1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 assert(!AnyFwdRefs && "Unexpected forward refs"); 127 MetadataPtrs.resize(N); 128 } 129 130 Metadata *getMetadataFwdRef(unsigned Idx); 131 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 132 void assignValue(Metadata *MD, unsigned Idx); 133 void tryToResolveCycles(); 134 bool hasFwdRefs() const { return AnyFwdRefs; } 135 }; 136 137 class BitcodeReader : public GVMaterializer { 138 LLVMContext &Context; 139 Module *TheModule = nullptr; 140 std::unique_ptr<MemoryBuffer> Buffer; 141 std::unique_ptr<BitstreamReader> StreamFile; 142 BitstreamCursor Stream; 143 // Next offset to start scanning for lazy parsing of function bodies. 144 uint64_t NextUnreadBit = 0; 145 // Last function offset found in the VST. 146 uint64_t LastFunctionBlockBit = 0; 147 bool SeenValueSymbolTable = false; 148 uint64_t VSTOffset = 0; 149 // Contains an arbitrary and optional string identifying the bitcode producer 150 std::string ProducerIdentification; 151 152 std::vector<Type*> TypeList; 153 BitcodeReaderValueList ValueList; 154 BitcodeReaderMetadataList MetadataList; 155 std::vector<Comdat *> ComdatList; 156 SmallVector<Instruction *, 64> InstructionList; 157 158 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 159 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 160 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 162 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 163 164 SmallVector<Instruction*, 64> InstsWithTBAATag; 165 166 bool HasSeenOldLoopTags = false; 167 168 /// The set of attributes by index. Index zero in the file is for null, and 169 /// is thus not represented here. As such all indices are off by one. 170 std::vector<AttributeSet> MAttributes; 171 172 /// The set of attribute groups. 173 std::map<unsigned, AttributeSet> MAttributeGroups; 174 175 /// While parsing a function body, this is a list of the basic blocks for the 176 /// function. 177 std::vector<BasicBlock*> FunctionBBs; 178 179 // When reading the module header, this list is populated with functions that 180 // have bodies later in the file. 181 std::vector<Function*> FunctionsWithBodies; 182 183 // When intrinsic functions are encountered which require upgrading they are 184 // stored here with their replacement function. 185 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 186 UpgradedIntrinsicMap UpgradedIntrinsics; 187 188 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 189 DenseMap<unsigned, unsigned> MDKindMap; 190 191 // Several operations happen after the module header has been read, but 192 // before function bodies are processed. This keeps track of whether 193 // we've done this yet. 194 bool SeenFirstFunctionBody = false; 195 196 /// When function bodies are initially scanned, this map contains info about 197 /// where to find deferred function body in the stream. 198 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 199 200 /// When Metadata block is initially scanned when parsing the module, we may 201 /// choose to defer parsing of the metadata. This vector contains info about 202 /// which Metadata blocks are deferred. 203 std::vector<uint64_t> DeferredMetadataInfo; 204 205 /// These are basic blocks forward-referenced by block addresses. They are 206 /// inserted lazily into functions when they're loaded. The basic block ID is 207 /// its index into the vector. 208 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 209 std::deque<Function *> BasicBlockFwdRefQueue; 210 211 /// Indicates that we are using a new encoding for instruction operands where 212 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 213 /// instruction number, for a more compact encoding. Some instruction 214 /// operands are not relative to the instruction ID: basic block numbers, and 215 /// types. Once the old style function blocks have been phased out, we would 216 /// not need this flag. 217 bool UseRelativeIDs = false; 218 219 /// True if all functions will be materialized, negating the need to process 220 /// (e.g.) blockaddress forward references. 221 bool WillMaterializeAllForwardRefs = false; 222 223 /// True if any Metadata block has been materialized. 224 bool IsMetadataMaterialized = false; 225 226 bool StripDebugInfo = false; 227 228 /// Functions that need to be matched with subprograms when upgrading old 229 /// metadata. 230 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 231 232 std::vector<std::string> BundleTags; 233 234 public: 235 std::error_code error(BitcodeError E, const Twine &Message); 236 std::error_code error(BitcodeError E); 237 std::error_code error(const Twine &Message); 238 239 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 240 BitcodeReader(LLVMContext &Context); 241 ~BitcodeReader() override { freeState(); } 242 243 std::error_code materializeForwardReferencedFunctions(); 244 245 void freeState(); 246 247 void releaseBuffer(); 248 249 std::error_code materialize(GlobalValue *GV) override; 250 std::error_code materializeModule() override; 251 std::vector<StructType *> getIdentifiedStructTypes() const override; 252 253 /// \brief Main interface to parsing a bitcode buffer. 254 /// \returns true if an error occurred. 255 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 256 Module *M, 257 bool ShouldLazyLoadMetadata = false); 258 259 /// \brief Cheap mechanism to just extract module triple 260 /// \returns true if an error occurred. 261 ErrorOr<std::string> parseTriple(); 262 263 /// Cheap mechanism to just extract the identification block out of bitcode. 264 ErrorOr<std::string> parseIdentificationBlock(); 265 266 static uint64_t decodeSignRotatedValue(uint64_t V); 267 268 /// Materialize any deferred Metadata block. 269 std::error_code materializeMetadata() override; 270 271 void setStripDebugInfo() override; 272 273 private: 274 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 275 // ProducerIdentification data member, and do some basic enforcement on the 276 // "epoch" encoded in the bitcode. 277 std::error_code parseBitcodeVersion(); 278 279 std::vector<StructType *> IdentifiedStructTypes; 280 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 281 StructType *createIdentifiedStructType(LLVMContext &Context); 282 283 Type *getTypeByID(unsigned ID); 284 Value *getFnValueByID(unsigned ID, Type *Ty) { 285 if (Ty && Ty->isMetadataTy()) 286 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 287 return ValueList.getValueFwdRef(ID, Ty); 288 } 289 Metadata *getFnMetadataByID(unsigned ID) { 290 return MetadataList.getMetadataFwdRef(ID); 291 } 292 BasicBlock *getBasicBlock(unsigned ID) const { 293 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 294 return FunctionBBs[ID]; 295 } 296 AttributeSet getAttributes(unsigned i) const { 297 if (i-1 < MAttributes.size()) 298 return MAttributes[i-1]; 299 return AttributeSet(); 300 } 301 302 /// Read a value/type pair out of the specified record from slot 'Slot'. 303 /// Increment Slot past the number of slots used in the record. Return true on 304 /// failure. 305 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 306 unsigned InstNum, Value *&ResVal) { 307 if (Slot == Record.size()) return true; 308 unsigned ValNo = (unsigned)Record[Slot++]; 309 // Adjust the ValNo, if it was encoded relative to the InstNum. 310 if (UseRelativeIDs) 311 ValNo = InstNum - ValNo; 312 if (ValNo < InstNum) { 313 // If this is not a forward reference, just return the value we already 314 // have. 315 ResVal = getFnValueByID(ValNo, nullptr); 316 return ResVal == nullptr; 317 } 318 if (Slot == Record.size()) 319 return true; 320 321 unsigned TypeNo = (unsigned)Record[Slot++]; 322 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 323 return ResVal == nullptr; 324 } 325 326 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 327 /// past the number of slots used by the value in the record. Return true if 328 /// there is an error. 329 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 330 unsigned InstNum, Type *Ty, Value *&ResVal) { 331 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 332 return true; 333 // All values currently take a single record slot. 334 ++Slot; 335 return false; 336 } 337 338 /// Like popValue, but does not increment the Slot number. 339 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 340 unsigned InstNum, Type *Ty, Value *&ResVal) { 341 ResVal = getValue(Record, Slot, InstNum, Ty); 342 return ResVal == nullptr; 343 } 344 345 /// Version of getValue that returns ResVal directly, or 0 if there is an 346 /// error. 347 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 348 unsigned InstNum, Type *Ty) { 349 if (Slot == Record.size()) return nullptr; 350 unsigned ValNo = (unsigned)Record[Slot]; 351 // Adjust the ValNo, if it was encoded relative to the InstNum. 352 if (UseRelativeIDs) 353 ValNo = InstNum - ValNo; 354 return getFnValueByID(ValNo, Ty); 355 } 356 357 /// Like getValue, but decodes signed VBRs. 358 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 359 unsigned InstNum, Type *Ty) { 360 if (Slot == Record.size()) return nullptr; 361 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 362 // Adjust the ValNo, if it was encoded relative to the InstNum. 363 if (UseRelativeIDs) 364 ValNo = InstNum - ValNo; 365 return getFnValueByID(ValNo, Ty); 366 } 367 368 /// Converts alignment exponent (i.e. power of two (or zero)) to the 369 /// corresponding alignment to use. If alignment is too large, returns 370 /// a corresponding error code. 371 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 372 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 373 std::error_code parseModule(uint64_t ResumeBit, 374 bool ShouldLazyLoadMetadata = false); 375 std::error_code parseAttributeBlock(); 376 std::error_code parseAttributeGroupBlock(); 377 std::error_code parseTypeTable(); 378 std::error_code parseTypeTableBody(); 379 std::error_code parseOperandBundleTags(); 380 381 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 382 unsigned NameIndex, Triple &TT); 383 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 384 std::error_code parseConstants(); 385 std::error_code rememberAndSkipFunctionBodies(); 386 std::error_code rememberAndSkipFunctionBody(); 387 /// Save the positions of the Metadata blocks and skip parsing the blocks. 388 std::error_code rememberAndSkipMetadata(); 389 std::error_code parseFunctionBody(Function *F); 390 std::error_code globalCleanup(); 391 std::error_code resolveGlobalAndAliasInits(); 392 std::error_code parseMetadata(bool ModuleLevel = false); 393 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 394 StringRef Blob, 395 unsigned &NextMetadataNo); 396 std::error_code parseMetadataKinds(); 397 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 398 std::error_code parseMetadataAttachment(Function &F); 399 ErrorOr<std::string> parseModuleTriple(); 400 std::error_code parseUseLists(); 401 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 402 std::error_code initStreamFromBuffer(); 403 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 404 std::error_code findFunctionInStream( 405 Function *F, 406 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 407 }; 408 409 /// Class to manage reading and parsing function summary index bitcode 410 /// files/sections. 411 class ModuleSummaryIndexBitcodeReader { 412 DiagnosticHandlerFunction DiagnosticHandler; 413 414 /// Eventually points to the module index built during parsing. 415 ModuleSummaryIndex *TheIndex = nullptr; 416 417 std::unique_ptr<MemoryBuffer> Buffer; 418 std::unique_ptr<BitstreamReader> StreamFile; 419 BitstreamCursor Stream; 420 421 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 422 /// 423 /// If false, the summary section is fully parsed into the index during 424 /// the initial parse. Otherwise, if true, the caller is expected to 425 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 426 /// section is thus parsed lazily. 427 bool IsLazy = false; 428 429 /// Used to indicate whether caller only wants to check for the presence 430 /// of the global value summary bitcode section. All blocks are skipped, 431 /// but the SeenGlobalValSummary boolean is set. 432 bool CheckGlobalValSummaryPresenceOnly = false; 433 434 /// Indicates whether we have encountered a global value summary section 435 /// yet during parsing, used when checking if file contains global value 436 /// summary section. 437 bool SeenGlobalValSummary = false; 438 439 /// Indicates whether we have already parsed the VST, used for error checking. 440 bool SeenValueSymbolTable = false; 441 442 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 443 /// Used to enable on-demand parsing of the VST. 444 uint64_t VSTOffset = 0; 445 446 // Map to save ValueId to GUID association that was recorded in the 447 // ValueSymbolTable. It is used after the VST is parsed to convert 448 // call graph edges read from the function summary from referencing 449 // callees by their ValueId to using the GUID instead, which is how 450 // they are recorded in the summary index being built. 451 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 452 453 /// Map to save the association between summary offset in the VST to the 454 /// GlobalValueInfo object created when parsing it. Used to access the 455 /// info object when parsing the summary section. 456 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 457 458 /// Map populated during module path string table parsing, from the 459 /// module ID to a string reference owned by the index's module 460 /// path string table, used to correlate with combined index 461 /// summary records. 462 DenseMap<uint64_t, StringRef> ModuleIdMap; 463 464 /// Original source file name recorded in a bitcode record. 465 std::string SourceFileName; 466 467 public: 468 std::error_code error(BitcodeError E, const Twine &Message); 469 std::error_code error(BitcodeError E); 470 std::error_code error(const Twine &Message); 471 472 ModuleSummaryIndexBitcodeReader( 473 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 474 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 475 ModuleSummaryIndexBitcodeReader( 476 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 477 bool CheckGlobalValSummaryPresenceOnly = false); 478 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 479 480 void freeState(); 481 482 void releaseBuffer(); 483 484 /// Check if the parser has encountered a summary section. 485 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 486 487 /// \brief Main interface to parsing a bitcode buffer. 488 /// \returns true if an error occurred. 489 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 490 ModuleSummaryIndex *I); 491 492 /// \brief Interface for parsing a summary lazily. 493 std::error_code 494 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 495 ModuleSummaryIndex *I, size_t SummaryOffset); 496 497 private: 498 std::error_code parseModule(); 499 std::error_code parseValueSymbolTable( 500 uint64_t Offset, 501 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 502 std::error_code parseEntireSummary(); 503 std::error_code parseModuleStringTable(); 504 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 505 std::error_code initStreamFromBuffer(); 506 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 507 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 508 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 509 }; 510 } // end anonymous namespace 511 512 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 513 DiagnosticSeverity Severity, 514 const Twine &Msg) 515 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 516 517 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 518 519 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 520 std::error_code EC, const Twine &Message) { 521 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 522 DiagnosticHandler(DI); 523 return EC; 524 } 525 526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 527 std::error_code EC) { 528 return error(DiagnosticHandler, EC, EC.message()); 529 } 530 531 static std::error_code error(LLVMContext &Context, std::error_code EC, 532 const Twine &Message) { 533 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 534 Message); 535 } 536 537 static std::error_code error(LLVMContext &Context, std::error_code EC) { 538 return error(Context, EC, EC.message()); 539 } 540 541 static std::error_code error(LLVMContext &Context, const Twine &Message) { 542 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 543 Message); 544 } 545 546 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 547 if (!ProducerIdentification.empty()) { 548 return ::error(Context, make_error_code(E), 549 Message + " (Producer: '" + ProducerIdentification + 550 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 551 } 552 return ::error(Context, make_error_code(E), Message); 553 } 554 555 std::error_code BitcodeReader::error(const Twine &Message) { 556 if (!ProducerIdentification.empty()) { 557 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 558 Message + " (Producer: '" + ProducerIdentification + 559 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 560 } 561 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 562 Message); 563 } 564 565 std::error_code BitcodeReader::error(BitcodeError E) { 566 return ::error(Context, make_error_code(E)); 567 } 568 569 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 570 : Context(Context), Buffer(Buffer), ValueList(Context), 571 MetadataList(Context) {} 572 573 BitcodeReader::BitcodeReader(LLVMContext &Context) 574 : Context(Context), Buffer(nullptr), ValueList(Context), 575 MetadataList(Context) {} 576 577 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 578 if (WillMaterializeAllForwardRefs) 579 return std::error_code(); 580 581 // Prevent recursion. 582 WillMaterializeAllForwardRefs = true; 583 584 while (!BasicBlockFwdRefQueue.empty()) { 585 Function *F = BasicBlockFwdRefQueue.front(); 586 BasicBlockFwdRefQueue.pop_front(); 587 assert(F && "Expected valid function"); 588 if (!BasicBlockFwdRefs.count(F)) 589 // Already materialized. 590 continue; 591 592 // Check for a function that isn't materializable to prevent an infinite 593 // loop. When parsing a blockaddress stored in a global variable, there 594 // isn't a trivial way to check if a function will have a body without a 595 // linear search through FunctionsWithBodies, so just check it here. 596 if (!F->isMaterializable()) 597 return error("Never resolved function from blockaddress"); 598 599 // Try to materialize F. 600 if (std::error_code EC = materialize(F)) 601 return EC; 602 } 603 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 604 605 // Reset state. 606 WillMaterializeAllForwardRefs = false; 607 return std::error_code(); 608 } 609 610 void BitcodeReader::freeState() { 611 Buffer = nullptr; 612 std::vector<Type*>().swap(TypeList); 613 ValueList.clear(); 614 MetadataList.clear(); 615 std::vector<Comdat *>().swap(ComdatList); 616 617 std::vector<AttributeSet>().swap(MAttributes); 618 std::vector<BasicBlock*>().swap(FunctionBBs); 619 std::vector<Function*>().swap(FunctionsWithBodies); 620 DeferredFunctionInfo.clear(); 621 DeferredMetadataInfo.clear(); 622 MDKindMap.clear(); 623 624 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 625 BasicBlockFwdRefQueue.clear(); 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Helper functions to implement forward reference resolution, etc. 630 //===----------------------------------------------------------------------===// 631 632 /// Convert a string from a record into an std::string, return true on failure. 633 template <typename StrTy> 634 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 635 StrTy &Result) { 636 if (Idx > Record.size()) 637 return true; 638 639 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 640 Result += (char)Record[i]; 641 return false; 642 } 643 644 static bool hasImplicitComdat(size_t Val) { 645 switch (Val) { 646 default: 647 return false; 648 case 1: // Old WeakAnyLinkage 649 case 4: // Old LinkOnceAnyLinkage 650 case 10: // Old WeakODRLinkage 651 case 11: // Old LinkOnceODRLinkage 652 return true; 653 } 654 } 655 656 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 657 switch (Val) { 658 default: // Map unknown/new linkages to external 659 case 0: 660 return GlobalValue::ExternalLinkage; 661 case 2: 662 return GlobalValue::AppendingLinkage; 663 case 3: 664 return GlobalValue::InternalLinkage; 665 case 5: 666 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 667 case 6: 668 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 669 case 7: 670 return GlobalValue::ExternalWeakLinkage; 671 case 8: 672 return GlobalValue::CommonLinkage; 673 case 9: 674 return GlobalValue::PrivateLinkage; 675 case 12: 676 return GlobalValue::AvailableExternallyLinkage; 677 case 13: 678 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 679 case 14: 680 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 681 case 15: 682 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 683 case 1: // Old value with implicit comdat. 684 case 16: 685 return GlobalValue::WeakAnyLinkage; 686 case 10: // Old value with implicit comdat. 687 case 17: 688 return GlobalValue::WeakODRLinkage; 689 case 4: // Old value with implicit comdat. 690 case 18: 691 return GlobalValue::LinkOnceAnyLinkage; 692 case 11: // Old value with implicit comdat. 693 case 19: 694 return GlobalValue::LinkOnceODRLinkage; 695 } 696 } 697 698 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown visibilities to default. 701 case 0: return GlobalValue::DefaultVisibility; 702 case 1: return GlobalValue::HiddenVisibility; 703 case 2: return GlobalValue::ProtectedVisibility; 704 } 705 } 706 707 static GlobalValue::DLLStorageClassTypes 708 getDecodedDLLStorageClass(unsigned Val) { 709 switch (Val) { 710 default: // Map unknown values to default. 711 case 0: return GlobalValue::DefaultStorageClass; 712 case 1: return GlobalValue::DLLImportStorageClass; 713 case 2: return GlobalValue::DLLExportStorageClass; 714 } 715 } 716 717 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 718 switch (Val) { 719 case 0: return GlobalVariable::NotThreadLocal; 720 default: // Map unknown non-zero value to general dynamic. 721 case 1: return GlobalVariable::GeneralDynamicTLSModel; 722 case 2: return GlobalVariable::LocalDynamicTLSModel; 723 case 3: return GlobalVariable::InitialExecTLSModel; 724 case 4: return GlobalVariable::LocalExecTLSModel; 725 } 726 } 727 728 static int getDecodedCastOpcode(unsigned Val) { 729 switch (Val) { 730 default: return -1; 731 case bitc::CAST_TRUNC : return Instruction::Trunc; 732 case bitc::CAST_ZEXT : return Instruction::ZExt; 733 case bitc::CAST_SEXT : return Instruction::SExt; 734 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 735 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 736 case bitc::CAST_UITOFP : return Instruction::UIToFP; 737 case bitc::CAST_SITOFP : return Instruction::SIToFP; 738 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 739 case bitc::CAST_FPEXT : return Instruction::FPExt; 740 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 741 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 742 case bitc::CAST_BITCAST : return Instruction::BitCast; 743 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 744 } 745 } 746 747 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 748 bool IsFP = Ty->isFPOrFPVectorTy(); 749 // BinOps are only valid for int/fp or vector of int/fp types 750 if (!IsFP && !Ty->isIntOrIntVectorTy()) 751 return -1; 752 753 switch (Val) { 754 default: 755 return -1; 756 case bitc::BINOP_ADD: 757 return IsFP ? Instruction::FAdd : Instruction::Add; 758 case bitc::BINOP_SUB: 759 return IsFP ? Instruction::FSub : Instruction::Sub; 760 case bitc::BINOP_MUL: 761 return IsFP ? Instruction::FMul : Instruction::Mul; 762 case bitc::BINOP_UDIV: 763 return IsFP ? -1 : Instruction::UDiv; 764 case bitc::BINOP_SDIV: 765 return IsFP ? Instruction::FDiv : Instruction::SDiv; 766 case bitc::BINOP_UREM: 767 return IsFP ? -1 : Instruction::URem; 768 case bitc::BINOP_SREM: 769 return IsFP ? Instruction::FRem : Instruction::SRem; 770 case bitc::BINOP_SHL: 771 return IsFP ? -1 : Instruction::Shl; 772 case bitc::BINOP_LSHR: 773 return IsFP ? -1 : Instruction::LShr; 774 case bitc::BINOP_ASHR: 775 return IsFP ? -1 : Instruction::AShr; 776 case bitc::BINOP_AND: 777 return IsFP ? -1 : Instruction::And; 778 case bitc::BINOP_OR: 779 return IsFP ? -1 : Instruction::Or; 780 case bitc::BINOP_XOR: 781 return IsFP ? -1 : Instruction::Xor; 782 } 783 } 784 785 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 786 switch (Val) { 787 default: return AtomicRMWInst::BAD_BINOP; 788 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 789 case bitc::RMW_ADD: return AtomicRMWInst::Add; 790 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 791 case bitc::RMW_AND: return AtomicRMWInst::And; 792 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 793 case bitc::RMW_OR: return AtomicRMWInst::Or; 794 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 795 case bitc::RMW_MAX: return AtomicRMWInst::Max; 796 case bitc::RMW_MIN: return AtomicRMWInst::Min; 797 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 798 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 799 } 800 } 801 802 static AtomicOrdering getDecodedOrdering(unsigned Val) { 803 switch (Val) { 804 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 805 case bitc::ORDERING_UNORDERED: return Unordered; 806 case bitc::ORDERING_MONOTONIC: return Monotonic; 807 case bitc::ORDERING_ACQUIRE: return Acquire; 808 case bitc::ORDERING_RELEASE: return Release; 809 case bitc::ORDERING_ACQREL: return AcquireRelease; 810 default: // Map unknown orderings to sequentially-consistent. 811 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 812 } 813 } 814 815 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 816 switch (Val) { 817 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 818 default: // Map unknown scopes to cross-thread. 