1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 std::vector<TrackingMDRef> MetadataPtrs; 111 112 LLVMContext &Context; 113 public: 114 BitcodeReaderMetadataList(LLVMContext &C) 115 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 116 117 // vector compatibility methods 118 unsigned size() const { return MetadataPtrs.size(); } 119 void resize(unsigned N) { MetadataPtrs.resize(N); } 120 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 121 void clear() { MetadataPtrs.clear(); } 122 Metadata *back() const { return MetadataPtrs.back(); } 123 void pop_back() { MetadataPtrs.pop_back(); } 124 bool empty() const { return MetadataPtrs.empty(); } 125 126 Metadata *operator[](unsigned i) const { 127 assert(i < MetadataPtrs.size()); 128 return MetadataPtrs[i]; 129 } 130 131 void shrinkTo(unsigned N) { 132 assert(N <= size() && "Invalid shrinkTo request!"); 133 assert(!AnyFwdRefs && "Unexpected forward refs"); 134 MetadataPtrs.resize(N); 135 } 136 137 Metadata *getMetadataFwdRef(unsigned Idx); 138 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 139 void assignValue(Metadata *MD, unsigned Idx); 140 void tryToResolveCycles(); 141 bool hasFwdRefs() const { return AnyFwdRefs; } 142 }; 143 144 class BitcodeReader : public GVMaterializer { 145 LLVMContext &Context; 146 Module *TheModule = nullptr; 147 std::unique_ptr<MemoryBuffer> Buffer; 148 std::unique_ptr<BitstreamReader> StreamFile; 149 BitstreamCursor Stream; 150 // Next offset to start scanning for lazy parsing of function bodies. 151 uint64_t NextUnreadBit = 0; 152 // Last function offset found in the VST. 153 uint64_t LastFunctionBlockBit = 0; 154 bool SeenValueSymbolTable = false; 155 uint64_t VSTOffset = 0; 156 // Contains an arbitrary and optional string identifying the bitcode producer 157 std::string ProducerIdentification; 158 159 std::vector<Type*> TypeList; 160 BitcodeReaderValueList ValueList; 161 BitcodeReaderMetadataList MetadataList; 162 std::vector<Comdat *> ComdatList; 163 SmallVector<Instruction *, 64> InstructionList; 164 165 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 166 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 168 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 169 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 170 171 SmallVector<Instruction*, 64> InstsWithTBAATag; 172 173 bool HasSeenOldLoopTags = false; 174 175 /// The set of attributes by index. Index zero in the file is for null, and 176 /// is thus not represented here. As such all indices are off by one. 177 std::vector<AttributeSet> MAttributes; 178 179 /// The set of attribute groups. 180 std::map<unsigned, AttributeSet> MAttributeGroups; 181 182 /// While parsing a function body, this is a list of the basic blocks for the 183 /// function. 184 std::vector<BasicBlock*> FunctionBBs; 185 186 // When reading the module header, this list is populated with functions that 187 // have bodies later in the file. 188 std::vector<Function*> FunctionsWithBodies; 189 190 // When intrinsic functions are encountered which require upgrading they are 191 // stored here with their replacement function. 192 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 193 UpgradedIntrinsicMap UpgradedIntrinsics; 194 195 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 196 DenseMap<unsigned, unsigned> MDKindMap; 197 198 // Several operations happen after the module header has been read, but 199 // before function bodies are processed. This keeps track of whether 200 // we've done this yet. 201 bool SeenFirstFunctionBody = false; 202 203 /// When function bodies are initially scanned, this map contains info about 204 /// where to find deferred function body in the stream. 205 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 206 207 /// When Metadata block is initially scanned when parsing the module, we may 208 /// choose to defer parsing of the metadata. This vector contains info about 209 /// which Metadata blocks are deferred. 210 std::vector<uint64_t> DeferredMetadataInfo; 211 212 /// These are basic blocks forward-referenced by block addresses. They are 213 /// inserted lazily into functions when they're loaded. The basic block ID is 214 /// its index into the vector. 215 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 216 std::deque<Function *> BasicBlockFwdRefQueue; 217 218 /// Indicates that we are using a new encoding for instruction operands where 219 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 220 /// instruction number, for a more compact encoding. Some instruction 221 /// operands are not relative to the instruction ID: basic block numbers, and 222 /// types. Once the old style function blocks have been phased out, we would 223 /// not need this flag. 224 bool UseRelativeIDs = false; 225 226 /// True if all functions will be materialized, negating the need to process 227 /// (e.g.) blockaddress forward references. 228 bool WillMaterializeAllForwardRefs = false; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 /// Functions that need to be matched with subprograms when upgrading old 236 /// metadata. 237 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 238 239 std::vector<std::string> BundleTags; 240 241 public: 242 std::error_code error(BitcodeError E, const Twine &Message); 243 std::error_code error(BitcodeError E); 244 std::error_code error(const Twine &Message); 245 246 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 247 BitcodeReader(LLVMContext &Context); 248 ~BitcodeReader() override { freeState(); } 249 250 std::error_code materializeForwardReferencedFunctions(); 251 252 void freeState(); 253 254 void releaseBuffer(); 255 256 std::error_code materialize(GlobalValue *GV) override; 257 std::error_code materializeModule() override; 258 std::vector<StructType *> getIdentifiedStructTypes() const override; 259 260 /// \brief Main interface to parsing a bitcode buffer. 261 /// \returns true if an error occurred. 262 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 263 Module *M, 264 bool ShouldLazyLoadMetadata = false); 265 266 /// \brief Cheap mechanism to just extract module triple 267 /// \returns true if an error occurred. 268 ErrorOr<std::string> parseTriple(); 269 270 /// Cheap mechanism to just extract the identification block out of bitcode. 271 ErrorOr<std::string> parseIdentificationBlock(); 272 273 static uint64_t decodeSignRotatedValue(uint64_t V); 274 275 /// Materialize any deferred Metadata block. 276 std::error_code materializeMetadata() override; 277 278 void setStripDebugInfo() override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MetadataList.getMetadataFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndIndirectSymbolInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 401 StringRef Blob, 402 unsigned &NextMetadataNo); 403 std::error_code parseMetadataKinds(); 404 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 405 std::error_code parseMetadataAttachment(Function &F); 406 ErrorOr<std::string> parseModuleTriple(); 407 std::error_code parseUseLists(); 408 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code initStreamFromBuffer(); 410 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 411 std::error_code findFunctionInStream( 412 Function *F, 413 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 414 }; 415 416 /// Class to manage reading and parsing function summary index bitcode 417 /// files/sections. 418 class ModuleSummaryIndexBitcodeReader { 419 DiagnosticHandlerFunction DiagnosticHandler; 420 421 /// Eventually points to the module index built during parsing. 422 ModuleSummaryIndex *TheIndex = nullptr; 423 424 std::unique_ptr<MemoryBuffer> Buffer; 425 std::unique_ptr<BitstreamReader> StreamFile; 426 BitstreamCursor Stream; 427 428 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 429 /// 430 /// If false, the summary section is fully parsed into the index during 431 /// the initial parse. Otherwise, if true, the caller is expected to 432 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 433 /// section is thus parsed lazily. 434 bool IsLazy = false; 435 436 /// Used to indicate whether caller only wants to check for the presence 437 /// of the global value summary bitcode section. All blocks are skipped, 438 /// but the SeenGlobalValSummary boolean is set. 439 bool CheckGlobalValSummaryPresenceOnly = false; 440 441 /// Indicates whether we have encountered a global value summary section 442 /// yet during parsing, used when checking if file contains global value 443 /// summary section. 444 bool SeenGlobalValSummary = false; 445 446 /// Indicates whether we have already parsed the VST, used for error checking. 447 bool SeenValueSymbolTable = false; 448 449 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 450 /// Used to enable on-demand parsing of the VST. 451 uint64_t VSTOffset = 0; 452 453 // Map to save ValueId to GUID association that was recorded in the 454 // ValueSymbolTable. It is used after the VST is parsed to convert 455 // call graph edges read from the function summary from referencing 456 // callees by their ValueId to using the GUID instead, which is how 457 // they are recorded in the summary index being built. 458 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 459 460 /// Map to save the association between summary offset in the VST to the 461 /// GlobalValueInfo object created when parsing it. Used to access the 462 /// info object when parsing the summary section. 463 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 464 465 /// Map populated during module path string table parsing, from the 466 /// module ID to a string reference owned by the index's module 467 /// path string table, used to correlate with combined index 468 /// summary records. 469 DenseMap<uint64_t, StringRef> ModuleIdMap; 470 471 /// Original source file name recorded in a bitcode record. 472 std::string SourceFileName; 473 474 public: 475 std::error_code error(BitcodeError E, const Twine &Message); 476 std::error_code error(BitcodeError E); 477 std::error_code error(const Twine &Message); 478 479 ModuleSummaryIndexBitcodeReader( 480 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 481 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 482 ModuleSummaryIndexBitcodeReader( 483 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 484 bool CheckGlobalValSummaryPresenceOnly = false); 485 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 486 487 void freeState(); 488 489 void releaseBuffer(); 490 491 /// Check if the parser has encountered a summary section. 492 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 493 494 /// \brief Main interface to parsing a bitcode buffer. 495 /// \returns true if an error occurred. 496 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 497 ModuleSummaryIndex *I); 498 499 /// \brief Interface for parsing a summary lazily. 500 std::error_code 501 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 502 ModuleSummaryIndex *I, size_t SummaryOffset); 503 504 private: 505 std::error_code parseModule(); 506 std::error_code parseValueSymbolTable( 507 uint64_t Offset, 508 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 509 std::error_code parseEntireSummary(); 510 std::error_code parseModuleStringTable(); 511 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 512 std::error_code initStreamFromBuffer(); 513 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 514 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 515 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 516 }; 517 } // end anonymous namespace 518 519 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 520 DiagnosticSeverity Severity, 521 const Twine &Msg) 522 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 523 524 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 525 526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 527 std::error_code EC, const Twine &Message) { 528 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 529 DiagnosticHandler(DI); 530 return EC; 531 } 532 533 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 534 std::error_code EC) { 535 return error(DiagnosticHandler, EC, EC.message()); 536 } 537 538 static std::error_code error(LLVMContext &Context, std::error_code EC, 539 const Twine &Message) { 540 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 541 Message); 542 } 543 544 static std::error_code error(LLVMContext &Context, std::error_code EC) { 545 return error(Context, EC, EC.message()); 546 } 547 548 static std::error_code error(LLVMContext &Context, const Twine &Message) { 549 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 550 Message); 551 } 552 553 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 554 if (!ProducerIdentification.empty()) { 555 return ::error(Context, make_error_code(E), 556 Message + " (Producer: '" + ProducerIdentification + 557 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 558 } 559 return ::error(Context, make_error_code(E), Message); 560 } 561 562 std::error_code BitcodeReader::error(const Twine &Message) { 563 if (!ProducerIdentification.empty()) { 564 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 565 Message + " (Producer: '" + ProducerIdentification + 566 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 567 } 568 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 569 Message); 570 } 571 572 std::error_code BitcodeReader::error(BitcodeError E) { 573 return ::error(Context, make_error_code(E)); 574 } 575 576 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 577 : Context(Context), Buffer(Buffer), ValueList(Context), 578 MetadataList(Context) {} 579 580 BitcodeReader::BitcodeReader(LLVMContext &Context) 581 : Context(Context), Buffer(nullptr), ValueList(Context), 582 MetadataList(Context) {} 583 584 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 585 if (WillMaterializeAllForwardRefs) 586 return std::error_code(); 587 588 // Prevent recursion. 589 WillMaterializeAllForwardRefs = true; 590 591 while (!BasicBlockFwdRefQueue.empty()) { 592 Function *F = BasicBlockFwdRefQueue.front(); 593 BasicBlockFwdRefQueue.pop_front(); 594 assert(F && "Expected valid function"); 595 if (!BasicBlockFwdRefs.count(F)) 596 // Already materialized. 597 continue; 598 599 // Check for a function that isn't materializable to prevent an infinite 600 // loop. When parsing a blockaddress stored in a global variable, there 601 // isn't a trivial way to check if a function will have a body without a 602 // linear search through FunctionsWithBodies, so just check it here. 603 if (!F->isMaterializable()) 604 return error("Never resolved function from blockaddress"); 605 606 // Try to materialize F. 607 if (std::error_code EC = materialize(F)) 608 return EC; 609 } 610 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 611 612 // Reset state. 613 WillMaterializeAllForwardRefs = false; 614 return std::error_code(); 615 } 616 617 void BitcodeReader::freeState() { 618 Buffer = nullptr; 619 std::vector<Type*>().swap(TypeList); 620 ValueList.clear(); 621 MetadataList.clear(); 622 std::vector<Comdat *>().swap(ComdatList); 623 624 std::vector<AttributeSet>().swap(MAttributes); 625 std::vector<BasicBlock*>().swap(FunctionBBs); 626 std::vector<Function*>().swap(FunctionsWithBodies); 627 DeferredFunctionInfo.clear(); 628 DeferredMetadataInfo.clear(); 629 MDKindMap.clear(); 630 631 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 632 BasicBlockFwdRefQueue.clear(); 633 } 634 635 //===----------------------------------------------------------------------===// 636 // Helper functions to implement forward reference resolution, etc. 637 //===----------------------------------------------------------------------===// 638 639 /// Convert a string from a record into an std::string, return true on failure. 640 template <typename StrTy> 641 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 642 StrTy &Result) { 643 if (Idx > Record.size()) 644 return true; 645 646 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 647 Result += (char)Record[i]; 648 return false; 649 } 650 651 static bool hasImplicitComdat(size_t Val) { 652 switch (Val) { 653 default: 654 return false; 655 case 1: // Old WeakAnyLinkage 656 case 4: // Old LinkOnceAnyLinkage 657 case 10: // Old WeakODRLinkage 658 case 11: // Old LinkOnceODRLinkage 659 return true; 660 } 661 } 662 663 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 664 switch (Val) { 665 default: // Map unknown/new linkages to external 666 case 0: 667 return GlobalValue::ExternalLinkage; 668 case 2: 669 return GlobalValue::AppendingLinkage; 670 case 3: 671 return GlobalValue::InternalLinkage; 672 case 5: 673 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 674 case 6: 675 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 676 case 7: 677 return GlobalValue::ExternalWeakLinkage; 678 case 8: 679 return GlobalValue::CommonLinkage; 680 case 9: 681 return GlobalValue::PrivateLinkage; 682 case 12: 683 return GlobalValue::AvailableExternallyLinkage; 684 case 13: 685 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 686 case 14: 687 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 688 case 15: 689 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 690 case 1: // Old value with implicit comdat. 691 case 16: 692 return GlobalValue::WeakAnyLinkage; 693 case 10: // Old value with implicit comdat. 694 case 17: 695 return GlobalValue::WeakODRLinkage; 696 case 4: // Old value with implicit comdat. 697 case 18: 698 return GlobalValue::LinkOnceAnyLinkage; 699 case 11: // Old value with implicit comdat. 700 case 19: 701 return GlobalValue::LinkOnceODRLinkage; 702 } 703 } 704 705 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 706 switch (Val) { 707 default: // Map unknown visibilities to default. 708 case 0: return GlobalValue::DefaultVisibility; 709 case 1: return GlobalValue::HiddenVisibility; 710 case 2: return GlobalValue::ProtectedVisibility; 711 } 712 } 713 714 static GlobalValue::DLLStorageClassTypes 715 getDecodedDLLStorageClass(unsigned Val) { 716 switch (Val) { 717 default: // Map unknown values to default. 718 case 0: return GlobalValue::DefaultStorageClass; 719 case 1: return GlobalValue::DLLImportStorageClass; 720 case 2: return GlobalValue::DLLExportStorageClass; 721 } 722 } 723 724 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 725 switch (Val) { 726 case 0: return GlobalVariable::NotThreadLocal; 727 default: // Map unknown non-zero value to general dynamic. 728 case 1: return GlobalVariable::GeneralDynamicTLSModel; 729 case 2: return GlobalVariable::LocalDynamicTLSModel; 730 case 3: return GlobalVariable::InitialExecTLSModel; 731 case 4: return GlobalVariable::LocalExecTLSModel; 732 } 733 } 734 735 static int getDecodedCastOpcode(unsigned Val) { 736 switch (Val) { 737 default: return -1; 738 case bitc::CAST_TRUNC : return Instruction::Trunc; 739 case bitc::CAST_ZEXT : return Instruction::ZExt; 740 case bitc::CAST_SEXT : return Instruction::SExt; 741 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 742 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 743 case bitc::CAST_UITOFP : return Instruction::UIToFP; 744 case bitc::CAST_SITOFP : return Instruction::SIToFP; 745 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 746 case bitc::CAST_FPEXT : return Instruction::FPExt; 747 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 748 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 749 case bitc::CAST_BITCAST : return Instruction::BitCast; 750 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 751 } 752 } 753 754 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 755 bool IsFP = Ty->isFPOrFPVectorTy(); 756 // BinOps are only valid for int/fp or vector of int/fp types 757 if (!IsFP && !Ty->isIntOrIntVectorTy()) 758 return -1; 759 760 switch (Val) { 761 default: 762 return -1; 763 case bitc::BINOP_ADD: 764 return IsFP ? Instruction::FAdd : Instruction::Add; 765 case bitc::BINOP_SUB: 766 return IsFP ? Instruction::FSub : Instruction::Sub; 767 case bitc::BINOP_MUL: 768 return IsFP ? Instruction::FMul : Instruction::Mul; 769 case bitc::BINOP_UDIV: 770 return IsFP ? -1 : Instruction::UDiv; 771 case bitc::BINOP_SDIV: 772 return IsFP ? Instruction::FDiv : Instruction::SDiv; 773 case bitc::BINOP_UREM: 774 return IsFP ? -1 : Instruction::URem; 775 case bitc::BINOP_SREM: 776 return IsFP ? Instruction::FRem : Instruction::SRem; 777 case bitc::BINOP_SHL: 778 return IsFP ? -1 : Instruction::Shl; 779 case bitc::BINOP_LSHR: 780 return IsFP ? -1 : Instruction::LShr; 781 case bitc::BINOP_ASHR: 782 return IsFP ? -1 : Instruction::AShr; 783 case bitc::BINOP_AND: 784 return IsFP ? -1 : Instruction::And; 785 case bitc::BINOP_OR: 786 return IsFP ? -1 : Instruction::Or; 787 case bitc::BINOP_XOR: 788 return IsFP ? -1 : Instruction::Xor; 789 } 790 } 791 792 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 793 switch (Val) { 794 default: return AtomicRMWInst::BAD_BINOP; 795 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 796 case bitc::RMW_ADD: return AtomicRMWInst::Add; 797 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 798 case bitc::RMW_AND: return AtomicRMWInst::And; 799 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 800 case bitc::RMW_OR: return AtomicRMWInst::Or; 801 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 802 case bitc::RMW_MAX: return AtomicRMWInst::Max; 803 case bitc::RMW_MIN: return AtomicRMWInst::Min; 804 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 805 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 806 } 807 } 808 809 static AtomicOrdering getDecodedOrdering(unsigned Val) { 810 switch (Val) { 811 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 812 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 813 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 814 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 815 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 816 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 817 default: // Map unknown orderings to sequentially-consistent. 818 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 819 } 820 } 821 822 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 823 switch (Val) { 824 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 825 default: // Map unknown scopes to cross-thread. 