1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/AutoUpgrade.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/OperandTraits.h" 27 using namespace llvm; 28 29 void BitcodeReader::FreeState() { 30 delete Buffer; 31 Buffer = 0; 32 std::vector<PATypeHolder>().swap(TypeList); 33 ValueList.clear(); 34 35 std::vector<AttrListPtr>().swap(MAttributes); 36 std::vector<BasicBlock*>().swap(FunctionBBs); 37 std::vector<Function*>().swap(FunctionsWithBodies); 38 DeferredFunctionInfo.clear(); 39 } 40 41 //===----------------------------------------------------------------------===// 42 // Helper functions to implement forward reference resolution, etc. 43 //===----------------------------------------------------------------------===// 44 45 /// ConvertToString - Convert a string from a record into an std::string, return 46 /// true on failure. 47 template<typename StrTy> 48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 49 StrTy &Result) { 50 if (Idx > Record.size()) 51 return true; 52 53 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 54 Result += (char)Record[i]; 55 return false; 56 } 57 58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 59 switch (Val) { 60 default: // Map unknown/new linkages to external 61 case 0: return GlobalValue::ExternalLinkage; 62 case 1: return GlobalValue::WeakLinkage; 63 case 2: return GlobalValue::AppendingLinkage; 64 case 3: return GlobalValue::InternalLinkage; 65 case 4: return GlobalValue::LinkOnceLinkage; 66 case 5: return GlobalValue::DLLImportLinkage; 67 case 6: return GlobalValue::DLLExportLinkage; 68 case 7: return GlobalValue::ExternalWeakLinkage; 69 case 8: return GlobalValue::CommonLinkage; 70 case 9: return GlobalValue::PrivateLinkage; 71 } 72 } 73 74 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 75 switch (Val) { 76 default: // Map unknown visibilities to default. 77 case 0: return GlobalValue::DefaultVisibility; 78 case 1: return GlobalValue::HiddenVisibility; 79 case 2: return GlobalValue::ProtectedVisibility; 80 } 81 } 82 83 static int GetDecodedCastOpcode(unsigned Val) { 84 switch (Val) { 85 default: return -1; 86 case bitc::CAST_TRUNC : return Instruction::Trunc; 87 case bitc::CAST_ZEXT : return Instruction::ZExt; 88 case bitc::CAST_SEXT : return Instruction::SExt; 89 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 90 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 91 case bitc::CAST_UITOFP : return Instruction::UIToFP; 92 case bitc::CAST_SITOFP : return Instruction::SIToFP; 93 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 94 case bitc::CAST_FPEXT : return Instruction::FPExt; 95 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 96 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 97 case bitc::CAST_BITCAST : return Instruction::BitCast; 98 } 99 } 100 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 101 switch (Val) { 102 default: return -1; 103 case bitc::BINOP_ADD: return Instruction::Add; 104 case bitc::BINOP_SUB: return Instruction::Sub; 105 case bitc::BINOP_MUL: return Instruction::Mul; 106 case bitc::BINOP_UDIV: return Instruction::UDiv; 107 case bitc::BINOP_SDIV: 108 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 109 case bitc::BINOP_UREM: return Instruction::URem; 110 case bitc::BINOP_SREM: 111 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 112 case bitc::BINOP_SHL: return Instruction::Shl; 113 case bitc::BINOP_LSHR: return Instruction::LShr; 114 case bitc::BINOP_ASHR: return Instruction::AShr; 115 case bitc::BINOP_AND: return Instruction::And; 116 case bitc::BINOP_OR: return Instruction::Or; 117 case bitc::BINOP_XOR: return Instruction::Xor; 118 } 119 } 120 121 namespace llvm { 122 namespace { 123 /// @brief A class for maintaining the slot number definition 124 /// as a placeholder for the actual definition for forward constants defs. 125 class ConstantPlaceHolder : public ConstantExpr { 126 ConstantPlaceHolder(); // DO NOT IMPLEMENT 127 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 128 public: 129 // allocate space for exactly one operand 130 void *operator new(size_t s) { 131 return User::operator new(s, 1); 132 } 133 explicit ConstantPlaceHolder(const Type *Ty) 134 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 135 Op<0>() = UndefValue::get(Type::Int32Ty); 136 } 137 138 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 139 static inline bool classof(const ConstantPlaceHolder *) { return true; } 140 static bool classof(const Value *V) { 141 return isa<ConstantExpr>(V) && 142 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 143 } 144 145 146 /// Provide fast operand accessors 147 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 148 }; 149 } 150 151 152 // FIXME: can we inherit this from ConstantExpr? 153 template <> 154 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 155 }; 156 157 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 158 } 159 160 void BitcodeReaderValueList::resize(unsigned Desired) { 161 if (Desired > Capacity) { 162 // Since we expect many values to come from the bitcode file we better 163 // allocate the double amount, so that the array size grows exponentially 164 // at each reallocation. Also, add a small amount of 100 extra elements 165 // each time, to reallocate less frequently when the array is still small. 166 // 167 Capacity = Desired * 2 + 100; 168 Use *New = allocHungoffUses(Capacity); 169 Use *Old = OperandList; 170 unsigned Ops = getNumOperands(); 171 for (int i(Ops - 1); i >= 0; --i) 172 New[i] = Old[i].get(); 173 OperandList = New; 174 if (Old) Use::zap(Old, Old + Ops, true); 175 } 176 } 177 178 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 179 const Type *Ty) { 180 if (Idx >= size()) { 181 // Insert a bunch of null values. 182 resize(Idx + 1); 183 NumOperands = Idx+1; 184 } 185 186 if (Value *V = OperandList[Idx]) { 187 assert(Ty == V->getType() && "Type mismatch in constant table!"); 188 return cast<Constant>(V); 189 } 190 191 // Create and return a placeholder, which will later be RAUW'd. 192 Constant *C = new ConstantPlaceHolder(Ty); 193 OperandList[Idx] = C; 194 return C; 195 } 196 197 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 198 if (Idx >= size()) { 199 // Insert a bunch of null values. 200 resize(Idx + 1); 201 NumOperands = Idx+1; 202 } 203 204 if (Value *V = OperandList[Idx]) { 205 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 206 return V; 207 } 208 209 // No type specified, must be invalid reference. 210 if (Ty == 0) return 0; 211 212 // Create and return a placeholder, which will later be RAUW'd. 213 Value *V = new Argument(Ty); 214 OperandList[Idx] = V; 215 return V; 216 } 217 218 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 219 /// resolves any forward references. The idea behind this is that we sometimes 220 /// get constants (such as large arrays) which reference *many* forward ref 221 /// constants. Replacing each of these causes a lot of thrashing when 222 /// building/reuniquing the constant. Instead of doing this, we look at all the 223 /// uses and rewrite all the place holders at once for any constant that uses 224 /// a placeholder. 225 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 226 // Sort the values by-pointer so that they are efficient to look up with a 227 // binary search. 228 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 229 230 SmallVector<Constant*, 64> NewOps; 231 232 while (!ResolveConstants.empty()) { 233 Value *RealVal = getOperand(ResolveConstants.back().second); 234 Constant *Placeholder = ResolveConstants.back().first; 235 ResolveConstants.pop_back(); 236 237 // Loop over all users of the placeholder, updating them to reference the 238 // new value. If they reference more than one placeholder, update them all 239 // at once. 240 while (!Placeholder->use_empty()) { 241 Value::use_iterator UI = Placeholder->use_begin(); 242 243 // If the using object isn't uniqued, just update the operands. This 244 // handles instructions and initializers for global variables. 245 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 246 UI.getUse().set(RealVal); 247 continue; 248 } 249 250 // Otherwise, we have a constant that uses the placeholder. Replace that 251 // constant with a new constant that has *all* placeholder uses updated. 252 Constant *UserC = cast<Constant>(*UI); 253 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 254 I != E; ++I) { 255 Value *NewOp; 256 if (!isa<ConstantPlaceHolder>(*I)) { 257 // Not a placeholder reference. 258 NewOp = *I; 259 } else if (*I == Placeholder) { 260 // Common case is that it just references this one placeholder. 261 NewOp = RealVal; 262 } else { 263 // Otherwise, look up the placeholder in ResolveConstants. 264 ResolveConstantsTy::iterator It = 265 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 266 std::pair<Constant*, unsigned>(cast<Constant>(*I), 267 0)); 268 assert(It != ResolveConstants.end() && It->first == *I); 269 NewOp = this->getOperand(It->second); 270 } 271 272 NewOps.push_back(cast<Constant>(NewOp)); 273 } 274 275 // Make the new constant. 