819 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 820 } 821 } 822 823 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 824 switch (Val) { 825 default: // Map unknown selection kinds to any. 826 case bitc::COMDAT_SELECTION_KIND_ANY: 827 return Comdat::Any; 828 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 829 return Comdat::ExactMatch; 830 case bitc::COMDAT_SELECTION_KIND_LARGEST: 831 return Comdat::Largest; 832 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 833 return Comdat::NoDuplicates; 834 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 835 return Comdat::SameSize; 836 } 837 } 838 839 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 840 FastMathFlags FMF; 841 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 842 FMF.setUnsafeAlgebra(); 843 if (0 != (Val & FastMathFlags::NoNaNs)) 844 FMF.setNoNaNs(); 845 if (0 != (Val & FastMathFlags::NoInfs)) 846 FMF.setNoInfs(); 847 if (0 != (Val & FastMathFlags::NoSignedZeros)) 848 FMF.setNoSignedZeros(); 849 if (0 != (Val & FastMathFlags::AllowReciprocal)) 850 FMF.setAllowReciprocal(); 851 return FMF; 852 } 853 854 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 855 switch (Val) { 856 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 857 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 858 } 859 } 860 861 namespace llvm { 862 namespace { 863 /// \brief A class for maintaining the slot number definition 864 /// as a placeholder for the actual definition for forward constants defs. 865 class ConstantPlaceHolder : public ConstantExpr { 866 void operator=(const ConstantPlaceHolder &) = delete; 867 868 public: 869 // allocate space for exactly one operand 870 void *operator new(size_t s) { return User::operator new(s, 1); } 871 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 872 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 873 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 874 } 875 876 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 877 static bool classof(const Value *V) { 878 return isa<ConstantExpr>(V) && 879 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 880 } 881 882 /// Provide fast operand accessors 883 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 884 }; 885 } // end anonymous namespace 886 887 // FIXME: can we inherit this from ConstantExpr? 888 template <> 889 struct OperandTraits<ConstantPlaceHolder> : 890 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 891 }; 892 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 893 } // end namespace llvm 894 895 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 896 if (Idx == size()) { 897 push_back(V); 898 return; 899 } 900 901 if (Idx >= size()) 902 resize(Idx+1); 903 904 WeakVH &OldV = ValuePtrs[Idx]; 905 if (!OldV) { 906 OldV = V; 907 return; 908 } 909 910 // Handle constants and non-constants (e.g. instrs) differently for 911 // efficiency. 912 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 913 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 914 OldV = V; 915 } else { 916 // If there was a forward reference to this value, replace it. 917 Value *PrevVal = OldV; 918 OldV->replaceAllUsesWith(V); 919 delete PrevVal; 920 } 921 } 922 923 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 924 Type *Ty) { 925 if (Idx >= size()) 926 resize(Idx + 1); 927 928 if (Value *V = ValuePtrs[Idx]) { 929 if (Ty != V->getType()) 930 report_fatal_error("Type mismatch in constant table!"); 931 return cast<Constant>(V); 932 } 933 934 // Create and return a placeholder, which will later be RAUW'd. 935 Constant *C = new ConstantPlaceHolder(Ty, Context); 936 ValuePtrs[Idx] = C; 937 return C; 938 } 939 940 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 941 // Bail out for a clearly invalid value. This would make us call resize(0) 942 if (Idx == UINT_MAX) 943 return nullptr; 944 945 if (Idx >= size()) 946 resize(Idx + 1); 947 948 if (Value *V = ValuePtrs[Idx]) { 949 // If the types don't match, it's invalid. 950 if (Ty && Ty != V->getType()) 951 return nullptr; 952 return V; 953 } 954 955 // No type specified, must be invalid reference. 956 if (!Ty) return nullptr; 957 958 // Create and return a placeholder, which will later be RAUW'd. 959 Value *V = new Argument(Ty); 960 ValuePtrs[Idx] = V; 961 return V; 962 } 963 964 /// Once all constants are read, this method bulk resolves any forward 965 /// references. The idea behind this is that we sometimes get constants (such 966 /// as large arrays) which reference *many* forward ref constants. Replacing 967 /// each of these causes a lot of thrashing when building/reuniquing the 968 /// constant. Instead of doing this, we look at all the uses and rewrite all 969 /// the place holders at once for any constant that uses a placeholder. 970 void BitcodeReaderValueList::resolveConstantForwardRefs() { 971 // Sort the values by-pointer so that they are efficient to look up with a 972 // binary search. 973 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 974 975 SmallVector<Constant*, 64> NewOps; 976 977 while (!ResolveConstants.empty()) { 978 Value *RealVal = operator[](ResolveConstants.back().second); 979 Constant *Placeholder = ResolveConstants.back().first; 980 ResolveConstants.pop_back(); 981 982 // Loop over all users of the placeholder, updating them to reference the 983 // new value. If they reference more than one placeholder, update them all 984 // at once. 985 while (!Placeholder->use_empty()) { 986 auto UI = Placeholder->user_begin(); 987 User *U = *UI; 988 989 // If the using object isn't uniqued, just update the operands. This 990 // handles instructions and initializers for global variables. 991 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 992 UI.getUse().set(RealVal); 993 continue; 994 } 995 996 // Otherwise, we have a constant that uses the placeholder. Replace that 997 // constant with a new constant that has *all* placeholder uses updated. 998 Constant *UserC = cast<Constant>(U); 999 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1000 I != E; ++I) { 1001 Value *NewOp; 1002 if (!isa<ConstantPlaceHolder>(*I)) { 1003 // Not a placeholder reference. 1004 NewOp = *I; 1005 } else if (*I == Placeholder) { 1006 // Common case is that it just references this one placeholder. 1007 NewOp = RealVal; 1008 } else { 1009 // Otherwise, look up the placeholder in ResolveConstants. 1010 ResolveConstantsTy::iterator It = 1011 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1012 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1013 0)); 1014 assert(It != ResolveConstants.end() && It->first == *I); 1015 NewOp = operator[](It->second); 1016 } 1017 1018 NewOps.push_back(cast<Constant>(NewOp)); 1019 } 1020 1021 // Make the new constant. 1022 Constant *NewC; 1023 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1024 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1025 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1026 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1027 } else if (isa<ConstantVector>(UserC)) { 1028 NewC = ConstantVector::get(NewOps); 1029 } else { 1030 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1031 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1032 } 1033 1034 UserC->replaceAllUsesWith(NewC); 1035 UserC->destroyConstant(); 1036 NewOps.clear(); 1037 } 1038 1039 // Update all ValueHandles, they should be the only users at this point. 1040 Placeholder->replaceAllUsesWith(RealVal); 1041 delete Placeholder; 1042 } 1043 } 1044 1045 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1046 if (Idx == size()) { 1047 push_back(MD); 1048 return; 1049 } 1050 1051 if (Idx >= size()) 1052 resize(Idx+1); 1053 1054 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1055 if (!OldMD) { 1056 OldMD.reset(MD); 1057 return; 1058 } 1059 1060 // If there was a forward reference to this value, replace it. 1061 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1062 PrevMD->replaceAllUsesWith(MD); 1063 --NumFwdRefs; 1064 } 1065 1066 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1067 if (Idx >= size()) 1068 resize(Idx + 1); 1069 1070 if (Metadata *MD = MetadataPtrs[Idx]) 1071 return MD; 1072 1073 // Track forward refs to be resolved later. 1074 if (AnyFwdRefs) { 1075 MinFwdRef = std::min(MinFwdRef, Idx); 1076 MaxFwdRef = std::max(MaxFwdRef, Idx); 1077 } else { 1078 AnyFwdRefs = true; 1079 MinFwdRef = MaxFwdRef = Idx; 1080 } 1081 ++NumFwdRefs; 1082 1083 // Create and return a placeholder, which will later be RAUW'd. 1084 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1085 MetadataPtrs[Idx].reset(MD); 1086 return MD; 1087 } 1088 1089 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1090 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1091 } 1092 1093 void BitcodeReaderMetadataList::tryToResolveCycles() { 1094 if (!AnyFwdRefs) 1095 // Nothing to do. 1096 return; 1097 1098 if (NumFwdRefs) 1099 // Still forward references... can't resolve cycles. 1100 return; 1101 1102 // Resolve any cycles. 1103 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1104 auto &MD = MetadataPtrs[I]; 1105 auto *N = dyn_cast_or_null<MDNode>(MD); 1106 if (!N) 1107 continue; 1108 1109 assert(!N->isTemporary() && "Unexpected forward reference"); 1110 N->resolveCycles(); 1111 } 1112 1113 // Make sure we return early again until there's another forward ref. 1114 AnyFwdRefs = false; 1115 } 1116 1117 Type *BitcodeReader::getTypeByID(unsigned ID) { 1118 // The type table size is always specified correctly. 1119 if (ID >= TypeList.size()) 1120 return nullptr; 1121 1122 if (Type *Ty = TypeList[ID]) 1123 return Ty; 1124 1125 // If we have a forward reference, the only possible case is when it is to a 1126 // named struct. Just create a placeholder for now. 1127 return TypeList[ID] = createIdentifiedStructType(Context); 1128 } 1129 1130 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1131 StringRef Name) { 1132 auto *Ret = StructType::create(Context, Name); 1133 IdentifiedStructTypes.push_back(Ret); 1134 return Ret; 1135 } 1136 1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1138 auto *Ret = StructType::create(Context); 1139 IdentifiedStructTypes.push_back(Ret); 1140 return Ret; 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // Functions for parsing blocks from the bitcode file 1145 //===----------------------------------------------------------------------===// 1146 1147 1148 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1149 /// been decoded from the given integer. This function must stay in sync with 1150 /// 'encodeLLVMAttributesForBitcode'. 1151 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1152 uint64_t EncodedAttrs) { 1153 // FIXME: Remove in 4.0. 1154 1155 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1156 // the bits above 31 down by 11 bits. 1157 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1158 assert((!Alignment || isPowerOf2_32(Alignment)) && 1159 "Alignment must be a power of two."); 1160 1161 if (Alignment) 1162 B.addAlignmentAttr(Alignment); 1163 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1164 (EncodedAttrs & 0xffff)); 1165 } 1166 1167 std::error_code BitcodeReader::parseAttributeBlock() { 1168 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1169 return error("Invalid record"); 1170 1171 if (!MAttributes.empty()) 1172 return error("Invalid multiple blocks"); 1173 1174 SmallVector<uint64_t, 64> Record; 1175 1176 SmallVector<AttributeSet, 8> Attrs; 1177 1178 // Read all the records. 1179 while (1) { 1180 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1181 1182 switch (Entry.Kind) { 1183 case BitstreamEntry::SubBlock: // Handled for us already. 1184 case BitstreamEntry::Error: 1185 return error("Malformed block"); 1186 case BitstreamEntry::EndBlock: 1187 return std::error_code(); 1188 case BitstreamEntry::Record: 1189 // The interesting case. 1190 break; 1191 } 1192 1193 // Read a record. 1194 Record.clear(); 1195 switch (Stream.readRecord(Entry.ID, Record)) { 1196 default: // Default behavior: ignore. 1197 break; 1198 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1199 // FIXME: Remove in 4.0. 1200 if (Record.size() & 1) 1201 return error("Invalid record"); 1202 1203 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1204 AttrBuilder B; 1205 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1206 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1207 } 1208 1209 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1210 Attrs.clear(); 1211 break; 1212 } 1213 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1214 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1215 Attrs.push_back(MAttributeGroups[Record[i]]); 1216 1217 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1218 Attrs.clear(); 1219 break; 1220 } 1221 } 1222 } 1223 } 1224 1225 // Returns Attribute::None on unrecognized codes. 1226 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1227 switch (Code) { 1228 default: 1229 return Attribute::None; 1230 case bitc::ATTR_KIND_ALIGNMENT: 1231 return Attribute::Alignment; 1232 case bitc::ATTR_KIND_ALWAYS_INLINE: 1233 return Attribute::AlwaysInline; 1234 case bitc::ATTR_KIND_ARGMEMONLY: 1235 return Attribute::ArgMemOnly; 1236 case bitc::ATTR_KIND_BUILTIN: 1237 return Attribute::Builtin; 1238 case bitc::ATTR_KIND_BY_VAL: 1239 return Attribute::ByVal; 1240 case bitc::ATTR_KIND_IN_ALLOCA: 1241 return Attribute::InAlloca; 1242 case bitc::ATTR_KIND_COLD: 1243 return Attribute::Cold; 1244 case bitc::ATTR_KIND_CONVERGENT: 1245 return Attribute::Convergent; 1246 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1247 return Attribute::InaccessibleMemOnly; 1248 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1249 return Attribute::InaccessibleMemOrArgMemOnly; 1250 case bitc::ATTR_KIND_INLINE_HINT: 1251 return Attribute::InlineHint; 1252 case bitc::ATTR_KIND_IN_REG: 1253 return Attribute::InReg; 1254 case bitc::ATTR_KIND_JUMP_TABLE: 1255 return Attribute::JumpTable; 1256 case bitc::ATTR_KIND_MIN_SIZE: 1257 return Attribute::MinSize; 1258 case bitc::ATTR_KIND_NAKED: 1259 return Attribute::Naked; 1260 case bitc::ATTR_KIND_NEST: 1261 return Attribute::Nest; 1262 case bitc::ATTR_KIND_NO_ALIAS: 1263 return Attribute::NoAlias; 1264 case bitc::ATTR_KIND_NO_BUILTIN: 1265 return Attribute::NoBuiltin; 1266 case bitc::ATTR_KIND_NO_CAPTURE: 1267 return Attribute::NoCapture; 1268 case bitc::ATTR_KIND_NO_DUPLICATE: 1269 return Attribute::NoDuplicate; 1270 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1271 return Attribute::NoImplicitFloat; 1272 case bitc::ATTR_KIND_NO_INLINE: 1273 return Attribute::NoInline; 1274 case bitc::ATTR_KIND_NO_RECURSE: 1275 return Attribute::NoRecurse; 1276 case bitc::ATTR_KIND_NON_LAZY_BIND: 1277 return Attribute::NonLazyBind; 1278 case bitc::ATTR_KIND_NON_NULL: 1279 return Attribute::NonNull; 1280 case bitc::ATTR_KIND_DEREFERENCEABLE: 1281 return Attribute::Dereferenceable; 1282 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1283 return Attribute::DereferenceableOrNull; 1284 case bitc::ATTR_KIND_NO_RED_ZONE: 1285 return Attribute::NoRedZone; 1286 case bitc::ATTR_KIND_NO_RETURN: 1287 return Attribute::NoReturn; 1288 case bitc::ATTR_KIND_NO_UNWIND: 1289 return Attribute::NoUnwind; 1290 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1291 return Attribute::OptimizeForSize; 1292 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1293 return Attribute::OptimizeNone; 1294 case bitc::ATTR_KIND_READ_NONE: 1295 return Attribute::ReadNone; 1296 case bitc::ATTR_KIND_READ_ONLY: 1297 return Attribute::ReadOnly; 1298 case bitc::ATTR_KIND_RETURNED: 1299 return Attribute::Returned; 1300 case bitc::ATTR_KIND_RETURNS_TWICE: 1301 return Attribute::ReturnsTwice; 1302 case bitc::ATTR_KIND_S_EXT: 1303 return Attribute::SExt; 1304 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1305 return Attribute::StackAlignment; 1306 case bitc::ATTR_KIND_STACK_PROTECT: 1307 return Attribute::StackProtect; 1308 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1309 return Attribute::StackProtectReq; 1310 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1311 return Attribute::StackProtectStrong; 1312 case bitc::ATTR_KIND_SAFESTACK: 1313 return Attribute::SafeStack; 1314 case bitc::ATTR_KIND_STRUCT_RET: 1315 return Attribute::StructRet; 1316 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1317 return Attribute::SanitizeAddress; 1318 case bitc::ATTR_KIND_SANITIZE_THREAD: 1319 return Attribute::SanitizeThread; 1320 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1321 return Attribute::SanitizeMemory; 1322 case bitc::ATTR_KIND_SWIFT_ERROR: 1323 return Attribute::SwiftError; 1324 case bitc::ATTR_KIND_SWIFT_SELF: 1325 return Attribute::SwiftSelf; 1326 case bitc::ATTR_KIND_UW_TABLE: 1327 return Attribute::UWTable; 1328 case bitc::ATTR_KIND_Z_EXT: 1329 return Attribute::ZExt; 1330 } 1331 } 1332 1333 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1334 unsigned &Alignment) { 1335 // Note: Alignment in bitcode files is incremented by 1, so that zero 1336 // can be used for default alignment. 1337 if (Exponent > Value::MaxAlignmentExponent + 1) 1338 return error("Invalid alignment value"); 1339 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1340 return std::error_code(); 1341 } 1342 1343 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1344 Attribute::AttrKind *Kind) { 1345 *Kind = getAttrFromCode(Code); 1346 if (*Kind == Attribute::None) 1347 return error(BitcodeError::CorruptedBitcode, 1348 "Unknown attribute kind (" + Twine(Code) + ")"); 1349 return std::error_code(); 1350 } 1351 1352 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1353 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1354 return error("Invalid record"); 1355 1356 if (!MAttributeGroups.empty()) 1357 return error("Invalid multiple blocks"); 1358 1359 SmallVector<uint64_t, 64> Record; 1360 1361 // Read all the records. 1362 while (1) { 1363 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1364 1365 switch (Entry.Kind) { 1366 case BitstreamEntry::SubBlock: // Handled for us already. 1367 case BitstreamEntry::Error: 1368 return error("Malformed block"); 1369 case BitstreamEntry::EndBlock: 1370 return std::error_code(); 1371 case BitstreamEntry::Record: 1372 // The interesting case. 1373 break; 1374 } 1375 1376 // Read a record. 1377 Record.clear(); 1378 switch (Stream.readRecord(Entry.ID, Record)) { 1379 default: // Default behavior: ignore. 1380 break; 1381 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1382 if (Record.size() < 3) 1383 return error("Invalid record"); 1384 1385 uint64_t GrpID = Record[0]; 1386 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1387 1388 AttrBuilder B; 1389 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1390 if (Record[i] == 0) { // Enum attribute 1391 Attribute::AttrKind Kind; 1392 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1393 return EC; 1394 1395 B.addAttribute(Kind); 1396 } else if (Record[i] == 1) { // Integer attribute 1397 Attribute::AttrKind Kind; 1398 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1399 return EC; 1400 if (Kind == Attribute::Alignment) 1401 B.addAlignmentAttr(Record[++i]); 1402 else if (Kind == Attribute::StackAlignment) 1403 B.addStackAlignmentAttr(Record[++i]); 1404 else if (Kind == Attribute::Dereferenceable) 1405 B.addDereferenceableAttr(Record[++i]); 1406 else if (Kind == Attribute::DereferenceableOrNull) 1407 B.addDereferenceableOrNullAttr(Record[++i]); 1408 } else { // String attribute 1409 assert((Record[i] == 3 || Record[i] == 4) && 1410 "Invalid attribute group entry"); 1411 bool HasValue = (Record[i++] == 4); 1412 SmallString<64> KindStr; 1413 SmallString<64> ValStr; 1414 1415 while (Record[i] != 0 && i != e) 1416 KindStr += Record[i++]; 1417 assert(Record[i] == 0 && "Kind string not null terminated"); 1418 1419 if (HasValue) { 1420 // Has a value associated with it. 1421 ++i; // Skip the '0' that terminates the "kind" string. 1422 while (Record[i] != 0 && i != e) 1423 ValStr += Record[i++]; 1424 assert(Record[i] == 0 && "Value string not null terminated"); 1425 } 1426 1427 B.addAttribute(KindStr.str(), ValStr.str()); 1428 } 1429 } 1430 1431 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1432 break; 1433 } 1434 } 1435 } 1436 } 1437 1438 std::error_code BitcodeReader::parseTypeTable() { 1439 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1440 return error("Invalid record"); 1441 1442 return parseTypeTableBody(); 1443 } 1444 1445 std::error_code BitcodeReader::parseTypeTableBody() { 1446 if (!TypeList.empty()) 1447 return error("Invalid multiple blocks"); 1448 1449 SmallVector<uint64_t, 64> Record; 1450 unsigned NumRecords = 0; 1451 1452 SmallString<64> TypeName; 1453 1454 // Read all the records for this type table. 1455 while (1) { 1456 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1457 1458 switch (Entry.Kind) { 1459 case BitstreamEntry::SubBlock: // Handled for us already. 1460 case BitstreamEntry::Error: 1461 return error("Malformed block"); 1462 case BitstreamEntry::EndBlock: 1463 if (NumRecords != TypeList.size()) 1464 return error("Malformed block"); 1465 return std::error_code(); 1466 case BitstreamEntry::Record: 1467 // The interesting case. 1468 break; 1469 } 1470 1471 // Read a record. 1472 Record.clear(); 1473 Type *ResultTy = nullptr; 1474 switch (Stream.readRecord(Entry.ID, Record)) { 1475 default: 1476 return error("Invalid value"); 1477 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1478 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1479 // type list. This allows us to reserve space. 1480 if (Record.size() < 1) 1481 return error("Invalid record"); 1482 TypeList.resize(Record[0]); 1483 continue; 1484 case bitc::TYPE_CODE_VOID: // VOID 1485 ResultTy = Type::getVoidTy(Context); 1486 break; 1487 case bitc::TYPE_CODE_HALF: // HALF 1488 ResultTy = Type::getHalfTy(Context); 1489 break; 1490 case bitc::TYPE_CODE_FLOAT: // FLOAT 1491 ResultTy = Type::getFloatTy(Context); 1492 break; 1493 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1494 ResultTy = Type::getDoubleTy(Context); 1495 break; 1496 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1497 ResultTy = Type::getX86_FP80Ty(Context); 1498 break; 1499 case bitc::TYPE_CODE_FP128: // FP128 1500 ResultTy = Type::getFP128Ty(Context); 1501 break; 1502 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1503 ResultTy = Type::getPPC_FP128Ty(Context); 1504 break; 1505 case bitc::TYPE_CODE_LABEL: // LABEL 1506 ResultTy = Type::getLabelTy(Context); 1507 break; 1508 case bitc::TYPE_CODE_METADATA: // METADATA 1509 ResultTy = Type::getMetadataTy(Context); 1510 break; 1511 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1512 ResultTy = Type::getX86_MMXTy(Context); 1513 break; 1514 case bitc::TYPE_CODE_TOKEN: // TOKEN 1515 ResultTy = Type::getTokenTy(Context); 1516 break; 1517 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1518 if (Record.size() < 1) 1519 return error("Invalid record"); 1520 1521 uint64_t NumBits = Record[0]; 1522 if (NumBits < IntegerType::MIN_INT_BITS || 1523 NumBits > IntegerType::MAX_INT_BITS) 1524 return error("Bitwidth for integer type out of range"); 1525 ResultTy = IntegerType::get(Context, NumBits); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1529 // [pointee type, address space] 1530 if (Record.size() < 1) 1531 return error("Invalid record"); 1532 unsigned AddressSpace = 0; 1533 if (Record.size() == 2) 1534 AddressSpace = Record[1]; 1535 ResultTy = getTypeByID(Record[0]); 1536 if (!ResultTy || 1537 !PointerType::isValidElementType(ResultTy)) 1538 return error("Invalid type"); 1539 ResultTy = PointerType::get(ResultTy, AddressSpace); 1540 break; 1541 } 1542 case bitc::TYPE_CODE_FUNCTION_OLD: { 1543 // FIXME: attrid is dead, remove it in LLVM 4.0 1544 // FUNCTION: [vararg, attrid, retty, paramty x N] 1545 if (Record.size() < 3) 1546 return error("Invalid record"); 1547 SmallVector<Type*, 8> ArgTys; 1548 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1549 if (Type *T = getTypeByID(Record[i])) 1550 ArgTys.push_back(T); 1551 else 1552 break; 1553 } 1554 1555 ResultTy = getTypeByID(Record[2]); 1556 if (!ResultTy || ArgTys.size() < Record.size()-3) 1557 return error("Invalid type"); 1558 1559 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1560 break; 1561 } 1562 case bitc::TYPE_CODE_FUNCTION: { 1563 // FUNCTION: [vararg, retty, paramty x N] 1564 if (Record.size() < 2) 1565 return error("Invalid record"); 1566 SmallVector<Type*, 8> ArgTys; 1567 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1568 if (Type *T = getTypeByID(Record[i])) { 1569 if (!FunctionType::isValidArgumentType(T)) 1570 return error("Invalid function argument type"); 1571 ArgTys.push_back(T); 1572 } 1573 else 1574 break; 1575 } 1576 1577 ResultTy = getTypeByID(Record[1]); 1578 if (!ResultTy || ArgTys.size() < Record.size()-2) 1579 return error("Invalid type"); 1580 1581 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1582 break; 1583 } 1584 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1585 if (Record.size() < 1) 1586 return error("Invalid record"); 1587 SmallVector<Type*, 8> EltTys; 1588 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1589 if (Type *T = getTypeByID(Record[i])) 1590 EltTys.push_back(T); 1591 else 1592 break; 1593 } 1594 if (EltTys.size() != Record.size()-1) 1595 return error("Invalid type"); 1596 ResultTy = StructType::get(Context, EltTys, Record[0]); 1597 break; 1598 } 1599 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1600 if (convertToString(Record, 0, TypeName)) 1601 return error("Invalid record"); 1602 continue; 1603 1604 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1605 if (Record.size() < 1) 1606 return error("Invalid record"); 1607 1608 if (NumRecords >= TypeList.size()) 1609 return error("Invalid TYPE table"); 1610 1611 // Check to see if this was forward referenced, if so fill in the temp. 1612 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1613 if (Res) { 1614 Res->setName(TypeName); 1615 TypeList[NumRecords] = nullptr; 1616 } else // Otherwise, create a new struct. 1617 Res = createIdentifiedStructType(Context, TypeName); 1618 TypeName.clear(); 1619 1620 SmallVector<Type*, 8> EltTys; 1621 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1622 if (Type *T = getTypeByID(Record[i])) 1623 EltTys.push_back(T); 1624 else 1625 break; 1626 } 1627 if (EltTys.size() != Record.size()-1) 1628 return error("Invalid record"); 1629 Res->setBody(EltTys, Record[0]); 1630 ResultTy = Res; 1631 break; 1632 } 1633 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1634 if (Record.size() != 1) 1635 return error("Invalid record"); 1636 1637 if (NumRecords >= TypeList.size()) 1638 return error("Invalid TYPE table"); 1639 1640 // Check to see if this was forward referenced, if so fill in the temp. 1641 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1642 if (Res) { 1643 Res->setName(TypeName); 1644 TypeList[NumRecords] = nullptr; 1645 } else // Otherwise, create a new struct with no body. 1646 Res = createIdentifiedStructType(Context, TypeName); 1647 TypeName.clear(); 1648 ResultTy = Res; 1649 break; 1650 } 1651 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1652 if (Record.size() < 2) 1653 return error("Invalid record"); 1654 ResultTy = getTypeByID(Record[1]); 1655 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1656 return error("Invalid type"); 1657 ResultTy = ArrayType::get(ResultTy, Record[0]); 1658 break; 1659 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1660 if (Record.size() < 2) 1661 return error("Invalid record"); 1662 if (Record[0] == 0) 1663 return error("Invalid vector length"); 1664 ResultTy = getTypeByID(Record[1]); 1665 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1666 return error("Invalid type"); 1667 ResultTy = VectorType::get(ResultTy, Record[0]); 1668 break; 1669 } 1670 1671 if (NumRecords >= TypeList.size()) 1672 return error("Invalid TYPE table"); 1673 if (TypeList[NumRecords]) 1674 return error( 1675 "Invalid TYPE table: Only named structs can be forward referenced"); 1676 assert(ResultTy && "Didn't read a type?"); 1677 TypeList[NumRecords++] = ResultTy; 1678 } 1679 } 1680 1681 std::error_code BitcodeReader::parseOperandBundleTags() { 1682 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1683 return error("Invalid record"); 1684 1685 if (!BundleTags.empty()) 1686 return error("Invalid multiple blocks"); 1687 1688 SmallVector<uint64_t, 64> Record; 1689 1690 while (1) { 1691 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1692 1693 switch (Entry.Kind) { 1694 case BitstreamEntry::SubBlock: // Handled for us already. 