNum+2 != Record.size()) 2143 return Error("Invalid LOAD record"); 2144 2145 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2146 InstructionList.push_back(I); 2147 break; 2148 } 2149 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2150 unsigned OpNum = 0; 2151 Value *Val, *Ptr; 2152 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2153 getValue(Record, OpNum, 2154 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2155 OpNum+2 != Record.size()) 2156 return Error("Invalid STORE record"); 2157 2158 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2159 InstructionList.push_back(I); 2160 break; 2161 } 2162 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2163 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2164 unsigned OpNum = 0; 2165 Value *Val, *Ptr; 2166 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2167 getValue(Record, OpNum, 2168 PointerType::getUnqual(Val->getType()), Ptr)|| 2169 OpNum+2 != Record.size()) 2170 return Error("Invalid STORE record"); 2171 2172 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2173 InstructionList.push_back(I); 2174 break; 2175 } 2176 case bitc::FUNC_CODE_INST_CALL: { 2177 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2178 if (Record.size() < 3) 2179 return Error("Invalid CALL record"); 2180 2181 AttrListPtr PAL = getAttributes(Record[0]); 2182 unsigned CCInfo = Record[1]; 2183 2184 unsigned OpNum = 2; 2185 Value *Callee; 2186 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2187 return Error("Invalid CALL record"); 2188 2189 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2190 const FunctionType *FTy = 0; 2191 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2192 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2193 return Error("Invalid CALL record"); 2194 2195 SmallVector<Value*, 16> Args; 2196 // Read the fixed params. 2197 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2198 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2199 Args.push_back(getBasicBlock(Record[OpNum])); 2200 else 2201 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2202 if (Args.back() == 0) return Error("Invalid CALL record"); 2203 } 2204 2205 // Read type/value pairs for varargs params. 2206 if (!FTy->isVarArg()) { 2207 if (OpNum != Record.size()) 2208 return Error("Invalid CALL record"); 2209 } else { 2210 while (OpNum != Record.size()) { 2211 Value *Op; 2212 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2213 return Error("Invalid CALL record"); 2214 Args.push_back(Op); 2215 } 2216 } 2217 2218 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2219 InstructionList.push_back(I); 2220 cast<CallInst>(I)->setCallingConv( 2221 static_cast<CallingConv::ID>(CCInfo>>1)); 2222 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2223 cast<CallInst>(I)->setAttributes(PAL); 2224 break; 2225 } 2226 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2227 if (Record.size() < 3) 2228 return Error("Invalid VAARG record"); 2229 const Type *OpTy = getTypeByID(Record[0]); 2230 Value *Op = getFnValueByID(Record[1], OpTy); 2231 const Type *ResTy = getTypeByID(Record[2]); 2232 if (!OpTy || !Op || !ResTy) 2233 return Error("Invalid VAARG record"); 2234 I = new VAArgInst(Op, ResTy); 2235 InstructionList.push_back(I); 2236 break; 2237 } 2238 } 2239 2240 // Add instruction to end of current BB. If there is no current BB, reject 2241 // this file. 2242 if (CurBB == 0) { 2243 delete I; 2244 return Error("Invalid instruction with no BB"); 2245 } 2246 CurBB->getInstList().push_back(I); 2247 2248 // If this was a terminator instruction, move to the next block. 2249 if (isa<TerminatorInst>(I)) { 2250 ++CurBBNo; 2251 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2252 } 2253 2254 // Non-void values get registered in the value table for future use. 2255 if (I && !I->getType()->isVoidTy()) 2256 ValueList.AssignValue(I, NextValueNo++); 2257 } 2258 2259 // Check the function list for unresolved values. 2260 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2261 if (A->getParent() == 0) { 2262 // We found at least one unresolved value. Nuke them all to avoid leaks. 2263 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2264 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2265 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2266 delete A; 2267 } 2268 } 2269 return Error("Never resolved value found in function!"); 2270 } 2271 } 2272 2273 // See if anything took the address of blocks in this function. If so, 2274 // resolve them now. 2275 /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These 2276 /// are resolved lazily when functions are loaded. 2277 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2278 BlockAddrFwdRefs.find(F); 2279 if (BAFRI != BlockAddrFwdRefs.end()) { 2280 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2281 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2282 unsigned BlockIdx = RefList[i].first; 2283 if (BlockIdx >= FunctionBBs.size()) 2284 return Error("Invalid blockaddress block #"); 2285 2286 GlobalVariable *FwdRef = RefList[i].second; 2287 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2288 FwdRef->eraseFromParent(); 2289 } 2290 2291 BlockAddrFwdRefs.erase(BAFRI); 2292 } 2293 2294 // Trim the value list down to the size it was before we parsed this function. 