276 Constant *NewC; 277 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 278 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 279 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 280 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 281 UserCS->getType()->isPacked()); 282 } else if (isa<ConstantVector>(UserC)) { 283 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 284 } else { 285 // Must be a constant expression. 286 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 287 NewOps.size()); 288 } 289 290 UserC->replaceAllUsesWith(NewC); 291 UserC->destroyConstant(); 292 NewOps.clear(); 293 } 294 295 delete Placeholder; 296 } 297 } 298 299 300 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 301 // If the TypeID is in range, return it. 302 if (ID < TypeList.size()) 303 return TypeList[ID].get(); 304 if (!isTypeTable) return 0; 305 306 // The type table allows forward references. Push as many Opaque types as 307 // needed to get up to ID. 308 while (TypeList.size() <= ID) 309 TypeList.push_back(OpaqueType::get()); 310 return TypeList.back().get(); 311 } 312 313 //===----------------------------------------------------------------------===// 314 // Functions for parsing blocks from the bitcode file 315 //===----------------------------------------------------------------------===// 316 317 bool BitcodeReader::ParseAttributeBlock() { 318 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 319 return Error("Malformed block record"); 320 321 if (!MAttributes.empty()) 322 return Error("Multiple PARAMATTR blocks found!"); 323 324 SmallVector<uint64_t, 64> Record; 325 326 SmallVector<AttributeWithIndex, 8> Attrs; 327 328 // Read all the records. 329 while (1) { 330 unsigned Code = Stream.ReadCode(); 331 if (Code == bitc::END_BLOCK) { 332 if (Stream.ReadBlockEnd()) 333 return Error("Error at end of PARAMATTR block"); 334 return false; 335 } 336 337 if (Code == bitc::ENTER_SUBBLOCK) { 338 // No known subblocks, always skip them. 339 Stream.ReadSubBlockID(); 340 if (Stream.SkipBlock()) 341 return Error("Malformed block record"); 342 continue; 343 } 344 345 if (Code == bitc::DEFINE_ABBREV) { 346 Stream.ReadAbbrevRecord(); 347 continue; 348 } 349 350 // Read a record. 351 Record.clear(); 352 switch (Stream.ReadRecord(Code, Record)) { 353 default: // Default behavior: ignore. 354 break; 355 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 356 if (Record.size() & 1) 357 return Error("Invalid ENTRY record"); 358 359 // FIXME : Remove this autoupgrade code in LLVM 3.0. 360 // If Function attributes are using index 0 then transfer them 361 // to index ~0. Index 0 is used for return value attributes but used to be 362 // used for function attributes. 363 Attributes RetAttribute = Attribute::None; 364 Attributes FnAttribute = Attribute::None; 365 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 366 // FIXME: remove in LLVM 3.0 367 // The alignment is stored as a 16-bit raw value from bits 31--16. 368 // We shift the bits above 31 down by 11 bits. 369 370 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 371 if (Alignment && !isPowerOf2_32(Alignment)) 372 return Error("Alignment is not a power of two."); 373 374 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 375 if (Alignment) 376 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 377 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 378 Record[i+1] = ReconstitutedAttr; 379 380 if (Record[i] == 0) 381 RetAttribute = Record[i+1]; 382 else if (Record[i] == ~0U) 383 FnAttribute = Record[i+1]; 384 } 385 386 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 387 Attribute::ReadOnly|Attribute::ReadNone); 388 389 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 390 (RetAttribute & OldRetAttrs) != 0) { 391 if (FnAttribute == Attribute::None) { // add a slot so they get added. 392 Record.push_back(~0U); 393 Record.push_back(0); 394 } 395 396 FnAttribute |= RetAttribute & OldRetAttrs; 397 RetAttribute &= ~OldRetAttrs; 398 } 399 400 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 401 if (Record[i] == 0) { 402 if (RetAttribute != Attribute::None) 403 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 404 } else if (Record[i] == ~0U) { 405 if (FnAttribute != Attribute::None) 406 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 407 } else if (Record[i+1] != Attribute::None) 408 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 409 } 410 411 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 412 Attrs.clear(); 413 break; 414 } 415 } 416 } 417 } 418 419 420 bool BitcodeReader::ParseTypeTable() { 421 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 422 return Error("Malformed block record"); 423 424 if (!TypeList.empty()) 425 return Error("Multiple TYPE_BLOCKs found!"); 426 427 SmallVector<uint64_t, 64> Record; 428 unsigned NumRecords = 0; 429 430 // Read all the records for this type table. 431 while (1) { 432 unsigned Code = Stream.ReadCode(); 433 if (Code == bitc::END_BLOCK) { 434 if (NumRecords != TypeList.size()) 435 return Error("Invalid type forward reference in TYPE_BLOCK"); 436 if (Stream.ReadBlockEnd()) 437 return Error("Error at end of type table block"); 438 return false; 439 } 440 441 if (Code == bitc::ENTER_SUBBLOCK) { 442 // No known subblocks, always skip them. 443 Stream.ReadSubBlockID(); 444 if (Stream.SkipBlock()) 445 return Error("Malformed block record"); 446 continue; 447 } 448 449 if (Code == bitc::DEFINE_ABBREV) { 450 Stream.ReadAbbrevRecord(); 451 continue; 452 } 453 454 // Read a record. 455 Record.clear(); 456 const Type *ResultTy = 0; 457 switch (Stream.ReadRecord(Code, Record)) { 458 default: // Default behavior: unknown type. 459 ResultTy = 0; 460 break; 461 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 462 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 463 // type list. This allows us to reserve space. 464 if (Record.size() < 1) 465 return Error("Invalid TYPE_CODE_NUMENTRY record"); 466 TypeList.reserve(Record[0]); 467 continue; 468 case bitc::TYPE_CODE_VOID: // VOID 469 ResultTy = Type::VoidTy; 470 break; 471 case bitc::TYPE_CODE_FLOAT: // FLOAT 472 ResultTy = Type::FloatTy; 473 break; 474 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 475 ResultTy = Type::DoubleTy; 476 break; 477 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 478 ResultTy = Type::X86_FP80Ty; 479 break; 480 case bitc::TYPE_CODE_FP128: // FP128 481 ResultTy = Type::FP128Ty; 482 break; 483 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 484 ResultTy = Type::PPC_FP128Ty; 485 break; 486 case bitc::TYPE_CODE_LABEL: // LABEL 487 ResultTy = Type::LabelTy; 488 break; 489 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 490 ResultTy = 0; 491 break; 492 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 493 if (Record.size() < 1) 494 return Error("Invalid Integer type record"); 495 496 ResultTy = IntegerType::get(Record[0]); 497 break; 498 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 499 // [pointee type, address space] 500 if (Record.size() < 1) 501 return Error("Invalid POINTER type record"); 502 unsigned AddressSpace = 0; 503 if (Record.size() == 2) 504 AddressSpace = Record[1]; 505 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 506 break; 507 } 508 case bitc::TYPE_CODE_FUNCTION: { 509 // FIXME: attrid is dead, remove it in LLVM 3.0 510 // FUNCTION: [vararg, attrid, retty, paramty x N] 511 if (Record.size() < 3) 512 return Error("Invalid FUNCTION type record"); 513 std::vector<const Type*> ArgTys; 514 for (unsigned i = 3, e = Record.size(); i != e; ++i) 515 ArgTys.push_back(getTypeByID(Record[i], true)); 516 517 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 518 Record[0]); 519 break; 520 } 521 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 522 if (Record.size() < 1) 523 return Error("Invalid STRUCT type record"); 524 std::vector<const Type*> EltTys; 525 for (unsigned i = 1, e = Record.size(); i != e; ++i) 526 EltTys.push_back(getTypeByID(Record[i], true)); 527 ResultTy = StructType::get(EltTys, Record[0]); 528 break; 529 } 530 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 531 if (Record.size() < 2) 532 return Error("Invalid ARRAY type record"); 533 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 534 break; 535 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 536 if (Record.size() < 2) 537 return Error("Invalid VECTOR type record"); 538 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 539 break; 540 } 541 542 if (NumRecords == TypeList.size()) { 543 // If this is a new type slot, just append it. 544 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 545 ++NumRecords; 546 } else if (ResultTy == 0) { 547 // Otherwise, this was forward referenced, so an opaque type was created, 548 // but the result type is actually just an opaque. Leave the one we 549 // created previously. 550 ++NumRecords; 551 } else { 552 // Otherwise, this was forward referenced, so an opaque type was created. 