826 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 827 } 828 } 829 830 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown selection kinds to any. 833 case bitc::COMDAT_SELECTION_KIND_ANY: 834 return Comdat::Any; 835 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 836 return Comdat::ExactMatch; 837 case bitc::COMDAT_SELECTION_KIND_LARGEST: 838 return Comdat::Largest; 839 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 840 return Comdat::NoDuplicates; 841 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 842 return Comdat::SameSize; 843 } 844 } 845 846 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 847 FastMathFlags FMF; 848 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 849 FMF.setUnsafeAlgebra(); 850 if (0 != (Val & FastMathFlags::NoNaNs)) 851 FMF.setNoNaNs(); 852 if (0 != (Val & FastMathFlags::NoInfs)) 853 FMF.setNoInfs(); 854 if (0 != (Val & FastMathFlags::NoSignedZeros)) 855 FMF.setNoSignedZeros(); 856 if (0 != (Val & FastMathFlags::AllowReciprocal)) 857 FMF.setAllowReciprocal(); 858 return FMF; 859 } 860 861 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 862 switch (Val) { 863 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 864 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 865 } 866 } 867 868 namespace llvm { 869 namespace { 870 /// \brief A class for maintaining the slot number definition 871 /// as a placeholder for the actual definition for forward constants defs. 872 class ConstantPlaceHolder : public ConstantExpr { 873 void operator=(const ConstantPlaceHolder &) = delete; 874 875 public: 876 // allocate space for exactly one operand 877 void *operator new(size_t s) { return User::operator new(s, 1); } 878 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 879 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 880 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 881 } 882 883 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 884 static bool classof(const Value *V) { 885 return isa<ConstantExpr>(V) && 886 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 887 } 888 889 /// Provide fast operand accessors 890 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 891 }; 892 } // end anonymous namespace 893 894 // FIXME: can we inherit this from ConstantExpr? 895 template <> 896 struct OperandTraits<ConstantPlaceHolder> : 897 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 898 }; 899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 900 } // end namespace llvm 901 902 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 903 if (Idx == size()) { 904 push_back(V); 905 return; 906 } 907 908 if (Idx >= size()) 909 resize(Idx+1); 910 911 WeakVH &OldV = ValuePtrs[Idx]; 912 if (!OldV) { 913 OldV = V; 914 return; 915 } 916 917 // Handle constants and non-constants (e.g. instrs) differently for 918 // efficiency. 919 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 920 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 921 OldV = V; 922 } else { 923 // If there was a forward reference to this value, replace it. 924 Value *PrevVal = OldV; 925 OldV->replaceAllUsesWith(V); 926 delete PrevVal; 927 } 928 } 929 930 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 931 Type *Ty) { 932 if (Idx >= size()) 933 resize(Idx + 1); 934 935 if (Value *V = ValuePtrs[Idx]) { 936 if (Ty != V->getType()) 937 report_fatal_error("Type mismatch in constant table!"); 938 return cast<Constant>(V); 939 } 940 941 // Create and return a placeholder, which will later be RAUW'd. 942 Constant *C = new ConstantPlaceHolder(Ty, Context); 943 ValuePtrs[Idx] = C; 944 return C; 945 } 946 947 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 948 // Bail out for a clearly invalid value. This would make us call resize(0) 949 if (Idx == UINT_MAX) 950 return nullptr; 951 952 if (Idx >= size()) 953 resize(Idx + 1); 954 955 if (Value *V = ValuePtrs[Idx]) { 956 // If the types don't match, it's invalid. 957 if (Ty && Ty != V->getType()) 958 return nullptr; 959 return V; 960 } 961 962 // No type specified, must be invalid reference. 963 if (!Ty) return nullptr; 964 965 // Create and return a placeholder, which will later be RAUW'd. 966 Value *V = new Argument(Ty); 967 ValuePtrs[Idx] = V; 968 return V; 969 } 970 971 /// Once all constants are read, this method bulk resolves any forward 972 /// references. The idea behind this is that we sometimes get constants (such 973 /// as large arrays) which reference *many* forward ref constants. Replacing 974 /// each of these causes a lot of thrashing when building/reuniquing the 975 /// constant. Instead of doing this, we look at all the uses and rewrite all 976 /// the place holders at once for any constant that uses a placeholder. 977 void BitcodeReaderValueList::resolveConstantForwardRefs() { 978 // Sort the values by-pointer so that they are efficient to look up with a 979 // binary search. 980 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 981 982 SmallVector<Constant*, 64> NewOps; 983 984 while (!ResolveConstants.empty()) { 985 Value *RealVal = operator[](ResolveConstants.back().second); 986 Constant *Placeholder = ResolveConstants.back().first; 987 ResolveConstants.pop_back(); 988 989 // Loop over all users of the placeholder, updating them to reference the 990 // new value. If they reference more than one placeholder, update them all 991 // at once. 992 while (!Placeholder->use_empty()) { 993 auto UI = Placeholder->user_begin(); 994 User *U = *UI; 995 996 // If the using object isn't uniqued, just update the operands. This 997 // handles instructions and initializers for global variables. 998 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 999 UI.getUse().set(RealVal); 1000 continue; 1001 } 1002 1003 // Otherwise, we have a constant that uses the placeholder. Replace that 1004 // constant with a new constant that has *all* placeholder uses updated. 1005 Constant *UserC = cast<Constant>(U); 1006 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1007 I != E; ++I) { 1008 Value *NewOp; 1009 if (!isa<ConstantPlaceHolder>(*I)) { 1010 // Not a placeholder reference. 1011 NewOp = *I; 1012 } else if (*I == Placeholder) { 1013 // Common case is that it just references this one placeholder. 1014 NewOp = RealVal; 1015 } else { 1016 // Otherwise, look up the placeholder in ResolveConstants. 1017 ResolveConstantsTy::iterator It = 1018 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1019 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1020 0)); 1021 assert(It != ResolveConstants.end() && It->first == *I); 1022 NewOp = operator[](It->second); 1023 } 1024 1025 NewOps.push_back(cast<Constant>(NewOp)); 1026 } 1027 1028 // Make the new constant. 1029 Constant *NewC; 1030 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1031 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1032 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1033 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1034 } else if (isa<ConstantVector>(UserC)) { 1035 NewC = ConstantVector::get(NewOps); 1036 } else { 1037 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1038 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1039 } 1040 1041 UserC->replaceAllUsesWith(NewC); 1042 UserC->destroyConstant(); 1043 NewOps.clear(); 1044 } 1045 1046 // Update all ValueHandles, they should be the only users at this point. 1047 Placeholder->replaceAllUsesWith(RealVal); 1048 delete Placeholder; 1049 } 1050 } 1051 1052 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1053 if (Idx == size()) { 1054 push_back(MD); 1055 return; 1056 } 1057 1058 if (Idx >= size()) 1059 resize(Idx+1); 1060 1061 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1062 if (!OldMD) { 1063 OldMD.reset(MD); 1064 return; 1065 } 1066 1067 // If there was a forward reference to this value, replace it. 1068 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1069 PrevMD->replaceAllUsesWith(MD); 1070 --NumFwdRefs; 1071 } 1072 1073 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1074 if (Idx >= size()) 1075 resize(Idx + 1); 1076 1077 if (Metadata *MD = MetadataPtrs[Idx]) 1078 return MD; 1079 1080 // Track forward refs to be resolved later. 1081 if (AnyFwdRefs) { 1082 MinFwdRef = std::min(MinFwdRef, Idx); 1083 MaxFwdRef = std::max(MaxFwdRef, Idx); 1084 } else { 1085 AnyFwdRefs = true; 1086 MinFwdRef = MaxFwdRef = Idx; 1087 } 1088 ++NumFwdRefs; 1089 1090 // Create and return a placeholder, which will later be RAUW'd. 1091 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1092 MetadataPtrs[Idx].reset(MD); 1093 return MD; 1094 } 1095 1096 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1097 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1098 } 1099 1100 void BitcodeReaderMetadataList::tryToResolveCycles() { 1101 if (!AnyFwdRefs) 1102 // Nothing to do. 1103 return; 1104 1105 if (NumFwdRefs) 1106 // Still forward references... can't resolve cycles. 1107 return; 1108 1109 // Resolve any cycles. 1110 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1111 auto &MD = MetadataPtrs[I]; 1112 auto *N = dyn_cast_or_null<MDNode>(MD); 1113 if (!N) 1114 continue; 1115 1116 assert(!N->isTemporary() && "Unexpected forward reference"); 1117 N->resolveCycles(); 1118 } 1119 1120 // Make sure we return early again until there's another forward ref. 1121 AnyFwdRefs = false; 1122 } 1123 1124 Type *BitcodeReader::getTypeByID(unsigned ID) { 1125 // The type table size is always specified correctly. 1126 if (ID >= TypeList.size()) 1127 return nullptr; 1128 1129 if (Type *Ty = TypeList[ID]) 1130 return Ty; 1131 1132 // If we have a forward reference, the only possible case is when it is to a 1133 // named struct. Just create a placeholder for now. 1134 return TypeList[ID] = createIdentifiedStructType(Context); 1135 } 1136 1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1138 StringRef Name) { 1139 auto *Ret = StructType::create(Context, Name); 1140 IdentifiedStructTypes.push_back(Ret); 1141 return Ret; 1142 } 1143 1144 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1145 auto *Ret = StructType::create(Context); 1146 IdentifiedStructTypes.push_back(Ret); 1147 return Ret; 1148 } 1149 1150 //===----------------------------------------------------------------------===// 1151 // Functions for parsing blocks from the bitcode file 1152 //===----------------------------------------------------------------------===// 1153 1154 1155 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1156 /// been decoded from the given integer. This function must stay in sync with 1157 /// 'encodeLLVMAttributesForBitcode'. 1158 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1159 uint64_t EncodedAttrs) { 1160 // FIXME: Remove in 4.0. 1161 1162 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1163 // the bits above 31 down by 11 bits. 1164 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1165 assert((!Alignment || isPowerOf2_32(Alignment)) && 1166 "Alignment must be a power of two."); 1167 1168 if (Alignment) 1169 B.addAlignmentAttr(Alignment); 1170 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1171 (EncodedAttrs & 0xffff)); 1172 } 1173 1174 std::error_code BitcodeReader::parseAttributeBlock() { 1175 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1176 return error("Invalid record"); 1177 1178 if (!MAttributes.empty()) 1179 return error("Invalid multiple blocks"); 1180 1181 SmallVector<uint64_t, 64> Record; 1182 1183 SmallVector<AttributeSet, 8> Attrs; 1184 1185 // Read all the records. 1186 while (1) { 1187 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1188 1189 switch (Entry.Kind) { 1190 case BitstreamEntry::SubBlock: // Handled for us already. 1191 case BitstreamEntry::Error: 1192 return error("Malformed block"); 1193 case BitstreamEntry::EndBlock: 1194 return std::error_code(); 1195 case BitstreamEntry::Record: 1196 // The interesting case. 1197 break; 1198 } 1199 1200 // Read a record. 1201 Record.clear(); 1202 switch (Stream.readRecord(Entry.ID, Record)) { 1203 default: // Default behavior: ignore. 1204 break; 1205 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1206 // FIXME: Remove in 4.0. 1207 if (Record.size() & 1) 1208 return error("Invalid record"); 1209 1210 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1211 AttrBuilder B; 1212 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1213 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1214 } 1215 1216 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1217 Attrs.clear(); 1218 break; 1219 } 1220 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1221 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1222 Attrs.push_back(MAttributeGroups[Record[i]]); 1223 1224 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1225 Attrs.clear(); 1226 break; 1227 } 1228 } 1229 } 1230 } 1231 1232 // Returns Attribute::None on unrecognized codes. 1233 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1234 switch (Code) { 1235 default: 1236 return Attribute::None; 1237 case bitc::ATTR_KIND_ALIGNMENT: 1238 return Attribute::Alignment; 1239 case bitc::ATTR_KIND_ALWAYS_INLINE: 1240 return Attribute::AlwaysInline; 1241 case bitc::ATTR_KIND_ARGMEMONLY: 1242 return Attribute::ArgMemOnly; 1243 case bitc::ATTR_KIND_BUILTIN: 1244 return Attribute::Builtin; 1245 case bitc::ATTR_KIND_BY_VAL: 1246 return Attribute::ByVal; 1247 case bitc::ATTR_KIND_IN_ALLOCA: 1248 return Attribute::InAlloca; 1249 case bitc::ATTR_KIND_COLD: 1250 return Attribute::Cold; 1251 case bitc::ATTR_KIND_CONVERGENT: 1252 return Attribute::Convergent; 1253 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1254 return Attribute::InaccessibleMemOnly; 1255 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1256 return Attribute::InaccessibleMemOrArgMemOnly; 1257 case bitc::ATTR_KIND_INLINE_HINT: 1258 return Attribute::InlineHint; 1259 case bitc::ATTR_KIND_IN_REG: 1260 return Attribute::InReg; 1261 case bitc::ATTR_KIND_JUMP_TABLE: 1262 return Attribute::JumpTable; 1263 case bitc::ATTR_KIND_MIN_SIZE: 1264 return Attribute::MinSize; 1265 case bitc::ATTR_KIND_NAKED: 1266 return Attribute::Naked; 1267 case bitc::ATTR_KIND_NEST: 1268 return Attribute::Nest; 1269 case bitc::ATTR_KIND_NO_ALIAS: 1270 return Attribute::NoAlias; 1271 case bitc::ATTR_KIND_NO_BUILTIN: 1272 return Attribute::NoBuiltin; 1273 case bitc::ATTR_KIND_NO_CAPTURE: 1274 return Attribute::NoCapture; 1275 case bitc::ATTR_KIND_NO_DUPLICATE: 1276 return Attribute::NoDuplicate; 1277 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1278 return Attribute::NoImplicitFloat; 1279 case bitc::ATTR_KIND_NO_INLINE: 1280 return Attribute::NoInline; 1281 case bitc::ATTR_KIND_NO_RECURSE: 1282 return Attribute::NoRecurse; 1283 case bitc::ATTR_KIND_NON_LAZY_BIND: 1284 return Attribute::NonLazyBind; 1285 case bitc::ATTR_KIND_NON_NULL: 1286 return Attribute::NonNull; 1287 case bitc::ATTR_KIND_DEREFERENCEABLE: 1288 return Attribute::Dereferenceable; 1289 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1290 return Attribute::DereferenceableOrNull; 1291 case bitc::ATTR_KIND_ALLOC_SIZE: 1292 return Attribute::AllocSize; 1293 case bitc::ATTR_KIND_NO_RED_ZONE: 1294 return Attribute::NoRedZone; 1295 case bitc::ATTR_KIND_NO_RETURN: 1296 return Attribute::NoReturn; 1297 case bitc::ATTR_KIND_NO_UNWIND: 1298 return Attribute::NoUnwind; 1299 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1300 return Attribute::OptimizeForSize; 1301 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1302 return Attribute::OptimizeNone; 1303 case bitc::ATTR_KIND_READ_NONE: 1304 return Attribute::ReadNone; 1305 case bitc::ATTR_KIND_READ_ONLY: 1306 return Attribute::ReadOnly; 1307 case bitc::ATTR_KIND_RETURNED: 1308 return Attribute::Returned; 1309 case bitc::ATTR_KIND_RETURNS_TWICE: 1310 return Attribute::ReturnsTwice; 1311 case bitc::ATTR_KIND_S_EXT: 1312 return Attribute::SExt; 1313 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1314 return Attribute::StackAlignment; 1315 case bitc::ATTR_KIND_STACK_PROTECT: 1316 return Attribute::StackProtect; 1317 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1318 return Attribute::StackProtectReq; 1319 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1320 return Attribute::StackProtectStrong; 1321 case bitc::ATTR_KIND_SAFESTACK: 1322 return Attribute::SafeStack; 1323 case bitc::ATTR_KIND_STRUCT_RET: 1324 return Attribute::StructRet; 1325 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1326 return Attribute::SanitizeAddress; 1327 case bitc::ATTR_KIND_SANITIZE_THREAD: 1328 return Attribute::SanitizeThread; 1329 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1330 return Attribute::SanitizeMemory; 1331 case bitc::ATTR_KIND_SWIFT_ERROR: 1332 return Attribute::SwiftError; 1333 case bitc::ATTR_KIND_SWIFT_SELF: 1334 return Attribute::SwiftSelf; 1335 case bitc::ATTR_KIND_UW_TABLE: 1336 return Attribute::UWTable; 1337 case bitc::ATTR_KIND_Z_EXT: 1338 return Attribute::ZExt; 1339 } 1340 } 1341 1342 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1343 unsigned &Alignment) { 1344 // Note: Alignment in bitcode files is incremented by 1, so that zero 1345 // can be used for default alignment. 1346 if (Exponent > Value::MaxAlignmentExponent + 1) 1347 return error("Invalid alignment value"); 1348 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1349 return std::error_code(); 1350 } 1351 1352 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1353 Attribute::AttrKind *Kind) { 1354 *Kind = getAttrFromCode(Code); 1355 if (*Kind == Attribute::None) 1356 return error(BitcodeError::CorruptedBitcode, 1357 "Unknown attribute kind (" + Twine(Code) + ")"); 1358 return std::error_code(); 1359 } 1360 1361 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1362 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1363 return error("Invalid record"); 1364 1365 if (!MAttributeGroups.empty()) 1366 return error("Invalid multiple blocks"); 1367 1368 SmallVector<uint64_t, 64> Record; 1369 1370 // Read all the records. 1371 while (1) { 1372 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1373 1374 switch (Entry.Kind) { 1375 case BitstreamEntry::SubBlock: // Handled for us already. 1376 case BitstreamEntry::Error: 1377 return error("Malformed block"); 1378 case BitstreamEntry::EndBlock: 1379 return std::error_code(); 1380 case BitstreamEntry::Record: 1381 // The interesting case. 1382 break; 1383 } 1384 1385 // Read a record. 1386 Record.clear(); 1387 switch (Stream.readRecord(Entry.ID, Record)) { 1388 default: // Default behavior: ignore. 1389 break; 1390 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1391 if (Record.size() < 3) 1392 return error("Invalid record"); 1393 1394 uint64_t GrpID = Record[0]; 1395 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1396 1397 AttrBuilder B; 1398 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1399 if (Record[i] == 0) { // Enum attribute 1400 Attribute::AttrKind Kind; 1401 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1402 return EC; 1403 1404 B.addAttribute(Kind); 1405 } else if (Record[i] == 1) { // Integer attribute 1406 Attribute::AttrKind Kind; 1407 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1408 return EC; 1409 if (Kind == Attribute::Alignment) 1410 B.addAlignmentAttr(Record[++i]); 1411 else if (Kind == Attribute::StackAlignment) 1412 B.addStackAlignmentAttr(Record[++i]); 1413 else if (Kind == Attribute::Dereferenceable) 1414 B.addDereferenceableAttr(Record[++i]); 1415 else if (Kind == Attribute::DereferenceableOrNull) 1416 B.addDereferenceableOrNullAttr(Record[++i]); 1417 else if (Kind == Attribute::AllocSize) 1418 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1419 } else { // String attribute 1420 assert((Record[i] == 3 || Record[i] == 4) && 1421 "Invalid attribute group entry"); 1422 bool HasValue = (Record[i++] == 4); 1423 SmallString<64> KindStr; 1424 SmallString<64> ValStr; 1425 1426 while (Record[i] != 0 && i != e) 1427 KindStr += Record[i++]; 1428 assert(Record[i] == 0 && "Kind string not null terminated"); 1429 1430 if (HasValue) { 1431 // Has a value associated with it. 1432 ++i; // Skip the '0' that terminates the "kind" string. 1433 while (Record[i] != 0 && i != e) 1434 ValStr += Record[i++]; 1435 assert(Record[i] == 0 && "Value string not null terminated"); 1436 } 1437 1438 B.addAttribute(KindStr.str(), ValStr.str()); 1439 } 1440 } 1441 1442 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1443 break; 1444 } 1445 } 1446 } 1447 } 1448 1449 std::error_code BitcodeReader::parseTypeTable() { 1450 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1451 return error("Invalid record"); 1452 1453 return parseTypeTableBody(); 1454 } 1455 1456 std::error_code BitcodeReader::parseTypeTableBody() { 1457 if (!TypeList.empty()) 1458 return error("Invalid multiple blocks"); 1459 1460 SmallVector<uint64_t, 64> Record; 1461 unsigned NumRecords = 0; 1462 1463 SmallString<64> TypeName; 1464 1465 // Read all the records for this type table. 1466 while (1) { 1467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1468 1469 switch (Entry.Kind) { 1470 case BitstreamEntry::SubBlock: // Handled for us already. 1471 case BitstreamEntry::Error: 1472 return error("Malformed block"); 1473 case BitstreamEntry::EndBlock: 1474 if (NumRecords != TypeList.size()) 1475 return error("Malformed block"); 1476 return std::error_code(); 1477 case BitstreamEntry::Record: 1478 // The interesting case. 1479 break; 1480 } 1481 1482 // Read a record. 1483 Record.clear(); 1484 Type *ResultTy = nullptr; 1485 switch (Stream.readRecord(Entry.ID, Record)) { 1486 default: 1487 return error("Invalid value"); 1488 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1489 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1490 // type list. This allows us to reserve space. 1491 if (Record.size() < 1) 1492 return error("Invalid record"); 1493 TypeList.resize(Record[0]); 1494 continue; 1495 case bitc::TYPE_CODE_VOID: // VOID 1496 ResultTy = Type::getVoidTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_HALF: // HALF 1499 ResultTy = Type::getHalfTy(Context); 1500 break; 1501 case bitc::TYPE_CODE_FLOAT: // FLOAT 1502 ResultTy = Type::getFloatTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1505 ResultTy = Type::getDoubleTy(Context); 1506 break; 1507 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1508 ResultTy = Type::getX86_FP80Ty(Context); 1509 break; 1510 case bitc::TYPE_CODE_FP128: // FP128 1511 ResultTy = Type::getFP128Ty(Context); 1512 break; 1513 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1514 ResultTy = Type::getPPC_FP128Ty(Context); 1515 break; 1516 case bitc::TYPE_CODE_LABEL: // LABEL 1517 ResultTy = Type::getLabelTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_METADATA: // METADATA 1520 ResultTy = Type::getMetadataTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1523 ResultTy = Type::getX86_MMXTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_TOKEN: // TOKEN 1526 ResultTy = Type::getTokenTy(Context); 1527 break; 1528 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1529 if (Record.size() < 1) 1530 return error("Invalid record"); 1531 1532 uint64_t NumBits = Record[0]; 1533 if (NumBits < IntegerType::MIN_INT_BITS || 1534 NumBits > IntegerType::MAX_INT_BITS) 1535 return error("Bitwidth for integer type out of range"); 1536 ResultTy = IntegerType::get(Context, NumBits); 1537 break; 1538 } 1539 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1540 // [pointee type, address space] 1541 if (Record.size() < 1) 1542 return error("Invalid record"); 1543 unsigned AddressSpace = 0; 1544 if (Record.size() == 2) 1545 AddressSpace = Record[1]; 1546 ResultTy = getTypeByID(Record[0]); 1547 if (!ResultTy || 1548 !PointerType::isValidElementType(ResultTy)) 1549 return error("Invalid type"); 1550 ResultTy = PointerType::get(ResultTy, AddressSpace); 1551 break; 1552 } 1553 case bitc::TYPE_CODE_FUNCTION_OLD: { 1554 // FIXME: attrid is dead, remove it in LLVM 4.0 1555 // FUNCTION: [vararg, attrid, retty, paramty x N] 1556 if (Record.size() < 3) 1557 return error("Invalid record"); 1558 SmallVector<Type*, 8> ArgTys; 1559 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1560 if (Type *T = getTypeByID(Record[i])) 1561 ArgTys.push_back(T); 1562 else 1563 break; 1564 } 1565 1566 ResultTy = getTypeByID(Record[2]); 1567 if (!ResultTy || ArgTys.size() < Record.size()-3) 1568 return error("Invalid type"); 1569 1570 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1571 break; 1572 } 1573 case bitc::TYPE_CODE_FUNCTION: { 1574 // FUNCTION: [vararg, retty, paramty x N] 1575 if (Record.size() < 2) 1576 return error("Invalid record"); 1577 SmallVector<Type*, 8> ArgTys; 1578 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1579 if (Type *T = getTypeByID(Record[i])) { 1580 if (!FunctionType::isValidArgumentType(T)) 1581 return error("Invalid function argument type"); 1582 ArgTys.push_back(T); 1583 } 1584 else 1585 break; 1586 } 1587 1588 ResultTy = getTypeByID(Record[1]); 1589 if (!ResultTy || ArgTys.size() < Record.size()-2) 1590 return error("Invalid type"); 1591 1592 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1593 break; 1594 } 1595 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1596 if (Record.size() < 1) 1597 return error("Invalid record"); 1598 SmallVector<Type*, 8> EltTys; 1599 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1600 if (Type *T = getTypeByID(Record[i])) 1601 EltTys.push_back(T); 1602 else 1603 break; 1604 } 1605 if (EltTys.size() != Record.size()-1) 1606 return error("Invalid type"); 1607 ResultTy = StructType::get(Context, EltTys, Record[0]); 1608 break; 1609 } 1610 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1611 if (convertToString(Record, 0, TypeName)) 1612 return error("Invalid record"); 1613 continue; 1614 1615 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1616 if (Record.size() < 1) 1617 return error("Invalid record"); 1618 1619 if (NumRecords >= TypeList.size()) 1620 return error("Invalid TYPE table"); 1621 1622 // Check to see if this was forward referenced, if so fill in the temp. 1623 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1624 if (Res) { 1625 Res->setName(TypeName); 1626 TypeList[NumRecords] = nullptr; 1627 } else // Otherwise, create a new struct. 