1695 case BitstreamEntry::Error: 1696 return error("Malformed block"); 1697 case BitstreamEntry::EndBlock: 1698 return std::error_code(); 1699 case BitstreamEntry::Record: 1700 // The interesting case. 1701 break; 1702 } 1703 1704 // Tags are implicitly mapped to integers by their order. 1705 1706 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1707 return error("Invalid record"); 1708 1709 // OPERAND_BUNDLE_TAG: [strchr x N] 1710 BundleTags.emplace_back(); 1711 if (convertToString(Record, 0, BundleTags.back())) 1712 return error("Invalid record"); 1713 Record.clear(); 1714 } 1715 } 1716 1717 /// Associate a value with its name from the given index in the provided record. 1718 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1719 unsigned NameIndex, Triple &TT) { 1720 SmallString<128> ValueName; 1721 if (convertToString(Record, NameIndex, ValueName)) 1722 return error("Invalid record"); 1723 unsigned ValueID = Record[0]; 1724 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1725 return error("Invalid record"); 1726 Value *V = ValueList[ValueID]; 1727 1728 StringRef NameStr(ValueName.data(), ValueName.size()); 1729 if (NameStr.find_first_of(0) != StringRef::npos) 1730 return error("Invalid value name"); 1731 V->setName(NameStr); 1732 auto *GO = dyn_cast<GlobalObject>(V); 1733 if (GO) { 1734 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1735 if (TT.isOSBinFormatMachO()) 1736 GO->setComdat(nullptr); 1737 else 1738 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1739 } 1740 } 1741 return V; 1742 } 1743 1744 /// Helper to note and return the current location, and jump to the given 1745 /// offset. 1746 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1747 BitstreamCursor &Stream) { 1748 // Save the current parsing location so we can jump back at the end 1749 // of the VST read. 1750 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1751 Stream.JumpToBit(Offset * 32); 1752 #ifndef NDEBUG 1753 // Do some checking if we are in debug mode. 1754 BitstreamEntry Entry = Stream.advance(); 1755 assert(Entry.Kind == BitstreamEntry::SubBlock); 1756 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1757 #else 1758 // In NDEBUG mode ignore the output so we don't get an unused variable 1759 // warning. 1760 Stream.advance(); 1761 #endif 1762 return CurrentBit; 1763 } 1764 1765 /// Parse the value symbol table at either the current parsing location or 1766 /// at the given bit offset if provided. 1767 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1768 uint64_t CurrentBit; 1769 // Pass in the Offset to distinguish between calling for the module-level 1770 // VST (where we want to jump to the VST offset) and the function-level 1771 // VST (where we don't). 1772 if (Offset > 0) 1773 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1774 1775 // Compute the delta between the bitcode indices in the VST (the word offset 1776 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1777 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1778 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1779 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1780 // just before entering the VST subblock because: 1) the EnterSubBlock 1781 // changes the AbbrevID width; 2) the VST block is nested within the same 1782 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1783 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1784 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1785 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1786 unsigned FuncBitcodeOffsetDelta = 1787 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1788 1789 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1790 return error("Invalid record"); 1791 1792 SmallVector<uint64_t, 64> Record; 1793 1794 Triple TT(TheModule->getTargetTriple()); 1795 1796 // Read all the records for this value table. 1797 SmallString<128> ValueName; 1798 while (1) { 1799 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1800 1801 switch (Entry.Kind) { 1802 case BitstreamEntry::SubBlock: // Handled for us already. 1803 case BitstreamEntry::Error: 1804 return error("Malformed block"); 1805 case BitstreamEntry::EndBlock: 1806 if (Offset > 0) 1807 Stream.JumpToBit(CurrentBit); 1808 return std::error_code(); 1809 case BitstreamEntry::Record: 1810 // The interesting case. 1811 break; 1812 } 1813 1814 // Read a record. 1815 Record.clear(); 1816 switch (Stream.readRecord(Entry.ID, Record)) { 1817 default: // Default behavior: unknown type. 1818 break; 1819 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1820 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1821 if (std::error_code EC = ValOrErr.getError()) 1822 return EC; 1823 ValOrErr.get(); 1824 break; 1825 } 1826 case bitc::VST_CODE_FNENTRY: { 1827 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1828 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1829 if (std::error_code EC = ValOrErr.getError()) 1830 return EC; 1831 Value *V = ValOrErr.get(); 1832 1833 auto *GO = dyn_cast<GlobalObject>(V); 1834 if (!GO) { 1835 // If this is an alias, need to get the actual Function object 1836 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1837 auto *GA = dyn_cast<GlobalAlias>(V); 1838 if (GA) 1839 GO = GA->getBaseObject(); 1840 assert(GO); 1841 } 1842 1843 uint64_t FuncWordOffset = Record[1]; 1844 Function *F = dyn_cast<Function>(GO); 1845 assert(F); 1846 uint64_t FuncBitOffset = FuncWordOffset * 32; 1847 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1848 // Set the LastFunctionBlockBit to point to the last function block. 1849 // Later when parsing is resumed after function materialization, 1850 // we can simply skip that last function block. 1851 if (FuncBitOffset > LastFunctionBlockBit) 1852 LastFunctionBlockBit = FuncBitOffset; 1853 break; 1854 } 1855 case bitc::VST_CODE_BBENTRY: { 1856 if (convertToString(Record, 1, ValueName)) 1857 return error("Invalid record"); 1858 BasicBlock *BB = getBasicBlock(Record[0]); 1859 if (!BB) 1860 return error("Invalid record"); 1861 1862 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1863 ValueName.clear(); 1864 break; 1865 } 1866 } 1867 } 1868 } 1869 1870 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1871 std::error_code 1872 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1873 if (Record.size() < 2) 1874 return error("Invalid record"); 1875 1876 unsigned Kind = Record[0]; 1877 SmallString<8> Name(Record.begin() + 1, Record.end()); 1878 1879 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1880 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1881 return error("Conflicting METADATA_KIND records"); 1882 return std::error_code(); 1883 } 1884 1885 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1886 1887 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1888 StringRef Blob, 1889 unsigned &NextMetadataNo) { 1890 // All the MDStrings in the block are emitted together in a single 1891 // record. The strings are concatenated and stored in a blob along with 1892 // their sizes. 1893 if (Record.size() != 2) 1894 return error("Invalid record: metadata strings layout"); 1895 1896 unsigned NumStrings = Record[0]; 1897 unsigned StringsOffset = Record[1]; 1898 if (!NumStrings) 1899 return error("Invalid record: metadata strings with no strings"); 1900 if (StringsOffset > Blob.size()) 1901 return error("Invalid record: metadata strings corrupt offset"); 1902 1903 StringRef Lengths = Blob.slice(0, StringsOffset); 1904 SimpleBitstreamCursor R(*StreamFile); 1905 R.jumpToPointer(Lengths.begin()); 1906 1907 // Ensure that Blob doesn't get invalidated, even if this is reading from 1908 // a StreamingMemoryObject with corrupt data. 1909 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1910 1911 StringRef Strings = Blob.drop_front(StringsOffset); 1912 do { 1913 if (R.AtEndOfStream()) 1914 return error("Invalid record: metadata strings bad length"); 1915 1916 unsigned Size = R.ReadVBR(6); 1917 if (Strings.size() < Size) 1918 return error("Invalid record: metadata strings truncated chars"); 1919 1920 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1921 NextMetadataNo++); 1922 Strings = Strings.drop_front(Size); 1923 } while (--NumStrings); 1924 1925 return std::error_code(); 1926 } 1927 1928 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1929 /// module level metadata. 1930 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1931 IsMetadataMaterialized = true; 1932 unsigned NextMetadataNo = MetadataList.size(); 1933 1934 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1935 return error("Invalid metadata: fwd refs into function blocks"); 1936 1937 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1938 return error("Invalid record"); 1939 1940 SmallVector<uint64_t, 64> Record; 1941 1942 auto getMD = [&](unsigned ID) -> Metadata * { 1943 return MetadataList.getMetadataFwdRef(ID); 1944 }; 1945 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1946 if (ID) 1947 return getMD(ID - 1); 1948 return nullptr; 1949 }; 1950 auto getMDString = [&](unsigned ID) -> MDString *{ 1951 // This requires that the ID is not really a forward reference. In 1952 // particular, the MDString must already have been resolved. 1953 return cast_or_null<MDString>(getMDOrNull(ID)); 1954 }; 1955 1956 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1957 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1958 1959 // Read all the records. 1960 while (1) { 1961 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1962 1963 switch (Entry.Kind) { 1964 case BitstreamEntry::SubBlock: // Handled for us already. 1965 case BitstreamEntry::Error: 1966 return error("Malformed block"); 1967 case BitstreamEntry::EndBlock: 1968 MetadataList.tryToResolveCycles(); 1969 return std::error_code(); 1970 case BitstreamEntry::Record: 1971 // The interesting case. 1972 break; 1973 } 1974 1975 // Read a record. 1976 Record.clear(); 1977 StringRef Blob; 1978 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1979 bool IsDistinct = false; 1980 switch (Code) { 1981 default: // Default behavior: ignore. 1982 break; 1983 case bitc::METADATA_NAME: { 1984 // Read name of the named metadata. 1985 SmallString<8> Name(Record.begin(), Record.end()); 1986 Record.clear(); 1987 Code = Stream.ReadCode(); 1988 1989 unsigned NextBitCode = Stream.readRecord(Code, Record); 1990 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1991 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1992 1993 // Read named metadata elements. 1994 unsigned Size = Record.size(); 1995 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1996 for (unsigned i = 0; i != Size; ++i) { 1997 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 1998 if (!MD) 1999 return error("Invalid record"); 2000 NMD->addOperand(MD); 2001 } 2002 break; 2003 } 2004 case bitc::METADATA_OLD_FN_NODE: { 2005 // FIXME: Remove in 4.0. 2006 // This is a LocalAsMetadata record, the only type of function-local 2007 // metadata. 2008 if (Record.size() % 2 == 1) 2009 return error("Invalid record"); 2010 2011 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2012 // to be legal, but there's no upgrade path. 2013 auto dropRecord = [&] { 2014 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2015 }; 2016 if (Record.size() != 2) { 2017 dropRecord(); 2018 break; 2019 } 2020 2021 Type *Ty = getTypeByID(Record[0]); 2022 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2023 dropRecord(); 2024 break; 2025 } 2026 2027 MetadataList.assignValue( 2028 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2029 NextMetadataNo++); 2030 break; 2031 } 2032 case bitc::METADATA_OLD_NODE: { 2033 // FIXME: Remove in 4.0. 2034 if (Record.size() % 2 == 1) 2035 return error("Invalid record"); 2036 2037 unsigned Size = Record.size(); 2038 SmallVector<Metadata *, 8> Elts; 2039 for (unsigned i = 0; i != Size; i += 2) { 2040 Type *Ty = getTypeByID(Record[i]); 2041 if (!Ty) 2042 return error("Invalid record"); 2043 if (Ty->isMetadataTy()) 2044 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2045 else if (!Ty->isVoidTy()) { 2046 auto *MD = 2047 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2048 assert(isa<ConstantAsMetadata>(MD) && 2049 "Expected non-function-local metadata"); 2050 Elts.push_back(MD); 2051 } else 2052 Elts.push_back(nullptr); 2053 } 2054 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2055 break; 2056 } 2057 case bitc::METADATA_VALUE: { 2058 if (Record.size() != 2) 2059 return error("Invalid record"); 2060 2061 Type *Ty = getTypeByID(Record[0]); 2062 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2063 return error("Invalid record"); 2064 2065 MetadataList.assignValue( 2066 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2067 NextMetadataNo++); 2068 break; 2069 } 2070 case bitc::METADATA_DISTINCT_NODE: 2071 IsDistinct = true; 2072 // fallthrough... 2073 case bitc::METADATA_NODE: { 2074 SmallVector<Metadata *, 8> Elts; 2075 Elts.reserve(Record.size()); 2076 for (unsigned ID : Record) 2077 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2078 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2079 : MDNode::get(Context, Elts), 2080 NextMetadataNo++); 2081 break; 2082 } 2083 case bitc::METADATA_LOCATION: { 2084 if (Record.size() != 5) 2085 return error("Invalid record"); 2086 2087 unsigned Line = Record[1]; 2088 unsigned Column = Record[2]; 2089 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2090 if (!Scope) 2091 return error("Invalid record"); 2092 Metadata *InlinedAt = 2093 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2094 MetadataList.assignValue( 2095 GET_OR_DISTINCT(DILocation, Record[0], 2096 (Context, Line, Column, Scope, InlinedAt)), 2097 NextMetadataNo++); 2098 break; 2099 } 2100 case bitc::METADATA_GENERIC_DEBUG: { 2101 if (Record.size() < 4) 2102 return error("Invalid record"); 2103 2104 unsigned Tag = Record[1]; 2105 unsigned Version = Record[2]; 2106 2107 if (Tag >= 1u << 16 || Version != 0) 2108 return error("Invalid record"); 2109 2110 auto *Header = getMDString(Record[3]); 2111 SmallVector<Metadata *, 8> DwarfOps; 2112 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2113 DwarfOps.push_back(Record[I] 2114 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2115 : nullptr); 2116 MetadataList.assignValue( 2117 GET_OR_DISTINCT(GenericDINode, Record[0], 2118 (Context, Tag, Header, DwarfOps)), 2119 NextMetadataNo++); 2120 break; 2121 } 2122 case bitc::METADATA_SUBRANGE: { 2123 if (Record.size() != 3) 2124 return error("Invalid record"); 2125 2126 MetadataList.assignValue( 2127 GET_OR_DISTINCT(DISubrange, Record[0], 2128 (Context, Record[1], unrotateSign(Record[2]))), 2129 NextMetadataNo++); 2130 break; 2131 } 2132 case bitc::METADATA_ENUMERATOR: { 2133 if (Record.size() != 3) 2134 return error("Invalid record"); 2135 2136 MetadataList.assignValue( 2137 GET_OR_DISTINCT( 2138 DIEnumerator, Record[0], 2139 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 case bitc::METADATA_BASIC_TYPE: { 2144 if (Record.size() != 6) 2145 return error("Invalid record"); 2146 2147 MetadataList.assignValue( 2148 GET_OR_DISTINCT(DIBasicType, Record[0], 2149 (Context, Record[1], getMDString(Record[2]), 2150 Record[3], Record[4], Record[5])), 2151 NextMetadataNo++); 2152 break; 2153 } 2154 case bitc::METADATA_DERIVED_TYPE: { 2155 if (Record.size() != 12) 2156 return error("Invalid record"); 2157 2158 MetadataList.assignValue( 2159 GET_OR_DISTINCT(DIDerivedType, Record[0], 2160 (Context, Record[1], getMDString(Record[2]), 2161 getMDOrNull(Record[3]), Record[4], 2162 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2163 Record[7], Record[8], Record[9], Record[10], 2164 getMDOrNull(Record[11]))), 2165 NextMetadataNo++); 2166 break; 2167 } 2168 case bitc::METADATA_COMPOSITE_TYPE: { 2169 if (Record.size() != 16) 2170 return error("Invalid record"); 2171 2172 MetadataList.assignValue( 2173 GET_OR_DISTINCT(DICompositeType, Record[0], 2174 (Context, Record[1], getMDString(Record[2]), 2175 getMDOrNull(Record[3]), Record[4], 2176 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2177 Record[7], Record[8], Record[9], Record[10], 2178 getMDOrNull(Record[11]), Record[12], 2179 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2180 getMDString(Record[15]))), 2181 NextMetadataNo++); 2182 break; 2183 } 2184 case bitc::METADATA_SUBROUTINE_TYPE: { 2185 if (Record.size() != 3) 2186 return error("Invalid record"); 2187 2188 MetadataList.assignValue( 2189 GET_OR_DISTINCT(DISubroutineType, Record[0], 2190 (Context, Record[1], getMDOrNull(Record[2]))), 2191 NextMetadataNo++); 2192 break; 2193 } 2194 2195 case bitc::METADATA_MODULE: { 2196 if (Record.size() != 6) 2197 return error("Invalid record"); 2198 2199 MetadataList.assignValue( 2200 GET_OR_DISTINCT(DIModule, Record[0], 2201 (Context, getMDOrNull(Record[1]), 2202 getMDString(Record[2]), getMDString(Record[3]), 2203 getMDString(Record[4]), getMDString(Record[5]))), 2204 NextMetadataNo++); 2205 break; 2206 } 2207 2208 case bitc::METADATA_FILE: { 2209 if (Record.size() != 3) 2210 return error("Invalid record"); 2211 2212 MetadataList.assignValue( 2213 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2214 getMDString(Record[2]))), 2215 NextMetadataNo++); 2216 break; 2217 } 2218 case bitc::METADATA_COMPILE_UNIT: { 2219 if (Record.size() < 14 || Record.size() > 16) 2220 return error("Invalid record"); 2221 2222 // Ignore Record[0], which indicates whether this compile unit is 2223 // distinct. It's always distinct. 2224 MetadataList.assignValue( 2225 DICompileUnit::getDistinct( 2226 Context, Record[1], getMDOrNull(Record[2]), 2227 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2228 Record[6], getMDString(Record[7]), Record[8], 2229 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2230 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2231 getMDOrNull(Record[13]), 2232 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2233 Record.size() <= 14 ? 0 : Record[14]), 2234 NextMetadataNo++); 2235 break; 2236 } 2237 case bitc::METADATA_SUBPROGRAM: { 2238 if (Record.size() != 18 && Record.size() != 19) 2239 return error("Invalid record"); 2240 2241 bool HasFn = Record.size() == 19; 2242 DISubprogram *SP = GET_OR_DISTINCT( 2243 DISubprogram, 2244 Record[0] || Record[8], // All definitions should be distinct. 2245 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2246 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2247 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2248 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2249 Record[14], getMDOrNull(Record[15 + HasFn]), 2250 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2251 MetadataList.assignValue(SP, NextMetadataNo++); 2252 2253 // Upgrade sp->function mapping to function->sp mapping. 2254 if (HasFn && Record[15]) { 2255 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2256 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2257 if (F->isMaterializable()) 2258 // Defer until materialized; unmaterialized functions may not have 2259 // metadata. 2260 FunctionsWithSPs[F] = SP; 2261 else if (!F->empty()) 2262 F->setSubprogram(SP); 2263 } 2264 } 2265 break; 2266 } 2267 case bitc::METADATA_LEXICAL_BLOCK: { 2268 if (Record.size() != 5) 2269 return error("Invalid record"); 2270 2271 MetadataList.assignValue( 2272 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2273 (Context, getMDOrNull(Record[1]), 2274 getMDOrNull(Record[2]), Record[3], Record[4])), 2275 NextMetadataNo++); 2276 break; 2277 } 2278 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2279 if (Record.size() != 4) 2280 return error("Invalid record"); 2281 2282 MetadataList.assignValue( 2283 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2284 (Context, getMDOrNull(Record[1]), 2285 getMDOrNull(Record[2]), Record[3])), 2286 NextMetadataNo++); 2287 break; 2288 } 2289 case bitc::METADATA_NAMESPACE: { 2290 if (Record.size() != 5) 2291 return error("Invalid record"); 2292 2293 MetadataList.assignValue( 2294 GET_OR_DISTINCT(DINamespace, Record[0], 2295 (Context, getMDOrNull(Record[1]), 2296 getMDOrNull(Record[2]), getMDString(Record[3]), 2297 Record[4])), 2298 NextMetadataNo++); 2299 break; 2300 } 2301 case bitc::METADATA_MACRO: { 2302 if (Record.size() != 5) 2303 return error("Invalid record"); 2304 2305 MetadataList.assignValue( 2306 GET_OR_DISTINCT(DIMacro, Record[0], 2307 (Context, Record[1], Record[2], 2308 getMDString(Record[3]), getMDString(Record[4]))), 2309 NextMetadataNo++); 2310 break; 2311 } 2312 case bitc::METADATA_MACRO_FILE: { 2313 if (Record.size() != 5) 2314 return error("Invalid record"); 2315 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DIMacroFile, Record[0], 2318 (Context, Record[1], Record[2], 2319 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2320 NextMetadataNo++); 2321 break; 2322 } 2323 case bitc::METADATA_TEMPLATE_TYPE: { 2324 if (Record.size() != 3) 2325 return error("Invalid record"); 2326 2327 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2328 Record[0], 2329 (Context, getMDString(Record[1]), 2330 getMDOrNull(Record[2]))), 2331 NextMetadataNo++); 2332 break; 2333 } 2334 case bitc::METADATA_TEMPLATE_VALUE: { 2335 if (Record.size() != 5) 2336 return error("Invalid record"); 2337 2338 MetadataList.assignValue( 2339 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2340 (Context, Record[1], getMDString(Record[2]), 2341 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2342 NextMetadataNo++); 2343 break; 2344 } 2345 case bitc::METADATA_GLOBAL_VAR: { 2346 if (Record.size() != 11) 2347 return error("Invalid record"); 2348 2349 MetadataList.assignValue( 2350 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2351 (Context, getMDOrNull(Record[1]), 2352 getMDString(Record[2]), getMDString(Record[3]), 2353 getMDOrNull(Record[4]), Record[5], 2354 getMDOrNull(Record[6]), Record[7], Record[8], 2355 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2356 NextMetadataNo++); 2357 break; 2358 } 2359 case bitc::METADATA_LOCAL_VAR: { 2360 // 10th field is for the obseleted 'inlinedAt:' field. 2361 if (Record.size() < 8 || Record.size() > 10) 2362 return error("Invalid record"); 2363 2364 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2365 // DW_TAG_arg_variable. 2366 bool HasTag = Record.size() > 8; 2367 MetadataList.assignValue( 2368 GET_OR_DISTINCT(DILocalVariable, Record[0], 2369 (Context, getMDOrNull(Record[1 + HasTag]), 2370 getMDString(Record[2 + HasTag]), 2371 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2372 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2373 Record[7 + HasTag])), 2374 NextMetadataNo++); 2375 break; 2376 } 2377 case bitc::METADATA_EXPRESSION: { 2378 if (Record.size() < 1) 2379 return error("Invalid record"); 2380 2381 MetadataList.assignValue( 2382 GET_OR_DISTINCT(DIExpression, Record[0], 2383 (Context, makeArrayRef(Record).slice(1))), 2384 NextMetadataNo++); 2385 break; 2386 } 2387 case bitc::METADATA_OBJC_PROPERTY: { 2388 if (Record.size() != 8) 2389 return error("Invalid record"); 2390 2391 MetadataList.assignValue( 2392 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2393 (Context, getMDString(Record[1]), 2394 getMDOrNull(Record[2]), Record[3], 2395 getMDString(Record[4]), getMDString(Record[5]), 2396 Record[6], getMDOrNull(Record[7]))), 2397 NextMetadataNo++); 2398 break; 2399 } 2400 case bitc::METADATA_IMPORTED_ENTITY: { 2401 if (Record.size() != 6) 2402 return error("Invalid record"); 2403 2404 MetadataList.assignValue( 2405 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2406 (Context, Record[1], getMDOrNull(Record[2]), 2407 getMDOrNull(Record[3]), Record[4], 2408 getMDString(Record[5]))), 2409 NextMetadataNo++); 2410 break; 2411 } 2412 case bitc::METADATA_STRING_OLD: { 2413 std::string String(Record.begin(), Record.end()); 2414 2415 // Test for upgrading !llvm.loop. 2416 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2417 2418 Metadata *MD = MDString::get(Context, String); 2419 MetadataList.assignValue(MD, NextMetadataNo++); 2420 break; 2421 } 2422 case bitc::METADATA_STRINGS: 2423 if (std::error_code EC = 2424 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2425 return EC; 2426 break; 2427 case bitc::METADATA_KIND: { 2428 // Support older bitcode files that had METADATA_KIND records in a 2429 // block with METADATA_BLOCK_ID. 2430 if (std::error_code EC = parseMetadataKindRecord(Record)) 2431 return EC; 2432 break; 2433 } 2434 } 2435 } 2436 #undef GET_OR_DISTINCT 2437 } 2438 2439 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2440 std::error_code BitcodeReader::parseMetadataKinds() { 2441 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2442 return error("Invalid record"); 2443 2444 SmallVector<uint64_t, 64> Record; 2445 2446 // Read all the records. 2447 while (1) { 2448 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2449 2450 switch (Entry.Kind) { 2451 case BitstreamEntry::SubBlock: // Handled for us already. 2452 case BitstreamEntry::Error: 2453 return error("Malformed block"); 2454 case BitstreamEntry::EndBlock: 2455 return std::error_code(); 2456 case BitstreamEntry::Record: 2457 // The interesting case. 2458 break; 2459 } 2460 2461 // Read a record. 2462 Record.clear(); 2463 unsigned Code = Stream.readRecord(Entry.ID, Record); 2464 switch (Code) { 2465 default: // Default behavior: ignore. 2466 break; 2467 case bitc::METADATA_KIND: { 2468 if (std::error_code EC = parseMetadataKindRecord(Record)) 2469 return EC; 2470 break; 2471 } 2472 } 2473 } 2474 } 2475 2476 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2477 /// encoding. 