553 // Resolve the opaque type to the real type now. 554 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 555 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 556 557 // Don't directly push the new type on the Tab. Instead we want to replace 558 // the opaque type we previously inserted with the new concrete value. The 559 // refinement from the abstract (opaque) type to the new type causes all 560 // uses of the abstract type to use the concrete type (NewTy). This will 561 // also cause the opaque type to be deleted. 562 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 563 564 // This should have replaced the old opaque type with the new type in the 565 // value table... or with a preexisting type that was already in the 566 // system. Let's just make sure it did. 567 assert(TypeList[NumRecords-1].get() != OldTy && 568 "refineAbstractType didn't work!"); 569 } 570 } 571 } 572 573 574 bool BitcodeReader::ParseTypeSymbolTable() { 575 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 576 return Error("Malformed block record"); 577 578 SmallVector<uint64_t, 64> Record; 579 580 // Read all the records for this type table. 581 std::string TypeName; 582 while (1) { 583 unsigned Code = Stream.ReadCode(); 584 if (Code == bitc::END_BLOCK) { 585 if (Stream.ReadBlockEnd()) 586 return Error("Error at end of type symbol table block"); 587 return false; 588 } 589 590 if (Code == bitc::ENTER_SUBBLOCK) { 591 // No known subblocks, always skip them. 592 Stream.ReadSubBlockID(); 593 if (Stream.SkipBlock()) 594 return Error("Malformed block record"); 595 continue; 596 } 597 598 if (Code == bitc::DEFINE_ABBREV) { 599 Stream.ReadAbbrevRecord(); 600 continue; 601 } 602 603 // Read a record. 604 Record.clear(); 605 switch (Stream.ReadRecord(Code, Record)) { 606 default: // Default behavior: unknown type. 607 break; 608 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 609 if (ConvertToString(Record, 1, TypeName)) 610 return Error("Invalid TST_ENTRY record"); 611 unsigned TypeID = Record[0]; 612 if (TypeID >= TypeList.size()) 613 return Error("Invalid Type ID in TST_ENTRY record"); 614 615 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 616 TypeName.clear(); 617 break; 618 } 619 } 620 } 621 622 bool BitcodeReader::ParseValueSymbolTable() { 623 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 624 return Error("Malformed block record"); 625 626 SmallVector<uint64_t, 64> Record; 627 628 // Read all the records for this value table. 629 SmallString<128> ValueName; 630 while (1) { 631 unsigned Code = Stream.ReadCode(); 632 if (Code == bitc::END_BLOCK) { 633 if (Stream.ReadBlockEnd()) 634 return Error("Error at end of value symbol table block"); 635 return false; 636 } 637 if (Code == bitc::ENTER_SUBBLOCK) { 638 // No known subblocks, always skip them. 639 Stream.ReadSubBlockID(); 640 if (Stream.SkipBlock()) 641 return Error("Malformed block record"); 642 continue; 643 } 644 645 if (Code == bitc::DEFINE_ABBREV) { 646 Stream.ReadAbbrevRecord(); 647 continue; 648 } 649 650 // Read a record. 651 Record.clear(); 652 switch (Stream.ReadRecord(Code, Record)) { 653 default: // Default behavior: unknown type. 654 break; 655 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 656 if (ConvertToString(Record, 1, ValueName)) 657 return Error("Invalid TST_ENTRY record"); 658 unsigned ValueID = Record[0]; 659 if (ValueID >= ValueList.size()) 660 return Error("Invalid Value ID in VST_ENTRY record"); 661 Value *V = ValueList[ValueID]; 662 663 V->setName(&ValueName[0], ValueName.size()); 664 ValueName.clear(); 665 break; 666 } 667 case bitc::VST_CODE_BBENTRY: { 668 if (ConvertToString(Record, 1, ValueName)) 669 return Error("Invalid VST_BBENTRY record"); 670 BasicBlock *BB = getBasicBlock(Record[0]); 671 if (BB == 0) 672 return Error("Invalid BB ID in VST_BBENTRY record"); 673 674 BB->setName(&ValueName[0], ValueName.size()); 675 ValueName.clear(); 676 break; 677 } 678 } 679 } 680 } 681 682 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 683 /// the LSB for dense VBR encoding. 684 static uint64_t DecodeSignRotatedValue(uint64_t V) { 685 if ((V & 1) == 0) 686 return V >> 1; 687 if (V != 1) 688 return -(V >> 1); 689 // There is no such thing as -0 with integers. "-0" really means MININT. 690 return 1ULL << 63; 691 } 692 693 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 694 /// values and aliases that we can. 695 bool BitcodeReader::ResolveGlobalAndAliasInits() { 696 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 697 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 698 699 GlobalInitWorklist.swap(GlobalInits); 700 AliasInitWorklist.swap(AliasInits); 701 702 while (!GlobalInitWorklist.empty()) { 703 unsigned ValID = GlobalInitWorklist.back().second; 704 if (ValID >= ValueList.size()) { 705 // Not ready to resolve this yet, it requires something later in the file. 706 GlobalInits.push_back(GlobalInitWorklist.back()); 707 } else { 708 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 709 GlobalInitWorklist.back().first->setInitializer(C); 710 else 711 return Error("Global variable initializer is not a constant!"); 712 } 713 GlobalInitWorklist.pop_back(); 714 } 715 716 while (!AliasInitWorklist.empty()) { 717 unsigned ValID = AliasInitWorklist.back().second; 718 if (ValID >= ValueList.size()) { 719 AliasInits.push_back(AliasInitWorklist.back()); 720 } else { 721 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 722 AliasInitWorklist.back().first->setAliasee(C); 723 else 724 return Error("Alias initializer is not a constant!"); 725 } 726 AliasInitWorklist.pop_back(); 727 } 728 return false; 729 } 730 731 732 bool BitcodeReader::ParseConstants() { 733 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 734 return Error("Malformed block record"); 735 736 SmallVector<uint64_t, 64> Record; 737 738 // Read all the records for this value table. 739 const Type *CurTy = Type::Int32Ty; 740 unsigned NextCstNo = ValueList.size(); 741 while (1) { 742 unsigned Code = Stream.ReadCode(); 743 if (Code == bitc::END_BLOCK) 744 break; 745 746 if (Code == bitc::ENTER_SUBBLOCK) { 747 // No known subblocks, always skip them. 748 Stream.ReadSubBlockID(); 749 if (Stream.SkipBlock()) 750 return Error("Malformed block record"); 751 continue; 752 } 753 754 if (Code == bitc::DEFINE_ABBREV) { 755 Stream.ReadAbbrevRecord(); 756 continue; 757 } 758 759 // Read a record. 760 Record.clear(); 761 Value *V = 0; 762 switch (Stream.ReadRecord(Code, Record)) { 763 default: // Default behavior: unknown constant 764 case bitc::CST_CODE_UNDEF: // UNDEF 765 V = UndefValue::get(CurTy); 766 break; 767 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 768 if (Record.empty()) 769 return Error("Malformed CST_SETTYPE record"); 770 if (Record[0] >= TypeList.size()) 771 return Error("Invalid Type ID in CST_SETTYPE record"); 772 CurTy = TypeList[Record[0]]; 773 continue; // Skip the ValueList manipulation. 774 case bitc::CST_CODE_NULL: // NULL 775 V = Constant::getNullValue(CurTy); 776 break; 777 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 778 if (!isa<IntegerType>(CurTy) || Record.empty()) 779 return Error("Invalid CST_INTEGER record"); 780 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 781 break; 782 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 783 if (!isa<IntegerType>(CurTy) || Record.empty()) 784 return Error("Invalid WIDE_INTEGER record"); 785 786 unsigned NumWords = Record.size(); 787 SmallVector<uint64_t, 8> Words; 788 Words.resize(NumWords); 789 for (unsigned i = 0; i != NumWords; ++i) 790 Words[i] = DecodeSignRotatedValue(Record[i]); 791 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 792 NumWords, &Words[0])); 793 break; 794 } 795 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 796 if (Record.empty()) 797 return Error("Invalid FLOAT record"); 798 if (CurTy == Type::FloatTy) 799 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 800 else if (CurTy == Type::DoubleTy) 801 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 802 else if (CurTy == Type::X86_FP80Ty) 803 V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0]))); 804 else if (CurTy == Type::FP128Ty) 805 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 806 else if (CurTy == Type::PPC_FP128Ty) 807 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 808 else 809 V = UndefValue::get(CurTy); 810 break; 811 } 812 813 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 814 if (Record.empty()) 815 return Error("Invalid CST_AGGREGATE record"); 816 817 unsigned Size = Record.size(); 818 std::vector<Constant*> Elts; 819 820 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 821 for (unsigned i = 0; i != Size; ++i) 822 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 823 STy->getElementType(i))); 824 V = ConstantStruct::get(STy, Elts); 825 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 826 const Type *EltTy = ATy->getElementType(); 827 for (unsigned i = 0; i != Size; ++i) 828 