1628 Res = createIdentifiedStructType(Context, TypeName); 1629 TypeName.clear(); 1630 1631 SmallVector<Type*, 8> EltTys; 1632 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1633 if (Type *T = getTypeByID(Record[i])) 1634 EltTys.push_back(T); 1635 else 1636 break; 1637 } 1638 if (EltTys.size() != Record.size()-1) 1639 return error("Invalid record"); 1640 Res->setBody(EltTys, Record[0]); 1641 ResultTy = Res; 1642 break; 1643 } 1644 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1645 if (Record.size() != 1) 1646 return error("Invalid record"); 1647 1648 if (NumRecords >= TypeList.size()) 1649 return error("Invalid TYPE table"); 1650 1651 // Check to see if this was forward referenced, if so fill in the temp. 1652 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1653 if (Res) { 1654 Res->setName(TypeName); 1655 TypeList[NumRecords] = nullptr; 1656 } else // Otherwise, create a new struct with no body. 1657 Res = createIdentifiedStructType(Context, TypeName); 1658 TypeName.clear(); 1659 ResultTy = Res; 1660 break; 1661 } 1662 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1663 if (Record.size() < 2) 1664 return error("Invalid record"); 1665 ResultTy = getTypeByID(Record[1]); 1666 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1667 return error("Invalid type"); 1668 ResultTy = ArrayType::get(ResultTy, Record[0]); 1669 break; 1670 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1671 if (Record.size() < 2) 1672 return error("Invalid record"); 1673 if (Record[0] == 0) 1674 return error("Invalid vector length"); 1675 ResultTy = getTypeByID(Record[1]); 1676 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1677 return error("Invalid type"); 1678 ResultTy = VectorType::get(ResultTy, Record[0]); 1679 break; 1680 } 1681 1682 if (NumRecords >= TypeList.size()) 1683 return error("Invalid TYPE table"); 1684 if (TypeList[NumRecords]) 1685 return error( 1686 "Invalid TYPE table: Only named structs can be forward referenced"); 1687 assert(ResultTy && "Didn't read a type?"); 1688 TypeList[NumRecords++] = ResultTy; 1689 } 1690 } 1691 1692 std::error_code BitcodeReader::parseOperandBundleTags() { 1693 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1694 return error("Invalid record"); 1695 1696 if (!BundleTags.empty()) 1697 return error("Invalid multiple blocks"); 1698 1699 SmallVector<uint64_t, 64> Record; 1700 1701 while (1) { 1702 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1703 1704 switch (Entry.Kind) { 1705 case BitstreamEntry::SubBlock: // Handled for us already. 1706 case BitstreamEntry::Error: 1707 return error("Malformed block"); 1708 case BitstreamEntry::EndBlock: 1709 return std::error_code(); 1710 case BitstreamEntry::Record: 1711 // The interesting case. 1712 break; 1713 } 1714 1715 // Tags are implicitly mapped to integers by their order. 1716 1717 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1718 return error("Invalid record"); 1719 1720 // OPERAND_BUNDLE_TAG: [strchr x N] 1721 BundleTags.emplace_back(); 1722 if (convertToString(Record, 0, BundleTags.back())) 1723 return error("Invalid record"); 1724 Record.clear(); 1725 } 1726 } 1727 1728 /// Associate a value with its name from the given index in the provided record. 1729 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1730 unsigned NameIndex, Triple &TT) { 1731 SmallString<128> ValueName; 1732 if (convertToString(Record, NameIndex, ValueName)) 1733 return error("Invalid record"); 1734 unsigned ValueID = Record[0]; 1735 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1736 return error("Invalid record"); 1737 Value *V = ValueList[ValueID]; 1738 1739 StringRef NameStr(ValueName.data(), ValueName.size()); 1740 if (NameStr.find_first_of(0) != StringRef::npos) 1741 return error("Invalid value name"); 1742 V->setName(NameStr); 1743 auto *GO = dyn_cast<GlobalObject>(V); 1744 if (GO) { 1745 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1746 if (TT.isOSBinFormatMachO()) 1747 GO->setComdat(nullptr); 1748 else 1749 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1750 } 1751 } 1752 return V; 1753 } 1754 1755 /// Helper to note and return the current location, and jump to the given 1756 /// offset. 1757 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1758 BitstreamCursor &Stream) { 1759 // Save the current parsing location so we can jump back at the end 1760 // of the VST read. 1761 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1762 Stream.JumpToBit(Offset * 32); 1763 #ifndef NDEBUG 1764 // Do some checking if we are in debug mode. 1765 BitstreamEntry Entry = Stream.advance(); 1766 assert(Entry.Kind == BitstreamEntry::SubBlock); 1767 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1768 #else 1769 // In NDEBUG mode ignore the output so we don't get an unused variable 1770 // warning. 1771 Stream.advance(); 1772 #endif 1773 return CurrentBit; 1774 } 1775 1776 /// Parse the value symbol table at either the current parsing location or 1777 /// at the given bit offset if provided. 1778 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1779 uint64_t CurrentBit; 1780 // Pass in the Offset to distinguish between calling for the module-level 1781 // VST (where we want to jump to the VST offset) and the function-level 1782 // VST (where we don't). 1783 if (Offset > 0) 1784 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1785 1786 // Compute the delta between the bitcode indices in the VST (the word offset 1787 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1788 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1789 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1790 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1791 // just before entering the VST subblock because: 1) the EnterSubBlock 1792 // changes the AbbrevID width; 2) the VST block is nested within the same 1793 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1794 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1795 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1796 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1797 unsigned FuncBitcodeOffsetDelta = 1798 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1799 1800 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1801 return error("Invalid record"); 1802 1803 SmallVector<uint64_t, 64> Record; 1804 1805 Triple TT(TheModule->getTargetTriple()); 1806 1807 // Read all the records for this value table. 1808 SmallString<128> ValueName; 1809 while (1) { 1810 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1811 1812 switch (Entry.Kind) { 1813 case BitstreamEntry::SubBlock: // Handled for us already. 1814 case BitstreamEntry::Error: 1815 return error("Malformed block"); 1816 case BitstreamEntry::EndBlock: 1817 if (Offset > 0) 1818 Stream.JumpToBit(CurrentBit); 1819 return std::error_code(); 1820 case BitstreamEntry::Record: 1821 // The interesting case. 1822 break; 1823 } 1824 1825 // Read a record. 1826 Record.clear(); 1827 switch (Stream.readRecord(Entry.ID, Record)) { 1828 default: // Default behavior: unknown type. 1829 break; 1830 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1831 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1832 if (std::error_code EC = ValOrErr.getError()) 1833 return EC; 1834 ValOrErr.get(); 1835 break; 1836 } 1837 case bitc::VST_CODE_FNENTRY: { 1838 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1839 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1840 if (std::error_code EC = ValOrErr.getError()) 1841 return EC; 1842 Value *V = ValOrErr.get(); 1843 1844 auto *GO = dyn_cast<GlobalObject>(V); 1845 if (!GO) { 1846 // If this is an alias, need to get the actual Function object 1847 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1848 auto *GA = dyn_cast<GlobalAlias>(V); 1849 if (GA) 1850 GO = GA->getBaseObject(); 1851 assert(GO); 1852 } 1853 1854 uint64_t FuncWordOffset = Record[1]; 1855 Function *F = dyn_cast<Function>(GO); 1856 assert(F); 1857 uint64_t FuncBitOffset = FuncWordOffset * 32; 1858 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1859 // Set the LastFunctionBlockBit to point to the last function block. 1860 // Later when parsing is resumed after function materialization, 1861 // we can simply skip that last function block. 1862 if (FuncBitOffset > LastFunctionBlockBit) 1863 LastFunctionBlockBit = FuncBitOffset; 1864 break; 1865 } 1866 case bitc::VST_CODE_BBENTRY: { 1867 if (convertToString(Record, 1, ValueName)) 1868 return error("Invalid record"); 1869 BasicBlock *BB = getBasicBlock(Record[0]); 1870 if (!BB) 1871 return error("Invalid record"); 1872 1873 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1874 ValueName.clear(); 1875 break; 1876 } 1877 } 1878 } 1879 } 1880 1881 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1882 std::error_code 1883 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1884 if (Record.size() < 2) 1885 return error("Invalid record"); 1886 1887 unsigned Kind = Record[0]; 1888 SmallString<8> Name(Record.begin() + 1, Record.end()); 1889 1890 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1891 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1892 return error("Conflicting METADATA_KIND records"); 1893 return std::error_code(); 1894 } 1895 1896 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1897 1898 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1899 StringRef Blob, 1900 unsigned &NextMetadataNo) { 1901 // All the MDStrings in the block are emitted together in a single 1902 // record. The strings are concatenated and stored in a blob along with 1903 // their sizes. 1904 if (Record.size() != 2) 1905 return error("Invalid record: metadata strings layout"); 1906 1907 unsigned NumStrings = Record[0]; 1908 unsigned StringsOffset = Record[1]; 1909 if (!NumStrings) 1910 return error("Invalid record: metadata strings with no strings"); 1911 if (StringsOffset > Blob.size()) 1912 return error("Invalid record: metadata strings corrupt offset"); 1913 1914 StringRef Lengths = Blob.slice(0, StringsOffset); 1915 SimpleBitstreamCursor R(*StreamFile); 1916 R.jumpToPointer(Lengths.begin()); 1917 1918 // Ensure that Blob doesn't get invalidated, even if this is reading from 1919 // a StreamingMemoryObject with corrupt data. 1920 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1921 1922 StringRef Strings = Blob.drop_front(StringsOffset); 1923 do { 1924 if (R.AtEndOfStream()) 1925 return error("Invalid record: metadata strings bad length"); 1926 1927 unsigned Size = R.ReadVBR(6); 1928 if (Strings.size() < Size) 1929 return error("Invalid record: metadata strings truncated chars"); 1930 1931 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1932 NextMetadataNo++); 1933 Strings = Strings.drop_front(Size); 1934 } while (--NumStrings); 1935 1936 return std::error_code(); 1937 } 1938 1939 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1940 /// module level metadata. 1941 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1942 IsMetadataMaterialized = true; 1943 unsigned NextMetadataNo = MetadataList.size(); 1944 1945 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1946 return error("Invalid metadata: fwd refs into function blocks"); 1947 1948 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1949 return error("Invalid record"); 1950 1951 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1952 SmallVector<uint64_t, 64> Record; 1953 1954 auto getMD = [&](unsigned ID) -> Metadata * { 1955 return MetadataList.getMetadataFwdRef(ID); 1956 }; 1957 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1958 if (ID) 1959 return getMD(ID - 1); 1960 return nullptr; 1961 }; 1962 auto getMDString = [&](unsigned ID) -> MDString *{ 1963 // This requires that the ID is not really a forward reference. In 1964 // particular, the MDString must already have been resolved. 1965 return cast_or_null<MDString>(getMDOrNull(ID)); 1966 }; 1967 1968 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1969 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1970 1971 // Read all the records. 1972 while (1) { 1973 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1974 1975 switch (Entry.Kind) { 1976 case BitstreamEntry::SubBlock: // Handled for us already. 1977 case BitstreamEntry::Error: 1978 return error("Malformed block"); 1979 case BitstreamEntry::EndBlock: 1980 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 1981 for (auto CU_SP : CUSubprograms) 1982 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 1983 for (auto &Op : SPs->operands()) 1984 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 1985 SP->replaceOperandWith(7, CU_SP.first); 1986 1987 MetadataList.tryToResolveCycles(); 1988 return std::error_code(); 1989 case BitstreamEntry::Record: 1990 // The interesting case. 1991 break; 1992 } 1993 1994 // Read a record. 1995 Record.clear(); 1996 StringRef Blob; 1997 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1998 bool IsDistinct = false; 1999 switch (Code) { 2000 default: // Default behavior: ignore. 2001 break; 2002 case bitc::METADATA_NAME: { 2003 // Read name of the named metadata. 2004 SmallString<8> Name(Record.begin(), Record.end()); 2005 Record.clear(); 2006 Code = Stream.ReadCode(); 2007 2008 unsigned NextBitCode = Stream.readRecord(Code, Record); 2009 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2010 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2011 2012 // Read named metadata elements. 2013 unsigned Size = Record.size(); 2014 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2015 for (unsigned i = 0; i != Size; ++i) { 2016 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2017 if (!MD) 2018 return error("Invalid record"); 2019 NMD->addOperand(MD); 2020 } 2021 break; 2022 } 2023 case bitc::METADATA_OLD_FN_NODE: { 2024 // FIXME: Remove in 4.0. 2025 // This is a LocalAsMetadata record, the only type of function-local 2026 // metadata. 2027 if (Record.size() % 2 == 1) 2028 return error("Invalid record"); 2029 2030 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2031 // to be legal, but there's no upgrade path. 2032 auto dropRecord = [&] { 2033 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2034 }; 2035 if (Record.size() != 2) { 2036 dropRecord(); 2037 break; 2038 } 2039 2040 Type *Ty = getTypeByID(Record[0]); 2041 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2042 dropRecord(); 2043 break; 2044 } 2045 2046 MetadataList.assignValue( 2047 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2048 NextMetadataNo++); 2049 break; 2050 } 2051 case bitc::METADATA_OLD_NODE: { 2052 // FIXME: Remove in 4.0. 2053 if (Record.size() % 2 == 1) 2054 return error("Invalid record"); 2055 2056 unsigned Size = Record.size(); 2057 SmallVector<Metadata *, 8> Elts; 2058 for (unsigned i = 0; i != Size; i += 2) { 2059 Type *Ty = getTypeByID(Record[i]); 2060 if (!Ty) 2061 return error("Invalid record"); 2062 if (Ty->isMetadataTy()) 2063 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2064 else if (!Ty->isVoidTy()) { 2065 auto *MD = 2066 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2067 assert(isa<ConstantAsMetadata>(MD) && 2068 "Expected non-function-local metadata"); 2069 Elts.push_back(MD); 2070 } else 2071 Elts.push_back(nullptr); 2072 } 2073 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2074 break; 2075 } 2076 case bitc::METADATA_VALUE: { 2077 if (Record.size() != 2) 2078 return error("Invalid record"); 2079 2080 Type *Ty = getTypeByID(Record[0]); 2081 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2082 return error("Invalid record"); 2083 2084 MetadataList.assignValue( 2085 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2086 NextMetadataNo++); 2087 break; 2088 } 2089 case bitc::METADATA_DISTINCT_NODE: 2090 IsDistinct = true; 2091 // fallthrough... 2092 case bitc::METADATA_NODE: { 2093 SmallVector<Metadata *, 8> Elts; 2094 Elts.reserve(Record.size()); 2095 for (unsigned ID : Record) 2096 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2097 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2098 : MDNode::get(Context, Elts), 2099 NextMetadataNo++); 2100 break; 2101 } 2102 case bitc::METADATA_LOCATION: { 2103 if (Record.size() != 5) 2104 return error("Invalid record"); 2105 2106 unsigned Line = Record[1]; 2107 unsigned Column = Record[2]; 2108 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2109 if (!Scope) 2110 return error("Invalid record"); 2111 Metadata *InlinedAt = 2112 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2113 MetadataList.assignValue( 2114 GET_OR_DISTINCT(DILocation, Record[0], 2115 (Context, Line, Column, Scope, InlinedAt)), 2116 NextMetadataNo++); 2117 break; 2118 } 2119 case bitc::METADATA_GENERIC_DEBUG: { 2120 if (Record.size() < 4) 2121 return error("Invalid record"); 2122 2123 unsigned Tag = Record[1]; 2124 unsigned Version = Record[2]; 2125 2126 if (Tag >= 1u << 16 || Version != 0) 2127 return error("Invalid record"); 2128 2129 auto *Header = getMDString(Record[3]); 2130 SmallVector<Metadata *, 8> DwarfOps; 2131 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2132 DwarfOps.push_back(Record[I] 2133 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2134 : nullptr); 2135 MetadataList.assignValue( 2136 GET_OR_DISTINCT(GenericDINode, Record[0], 2137 (Context, Tag, Header, DwarfOps)), 2138 NextMetadataNo++); 2139 break; 2140 } 2141 case bitc::METADATA_SUBRANGE: { 2142 if (Record.size() != 3) 2143 return error("Invalid record"); 2144 2145 MetadataList.assignValue( 2146 GET_OR_DISTINCT(DISubrange, Record[0], 2147 (Context, Record[1], unrotateSign(Record[2]))), 2148 NextMetadataNo++); 2149 break; 2150 } 2151 case bitc::METADATA_ENUMERATOR: { 2152 if (Record.size() != 3) 2153 return error("Invalid record"); 2154 2155 MetadataList.assignValue( 2156 GET_OR_DISTINCT( 2157 DIEnumerator, Record[0], 2158 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2159 NextMetadataNo++); 2160 break; 2161 } 2162 case bitc::METADATA_BASIC_TYPE: { 2163 if (Record.size() != 6) 2164 return error("Invalid record"); 2165 2166 MetadataList.assignValue( 2167 GET_OR_DISTINCT(DIBasicType, Record[0], 2168 (Context, Record[1], getMDString(Record[2]), 2169 Record[3], Record[4], Record[5])), 2170 NextMetadataNo++); 2171 break; 2172 } 2173 case bitc::METADATA_DERIVED_TYPE: { 2174 if (Record.size() != 12) 2175 return error("Invalid record"); 2176 2177 MetadataList.assignValue( 2178 GET_OR_DISTINCT(DIDerivedType, Record[0], 2179 (Context, Record[1], getMDString(Record[2]), 2180 getMDOrNull(Record[3]), Record[4], 2181 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2182 Record[7], Record[8], Record[9], Record[10], 2183 getMDOrNull(Record[11]))), 2184 NextMetadataNo++); 2185 break; 2186 } 2187 case bitc::METADATA_COMPOSITE_TYPE: { 2188 if (Record.size() != 16) 2189 return error("Invalid record"); 2190 2191 // If we have a UUID and this is not a forward declaration, lookup the 2192 // mapping. 2193 unsigned Flags = Record[10]; 2194 auto *Identifier = getMDString(Record[15]); 2195 DICompositeType **MappedT = nullptr; 2196 if (!(Flags & DINode::FlagFwdDecl) && Identifier) 2197 MappedT = Context.getOrInsertODRUniquedType(*Identifier); 2198 2199 // Use the mapped type node, or create a new one if necessary. 2200 DICompositeType *CT = MappedT ? *MappedT : nullptr; 2201 if (!CT) { 2202 CT = GET_OR_DISTINCT( 2203 DICompositeType, Record[0], 2204 (Context, Record[1], getMDString(Record[2]), getMDOrNull(Record[3]), 2205 Record[4], getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2206 Record[7], Record[8], Record[9], Flags, getMDOrNull(Record[11]), 2207 Record[12], getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2208 Identifier)); 2209 if (MappedT) 2210 *MappedT = CT; 2211 } 2212 2213 MetadataList.assignValue(CT, NextMetadataNo++); 2214 break; 2215 } 2216 case bitc::METADATA_SUBROUTINE_TYPE: { 2217 if (Record.size() != 3) 2218 return error("Invalid record"); 2219 2220 MetadataList.assignValue( 2221 GET_OR_DISTINCT(DISubroutineType, Record[0], 2222 (Context, Record[1], getMDOrNull(Record[2]))), 2223 NextMetadataNo++); 2224 break; 2225 } 2226 2227 case bitc::METADATA_MODULE: { 2228 if (Record.size() != 6) 2229 return error("Invalid record"); 2230 2231 MetadataList.assignValue( 2232 GET_OR_DISTINCT(DIModule, Record[0], 2233 (Context, getMDOrNull(Record[1]), 2234 getMDString(Record[2]), getMDString(Record[3]), 2235 getMDString(Record[4]), getMDString(Record[5]))), 2236 NextMetadataNo++); 2237 break; 2238 } 2239 2240 case bitc::METADATA_FILE: { 2241 if (Record.size() != 3) 2242 return error("Invalid record"); 2243 2244 MetadataList.assignValue( 2245 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2246 getMDString(Record[2]))), 2247 NextMetadataNo++); 2248 break; 2249 } 2250 case bitc::METADATA_COMPILE_UNIT: { 2251 if (Record.size() < 14 || Record.size() > 16) 2252 return error("Invalid record"); 2253 2254 // Ignore Record[0], which indicates whether this compile unit is 2255 // distinct. It's always distinct. 2256 auto *CU = DICompileUnit::getDistinct( 2257 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2258 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2259 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2260 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2261 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2262 Record.size() <= 14 ? 