2478 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2479 if ((V & 1) == 0) 2480 return V >> 1; 2481 if (V != 1) 2482 return -(V >> 1); 2483 // There is no such thing as -0 with integers. "-0" really means MININT. 2484 return 1ULL << 63; 2485 } 2486 2487 /// Resolve all of the initializers for global values and aliases that we can. 2488 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2489 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2490 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2491 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2492 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2493 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2494 2495 GlobalInitWorklist.swap(GlobalInits); 2496 AliasInitWorklist.swap(AliasInits); 2497 FunctionPrefixWorklist.swap(FunctionPrefixes); 2498 FunctionPrologueWorklist.swap(FunctionPrologues); 2499 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2500 2501 while (!GlobalInitWorklist.empty()) { 2502 unsigned ValID = GlobalInitWorklist.back().second; 2503 if (ValID >= ValueList.size()) { 2504 // Not ready to resolve this yet, it requires something later in the file. 2505 GlobalInits.push_back(GlobalInitWorklist.back()); 2506 } else { 2507 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2508 GlobalInitWorklist.back().first->setInitializer(C); 2509 else 2510 return error("Expected a constant"); 2511 } 2512 GlobalInitWorklist.pop_back(); 2513 } 2514 2515 while (!AliasInitWorklist.empty()) { 2516 unsigned ValID = AliasInitWorklist.back().second; 2517 if (ValID >= ValueList.size()) { 2518 AliasInits.push_back(AliasInitWorklist.back()); 2519 } else { 2520 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2521 if (!C) 2522 return error("Expected a constant"); 2523 GlobalAlias *Alias = AliasInitWorklist.back().first; 2524 if (C->getType() != Alias->getType()) 2525 return error("Alias and aliasee types don't match"); 2526 Alias->setAliasee(C); 2527 } 2528 AliasInitWorklist.pop_back(); 2529 } 2530 2531 while (!FunctionPrefixWorklist.empty()) { 2532 unsigned ValID = FunctionPrefixWorklist.back().second; 2533 if (ValID >= ValueList.size()) { 2534 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2535 } else { 2536 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2537 FunctionPrefixWorklist.back().first->setPrefixData(C); 2538 else 2539 return error("Expected a constant"); 2540 } 2541 FunctionPrefixWorklist.pop_back(); 2542 } 2543 2544 while (!FunctionPrologueWorklist.empty()) { 2545 unsigned ValID = FunctionPrologueWorklist.back().second; 2546 if (ValID >= ValueList.size()) { 2547 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2548 } else { 2549 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2550 FunctionPrologueWorklist.back().first->setPrologueData(C); 2551 else 2552 return error("Expected a constant"); 2553 } 2554 FunctionPrologueWorklist.pop_back(); 2555 } 2556 2557 while (!FunctionPersonalityFnWorklist.empty()) { 2558 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2559 if (ValID >= ValueList.size()) { 2560 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2561 } else { 2562 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2563 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2564 else 2565 return error("Expected a constant"); 2566 } 2567 FunctionPersonalityFnWorklist.pop_back(); 2568 } 2569 2570 return std::error_code(); 2571 } 2572 2573 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2574 SmallVector<uint64_t, 8> Words(Vals.size()); 2575 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2576 BitcodeReader::decodeSignRotatedValue); 2577 2578 return APInt(TypeBits, Words); 2579 } 2580 2581 std::error_code BitcodeReader::parseConstants() { 2582 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2583 return error("Invalid record"); 2584 2585 SmallVector<uint64_t, 64> Record; 2586 2587 // Read all the records for this value table. 2588 Type *CurTy = Type::getInt32Ty(Context); 2589 unsigned NextCstNo = ValueList.size(); 2590 while (1) { 2591 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2592 2593 switch (Entry.Kind) { 2594 case BitstreamEntry::SubBlock: // Handled for us already. 2595 case BitstreamEntry::Error: 2596 return error("Malformed block"); 2597 case BitstreamEntry::EndBlock: 2598 if (NextCstNo != ValueList.size()) 2599 return error("Invalid constant reference"); 2600 2601 // Once all the constants have been read, go through and resolve forward 2602 // references. 2603 ValueList.resolveConstantForwardRefs(); 2604 return std::error_code(); 2605 case BitstreamEntry::Record: 2606 // The interesting case. 2607 break; 2608 } 2609 2610 // Read a record. 2611 Record.clear(); 2612 Value *V = nullptr; 2613 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2614 switch (BitCode) { 2615 default: // Default behavior: unknown constant 2616 case bitc::CST_CODE_UNDEF: // UNDEF 2617 V = UndefValue::get(CurTy); 2618 break; 2619 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2620 if (Record.empty()) 2621 return error("Invalid record"); 2622 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2623 return error("Invalid record"); 2624 CurTy = TypeList[Record[0]]; 2625 continue; // Skip the ValueList manipulation. 2626 case bitc::CST_CODE_NULL: // NULL 2627 V = Constant::getNullValue(CurTy); 2628 break; 2629 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2630 if (!CurTy->isIntegerTy() || Record.empty()) 2631 return error("Invalid record"); 2632 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2633 break; 2634 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2635 if (!CurTy->isIntegerTy() || Record.empty()) 2636 return error("Invalid record"); 2637 2638 APInt VInt = 2639 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2640 V = ConstantInt::get(Context, VInt); 2641 2642 break; 2643 } 2644 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2645 if (Record.empty()) 2646 return error("Invalid record"); 2647 if (CurTy->isHalfTy()) 2648 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2649 APInt(16, (uint16_t)Record[0]))); 2650 else if (CurTy->isFloatTy()) 2651 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2652 APInt(32, (uint32_t)Record[0]))); 2653 else if (CurTy->isDoubleTy()) 2654 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2655 APInt(64, Record[0]))); 2656 else if (CurTy->isX86_FP80Ty()) { 2657 // Bits are not stored the same way as a normal i80 APInt, compensate. 2658 uint64_t Rearrange[2]; 2659 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2660 Rearrange[1] = Record[0] >> 48; 2661 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2662 APInt(80, Rearrange))); 2663 } else if (CurTy->isFP128Ty()) 2664 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2665 APInt(128, Record))); 2666 else if (CurTy->isPPC_FP128Ty()) 2667 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2668 APInt(128, Record))); 2669 else 2670 V = UndefValue::get(CurTy); 2671 break; 2672 } 2673 2674 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2675 if (Record.empty()) 2676 return error("Invalid record"); 2677 2678 unsigned Size = Record.size(); 2679 SmallVector<Constant*, 16> Elts; 2680 2681 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2682 for (unsigned i = 0; i != Size; ++i) 2683 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2684 STy->getElementType(i))); 2685 V = ConstantStruct::get(STy, Elts); 2686 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2687 Type *EltTy = ATy->getElementType(); 2688 for (unsigned i = 0; i != Size; ++i) 2689 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2690 V = ConstantArray::get(ATy, Elts); 2691 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2692 Type *EltTy = VTy->getElementType(); 2693 for (unsigned i = 0; i != Size; ++i) 2694 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2695 V = ConstantVector::get(Elts); 2696 } else { 2697 V = UndefValue::get(CurTy); 2698 } 2699 break; 2700 } 2701 case bitc::CST_CODE_STRING: // STRING: [values] 2702 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2703 if (Record.empty()) 2704 return error("Invalid record"); 2705 2706 SmallString<16> Elts(Record.begin(), Record.end()); 2707 V = ConstantDataArray::getString(Context, Elts, 2708 BitCode == bitc::CST_CODE_CSTRING); 2709 break; 2710 } 2711 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2712 if (Record.empty()) 2713 return error("Invalid record"); 2714 2715 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2716 if (EltTy->isIntegerTy(8)) { 2717 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2718 if (isa<VectorType>(CurTy)) 2719 V = ConstantDataVector::get(Context, Elts); 2720 else 2721 V = ConstantDataArray::get(Context, Elts); 2722 } else if (EltTy->isIntegerTy(16)) { 2723 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2724 if (isa<VectorType>(CurTy)) 2725 V = ConstantDataVector::get(Context, Elts); 2726 else 2727 V = ConstantDataArray::get(Context, Elts); 2728 } else if (EltTy->isIntegerTy(32)) { 2729 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2730 if (isa<VectorType>(CurTy)) 2731 V = ConstantDataVector::get(Context, Elts); 2732 else 2733 V = ConstantDataArray::get(Context, Elts); 2734 } else if (EltTy->isIntegerTy(64)) { 2735 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2736 if (isa<VectorType>(CurTy)) 2737 V = ConstantDataVector::get(Context, Elts); 2738 else 2739 V = ConstantDataArray::get(Context, Elts); 2740 } else if (EltTy->isHalfTy()) { 2741 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2742 if (isa<VectorType>(CurTy)) 2743 V = ConstantDataVector::getFP(Context, Elts); 2744 else 2745 V = ConstantDataArray::getFP(Context, Elts); 2746 } else if (EltTy->isFloatTy()) { 2747 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2748 if (isa<VectorType>(CurTy)) 2749 V = ConstantDataVector::getFP(Context, Elts); 2750 else 2751 V = ConstantDataArray::getFP(Context, Elts); 2752 } else if (EltTy->isDoubleTy()) { 2753 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2754 if (isa<VectorType>(CurTy)) 2755 V = ConstantDataVector::getFP(Context, Elts); 2756 else 2757 V = ConstantDataArray::getFP(Context, Elts); 2758 } else { 2759 return error("Invalid type for value"); 2760 } 2761 break; 2762 } 2763 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2764 if (Record.size() < 3) 2765 return error("Invalid record"); 2766 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2767 if (Opc < 0) { 2768 V = UndefValue::get(CurTy); // Unknown binop. 2769 } else { 2770 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2771 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2772 unsigned Flags = 0; 2773 if (Record.size() >= 4) { 2774 if (Opc == Instruction::Add || 2775 Opc == Instruction::Sub || 2776 Opc == Instruction::Mul || 2777 Opc == Instruction::Shl) { 2778 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2779 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2780 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2781 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2782 } else if (Opc == Instruction::SDiv || 2783 Opc == Instruction::UDiv || 2784 Opc == Instruction::LShr || 2785 Opc == Instruction::AShr) { 2786 if (Record[3] & (1 << bitc::PEO_EXACT)) 2787 Flags |= SDivOperator::IsExact; 2788 } 2789 } 2790 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2791 } 2792 break; 2793 } 2794 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2795 if (Record.size() < 3) 2796 return error("Invalid record"); 2797 int Opc = getDecodedCastOpcode(Record[0]); 2798 if (Opc < 0) { 2799 V = UndefValue::get(CurTy); // Unknown cast. 2800 } else { 2801 Type *OpTy = getTypeByID(Record[1]); 2802 if (!OpTy) 2803 return error("Invalid record"); 2804 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2805 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2806 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2807 } 2808 break; 2809 } 2810 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2811 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2812 unsigned OpNum = 0; 2813 Type *PointeeType = nullptr; 2814 if (Record.size() % 2) 2815 PointeeType = getTypeByID(Record[OpNum++]); 2816 SmallVector<Constant*, 16> Elts; 2817 while (OpNum != Record.size()) { 2818 Type *ElTy = getTypeByID(Record[OpNum++]); 2819 if (!ElTy) 2820 return error("Invalid record"); 2821 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2822 } 2823 2824 if (PointeeType && 2825 PointeeType != 2826 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2827 ->getElementType()) 2828 return error("Explicit gep operator type does not match pointee type " 2829 "of pointer operand"); 2830 2831 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2832 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2833 BitCode == 2834 bitc::CST_CODE_CE_INBOUNDS_GEP); 2835 break; 2836 } 2837 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2838 if (Record.size() < 3) 2839 return error("Invalid record"); 2840 2841 Type *SelectorTy = Type::getInt1Ty(Context); 2842 2843 // The selector might be an i1 or an <n x i1> 2844 // Get the type from the ValueList before getting a forward ref. 2845 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2846 if (Value *V = ValueList[Record[0]]) 2847 if (SelectorTy != V->getType()) 2848 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2849 2850 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2851 SelectorTy), 2852 ValueList.getConstantFwdRef(Record[1],CurTy), 2853 ValueList.getConstantFwdRef(Record[2],CurTy)); 2854 break; 2855 } 2856 case bitc::CST_CODE_CE_EXTRACTELT 2857 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2858 if (Record.size() < 3) 2859 return error("Invalid record"); 2860 VectorType *OpTy = 2861 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2862 if (!OpTy) 2863 return error("Invalid record"); 2864 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2865 Constant *Op1 = nullptr; 2866 if (Record.size() == 4) { 2867 Type *IdxTy = getTypeByID(Record[2]); 2868 if (!IdxTy) 2869 return error("Invalid record"); 2870 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2871 } else // TODO: Remove with llvm 4.0 2872 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2873 if (!Op1) 2874 return error("Invalid record"); 2875 V = ConstantExpr::getExtractElement(Op0, Op1); 2876 break; 2877 } 2878 case bitc::CST_CODE_CE_INSERTELT 2879 : { // CE_INSERTELT: [opval, opval, opty, opval] 2880 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2881 if (Record.size() < 3 || !OpTy) 2882 return error("Invalid record"); 2883 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2884 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2885 OpTy->getElementType()); 2886 Constant *Op2 = nullptr; 2887 if (Record.size() == 4) { 2888 Type *IdxTy = getTypeByID(Record[2]); 2889 if (!IdxTy) 2890 return error("Invalid record"); 2891 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2892 } else // TODO: Remove with llvm 4.0 2893 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2894 if (!Op2) 2895 return error("Invalid record"); 2896 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2897 break; 2898 } 2899 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2900 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2901 if (Record.size() < 3 || !OpTy) 2902 return error("Invalid record"); 2903 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2904 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2905 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2906 OpTy->getNumElements()); 2907 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2908 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2909 break; 2910 } 2911 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2912 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2913 VectorType *OpTy = 2914 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2915 if (Record.size() < 4 || !RTy || !OpTy) 2916 return error("Invalid record"); 2917 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2918 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2919 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2920 RTy->getNumElements()); 2921 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2922 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2923 break; 2924 } 2925 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2926 if (Record.size() < 4) 2927 return error("Invalid record"); 2928 Type *OpTy = getTypeByID(Record[0]); 2929 if (!OpTy) 2930 return error("Invalid record"); 2931 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2932 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2933 2934 if (OpTy->isFPOrFPVectorTy()) 2935 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2936 else 2937 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2938 break; 2939 } 2940 // This maintains backward compatibility, pre-asm dialect keywords. 2941 // FIXME: Remove with the 4.0 release. 2942 case bitc::CST_CODE_INLINEASM_OLD: { 2943 if (Record.size() < 2) 2944 return error("Invalid record"); 2945 std::string AsmStr, ConstrStr; 2946 bool HasSideEffects = Record[0] & 1; 2947 bool IsAlignStack = Record[0] >> 1; 2948 unsigned AsmStrSize = Record[1]; 2949 if (2+AsmStrSize >= Record.size()) 2950 return error("Invalid record"); 2951 unsigned ConstStrSize = Record[2+AsmStrSize]; 2952 if (3+AsmStrSize+ConstStrSize > Record.size()) 2953 return error("Invalid record"); 2954 2955 for (unsigned i = 0; i != AsmStrSize; ++i) 2956 AsmStr += (char)Record[2+i]; 2957 for (unsigned i = 0; i != ConstStrSize; ++i) 2958 ConstrStr += (char)Record[3+AsmStrSize+i]; 2959 PointerType *PTy = cast<PointerType>(CurTy); 2960 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2961 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2962 break; 2963 } 2964 // This version adds support for the asm dialect keywords (e.g., 2965 // inteldialect). 2966 case bitc::CST_CODE_INLINEASM: { 2967 if (Record.size() < 2) 2968 return error("Invalid record"); 2969 std::string AsmStr, ConstrStr; 2970 bool HasSideEffects = Record[0] & 1; 2971 bool IsAlignStack = (Record[0] >> 1) & 1; 2972 unsigned AsmDialect = Record[0] >> 2; 2973 unsigned AsmStrSize = Record[1]; 2974 if (2+AsmStrSize >= Record.size()) 2975 return error("Invalid record"); 2976 unsigned ConstStrSize = Record[2+AsmStrSize]; 2977 if (3+AsmStrSize+ConstStrSize > Record.size()) 2978 return error("Invalid record"); 2979 2980 for (unsigned i = 0; i != AsmStrSize; ++i) 2981 AsmStr += (char)Record[2+i]; 2982 for (unsigned i = 0; i != ConstStrSize; ++i) 2983 ConstrStr += (char)Record[3+AsmStrSize+i]; 2984 PointerType *PTy = cast<PointerType>(CurTy); 2985 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2986 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2987 InlineAsm::AsmDialect(AsmDialect)); 2988 break; 2989 } 2990 case bitc::CST_CODE_BLOCKADDRESS:{ 2991 if (Record.size() < 3) 2992 return error("Invalid record"); 2993 Type *FnTy = getTypeByID(Record[0]); 2994 if (!FnTy) 2995 return error("Invalid record"); 2996 Function *Fn = 2997 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2998 if (!Fn) 2999 return error("Invalid record"); 3000 3001 // If the function is already parsed we can insert the block address right 3002 // away. 3003 BasicBlock *BB; 3004 unsigned BBID = Record[2]; 3005 if (!BBID) 3006 // Invalid reference to entry block. 3007 return error("Invalid ID"); 3008 if (!Fn->empty()) { 3009 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3010 for (size_t I = 0, E = BBID; I != E; ++I) { 3011 if (BBI == BBE) 3012 return error("Invalid ID"); 3013 ++BBI; 3014 } 3015 BB = &*BBI; 3016 } else { 3017 // Otherwise insert a placeholder and remember it so it can be inserted 3018 // when the function is parsed. 3019 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3020 if (FwdBBs.empty()) 3021 BasicBlockFwdRefQueue.push_back(Fn); 3022 if (FwdBBs.size() < BBID + 1) 3023 FwdBBs.resize(BBID + 1); 3024 if (!FwdBBs[BBID]) 3025 FwdBBs[BBID] = BasicBlock::Create(Context); 3026 BB = FwdBBs[BBID]; 3027 } 3028 V = BlockAddress::get(Fn, BB); 3029 break; 3030 } 3031 } 3032 3033 ValueList.assignValue(V, NextCstNo); 3034 ++NextCstNo; 3035 } 3036 } 3037 3038 std::error_code BitcodeReader::parseUseLists() { 3039 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3040 return error("Invalid record"); 3041 3042 // Read all the records. 3043 SmallVector<uint64_t, 64> Record; 3044 while (1) { 3045 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3046 3047 switch (Entry.Kind) { 3048 case BitstreamEntry::SubBlock: // Handled for us already. 3049 case BitstreamEntry::Error: 3050 return error("Malformed block"); 3051 case BitstreamEntry::EndBlock: 3052 return std::error_code(); 3053 case BitstreamEntry::Record: 3054 // The interesting case. 3055 break; 3056 } 3057 3058 // Read a use list record. 3059 Record.clear(); 3060 bool IsBB = false; 3061 switch (Stream.readRecord(Entry.ID, Record)) { 3062 default: // Default behavior: unknown type. 3063 break; 3064 case bitc::USELIST_CODE_BB: 3065 IsBB = true; 3066 // fallthrough 3067 case bitc::USELIST_CODE_DEFAULT: { 3068 unsigned RecordLength = Record.size(); 3069 if (RecordLength < 3) 3070 // Records should have at least an ID and two indexes. 3071 return error("Invalid record"); 3072 unsigned ID = Record.back(); 3073 Record.pop_back(); 3074 3075 Value *V; 3076 if (IsBB) { 3077 assert(ID < FunctionBBs.size() && "Basic block not found"); 3078 V = FunctionBBs[ID]; 3079 } else 3080 V = ValueList[ID]; 3081 unsigned NumUses = 0; 3082 SmallDenseMap<const Use *, unsigned, 16> Order; 3083 for (const Use &U : V->materialized_uses()) { 3084 if (++NumUses > Record.size()) 3085 break; 3086 Order[&U] = Record[NumUses - 1]; 3087 } 3088 if (Order.size() != Record.size() || NumUses > Record.size()) 3089 // Mismatches can happen if the functions are being materialized lazily 3090 // (out-of-order), or a value has been upgraded. 3091 break; 3092 3093 V->sortUseList([&](const Use &L, const Use &R) { 3094 return Order.lookup(&L) < Order.lookup(&R); 3095 }); 3096 break; 3097 } 3098 } 3099 } 3100 } 3101 3102 /// When we see the block for metadata, remember where it is and then skip it. 3103 /// This lets us lazily deserialize the metadata. 3104 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3105 // Save the current stream state. 3106 uint64_t CurBit = Stream.GetCurrentBitNo(); 3107 DeferredMetadataInfo.push_back(CurBit); 3108 3109 // Skip over the block for now. 3110 if (Stream.SkipBlock()) 3111 return error("Invalid record"); 3112 return std::error_code(); 3113 } 3114 3115 std::error_code BitcodeReader::materializeMetadata() { 3116 for (uint64_t BitPos : DeferredMetadataInfo) { 3117 // Move the bit stream to the saved position. 3118 Stream.JumpToBit(BitPos); 3119 if (std::error_code EC = parseMetadata(true)) 3120 return EC; 3121 } 3122 DeferredMetadataInfo.clear(); 3123 return std::error_code(); 3124 } 3125 3126 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3127 3128 /// When we see the block for a function body, remember where it is and then 3129 /// skip it. This lets us lazily deserialize the functions. 3130 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3131 // Get the function we are talking about. 3132 if (FunctionsWithBodies.empty()) 3133 return error("Insufficient function protos"); 3134 3135 Function *Fn = FunctionsWithBodies.back(); 3136 FunctionsWithBodies.pop_back(); 3137 3138 // Save the current stream state. 3139 uint64_t CurBit = Stream.GetCurrentBitNo(); 3140 assert( 3141 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3142 "Mismatch between VST and scanned function offsets"); 3143 DeferredFunctionInfo[Fn] = CurBit; 3144 3145 // Skip over the function block for now. 3146 if (Stream.SkipBlock()) 3147 return error("Invalid record"); 3148 return std::error_code(); 3149 } 3150 3151 std::error_code BitcodeReader::globalCleanup() { 3152 // Patch the initializers for globals and aliases up. 3153 resolveGlobalAndAliasInits(); 3154 if (!GlobalInits.empty() || !AliasInits.empty()) 3155 return error("Malformed global initializer set"); 3156 3157 // Look for intrinsic functions which need to be upgraded at some point 3158 for (Function &F : *TheModule) { 3159 Function *NewFn; 3160 if (UpgradeIntrinsicFunction(&F, NewFn)) 3161 UpgradedIntrinsics[&F] = NewFn; 3162 } 3163 3164 // Look for global variables which need to be renamed. 3165 for (GlobalVariable &GV : TheModule->globals()) 3166 UpgradeGlobalVariable(&GV); 3167 3168 // Force deallocation of memory for these vectors to favor the client that 3169 // want lazy deserialization. 3170 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3171 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3172 return std::error_code(); 3173 } 3174 3175 /// Support for lazy parsing of function bodies. This is required if we 3176 /// either have an old bitcode file without a VST forward declaration record, 3177 /// or if we have an anonymous function being materialized, since anonymous 3178 /// functions do not have a name and are therefore not in the VST. 3179 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3180 Stream.JumpToBit(NextUnreadBit); 3181 3182 if (Stream.AtEndOfStream()) 3183 return error("Could not find function in stream"); 3184 3185 if (!SeenFirstFunctionBody) 3186 return error("Trying to materialize functions before seeing function blocks"); 3187 3188 // An old bitcode file with the symbol table at the end would have 3189 // finished the parse greedily. 3190 assert(SeenValueSymbolTable); 3191 3192 SmallVector<uint64_t, 64> Record; 3193 3194 while (1) { 3195 BitstreamEntry Entry = Stream.advance(); 3196 switch (Entry.Kind) { 3197 default: 3198 return error("Expect SubBlock"); 3199 case BitstreamEntry::SubBlock: 3200 switch (Entry.ID) { 3201 default: 3202 return error("Expect function block"); 3203 case bitc::FUNCTION_BLOCK_ID: 3204 if (std::error_code EC = rememberAndSkipFunctionBody()) 3205 return EC; 3206 NextUnreadBit = Stream.GetCurrentBitNo(); 3207 return std::error_code(); 3208 } 3209 } 3210 } 3211 } 3212 3213 std::error_code BitcodeReader::parseBitcodeVersion() { 3214 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3215 return error("Invalid record"); 3216 3217 // Read all the records. 3218 SmallVector<uint64_t, 64> Record; 3219 while (1) { 3220 BitstreamEntry Entry = Stream.advance(); 3221 3222 switch (Entry.Kind) { 3223 default: 3224 case BitstreamEntry::Error: 3225 return error("Malformed block"); 3226 case BitstreamEntry::EndBlock: 3227 return std::error_code(); 3228 case BitstreamEntry::Record: 3229 // The interesting case. 3230 break; 3231 } 3232 3233 // Read a record. 