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 829 V = ConstantArray::get(ATy, Elts); 830 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 831 const Type *EltTy = VTy->getElementType(); 832 for (unsigned i = 0; i != Size; ++i) 833 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 834 V = ConstantVector::get(Elts); 835 } else { 836 V = UndefValue::get(CurTy); 837 } 838 break; 839 } 840 case bitc::CST_CODE_STRING: { // STRING: [values] 841 if (Record.empty()) 842 return Error("Invalid CST_AGGREGATE record"); 843 844 const ArrayType *ATy = cast<ArrayType>(CurTy); 845 const Type *EltTy = ATy->getElementType(); 846 847 unsigned Size = Record.size(); 848 std::vector<Constant*> Elts; 849 for (unsigned i = 0; i != Size; ++i) 850 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 851 V = ConstantArray::get(ATy, Elts); 852 break; 853 } 854 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 855 if (Record.empty()) 856 return Error("Invalid CST_AGGREGATE record"); 857 858 const ArrayType *ATy = cast<ArrayType>(CurTy); 859 const Type *EltTy = ATy->getElementType(); 860 861 unsigned Size = Record.size(); 862 std::vector<Constant*> Elts; 863 for (unsigned i = 0; i != Size; ++i) 864 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 865 Elts.push_back(Constant::getNullValue(EltTy)); 866 V = ConstantArray::get(ATy, Elts); 867 break; 868 } 869 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 870 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 871 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 872 if (Opc < 0) { 873 V = UndefValue::get(CurTy); // Unknown binop. 874 } else { 875 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 876 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 877 V = ConstantExpr::get(Opc, LHS, RHS); 878 } 879 break; 880 } 881 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 882 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 883 int Opc = GetDecodedCastOpcode(Record[0]); 884 if (Opc < 0) { 885 V = UndefValue::get(CurTy); // Unknown cast. 886 } else { 887 const Type *OpTy = getTypeByID(Record[1]); 888 if (!OpTy) return Error("Invalid CE_CAST record"); 889 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 890 V = ConstantExpr::getCast(Opc, Op, CurTy); 891 } 892 break; 893 } 894 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 895 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 896 SmallVector<Constant*, 16> Elts; 897 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 898 const Type *ElTy = getTypeByID(Record[i]); 899 if (!ElTy) return Error("Invalid CE_GEP record"); 900 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 901 } 902 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 903 break; 904 } 905 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 906 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 907 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 908 Type::Int1Ty), 909 ValueList.getConstantFwdRef(Record[1],CurTy), 910 ValueList.getConstantFwdRef(Record[2],CurTy)); 911 break; 912 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 913 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 914 const VectorType *OpTy = 915 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 916 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 917 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 918 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 919 V = ConstantExpr::getExtractElement(Op0, Op1); 920 break; 921 } 922 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 923 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 924 if (Record.size() < 3 || OpTy == 0) 925 return Error("Invalid CE_INSERTELT record"); 926 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 927 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 928 OpTy->getElementType()); 929 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 930 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 931 break; 932 } 933 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 934 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 935 if (Record.size() < 3 || OpTy == 0) 936 return Error("Invalid CE_SHUFFLEVEC record"); 937 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 938 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 939 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 940 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 941 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 942 break; 943 } 944 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 945 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 946 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 947 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 948 return Error("Invalid CE_SHUFVEC_EX record"); 949 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 950 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 951 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements()); 952 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 953 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 954 break; 955 } 956 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 957 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 958 const Type *OpTy = getTypeByID(Record[0]); 959 if (OpTy == 0) return Error("Invalid CE_CMP record"); 960 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 961 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 962 963 if (OpTy->isFloatingPoint()) 964 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 965 else if (!isa<VectorType>(OpTy)) 966 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 967 else if (OpTy->isFPOrFPVector()) 968 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 969 else 970 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 971 break; 972 } 973 case bitc::CST_CODE_INLINEASM: { 974 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 975 std::string AsmStr, ConstrStr; 976 bool HasSideEffects = Record[0]; 977 unsigned AsmStrSize = Record[1]; 978 if (2+AsmStrSize >= Record.size()) 979 return Error("Invalid INLINEASM record"); 980 unsigned ConstStrSize = Record[2+AsmStrSize]; 981 if (3+AsmStrSize+ConstStrSize > Record.size()) 982 return Error("Invalid INLINEASM record"); 983 984 for (unsigned i = 0; i != AsmStrSize; ++i) 985 AsmStr += (char)Record[2+i]; 986 for (unsigned i = 0; i != ConstStrSize; ++i) 987 ConstrStr += (char)Record[3+AsmStrSize+i]; 988 const PointerType *PTy = cast<PointerType>(CurTy); 989 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 990 AsmStr, ConstrStr, HasSideEffects); 991 break; 992 } 993 } 994 995 ValueList.AssignValue(V, NextCstNo); 996 ++NextCstNo; 997 } 998 999 if (NextCstNo != ValueList.size()) 1000 return Error("Invalid constant reference!"); 1001 1002 if (Stream.ReadBlockEnd()) 1003 return Error("Error at end of constants block"); 1004 1005 // Once all the constants have been read, go through and resolve forward 1006 // references. 1007 ValueList.ResolveConstantForwardRefs(); 1008 return false; 1009 } 1010 1011 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1012 /// remember where it is and then skip it. This lets us lazily deserialize the 1013 /// functions. 1014 bool BitcodeReader::RememberAndSkipFunctionBody() { 1015 // Get the function we are talking about. 1016 if (FunctionsWithBodies.empty()) 1017 return Error("Insufficient function protos"); 1018 1019 Function *Fn = FunctionsWithBodies.back(); 1020 FunctionsWithBodies.pop_back(); 1021 1022 // Save the current stream state. 1023 uint64_t CurBit = Stream.GetCurrentBitNo(); 1024 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1025 1026 // Set the functions linkage to GhostLinkage so we know it is lazily 1027 // deserialized. 1028 Fn->setLinkage(GlobalValue::GhostLinkage); 1029 1030 // Skip over the function block for now. 1031 if (Stream.SkipBlock()) 1032 return Error("Malformed block record"); 1033 return false; 1034 } 1035 1036 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1037 // Reject multiple MODULE_BLOCK's in a single bitstream. 1038 if (TheModule) 1039 return Error("Multiple MODULE_BLOCKs in same stream"); 1040 1041 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1042 return Error("Malformed block record"); 1043 1044 // Otherwise, create the module. 1045 TheModule = new Module(ModuleID); 1046 1047 SmallVector<uint64_t, 64> Record; 1048 std::vector<std::string> SectionTable; 1049 std::vector<std::string> GCTable; 1050 1051 // Read all the records for this module. 1052 while (!Stream.AtEndOfStream()) { 1053 unsigned Code = Stream.ReadCode(); 1054 if (Code == bitc::END_BLOCK) { 1055 if (Stream.ReadBlockEnd()) 1056 return Error("Error at end of module block"); 1057 1058 // Patch the initializers for globals and aliases up. 1059 ResolveGlobalAndAliasInits(); 1060 if (!GlobalInits.empty() || !AliasInits.empty()) 1061 return Error("Malformed global initializer set"); 1062 if (!FunctionsWithBodies.empty()) 1063 return Error("Too few function bodies found"); 1064 1065 // Look for intrinsic functions which need to be upgraded at some point 1066 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1067 FI != FE; ++FI) { 1068 Function* NewFn; 1069 if (UpgradeIntrinsicFunction(FI, NewFn)) 1070 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1071 } 1072 1073 // Force deallocation of memory for these vectors to favor the client that 1074 // want lazy deserialization. 