2295 ValueList.shrinkTo(ModuleValueListSize); 2296 std::vector<BasicBlock*>().swap(FunctionBBs); 2297 2298 return false; 2299 } 2300 2301 //===----------------------------------------------------------------------===// 2302 // ModuleProvider implementation 2303 //===----------------------------------------------------------------------===// 2304 2305 2306 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 2307 // If it already is material, ignore the request. 2308 if (!F->hasNotBeenReadFromBitcode()) return false; 2309 2310 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2311 DeferredFunctionInfo.find(F); 2312 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2313 2314 // Move the bit stream to the saved position of the deferred function body and 2315 // restore the real linkage type for the function. 2316 Stream.JumpToBit(DFII->second.first); 2317 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2318 2319 if (ParseFunctionBody(F)) { 2320 if (ErrInfo) *ErrInfo = ErrorString; 2321 return true; 2322 } 2323 2324 // Upgrade any old intrinsic calls in the function. 2325 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2326 E = UpgradedIntrinsics.end(); I != E; ++I) { 2327 if (I->first != I->second) { 2328 for (Value::use_iterator UI = I->first->use_begin(), 2329 UE = I->first->use_end(); UI != UE; ) { 2330 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2331 UpgradeIntrinsicCall(CI, I->second); 2332 } 2333 } 2334 } 2335 2336 return false; 2337 } 2338 2339 void BitcodeReader::dematerializeFunction(Function *F) { 2340 // If this function isn't materialized, or if it is a proto, this is a noop. 2341 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2342 return; 2343 2344 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2345 2346 // Just forget the function body, we can remat it later. 2347 F->deleteBody(); 2348 F->setLinkage(GlobalValue::GhostLinkage); 2349 } 2350 2351 2352 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2353 // Iterate over the module, deserializing any functions that are still on 2354 // disk. 2355 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2356 F != E; ++F) 2357 if (F->hasNotBeenReadFromBitcode() && 2358 materializeFunction(F, ErrInfo)) 2359 return 0; 2360 2361 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2362 // delete the old functions to clean up. We can't do this unless the entire 2363 // module is materialized because there could always be another function body 2364 // with calls to the old function. 2365 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2366 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2367 if (I->first != I->second) { 2368 for (Value::use_iterator UI = I->first->use_begin(), 2369 UE = I->first->use_end(); UI != UE; ) { 2370 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2371 UpgradeIntrinsicCall(CI, I->second); 2372 } 2373 if (!I->first->use_empty()) 2374 I->first->replaceAllUsesWith(I->second); 2375 I->first->eraseFromParent(); 2376 } 2377 } 2378 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2379 2380 // Check debug info intrinsics. 2381 CheckDebugInfoIntrinsics(TheModule); 2382 2383 return TheModule; 2384 } 2385 2386 2387 /// This method is provided by the parent ModuleProvde class and overriden 2388 /// here. It simply releases the module from its provided and frees up our 2389 /// state. 2390 /// @brief Release our hold on the generated module 2391 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2392 // Since we're losing control of this Module, we must hand it back complete 2393 Module *M = ModuleProvider::releaseModule(ErrInfo); 2394 FreeState(); 2395 return M; 2396 } 2397 2398 2399 //===----------------------------------------------------------------------===// 2400 // External interface 2401 //===----------------------------------------------------------------------===// 2402 2403 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2404 /// 2405 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2406 LLVMContext& Context, 2407 std::string *ErrMsg) { 2408 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2409 if (R->ParseBitcode()) { 2410 if (ErrMsg) 2411 *ErrMsg = R->getErrorString(); 2412 2413 // Don't let the BitcodeReader dtor delete 'Buffer'. 2414 R->releaseMemoryBuffer(); 2415 delete R; 2416 return 0; 2417 } 2418 return R; 2419 } 2420 2421 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2422 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2423 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2424 std::string *ErrMsg){ 2425 BitcodeReader *R; 2426 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2427 ErrMsg)); 2428 if (!R) return 0; 2429 2430 // Read in the entire module. 2431 Module *M = R->materializeModule(ErrMsg); 2432 2433 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2434 // there was an error. 2435 R->releaseMemoryBuffer(); 2436 2437 // If there was no error, tell ModuleProvider not to delete it when its dtor 2438 // is run. 2439 if (M) 2440 M = R->releaseModule(ErrMsg); 2441 2442 delete R; 2443 return M; 2444 } 2445