3234 Record.clear(); 3235 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3236 switch (BitCode) { 3237 default: // Default behavior: reject 3238 return error("Invalid value"); 3239 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3240 // N] 3241 convertToString(Record, 0, ProducerIdentification); 3242 break; 3243 } 3244 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3245 unsigned epoch = (unsigned)Record[0]; 3246 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3247 return error( 3248 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3249 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3250 } 3251 } 3252 } 3253 } 3254 } 3255 3256 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3257 bool ShouldLazyLoadMetadata) { 3258 if (ResumeBit) 3259 Stream.JumpToBit(ResumeBit); 3260 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3261 return error("Invalid record"); 3262 3263 SmallVector<uint64_t, 64> Record; 3264 std::vector<std::string> SectionTable; 3265 std::vector<std::string> GCTable; 3266 3267 // Read all the records for this module. 3268 while (1) { 3269 BitstreamEntry Entry = Stream.advance(); 3270 3271 switch (Entry.Kind) { 3272 case BitstreamEntry::Error: 3273 return error("Malformed block"); 3274 case BitstreamEntry::EndBlock: 3275 return globalCleanup(); 3276 3277 case BitstreamEntry::SubBlock: 3278 switch (Entry.ID) { 3279 default: // Skip unknown content. 3280 if (Stream.SkipBlock()) 3281 return error("Invalid record"); 3282 break; 3283 case bitc::BLOCKINFO_BLOCK_ID: 3284 if (Stream.ReadBlockInfoBlock()) 3285 return error("Malformed block"); 3286 break; 3287 case bitc::PARAMATTR_BLOCK_ID: 3288 if (std::error_code EC = parseAttributeBlock()) 3289 return EC; 3290 break; 3291 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3292 if (std::error_code EC = parseAttributeGroupBlock()) 3293 return EC; 3294 break; 3295 case bitc::TYPE_BLOCK_ID_NEW: 3296 if (std::error_code EC = parseTypeTable()) 3297 return EC; 3298 break; 3299 case bitc::VALUE_SYMTAB_BLOCK_ID: 3300 if (!SeenValueSymbolTable) { 3301 // Either this is an old form VST without function index and an 3302 // associated VST forward declaration record (which would have caused 3303 // the VST to be jumped to and parsed before it was encountered 3304 // normally in the stream), or there were no function blocks to 3305 // trigger an earlier parsing of the VST. 3306 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3307 if (std::error_code EC = parseValueSymbolTable()) 3308 return EC; 3309 SeenValueSymbolTable = true; 3310 } else { 3311 // We must have had a VST forward declaration record, which caused 3312 // the parser to jump to and parse the VST earlier. 3313 assert(VSTOffset > 0); 3314 if (Stream.SkipBlock()) 3315 return error("Invalid record"); 3316 } 3317 break; 3318 case bitc::CONSTANTS_BLOCK_ID: 3319 if (std::error_code EC = parseConstants()) 3320 return EC; 3321 if (std::error_code EC = resolveGlobalAndAliasInits()) 3322 return EC; 3323 break; 3324 case bitc::METADATA_BLOCK_ID: 3325 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3326 if (std::error_code EC = rememberAndSkipMetadata()) 3327 return EC; 3328 break; 3329 } 3330 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3331 if (std::error_code EC = parseMetadata(true)) 3332 return EC; 3333 break; 3334 case bitc::METADATA_KIND_BLOCK_ID: 3335 if (std::error_code EC = parseMetadataKinds()) 3336 return EC; 3337 break; 3338 case bitc::FUNCTION_BLOCK_ID: 3339 // If this is the first function body we've seen, reverse the 3340 // FunctionsWithBodies list. 3341 if (!SeenFirstFunctionBody) { 3342 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3343 if (std::error_code EC = globalCleanup()) 3344 return EC; 3345 SeenFirstFunctionBody = true; 3346 } 3347 3348 if (VSTOffset > 0) { 3349 // If we have a VST forward declaration record, make sure we 3350 // parse the VST now if we haven't already. It is needed to 3351 // set up the DeferredFunctionInfo vector for lazy reading. 3352 if (!SeenValueSymbolTable) { 3353 if (std::error_code EC = 3354 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3355 return EC; 3356 SeenValueSymbolTable = true; 3357 // Fall through so that we record the NextUnreadBit below. 3358 // This is necessary in case we have an anonymous function that 3359 // is later materialized. Since it will not have a VST entry we 3360 // need to fall back to the lazy parse to find its offset. 3361 } else { 3362 // If we have a VST forward declaration record, but have already 3363 // parsed the VST (just above, when the first function body was 3364 // encountered here), then we are resuming the parse after 3365 // materializing functions. The ResumeBit points to the 3366 // start of the last function block recorded in the 3367 // DeferredFunctionInfo map. Skip it. 3368 if (Stream.SkipBlock()) 3369 return error("Invalid record"); 3370 continue; 3371 } 3372 } 3373 3374 // Support older bitcode files that did not have the function 3375 // index in the VST, nor a VST forward declaration record, as 3376 // well as anonymous functions that do not have VST entries. 3377 // Build the DeferredFunctionInfo vector on the fly. 3378 if (std::error_code EC = rememberAndSkipFunctionBody()) 3379 return EC; 3380 3381 // Suspend parsing when we reach the function bodies. Subsequent 3382 // materialization calls will resume it when necessary. If the bitcode 3383 // file is old, the symbol table will be at the end instead and will not 3384 // have been seen yet. In this case, just finish the parse now. 3385 if (SeenValueSymbolTable) { 3386 NextUnreadBit = Stream.GetCurrentBitNo(); 3387 return std::error_code(); 3388 } 3389 break; 3390 case bitc::USELIST_BLOCK_ID: 3391 if (std::error_code EC = parseUseLists()) 3392 return EC; 3393 break; 3394 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3395 if (std::error_code EC = parseOperandBundleTags()) 3396 return EC; 3397 break; 3398 } 3399 continue; 3400 3401 case BitstreamEntry::Record: 3402 // The interesting case. 3403 break; 3404 } 3405 3406 // Read a record. 3407 auto BitCode = Stream.readRecord(Entry.ID, Record); 3408 switch (BitCode) { 3409 default: break; // Default behavior, ignore unknown content. 3410 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3411 if (Record.size() < 1) 3412 return error("Invalid record"); 3413 // Only version #0 and #1 are supported so far. 3414 unsigned module_version = Record[0]; 3415 switch (module_version) { 3416 default: 3417 return error("Invalid value"); 3418 case 0: 3419 UseRelativeIDs = false; 3420 break; 3421 case 1: 3422 UseRelativeIDs = true; 3423 break; 3424 } 3425 break; 3426 } 3427 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3428 std::string S; 3429 if (convertToString(Record, 0, S)) 3430 return error("Invalid record"); 3431 TheModule->setTargetTriple(S); 3432 break; 3433 } 3434 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3435 std::string S; 3436 if (convertToString(Record, 0, S)) 3437 return error("Invalid record"); 3438 TheModule->setDataLayout(S); 3439 break; 3440 } 3441 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3442 std::string S; 3443 if (convertToString(Record, 0, S)) 3444 return error("Invalid record"); 3445 TheModule->setModuleInlineAsm(S); 3446 break; 3447 } 3448 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3449 // FIXME: Remove in 4.0. 3450 std::string S; 3451 if (convertToString(Record, 0, S)) 3452 return error("Invalid record"); 3453 // Ignore value. 3454 break; 3455 } 3456 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3457 std::string S; 3458 if (convertToString(Record, 0, S)) 3459 return error("Invalid record"); 3460 SectionTable.push_back(S); 3461 break; 3462 } 3463 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3464 std::string S; 3465 if (convertToString(Record, 0, S)) 3466 return error("Invalid record"); 3467 GCTable.push_back(S); 3468 break; 3469 } 3470 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3471 if (Record.size() < 2) 3472 return error("Invalid record"); 3473 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3474 unsigned ComdatNameSize = Record[1]; 3475 std::string ComdatName; 3476 ComdatName.reserve(ComdatNameSize); 3477 for (unsigned i = 0; i != ComdatNameSize; ++i) 3478 ComdatName += (char)Record[2 + i]; 3479 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3480 C->setSelectionKind(SK); 3481 ComdatList.push_back(C); 3482 break; 3483 } 3484 // GLOBALVAR: [pointer type, isconst, initid, 3485 // linkage, alignment, section, visibility, threadlocal, 3486 // unnamed_addr, externally_initialized, dllstorageclass, 3487 // comdat] 3488 case bitc::MODULE_CODE_GLOBALVAR: { 3489 if (Record.size() < 6) 3490 return error("Invalid record"); 3491 Type *Ty = getTypeByID(Record[0]); 3492 if (!Ty) 3493 return error("Invalid record"); 3494 bool isConstant = Record[1] & 1; 3495 bool explicitType = Record[1] & 2; 3496 unsigned AddressSpace; 3497 if (explicitType) { 3498 AddressSpace = Record[1] >> 2; 3499 } else { 3500 if (!Ty->isPointerTy()) 3501 return error("Invalid type for value"); 3502 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3503 Ty = cast<PointerType>(Ty)->getElementType(); 3504 } 3505 3506 uint64_t RawLinkage = Record[3]; 3507 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3508 unsigned Alignment; 3509 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3510 return EC; 3511 std::string Section; 3512 if (Record[5]) { 3513 if (Record[5]-1 >= SectionTable.size()) 3514 return error("Invalid ID"); 3515 Section = SectionTable[Record[5]-1]; 3516 } 3517 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3518 // Local linkage must have default visibility. 3519 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3520 // FIXME: Change to an error if non-default in 4.0. 3521 Visibility = getDecodedVisibility(Record[6]); 3522 3523 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3524 if (Record.size() > 7) 3525 TLM = getDecodedThreadLocalMode(Record[7]); 3526 3527 bool UnnamedAddr = false; 3528 if (Record.size() > 8) 3529 UnnamedAddr = Record[8]; 3530 3531 bool ExternallyInitialized = false; 3532 if (Record.size() > 9) 3533 ExternallyInitialized = Record[9]; 3534 3535 GlobalVariable *NewGV = 3536 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3537 TLM, AddressSpace, ExternallyInitialized); 3538 NewGV->setAlignment(Alignment); 3539 if (!Section.empty()) 3540 NewGV->setSection(Section); 3541 NewGV->setVisibility(Visibility); 3542 NewGV->setUnnamedAddr(UnnamedAddr); 3543 3544 if (Record.size() > 10) 3545 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3546 else 3547 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3548 3549 ValueList.push_back(NewGV); 3550 3551 // Remember which value to use for the global initializer. 3552 if (unsigned InitID = Record[2]) 3553 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3554 3555 if (Record.size() > 11) { 3556 if (unsigned ComdatID = Record[11]) { 3557 if (ComdatID > ComdatList.size()) 3558 return error("Invalid global variable comdat ID"); 3559 NewGV->setComdat(ComdatList[ComdatID - 1]); 3560 } 3561 } else if (hasImplicitComdat(RawLinkage)) { 3562 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3563 } 3564 break; 3565 } 3566 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3567 // alignment, section, visibility, gc, unnamed_addr, 3568 // prologuedata, dllstorageclass, comdat, prefixdata] 3569 case bitc::MODULE_CODE_FUNCTION: { 3570 if (Record.size() < 8) 3571 return error("Invalid record"); 3572 Type *Ty = getTypeByID(Record[0]); 3573 if (!Ty) 3574 return error("Invalid record"); 3575 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3576 Ty = PTy->getElementType(); 3577 auto *FTy = dyn_cast<FunctionType>(Ty); 3578 if (!FTy) 3579 return error("Invalid type for value"); 3580 auto CC = static_cast<CallingConv::ID>(Record[1]); 3581 if (CC & ~CallingConv::MaxID) 3582 return error("Invalid calling convention ID"); 3583 3584 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3585 "", TheModule); 3586 3587 Func->setCallingConv(CC); 3588 bool isProto = Record[2]; 3589 uint64_t RawLinkage = Record[3]; 3590 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3591 Func->setAttributes(getAttributes(Record[4])); 3592 3593 unsigned Alignment; 3594 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3595 return EC; 3596 Func->setAlignment(Alignment); 3597 if (Record[6]) { 3598 if (Record[6]-1 >= SectionTable.size()) 3599 return error("Invalid ID"); 3600 Func->setSection(SectionTable[Record[6]-1]); 3601 } 3602 // Local linkage must have default visibility. 3603 if (!Func->hasLocalLinkage()) 3604 // FIXME: Change to an error if non-default in 4.0. 3605 Func->setVisibility(getDecodedVisibility(Record[7])); 3606 if (Record.size() > 8 && Record[8]) { 3607 if (Record[8]-1 >= GCTable.size()) 3608 return error("Invalid ID"); 3609 Func->setGC(GCTable[Record[8]-1].c_str()); 3610 } 3611 bool UnnamedAddr = false; 3612 if (Record.size() > 9) 3613 UnnamedAddr = Record[9]; 3614 Func->setUnnamedAddr(UnnamedAddr); 3615 if (Record.size() > 10 && Record[10] != 0) 3616 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3617 3618 if (Record.size() > 11) 3619 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3620 else 3621 upgradeDLLImportExportLinkage(Func, RawLinkage); 3622 3623 if (Record.size() > 12) { 3624 if (unsigned ComdatID = Record[12]) { 3625 if (ComdatID > ComdatList.size()) 3626 return error("Invalid function comdat ID"); 3627 Func->setComdat(ComdatList[ComdatID - 1]); 3628 } 3629 } else if (hasImplicitComdat(RawLinkage)) { 3630 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3631 } 3632 3633 if (Record.size() > 13 && Record[13] != 0) 3634 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3635 3636 if (Record.size() > 14 && Record[14] != 0) 3637 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3638 3639 ValueList.push_back(Func); 3640 3641 // If this is a function with a body, remember the prototype we are 3642 // creating now, so that we can match up the body with them later. 3643 if (!isProto) { 3644 Func->setIsMaterializable(true); 3645 FunctionsWithBodies.push_back(Func); 3646 DeferredFunctionInfo[Func] = 0; 3647 } 3648 break; 3649 } 3650 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3651 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3652 case bitc::MODULE_CODE_ALIAS: 3653 case bitc::MODULE_CODE_ALIAS_OLD: { 3654 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3655 if (Record.size() < (3 + (unsigned)NewRecord)) 3656 return error("Invalid record"); 3657 unsigned OpNum = 0; 3658 Type *Ty = getTypeByID(Record[OpNum++]); 3659 if (!Ty) 3660 return error("Invalid record"); 3661 3662 unsigned AddrSpace; 3663 if (!NewRecord) { 3664 auto *PTy = dyn_cast<PointerType>(Ty); 3665 if (!PTy) 3666 return error("Invalid type for value"); 3667 Ty = PTy->getElementType(); 3668 AddrSpace = PTy->getAddressSpace(); 3669 } else { 3670 AddrSpace = Record[OpNum++]; 3671 } 3672 3673 auto Val = Record[OpNum++]; 3674 auto Linkage = Record[OpNum++]; 3675 auto *NewGA = GlobalAlias::create( 3676 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3677 // Old bitcode files didn't have visibility field. 3678 // Local linkage must have default visibility. 3679 if (OpNum != Record.size()) { 3680 auto VisInd = OpNum++; 3681 if (!NewGA->hasLocalLinkage()) 3682 // FIXME: Change to an error if non-default in 4.0. 3683 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3684 } 3685 if (OpNum != Record.size()) 3686 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3687 else 3688 upgradeDLLImportExportLinkage(NewGA, Linkage); 3689 if (OpNum != Record.size()) 3690 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3691 if (OpNum != Record.size()) 3692 NewGA->setUnnamedAddr(Record[OpNum++]); 3693 ValueList.push_back(NewGA); 3694 AliasInits.push_back(std::make_pair(NewGA, Val)); 3695 break; 3696 } 3697 /// MODULE_CODE_PURGEVALS: [numvals] 3698 case bitc::MODULE_CODE_PURGEVALS: 3699 // Trim down the value list to the specified size. 3700 if (Record.size() < 1 || Record[0] > ValueList.size()) 3701 return error("Invalid record"); 3702 ValueList.shrinkTo(Record[0]); 3703 break; 3704 /// MODULE_CODE_VSTOFFSET: [offset] 3705 case bitc::MODULE_CODE_VSTOFFSET: 3706 if (Record.size() < 1) 3707 return error("Invalid record"); 3708 VSTOffset = Record[0]; 3709 break; 3710 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3711 case bitc::MODULE_CODE_SOURCE_FILENAME: 3712 SmallString<128> ValueName; 3713 if (convertToString(Record, 0, ValueName)) 3714 return error("Invalid record"); 3715 TheModule->setSourceFileName(ValueName); 3716 break; 3717 } 3718 Record.clear(); 3719 } 3720 } 3721 3722 /// Helper to read the header common to all bitcode files. 3723 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3724 // Sniff for the signature. 3725 if (Stream.Read(8) != 'B' || 3726 Stream.Read(8) != 'C' || 3727 Stream.Read(4) != 0x0 || 3728 Stream.Read(4) != 0xC || 3729 Stream.Read(4) != 0xE || 3730 Stream.Read(4) != 0xD) 3731 return false; 3732 return true; 3733 } 3734 3735 std::error_code 3736 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3737 Module *M, bool ShouldLazyLoadMetadata) { 3738 TheModule = M; 3739 3740 if (std::error_code EC = initStream(std::move(Streamer))) 3741 return EC; 3742 3743 // Sniff for the signature. 3744 if (!hasValidBitcodeHeader(Stream)) 3745 return error("Invalid bitcode signature"); 3746 3747 // We expect a number of well-defined blocks, though we don't necessarily 3748 // need to understand them all. 3749 while (1) { 3750 if (Stream.AtEndOfStream()) { 3751 // We didn't really read a proper Module. 3752 return error("Malformed IR file"); 3753 } 3754 3755 BitstreamEntry Entry = 3756 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3757 3758 if (Entry.Kind != BitstreamEntry::SubBlock) 3759 return error("Malformed block"); 3760 3761 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3762 parseBitcodeVersion(); 3763 continue; 3764 } 3765 3766 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3767 return parseModule(0, ShouldLazyLoadMetadata); 3768 3769 if (Stream.SkipBlock()) 3770 return error("Invalid record"); 3771 } 3772 } 3773 3774 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3775 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3776 return error("Invalid record"); 3777 3778 SmallVector<uint64_t, 64> Record; 3779 3780 std::string Triple; 3781 // Read all the records for this module. 3782 while (1) { 3783 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3784 3785 switch (Entry.Kind) { 3786 case BitstreamEntry::SubBlock: // Handled for us already. 3787 case BitstreamEntry::Error: 3788 return error("Malformed block"); 3789 case BitstreamEntry::EndBlock: 3790 return Triple; 3791 case BitstreamEntry::Record: 3792 // The interesting case. 3793 break; 3794 } 3795 3796 // Read a record. 3797 switch (Stream.readRecord(Entry.ID, Record)) { 3798 default: break; // Default behavior, ignore unknown content. 3799 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3800 std::string S; 3801 if (convertToString(Record, 0, S)) 3802 return error("Invalid record"); 3803 Triple = S; 3804 break; 3805 } 3806 } 3807 Record.clear(); 3808 } 3809 llvm_unreachable("Exit infinite loop"); 3810 } 3811 3812 ErrorOr<std::string> BitcodeReader::parseTriple() { 3813 if (std::error_code EC = initStream(nullptr)) 3814 return EC; 3815 3816 // Sniff for the signature. 3817 if (!hasValidBitcodeHeader(Stream)) 3818 return error("Invalid bitcode signature"); 3819 3820 // We expect a number of well-defined blocks, though we don't necessarily 3821 // need to understand them all. 3822 while (1) { 3823 BitstreamEntry Entry = Stream.advance(); 3824 3825 switch (Entry.Kind) { 3826 case BitstreamEntry::Error: 3827 return error("Malformed block"); 3828 case BitstreamEntry::EndBlock: 3829 return std::error_code(); 3830 3831 case BitstreamEntry::SubBlock: 3832 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3833 return parseModuleTriple(); 3834 3835 // Ignore other sub-blocks. 3836 if (Stream.SkipBlock()) 3837 return error("Malformed block"); 3838 continue; 3839 3840 case BitstreamEntry::Record: 3841 Stream.skipRecord(Entry.ID); 3842 continue; 3843 } 3844 } 3845 } 3846 3847 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3848 if (std::error_code EC = initStream(nullptr)) 3849 return EC; 3850 3851 // Sniff for the signature. 3852 if (!hasValidBitcodeHeader(Stream)) 3853 return error("Invalid bitcode signature"); 3854 3855 // We expect a number of well-defined blocks, though we don't necessarily 3856 // need to understand them all. 3857 while (1) { 3858 BitstreamEntry Entry = Stream.advance(); 3859 switch (Entry.Kind) { 3860 case BitstreamEntry::Error: 3861 return error("Malformed block"); 3862 case BitstreamEntry::EndBlock: 3863 return std::error_code(); 3864 3865 case BitstreamEntry::SubBlock: 3866 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3867 if (std::error_code EC = parseBitcodeVersion()) 3868 return EC; 3869 return ProducerIdentification; 3870 } 3871 // Ignore other sub-blocks. 3872 if (Stream.SkipBlock()) 3873 return error("Malformed block"); 3874 continue; 3875 case BitstreamEntry::Record: 3876 Stream.skipRecord(Entry.ID); 3877 continue; 3878 } 3879 } 3880 } 3881 3882 /// Parse metadata attachments. 3883 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3884 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3885 return error("Invalid record"); 3886 3887 SmallVector<uint64_t, 64> Record; 3888 while (1) { 3889 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3890 3891 switch (Entry.Kind) { 3892 case BitstreamEntry::SubBlock: // Handled for us already. 3893 case BitstreamEntry::Error: 3894 return error("Malformed block"); 3895 case BitstreamEntry::EndBlock: 3896 return std::error_code(); 3897 case BitstreamEntry::Record: 3898 // The interesting case. 3899 break; 3900 } 3901 3902 // Read a metadata attachment record. 3903 Record.clear(); 3904 switch (Stream.readRecord(Entry.ID, Record)) { 3905 default: // Default behavior: ignore. 3906 break; 3907 case bitc::METADATA_ATTACHMENT: { 3908 unsigned RecordLength = Record.size(); 3909 if (Record.empty()) 3910 return error("Invalid record"); 3911 if (RecordLength % 2 == 0) { 3912 // A function attachment. 3913 for (unsigned I = 0; I != RecordLength; I += 2) { 3914 auto K = MDKindMap.find(Record[I]); 3915 if (K == MDKindMap.end()) 3916 return error("Invalid ID"); 3917 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3918 if (!MD) 3919 return error("Invalid metadata attachment"); 3920 F.setMetadata(K->second, MD); 3921 } 3922 continue; 3923 } 3924 3925 // An instruction attachment. 3926 Instruction *Inst = InstructionList[Record[0]]; 3927 for (unsigned i = 1; i != RecordLength; i = i+2) { 3928 unsigned Kind = Record[i]; 3929 DenseMap<unsigned, unsigned>::iterator I = 3930 MDKindMap.find(Kind); 3931 if (I == MDKindMap.end()) 3932 return error("Invalid ID"); 3933 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3934 if (isa<LocalAsMetadata>(Node)) 3935 // Drop the attachment. This used to be legal, but there's no 3936 // upgrade path. 3937 break; 3938 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3939 if (!MD) 3940 return error("Invalid metadata attachment"); 3941 3942 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3943 MD = upgradeInstructionLoopAttachment(*MD); 3944 3945 Inst->setMetadata(I->second, MD); 3946 if (I->second == LLVMContext::MD_tbaa) { 3947 InstsWithTBAATag.push_back(Inst); 3948 continue; 3949 } 3950 } 3951 break; 3952 } 3953 } 3954 } 3955 } 3956 3957 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3958 LLVMContext &Context = PtrType->getContext(); 3959 if (!isa<PointerType>(PtrType)) 3960 return error(Context, "Load/Store operand is not a pointer type"); 3961 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3962 3963 if (ValType && ValType != ElemType) 3964 return error(Context, "Explicit load/store type does not match pointee " 3965 "type of pointer operand"); 3966 if (!PointerType::isLoadableOrStorableType(ElemType)) 3967 return error(Context, "Cannot load/store from pointer"); 3968 return std::error_code(); 3969 } 3970 3971 /// Lazily parse the specified function body block. 3972 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3973 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3974 return error("Invalid record"); 3975 3976 // Unexpected unresolved metadata when parsing function. 3977 if (MetadataList.hasFwdRefs()) 3978 return error("Invalid function metadata: incoming forward references"); 3979 3980 InstructionList.clear(); 3981 unsigned ModuleValueListSize = ValueList.size(); 3982 unsigned ModuleMetadataListSize = MetadataList.size(); 3983 3984 // Add all the function arguments to the value table. 3985 for (Argument &I : F->args()) 3986 ValueList.push_back(&I); 3987 3988 unsigned NextValueNo = ValueList.size(); 3989 BasicBlock *CurBB = nullptr; 3990 unsigned CurBBNo = 0; 3991 3992 DebugLoc LastLoc; 3993 auto getLastInstruction = [&]() -> Instruction * { 3994 if (CurBB && !CurBB->empty()) 3995 return &CurBB->back(); 3996 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3997 !FunctionBBs[CurBBNo - 1]->empty()) 3998 return &FunctionBBs[CurBBNo - 1]->back(); 3999 return nullptr; 4000 }; 4001 4002 std::vector<OperandBundleDef> OperandBundles; 4003 4004 // Read all the records. 4005 SmallVector<uint64_t, 64> Record; 4006 while (1) { 4007 BitstreamEntry Entry = Stream.advance(); 4008 4009 switch (Entry.Kind) { 4010 case BitstreamEntry::Error: 4011 return error("Malformed block"); 4012 case BitstreamEntry::EndBlock: 4013 goto OutOfRecordLoop; 4014 4015 case BitstreamEntry::SubBlock: 4016 switch (Entry.ID) { 4017 default: // Skip unknown content. 4018 if (Stream.SkipBlock()) 4019 return error("Invalid record"); 4020 break; 4021 case bitc::CONSTANTS_BLOCK_ID: 4022 if (std::error_code EC = parseConstants()) 4023 return EC; 4024 NextValueNo = ValueList.size(); 4025 break; 4026 case bitc::VALUE_SYMTAB_BLOCK_ID: 4027 if (std::error_code EC = parseValueSymbolTable()) 4028 return EC; 4029 break; 4030 case bitc::METADATA_ATTACHMENT_ID: 4031 if (std::error_code EC = parseMetadataAttachment(*F)) 4032 return EC; 4033 break; 4034 case bitc::METADATA_BLOCK_ID: 4035 if (std::error_code EC = parseMetadata()) 4036 return EC; 4037 break; 4038 case bitc::USELIST_BLOCK_ID: 4039 if (std::error_code EC = parseUseLists()) 4040 return EC; 4041 break; 4042 } 4043 continue; 4044 4045 case BitstreamEntry::Record: 4046 // The interesting case. 4047 break; 4048 } 4049 4050 // Read a record. 