1075 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1076 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1077 std::vector<Function*>().swap(FunctionsWithBodies); 1078 return false; 1079 } 1080 1081 if (Code == bitc::ENTER_SUBBLOCK) { 1082 switch (Stream.ReadSubBlockID()) { 1083 default: // Skip unknown content. 1084 if (Stream.SkipBlock()) 1085 return Error("Malformed block record"); 1086 break; 1087 case bitc::BLOCKINFO_BLOCK_ID: 1088 if (Stream.ReadBlockInfoBlock()) 1089 return Error("Malformed BlockInfoBlock"); 1090 break; 1091 case bitc::PARAMATTR_BLOCK_ID: 1092 if (ParseAttributeBlock()) 1093 return true; 1094 break; 1095 case bitc::TYPE_BLOCK_ID: 1096 if (ParseTypeTable()) 1097 return true; 1098 break; 1099 case bitc::TYPE_SYMTAB_BLOCK_ID: 1100 if (ParseTypeSymbolTable()) 1101 return true; 1102 break; 1103 case bitc::VALUE_SYMTAB_BLOCK_ID: 1104 if (ParseValueSymbolTable()) 1105 return true; 1106 break; 1107 case bitc::CONSTANTS_BLOCK_ID: 1108 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1109 return true; 1110 break; 1111 case bitc::FUNCTION_BLOCK_ID: 1112 // If this is the first function body we've seen, reverse the 1113 // FunctionsWithBodies list. 1114 if (!HasReversedFunctionsWithBodies) { 1115 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1116 HasReversedFunctionsWithBodies = true; 1117 } 1118 1119 if (RememberAndSkipFunctionBody()) 1120 return true; 1121 break; 1122 } 1123 continue; 1124 } 1125 1126 if (Code == bitc::DEFINE_ABBREV) { 1127 Stream.ReadAbbrevRecord(); 1128 continue; 1129 } 1130 1131 // Read a record. 1132 switch (Stream.ReadRecord(Code, Record)) { 1133 default: break; // Default behavior, ignore unknown content. 1134 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1135 if (Record.size() < 1) 1136 return Error("Malformed MODULE_CODE_VERSION"); 1137 // Only version #0 is supported so far. 1138 if (Record[0] != 0) 1139 return Error("Unknown bitstream version!"); 1140 break; 1141 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1142 std::string S; 1143 if (ConvertToString(Record, 0, S)) 1144 return Error("Invalid MODULE_CODE_TRIPLE record"); 1145 TheModule->setTargetTriple(S); 1146 break; 1147 } 1148 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1149 std::string S; 1150 if (ConvertToString(Record, 0, S)) 1151 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1152 TheModule->setDataLayout(S); 1153 break; 1154 } 1155 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1156 std::string S; 1157 if (ConvertToString(Record, 0, S)) 1158 return Error("Invalid MODULE_CODE_ASM record"); 1159 TheModule->setModuleInlineAsm(S); 1160 break; 1161 } 1162 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1163 std::string S; 1164 if (ConvertToString(Record, 0, S)) 1165 return Error("Invalid MODULE_CODE_DEPLIB record"); 1166 TheModule->addLibrary(S); 1167 break; 1168 } 1169 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1170 std::string S; 1171 if (ConvertToString(Record, 0, S)) 1172 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1173 SectionTable.push_back(S); 1174 break; 1175 } 1176 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1177 std::string S; 1178 if (ConvertToString(Record, 0, S)) 1179 return Error("Invalid MODULE_CODE_GCNAME record"); 1180 GCTable.push_back(S); 1181 break; 1182 } 1183 // GLOBALVAR: [pointer type, isconst, initid, 1184 // linkage, alignment, section, visibility, threadlocal] 1185 case bitc::MODULE_CODE_GLOBALVAR: { 1186 if (Record.size() < 6) 1187 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1188 const Type *Ty = getTypeByID(Record[0]); 1189 if (!isa<PointerType>(Ty)) 1190 return Error("Global not a pointer type!"); 1191 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1192 Ty = cast<PointerType>(Ty)->getElementType(); 1193 1194 bool isConstant = Record[1]; 1195 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1196 unsigned Alignment = (1 << Record[4]) >> 1; 1197 std::string Section; 1198 if (Record[5]) { 1199 if (Record[5]-1 >= SectionTable.size()) 1200 return Error("Invalid section ID"); 1201 Section = SectionTable[Record[5]-1]; 1202 } 1203 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1204 if (Record.size() > 6) 1205 Visibility = GetDecodedVisibility(Record[6]); 1206 bool isThreadLocal = false; 1207 if (Record.size() > 7) 1208 isThreadLocal = Record[7]; 1209 1210 GlobalVariable *NewGV = 1211 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1212 isThreadLocal, AddressSpace); 1213 NewGV->setAlignment(Alignment); 1214 if (!Section.empty()) 1215 NewGV->setSection(Section); 1216 NewGV->setVisibility(Visibility); 1217 NewGV->setThreadLocal(isThreadLocal); 1218 1219 ValueList.push_back(NewGV); 1220 1221 // Remember which value to use for the global initializer. 1222 if (unsigned InitID = Record[2]) 1223 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1224 break; 1225 } 1226 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1227 // alignment, section, visibility, gc] 1228 case bitc::MODULE_CODE_FUNCTION: { 1229 if (Record.size() < 8) 1230 return Error("Invalid MODULE_CODE_FUNCTION record"); 1231 const Type *Ty = getTypeByID(Record[0]); 1232 if (!isa<PointerType>(Ty)) 1233 return Error("Function not a pointer type!"); 1234 const FunctionType *FTy = 1235 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1236 if (!FTy) 1237 return Error("Function not a pointer to function type!"); 1238 1239 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1240 "", TheModule); 1241 1242 Func->setCallingConv(Record[1]); 1243 bool isProto = Record[2]; 1244 Func->setLinkage(GetDecodedLinkage(Record[3])); 1245 Func->setAttributes(getAttributes(Record[4])); 1246 1247 Func->setAlignment((1 << Record[5]) >> 1); 1248 if (Record[6]) { 1249 if (Record[6]-1 >= SectionTable.size()) 1250 return Error("Invalid section ID"); 1251 Func->setSection(SectionTable[Record[6]-1]); 1252 } 1253 Func->setVisibility(GetDecodedVisibility(Record[7])); 1254 if (Record.size() > 8 && Record[8]) { 1255 if (Record[8]-1 > GCTable.size()) 1256 return Error("Invalid GC ID"); 1257 Func->setGC(GCTable[Record[8]-1].c_str()); 1258 } 1259 ValueList.push_back(Func); 1260 1261 // If this is a function with a body, remember the prototype we are 1262 // creating now, so that we can match up the body with them later. 1263 if (!isProto) 1264 FunctionsWithBodies.push_back(Func); 1265 break; 1266 } 1267 // ALIAS: [alias type, aliasee val#, linkage] 1268 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1269 case bitc::MODULE_CODE_ALIAS: { 1270 if (Record.size() < 3) 1271 return Error("Invalid MODULE_ALIAS record"); 1272 const Type *Ty = getTypeByID(Record[0]); 1273 if (!isa<PointerType>(Ty)) 1274 return Error("Function not a pointer type!"); 1275 1276 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1277 "", 0, TheModule); 1278 // Old bitcode files didn't have visibility field. 1279 if (Record.size() > 3) 1280 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1281 ValueList.push_back(NewGA); 1282 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1283 break; 1284 } 1285 /// MODULE_CODE_PURGEVALS: [numvals] 1286 case bitc::MODULE_CODE_PURGEVALS: 1287 // Trim down the value list to the specified size. 1288 if (Record.size() < 1 || Record[0] > ValueList.size()) 1289 return Error("Invalid MODULE_PURGEVALS record"); 1290 ValueList.shrinkTo(Record[0]); 1291 break; 1292 } 1293 Record.clear(); 1294 } 1295 1296 return Error("Premature end of bitstream"); 1297 } 1298 1299 /// SkipWrapperHeader - Some systems wrap bc files with a special header for 1300 /// padding or other reasons. The format of this header is: 1301 /// 1302 /// struct bc_header { 1303 /// uint32_t Magic; // 0x0B17C0DE 1304 /// uint32_t Version; // Version, currently always 0. 1305 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1306 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1307 /// ... potentially other gunk ... 1308 /// }; 1309 /// 1310 /// This function is called when we find a file with a matching magic number. 1311 /// In this case, skip down to the subsection of the file that is actually a BC 1312 /// file. 1313 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) { 1314 enum { 1315 KnownHeaderSize = 4*4, // Size of header we read. 1316 OffsetField = 2*4, // Offset in bytes to Offset field. 1317 SizeField = 3*4 // Offset in bytes to Size field. 1318 }; 1319 1320 1321 // Must contain the header! 