0 : Record[14]); 2263 2264 MetadataList.assignValue(CU, NextMetadataNo++); 2265 2266 // Move the Upgrade the list of subprograms. 2267 if (Metadata *SPs = getMDOrNull(Record[11])) 2268 CUSubprograms.push_back({CU, SPs}); 2269 break; 2270 } 2271 case bitc::METADATA_SUBPROGRAM: { 2272 if (Record.size() != 18 && Record.size() != 19) 2273 return error("Invalid record"); 2274 2275 // Version 1 has a Function as Record[15]. 2276 // Version 2 has removed Record[15]. 2277 // Version 3 has the Unit as Record[15]. 2278 Metadata *CUorFn = getMDOrNull(Record[15]); 2279 unsigned Offset = Record.size() == 19 ? 1 : 0; 2280 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2281 bool HasCU = Offset && !HasFn; 2282 DISubprogram *SP = GET_OR_DISTINCT( 2283 DISubprogram, 2284 Record[0] || Record[8], // All definitions should be distinct. 2285 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2286 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2287 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2288 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2289 Record[14], HasCU ? CUorFn : nullptr, 2290 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2291 getMDOrNull(Record[17 + Offset]))); 2292 MetadataList.assignValue(SP, NextMetadataNo++); 2293 2294 // Upgrade sp->function mapping to function->sp mapping. 2295 if (HasFn) { 2296 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2297 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2298 if (F->isMaterializable()) 2299 // Defer until materialized; unmaterialized functions may not have 2300 // metadata. 2301 FunctionsWithSPs[F] = SP; 2302 else if (!F->empty()) 2303 F->setSubprogram(SP); 2304 } 2305 } 2306 break; 2307 } 2308 case bitc::METADATA_LEXICAL_BLOCK: { 2309 if (Record.size() != 5) 2310 return error("Invalid record"); 2311 2312 MetadataList.assignValue( 2313 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2314 (Context, getMDOrNull(Record[1]), 2315 getMDOrNull(Record[2]), Record[3], Record[4])), 2316 NextMetadataNo++); 2317 break; 2318 } 2319 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2320 if (Record.size() != 4) 2321 return error("Invalid record"); 2322 2323 MetadataList.assignValue( 2324 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2325 (Context, getMDOrNull(Record[1]), 2326 getMDOrNull(Record[2]), Record[3])), 2327 NextMetadataNo++); 2328 break; 2329 } 2330 case bitc::METADATA_NAMESPACE: { 2331 if (Record.size() != 5) 2332 return error("Invalid record"); 2333 2334 MetadataList.assignValue( 2335 GET_OR_DISTINCT(DINamespace, Record[0], 2336 (Context, getMDOrNull(Record[1]), 2337 getMDOrNull(Record[2]), getMDString(Record[3]), 2338 Record[4])), 2339 NextMetadataNo++); 2340 break; 2341 } 2342 case bitc::METADATA_MACRO: { 2343 if (Record.size() != 5) 2344 return error("Invalid record"); 2345 2346 MetadataList.assignValue( 2347 GET_OR_DISTINCT(DIMacro, Record[0], 2348 (Context, Record[1], Record[2], 2349 getMDString(Record[3]), getMDString(Record[4]))), 2350 NextMetadataNo++); 2351 break; 2352 } 2353 case bitc::METADATA_MACRO_FILE: { 2354 if (Record.size() != 5) 2355 return error("Invalid record"); 2356 2357 MetadataList.assignValue( 2358 GET_OR_DISTINCT(DIMacroFile, Record[0], 2359 (Context, Record[1], Record[2], 2360 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2361 NextMetadataNo++); 2362 break; 2363 } 2364 case bitc::METADATA_TEMPLATE_TYPE: { 2365 if (Record.size() != 3) 2366 return error("Invalid record"); 2367 2368 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2369 Record[0], 2370 (Context, getMDString(Record[1]), 2371 getMDOrNull(Record[2]))), 2372 NextMetadataNo++); 2373 break; 2374 } 2375 case bitc::METADATA_TEMPLATE_VALUE: { 2376 if (Record.size() != 5) 2377 return error("Invalid record"); 2378 2379 MetadataList.assignValue( 2380 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2381 (Context, Record[1], getMDString(Record[2]), 2382 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2383 NextMetadataNo++); 2384 break; 2385 } 2386 case bitc::METADATA_GLOBAL_VAR: { 2387 if (Record.size() != 11) 2388 return error("Invalid record"); 2389 2390 MetadataList.assignValue( 2391 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2392 (Context, getMDOrNull(Record[1]), 2393 getMDString(Record[2]), getMDString(Record[3]), 2394 getMDOrNull(Record[4]), Record[5], 2395 getMDOrNull(Record[6]), Record[7], Record[8], 2396 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2397 NextMetadataNo++); 2398 break; 2399 } 2400 case bitc::METADATA_LOCAL_VAR: { 2401 // 10th field is for the obseleted 'inlinedAt:' field. 2402 if (Record.size() < 8 || Record.size() > 10) 2403 return error("Invalid record"); 2404 2405 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2406 // DW_TAG_arg_variable. 2407 bool HasTag = Record.size() > 8; 2408 MetadataList.assignValue( 2409 GET_OR_DISTINCT(DILocalVariable, Record[0], 2410 (Context, getMDOrNull(Record[1 + HasTag]), 2411 getMDString(Record[2 + HasTag]), 2412 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2413 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2414 Record[7 + HasTag])), 2415 NextMetadataNo++); 2416 break; 2417 } 2418 case bitc::METADATA_EXPRESSION: { 2419 if (Record.size() < 1) 2420 return error("Invalid record"); 2421 2422 MetadataList.assignValue( 2423 GET_OR_DISTINCT(DIExpression, Record[0], 2424 (Context, makeArrayRef(Record).slice(1))), 2425 NextMetadataNo++); 2426 break; 2427 } 2428 case bitc::METADATA_OBJC_PROPERTY: { 2429 if (Record.size() != 8) 2430 return error("Invalid record"); 2431 2432 MetadataList.assignValue( 2433 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2434 (Context, getMDString(Record[1]), 2435 getMDOrNull(Record[2]), Record[3], 2436 getMDString(Record[4]), getMDString(Record[5]), 2437 Record[6], getMDOrNull(Record[7]))), 2438 NextMetadataNo++); 2439 break; 2440 } 2441 case bitc::METADATA_IMPORTED_ENTITY: { 2442 if (Record.size() != 6) 2443 return error("Invalid record"); 2444 2445 MetadataList.assignValue( 2446 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2447 (Context, Record[1], getMDOrNull(Record[2]), 2448 getMDOrNull(Record[3]), Record[4], 2449 getMDString(Record[5]))), 2450 NextMetadataNo++); 2451 break; 2452 } 2453 case bitc::METADATA_STRING_OLD: { 2454 std::string String(Record.begin(), Record.end()); 2455 2456 // Test for upgrading !llvm.loop. 2457 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2458 2459 Metadata *MD = MDString::get(Context, String); 2460 MetadataList.assignValue(MD, NextMetadataNo++); 2461 break; 2462 } 2463 case bitc::METADATA_STRINGS: 2464 if (std::error_code EC = 2465 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2466 return EC; 2467 break; 2468 case bitc::METADATA_KIND: { 2469 // Support older bitcode files that had METADATA_KIND records in a 2470 // block with METADATA_BLOCK_ID. 2471 if (std::error_code EC = parseMetadataKindRecord(Record)) 2472 return EC; 2473 break; 2474 } 2475 } 2476 } 2477 #undef GET_OR_DISTINCT 2478 } 2479 2480 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2481 std::error_code BitcodeReader::parseMetadataKinds() { 2482 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2483 return error("Invalid record"); 2484 2485 SmallVector<uint64_t, 64> Record; 2486 2487 // Read all the records. 2488 while (1) { 2489 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2490 2491 switch (Entry.Kind) { 2492 case BitstreamEntry::SubBlock: // Handled for us already. 2493 case BitstreamEntry::Error: 2494 return error("Malformed block"); 2495 case BitstreamEntry::EndBlock: 2496 return std::error_code(); 2497 case BitstreamEntry::Record: 2498 // The interesting case. 2499 break; 2500 } 2501 2502 // Read a record. 2503 Record.clear(); 2504 unsigned Code = Stream.readRecord(Entry.ID, Record); 2505 switch (Code) { 2506 default: // Default behavior: ignore. 2507 break; 2508 case bitc::METADATA_KIND: { 2509 if (std::error_code EC = parseMetadataKindRecord(Record)) 2510 return EC; 2511 break; 2512 } 2513 } 2514 } 2515 } 2516 2517 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2518 /// encoding. 2519 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2520 if ((V & 1) == 0) 2521 return V >> 1; 2522 if (V != 1) 2523 return -(V >> 1); 2524 // There is no such thing as -0 with integers. "-0" really means MININT. 2525 return 1ULL << 63; 2526 } 2527 2528 /// Resolve all of the initializers for global values and aliases that we can. 2529 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2530 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2531 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2532 IndirectSymbolInitWorklist; 2533 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2534 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2535 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2536 2537 GlobalInitWorklist.swap(GlobalInits); 2538 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2539 FunctionPrefixWorklist.swap(FunctionPrefixes); 2540 FunctionPrologueWorklist.swap(FunctionPrologues); 2541 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2542 2543 while (!GlobalInitWorklist.empty()) { 2544 unsigned ValID = GlobalInitWorklist.back().second; 2545 if (ValID >= ValueList.size()) { 2546 // Not ready to resolve this yet, it requires something later in the file. 2547 GlobalInits.push_back(GlobalInitWorklist.back()); 2548 } else { 2549 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2550 GlobalInitWorklist.back().first->setInitializer(C); 2551 else 2552 return error("Expected a constant"); 2553 } 2554 GlobalInitWorklist.pop_back(); 2555 } 2556 2557 while (!IndirectSymbolInitWorklist.empty()) { 2558 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2559 if (ValID >= ValueList.size()) { 2560 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2561 } else { 2562 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2563 if (!C) 2564 return error("Expected a constant"); 2565 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2566 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2567 return error("Alias and aliasee types don't match"); 2568 GIS->setIndirectSymbol(C); 2569 } 2570 IndirectSymbolInitWorklist.pop_back(); 2571 } 2572 2573 while (!FunctionPrefixWorklist.empty()) { 2574 unsigned ValID = FunctionPrefixWorklist.back().second; 2575 if (ValID >= ValueList.size()) { 2576 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2577 } else { 2578 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2579 FunctionPrefixWorklist.back().first->setPrefixData(C); 2580 else 2581 return error("Expected a constant"); 2582 } 2583 FunctionPrefixWorklist.pop_back(); 2584 } 2585 2586 while (!FunctionPrologueWorklist.empty()) { 2587 unsigned ValID = FunctionPrologueWorklist.back().second; 2588 if (ValID >= ValueList.size()) { 2589 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2590 } else { 2591 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2592 FunctionPrologueWorklist.back().first->setPrologueData(C); 2593 else 2594 return error("Expected a constant"); 2595 } 2596 FunctionPrologueWorklist.pop_back(); 2597 } 2598 2599 while (!FunctionPersonalityFnWorklist.empty()) { 2600 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2601 if (ValID >= ValueList.size()) { 2602 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2603 } else { 2604 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2605 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2606 else 2607 return error("Expected a constant"); 2608 } 2609 FunctionPersonalityFnWorklist.pop_back(); 2610 } 2611 2612 return std::error_code(); 2613 } 2614 2615 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2616 SmallVector<uint64_t, 8> Words(Vals.size()); 2617 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2618 BitcodeReader::decodeSignRotatedValue); 2619 2620 return APInt(TypeBits, Words); 2621 } 2622 2623 std::error_code BitcodeReader::parseConstants() { 2624 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2625 return error("Invalid record"); 2626 2627 SmallVector<uint64_t, 64> Record; 2628 2629 // Read all the records for this value table. 2630 Type *CurTy = Type::getInt32Ty(Context); 2631 unsigned NextCstNo = ValueList.size(); 2632 while (1) { 2633 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2634 2635 switch (Entry.Kind) { 2636 case BitstreamEntry::SubBlock: // Handled for us already. 2637 case BitstreamEntry::Error: 2638 return error("Malformed block"); 2639 case BitstreamEntry::EndBlock: 2640 if (NextCstNo != ValueList.size()) 2641 return error("Invalid constant reference"); 2642 2643 // Once all the constants have been read, go through and resolve forward 2644 // references. 2645 ValueList.resolveConstantForwardRefs(); 2646 return std::error_code(); 2647 case BitstreamEntry::Record: 2648 // The interesting case. 2649 break; 2650 } 2651 2652 // Read a record. 2653 Record.clear(); 2654 Value *V = nullptr; 2655 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2656 switch (BitCode) { 2657 default: // Default behavior: unknown constant 2658 case bitc::CST_CODE_UNDEF: // UNDEF 2659 V = UndefValue::get(CurTy); 2660 break; 2661 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2662 if (Record.empty()) 2663 return error("Invalid record"); 2664 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2665 return error("Invalid record"); 2666 CurTy = TypeList[Record[0]]; 2667 continue; // Skip the ValueList manipulation. 2668 case bitc::CST_CODE_NULL: // NULL 2669 V = Constant::getNullValue(CurTy); 2670 break; 2671 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2672 if (!CurTy->isIntegerTy() || Record.empty()) 2673 return error("Invalid record"); 2674 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2675 break; 2676 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2677 if (!CurTy->isIntegerTy() || Record.empty()) 2678 return error("Invalid record"); 2679 2680 APInt VInt = 2681 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2682 V = ConstantInt::get(Context, VInt); 2683 2684 break; 2685 } 2686 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2687 if (Record.empty()) 2688 return error("Invalid record"); 2689 if (CurTy->isHalfTy()) 2690 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2691 APInt(16, (uint16_t)Record[0]))); 2692 else if (CurTy->isFloatTy()) 2693 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2694 APInt(32, (uint32_t)Record[0]))); 2695 else if (CurTy->isDoubleTy()) 2696 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2697 APInt(64, Record[0]))); 2698 else if (CurTy->isX86_FP80Ty()) { 2699 // Bits are not stored the same way as a normal i80 APInt, compensate. 2700 uint64_t Rearrange[2]; 2701 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2702 Rearrange[1] = Record[0] >> 48; 2703 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2704 APInt(80, Rearrange))); 2705 } else if (CurTy->isFP128Ty()) 2706 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2707 APInt(128, Record))); 2708 else if (CurTy->isPPC_FP128Ty()) 2709 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2710 APInt(128, Record))); 2711 else 2712 V = UndefValue::get(CurTy); 2713 break; 2714 } 2715 2716 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2717 if (Record.empty()) 2718 return error("Invalid record"); 2719 2720 unsigned Size = Record.size(); 2721 SmallVector<Constant*, 16> Elts; 2722 2723 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2724 for (unsigned i = 0; i != Size; ++i) 2725 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2726 STy->getElementType(i))); 2727 V = ConstantStruct::get(STy, Elts); 2728 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2729 Type *EltTy = ATy->getElementType(); 2730 for (unsigned i = 0; i != Size; ++i) 2731 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2732 V = ConstantArray::get(ATy, Elts); 2733 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2734 Type *EltTy = VTy->getElementType(); 2735 for (unsigned i = 0; i != Size; ++i) 2736 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2737 V = ConstantVector::get(Elts); 2738 } else { 2739 V = UndefValue::get(CurTy); 2740 } 2741 break; 2742 } 2743 case bitc::CST_CODE_STRING: // STRING: [values] 2744 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2745 if (Record.empty()) 2746 return error("Invalid record"); 2747 2748 SmallString<16> Elts(Record.begin(), Record.end()); 2749 V = ConstantDataArray::getString(Context, Elts, 2750 BitCode == bitc::CST_CODE_CSTRING); 2751 break; 2752 } 2753 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2754 if (Record.empty()) 2755 return error("Invalid record"); 2756 2757 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2758 if (EltTy->isIntegerTy(8)) { 2759 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2760 if (isa<VectorType>(CurTy)) 2761 V = ConstantDataVector::get(Context, Elts); 2762 else 2763 V = ConstantDataArray::get(Context, Elts); 2764 } else if (EltTy->isIntegerTy(16)) { 2765 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2766 if (isa<VectorType>(CurTy)) 2767 V = ConstantDataVector::get(Context, Elts); 2768 else 2769 V = ConstantDataArray::get(Context, Elts); 2770 } else if (EltTy->isIntegerTy(32)) { 2771 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2772 if (isa<VectorType>(CurTy)) 2773 V = ConstantDataVector::get(Context, Elts); 2774 else 2775 V = ConstantDataArray::get(Context, Elts); 2776 } else if (EltTy->isIntegerTy(64)) { 2777 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2778 if (isa<VectorType>(CurTy)) 2779 V = ConstantDataVector::get(Context, Elts); 2780 else 2781 V = ConstantDataArray::get(Context, Elts); 2782 } else if (EltTy->isHalfTy()) { 2783 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2784 if (isa<VectorType>(CurTy)) 2785 V = ConstantDataVector::getFP(Context, Elts); 2786 else 2787 V = ConstantDataArray::getFP(Context, Elts); 2788 } else if (EltTy->isFloatTy()) { 2789 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2790 if (isa<VectorType>(CurTy)) 2791 V = ConstantDataVector::getFP(Context, Elts); 2792 else 2793 V = ConstantDataArray::getFP(Context, Elts); 2794 } else if (EltTy->isDoubleTy()) { 2795 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2796 if (isa<VectorType>(CurTy)) 2797 V = ConstantDataVector::getFP(Context, Elts); 2798 else 2799 V = ConstantDataArray::getFP(Context, Elts); 2800 } else { 2801 return error("Invalid type for value"); 2802 } 2803 break; 2804 } 2805 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2806 if (Record.size() < 3) 2807 return error("Invalid record"); 2808 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2809 if (Opc < 0) { 2810 V = UndefValue::get(CurTy); // Unknown binop. 2811 } else { 2812 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2813 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2814 unsigned Flags = 0; 2815 if (Record.size() >= 4) { 2816 if (Opc == Instruction::Add || 2817 Opc == Instruction::Sub || 2818 Opc == Instruction::Mul || 2819 Opc == Instruction::Shl) { 2820 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2821 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2822 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2823 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2824 } else if (Opc == Instruction::SDiv || 2825 Opc == Instruction::UDiv || 2826 Opc == Instruction::LShr || 2827 Opc == Instruction::AShr) { 2828 if (Record[3] & (1 << bitc::PEO_EXACT)) 2829 Flags |= SDivOperator::IsExact; 2830 } 2831 } 2832 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2833 } 2834 break; 2835 } 2836 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2837 if (Record.size() < 3) 2838 return error("Invalid record"); 2839 int Opc = getDecodedCastOpcode(Record[0]); 2840 if (Opc < 0) { 2841 V = UndefValue::get(CurTy); // Unknown cast. 2842 } else { 2843 Type *OpTy = getTypeByID(Record[1]); 2844 if (!OpTy) 2845 return error("Invalid record"); 2846 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2847 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2848 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2849 } 2850 break; 2851 } 2852 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2853 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2854 unsigned OpNum = 0; 2855 Type *PointeeType = nullptr; 2856 if (Record.size() % 2) 2857 PointeeType = getTypeByID(Record[OpNum++]); 2858 SmallVector<Constant*, 16> Elts; 2859 while (OpNum != Record.size()) { 2860 Type *ElTy = getTypeByID(Record[OpNum++]); 2861 if (!ElTy) 2862 return error("Invalid record"); 2863 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2864 } 2865 2866 if (PointeeType && 2867 PointeeType != 2868 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2869 ->getElementType()) 2870 return error("Explicit gep operator type does not match pointee type " 2871 "of pointer operand"); 2872 2873 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2874 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2875 BitCode == 2876 bitc::CST_CODE_CE_INBOUNDS_GEP); 2877 break; 2878 } 2879 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2880 if (Record.size() < 3) 2881 return error("Invalid record"); 2882 2883 Type *SelectorTy = Type::getInt1Ty(Context); 2884 2885 // The selector might be an i1 or an <n x i1> 2886 // Get the type from the ValueList before getting a forward ref. 2887 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2888 if (Value *V = ValueList[Record[0]]) 2889 if (SelectorTy != V->getType()) 2890 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2891 2892 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2893 SelectorTy), 2894 ValueList.getConstantFwdRef(Record[1],CurTy), 2895 ValueList.getConstantFwdRef(Record[2],CurTy)); 2896 break; 2897 } 2898 case bitc::CST_CODE_CE_EXTRACTELT 2899 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2900 if (Record.size() < 3) 2901 return error("Invalid record"); 2902 VectorType *OpTy = 2903 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2904 if (!OpTy) 2905 return error("Invalid record"); 2906 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2907 Constant *Op1 = nullptr; 2908 if (Record.size() == 4) { 2909 Type *IdxTy = getTypeByID(Record[2]); 2910 if (!IdxTy) 2911 return error("Invalid record"); 2912 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2913 } else // TODO: Remove with llvm 4.0 2914 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2915 if (!Op1) 2916 return error("Invalid record"); 2917 V = ConstantExpr::getExtractElement(Op0, Op1); 2918 break; 2919 } 2920 case bitc::CST_CODE_CE_INSERTELT 2921 : { // CE_INSERTELT: [opval, opval, opty, opval] 2922 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2923 if (Record.size() < 3 || !OpTy) 2924 return error("Invalid record"); 2925 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2926 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2927 OpTy->getElementType()); 2928 Constant *Op2 = nullptr; 2929 if (Record.size() == 4) { 2930 Type *IdxTy = getTypeByID(Record[2]); 2931 if (!IdxTy) 2932 return error("Invalid record"); 2933 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2934 } else // TODO: Remove with llvm 4.0 2935 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2936 if (!Op2) 2937 return error("Invalid record"); 2938 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2939 break; 2940 } 2941 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2942 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2943 if (Record.size() < 3 || !OpTy) 2944 return error("Invalid record"); 2945 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2946 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2947 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2948 OpTy->getNumElements()); 2949 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2950 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2951 break; 2952 } 2953 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2954 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2955 VectorType *OpTy = 2956 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2957 if (Record.size() < 4 || !RTy || !OpTy) 2958 return error("Invalid record"); 2959 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2960 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2961 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2962 RTy->getNumElements()); 2963 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2964 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2965 break; 2966 } 2967 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2968 if (Record.size() < 4) 2969 return error("Invalid record"); 2970 Type *OpTy = getTypeByID(Record[0]); 2971 if (!OpTy) 2972 return error("Invalid record"); 2973 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2974 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2975 2976 if (OpTy->isFPOrFPVectorTy()) 2977 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2978 else 2979 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2980 break; 2981 } 2982 // This maintains backward compatibility, pre-asm dialect keywords. 