4051 Record.clear(); 4052 Instruction *I = nullptr; 4053 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4054 switch (BitCode) { 4055 default: // Default behavior: reject 4056 return error("Invalid value"); 4057 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4058 if (Record.size() < 1 || Record[0] == 0) 4059 return error("Invalid record"); 4060 // Create all the basic blocks for the function. 4061 FunctionBBs.resize(Record[0]); 4062 4063 // See if anything took the address of blocks in this function. 4064 auto BBFRI = BasicBlockFwdRefs.find(F); 4065 if (BBFRI == BasicBlockFwdRefs.end()) { 4066 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4067 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4068 } else { 4069 auto &BBRefs = BBFRI->second; 4070 // Check for invalid basic block references. 4071 if (BBRefs.size() > FunctionBBs.size()) 4072 return error("Invalid ID"); 4073 assert(!BBRefs.empty() && "Unexpected empty array"); 4074 assert(!BBRefs.front() && "Invalid reference to entry block"); 4075 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4076 ++I) 4077 if (I < RE && BBRefs[I]) { 4078 BBRefs[I]->insertInto(F); 4079 FunctionBBs[I] = BBRefs[I]; 4080 } else { 4081 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4082 } 4083 4084 // Erase from the table. 4085 BasicBlockFwdRefs.erase(BBFRI); 4086 } 4087 4088 CurBB = FunctionBBs[0]; 4089 continue; 4090 } 4091 4092 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4093 // This record indicates that the last instruction is at the same 4094 // location as the previous instruction with a location. 4095 I = getLastInstruction(); 4096 4097 if (!I) 4098 return error("Invalid record"); 4099 I->setDebugLoc(LastLoc); 4100 I = nullptr; 4101 continue; 4102 4103 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4104 I = getLastInstruction(); 4105 if (!I || Record.size() < 4) 4106 return error("Invalid record"); 4107 4108 unsigned Line = Record[0], Col = Record[1]; 4109 unsigned ScopeID = Record[2], IAID = Record[3]; 4110 4111 MDNode *Scope = nullptr, *IA = nullptr; 4112 if (ScopeID) { 4113 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4114 if (!Scope) 4115 return error("Invalid record"); 4116 } 4117 if (IAID) { 4118 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4119 if (!IA) 4120 return error("Invalid record"); 4121 } 4122 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4123 I->setDebugLoc(LastLoc); 4124 I = nullptr; 4125 continue; 4126 } 4127 4128 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4129 unsigned OpNum = 0; 4130 Value *LHS, *RHS; 4131 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4132 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4133 OpNum+1 > Record.size()) 4134 return error("Invalid record"); 4135 4136 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4137 if (Opc == -1) 4138 return error("Invalid record"); 4139 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4140 InstructionList.push_back(I); 4141 if (OpNum < Record.size()) { 4142 if (Opc == Instruction::Add || 4143 Opc == Instruction::Sub || 4144 Opc == Instruction::Mul || 4145 Opc == Instruction::Shl) { 4146 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4147 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4148 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4149 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4150 } else if (Opc == Instruction::SDiv || 4151 Opc == Instruction::UDiv || 4152 Opc == Instruction::LShr || 4153 Opc == Instruction::AShr) { 4154 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4155 cast<BinaryOperator>(I)->setIsExact(true); 4156 } else if (isa<FPMathOperator>(I)) { 4157 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4158 if (FMF.any()) 4159 I->setFastMathFlags(FMF); 4160 } 4161 4162 } 4163 break; 4164 } 4165 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4166 unsigned OpNum = 0; 4167 Value *Op; 4168 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4169 OpNum+2 != Record.size()) 4170 return error("Invalid record"); 4171 4172 Type *ResTy = getTypeByID(Record[OpNum]); 4173 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4174 if (Opc == -1 || !ResTy) 4175 return error("Invalid record"); 4176 Instruction *Temp = nullptr; 4177 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4178 if (Temp) { 4179 InstructionList.push_back(Temp); 4180 CurBB->getInstList().push_back(Temp); 4181 } 4182 } else { 4183 auto CastOp = (Instruction::CastOps)Opc; 4184 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4185 return error("Invalid cast"); 4186 I = CastInst::Create(CastOp, Op, ResTy); 4187 } 4188 InstructionList.push_back(I); 4189 break; 4190 } 4191 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4192 case bitc::FUNC_CODE_INST_GEP_OLD: 4193 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4194 unsigned OpNum = 0; 4195 4196 Type *Ty; 4197 bool InBounds; 4198 4199 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4200 InBounds = Record[OpNum++]; 4201 Ty = getTypeByID(Record[OpNum++]); 4202 } else { 4203 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4204 Ty = nullptr; 4205 } 4206 4207 Value *BasePtr; 4208 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4209 return error("Invalid record"); 4210 4211 if (!Ty) 4212 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4213 ->getElementType(); 4214 else if (Ty != 4215 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4216 ->getElementType()) 4217 return error( 4218 "Explicit gep type does not match pointee type of pointer operand"); 4219 4220 SmallVector<Value*, 16> GEPIdx; 4221 while (OpNum != Record.size()) { 4222 Value *Op; 4223 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4224 return error("Invalid record"); 4225 GEPIdx.push_back(Op); 4226 } 4227 4228 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4229 4230 InstructionList.push_back(I); 4231 if (InBounds) 4232 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4233 break; 4234 } 4235 4236 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4237 // EXTRACTVAL: [opty, opval, n x indices] 4238 unsigned OpNum = 0; 4239 Value *Agg; 4240 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4241 return error("Invalid record"); 4242 4243 unsigned RecSize = Record.size(); 4244 if (OpNum == RecSize) 4245 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4246 4247 SmallVector<unsigned, 4> EXTRACTVALIdx; 4248 Type *CurTy = Agg->getType(); 4249 for (; OpNum != RecSize; ++OpNum) { 4250 bool IsArray = CurTy->isArrayTy(); 4251 bool IsStruct = CurTy->isStructTy(); 4252 uint64_t Index = Record[OpNum]; 4253 4254 if (!IsStruct && !IsArray) 4255 return error("EXTRACTVAL: Invalid type"); 4256 if ((unsigned)Index != Index) 4257 return error("Invalid value"); 4258 if (IsStruct && Index >= CurTy->subtypes().size()) 4259 return error("EXTRACTVAL: Invalid struct index"); 4260 if (IsArray && Index >= CurTy->getArrayNumElements()) 4261 return error("EXTRACTVAL: Invalid array index"); 4262 EXTRACTVALIdx.push_back((unsigned)Index); 4263 4264 if (IsStruct) 4265 CurTy = CurTy->subtypes()[Index]; 4266 else 4267 CurTy = CurTy->subtypes()[0]; 4268 } 4269 4270 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4271 InstructionList.push_back(I); 4272 break; 4273 } 4274 4275 case bitc::FUNC_CODE_INST_INSERTVAL: { 4276 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4277 unsigned OpNum = 0; 4278 Value *Agg; 4279 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4280 return error("Invalid record"); 4281 Value *Val; 4282 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4283 return error("Invalid record"); 4284 4285 unsigned RecSize = Record.size(); 4286 if (OpNum == RecSize) 4287 return error("INSERTVAL: Invalid instruction with 0 indices"); 4288 4289 SmallVector<unsigned, 4> INSERTVALIdx; 4290 Type *CurTy = Agg->getType(); 4291 for (; OpNum != RecSize; ++OpNum) { 4292 bool IsArray = CurTy->isArrayTy(); 4293 bool IsStruct = CurTy->isStructTy(); 4294 uint64_t Index = Record[OpNum]; 4295 4296 if (!IsStruct && !IsArray) 4297 return error("INSERTVAL: Invalid type"); 4298 if ((unsigned)Index != Index) 4299 return error("Invalid value"); 4300 if (IsStruct && Index >= CurTy->subtypes().size()) 4301 return error("INSERTVAL: Invalid struct index"); 4302 if (IsArray && Index >= CurTy->getArrayNumElements()) 4303 return error("INSERTVAL: Invalid array index"); 4304 4305 INSERTVALIdx.push_back((unsigned)Index); 4306 if (IsStruct) 4307 CurTy = CurTy->subtypes()[Index]; 4308 else 4309 CurTy = CurTy->subtypes()[0]; 4310 } 4311 4312 if (CurTy != Val->getType()) 4313 return error("Inserted value type doesn't match aggregate type"); 4314 4315 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 4320 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4321 // obsolete form of select 4322 // handles select i1 ... in old bitcode 4323 unsigned OpNum = 0; 4324 Value *TrueVal, *FalseVal, *Cond; 4325 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4326 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4327 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4328 return error("Invalid record"); 4329 4330 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4331 InstructionList.push_back(I); 4332 break; 4333 } 4334 4335 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4336 // new form of select 4337 // handles select i1 or select [N x i1] 4338 unsigned OpNum = 0; 4339 Value *TrueVal, *FalseVal, *Cond; 4340 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4341 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4342 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4343 return error("Invalid record"); 4344 4345 // select condition can be either i1 or [N x i1] 4346 if (VectorType* vector_type = 4347 dyn_cast<VectorType>(Cond->getType())) { 4348 // expect <n x i1> 4349 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4350 return error("Invalid type for value"); 4351 } else { 4352 // expect i1 4353 if (Cond->getType() != Type::getInt1Ty(Context)) 4354 return error("Invalid type for value"); 4355 } 4356 4357 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 4362 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4363 unsigned OpNum = 0; 4364 Value *Vec, *Idx; 4365 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4366 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4367 return error("Invalid record"); 4368 if (!Vec->getType()->isVectorTy()) 4369 return error("Invalid type for value"); 4370 I = ExtractElementInst::Create(Vec, Idx); 4371 InstructionList.push_back(I); 4372 break; 4373 } 4374 4375 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4376 unsigned OpNum = 0; 4377 Value *Vec, *Elt, *Idx; 4378 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4379 return error("Invalid record"); 4380 if (!Vec->getType()->isVectorTy()) 4381 return error("Invalid type for value"); 4382 if (popValue(Record, OpNum, NextValueNo, 4383 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4384 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4385 return error("Invalid record"); 4386 I = InsertElementInst::Create(Vec, Elt, Idx); 4387 InstructionList.push_back(I); 4388 break; 4389 } 4390 4391 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4392 unsigned OpNum = 0; 4393 Value *Vec1, *Vec2, *Mask; 4394 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4395 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4396 return error("Invalid record"); 4397 4398 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4399 return error("Invalid record"); 4400 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4401 return error("Invalid type for value"); 4402 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4403 InstructionList.push_back(I); 4404 break; 4405 } 4406 4407 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4408 // Old form of ICmp/FCmp returning bool 4409 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4410 // both legal on vectors but had different behaviour. 4411 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4412 // FCmp/ICmp returning bool or vector of bool 4413 4414 unsigned OpNum = 0; 4415 Value *LHS, *RHS; 4416 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4417 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4418 return error("Invalid record"); 4419 4420 unsigned PredVal = Record[OpNum]; 4421 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4422 FastMathFlags FMF; 4423 if (IsFP && Record.size() > OpNum+1) 4424 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4425 4426 if (OpNum+1 != Record.size()) 4427 return error("Invalid record"); 4428 4429 if (LHS->getType()->isFPOrFPVectorTy()) 4430 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4431 else 4432 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4433 4434 if (FMF.any()) 4435 I->setFastMathFlags(FMF); 4436 InstructionList.push_back(I); 4437 break; 4438 } 4439 4440 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4441 { 4442 unsigned Size = Record.size(); 4443 if (Size == 0) { 4444 I = ReturnInst::Create(Context); 4445 InstructionList.push_back(I); 4446 break; 4447 } 4448 4449 unsigned OpNum = 0; 4450 Value *Op = nullptr; 4451 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4452 return error("Invalid record"); 4453 if (OpNum != Record.size()) 4454 return error("Invalid record"); 4455 4456 I = ReturnInst::Create(Context, Op); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4461 if (Record.size() != 1 && Record.size() != 3) 4462 return error("Invalid record"); 4463 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4464 if (!TrueDest) 4465 return error("Invalid record"); 4466 4467 if (Record.size() == 1) { 4468 I = BranchInst::Create(TrueDest); 4469 InstructionList.push_back(I); 4470 } 4471 else { 4472 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4473 Value *Cond = getValue(Record, 2, NextValueNo, 4474 Type::getInt1Ty(Context)); 4475 if (!FalseDest || !Cond) 4476 return error("Invalid record"); 4477 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4478 InstructionList.push_back(I); 4479 } 4480 break; 4481 } 4482 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4483 if (Record.size() != 1 && Record.size() != 2) 4484 return error("Invalid record"); 4485 unsigned Idx = 0; 4486 Value *CleanupPad = 4487 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4488 if (!CleanupPad) 4489 return error("Invalid record"); 4490 BasicBlock *UnwindDest = nullptr; 4491 if (Record.size() == 2) { 4492 UnwindDest = getBasicBlock(Record[Idx++]); 4493 if (!UnwindDest) 4494 return error("Invalid record"); 4495 } 4496 4497 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4498 InstructionList.push_back(I); 4499 break; 4500 } 4501 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4502 if (Record.size() != 2) 4503 return error("Invalid record"); 4504 unsigned Idx = 0; 4505 Value *CatchPad = 4506 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4507 if (!CatchPad) 4508 return error("Invalid record"); 4509 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4510 if (!BB) 4511 return error("Invalid record"); 4512 4513 I = CatchReturnInst::Create(CatchPad, BB); 4514 InstructionList.push_back(I); 4515 break; 4516 } 4517 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4518 // We must have, at minimum, the outer scope and the number of arguments. 4519 if (Record.size() < 2) 4520 return error("Invalid record"); 4521 4522 unsigned Idx = 0; 4523 4524 Value *ParentPad = 4525 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4526 4527 unsigned NumHandlers = Record[Idx++]; 4528 4529 SmallVector<BasicBlock *, 2> Handlers; 4530 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4531 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4532 if (!BB) 4533 return error("Invalid record"); 4534 Handlers.push_back(BB); 4535 } 4536 4537 BasicBlock *UnwindDest = nullptr; 4538 if (Idx + 1 == Record.size()) { 4539 UnwindDest = getBasicBlock(Record[Idx++]); 4540 if (!UnwindDest) 4541 return error("Invalid record"); 4542 } 4543 4544 if (Record.size() != Idx) 4545 return error("Invalid record"); 4546 4547 auto *CatchSwitch = 4548 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4549 for (BasicBlock *Handler : Handlers) 4550 CatchSwitch->addHandler(Handler); 4551 I = CatchSwitch; 4552 InstructionList.push_back(I); 4553 break; 4554 } 4555 case bitc::FUNC_CODE_INST_CATCHPAD: 4556 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4557 // We must have, at minimum, the outer scope and the number of arguments. 4558 if (Record.size() < 2) 4559 return error("Invalid record"); 4560 4561 unsigned Idx = 0; 4562 4563 Value *ParentPad = 4564 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4565 4566 unsigned NumArgOperands = Record[Idx++]; 4567 4568 SmallVector<Value *, 2> Args; 4569 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4570 Value *Val; 4571 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4572 return error("Invalid record"); 4573 Args.push_back(Val); 4574 } 4575 4576 if (Record.size() != Idx) 4577 return error("Invalid record"); 4578 4579 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4580 I = CleanupPadInst::Create(ParentPad, Args); 4581 else 4582 I = CatchPadInst::Create(ParentPad, Args); 4583 InstructionList.push_back(I); 4584 break; 4585 } 4586 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4587 // Check magic 4588 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4589 // "New" SwitchInst format with case ranges. The changes to write this 4590 // format were reverted but we still recognize bitcode that uses it. 4591 // Hopefully someday we will have support for case ranges and can use 4592 // this format again. 4593 4594 Type *OpTy = getTypeByID(Record[1]); 4595 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4596 4597 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4598 BasicBlock *Default = getBasicBlock(Record[3]); 4599 if (!OpTy || !Cond || !Default) 4600 return error("Invalid record"); 4601 4602 unsigned NumCases = Record[4]; 4603 4604 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4605 InstructionList.push_back(SI); 4606 4607 unsigned CurIdx = 5; 4608 for (unsigned i = 0; i != NumCases; ++i) { 4609 SmallVector<ConstantInt*, 1> CaseVals; 4610 unsigned NumItems = Record[CurIdx++]; 4611 for (unsigned ci = 0; ci != NumItems; ++ci) { 4612 bool isSingleNumber = Record[CurIdx++]; 4613 4614 APInt Low; 4615 unsigned ActiveWords = 1; 4616 if (ValueBitWidth > 64) 4617 ActiveWords = Record[CurIdx++]; 4618 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4619 ValueBitWidth); 4620 CurIdx += ActiveWords; 4621 4622 if (!isSingleNumber) { 4623 ActiveWords = 1; 4624 if (ValueBitWidth > 64) 4625 ActiveWords = Record[CurIdx++]; 4626 APInt High = readWideAPInt( 4627 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4628 CurIdx += ActiveWords; 4629 4630 // FIXME: It is not clear whether values in the range should be 4631 // compared as signed or unsigned values. The partially 4632 // implemented changes that used this format in the past used 4633 // unsigned comparisons. 4634 for ( ; Low.ule(High); ++Low) 4635 CaseVals.push_back(ConstantInt::get(Context, Low)); 4636 } else 4637 CaseVals.push_back(ConstantInt::get(Context, Low)); 4638 } 4639 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4640 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4641 cve = CaseVals.end(); cvi != cve; ++cvi) 4642 SI->addCase(*cvi, DestBB); 4643 } 4644 I = SI; 4645 break; 4646 } 4647 4648 // Old SwitchInst format without case ranges. 4649 4650 if (Record.size() < 3 || (Record.size() & 1) == 0) 4651 return error("Invalid record"); 4652 Type *OpTy = getTypeByID(Record[0]); 4653 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4654 BasicBlock *Default = getBasicBlock(Record[2]); 4655 if (!OpTy || !Cond || !Default) 4656 return error("Invalid record"); 4657 unsigned NumCases = (Record.size()-3)/2; 4658 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4659 InstructionList.push_back(SI); 4660 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4661 ConstantInt *CaseVal = 4662 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4663 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4664 if (!CaseVal || !DestBB) { 4665 delete SI; 4666 return error("Invalid record"); 4667 } 4668 SI->addCase(CaseVal, DestBB); 4669 } 4670 I = SI; 4671 break; 4672 } 4673 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4674 if (Record.size() < 2) 4675 return error("Invalid record"); 4676 Type *OpTy = getTypeByID(Record[0]); 4677 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4678 if (!OpTy || !Address) 4679 return error("Invalid record"); 4680 unsigned NumDests = Record.size()-2; 4681 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4682 InstructionList.push_back(IBI); 4683 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4684 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4685 IBI->addDestination(DestBB); 4686 } else { 4687 delete IBI; 4688 return error("Invalid record"); 4689 } 4690 } 4691 I = IBI; 4692 break; 4693 } 4694 4695 case bitc::FUNC_CODE_INST_INVOKE: { 4696 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4697 if (Record.size() < 4) 4698 return error("Invalid record"); 4699 unsigned OpNum = 0; 4700 AttributeSet PAL = getAttributes(Record[OpNum++]); 4701 unsigned CCInfo = Record[OpNum++]; 4702 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4703 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4704 4705 FunctionType *FTy = nullptr; 4706 if (CCInfo >> 13 & 1 && 4707 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4708 return error("Explicit invoke type is not a function type"); 4709 4710 Value *Callee; 4711 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4712 return error("Invalid record"); 4713 4714 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4715 if (!CalleeTy) 4716 return error("Callee is not a pointer"); 4717 if (!FTy) { 4718 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4719 if (!FTy) 4720 return error("Callee is not of pointer to function type"); 4721 } else if (CalleeTy->getElementType() != FTy) 4722 return error("Explicit invoke type does not match pointee type of " 4723 "callee operand"); 4724 if (Record.size() < FTy->getNumParams() + OpNum) 4725 return error("Insufficient operands to call"); 4726 4727 SmallVector<Value*, 16> Ops; 4728 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4729 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4730 FTy->getParamType(i))); 4731 if (!Ops.back()) 4732 return error("Invalid record"); 4733 } 4734 4735 if (!FTy->isVarArg()) { 4736 if (Record.size() != OpNum) 4737 return error("Invalid record"); 4738 } else { 4739 // Read type/value pairs for varargs params. 4740 while (OpNum != Record.size()) { 4741 Value *Op; 4742 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4743 return error("Invalid record"); 4744 Ops.push_back(Op); 4745 } 4746 } 4747 4748 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4749 OperandBundles.clear(); 4750 InstructionList.push_back(I); 4751 cast<InvokeInst>(I)->setCallingConv( 4752 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4753 cast<InvokeInst>(I)->setAttributes(PAL); 4754 break; 4755 } 4756 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4757 unsigned Idx = 0; 4758 Value *Val = nullptr; 4759 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4760 return error("Invalid record"); 4761 I = ResumeInst::Create(Val); 4762 InstructionList.push_back(I); 4763 break; 4764 } 4765 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4766 I = new UnreachableInst(Context); 4767 InstructionList.push_back(I); 4768 break; 4769 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4770 if (Record.size() < 1 || ((Record.size()-1)&1)) 4771 return error("Invalid record"); 4772 Type *Ty = getTypeByID(Record[0]); 4773 if (!Ty) 4774 return error("Invalid record"); 4775 4776 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4777 InstructionList.push_back(PN); 4778 4779 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4780 Value *V; 4781 // With the new function encoding, it is possible that operands have 4782 // negative IDs (for forward references). Use a signed VBR 4783 // representation to keep the encoding small. 