1322 if (BufEnd-BufPtr < KnownHeaderSize) return true; 1323 1324 unsigned Offset = ( BufPtr[OffsetField ] | 1325 (BufPtr[OffsetField+1] << 8) | 1326 (BufPtr[OffsetField+2] << 16) | 1327 (BufPtr[OffsetField+3] << 24)); 1328 unsigned Size = ( BufPtr[SizeField ] | 1329 (BufPtr[SizeField +1] << 8) | 1330 (BufPtr[SizeField +2] << 16) | 1331 (BufPtr[SizeField +3] << 24)); 1332 1333 // Verify that Offset+Size fits in the file. 1334 if (Offset+Size > unsigned(BufEnd-BufPtr)) 1335 return true; 1336 BufPtr += Offset; 1337 BufEnd = BufPtr+Size; 1338 return false; 1339 } 1340 1341 bool BitcodeReader::ParseBitcode() { 1342 TheModule = 0; 1343 1344 if (Buffer->getBufferSize() & 3) 1345 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1346 1347 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1348 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1349 1350 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1351 // The magic number is 0x0B17C0DE stored in little endian. 1352 if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && 1353 BufPtr[2] == 0x17 && BufPtr[3] == 0x0B) 1354 if (SkipWrapperHeader(BufPtr, BufEnd)) 1355 return Error("Invalid bitcode wrapper header"); 1356 1357 Stream.init(BufPtr, BufEnd); 1358 1359 // Sniff for the signature. 1360 if (Stream.Read(8) != 'B' || 1361 Stream.Read(8) != 'C' || 1362 Stream.Read(4) != 0x0 || 1363 Stream.Read(4) != 0xC || 1364 Stream.Read(4) != 0xE || 1365 Stream.Read(4) != 0xD) 1366 return Error("Invalid bitcode signature"); 1367 1368 // We expect a number of well-defined blocks, though we don't necessarily 1369 // need to understand them all. 1370 while (!Stream.AtEndOfStream()) { 1371 unsigned Code = Stream.ReadCode(); 1372 1373 if (Code != bitc::ENTER_SUBBLOCK) 1374 return Error("Invalid record at top-level"); 1375 1376 unsigned BlockID = Stream.ReadSubBlockID(); 1377 1378 // We only know the MODULE subblock ID. 1379 switch (BlockID) { 1380 case bitc::BLOCKINFO_BLOCK_ID: 1381 if (Stream.ReadBlockInfoBlock()) 1382 return Error("Malformed BlockInfoBlock"); 1383 break; 1384 case bitc::MODULE_BLOCK_ID: 1385 if (ParseModule(Buffer->getBufferIdentifier())) 1386 return true; 1387 break; 1388 default: 1389 if (Stream.SkipBlock()) 1390 return Error("Malformed block record"); 1391 break; 1392 } 1393 } 1394 1395 return false; 1396 } 1397 1398 1399 /// ParseFunctionBody - Lazily parse the specified function body block. 1400 bool BitcodeReader::ParseFunctionBody(Function *F) { 1401 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1402 return Error("Malformed block record"); 1403 1404 unsigned ModuleValueListSize = ValueList.size(); 1405 1406 // Add all the function arguments to the value table. 1407 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1408 ValueList.push_back(I); 1409 1410 unsigned NextValueNo = ValueList.size(); 1411 BasicBlock *CurBB = 0; 1412 unsigned CurBBNo = 0; 1413 1414 // Read all the records. 1415 SmallVector<uint64_t, 64> Record; 1416 while (1) { 1417 unsigned Code = Stream.ReadCode(); 1418 if (Code == bitc::END_BLOCK) { 1419 if (Stream.ReadBlockEnd()) 1420 return Error("Error at end of function block"); 1421 break; 1422 } 1423 1424 if (Code == bitc::ENTER_SUBBLOCK) { 1425 switch (Stream.ReadSubBlockID()) { 1426 default: // Skip unknown content. 1427 if (Stream.SkipBlock()) 1428 return Error("Malformed block record"); 1429 break; 1430 case bitc::CONSTANTS_BLOCK_ID: 1431 if (ParseConstants()) return true; 1432 NextValueNo = ValueList.size(); 1433 break; 1434 case bitc::VALUE_SYMTAB_BLOCK_ID: 1435 if (ParseValueSymbolTable()) return true; 1436 break; 1437 } 1438 continue; 1439 } 1440 1441 if (Code == bitc::DEFINE_ABBREV) { 1442 Stream.ReadAbbrevRecord(); 1443 continue; 1444 } 1445 1446 // Read a record. 1447 Record.clear(); 1448 Instruction *I = 0; 1449 switch (Stream.ReadRecord(Code, Record)) { 1450 default: // Default behavior: reject 1451 return Error("Unknown instruction"); 1452 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1453 if (Record.size() < 1 || Record[0] == 0) 1454 return Error("Invalid DECLAREBLOCKS record"); 1455 // Create all the basic blocks for the function. 1456 FunctionBBs.resize(Record[0]); 1457 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1458 FunctionBBs[i] = BasicBlock::Create("", F); 1459 CurBB = FunctionBBs[0]; 1460 continue; 1461 1462 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1463 unsigned OpNum = 0; 1464 Value *LHS, *RHS; 1465 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1466 getValue(Record, OpNum, LHS->getType(), RHS) || 1467 OpNum+1 != Record.size()) 1468 return Error("Invalid BINOP record"); 1469 1470 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1471 if (Opc == -1) return Error("Invalid BINOP record"); 1472 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1473 break; 1474 } 1475 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1476 unsigned OpNum = 0; 1477 Value *Op; 1478 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1479 OpNum+2 != Record.size()) 1480 return Error("Invalid CAST record"); 1481 1482 const Type *ResTy = getTypeByID(Record[OpNum]); 1483 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1484 if (Opc == -1 || ResTy == 0) 1485 return Error("Invalid CAST record"); 1486 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1487 break; 1488 } 1489 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1490 unsigned OpNum = 0; 1491 Value *BasePtr; 1492 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1493 return Error("Invalid GEP record"); 1494 1495 SmallVector<Value*, 16> GEPIdx; 1496 while (OpNum != Record.size()) { 1497 Value *Op; 1498 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1499 return Error("Invalid GEP record"); 1500 GEPIdx.push_back(Op); 1501 } 1502 1503 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1504 break; 1505 } 1506 1507 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1508 // EXTRACTVAL: [opty, opval, n x indices] 1509 unsigned OpNum = 0; 1510 Value *Agg; 1511 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1512 return Error("Invalid EXTRACTVAL record"); 1513 1514 SmallVector<unsigned, 4> EXTRACTVALIdx; 1515 for (unsigned RecSize = Record.size(); 1516 OpNum != RecSize; ++OpNum) { 1517 uint64_t Index = Record[OpNum]; 1518 if ((unsigned)Index != Index) 1519 return Error("Invalid EXTRACTVAL index"); 1520 EXTRACTVALIdx.push_back((unsigned)Index); 1521 } 1522 1523 I = ExtractValueInst::Create(Agg, 1524 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1525 break; 1526 } 1527 1528 case bitc::FUNC_CODE_INST_INSERTVAL: { 1529 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1530 unsigned OpNum = 0; 1531 Value *Agg; 1532 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1533 return Error("Invalid INSERTVAL record"); 1534 Value *Val; 1535 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1536 return Error("Invalid INSERTVAL record"); 1537 1538 SmallVector<unsigned, 4> INSERTVALIdx; 1539 for (unsigned RecSize = Record.size(); 1540 OpNum != RecSize; ++OpNum) { 1541 uint64_t Index = Record[OpNum]; 1542 if ((unsigned)Index != Index) 1543 return Error("Invalid INSERTVAL index"); 1544 INSERTVALIdx.push_back((unsigned)Index); 1545 } 1546 1547 I = InsertValueInst::Create(Agg, Val, 1548 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1549 break; 1550 } 1551 1552 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1553 // obsolete form of select 1554 // handles select i1 ... in old bitcode 1555 unsigned OpNum = 0; 1556 Value *TrueVal, *FalseVal, *Cond; 1557 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1558 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1559 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1560 return Error("Invalid SELECT record"); 1561 1562 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1563 break; 1564 } 1565 1566 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1567 // new form of select 1568 // handles select i1 or select [N x i1] 1569 unsigned OpNum = 0; 1570 Value *TrueVal, *FalseVal, *Cond; 1571 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1572 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1573 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1574 return Error("Invalid SELECT record"); 1575 1576 // select condition can be either i1 or [N x i1] 1577 if (const VectorType* vector_type = 1578 dyn_cast<const VectorType>(Cond->getType())) { 1579 // expect <n x i1> 1580 if (vector_type->getElementType() != Type::Int1Ty) 1581 return Error("Invalid SELECT condition type"); 1582 } else { 1583 // expect i1 1584 if (Cond->getType() != Type::Int1Ty) 1585 return Error("Invalid SELECT condition type"); 1586 } 1587 1588 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1589 break; 1590 } 1591 1592 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1593 unsigned OpNum = 0; 1594 Value *Vec, *Idx; 1595 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1596 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1597 return Error("Invalid EXTRACTELT record"); 1598 I = new ExtractElementInst(Vec, Idx); 1599 break; 1600 } 1601 1602 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1603 unsigned OpNum = 0; 1604 Value *Vec, *Elt, *Idx; 1605 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1606 getValue(Record, OpNum, 1607 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1608 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1609 return Error("Invalid INSERTELT record"); 1610 I = InsertElementInst::Create(Vec, Elt, Idx); 1611 break; 1612 } 1613 1614 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1615 unsigned OpNum = 0; 1616 Value *Vec1, *Vec2, *Mask; 1617 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1618 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1619 return Error("Invalid SHUFFLEVEC record"); 1620 1621 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1622 return Error("Invalid SHUFFLEVEC record"); 1623 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1624 break; 1625 } 1626 1627 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1628 // VFCmp/VICmp 1629 // or old form of ICmp/FCmp returning bool 1630 unsigned OpNum = 0; 1631 Value *LHS, *RHS; 1632 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1633 getValue(Record, OpNum, LHS->getType(), RHS) || 1634 OpNum+1 != Record.size()) 1635 return Error("Invalid CMP record"); 1636 1637 if (LHS->getType()->isFloatingPoint()) 1638 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1639 else if (!isa<VectorType>(LHS->getType())) 1640 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1641 else if (LHS->getType()->isFPOrFPVector()) 1642 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1643 else 1644 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1645 break; 1646 } 1647 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1648 // Fcmp/ICmp returning bool or vector of bool 1649 unsigned OpNum = 0; 1650 Value *LHS, *RHS; 1651 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1652 getValue(Record, OpNum, LHS->getType(), RHS) || 1653 OpNum+1 != Record.size()) 1654 return Error("Invalid CMP2 record"); 1655 1656 if (LHS->getType()->isFPOrFPVector()) 1657 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1658 else 1659 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1660 break; 1661 } 1662 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1663 if (Record.size() != 2) 1664 return Error("Invalid GETRESULT record"); 1665 unsigned OpNum = 0; 1666 Value *Op; 1667 getValueTypePair(Record, OpNum, NextValueNo, Op); 1668 unsigned Index = Record[1]; 1669 I = ExtractValueInst::Create(Op, Index); 1670 break; 1671 } 1672 1673 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1674 { 1675 unsigned Size = Record.size(); 1676 if (Size == 0) { 1677 I = ReturnInst::Create(); 1678 break; 1679 } 1680 1681 unsigned OpNum = 0; 1682 SmallVector<Value *,4> Vs; 1683 do { 1684 Value *Op = NULL; 1685 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1686 return Error("Invalid RET record"); 1687 Vs.push_back(Op); 1688 } while(OpNum != Record.size()); 1689 1690 const Type *ReturnType = F->getReturnType(); 1691 if (Vs.size() > 1 || 1692 (isa<StructType>(ReturnType) && 1693 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1694 Value *RV = UndefValue::get(ReturnType); 1695 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1696 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1697 CurBB->getInstList().push_back(I); 1698 ValueList.AssignValue(I, NextValueNo++); 1699 RV = I; 1700 } 1701 I = ReturnInst::Create(RV); 1702 break; 1703 } 1704 1705 I = ReturnInst::Create(Vs[0]); 1706 break; 1707 } 1708 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1709 if (Record.size() != 1 && Record.size() != 3) 1710 return Error("Invalid BR record"); 1711 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1712 if (TrueDest == 0) 1713 return Error("Invalid BR record"); 1714 1715 if (Record.size() == 1) 1716 I = BranchInst::Create(TrueDest); 1717 else { 1718 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1719 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1720 if (FalseDest == 0 || Cond == 0) 1721 return Error("Invalid BR record"); 1722 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1723 } 1724 break; 1725 } 1726 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1727 if (Record.size() < 3 || (Record.size() & 1) == 0) 1728 return Error("Invalid SWITCH record"); 1729 const Type *OpTy = getTypeByID(Record[0]); 1730 Value *Cond = getFnValueByID(Record[1], OpTy); 1731 BasicBlock *Default = getBasicBlock(Record[2]); 1732 if (OpTy == 0 || Cond == 0 || Default == 0) 1733 return Error("Invalid SWITCH record"); 1734 unsigned NumCases = (Record.size()-3)/2; 1735 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1736 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1737 ConstantInt *CaseVal = 1738 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1739 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1740 if (CaseVal == 0 || DestBB == 0) { 1741 delete SI; 1742 return Error("Invalid SWITCH record!"); 1743 } 1744 SI->addCase(CaseVal, DestBB); 1745 } 1746 I = SI; 1747 break; 1748 } 1749 1750 case bitc::FUNC_CODE_INST_INVOKE: { 1751 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1752 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1753 AttrListPtr PAL = getAttributes(Record[0]); 1754 unsigned CCInfo = Record[1]; 1755 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1756 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1757 1758 unsigned OpNum = 4; 1759 Value *Callee; 1760 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1761 return Error("Invalid INVOKE record"); 1762 1763 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1764 const FunctionType *FTy = !CalleeTy ? 0 : 1765 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1766 1767 // Check that the right number of fixed parameters are here. 1768 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1769 Record.size() < OpNum+FTy->getNumParams()) 1770 return Error("Invalid INVOKE record"); 1771 1772 SmallVector<Value*, 16> Ops; 1773 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1774 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1775 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1776 } 1777 1778 if (!FTy->isVarArg()) { 1779 if (Record.size() != OpNum) 1780 return Error("Invalid INVOKE record"); 1781 } else { 1782 // Read type/value pairs for varargs params. 1783 while (OpNum != Record.size()) { 1784 Value *Op; 1785 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1786 return Error("Invalid INVOKE record"); 1787 Ops.push_back(Op); 1788 } 1789 } 1790 1791 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1792 Ops.begin(), Ops.end()); 1793 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1794 cast<InvokeInst>(I)->setAttributes(PAL); 1795 break; 1796 } 1797 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1798 I = new UnwindInst(); 1799 break; 1800 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1801 I = new UnreachableInst(); 1802 break; 1803 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1804 if (Record.size() < 1 || ((Record.size()-1)&1)) 1805 return Error("Invalid PHI record"); 1806 const Type *Ty = getTypeByID(Record[0]); 1807 if (!Ty) return Error("Invalid PHI record"); 1808 1809 PHINode *PN = PHINode::Create(Ty); 1810 PN->reserveOperandSpace((Record.size()-1)/2); 1811 1812 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1813 Value *V = getFnValueByID(Record[1+i], Ty); 1814 BasicBlock *BB = getBasicBlock(Record[2+i]); 1815 if (!V || !BB) return Error("Invalid PHI record"); 1816 PN->addIncoming(V, BB); 1817 } 1818 I = PN; 1819 break; 1820 } 1821 1822 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1823 if (Record.size() < 3) 1824 return Error("Invalid MALLOC record"); 1825 const PointerType *Ty = 1826 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1827 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1828 unsigned Align = Record[2]; 1829 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1830 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1831 break; 1832 } 1833 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1834 unsigned OpNum = 0; 1835 Value *Op; 1836 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1837 OpNum != Record.size()) 1838 return Error("Invalid FREE record"); 1839 I = new FreeInst(Op); 1840 break; 1841 } 1842 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1843 if (Record.size() < 3) 1844 return Error("Invalid ALLOCA record"); 1845 const PointerType *Ty = 1846 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1847 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1848 unsigned Align = Record[2]; 1849 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1850 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1851 break; 1852 } 1853 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1854 unsigned OpNum = 0; 1855 Value *Op; 1856 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1857 OpNum+2 != Record.size()) 1858 return Error("Invalid LOAD record"); 1859 1860 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1861 break; 1862 } 1863 