2983 // FIXME: Remove with the 4.0 release. 2984 case bitc::CST_CODE_INLINEASM_OLD: { 2985 if (Record.size() < 2) 2986 return error("Invalid record"); 2987 std::string AsmStr, ConstrStr; 2988 bool HasSideEffects = Record[0] & 1; 2989 bool IsAlignStack = Record[0] >> 1; 2990 unsigned AsmStrSize = Record[1]; 2991 if (2+AsmStrSize >= Record.size()) 2992 return error("Invalid record"); 2993 unsigned ConstStrSize = Record[2+AsmStrSize]; 2994 if (3+AsmStrSize+ConstStrSize > Record.size()) 2995 return error("Invalid record"); 2996 2997 for (unsigned i = 0; i != AsmStrSize; ++i) 2998 AsmStr += (char)Record[2+i]; 2999 for (unsigned i = 0; i != ConstStrSize; ++i) 3000 ConstrStr += (char)Record[3+AsmStrSize+i]; 3001 PointerType *PTy = cast<PointerType>(CurTy); 3002 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3003 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3004 break; 3005 } 3006 // This version adds support for the asm dialect keywords (e.g., 3007 // inteldialect). 3008 case bitc::CST_CODE_INLINEASM: { 3009 if (Record.size() < 2) 3010 return error("Invalid record"); 3011 std::string AsmStr, ConstrStr; 3012 bool HasSideEffects = Record[0] & 1; 3013 bool IsAlignStack = (Record[0] >> 1) & 1; 3014 unsigned AsmDialect = Record[0] >> 2; 3015 unsigned AsmStrSize = Record[1]; 3016 if (2+AsmStrSize >= Record.size()) 3017 return error("Invalid record"); 3018 unsigned ConstStrSize = Record[2+AsmStrSize]; 3019 if (3+AsmStrSize+ConstStrSize > Record.size()) 3020 return error("Invalid record"); 3021 3022 for (unsigned i = 0; i != AsmStrSize; ++i) 3023 AsmStr += (char)Record[2+i]; 3024 for (unsigned i = 0; i != ConstStrSize; ++i) 3025 ConstrStr += (char)Record[3+AsmStrSize+i]; 3026 PointerType *PTy = cast<PointerType>(CurTy); 3027 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3028 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3029 InlineAsm::AsmDialect(AsmDialect)); 3030 break; 3031 } 3032 case bitc::CST_CODE_BLOCKADDRESS:{ 3033 if (Record.size() < 3) 3034 return error("Invalid record"); 3035 Type *FnTy = getTypeByID(Record[0]); 3036 if (!FnTy) 3037 return error("Invalid record"); 3038 Function *Fn = 3039 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3040 if (!Fn) 3041 return error("Invalid record"); 3042 3043 // If the function is already parsed we can insert the block address right 3044 // away. 3045 BasicBlock *BB; 3046 unsigned BBID = Record[2]; 3047 if (!BBID) 3048 // Invalid reference to entry block. 3049 return error("Invalid ID"); 3050 if (!Fn->empty()) { 3051 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3052 for (size_t I = 0, E = BBID; I != E; ++I) { 3053 if (BBI == BBE) 3054 return error("Invalid ID"); 3055 ++BBI; 3056 } 3057 BB = &*BBI; 3058 } else { 3059 // Otherwise insert a placeholder and remember it so it can be inserted 3060 // when the function is parsed. 3061 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3062 if (FwdBBs.empty()) 3063 BasicBlockFwdRefQueue.push_back(Fn); 3064 if (FwdBBs.size() < BBID + 1) 3065 FwdBBs.resize(BBID + 1); 3066 if (!FwdBBs[BBID]) 3067 FwdBBs[BBID] = BasicBlock::Create(Context); 3068 BB = FwdBBs[BBID]; 3069 } 3070 V = BlockAddress::get(Fn, BB); 3071 break; 3072 } 3073 } 3074 3075 ValueList.assignValue(V, NextCstNo); 3076 ++NextCstNo; 3077 } 3078 } 3079 3080 std::error_code BitcodeReader::parseUseLists() { 3081 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3082 return error("Invalid record"); 3083 3084 // Read all the records. 3085 SmallVector<uint64_t, 64> Record; 3086 while (1) { 3087 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3088 3089 switch (Entry.Kind) { 3090 case BitstreamEntry::SubBlock: // Handled for us already. 3091 case BitstreamEntry::Error: 3092 return error("Malformed block"); 3093 case BitstreamEntry::EndBlock: 3094 return std::error_code(); 3095 case BitstreamEntry::Record: 3096 // The interesting case. 3097 break; 3098 } 3099 3100 // Read a use list record. 3101 Record.clear(); 3102 bool IsBB = false; 3103 switch (Stream.readRecord(Entry.ID, Record)) { 3104 default: // Default behavior: unknown type. 3105 break; 3106 case bitc::USELIST_CODE_BB: 3107 IsBB = true; 3108 // fallthrough 3109 case bitc::USELIST_CODE_DEFAULT: { 3110 unsigned RecordLength = Record.size(); 3111 if (RecordLength < 3) 3112 // Records should have at least an ID and two indexes. 3113 return error("Invalid record"); 3114 unsigned ID = Record.back(); 3115 Record.pop_back(); 3116 3117 Value *V; 3118 if (IsBB) { 3119 assert(ID < FunctionBBs.size() && "Basic block not found"); 3120 V = FunctionBBs[ID]; 3121 } else 3122 V = ValueList[ID]; 3123 unsigned NumUses = 0; 3124 SmallDenseMap<const Use *, unsigned, 16> Order; 3125 for (const Use &U : V->materialized_uses()) { 3126 if (++NumUses > Record.size()) 3127 break; 3128 Order[&U] = Record[NumUses - 1]; 3129 } 3130 if (Order.size() != Record.size() || NumUses > Record.size()) 3131 // Mismatches can happen if the functions are being materialized lazily 3132 // (out-of-order), or a value has been upgraded. 3133 break; 3134 3135 V->sortUseList([&](const Use &L, const Use &R) { 3136 return Order.lookup(&L) < Order.lookup(&R); 3137 }); 3138 break; 3139 } 3140 } 3141 } 3142 } 3143 3144 /// When we see the block for metadata, remember where it is and then skip it. 3145 /// This lets us lazily deserialize the metadata. 3146 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3147 // Save the current stream state. 3148 uint64_t CurBit = Stream.GetCurrentBitNo(); 3149 DeferredMetadataInfo.push_back(CurBit); 3150 3151 // Skip over the block for now. 3152 if (Stream.SkipBlock()) 3153 return error("Invalid record"); 3154 return std::error_code(); 3155 } 3156 3157 std::error_code BitcodeReader::materializeMetadata() { 3158 for (uint64_t BitPos : DeferredMetadataInfo) { 3159 // Move the bit stream to the saved position. 3160 Stream.JumpToBit(BitPos); 3161 if (std::error_code EC = parseMetadata(true)) 3162 return EC; 3163 } 3164 DeferredMetadataInfo.clear(); 3165 return std::error_code(); 3166 } 3167 3168 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3169 3170 /// When we see the block for a function body, remember where it is and then 3171 /// skip it. This lets us lazily deserialize the functions. 3172 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3173 // Get the function we are talking about. 3174 if (FunctionsWithBodies.empty()) 3175 return error("Insufficient function protos"); 3176 3177 Function *Fn = FunctionsWithBodies.back(); 3178 FunctionsWithBodies.pop_back(); 3179 3180 // Save the current stream state. 3181 uint64_t CurBit = Stream.GetCurrentBitNo(); 3182 assert( 3183 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3184 "Mismatch between VST and scanned function offsets"); 3185 DeferredFunctionInfo[Fn] = CurBit; 3186 3187 // Skip over the function block for now. 3188 if (Stream.SkipBlock()) 3189 return error("Invalid record"); 3190 return std::error_code(); 3191 } 3192 3193 std::error_code BitcodeReader::globalCleanup() { 3194 // Patch the initializers for globals and aliases up. 3195 resolveGlobalAndIndirectSymbolInits(); 3196 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3197 return error("Malformed global initializer set"); 3198 3199 // Look for intrinsic functions which need to be upgraded at some point 3200 for (Function &F : *TheModule) { 3201 Function *NewFn; 3202 if (UpgradeIntrinsicFunction(&F, NewFn)) 3203 UpgradedIntrinsics[&F] = NewFn; 3204 } 3205 3206 // Look for global variables which need to be renamed. 3207 for (GlobalVariable &GV : TheModule->globals()) 3208 UpgradeGlobalVariable(&GV); 3209 3210 // Force deallocation of memory for these vectors to favor the client that 3211 // want lazy deserialization. 3212 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3213 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3214 IndirectSymbolInits); 3215 return std::error_code(); 3216 } 3217 3218 /// Support for lazy parsing of function bodies. This is required if we 3219 /// either have an old bitcode file without a VST forward declaration record, 3220 /// or if we have an anonymous function being materialized, since anonymous 3221 /// functions do not have a name and are therefore not in the VST. 3222 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3223 Stream.JumpToBit(NextUnreadBit); 3224 3225 if (Stream.AtEndOfStream()) 3226 return error("Could not find function in stream"); 3227 3228 if (!SeenFirstFunctionBody) 3229 return error("Trying to materialize functions before seeing function blocks"); 3230 3231 // An old bitcode file with the symbol table at the end would have 3232 // finished the parse greedily. 3233 assert(SeenValueSymbolTable); 3234 3235 SmallVector<uint64_t, 64> Record; 3236 3237 while (1) { 3238 BitstreamEntry Entry = Stream.advance(); 3239 switch (Entry.Kind) { 3240 default: 3241 return error("Expect SubBlock"); 3242 case BitstreamEntry::SubBlock: 3243 switch (Entry.ID) { 3244 default: 3245 return error("Expect function block"); 3246 case bitc::FUNCTION_BLOCK_ID: 3247 if (std::error_code EC = rememberAndSkipFunctionBody()) 3248 return EC; 3249 NextUnreadBit = Stream.GetCurrentBitNo(); 3250 return std::error_code(); 3251 } 3252 } 3253 } 3254 } 3255 3256 std::error_code BitcodeReader::parseBitcodeVersion() { 3257 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3258 return error("Invalid record"); 3259 3260 // Read all the records. 3261 SmallVector<uint64_t, 64> Record; 3262 while (1) { 3263 BitstreamEntry Entry = Stream.advance(); 3264 3265 switch (Entry.Kind) { 3266 default: 3267 case BitstreamEntry::Error: 3268 return error("Malformed block"); 3269 case BitstreamEntry::EndBlock: 3270 return std::error_code(); 3271 case BitstreamEntry::Record: 3272 // The interesting case. 3273 break; 3274 } 3275 3276 // Read a record. 3277 Record.clear(); 3278 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3279 switch (BitCode) { 3280 default: // Default behavior: reject 3281 return error("Invalid value"); 3282 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3283 // N] 3284 convertToString(Record, 0, ProducerIdentification); 3285 break; 3286 } 3287 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3288 unsigned epoch = (unsigned)Record[0]; 3289 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3290 return error( 3291 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3292 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3293 } 3294 } 3295 } 3296 } 3297 } 3298 3299 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3300 bool ShouldLazyLoadMetadata) { 3301 if (ResumeBit) 3302 Stream.JumpToBit(ResumeBit); 3303 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3304 return error("Invalid record"); 3305 3306 SmallVector<uint64_t, 64> Record; 3307 std::vector<std::string> SectionTable; 3308 std::vector<std::string> GCTable; 3309 3310 // Read all the records for this module. 3311 while (1) { 3312 BitstreamEntry Entry = Stream.advance(); 3313 3314 switch (Entry.Kind) { 3315 case BitstreamEntry::Error: 3316 return error("Malformed block"); 3317 case BitstreamEntry::EndBlock: 3318 return globalCleanup(); 3319 3320 case BitstreamEntry::SubBlock: 3321 switch (Entry.ID) { 3322 default: // Skip unknown content. 3323 if (Stream.SkipBlock()) 3324 return error("Invalid record"); 3325 break; 3326 case bitc::BLOCKINFO_BLOCK_ID: 3327 if (Stream.ReadBlockInfoBlock()) 3328 return error("Malformed block"); 3329 break; 3330 case bitc::PARAMATTR_BLOCK_ID: 3331 if (std::error_code EC = parseAttributeBlock()) 3332 return EC; 3333 break; 3334 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3335 if (std::error_code EC = parseAttributeGroupBlock()) 3336 return EC; 3337 break; 3338 case bitc::TYPE_BLOCK_ID_NEW: 3339 if (std::error_code EC = parseTypeTable()) 3340 return EC; 3341 break; 3342 case bitc::VALUE_SYMTAB_BLOCK_ID: 3343 if (!SeenValueSymbolTable) { 3344 // Either this is an old form VST without function index and an 3345 // associated VST forward declaration record (which would have caused 3346 // the VST to be jumped to and parsed before it was encountered 3347 // normally in the stream), or there were no function blocks to 3348 // trigger an earlier parsing of the VST. 3349 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3350 if (std::error_code EC = parseValueSymbolTable()) 3351 return EC; 3352 SeenValueSymbolTable = true; 3353 } else { 3354 // We must have had a VST forward declaration record, which caused 3355 // the parser to jump to and parse the VST earlier. 3356 assert(VSTOffset > 0); 3357 if (Stream.SkipBlock()) 3358 return error("Invalid record"); 3359 } 3360 break; 3361 case bitc::CONSTANTS_BLOCK_ID: 3362 if (std::error_code EC = parseConstants()) 3363 return EC; 3364 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3365 return EC; 3366 break; 3367 case bitc::METADATA_BLOCK_ID: 3368 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3369 if (std::error_code EC = rememberAndSkipMetadata()) 3370 return EC; 3371 break; 3372 } 3373 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3374 if (std::error_code EC = parseMetadata(true)) 3375 return EC; 3376 break; 3377 case bitc::METADATA_KIND_BLOCK_ID: 3378 if (std::error_code EC = parseMetadataKinds()) 3379 return EC; 3380 break; 3381 case bitc::FUNCTION_BLOCK_ID: 3382 // If this is the first function body we've seen, reverse the 3383 // FunctionsWithBodies list. 3384 if (!SeenFirstFunctionBody) { 3385 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3386 if (std::error_code EC = globalCleanup()) 3387 return EC; 3388 SeenFirstFunctionBody = true; 3389 } 3390 3391 if (VSTOffset > 0) { 3392 // If we have a VST forward declaration record, make sure we 3393 // parse the VST now if we haven't already. It is needed to 3394 // set up the DeferredFunctionInfo vector for lazy reading. 3395 if (!SeenValueSymbolTable) { 3396 if (std::error_code EC = 3397 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3398 return EC; 3399 SeenValueSymbolTable = true; 3400 // Fall through so that we record the NextUnreadBit below. 3401 // This is necessary in case we have an anonymous function that 3402 // is later materialized. Since it will not have a VST entry we 3403 // need to fall back to the lazy parse to find its offset. 3404 } else { 3405 // If we have a VST forward declaration record, but have already 3406 // parsed the VST (just above, when the first function body was 3407 // encountered here), then we are resuming the parse after 3408 // materializing functions. The ResumeBit points to the 3409 // start of the last function block recorded in the 3410 // DeferredFunctionInfo map. Skip it. 3411 if (Stream.SkipBlock()) 3412 return error("Invalid record"); 3413 continue; 3414 } 3415 } 3416 3417 // Support older bitcode files that did not have the function 3418 // index in the VST, nor a VST forward declaration record, as 3419 // well as anonymous functions that do not have VST entries. 3420 // Build the DeferredFunctionInfo vector on the fly. 3421 if (std::error_code EC = rememberAndSkipFunctionBody()) 3422 return EC; 3423 3424 // Suspend parsing when we reach the function bodies. Subsequent 3425 // materialization calls will resume it when necessary. If the bitcode 3426 // file is old, the symbol table will be at the end instead and will not 3427 // have been seen yet. In this case, just finish the parse now. 3428 if (SeenValueSymbolTable) { 3429 NextUnreadBit = Stream.GetCurrentBitNo(); 3430 return std::error_code(); 3431 } 3432 break; 3433 case bitc::USELIST_BLOCK_ID: 3434 if (std::error_code EC = parseUseLists()) 3435 return EC; 3436 break; 3437 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3438 if (std::error_code EC = parseOperandBundleTags()) 3439 return EC; 3440 break; 3441 } 3442 continue; 3443 3444 case BitstreamEntry::Record: 3445 // The interesting case. 3446 break; 3447 } 3448 3449 // Read a record. 3450 auto BitCode = Stream.readRecord(Entry.ID, Record); 3451 switch (BitCode) { 3452 default: break; // Default behavior, ignore unknown content. 3453 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3454 if (Record.size() < 1) 3455 return error("Invalid record"); 3456 // Only version #0 and #1 are supported so far. 3457 unsigned module_version = Record[0]; 3458 switch (module_version) { 3459 default: 3460 return error("Invalid value"); 3461 case 0: 3462 UseRelativeIDs = false; 3463 break; 3464 case 1: 3465 UseRelativeIDs = true; 3466 break; 3467 } 3468 break; 3469 } 3470 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3471 std::string S; 3472 if (convertToString(Record, 0, S)) 3473 return error("Invalid record"); 3474 TheModule->setTargetTriple(S); 3475 break; 3476 } 3477 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3478 std::string S; 3479 if (convertToString(Record, 0, S)) 3480 return error("Invalid record"); 3481 TheModule->setDataLayout(S); 3482 break; 3483 } 3484 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3485 std::string S; 3486 if (convertToString(Record, 0, S)) 3487 return error("Invalid record"); 3488 TheModule->setModuleInlineAsm(S); 3489 break; 3490 } 3491 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3492 // FIXME: Remove in 4.0. 3493 std::string S; 3494 if (convertToString(Record, 0, S)) 3495 return error("Invalid record"); 3496 // Ignore value. 3497 break; 3498 } 3499 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3500 std::string S; 3501 if (convertToString(Record, 0, S)) 3502 return error("Invalid record"); 3503 SectionTable.push_back(S); 3504 break; 3505 } 3506 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3507 std::string S; 3508 if (convertToString(Record, 0, S)) 3509 return error("Invalid record"); 3510 GCTable.push_back(S); 3511 break; 3512 } 3513 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3514 if (Record.size() < 2) 3515 return error("Invalid record"); 3516 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3517 unsigned ComdatNameSize = Record[1]; 3518 std::string ComdatName; 3519 ComdatName.reserve(ComdatNameSize); 3520 for (unsigned i = 0; i != ComdatNameSize; ++i) 3521 ComdatName += (char)Record[2 + i]; 3522 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3523 C->setSelectionKind(SK); 3524 ComdatList.push_back(C); 3525 break; 3526 } 3527 // GLOBALVAR: [pointer type, isconst, initid, 3528 // linkage, alignment, section, visibility, threadlocal, 3529 // unnamed_addr, externally_initialized, dllstorageclass, 3530 // comdat] 3531 case bitc::MODULE_CODE_GLOBALVAR: { 3532 if (Record.size() < 6) 3533 return error("Invalid record"); 3534 Type *Ty = getTypeByID(Record[0]); 3535 if (!Ty) 3536 return error("Invalid record"); 3537 bool isConstant = Record[1] & 1; 3538 bool explicitType = Record[1] & 2; 3539 unsigned AddressSpace; 3540 if (explicitType) { 3541 AddressSpace = Record[1] >> 2; 3542 } else { 3543 if (!Ty->isPointerTy()) 3544 return error("Invalid type for value"); 3545 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3546 Ty = cast<PointerType>(Ty)->getElementType(); 3547 } 3548 3549 uint64_t RawLinkage = Record[3]; 3550 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3551 unsigned Alignment; 3552 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3553 return EC; 3554 std::string Section; 3555 if (Record[5]) { 3556 if (Record[5]-1 >= SectionTable.size()) 3557 return error("Invalid ID"); 3558 Section = SectionTable[Record[5]-1]; 3559 } 3560 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3561 // Local linkage must have default visibility. 3562 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3563 // FIXME: Change to an error if non-default in 4.0. 3564 Visibility = getDecodedVisibility(Record[6]); 3565 3566 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3567 if (Record.size() > 7) 3568 TLM = getDecodedThreadLocalMode(Record[7]); 3569 3570 bool UnnamedAddr = false; 3571 if (Record.size() > 8) 3572 UnnamedAddr = Record[8]; 3573 3574 bool ExternallyInitialized = false; 3575 if (Record.size() > 9) 3576 ExternallyInitialized = Record[9]; 3577 3578 GlobalVariable *NewGV = 3579 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3580 TLM, AddressSpace, ExternallyInitialized); 3581 NewGV->setAlignment(Alignment); 3582 if (!Section.empty()) 3583 NewGV->setSection(Section); 3584 NewGV->setVisibility(Visibility); 3585 NewGV->setUnnamedAddr(UnnamedAddr); 3586 3587 if (Record.size() > 10) 3588 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3589 else 3590 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3591 3592 ValueList.push_back(NewGV); 3593 3594 // Remember which value to use for the global initializer. 