4784 if (UseRelativeIDs) 4785 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4786 else 4787 V = getValue(Record, 1+i, NextValueNo, Ty); 4788 BasicBlock *BB = getBasicBlock(Record[2+i]); 4789 if (!V || !BB) 4790 return error("Invalid record"); 4791 PN->addIncoming(V, BB); 4792 } 4793 I = PN; 4794 break; 4795 } 4796 4797 case bitc::FUNC_CODE_INST_LANDINGPAD: 4798 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4799 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4800 unsigned Idx = 0; 4801 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4802 if (Record.size() < 3) 4803 return error("Invalid record"); 4804 } else { 4805 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4806 if (Record.size() < 4) 4807 return error("Invalid record"); 4808 } 4809 Type *Ty = getTypeByID(Record[Idx++]); 4810 if (!Ty) 4811 return error("Invalid record"); 4812 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4813 Value *PersFn = nullptr; 4814 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4815 return error("Invalid record"); 4816 4817 if (!F->hasPersonalityFn()) 4818 F->setPersonalityFn(cast<Constant>(PersFn)); 4819 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4820 return error("Personality function mismatch"); 4821 } 4822 4823 bool IsCleanup = !!Record[Idx++]; 4824 unsigned NumClauses = Record[Idx++]; 4825 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4826 LP->setCleanup(IsCleanup); 4827 for (unsigned J = 0; J != NumClauses; ++J) { 4828 LandingPadInst::ClauseType CT = 4829 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4830 Value *Val; 4831 4832 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4833 delete LP; 4834 return error("Invalid record"); 4835 } 4836 4837 assert((CT != LandingPadInst::Catch || 4838 !isa<ArrayType>(Val->getType())) && 4839 "Catch clause has a invalid type!"); 4840 assert((CT != LandingPadInst::Filter || 4841 isa<ArrayType>(Val->getType())) && 4842 "Filter clause has invalid type!"); 4843 LP->addClause(cast<Constant>(Val)); 4844 } 4845 4846 I = LP; 4847 InstructionList.push_back(I); 4848 break; 4849 } 4850 4851 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4852 if (Record.size() != 4) 4853 return error("Invalid record"); 4854 uint64_t AlignRecord = Record[3]; 4855 const uint64_t InAllocaMask = uint64_t(1) << 5; 4856 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4857 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4858 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4859 SwiftErrorMask; 4860 bool InAlloca = AlignRecord & InAllocaMask; 4861 bool SwiftError = AlignRecord & SwiftErrorMask; 4862 Type *Ty = getTypeByID(Record[0]); 4863 if ((AlignRecord & ExplicitTypeMask) == 0) { 4864 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4865 if (!PTy) 4866 return error("Old-style alloca with a non-pointer type"); 4867 Ty = PTy->getElementType(); 4868 } 4869 Type *OpTy = getTypeByID(Record[1]); 4870 Value *Size = getFnValueByID(Record[2], OpTy); 4871 unsigned Align; 4872 if (std::error_code EC = 4873 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4874 return EC; 4875 } 4876 if (!Ty || !Size) 4877 return error("Invalid record"); 4878 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4879 AI->setUsedWithInAlloca(InAlloca); 4880 AI->setSwiftError(SwiftError); 4881 I = AI; 4882 InstructionList.push_back(I); 4883 break; 4884 } 4885 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4886 unsigned OpNum = 0; 4887 Value *Op; 4888 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4889 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4890 return error("Invalid record"); 4891 4892 Type *Ty = nullptr; 4893 if (OpNum + 3 == Record.size()) 4894 Ty = getTypeByID(Record[OpNum++]); 4895 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4896 return EC; 4897 if (!Ty) 4898 Ty = cast<PointerType>(Op->getType())->getElementType(); 4899 4900 unsigned Align; 4901 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4902 return EC; 4903 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4904 4905 InstructionList.push_back(I); 4906 break; 4907 } 4908 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4909 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4910 unsigned OpNum = 0; 4911 Value *Op; 4912 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4913 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4914 return error("Invalid record"); 4915 4916 Type *Ty = nullptr; 4917 if (OpNum + 5 == Record.size()) 4918 Ty = getTypeByID(Record[OpNum++]); 4919 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4920 return EC; 4921 if (!Ty) 4922 Ty = cast<PointerType>(Op->getType())->getElementType(); 4923 4924 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4925 if (Ordering == NotAtomic || Ordering == Release || 4926 Ordering == AcquireRelease) 4927 return error("Invalid record"); 4928 if (Ordering != NotAtomic && Record[OpNum] == 0) 4929 return error("Invalid record"); 4930 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4931 4932 unsigned Align; 4933 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4934 return EC; 4935 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4936 4937 InstructionList.push_back(I); 4938 break; 4939 } 4940 case bitc::FUNC_CODE_INST_STORE: 4941 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4942 unsigned OpNum = 0; 4943 Value *Val, *Ptr; 4944 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4945 (BitCode == bitc::FUNC_CODE_INST_STORE 4946 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4947 : popValue(Record, OpNum, NextValueNo, 4948 cast<PointerType>(Ptr->getType())->getElementType(), 4949 Val)) || 4950 OpNum + 2 != Record.size()) 4951 return error("Invalid record"); 4952 4953 if (std::error_code EC = 4954 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4955 return EC; 4956 unsigned Align; 4957 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4958 return EC; 4959 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4960 InstructionList.push_back(I); 4961 break; 4962 } 4963 case bitc::FUNC_CODE_INST_STOREATOMIC: 4964 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4965 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4966 unsigned OpNum = 0; 4967 Value *Val, *Ptr; 4968 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4969 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4970 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4971 : popValue(Record, OpNum, NextValueNo, 4972 cast<PointerType>(Ptr->getType())->getElementType(), 4973 Val)) || 4974 OpNum + 4 != Record.size()) 4975 return error("Invalid record"); 4976 4977 if (std::error_code EC = 4978 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4979 return EC; 4980 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4981 if (Ordering == NotAtomic || Ordering == Acquire || 4982 Ordering == AcquireRelease) 4983 return error("Invalid record"); 4984 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4985 if (Ordering != NotAtomic && Record[OpNum] == 0) 4986 return error("Invalid record"); 4987 4988 unsigned Align; 4989 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4990 return EC; 4991 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4992 InstructionList.push_back(I); 4993 break; 4994 } 4995 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4996 case bitc::FUNC_CODE_INST_CMPXCHG: { 4997 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4998 // failureordering?, isweak?] 4999 unsigned OpNum = 0; 5000 Value *Ptr, *Cmp, *New; 5001 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5002 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5003 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5004 : popValue(Record, OpNum, NextValueNo, 5005 cast<PointerType>(Ptr->getType())->getElementType(), 5006 Cmp)) || 5007 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5008 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5009 return error("Invalid record"); 5010 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5011 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5012 return error("Invalid record"); 5013 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5014 5015 if (std::error_code EC = 5016 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5017 return EC; 5018 AtomicOrdering FailureOrdering; 5019 if (Record.size() < 7) 5020 FailureOrdering = 5021 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5022 else 5023 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5024 5025 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5026 SynchScope); 5027 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5028 5029 if (Record.size() < 8) { 5030 // Before weak cmpxchgs existed, the instruction simply returned the 5031 // value loaded from memory, so bitcode files from that era will be 5032 // expecting the first component of a modern cmpxchg. 5033 CurBB->getInstList().push_back(I); 5034 I = ExtractValueInst::Create(I, 0); 5035 } else { 5036 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5037 } 5038 5039 InstructionList.push_back(I); 5040 break; 5041 } 5042 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5043 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5044 unsigned OpNum = 0; 5045 Value *Ptr, *Val; 5046 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5047 popValue(Record, OpNum, NextValueNo, 5048 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5049 OpNum+4 != Record.size()) 5050 return error("Invalid record"); 5051 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5052 if (Operation < AtomicRMWInst::FIRST_BINOP || 5053 Operation > AtomicRMWInst::LAST_BINOP) 5054 return error("Invalid record"); 5055 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5056 if (Ordering == NotAtomic || Ordering == Unordered) 5057 return error("Invalid record"); 5058 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5059 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5060 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5061 InstructionList.push_back(I); 5062 break; 5063 } 5064 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5065 if (2 != Record.size()) 5066 return error("Invalid record"); 5067 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5068 if (Ordering == NotAtomic || Ordering == Unordered || 5069 Ordering == Monotonic) 5070 return error("Invalid record"); 5071 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5072 I = new FenceInst(Context, Ordering, SynchScope); 5073 InstructionList.push_back(I); 5074 break; 5075 } 5076 case bitc::FUNC_CODE_INST_CALL: { 5077 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5078 if (Record.size() < 3) 5079 return error("Invalid record"); 5080 5081 unsigned OpNum = 0; 5082 AttributeSet PAL = getAttributes(Record[OpNum++]); 5083 unsigned CCInfo = Record[OpNum++]; 5084 5085 FastMathFlags FMF; 5086 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5087 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5088 if (!FMF.any()) 5089 return error("Fast math flags indicator set for call with no FMF"); 5090 } 5091 5092 FunctionType *FTy = nullptr; 5093 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5094 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5095 return error("Explicit call type is not a function type"); 5096 5097 Value *Callee; 5098 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5099 return error("Invalid record"); 5100 5101 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5102 if (!OpTy) 5103 return error("Callee is not a pointer type"); 5104 if (!FTy) { 5105 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5106 if (!FTy) 5107 return error("Callee is not of pointer to function type"); 5108 } else if (OpTy->getElementType() != FTy) 5109 return error("Explicit call type does not match pointee type of " 5110 "callee operand"); 5111 if (Record.size() < FTy->getNumParams() + OpNum) 5112 return error("Insufficient operands to call"); 5113 5114 SmallVector<Value*, 16> Args; 5115 // Read the fixed params. 5116 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5117 if (FTy->getParamType(i)->isLabelTy()) 5118 Args.push_back(getBasicBlock(Record[OpNum])); 5119 else 5120 Args.push_back(getValue(Record, OpNum, NextValueNo, 5121 FTy->getParamType(i))); 5122 if (!Args.back()) 5123 return error("Invalid record"); 5124 } 5125 5126 // Read type/value pairs for varargs params. 5127 if (!FTy->isVarArg()) { 5128 if (OpNum != Record.size()) 5129 return error("Invalid record"); 5130 } else { 5131 while (OpNum != Record.size()) { 5132 Value *Op; 5133 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5134 return error("Invalid record"); 5135 Args.push_back(Op); 5136 } 5137 } 5138 5139 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5140 OperandBundles.clear(); 5141 InstructionList.push_back(I); 5142 cast<CallInst>(I)->setCallingConv( 5143 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5144 CallInst::TailCallKind TCK = CallInst::TCK_None; 5145 if (CCInfo & 1 << bitc::CALL_TAIL) 5146 TCK = CallInst::TCK_Tail; 5147 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5148 TCK = CallInst::TCK_MustTail; 5149 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5150 TCK = CallInst::TCK_NoTail; 5151 cast<CallInst>(I)->setTailCallKind(TCK); 5152 cast<CallInst>(I)->setAttributes(PAL); 5153 if (FMF.any()) { 5154 if (!isa<FPMathOperator>(I)) 5155 return error("Fast-math-flags specified for call without " 5156 "floating-point scalar or vector return type"); 5157 I->setFastMathFlags(FMF); 5158 } 5159 break; 5160 } 5161 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5162 if (Record.size() < 3) 5163 return error("Invalid record"); 5164 Type *OpTy = getTypeByID(Record[0]); 5165 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5166 Type *ResTy = getTypeByID(Record[2]); 5167 if (!OpTy || !Op || !ResTy) 5168 return error("Invalid record"); 5169 I = new VAArgInst(Op, ResTy); 5170 InstructionList.push_back(I); 5171 break; 5172 } 5173 5174 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5175 // A call or an invoke can be optionally prefixed with some variable 5176 // number of operand bundle blocks. These blocks are read into 5177 // OperandBundles and consumed at the next call or invoke instruction. 5178 5179 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5180 return error("Invalid record"); 5181 5182 std::vector<Value *> Inputs; 5183 5184 unsigned OpNum = 1; 5185 while (OpNum != Record.size()) { 5186 Value *Op; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5188 return error("Invalid record"); 5189 Inputs.push_back(Op); 5190 } 5191 5192 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5193 continue; 5194 } 5195 } 5196 5197 // Add instruction to end of current BB. If there is no current BB, reject 5198 // this file. 5199 if (!CurBB) { 5200 delete I; 5201 return error("Invalid instruction with no BB"); 5202 } 5203 if (!OperandBundles.empty()) { 5204 delete I; 5205 return error("Operand bundles found with no consumer"); 5206 } 5207 CurBB->getInstList().push_back(I); 5208 5209 // If this was a terminator instruction, move to the next block. 5210 if (isa<TerminatorInst>(I)) { 5211 ++CurBBNo; 5212 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5213 } 5214 5215 // Non-void values get registered in the value table for future use. 5216 if (I && !I->getType()->isVoidTy()) 5217 ValueList.assignValue(I, NextValueNo++); 5218 } 5219 5220 OutOfRecordLoop: 5221 5222 if (!OperandBundles.empty()) 5223 return error("Operand bundles found with no consumer"); 5224 5225 // Check the function list for unresolved values. 5226 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5227 if (!A->getParent()) { 5228 // We found at least one unresolved value. Nuke them all to avoid leaks. 5229 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5230 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5231 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5232 delete A; 5233 } 5234 } 5235 return error("Never resolved value found in function"); 5236 } 5237 } 5238 5239 // Unexpected unresolved metadata about to be dropped. 5240 if (MetadataList.hasFwdRefs()) 5241 return error("Invalid function metadata: outgoing forward refs"); 5242 5243 // Trim the value list down to the size it was before we parsed this function. 5244 ValueList.shrinkTo(ModuleValueListSize); 5245 MetadataList.shrinkTo(ModuleMetadataListSize); 5246 std::vector<BasicBlock*>().swap(FunctionBBs); 5247 return std::error_code(); 5248 } 5249 5250 /// Find the function body in the bitcode stream 5251 std::error_code BitcodeReader::findFunctionInStream( 5252 Function *F, 5253 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5254 while (DeferredFunctionInfoIterator->second == 0) { 5255 // This is the fallback handling for the old format bitcode that 5256 // didn't contain the function index in the VST, or when we have 5257 // an anonymous function which would not have a VST entry. 5258 // Assert that we have one of those two cases. 5259 assert(VSTOffset == 0 || !F->hasName()); 5260 // Parse the next body in the stream and set its position in the 5261 // DeferredFunctionInfo map. 5262 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5263 return EC; 5264 } 5265 return std::error_code(); 5266 } 5267 5268 //===----------------------------------------------------------------------===// 5269 // GVMaterializer implementation 5270 //===----------------------------------------------------------------------===// 5271 5272 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5273 5274 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5275 if (std::error_code EC = materializeMetadata()) 5276 return EC; 5277 5278 Function *F = dyn_cast<Function>(GV); 5279 // If it's not a function or is already material, ignore the request. 5280 if (!F || !F->isMaterializable()) 5281 return std::error_code(); 5282 5283 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5284 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5285 // If its position is recorded as 0, its body is somewhere in the stream 5286 // but we haven't seen it yet. 5287 if (DFII->second == 0) 5288 if (std::error_code EC = findFunctionInStream(F, DFII)) 5289 return EC; 5290 5291 // Move the bit stream to the saved position of the deferred function body. 5292 Stream.JumpToBit(DFII->second); 5293 5294 if (std::error_code EC = parseFunctionBody(F)) 5295 return EC; 5296 F->setIsMaterializable(false); 5297 5298 if (StripDebugInfo) 5299 stripDebugInfo(*F); 5300 5301 // Upgrade any old intrinsic calls in the function. 5302 for (auto &I : UpgradedIntrinsics) { 5303 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5304 UI != UE;) { 5305 User *U = *UI; 5306 ++UI; 5307 if (CallInst *CI = dyn_cast<CallInst>(U)) 5308 UpgradeIntrinsicCall(CI, I.second); 5309 } 5310 } 5311 5312 // Finish fn->subprogram upgrade for materialized functions. 5313 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5314 F->setSubprogram(SP); 5315 5316 // Bring in any functions that this function forward-referenced via 5317 // blockaddresses. 5318 return materializeForwardReferencedFunctions(); 5319 } 5320 5321 std::error_code BitcodeReader::materializeModule() { 5322 if (std::error_code EC = materializeMetadata()) 5323 return EC; 5324 5325 // Promise to materialize all forward references. 5326 WillMaterializeAllForwardRefs = true; 5327 5328 // Iterate over the module, deserializing any functions that are still on 5329 // disk. 5330 for (Function &F : *TheModule) { 5331 if (std::error_code EC = materialize(&F)) 5332 return EC; 5333 } 5334 // At this point, if there are any function bodies, parse the rest of 5335 // the bits in the module past the last function block we have recorded 5336 // through either lazy scanning or the VST. 5337 if (LastFunctionBlockBit || NextUnreadBit) 5338 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5339 : NextUnreadBit); 5340 5341 // Check that all block address forward references got resolved (as we 5342 // promised above). 5343 if (!BasicBlockFwdRefs.empty()) 5344 return error("Never resolved function from blockaddress"); 5345 5346 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5347 // to prevent this instructions with TBAA tags should be upgraded first. 5348 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5349 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5350 5351 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5352 // delete the old functions to clean up. We can't do this unless the entire 5353 // module is materialized because there could always be another function body 5354 // with calls to the old function. 5355 for (auto &I : UpgradedIntrinsics) { 5356 for (auto *U : I.first->users()) { 5357 if (CallInst *CI = dyn_cast<CallInst>(U)) 5358 UpgradeIntrinsicCall(CI, I.second); 5359 } 5360 if (!I.first->use_empty()) 5361 I.first->replaceAllUsesWith(I.second); 5362 I.first->eraseFromParent(); 5363 } 5364 UpgradedIntrinsics.clear(); 5365 5366 UpgradeDebugInfo(*TheModule); 5367 return std::error_code(); 5368 } 5369 5370 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5371 return IdentifiedStructTypes; 5372 } 5373 5374 std::error_code 5375 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5376 if (Streamer) 5377 return initLazyStream(std::move(Streamer)); 5378 return initStreamFromBuffer(); 5379 } 5380 5381 std::error_code BitcodeReader::initStreamFromBuffer() { 5382 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5383 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5384 5385 if (Buffer->getBufferSize() & 3) 5386 return error("Invalid bitcode signature"); 5387 5388 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5389 // The magic number is 0x0B17C0DE stored in little endian. 5390 if (isBitcodeWrapper(BufPtr, BufEnd)) 5391 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5392 return error("Invalid bitcode wrapper header"); 5393 5394 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5395 Stream.init(&*StreamFile); 5396 5397 return std::error_code(); 5398 } 5399 5400 std::error_code 5401 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5402 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5403 // see it. 5404 auto OwnedBytes = 5405 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5406 StreamingMemoryObject &Bytes = *OwnedBytes; 5407 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5408 Stream.init(&*StreamFile); 5409 5410 unsigned char buf[16]; 5411 if (Bytes.readBytes(buf, 16, 0) != 16) 5412 return error("Invalid bitcode signature"); 5413 5414 if (!isBitcode(buf, buf + 16)) 5415 return error("Invalid bitcode signature"); 5416 5417 if (isBitcodeWrapper(buf, buf + 4)) { 5418 const unsigned char *bitcodeStart = buf; 5419 const unsigned char *bitcodeEnd = buf + 16; 5420 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5421 Bytes.dropLeadingBytes(bitcodeStart - buf); 5422 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5423 } 5424 return std::error_code(); 5425 } 5426 5427 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5428 const Twine &Message) { 5429 return ::error(DiagnosticHandler, make_error_code(E), Message); 5430 } 5431 5432 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5433 return ::error(DiagnosticHandler, 5434 make_error_code(BitcodeError::CorruptedBitcode), Message); 5435 } 5436 5437 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5438 return ::error(DiagnosticHandler, make_error_code(E)); 5439 } 5440 5441 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5442 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5443 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5444 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5445 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5446 5447 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5448 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5449 bool CheckGlobalValSummaryPresenceOnly) 5450 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5451 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5452 5453 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5454 5455 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5456 5457 GlobalValue::GUID 5458 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5459 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5460 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5461 return VGI->second; 5462 } 5463 5464 GlobalValueInfo * 5465 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5466 auto I = SummaryOffsetToInfoMap.find(Offset); 5467 assert(I != SummaryOffsetToInfoMap.end()); 5468 return I->second; 5469 } 5470 5471 // Specialized value symbol table parser used when reading module index 5472 // blocks where we don't actually create global values. 5473 // At the end of this routine the module index is populated with a map 5474 // from global value name to GlobalValueInfo. The global value info contains 5475 // the function block's bitcode offset (if applicable), or the offset into the 5476 // summary section for the combined index. 5477 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5478 uint64_t Offset, 5479 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5480 assert(Offset > 0 && "Expected non-zero VST offset"); 5481 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5482 5483 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5484 return error("Invalid record"); 5485 5486 SmallVector<uint64_t, 64> Record; 5487 5488 // Read all the records for this value table. 5489 SmallString<128> ValueName; 5490 while (1) { 5491 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5492 5493 switch (Entry.Kind) { 5494 case BitstreamEntry::SubBlock: // Handled for us already. 5495 case BitstreamEntry::Error: 5496 return error("Malformed block"); 5497 case BitstreamEntry::EndBlock: 5498 // Done parsing VST, jump back to wherever we came from. 5499 Stream.JumpToBit(CurrentBit); 5500 return std::error_code(); 5501 case BitstreamEntry::Record: 5502 // The interesting case. 5503 break; 5504 } 5505 5506 // Read a record. 5507 Record.clear(); 5508 switch (Stream.readRecord(Entry.ID, Record)) { 5509 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5510 break; 5511 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5512 if (convertToString(Record, 1, ValueName)) 5513 return error("Invalid record"); 5514 unsigned ValueID = Record[0]; 5515 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5516 llvm::make_unique<GlobalValueInfo>(); 5517 assert(!SourceFileName.empty()); 5518 auto VLI = ValueIdToLinkageMap.find(ValueID); 5519 assert(VLI != ValueIdToLinkageMap.end() && 5520 "No linkage found for VST entry?"); 5521 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5522 ValueName, VLI->second, SourceFileName); 5523 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5524 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5525 ValueName.clear(); 5526 break; 5527 } 5528 case bitc::VST_CODE_FNENTRY: { 5529 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5530 if (convertToString(Record, 2, ValueName)) 5531 return error("Invalid record"); 5532 unsigned ValueID = Record[0]; 5533 uint64_t FuncOffset = Record[1]; 5534 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5535 std::unique_ptr<GlobalValueInfo> FuncInfo = 5536 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5537 assert(!SourceFileName.empty()); 5538 auto VLI = ValueIdToLinkageMap.find(ValueID); 5539 assert(VLI != ValueIdToLinkageMap.end() && 5540 "No linkage found for VST entry?"); 5541 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5542 ValueName, VLI->second, SourceFileName); 5543 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5544 ValueIdToCallGraphGUIDMap[ValueID] = 5545 GlobalValue::getGUID(FunctionGlobalId); 5546 5547 ValueName.clear(); 5548 break; 5549 } 5550 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5551 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5552 unsigned ValueID = Record[0]; 5553 uint64_t GlobalValSummaryOffset = Record[1]; 5554 GlobalValue::GUID GlobalValGUID = Record[2]; 5555 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5556 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5557 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5558 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5559 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5560 break; 5561 } 5562 case bitc::VST_CODE_COMBINED_ENTRY: { 5563 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5564 unsigned ValueID = Record[0]; 5565 GlobalValue::GUID RefGUID = Record[1]; 5566 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5567 break; 5568 } 5569 } 5570 } 5571 } 5572 5573 // Parse just the blocks needed for building the index out of the module. 5574 // At the end of this routine the module Index is populated with a map 5575 // from global value name to GlobalValueInfo. The global value info contains 5576 // either the parsed summary information (when parsing summaries 5577 // eagerly), or just to the summary record's offset 5578 // if parsing lazily (IsLazy). 5579 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5580 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5581 return error("Invalid record"); 5582 5583 SmallVector<uint64_t, 64> Record; 5584 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5585 unsigned ValueId = 0; 5586 5587 // Read the index for this module. 