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1864 unsigned OpNum = 0; 1865 Value *Val, *Ptr; 1866 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1867 getValue(Record, OpNum, 1868 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1869 OpNum+2 != Record.size()) 1870 return Error("Invalid STORE record"); 1871 1872 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1873 break; 1874 } 1875 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1876 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1877 unsigned OpNum = 0; 1878 Value *Val, *Ptr; 1879 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1880 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1881 OpNum+2 != Record.size()) 1882 return Error("Invalid STORE record"); 1883 1884 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1885 break; 1886 } 1887 case bitc::FUNC_CODE_INST_CALL: { 1888 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1889 if (Record.size() < 3) 1890 return Error("Invalid CALL record"); 1891 1892 AttrListPtr PAL = getAttributes(Record[0]); 1893 unsigned CCInfo = Record[1]; 1894 1895 unsigned OpNum = 2; 1896 Value *Callee; 1897 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1898 return Error("Invalid CALL record"); 1899 1900 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1901 const FunctionType *FTy = 0; 1902 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1903 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1904 return Error("Invalid CALL record"); 1905 1906 SmallVector<Value*, 16> Args; 1907 // Read the fixed params. 1908 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1909 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1910 Args.push_back(getBasicBlock(Record[OpNum])); 1911 else 1912 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1913 if (Args.back() == 0) return Error("Invalid CALL record"); 1914 } 1915 1916 // Read type/value pairs for varargs params. 1917 if (!FTy->isVarArg()) { 1918 if (OpNum != Record.size()) 1919 return Error("Invalid CALL record"); 1920 } else { 1921 while (OpNum != Record.size()) { 1922 Value *Op; 1923 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1924 return Error("Invalid CALL record"); 1925 Args.push_back(Op); 1926 } 1927 } 1928 1929 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1930 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1931 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1932 cast<CallInst>(I)->setAttributes(PAL); 1933 break; 1934 } 1935 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1936 if (Record.size() < 3) 1937 return Error("Invalid VAARG record"); 1938 const Type *OpTy = getTypeByID(Record[0]); 1939 Value *Op = getFnValueByID(Record[1], OpTy); 1940 const Type *ResTy = getTypeByID(Record[2]); 1941 if (!OpTy || !Op || !ResTy) 1942 return Error("Invalid VAARG record"); 1943 I = new VAArgInst(Op, ResTy); 1944 break; 1945 } 1946 } 1947 1948 // Add instruction to end of current BB. If there is no current BB, reject 1949 // this file. 1950 if (CurBB == 0) { 1951 delete I; 1952 return Error("Invalid instruction with no BB"); 1953 } 1954 CurBB->getInstList().push_back(I); 1955 1956 // If this was a terminator instruction, move to the next block. 1957 if (isa<TerminatorInst>(I)) { 1958 ++CurBBNo; 1959 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1960 } 1961 1962 // Non-void values get registered in the value table for future use. 1963 if (I && I->getType() != Type::VoidTy) 1964 ValueList.AssignValue(I, NextValueNo++); 1965 } 1966 1967 // Check the function list for unresolved values. 1968 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1969 if (A->getParent() == 0) { 1970 // We found at least one unresolved value. Nuke them all to avoid leaks. 1971 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1972 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1973 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1974 delete A; 1975 } 1976 } 1977 return Error("Never resolved value found in function!"); 1978 } 1979 } 1980 1981 // Trim the value list down to the size it was before we parsed this function. 1982 ValueList.shrinkTo(ModuleValueListSize); 1983 std::vector<BasicBlock*>().swap(FunctionBBs); 1984 1985 return false; 1986 } 1987 1988 //===----------------------------------------------------------------------===// 1989 // ModuleProvider implementation 1990 //===----------------------------------------------------------------------===// 1991 1992 1993 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1994 // If it already is material, ignore the request. 1995 if (!F->hasNotBeenReadFromBitcode()) return false; 1996 1997 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 1998 DeferredFunctionInfo.find(F); 1999 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2000 2001 // Move the bit stream to the saved position of the deferred function body and 2002 // restore the real linkage type for the function. 2003 Stream.JumpToBit(DFII->second.first); 2004 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2005 2006 if (ParseFunctionBody(F)) { 2007 if (ErrInfo) *ErrInfo = ErrorString; 2008 return true; 2009 } 2010 2011 // Upgrade any old intrinsic calls in the function. 2012 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2013 E = UpgradedIntrinsics.end(); I != E; ++I) { 2014 if (I->first != I->second) { 2015 for (Value::use_iterator UI = I->first->use_begin(), 2016 UE = I->first->use_end(); UI != UE; ) { 2017 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2018 UpgradeIntrinsicCall(CI, I->second); 2019 } 2020 } 2021 } 2022 2023 return false; 2024 } 2025 2026 void BitcodeReader::dematerializeFunction(Function *F) { 2027 // If this function isn't materialized, or if it is a proto, this is a noop. 2028 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2029 return; 2030 2031 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2032 2033 // Just forget the function body, we can remat it later. 2034 F->deleteBody(); 2035 F->setLinkage(GlobalValue::GhostLinkage); 2036 } 2037 2038 2039 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2040 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 2041 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 2042 ++I) { 2043 Function *F = I->first; 2044 if (F->hasNotBeenReadFromBitcode() && 2045 materializeFunction(F, ErrInfo)) 2046 return 0; 2047 } 2048 2049 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2050 // delete the old functions to clean up. We can't do this unless the entire 2051 // module is materialized because there could always be another function body 2052 // with calls to the old function. 2053 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2054 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2055 if (I->first != I->second) { 2056 for (Value::use_iterator UI = I->first->use_begin(), 2057 UE = I->first->use_end(); UI != UE; ) { 2058 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2059 UpgradeIntrinsicCall(CI, I->second); 2060 } 2061 ValueList.replaceUsesOfWith(I->first, I->second); 2062 I->first->eraseFromParent(); 2063 } 2064 } 2065 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2066 2067 return TheModule; 2068 } 2069 2070 2071 /// This method is provided by the parent ModuleProvde class and overriden 2072 /// here. It simply releases the module from its provided and frees up our 2073 /// state. 2074 /// @brief Release our hold on the generated module 2075 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2076 // Since we're losing control of this Module, we must hand it back complete 2077 Module *M = ModuleProvider::releaseModule(ErrInfo); 2078 FreeState(); 2079 return M; 2080 } 2081 2082 2083 //===----------------------------------------------------------------------===// 2084 // External interface 2085 //===----------------------------------------------------------------------===// 2086 2087 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2088 /// 2089 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2090 std::string *ErrMsg) { 2091 BitcodeReader *R = new BitcodeReader(Buffer); 2092 if (R->ParseBitcode()) { 2093 if (ErrMsg) 2094 *ErrMsg = R->getErrorString(); 2095 2096 // Don't let the BitcodeReader dtor delete 'Buffer'. 2097 R->releaseMemoryBuffer(); 2098 delete R; 2099 return 0; 2100 } 2101 return R; 2102 } 2103 2104 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2105 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2106 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 2107 BitcodeReader *R; 2108 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 2109 if (!R) return 0; 2110 2111 // Read in the entire module. 2112 Module *M = R->materializeModule(ErrMsg); 2113 2114 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2115 // there was an error. 2116 R->releaseMemoryBuffer(); 2117 2118 // If there was no error, tell ModuleProvider not to delete it when its dtor 2119 // is run. 2120 if (M) 2121 M = R->releaseModule(ErrMsg); 2122 2123 delete R; 2124 return M; 2125 } 2126