3595 if (unsigned InitID = Record[2]) 3596 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3597 3598 if (Record.size() > 11) { 3599 if (unsigned ComdatID = Record[11]) { 3600 if (ComdatID > ComdatList.size()) 3601 return error("Invalid global variable comdat ID"); 3602 NewGV->setComdat(ComdatList[ComdatID - 1]); 3603 } 3604 } else if (hasImplicitComdat(RawLinkage)) { 3605 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3606 } 3607 break; 3608 } 3609 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3610 // alignment, section, visibility, gc, unnamed_addr, 3611 // prologuedata, dllstorageclass, comdat, prefixdata] 3612 case bitc::MODULE_CODE_FUNCTION: { 3613 if (Record.size() < 8) 3614 return error("Invalid record"); 3615 Type *Ty = getTypeByID(Record[0]); 3616 if (!Ty) 3617 return error("Invalid record"); 3618 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3619 Ty = PTy->getElementType(); 3620 auto *FTy = dyn_cast<FunctionType>(Ty); 3621 if (!FTy) 3622 return error("Invalid type for value"); 3623 auto CC = static_cast<CallingConv::ID>(Record[1]); 3624 if (CC & ~CallingConv::MaxID) 3625 return error("Invalid calling convention ID"); 3626 3627 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3628 "", TheModule); 3629 3630 Func->setCallingConv(CC); 3631 bool isProto = Record[2]; 3632 uint64_t RawLinkage = Record[3]; 3633 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3634 Func->setAttributes(getAttributes(Record[4])); 3635 3636 unsigned Alignment; 3637 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3638 return EC; 3639 Func->setAlignment(Alignment); 3640 if (Record[6]) { 3641 if (Record[6]-1 >= SectionTable.size()) 3642 return error("Invalid ID"); 3643 Func->setSection(SectionTable[Record[6]-1]); 3644 } 3645 // Local linkage must have default visibility. 3646 if (!Func->hasLocalLinkage()) 3647 // FIXME: Change to an error if non-default in 4.0. 3648 Func->setVisibility(getDecodedVisibility(Record[7])); 3649 if (Record.size() > 8 && Record[8]) { 3650 if (Record[8]-1 >= GCTable.size()) 3651 return error("Invalid ID"); 3652 Func->setGC(GCTable[Record[8]-1].c_str()); 3653 } 3654 bool UnnamedAddr = false; 3655 if (Record.size() > 9) 3656 UnnamedAddr = Record[9]; 3657 Func->setUnnamedAddr(UnnamedAddr); 3658 if (Record.size() > 10 && Record[10] != 0) 3659 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3660 3661 if (Record.size() > 11) 3662 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3663 else 3664 upgradeDLLImportExportLinkage(Func, RawLinkage); 3665 3666 if (Record.size() > 12) { 3667 if (unsigned ComdatID = Record[12]) { 3668 if (ComdatID > ComdatList.size()) 3669 return error("Invalid function comdat ID"); 3670 Func->setComdat(ComdatList[ComdatID - 1]); 3671 } 3672 } else if (hasImplicitComdat(RawLinkage)) { 3673 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3674 } 3675 3676 if (Record.size() > 13 && Record[13] != 0) 3677 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3678 3679 if (Record.size() > 14 && Record[14] != 0) 3680 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3681 3682 ValueList.push_back(Func); 3683 3684 // If this is a function with a body, remember the prototype we are 3685 // creating now, so that we can match up the body with them later. 3686 if (!isProto) { 3687 Func->setIsMaterializable(true); 3688 FunctionsWithBodies.push_back(Func); 3689 DeferredFunctionInfo[Func] = 0; 3690 } 3691 break; 3692 } 3693 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3694 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3695 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3696 case bitc::MODULE_CODE_IFUNC: 3697 case bitc::MODULE_CODE_ALIAS: 3698 case bitc::MODULE_CODE_ALIAS_OLD: { 3699 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3700 if (Record.size() < (3 + (unsigned)NewRecord)) 3701 return error("Invalid record"); 3702 unsigned OpNum = 0; 3703 Type *Ty = getTypeByID(Record[OpNum++]); 3704 if (!Ty) 3705 return error("Invalid record"); 3706 3707 unsigned AddrSpace; 3708 if (!NewRecord) { 3709 auto *PTy = dyn_cast<PointerType>(Ty); 3710 if (!PTy) 3711 return error("Invalid type for value"); 3712 Ty = PTy->getElementType(); 3713 AddrSpace = PTy->getAddressSpace(); 3714 } else { 3715 AddrSpace = Record[OpNum++]; 3716 } 3717 3718 auto Val = Record[OpNum++]; 3719 auto Linkage = Record[OpNum++]; 3720 GlobalIndirectSymbol *NewGA; 3721 if (BitCode == bitc::MODULE_CODE_ALIAS || 3722 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3723 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3724 "", TheModule); 3725 else 3726 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3727 "", nullptr, TheModule); 3728 // Old bitcode files didn't have visibility field. 3729 // Local linkage must have default visibility. 3730 if (OpNum != Record.size()) { 3731 auto VisInd = OpNum++; 3732 if (!NewGA->hasLocalLinkage()) 3733 // FIXME: Change to an error if non-default in 4.0. 3734 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3735 } 3736 if (OpNum != Record.size()) 3737 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3738 else 3739 upgradeDLLImportExportLinkage(NewGA, Linkage); 3740 if (OpNum != Record.size()) 3741 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3742 if (OpNum != Record.size()) 3743 NewGA->setUnnamedAddr(Record[OpNum++]); 3744 ValueList.push_back(NewGA); 3745 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3746 break; 3747 } 3748 /// MODULE_CODE_PURGEVALS: [numvals] 3749 case bitc::MODULE_CODE_PURGEVALS: 3750 // Trim down the value list to the specified size. 3751 if (Record.size() < 1 || Record[0] > ValueList.size()) 3752 return error("Invalid record"); 3753 ValueList.shrinkTo(Record[0]); 3754 break; 3755 /// MODULE_CODE_VSTOFFSET: [offset] 3756 case bitc::MODULE_CODE_VSTOFFSET: 3757 if (Record.size() < 1) 3758 return error("Invalid record"); 3759 VSTOffset = Record[0]; 3760 break; 3761 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3762 case bitc::MODULE_CODE_SOURCE_FILENAME: 3763 SmallString<128> ValueName; 3764 if (convertToString(Record, 0, ValueName)) 3765 return error("Invalid record"); 3766 TheModule->setSourceFileName(ValueName); 3767 break; 3768 } 3769 Record.clear(); 3770 } 3771 } 3772 3773 /// Helper to read the header common to all bitcode files. 3774 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3775 // Sniff for the signature. 3776 if (Stream.Read(8) != 'B' || 3777 Stream.Read(8) != 'C' || 3778 Stream.Read(4) != 0x0 || 3779 Stream.Read(4) != 0xC || 3780 Stream.Read(4) != 0xE || 3781 Stream.Read(4) != 0xD) 3782 return false; 3783 return true; 3784 } 3785 3786 std::error_code 3787 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3788 Module *M, bool ShouldLazyLoadMetadata) { 3789 TheModule = M; 3790 3791 if (std::error_code EC = initStream(std::move(Streamer))) 3792 return EC; 3793 3794 // Sniff for the signature. 3795 if (!hasValidBitcodeHeader(Stream)) 3796 return error("Invalid bitcode signature"); 3797 3798 // We expect a number of well-defined blocks, though we don't necessarily 3799 // need to understand them all. 3800 while (1) { 3801 if (Stream.AtEndOfStream()) { 3802 // We didn't really read a proper Module. 3803 return error("Malformed IR file"); 3804 } 3805 3806 BitstreamEntry Entry = 3807 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3808 3809 if (Entry.Kind != BitstreamEntry::SubBlock) 3810 return error("Malformed block"); 3811 3812 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3813 parseBitcodeVersion(); 3814 continue; 3815 } 3816 3817 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3818 return parseModule(0, ShouldLazyLoadMetadata); 3819 3820 if (Stream.SkipBlock()) 3821 return error("Invalid record"); 3822 } 3823 } 3824 3825 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3826 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3827 return error("Invalid record"); 3828 3829 SmallVector<uint64_t, 64> Record; 3830 3831 std::string Triple; 3832 // Read all the records for this module. 3833 while (1) { 3834 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3835 3836 switch (Entry.Kind) { 3837 case BitstreamEntry::SubBlock: // Handled for us already. 3838 case BitstreamEntry::Error: 3839 return error("Malformed block"); 3840 case BitstreamEntry::EndBlock: 3841 return Triple; 3842 case BitstreamEntry::Record: 3843 // The interesting case. 3844 break; 3845 } 3846 3847 // Read a record. 3848 switch (Stream.readRecord(Entry.ID, Record)) { 3849 default: break; // Default behavior, ignore unknown content. 3850 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3851 std::string S; 3852 if (convertToString(Record, 0, S)) 3853 return error("Invalid record"); 3854 Triple = S; 3855 break; 3856 } 3857 } 3858 Record.clear(); 3859 } 3860 llvm_unreachable("Exit infinite loop"); 3861 } 3862 3863 ErrorOr<std::string> BitcodeReader::parseTriple() { 3864 if (std::error_code EC = initStream(nullptr)) 3865 return EC; 3866 3867 // Sniff for the signature. 3868 if (!hasValidBitcodeHeader(Stream)) 3869 return error("Invalid bitcode signature"); 3870 3871 // We expect a number of well-defined blocks, though we don't necessarily 3872 // need to understand them all. 3873 while (1) { 3874 BitstreamEntry Entry = Stream.advance(); 3875 3876 switch (Entry.Kind) { 3877 case BitstreamEntry::Error: 3878 return error("Malformed block"); 3879 case BitstreamEntry::EndBlock: 3880 return std::error_code(); 3881 3882 case BitstreamEntry::SubBlock: 3883 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3884 return parseModuleTriple(); 3885 3886 // Ignore other sub-blocks. 3887 if (Stream.SkipBlock()) 3888 return error("Malformed block"); 3889 continue; 3890 3891 case BitstreamEntry::Record: 3892 Stream.skipRecord(Entry.ID); 3893 continue; 3894 } 3895 } 3896 } 3897 3898 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3899 if (std::error_code EC = initStream(nullptr)) 3900 return EC; 3901 3902 // Sniff for the signature. 3903 if (!hasValidBitcodeHeader(Stream)) 3904 return error("Invalid bitcode signature"); 3905 3906 // We expect a number of well-defined blocks, though we don't necessarily 3907 // need to understand them all. 3908 while (1) { 3909 BitstreamEntry Entry = Stream.advance(); 3910 switch (Entry.Kind) { 3911 case BitstreamEntry::Error: 3912 return error("Malformed block"); 3913 case BitstreamEntry::EndBlock: 3914 return std::error_code(); 3915 3916 case BitstreamEntry::SubBlock: 3917 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3918 if (std::error_code EC = parseBitcodeVersion()) 3919 return EC; 3920 return ProducerIdentification; 3921 } 3922 // Ignore other sub-blocks. 3923 if (Stream.SkipBlock()) 3924 return error("Malformed block"); 3925 continue; 3926 case BitstreamEntry::Record: 3927 Stream.skipRecord(Entry.ID); 3928 continue; 3929 } 3930 } 3931 } 3932 3933 /// Parse metadata attachments. 3934 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3935 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3936 return error("Invalid record"); 3937 3938 SmallVector<uint64_t, 64> Record; 3939 while (1) { 3940 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3941 3942 switch (Entry.Kind) { 3943 case BitstreamEntry::SubBlock: // Handled for us already. 3944 case BitstreamEntry::Error: 3945 return error("Malformed block"); 3946 case BitstreamEntry::EndBlock: 3947 return std::error_code(); 3948 case BitstreamEntry::Record: 3949 // The interesting case. 3950 break; 3951 } 3952 3953 // Read a metadata attachment record. 3954 Record.clear(); 3955 switch (Stream.readRecord(Entry.ID, Record)) { 3956 default: // Default behavior: ignore. 3957 break; 3958 case bitc::METADATA_ATTACHMENT: { 3959 unsigned RecordLength = Record.size(); 3960 if (Record.empty()) 3961 return error("Invalid record"); 3962 if (RecordLength % 2 == 0) { 3963 // A function attachment. 3964 for (unsigned I = 0; I != RecordLength; I += 2) { 3965 auto K = MDKindMap.find(Record[I]); 3966 if (K == MDKindMap.end()) 3967 return error("Invalid ID"); 3968 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3969 if (!MD) 3970 return error("Invalid metadata attachment"); 3971 F.setMetadata(K->second, MD); 3972 } 3973 continue; 3974 } 3975 3976 // An instruction attachment. 3977 Instruction *Inst = InstructionList[Record[0]]; 3978 for (unsigned i = 1; i != RecordLength; i = i+2) { 3979 unsigned Kind = Record[i]; 3980 DenseMap<unsigned, unsigned>::iterator I = 3981 MDKindMap.find(Kind); 3982 if (I == MDKindMap.end()) 3983 return error("Invalid ID"); 3984 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3985 if (isa<LocalAsMetadata>(Node)) 3986 // Drop the attachment. This used to be legal, but there's no 3987 // upgrade path. 3988 break; 3989 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3990 if (!MD) 3991 return error("Invalid metadata attachment"); 3992 3993 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3994 MD = upgradeInstructionLoopAttachment(*MD); 3995 3996 Inst->setMetadata(I->second, MD); 3997 if (I->second == LLVMContext::MD_tbaa) { 3998 InstsWithTBAATag.push_back(Inst); 3999 continue; 4000 } 4001 } 4002 break; 4003 } 4004 } 4005 } 4006 } 4007 4008 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4009 LLVMContext &Context = PtrType->getContext(); 4010 if (!isa<PointerType>(PtrType)) 4011 return error(Context, "Load/Store operand is not a pointer type"); 4012 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4013 4014 if (ValType && ValType != ElemType) 4015 return error(Context, "Explicit load/store type does not match pointee " 4016 "type of pointer operand"); 4017 if (!PointerType::isLoadableOrStorableType(ElemType)) 4018 return error(Context, "Cannot load/store from pointer"); 4019 return std::error_code(); 4020 } 4021 4022 /// Lazily parse the specified function body block. 4023 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4024 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4025 return error("Invalid record"); 4026 4027 // Unexpected unresolved metadata when parsing function. 4028 if (MetadataList.hasFwdRefs()) 4029 return error("Invalid function metadata: incoming forward references"); 4030 4031 InstructionList.clear(); 4032 unsigned ModuleValueListSize = ValueList.size(); 4033 unsigned ModuleMetadataListSize = MetadataList.size(); 4034 4035 // Add all the function arguments to the value table. 4036 for (Argument &I : F->args()) 4037 ValueList.push_back(&I); 4038 4039 unsigned NextValueNo = ValueList.size(); 4040 BasicBlock *CurBB = nullptr; 4041 unsigned CurBBNo = 0; 4042 4043 DebugLoc LastLoc; 4044 auto getLastInstruction = [&]() -> Instruction * { 4045 if (CurBB && !CurBB->empty()) 4046 return &CurBB->back(); 4047 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4048 !FunctionBBs[CurBBNo - 1]->empty()) 4049 return &FunctionBBs[CurBBNo - 1]->back(); 4050 return nullptr; 4051 }; 4052 4053 std::vector<OperandBundleDef> OperandBundles; 4054 4055 // Read all the records. 4056 SmallVector<uint64_t, 64> Record; 4057 while (1) { 4058 BitstreamEntry Entry = Stream.advance(); 4059 4060 switch (Entry.Kind) { 4061 case BitstreamEntry::Error: 4062 return error("Malformed block"); 4063 case BitstreamEntry::EndBlock: 4064 goto OutOfRecordLoop; 4065 4066 case BitstreamEntry::SubBlock: 4067 switch (Entry.ID) { 4068 default: // Skip unknown content. 4069 if (Stream.SkipBlock()) 4070 return error("Invalid record"); 4071 break; 4072 case bitc::CONSTANTS_BLOCK_ID: 4073 if (std::error_code EC = parseConstants()) 4074 return EC; 4075 NextValueNo = ValueList.size(); 4076 break; 4077 case bitc::VALUE_SYMTAB_BLOCK_ID: 4078 if (std::error_code EC = parseValueSymbolTable()) 4079 return EC; 4080 break; 4081 case bitc::METADATA_ATTACHMENT_ID: 4082 if (std::error_code EC = parseMetadataAttachment(*F)) 4083 return EC; 4084 break; 4085 case bitc::METADATA_BLOCK_ID: 4086 if (std::error_code EC = parseMetadata()) 4087 return EC; 4088 break; 4089 case bitc::USELIST_BLOCK_ID: 4090 if (std::error_code EC = parseUseLists()) 4091 return EC; 4092 break; 4093 } 4094 continue; 4095 4096 case BitstreamEntry::Record: 4097 // The interesting case. 4098 break; 4099 } 4100 4101 // Read a record. 4102 Record.clear(); 4103 Instruction *I = nullptr; 4104 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4105 switch (BitCode) { 4106 default: // Default behavior: reject 4107 return error("Invalid value"); 4108 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4109 if (Record.size() < 1 || Record[0] == 0) 4110 return error("Invalid record"); 4111 // Create all the basic blocks for the function. 4112 FunctionBBs.resize(Record[0]); 4113 4114 // See if anything took the address of blocks in this function. 4115 auto BBFRI = BasicBlockFwdRefs.find(F); 4116 if (BBFRI == BasicBlockFwdRefs.end()) { 4117 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4118 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4119 } else { 4120 auto &BBRefs = BBFRI->second; 4121 // Check for invalid basic block references. 4122 if (BBRefs.size() > FunctionBBs.size()) 4123 return error("Invalid ID"); 4124 assert(!BBRefs.empty() && "Unexpected empty array"); 4125 assert(!BBRefs.front() && "Invalid reference to entry block"); 4126 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4127 ++I) 4128 if (I < RE && BBRefs[I]) { 4129 BBRefs[I]->insertInto(F); 4130 FunctionBBs[I] = BBRefs[I]; 4131 } else { 4132 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4133 } 4134 4135 // Erase from the table. 4136 BasicBlockFwdRefs.erase(BBFRI); 4137 } 4138 4139 CurBB = FunctionBBs[0]; 4140 continue; 4141 } 4142 4143 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4144 // This record indicates that the last instruction is at the same 4145 // location as the previous instruction with a location. 4146 I = getLastInstruction(); 4147 4148 if (!I) 4149 return error("Invalid record"); 4150 I->setDebugLoc(LastLoc); 4151 I = nullptr; 4152 continue; 4153 4154 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4155 I = getLastInstruction(); 4156 if (!I || Record.size() < 4) 4157 return error("Invalid record"); 4158 4159 unsigned Line = Record[0], Col = Record[1]; 4160 unsigned ScopeID = Record[2], IAID = Record[3]; 4161 4162 MDNode *Scope = nullptr, *IA = nullptr; 4163 if (ScopeID) { 4164 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4165 if (!Scope) 4166 return error("Invalid record"); 4167 } 4168 if (IAID) { 4169 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4170 if (!IA) 4171 return error("Invalid record"); 4172 } 4173 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4174 I->setDebugLoc(LastLoc); 4175 I = nullptr; 4176 continue; 4177 } 4178 4179 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4180 unsigned OpNum = 0; 4181 Value *LHS, *RHS; 4182 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4183 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4184 OpNum+1 > Record.size()) 4185 return error("Invalid record"); 4186 4187 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4188 if (Opc == -1) 4189 return error("Invalid record"); 4190 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4191 InstructionList.push_back(I); 4192 if (OpNum < Record.size()) { 4193 if (Opc == Instruction::Add || 4194 Opc == Instruction::Sub || 4195 Opc == Instruction::Mul || 4196 Opc == Instruction::Shl) { 4197 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4198 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4199 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4200 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4201 } else if (Opc == Instruction::SDiv || 4202 Opc == Instruction::UDiv || 4203 Opc == Instruction::LShr || 4204 Opc == Instruction::AShr) { 4205 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4206 cast<BinaryOperator>(I)->setIsExact(true); 4207 } else if (isa<FPMathOperator>(I)) { 4208 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4209 if (FMF.any()) 4210 I->setFastMathFlags(FMF); 4211 } 4212 4213 } 4214 break; 4215 } 4216 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4217 unsigned OpNum = 0; 4218 Value *Op; 4219 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4220 OpNum+2 != Record.size()) 4221 return error("Invalid record"); 4222 4223 Type *ResTy = getTypeByID(Record[OpNum]); 4224 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4225 if (Opc == -1 || !ResTy) 4226 return error("Invalid record"); 4227 Instruction *Temp = nullptr; 4228 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4229 if (Temp) { 4230 InstructionList.push_back(Temp); 4231 CurBB->getInstList().push_back(Temp); 4232 } 4233 } else { 4234 auto CastOp = (Instruction::CastOps)Opc; 4235 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4236 return error("Invalid cast"); 4237 I = CastInst::Create(CastOp, Op, ResTy); 4238 } 4239 InstructionList.push_back(I); 4240 break; 4241 } 4242 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4243 case bitc::FUNC_CODE_INST_GEP_OLD: 4244 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4245 unsigned OpNum = 0; 4246 4247 Type *Ty; 4248 bool InBounds; 4249 4250 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4251 InBounds = Record[OpNum++]; 4252 Ty = getTypeByID(Record[OpNum++]); 4253 } else { 4254 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4255 Ty = nullptr; 4256 } 4257 4258 Value *BasePtr; 4259 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4260 return error("Invalid record"); 4261 4262 if (!Ty) 4263 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4264 ->getElementType(); 4265 else if (Ty != 4266 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4267 ->getElementType()) 4268 return error( 4269 "Explicit gep type does not match pointee type of pointer operand"); 4270 4271 SmallVector<Value*, 16> GEPIdx; 4272 while (OpNum != Record.size()) { 4273 Value *Op; 4274 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4275 return error("Invalid record"); 4276 GEPIdx.push_back(Op); 4277 } 4278 4279 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4280 4281 InstructionList.push_back(I); 4282 if (InBounds) 4283 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4284 break; 4285 } 4286 4287 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4288 // EXTRACTVAL: [opty, opval, n x indices] 4289 unsigned OpNum = 0; 4290 Value *Agg; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4292 return error("Invalid record"); 4293 4294 unsigned RecSize = Record.size(); 4295 if (OpNum == RecSize) 4296 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4297 4298 SmallVector<unsigned, 4> EXTRACTVALIdx; 4299 Type *CurTy = Agg->getType(); 4300 for (; OpNum != RecSize; ++OpNum) { 4301 bool IsArray = CurTy->isArrayTy(); 4302 bool IsStruct = CurTy->isStructTy(); 4303 uint64_t Index = Record[OpNum]; 4304 4305 if (!IsStruct && !IsArray) 4306 return error("EXTRACTVAL: Invalid type"); 4307 if ((unsigned)Index != Index) 4308 return error("Invalid value"); 4309 if (IsStruct && Index >= CurTy->subtypes().size()) 4310 return error("EXTRACTVAL: Invalid struct index"); 4311 if (IsArray && Index >= CurTy->getArrayNumElements()) 4312 return error("EXTRACTVAL: Invalid array index"); 4313 EXTRACTVALIdx.push_back((unsigned)Index); 4314 4315 if (IsStruct) 4316 CurTy = CurTy->subtypes()[Index]; 4317 else 4318 CurTy = CurTy->subtypes()[0]; 4319 } 4320 4321 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4322 InstructionList.push_back(I); 4323 break; 4324 } 4325 4326 case bitc::FUNC_CODE_INST_INSERTVAL: { 4327 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4328 unsigned OpNum = 0; 4329 Value *Agg; 4330 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4331 return error("Invalid record"); 4332 Value *Val; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4334 return error("Invalid record"); 4335 4336 unsigned RecSize = Record.size(); 4337 if (OpNum == RecSize) 4338 return error("INSERTVAL: Invalid instruction with 0 indices"); 4339 4340 SmallVector<unsigned, 