5588 while (1) { 5589 BitstreamEntry Entry = Stream.advance(); 5590 5591 switch (Entry.Kind) { 5592 case BitstreamEntry::Error: 5593 return error("Malformed block"); 5594 case BitstreamEntry::EndBlock: 5595 return std::error_code(); 5596 5597 case BitstreamEntry::SubBlock: 5598 if (CheckGlobalValSummaryPresenceOnly) { 5599 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5600 SeenGlobalValSummary = true; 5601 // No need to parse the rest since we found the summary. 5602 return std::error_code(); 5603 } 5604 if (Stream.SkipBlock()) 5605 return error("Invalid record"); 5606 continue; 5607 } 5608 switch (Entry.ID) { 5609 default: // Skip unknown content. 5610 if (Stream.SkipBlock()) 5611 return error("Invalid record"); 5612 break; 5613 case bitc::BLOCKINFO_BLOCK_ID: 5614 // Need to parse these to get abbrev ids (e.g. for VST) 5615 if (Stream.ReadBlockInfoBlock()) 5616 return error("Malformed block"); 5617 break; 5618 case bitc::VALUE_SYMTAB_BLOCK_ID: 5619 // Should have been parsed earlier via VSTOffset, unless there 5620 // is no summary section. 5621 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5622 !SeenGlobalValSummary) && 5623 "Expected early VST parse via VSTOffset record"); 5624 if (Stream.SkipBlock()) 5625 return error("Invalid record"); 5626 break; 5627 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5628 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5629 assert(!SeenValueSymbolTable && 5630 "Already read VST when parsing summary block?"); 5631 if (std::error_code EC = 5632 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5633 return EC; 5634 SeenValueSymbolTable = true; 5635 SeenGlobalValSummary = true; 5636 if (IsLazy) { 5637 // Lazy parsing of summary info, skip it. 5638 if (Stream.SkipBlock()) 5639 return error("Invalid record"); 5640 } else if (std::error_code EC = parseEntireSummary()) 5641 return EC; 5642 break; 5643 case bitc::MODULE_STRTAB_BLOCK_ID: 5644 if (std::error_code EC = parseModuleStringTable()) 5645 return EC; 5646 break; 5647 } 5648 continue; 5649 5650 case BitstreamEntry::Record: { 5651 Record.clear(); 5652 auto BitCode = Stream.readRecord(Entry.ID, Record); 5653 switch (BitCode) { 5654 default: 5655 break; // Default behavior, ignore unknown content. 5656 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5657 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5658 SmallString<128> ValueName; 5659 if (convertToString(Record, 0, ValueName)) 5660 return error("Invalid record"); 5661 SourceFileName = ValueName.c_str(); 5662 break; 5663 } 5664 /// MODULE_CODE_HASH: [5*i32] 5665 case bitc::MODULE_CODE_HASH: { 5666 if (Record.size() != 5) 5667 return error("Invalid hash length " + Twine(Record.size()).str()); 5668 if (!TheIndex) 5669 break; 5670 if (TheIndex->modulePaths().empty()) 5671 // Does not have any summary emitted. 5672 break; 5673 if (TheIndex->modulePaths().size() != 1) 5674 return error("Don't expect multiple modules defined?"); 5675 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5676 int Pos = 0; 5677 for (auto &Val : Record) { 5678 assert(!(Val >> 32) && "Unexpected high bits set"); 5679 Hash[Pos++] = Val; 5680 } 5681 break; 5682 } 5683 /// MODULE_CODE_VSTOFFSET: [offset] 5684 case bitc::MODULE_CODE_VSTOFFSET: 5685 if (Record.size() < 1) 5686 return error("Invalid record"); 5687 VSTOffset = Record[0]; 5688 break; 5689 // GLOBALVAR: [pointer type, isconst, initid, 5690 // linkage, alignment, section, visibility, threadlocal, 5691 // unnamed_addr, externally_initialized, dllstorageclass, 5692 // comdat] 5693 case bitc::MODULE_CODE_GLOBALVAR: { 5694 if (Record.size() < 6) 5695 return error("Invalid record"); 5696 uint64_t RawLinkage = Record[3]; 5697 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5698 ValueIdToLinkageMap[ValueId++] = Linkage; 5699 break; 5700 } 5701 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5702 // alignment, section, visibility, gc, unnamed_addr, 5703 // prologuedata, dllstorageclass, comdat, prefixdata] 5704 case bitc::MODULE_CODE_FUNCTION: { 5705 if (Record.size() < 8) 5706 return error("Invalid record"); 5707 uint64_t RawLinkage = Record[3]; 5708 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5709 ValueIdToLinkageMap[ValueId++] = Linkage; 5710 break; 5711 } 5712 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5713 // dllstorageclass] 5714 case bitc::MODULE_CODE_ALIAS: { 5715 if (Record.size() < 6) 5716 return error("Invalid record"); 5717 uint64_t RawLinkage = Record[3]; 5718 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5719 ValueIdToLinkageMap[ValueId++] = Linkage; 5720 break; 5721 } 5722 } 5723 } 5724 continue; 5725 } 5726 } 5727 } 5728 5729 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5730 // objects in the index. 5731 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5732 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5733 return error("Invalid record"); 5734 5735 SmallVector<uint64_t, 64> Record; 5736 5737 bool Combined = false; 5738 while (1) { 5739 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5740 5741 switch (Entry.Kind) { 5742 case BitstreamEntry::SubBlock: // Handled for us already. 5743 case BitstreamEntry::Error: 5744 return error("Malformed block"); 5745 case BitstreamEntry::EndBlock: 5746 // For a per-module index, remove any entries that still have empty 5747 // summaries. The VST parsing creates entries eagerly for all symbols, 5748 // but not all have associated summaries (e.g. it doesn't know how to 5749 // distinguish between VST_CODE_ENTRY for function declarations vs global 5750 // variables with initializers that end up with a summary). Remove those 5751 // entries now so that we don't need to rely on the combined index merger 5752 // to clean them up (especially since that may not run for the first 5753 // module's index if we merge into that). 5754 if (!Combined) 5755 TheIndex->removeEmptySummaryEntries(); 5756 return std::error_code(); 5757 case BitstreamEntry::Record: 5758 // The interesting case. 5759 break; 5760 } 5761 5762 // Read a record. The record format depends on whether this 5763 // is a per-module index or a combined index file. In the per-module 5764 // case the records contain the associated value's ID for correlation 5765 // with VST entries. In the combined index the correlation is done 5766 // via the bitcode offset of the summary records (which were saved 5767 // in the combined index VST entries). The records also contain 5768 // information used for ThinLTO renaming and importing. 5769 Record.clear(); 5770 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5771 auto BitCode = Stream.readRecord(Entry.ID, Record); 5772 switch (BitCode) { 5773 default: // Default behavior: ignore. 5774 break; 5775 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5776 // n x (valueid, callsitecount)] 5777 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5778 // numrefs x valueid, 5779 // n x (valueid, callsitecount, profilecount)] 5780 case bitc::FS_PERMODULE: 5781 case bitc::FS_PERMODULE_PROFILE: { 5782 unsigned ValueID = Record[0]; 5783 uint64_t RawLinkage = Record[1]; 5784 unsigned InstCount = Record[2]; 5785 unsigned NumRefs = Record[3]; 5786 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5787 getDecodedLinkage(RawLinkage), InstCount); 5788 // The module path string ref set in the summary must be owned by the 5789 // index's module string table. Since we don't have a module path 5790 // string table section in the per-module index, we create a single 5791 // module path string table entry with an empty (0) ID to take 5792 // ownership. 5793 FS->setModulePath( 5794 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5795 static int RefListStartIndex = 4; 5796 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5797 assert(Record.size() >= RefListStartIndex + NumRefs && 5798 "Record size inconsistent with number of references"); 5799 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5800 unsigned RefValueId = Record[I]; 5801 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5802 FS->addRefEdge(RefGUID); 5803 } 5804 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5805 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5806 ++I) { 5807 unsigned CalleeValueId = Record[I]; 5808 unsigned CallsiteCount = Record[++I]; 5809 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5810 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5811 FS->addCallGraphEdge(CalleeGUID, 5812 CalleeInfo(CallsiteCount, ProfileCount)); 5813 } 5814 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5815 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5816 assert(InfoList != TheIndex->end() && 5817 "Expected VST parse to create GlobalValueInfo entry"); 5818 assert(InfoList->second.size() == 1 && 5819 "Expected a single GlobalValueInfo per GUID in module"); 5820 auto &Info = InfoList->second[0]; 5821 assert(!Info->summary() && "Expected a single summary per VST entry"); 5822 Info->setSummary(std::move(FS)); 5823 break; 5824 } 5825 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5826 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5827 unsigned ValueID = Record[0]; 5828 uint64_t RawLinkage = Record[1]; 5829 std::unique_ptr<GlobalVarSummary> FS = 5830 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5831 FS->setModulePath( 5832 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5833 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5834 unsigned RefValueId = Record[I]; 5835 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5836 FS->addRefEdge(RefGUID); 5837 } 5838 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5839 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5840 assert(InfoList != TheIndex->end() && 5841 "Expected VST parse to create GlobalValueInfo entry"); 5842 assert(InfoList->second.size() == 1 && 5843 "Expected a single GlobalValueInfo per GUID in module"); 5844 auto &Info = InfoList->second[0]; 5845 assert(!Info->summary() && "Expected a single summary per VST entry"); 5846 Info->setSummary(std::move(FS)); 5847 break; 5848 } 5849 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5850 // n x (valueid, callsitecount)] 5851 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5852 // numrefs x valueid, 5853 // n x (valueid, callsitecount, profilecount)] 5854 case bitc::FS_COMBINED: 5855 case bitc::FS_COMBINED_PROFILE: { 5856 uint64_t ModuleId = Record[0]; 5857 uint64_t RawLinkage = Record[1]; 5858 unsigned InstCount = Record[2]; 5859 unsigned NumRefs = Record[3]; 5860 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5861 getDecodedLinkage(RawLinkage), InstCount); 5862 FS->setModulePath(ModuleIdMap[ModuleId]); 5863 static int RefListStartIndex = 4; 5864 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5865 assert(Record.size() >= RefListStartIndex + NumRefs && 5866 "Record size inconsistent with number of references"); 5867 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5868 unsigned RefValueId = Record[I]; 5869 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5870 FS->addRefEdge(RefGUID); 5871 } 5872 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5873 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5874 ++I) { 5875 unsigned CalleeValueId = Record[I]; 5876 unsigned CallsiteCount = Record[++I]; 5877 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5878 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5879 FS->addCallGraphEdge(CalleeGUID, 5880 CalleeInfo(CallsiteCount, ProfileCount)); 5881 } 5882 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5883 assert(!Info->summary() && "Expected a single summary per VST entry"); 5884 Info->setSummary(std::move(FS)); 5885 Combined = true; 5886 break; 5887 } 5888 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5889 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5890 uint64_t ModuleId = Record[0]; 5891 uint64_t RawLinkage = Record[1]; 5892 std::unique_ptr<GlobalVarSummary> FS = 5893 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5894 FS->setModulePath(ModuleIdMap[ModuleId]); 5895 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5896 unsigned RefValueId = Record[I]; 5897 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5898 FS->addRefEdge(RefGUID); 5899 } 5900 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5901 assert(!Info->summary() && "Expected a single summary per VST entry"); 5902 Info->setSummary(std::move(FS)); 5903 Combined = true; 5904 break; 5905 } 5906 } 5907 } 5908 llvm_unreachable("Exit infinite loop"); 5909 } 5910 5911 // Parse the module string table block into the Index. 5912 // This populates the ModulePathStringTable map in the index. 5913 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5914 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5915 return error("Invalid record"); 5916 5917 SmallVector<uint64_t, 64> Record; 5918 5919 SmallString<128> ModulePath; 5920 ModulePathStringTableTy::iterator LastSeenModulePath; 5921 while (1) { 5922 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5923 5924 switch (Entry.Kind) { 5925 case BitstreamEntry::SubBlock: // Handled for us already. 5926 case BitstreamEntry::Error: 5927 return error("Malformed block"); 5928 case BitstreamEntry::EndBlock: 5929 return std::error_code(); 5930 case BitstreamEntry::Record: 5931 // The interesting case. 5932 break; 5933 } 5934 5935 Record.clear(); 5936 switch (Stream.readRecord(Entry.ID, Record)) { 5937 default: // Default behavior: ignore. 5938 break; 5939 case bitc::MST_CODE_ENTRY: { 5940 // MST_ENTRY: [modid, namechar x N] 5941 uint64_t ModuleId = Record[0]; 5942 5943 if (convertToString(Record, 1, ModulePath)) 5944 return error("Invalid record"); 5945 5946 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 5947 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5948 5949 ModulePath.clear(); 5950 break; 5951 } 5952 /// MST_CODE_HASH: [5*i32] 5953 case bitc::MST_CODE_HASH: { 5954 if (Record.size() != 5) 5955 return error("Invalid hash length " + Twine(Record.size()).str()); 5956 if (LastSeenModulePath == TheIndex->modulePaths().end()) 5957 return error("Invalid hash that does not follow a module path"); 5958 int Pos = 0; 5959 for (auto &Val : Record) { 5960 assert(!(Val >> 32) && "Unexpected high bits set"); 5961 LastSeenModulePath->second.second[Pos++] = Val; 5962 } 5963 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5964 LastSeenModulePath = TheIndex->modulePaths().end(); 5965 break; 5966 } 5967 } 5968 } 5969 llvm_unreachable("Exit infinite loop"); 5970 } 5971 5972 // Parse the function info index from the bitcode streamer into the given index. 5973 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5974 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5975 TheIndex = I; 5976 5977 if (std::error_code EC = initStream(std::move(Streamer))) 5978 return EC; 5979 5980 // Sniff for the signature. 5981 if (!hasValidBitcodeHeader(Stream)) 5982 return error("Invalid bitcode signature"); 5983 5984 // We expect a number of well-defined blocks, though we don't necessarily 5985 // need to understand them all. 5986 while (1) { 5987 if (Stream.AtEndOfStream()) { 5988 // We didn't really read a proper Module block. 5989 return error("Malformed block"); 5990 } 5991 5992 BitstreamEntry Entry = 5993 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5994 5995 if (Entry.Kind != BitstreamEntry::SubBlock) 5996 return error("Malformed block"); 5997 5998 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5999 // building the function summary index. 6000 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6001 return parseModule(); 6002 6003 if (Stream.SkipBlock()) 6004 return error("Invalid record"); 6005 } 6006 } 6007 6008 // Parse the summary information at the given offset in the buffer into 6009 // the index. Used to support lazy parsing of summaries from the 6010 // combined index during importing. 6011 // TODO: This function is not yet complete as it won't have a consumer 6012 // until ThinLTO function importing is added. 6013 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6014 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6015 size_t SummaryOffset) { 6016 TheIndex = I; 6017 6018 if (std::error_code EC = initStream(std::move(Streamer))) 6019 return EC; 6020 6021 // Sniff for the signature. 6022 if (!hasValidBitcodeHeader(Stream)) 6023 return error("Invalid bitcode signature"); 6024 6025 Stream.JumpToBit(SummaryOffset); 6026 6027 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6028 6029 switch (Entry.Kind) { 6030 default: 6031 return error("Malformed block"); 6032 case BitstreamEntry::Record: 6033 // The expected case. 6034 break; 6035 } 6036 6037 // TODO: Read a record. This interface will be completed when ThinLTO 6038 // importing is added so that it can be tested. 6039 SmallVector<uint64_t, 64> Record; 6040 switch (Stream.readRecord(Entry.ID, Record)) { 6041 case bitc::FS_COMBINED: 6042 case bitc::FS_COMBINED_PROFILE: 6043 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6044 default: 6045 return error("Invalid record"); 6046 } 6047 6048 return std::error_code(); 6049 } 6050 6051 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6052 std::unique_ptr<DataStreamer> Streamer) { 6053 if (Streamer) 6054 return initLazyStream(std::move(Streamer)); 6055 return initStreamFromBuffer(); 6056 } 6057 6058 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6059 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6060 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6061 6062 if (Buffer->getBufferSize() & 3) 6063 return error("Invalid bitcode signature"); 6064 6065 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6066 // The magic number is 0x0B17C0DE stored in little endian. 6067 if (isBitcodeWrapper(BufPtr, BufEnd)) 6068 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6069 return error("Invalid bitcode wrapper header"); 6070 6071 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6072 Stream.init(&*StreamFile); 6073 6074 return std::error_code(); 6075 } 6076 6077 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6078 std::unique_ptr<DataStreamer> Streamer) { 6079 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6080 // see it. 6081 auto OwnedBytes = 6082 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6083 StreamingMemoryObject &Bytes = *OwnedBytes; 6084 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6085 Stream.init(&*StreamFile); 6086 6087 unsigned char buf[16]; 6088 if (Bytes.readBytes(buf, 16, 0) != 16) 6089 return error("Invalid bitcode signature"); 6090 6091 if (!isBitcode(buf, buf + 16)) 6092 return error("Invalid bitcode signature"); 6093 6094 if (isBitcodeWrapper(buf, buf + 4)) { 6095 const unsigned char *bitcodeStart = buf; 6096 const unsigned char *bitcodeEnd = buf + 16; 6097 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6098 Bytes.dropLeadingBytes(bitcodeStart - buf); 6099 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6100 } 6101 return std::error_code(); 6102 } 6103 6104 namespace { 6105 class BitcodeErrorCategoryType : public std::error_category { 6106 const char *name() const LLVM_NOEXCEPT override { 6107 return "llvm.bitcode"; 6108 } 6109 std::string message(int IE) const override { 6110 BitcodeError E = static_cast<BitcodeError>(IE); 6111 switch (E) { 6112 case BitcodeError::InvalidBitcodeSignature: 6113 return "Invalid bitcode signature"; 6114 case BitcodeError::CorruptedBitcode: 6115 return "Corrupted bitcode"; 6116 } 6117 llvm_unreachable("Unknown error type!"); 6118 } 6119 }; 6120 } // end anonymous namespace 6121 6122 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6123 6124 const std::error_category &llvm::BitcodeErrorCategory() { 6125 return *ErrorCategory; 6126 } 6127 6128 //===----------------------------------------------------------------------===// 6129 // External interface 6130 //===----------------------------------------------------------------------===// 6131 6132 static ErrorOr<std::unique_ptr<Module>> 6133 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6134 BitcodeReader *R, LLVMContext &Context, 6135 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6136 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6137 M->setMaterializer(R); 6138 6139 auto cleanupOnError = [&](std::error_code EC) { 6140 R->releaseBuffer(); // Never take ownership on error. 6141 return EC; 6142 }; 6143 6144 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6145 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6146 ShouldLazyLoadMetadata)) 6147 return cleanupOnError(EC); 6148 6149 if (MaterializeAll) { 6150 // Read in the entire module, and destroy the BitcodeReader. 6151 if (std::error_code EC = M->materializeAll()) 6152 return cleanupOnError(EC); 6153 } else { 6154 // Resolve forward references from blockaddresses. 6155 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6156 return cleanupOnError(EC); 6157 } 6158 return std::move(M); 6159 } 6160 6161 /// \brief Get a lazy one-at-time loading module from bitcode. 6162 /// 6163 /// This isn't always used in a lazy context. In particular, it's also used by 6164 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6165 /// in forward-referenced functions from block address references. 6166 /// 6167 /// \param[in] MaterializeAll Set to \c true if we should materialize 6168 /// everything. 6169 static ErrorOr<std::unique_ptr<Module>> 6170 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6171 LLVMContext &Context, bool MaterializeAll, 6172 bool ShouldLazyLoadMetadata = false) { 6173 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6174 6175 ErrorOr<std::unique_ptr<Module>> Ret = 6176 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6177 MaterializeAll, ShouldLazyLoadMetadata); 6178 if (!Ret) 6179 return Ret; 6180 6181 Buffer.release(); // The BitcodeReader owns it now. 6182 return Ret; 6183 } 6184 6185 ErrorOr<std::unique_ptr<Module>> 6186 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6187 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6188 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6189 ShouldLazyLoadMetadata); 6190 } 6191 6192 ErrorOr<std::unique_ptr<Module>> 6193 llvm::getStreamedBitcodeModule(StringRef Name, 6194 std::unique_ptr<DataStreamer> Streamer, 6195 LLVMContext &Context) { 6196 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6197 BitcodeReader *R = new BitcodeReader(Context); 6198 6199 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6200 false); 6201 } 6202 6203 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6204 LLVMContext &Context) { 6205 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6206 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6207 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6208 // written. We must defer until the Module has been fully materialized. 6209 } 6210 6211 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6212 LLVMContext &Context) { 6213 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6214 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6215 ErrorOr<std::string> Triple = R->parseTriple(); 6216 if (Triple.getError()) 6217 return ""; 6218 return Triple.get(); 6219 } 6220 6221 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6222 LLVMContext &Context) { 6223 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6224 BitcodeReader R(Buf.release(), Context); 6225 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6226 if (ProducerString.getError()) 6227 return ""; 6228 return ProducerString.get(); 6229 } 6230 6231 // Parse the specified bitcode buffer, returning the function info index. 6232 // If IsLazy is false, parse the entire function summary into 6233 // the index. Otherwise skip the function summary section, and only create 6234 // an index object with a map from function name to function summary offset. 6235 // The index is used to perform lazy function summary reading later. 6236 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6237 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6238 DiagnosticHandlerFunction DiagnosticHandler, 6239 bool IsLazy) { 6240 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6241 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6242 6243 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6244 6245 auto cleanupOnError = [&](std::error_code EC) { 6246 R.releaseBuffer(); // Never take ownership on error. 6247 return EC; 6248 }; 6249 6250 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6251 return cleanupOnError(EC); 6252 6253 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6254 return std::move(Index); 6255 } 6256 6257 // Check if the given bitcode buffer contains a global value summary block. 6258 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6259 DiagnosticHandlerFunction DiagnosticHandler) { 6260 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6261 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6262 6263 auto cleanupOnError = [&](std::error_code EC) { 6264 R.releaseBuffer(); // Never take ownership on error. 6265 return false; 6266 }; 6267 6268 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6269 return cleanupOnError(EC); 6270 6271 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6272 return R.foundGlobalValSummary(); 6273 } 6274 6275 // This method supports lazy reading of summary data from the combined 6276 // index during ThinLTO function importing. When reading the combined index 6277 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6278 // Then this method is called for each value considered for importing, 6279 // to parse the summary information for the given value name into 6280 // the index. 6281 std::error_code llvm::readGlobalValueSummary( 6282 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6283 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6284 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6285 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6286 6287 auto cleanupOnError = [&](std::error_code EC) { 6288 R.releaseBuffer(); // Never take ownership on error. 6289 return EC; 6290 }; 6291 6292 // Lookup the given value name in the GlobalValueMap, which may 6293 // contain a list of global value infos in the case of a COMDAT. Walk through 6294 // and parse each summary info at the summary offset 6295 // recorded when parsing the value symbol table. 6296 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6297 size_t SummaryOffset = FI->bitcodeIndex(); 6298 if (std::error_code EC = 6299 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6300 return cleanupOnError(EC); 6301 } 6302 6303 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6304 return std::error_code(); 6305 } 6306