4> INSERTVALIdx; 4341 Type *CurTy = Agg->getType(); 4342 for (; OpNum != RecSize; ++OpNum) { 4343 bool IsArray = CurTy->isArrayTy(); 4344 bool IsStruct = CurTy->isStructTy(); 4345 uint64_t Index = Record[OpNum]; 4346 4347 if (!IsStruct && !IsArray) 4348 return error("INSERTVAL: Invalid type"); 4349 if ((unsigned)Index != Index) 4350 return error("Invalid value"); 4351 if (IsStruct && Index >= CurTy->subtypes().size()) 4352 return error("INSERTVAL: Invalid struct index"); 4353 if (IsArray && Index >= CurTy->getArrayNumElements()) 4354 return error("INSERTVAL: Invalid array index"); 4355 4356 INSERTVALIdx.push_back((unsigned)Index); 4357 if (IsStruct) 4358 CurTy = CurTy->subtypes()[Index]; 4359 else 4360 CurTy = CurTy->subtypes()[0]; 4361 } 4362 4363 if (CurTy != Val->getType()) 4364 return error("Inserted value type doesn't match aggregate type"); 4365 4366 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4367 InstructionList.push_back(I); 4368 break; 4369 } 4370 4371 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4372 // obsolete form of select 4373 // handles select i1 ... in old bitcode 4374 unsigned OpNum = 0; 4375 Value *TrueVal, *FalseVal, *Cond; 4376 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4377 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4378 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4379 return error("Invalid record"); 4380 4381 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4382 InstructionList.push_back(I); 4383 break; 4384 } 4385 4386 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4387 // new form of select 4388 // handles select i1 or select [N x i1] 4389 unsigned OpNum = 0; 4390 Value *TrueVal, *FalseVal, *Cond; 4391 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4392 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4393 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4394 return error("Invalid record"); 4395 4396 // select condition can be either i1 or [N x i1] 4397 if (VectorType* vector_type = 4398 dyn_cast<VectorType>(Cond->getType())) { 4399 // expect <n x i1> 4400 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4401 return error("Invalid type for value"); 4402 } else { 4403 // expect i1 4404 if (Cond->getType() != Type::getInt1Ty(Context)) 4405 return error("Invalid type for value"); 4406 } 4407 4408 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4409 InstructionList.push_back(I); 4410 break; 4411 } 4412 4413 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4414 unsigned OpNum = 0; 4415 Value *Vec, *Idx; 4416 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4417 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4418 return error("Invalid record"); 4419 if (!Vec->getType()->isVectorTy()) 4420 return error("Invalid type for value"); 4421 I = ExtractElementInst::Create(Vec, Idx); 4422 InstructionList.push_back(I); 4423 break; 4424 } 4425 4426 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4427 unsigned OpNum = 0; 4428 Value *Vec, *Elt, *Idx; 4429 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4430 return error("Invalid record"); 4431 if (!Vec->getType()->isVectorTy()) 4432 return error("Invalid type for value"); 4433 if (popValue(Record, OpNum, NextValueNo, 4434 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4435 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4436 return error("Invalid record"); 4437 I = InsertElementInst::Create(Vec, Elt, Idx); 4438 InstructionList.push_back(I); 4439 break; 4440 } 4441 4442 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4443 unsigned OpNum = 0; 4444 Value *Vec1, *Vec2, *Mask; 4445 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4446 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4447 return error("Invalid record"); 4448 4449 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4450 return error("Invalid record"); 4451 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4452 return error("Invalid type for value"); 4453 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4454 InstructionList.push_back(I); 4455 break; 4456 } 4457 4458 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4459 // Old form of ICmp/FCmp returning bool 4460 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4461 // both legal on vectors but had different behaviour. 4462 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4463 // FCmp/ICmp returning bool or vector of bool 4464 4465 unsigned OpNum = 0; 4466 Value *LHS, *RHS; 4467 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4468 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4469 return error("Invalid record"); 4470 4471 unsigned PredVal = Record[OpNum]; 4472 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4473 FastMathFlags FMF; 4474 if (IsFP && Record.size() > OpNum+1) 4475 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4476 4477 if (OpNum+1 != Record.size()) 4478 return error("Invalid record"); 4479 4480 if (LHS->getType()->isFPOrFPVectorTy()) 4481 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4482 else 4483 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4484 4485 if (FMF.any()) 4486 I->setFastMathFlags(FMF); 4487 InstructionList.push_back(I); 4488 break; 4489 } 4490 4491 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4492 { 4493 unsigned Size = Record.size(); 4494 if (Size == 0) { 4495 I = ReturnInst::Create(Context); 4496 InstructionList.push_back(I); 4497 break; 4498 } 4499 4500 unsigned OpNum = 0; 4501 Value *Op = nullptr; 4502 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4503 return error("Invalid record"); 4504 if (OpNum != Record.size()) 4505 return error("Invalid record"); 4506 4507 I = ReturnInst::Create(Context, Op); 4508 InstructionList.push_back(I); 4509 break; 4510 } 4511 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4512 if (Record.size() != 1 && Record.size() != 3) 4513 return error("Invalid record"); 4514 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4515 if (!TrueDest) 4516 return error("Invalid record"); 4517 4518 if (Record.size() == 1) { 4519 I = BranchInst::Create(TrueDest); 4520 InstructionList.push_back(I); 4521 } 4522 else { 4523 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4524 Value *Cond = getValue(Record, 2, NextValueNo, 4525 Type::getInt1Ty(Context)); 4526 if (!FalseDest || !Cond) 4527 return error("Invalid record"); 4528 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4529 InstructionList.push_back(I); 4530 } 4531 break; 4532 } 4533 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4534 if (Record.size() != 1 && Record.size() != 2) 4535 return error("Invalid record"); 4536 unsigned Idx = 0; 4537 Value *CleanupPad = 4538 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4539 if (!CleanupPad) 4540 return error("Invalid record"); 4541 BasicBlock *UnwindDest = nullptr; 4542 if (Record.size() == 2) { 4543 UnwindDest = getBasicBlock(Record[Idx++]); 4544 if (!UnwindDest) 4545 return error("Invalid record"); 4546 } 4547 4548 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4549 InstructionList.push_back(I); 4550 break; 4551 } 4552 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4553 if (Record.size() != 2) 4554 return error("Invalid record"); 4555 unsigned Idx = 0; 4556 Value *CatchPad = 4557 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4558 if (!CatchPad) 4559 return error("Invalid record"); 4560 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4561 if (!BB) 4562 return error("Invalid record"); 4563 4564 I = CatchReturnInst::Create(CatchPad, BB); 4565 InstructionList.push_back(I); 4566 break; 4567 } 4568 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4569 // We must have, at minimum, the outer scope and the number of arguments. 4570 if (Record.size() < 2) 4571 return error("Invalid record"); 4572 4573 unsigned Idx = 0; 4574 4575 Value *ParentPad = 4576 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4577 4578 unsigned NumHandlers = Record[Idx++]; 4579 4580 SmallVector<BasicBlock *, 2> Handlers; 4581 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4582 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4583 if (!BB) 4584 return error("Invalid record"); 4585 Handlers.push_back(BB); 4586 } 4587 4588 BasicBlock *UnwindDest = nullptr; 4589 if (Idx + 1 == Record.size()) { 4590 UnwindDest = getBasicBlock(Record[Idx++]); 4591 if (!UnwindDest) 4592 return error("Invalid record"); 4593 } 4594 4595 if (Record.size() != Idx) 4596 return error("Invalid record"); 4597 4598 auto *CatchSwitch = 4599 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4600 for (BasicBlock *Handler : Handlers) 4601 CatchSwitch->addHandler(Handler); 4602 I = CatchSwitch; 4603 InstructionList.push_back(I); 4604 break; 4605 } 4606 case bitc::FUNC_CODE_INST_CATCHPAD: 4607 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4608 // We must have, at minimum, the outer scope and the number of arguments. 4609 if (Record.size() < 2) 4610 return error("Invalid record"); 4611 4612 unsigned Idx = 0; 4613 4614 Value *ParentPad = 4615 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4616 4617 unsigned NumArgOperands = Record[Idx++]; 4618 4619 SmallVector<Value *, 2> Args; 4620 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4621 Value *Val; 4622 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4623 return error("Invalid record"); 4624 Args.push_back(Val); 4625 } 4626 4627 if (Record.size() != Idx) 4628 return error("Invalid record"); 4629 4630 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4631 I = CleanupPadInst::Create(ParentPad, Args); 4632 else 4633 I = CatchPadInst::Create(ParentPad, Args); 4634 InstructionList.push_back(I); 4635 break; 4636 } 4637 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4638 // Check magic 4639 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4640 // "New" SwitchInst format with case ranges. The changes to write this 4641 // format were reverted but we still recognize bitcode that uses it. 4642 // Hopefully someday we will have support for case ranges and can use 4643 // this format again. 4644 4645 Type *OpTy = getTypeByID(Record[1]); 4646 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4647 4648 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4649 BasicBlock *Default = getBasicBlock(Record[3]); 4650 if (!OpTy || !Cond || !Default) 4651 return error("Invalid record"); 4652 4653 unsigned NumCases = Record[4]; 4654 4655 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4656 InstructionList.push_back(SI); 4657 4658 unsigned CurIdx = 5; 4659 for (unsigned i = 0; i != NumCases; ++i) { 4660 SmallVector<ConstantInt*, 1> CaseVals; 4661 unsigned NumItems = Record[CurIdx++]; 4662 for (unsigned ci = 0; ci != NumItems; ++ci) { 4663 bool isSingleNumber = Record[CurIdx++]; 4664 4665 APInt Low; 4666 unsigned ActiveWords = 1; 4667 if (ValueBitWidth > 64) 4668 ActiveWords = Record[CurIdx++]; 4669 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4670 ValueBitWidth); 4671 CurIdx += ActiveWords; 4672 4673 if (!isSingleNumber) { 4674 ActiveWords = 1; 4675 if (ValueBitWidth > 64) 4676 ActiveWords = Record[CurIdx++]; 4677 APInt High = readWideAPInt( 4678 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4679 CurIdx += ActiveWords; 4680 4681 // FIXME: It is not clear whether values in the range should be 4682 // compared as signed or unsigned values. The partially 4683 // implemented changes that used this format in the past used 4684 // unsigned comparisons. 4685 for ( ; Low.ule(High); ++Low) 4686 CaseVals.push_back(ConstantInt::get(Context, Low)); 4687 } else 4688 CaseVals.push_back(ConstantInt::get(Context, Low)); 4689 } 4690 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4691 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4692 cve = CaseVals.end(); cvi != cve; ++cvi) 4693 SI->addCase(*cvi, DestBB); 4694 } 4695 I = SI; 4696 break; 4697 } 4698 4699 // Old SwitchInst format without case ranges. 4700 4701 if (Record.size() < 3 || (Record.size() & 1) == 0) 4702 return error("Invalid record"); 4703 Type *OpTy = getTypeByID(Record[0]); 4704 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4705 BasicBlock *Default = getBasicBlock(Record[2]); 4706 if (!OpTy || !Cond || !Default) 4707 return error("Invalid record"); 4708 unsigned NumCases = (Record.size()-3)/2; 4709 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4710 InstructionList.push_back(SI); 4711 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4712 ConstantInt *CaseVal = 4713 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4714 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4715 if (!CaseVal || !DestBB) { 4716 delete SI; 4717 return error("Invalid record"); 4718 } 4719 SI->addCase(CaseVal, DestBB); 4720 } 4721 I = SI; 4722 break; 4723 } 4724 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4725 if (Record.size() < 2) 4726 return error("Invalid record"); 4727 Type *OpTy = getTypeByID(Record[0]); 4728 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4729 if (!OpTy || !Address) 4730 return error("Invalid record"); 4731 unsigned NumDests = Record.size()-2; 4732 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4733 InstructionList.push_back(IBI); 4734 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4735 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4736 IBI->addDestination(DestBB); 4737 } else { 4738 delete IBI; 4739 return error("Invalid record"); 4740 } 4741 } 4742 I = IBI; 4743 break; 4744 } 4745 4746 case bitc::FUNC_CODE_INST_INVOKE: { 4747 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4748 if (Record.size() < 4) 4749 return error("Invalid record"); 4750 unsigned OpNum = 0; 4751 AttributeSet PAL = getAttributes(Record[OpNum++]); 4752 unsigned CCInfo = Record[OpNum++]; 4753 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4754 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4755 4756 FunctionType *FTy = nullptr; 4757 if (CCInfo >> 13 & 1 && 4758 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4759 return error("Explicit invoke type is not a function type"); 4760 4761 Value *Callee; 4762 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4763 return error("Invalid record"); 4764 4765 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4766 if (!CalleeTy) 4767 return error("Callee is not a pointer"); 4768 if (!FTy) { 4769 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4770 if (!FTy) 4771 return error("Callee is not of pointer to function type"); 4772 } else if (CalleeTy->getElementType() != FTy) 4773 return error("Explicit invoke type does not match pointee type of " 4774 "callee operand"); 4775 if (Record.size() < FTy->getNumParams() + OpNum) 4776 return error("Insufficient operands to call"); 4777 4778 SmallVector<Value*, 16> Ops; 4779 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4780 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4781 FTy->getParamType(i))); 4782 if (!Ops.back()) 4783 return error("Invalid record"); 4784 } 4785 4786 if (!FTy->isVarArg()) { 4787 if (Record.size() != OpNum) 4788 return error("Invalid record"); 4789 } else { 4790 // Read type/value pairs for varargs params. 4791 while (OpNum != Record.size()) { 4792 Value *Op; 4793 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4794 return error("Invalid record"); 4795 Ops.push_back(Op); 4796 } 4797 } 4798 4799 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4800 OperandBundles.clear(); 4801 InstructionList.push_back(I); 4802 cast<InvokeInst>(I)->setCallingConv( 4803 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4804 cast<InvokeInst>(I)->setAttributes(PAL); 4805 break; 4806 } 4807 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4808 unsigned Idx = 0; 4809 Value *Val = nullptr; 4810 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4811 return error("Invalid record"); 4812 I = ResumeInst::Create(Val); 4813 InstructionList.push_back(I); 4814 break; 4815 } 4816 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4817 I = new UnreachableInst(Context); 4818 InstructionList.push_back(I); 4819 break; 4820 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4821 if (Record.size() < 1 || ((Record.size()-1)&1)) 4822 return error("Invalid record"); 4823 Type *Ty = getTypeByID(Record[0]); 4824 if (!Ty) 4825 return error("Invalid record"); 4826 4827 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4828 InstructionList.push_back(PN); 4829 4830 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4831 Value *V; 4832 // With the new function encoding, it is possible that operands have 4833 // negative IDs (for forward references). Use a signed VBR 4834 // representation to keep the encoding small. 4835 if (UseRelativeIDs) 4836 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4837 else 4838 V = getValue(Record, 1+i, NextValueNo, Ty); 4839 BasicBlock *BB = getBasicBlock(Record[2+i]); 4840 if (!V || !BB) 4841 return error("Invalid record"); 4842 PN->addIncoming(V, BB); 4843 } 4844 I = PN; 4845 break; 4846 } 4847 4848 case bitc::FUNC_CODE_INST_LANDINGPAD: 4849 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4850 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4851 unsigned Idx = 0; 4852 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4853 if (Record.size() < 3) 4854 return error("Invalid record"); 4855 } else { 4856 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4857 if (Record.size() < 4) 4858 return error("Invalid record"); 4859 } 4860 Type *Ty = getTypeByID(Record[Idx++]); 4861 if (!Ty) 4862 return error("Invalid record"); 4863 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4864 Value *PersFn = nullptr; 4865 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4866 return error("Invalid record"); 4867 4868 if (!F->hasPersonalityFn()) 4869 F->setPersonalityFn(cast<Constant>(PersFn)); 4870 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4871 return error("Personality function mismatch"); 4872 } 4873 4874 bool IsCleanup = !!Record[Idx++]; 4875 unsigned NumClauses = Record[Idx++]; 4876 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4877 LP->setCleanup(IsCleanup); 4878 for (unsigned J = 0; J != NumClauses; ++J) { 4879 LandingPadInst::ClauseType CT = 4880 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4881 Value *Val; 4882 4883 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4884 delete LP; 4885 return error("Invalid record"); 4886 } 4887 4888 assert((CT != LandingPadInst::Catch || 4889 !isa<ArrayType>(Val->getType())) && 4890 "Catch clause has a invalid type!"); 4891 assert((CT != LandingPadInst::Filter || 4892 isa<ArrayType>(Val->getType())) && 4893 "Filter clause has invalid type!"); 4894 LP->addClause(cast<Constant>(Val)); 4895 } 4896 4897 I = LP; 4898 InstructionList.push_back(I); 4899 break; 4900 } 4901 4902 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4903 if (Record.size() != 4) 4904 return error("Invalid record"); 4905 uint64_t AlignRecord = Record[3]; 4906 const uint64_t InAllocaMask = uint64_t(1) << 5; 4907 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4908 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4909 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4910 SwiftErrorMask; 4911 bool InAlloca = AlignRecord & InAllocaMask; 4912 bool SwiftError = AlignRecord & SwiftErrorMask; 4913 Type *Ty = getTypeByID(Record[0]); 4914 if ((AlignRecord & ExplicitTypeMask) == 0) { 4915 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4916 if (!PTy) 4917 return error("Old-style alloca with a non-pointer type"); 4918 Ty = PTy->getElementType(); 4919 } 4920 Type *OpTy = getTypeByID(Record[1]); 4921 Value *Size = getFnValueByID(Record[2], OpTy); 4922 unsigned Align; 4923 if (std::error_code EC = 4924 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4925 return EC; 4926 } 4927 if (!Ty || !Size) 4928 return error("Invalid record"); 4929 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4930 AI->setUsedWithInAlloca(InAlloca); 4931 AI->setSwiftError(SwiftError); 4932 I = AI; 4933 InstructionList.push_back(I); 4934 break; 4935 } 4936 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4937 unsigned OpNum = 0; 4938 Value *Op; 4939 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4940 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4941 return error("Invalid record"); 4942 4943 Type *Ty = nullptr; 4944 if (OpNum + 3 == Record.size()) 4945 Ty = getTypeByID(Record[OpNum++]); 4946 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4947 return EC; 4948 if (!Ty) 4949 Ty = cast<PointerType>(Op->getType())->getElementType(); 4950 4951 unsigned Align; 4952 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4953 return EC; 4954 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4955 4956 InstructionList.push_back(I); 4957 break; 4958 } 4959 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4960 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4961 unsigned OpNum = 0; 4962 Value *Op; 4963 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4964 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4965 return error("Invalid record"); 4966 4967 Type *Ty = nullptr; 4968 if (OpNum + 5 == Record.size()) 4969 Ty = getTypeByID(Record[OpNum++]); 4970 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4971 return EC; 4972 if (!Ty) 4973 Ty = cast<PointerType>(Op->getType())->getElementType(); 4974 4975 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4976 if (Ordering == AtomicOrdering::NotAtomic || 4977 Ordering == AtomicOrdering::Release || 4978 Ordering == AtomicOrdering::AcquireRelease) 4979 return error("Invalid record"); 4980 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4981 return error("Invalid record"); 4982 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4983 4984 unsigned Align; 4985 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4986 return EC; 4987 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4988 4989 InstructionList.push_back(I); 4990 break; 4991 } 4992 case bitc::FUNC_CODE_INST_STORE: 4993 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4994 unsigned OpNum = 0; 4995 Value *Val, *Ptr; 4996 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4997 (BitCode == bitc::FUNC_CODE_INST_STORE 4998 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4999 : popValue(Record, OpNum, NextValueNo, 5000 cast<PointerType>(Ptr->getType())->getElementType(), 5001 Val)) || 5002 OpNum + 2 != Record.size()) 5003 return error("Invalid record"); 5004 5005 if (std::error_code EC = 5006 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5007 return EC; 5008 unsigned Align; 5009 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5010 return EC; 5011 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5012 InstructionList.push_back(I); 5013 break; 5014 } 5015 case bitc::FUNC_CODE_INST_STOREATOMIC: 5016 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5017 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5018 unsigned OpNum = 0; 5019 Value *Val, *Ptr; 5020 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5021 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5022 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5023 : popValue(Record, OpNum, NextValueNo, 5024 cast<PointerType>(Ptr->getType())->getElementType(), 5025 Val)) || 5026 OpNum + 4 != Record.size()) 5027 return error("Invalid record"); 5028 5029 if (std::error_code EC = 5030 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5031 return EC; 5032 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5033 if (Ordering == AtomicOrdering::NotAtomic || 5034 Ordering == AtomicOrdering::Acquire || 5035 Ordering == AtomicOrdering::AcquireRelease) 5036 return error("Invalid record"); 5037 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5038 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5039 return error("Invalid record"); 5040 5041 unsigned Align; 5042 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5043 return EC; 5044 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5045 InstructionList.push_back(I); 5046 break; 5047 } 5048 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5049 case bitc::FUNC_CODE_INST_CMPXCHG: { 5050 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5051 // failureordering?, isweak?] 5052 unsigned OpNum = 0; 5053 Value *Ptr, *Cmp, *New; 5054 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5055 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5056 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5057 : popValue(Record, OpNum, NextValueNo, 5058 cast<PointerType>(Ptr->getType())->getElementType(), 5059 Cmp)) || 5060 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5061 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5062 return error("Invalid record"); 5063 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5064 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5065 SuccessOrdering == AtomicOrdering::Unordered) 5066 return error("Invalid record"); 5067 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5068 5069 if (std::error_code EC = 5070 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5071 return EC; 5072 AtomicOrdering FailureOrdering; 5073 if (Record.size() < 7) 5074 FailureOrdering = 5075 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5076 else 5077 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5078 5079 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5080 SynchScope); 5081 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5082 5083 if (Record.size() < 8) { 5084 // Before weak cmpxchgs existed, the instruction simply returned the 5085 // value loaded from memory, so bitcode files from that era will be 5086 // expecting the first component of a modern cmpxchg. 5087 CurBB->getInstList().push_back(I); 5088 I = ExtractValueInst::Create(I, 0); 5089 } else { 5090 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5091 } 5092 5093 InstructionList.push_back(I); 5094 break; 5095 } 5096 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5097 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5098 unsigned OpNum = 0; 5099 Value *Ptr, *Val; 5100 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5101 popValue(Record, OpNum, NextValueNo, 5102 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5103 OpNum+4 != Record.size()) 5104 return error("Invalid record"); 5105 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5106 if (Operation < AtomicRMWInst::FIRST_BINOP || 5107 Operation > AtomicRMWInst::LAST_BINOP) 5108 return error("Invalid record"); 5109 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5110 if (Ordering == AtomicOrdering::NotAtomic || 5111 Ordering == AtomicOrdering::Unordered) 5112 return error("Invalid record"); 5113 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5114 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5115 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5116 InstructionList.push_back(I); 5117 break; 5118 } 5119 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5120 if (2 != Record.size()) 5121 return error("Invalid record"); 5122 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5123 if (Ordering == AtomicOrdering::NotAtomic || 5124 Ordering == AtomicOrdering::Unordered || 5125 Ordering == AtomicOrdering::Monotonic) 5126 return error("Invalid record"); 5127 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5128 I = new FenceInst(Context, Ordering, SynchScope); 5129 InstructionList.push_back(I); 5130 break; 5131 } 5132 case bitc::FUNC_CODE_INST_CALL: { 5133 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5134 if (Record.size() < 3) 5135 return error("Invalid record"); 5136 5137 unsigned OpNum = 0; 5138 AttributeSet PAL = getAttributes(Record[OpNum++]); 5139 unsigned CCInfo = Record[OpNum++]; 5140 5141 FastMathFlags FMF; 5142 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5143 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5144 if (!FMF.any()) 5145 return error("Fast math flags indicator set for call with no FMF"); 5146 } 5147 5148 FunctionType *FTy = nullptr; 5149 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5150 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5151 return error("Explicit call type is not a function type"); 5152 5153 Value *Callee; 5154 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5155 return error("Invalid record"); 5156 5157 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5158 if (!OpTy) 5159 return error("Callee is not a pointer type"); 5160 if (!FTy) { 5161 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5162 if (!FTy) 5163 return error("Callee is not of pointer to function type"); 5164 } else if (OpTy->getElementType() != FTy) 5165 return error("Explicit call type does not match pointee type of " 5166 "callee operand"); 5167 if (Record.size() < FTy->getNumParams() + OpNum) 5168 return error("Insufficient operands to call"); 5169 5170 SmallVector<Value*, 16> Args; 5171 // Read the fixed params. 5172 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5173 if (FTy->getParamType(i)->isLabelTy()) 5174 Args.push_back(getBasicBlock(Record[OpNum])); 5175 else 5176 Args.push_back(getValue(Record, OpNum, NextValueNo, 5177 FTy->getParamType(i))); 5178 if (!Args.back()) 5179 return error("Invalid record"); 5180 } 5181 5182 // Read type/value pairs for varargs params. 5183 if (!FTy->isVarArg()) { 5184 if (OpNum != Record.size()) 5185 return error("Invalid record"); 5186 } else { 5187 while (OpNum != Record.size()) { 5188 Value *Op; 5189 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5190 return error("Invalid record"); 5191 Args.push_back(Op); 5192 } 5193 } 5194 5195 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5196 OperandBundles.clear(); 5197 InstructionList.push_back(I); 5198 cast<CallInst>(I)->setCallingConv( 5199 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5200 CallInst::TailCallKind TCK = CallInst::TCK_None; 5201 if (CCInfo & 1 << bitc::CALL_TAIL) 5202 TCK = CallInst::TCK_Tail; 5203 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5204 TCK = CallInst::TCK_MustTail; 5205 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5206 TCK = CallInst::TCK_NoTail; 5207 cast<CallInst>(I)->setTailCallKind(TCK); 5208 cast<CallInst>(I)->setAttributes(PAL); 5209 if (FMF.any()) { 5210 if (!isa<FPMathOperator>(I)) 5211 return error("Fast-math-flags specified for call without " 5212 "floating-point scalar or vector return type"); 5213 I->setFastMathFlags(FMF); 5214 } 5215 break; 5216 } 5217 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5218 if (Record.size() < 3) 5219 return error("Invalid record"); 5220 Type *OpTy = getTypeByID(Record[0]); 5221 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5222 Type *ResTy = getTypeByID(Record[2]); 5223 if (!OpTy || !Op || !ResTy) 5224 return error("Invalid record"); 5225 I = new VAArgInst(Op, ResTy); 5226 InstructionList.push_back(I); 5227 break; 5228 } 5229 5230 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5231 // A call or an invoke can be optionally prefixed with some variable 5232 // number of operand bundle blocks. These blocks are read into 5233 // OperandBundles and consumed at the next call or invoke instruction. 5234 5235 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5236 return error("Invalid record"); 5237 5238 std::vector<Value *> Inputs; 5239 5240 unsigned OpNum = 1; 5241 while (OpNum != Record.size()) { 5242 Value *Op; 5243 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5244 return error("Invalid record"); 5245 Inputs.push_back(Op); 5246 } 5247 5248 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5249 continue; 5250 } 5251 } 5252 5253 // Add instruction to end of current BB. If there is no current BB, reject 5254 // this file. 5255 if (!CurBB) { 5256 delete I; 5257 return error("Invalid instruction with no BB"); 5258 } 5259 if (!OperandBundles.empty()) { 5260 delete I; 5261 return error("Operand bundles found with no consumer"); 5262 } 5263 CurBB->getInstList().push_back(I); 5264 5265 // If this was a terminator instruction, move to the next block. 5266 if (isa<TerminatorInst>(I)) { 5267 ++CurBBNo; 5268 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5269 } 5270 5271 // Non-void values get registered in the value table for future use. 5272 if (I && !I->getType()->isVoidTy()) 5273 ValueList.assignValue(I, NextValueNo++); 5274 } 5275 5276 OutOfRecordLoop: 5277 5278 if (!OperandBundles.empty()) 5279 return error("Operand bundles found with no consumer"); 5280 5281 // Check the function list for unresolved values. 5282 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5283 if (!A->getParent()) { 5284 // We found at least one unresolved value. Nuke them all to avoid leaks. 5285 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5286 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5287 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5288 delete A; 5289 } 5290 } 5291 return error("Never resolved value found in function"); 5292 } 5293 } 5294 5295 // Unexpected unresolved metadata about to be dropped. 5296 if (MetadataList.hasFwdRefs()) 5297 return error("Invalid function metadata: outgoing forward refs"); 5298 5299 // Trim the value list down to the size it was before we parsed this function. 5300 ValueList.shrinkTo(ModuleValueListSize); 5301 MetadataList.shrinkTo(ModuleMetadataListSize); 5302 std::vector<BasicBlock*>().swap(FunctionBBs); 5303 return std::error_code(); 5304 } 5305 5306 /// Find the function body in the bitcode stream 5307 std::error_code BitcodeReader::findFunctionInStream( 5308 Function *F, 5309 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5310 while (DeferredFunctionInfoIterator->second == 0) { 5311 // This is the fallback handling for the old format bitcode that 5312 // didn't contain the function index in the VST, or when we have 5313 // an anonymous function which would not have a VST entry. 5314 // Assert that we have one of those two cases. 5315 assert(VSTOffset == 0 || !F->hasName()); 5316 // Parse the next body in the stream and set its position in the 5317 // DeferredFunctionInfo map. 5318 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5319 return EC; 5320 } 5321 return std::error_code(); 5322 } 5323 5324 //===----------------------------------------------------------------------===// 5325 // GVMaterializer implementation 5326 //===----------------------------------------------------------------------===// 5327 5328 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5329 5330 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5331 if (std::error_code EC = materializeMetadata()) 5332 return EC; 5333 5334 Function *F = dyn_cast<Function>(GV); 5335 // If it's not a function or is already material, ignore the request. 5336 if (!F || !F->isMaterializable()) 5337 return std::error_code(); 5338 5339 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5340 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5341 // If its position is recorded as 0, its body is somewhere in the stream 5342 // but we haven't seen it yet. 5343 if (DFII->second == 0) 5344 if (std::error_code EC = findFunctionInStream(F, DFII)) 5345 return EC; 5346 5347 // Move the bit stream to the saved position of the deferred function body. 5348 Stream.JumpToBit(DFII->second); 5349 5350 if (std::error_code EC = parseFunctionBody(F)) 5351 return EC; 5352 F->setIsMaterializable(false); 5353 5354 if (StripDebugInfo) 5355 stripDebugInfo(*F); 5356 5357 // Upgrade any old intrinsic calls in the function. 5358 for (auto &I : UpgradedIntrinsics) { 5359 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5360 UI != UE;) { 5361 User *U = *UI; 5362 ++UI; 5363 if (CallInst *CI = dyn_cast<CallInst>(U)) 5364 UpgradeIntrinsicCall(CI, I.second); 5365 } 5366 } 5367 5368 // Finish fn->subprogram upgrade for materialized functions. 5369 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5370 F->setSubprogram(SP); 5371 5372 // Bring in any functions that this function forward-referenced via 5373 // blockaddresses. 5374 return materializeForwardReferencedFunctions(); 5375 } 5376 5377 std::error_code BitcodeReader::materializeModule() { 5378 if (std::error_code EC = materializeMetadata()) 5379 return EC; 5380 5381 // Promise to materialize all forward references. 5382 WillMaterializeAllForwardRefs = true; 5383 5384 // Iterate over the module, deserializing any functions that are still on 5385 // disk. 5386 for (Function &F : *TheModule) { 5387 if (std::error_code EC = materialize(&F)) 5388 return EC; 5389 } 5390 // At this point, if there are any function bodies, parse the rest of 5391 // the bits in the module past the last function block we have recorded 5392 // through either lazy scanning or the VST. 5393 if (LastFunctionBlockBit || NextUnreadBit) 5394 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5395 : NextUnreadBit); 5396 5397 // Check that all block address forward references got resolved (as we 5398 // promised above). 5399 if (!BasicBlockFwdRefs.empty()) 5400 return error("Never resolved function from blockaddress"); 5401 5402 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5403 // to prevent this instructions with TBAA tags should be upgraded first. 5404 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5405 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5406 5407 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5408 // delete the old functions to clean up. We can't do this unless the entire 5409 // module is materialized because there could always be another function body 5410 // with calls to the old function. 5411 for (auto &I : UpgradedIntrinsics) { 5412 for (auto *U : I.first->users()) { 5413 if (CallInst *CI = dyn_cast<CallInst>(U)) 5414 UpgradeIntrinsicCall(CI, I.second); 5415 } 5416 if (!I.first->use_empty()) 5417 I.first->replaceAllUsesWith(I.second); 5418 I.first->eraseFromParent(); 5419 } 5420 UpgradedIntrinsics.clear(); 5421 5422 UpgradeDebugInfo(*TheModule); 5423 return std::error_code(); 5424 } 5425 5426 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5427 return IdentifiedStructTypes; 5428 } 5429 5430 std::error_code 5431 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5432 if (Streamer) 5433 return initLazyStream(std::move(Streamer)); 5434 return initStreamFromBuffer(); 5435 } 5436 5437 std::error_code BitcodeReader::initStreamFromBuffer() { 5438 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5439 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5440 5441 if (Buffer->getBufferSize() & 3) 5442 return error("Invalid bitcode signature"); 5443 5444 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5445 // The magic number is 0x0B17C0DE stored in little endian. 5446 if (isBitcodeWrapper(BufPtr, BufEnd)) 5447 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5448 return error("Invalid bitcode wrapper header"); 5449 5450 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5451 Stream.init(&*StreamFile); 5452 5453 return std::error_code(); 5454 } 5455 5456 std::error_code 5457 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5458 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5459 // see it. 5460 auto OwnedBytes = 5461 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5462 StreamingMemoryObject &Bytes = *OwnedBytes; 5463 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5464 Stream.init(&*StreamFile); 5465 5466 unsigned char buf[16]; 5467 if (Bytes.readBytes(buf, 16, 0) != 16) 5468 return error("Invalid bitcode signature"); 5469 5470 if (!isBitcode(buf, buf + 16)) 5471 return error("Invalid bitcode signature"); 5472 5473 if (isBitcodeWrapper(buf, buf + 4)) { 5474 const unsigned char *bitcodeStart = buf; 5475 const unsigned char *bitcodeEnd = buf + 16; 5476 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5477 Bytes.dropLeadingBytes(bitcodeStart - buf); 5478 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5479 } 5480 return std::error_code(); 5481 } 5482 5483 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5484 const Twine &Message) { 5485 return ::error(DiagnosticHandler, make_error_code(E), Message); 5486 } 5487 5488 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5489 return ::error(DiagnosticHandler, 5490 make_error_code(BitcodeError::CorruptedBitcode), Message); 5491 } 5492 5493 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5494 return ::error(DiagnosticHandler, make_error_code(E)); 5495 } 5496 5497 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5498 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5499 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5500 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5501 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5502 5503 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5504 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5505 bool CheckGlobalValSummaryPresenceOnly) 5506 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5507 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5508 5509 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5510 5511 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5512 5513 GlobalValue::GUID 5514 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5515 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5516 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5517 return VGI->second; 5518 } 5519 5520 GlobalValueInfo * 5521 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5522 auto I = SummaryOffsetToInfoMap.find(Offset); 5523 assert(I != SummaryOffsetToInfoMap.end()); 5524 return I->second; 5525 } 5526 5527 // Specialized value symbol table parser used when reading module index 5528 // blocks where we don't actually create global values. 5529 // At the end of this routine the module index is populated with a map 5530 // from global value name to GlobalValueInfo. The global value info contains 5531 // the function block's bitcode offset (if applicable), or the offset into the 5532 // summary section for the combined index. 5533 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5534 uint64_t Offset, 5535 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5536 assert(Offset > 0 && "Expected non-zero VST offset"); 5537 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5538 5539 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5540 return error("Invalid record"); 5541 5542 SmallVector<uint64_t, 64> Record; 5543 5544 // Read all the records for this value table. 5545 SmallString<128> ValueName; 5546 while (1) { 5547 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5548 5549 switch (Entry.Kind) { 5550 case BitstreamEntry::SubBlock: // Handled for us already. 5551 case BitstreamEntry::Error: 5552 return error("Malformed block"); 5553 case BitstreamEntry::EndBlock: 5554 // Done parsing VST, jump back to wherever we came from. 5555 Stream.JumpToBit(CurrentBit); 5556 return std::error_code(); 5557 case BitstreamEntry::Record: 5558 // The interesting case. 5559 break; 5560 } 5561 5562 // Read a record. 5563 Record.clear(); 5564 switch (Stream.readRecord(Entry.ID, Record)) { 5565 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5566 break; 5567 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5568 if (convertToString(Record, 1, ValueName)) 5569 return error("Invalid record"); 5570 unsigned ValueID = Record[0]; 5571 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5572 llvm::make_unique<GlobalValueInfo>(); 5573 assert(!SourceFileName.empty()); 5574 auto VLI = ValueIdToLinkageMap.find(ValueID); 5575 assert(VLI != ValueIdToLinkageMap.end() && 5576 "No linkage found for VST entry?"); 5577 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5578 ValueName, VLI->second, SourceFileName); 5579 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5580 if (PrintSummaryGUIDs) 5581 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5582 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5583 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5584 ValueName.clear(); 5585 break; 5586 } 5587 case bitc::VST_CODE_FNENTRY: { 5588 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5589 if (convertToString(Record, 2, ValueName)) 5590 return error("Invalid record"); 5591 unsigned ValueID = Record[0]; 5592 uint64_t FuncOffset = Record[1]; 5593 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5594 std::unique_ptr<GlobalValueInfo> FuncInfo = 5595 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5596 assert(!SourceFileName.empty()); 5597 auto VLI = ValueIdToLinkageMap.find(ValueID); 5598 assert(VLI != ValueIdToLinkageMap.end() && 5599 "No linkage found for VST entry?"); 5600 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5601 ValueName, VLI->second, SourceFileName); 5602 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5603 if (PrintSummaryGUIDs) 5604 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5605 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5606 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5607 5608 ValueName.clear(); 5609 break; 5610 } 5611 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5612 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5613 unsigned ValueID = Record[0]; 5614 uint64_t GlobalValSummaryOffset = Record[1]; 5615 GlobalValue::GUID GlobalValGUID = Record[2]; 5616 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5617 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5618 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5619 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5620 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5621 break; 5622 } 5623 case bitc::VST_CODE_COMBINED_ENTRY: { 5624 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5625 unsigned ValueID = Record[0]; 5626 GlobalValue::GUID RefGUID = Record[1]; 5627 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5628 break; 5629 } 5630 } 5631 } 5632 } 5633 5634 // Parse just the blocks needed for building the index out of the module. 5635 // At the end of this routine the module Index is populated with a map 5636 // from global value name to GlobalValueInfo. The global value info contains 5637 // either the parsed summary information (when parsing summaries 5638 // eagerly), or just to the summary record's offset 5639 // if parsing lazily (IsLazy). 5640 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5641 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5642 return error("Invalid record"); 5643 5644 SmallVector<uint64_t, 64> Record; 5645 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5646 unsigned ValueId = 0; 5647 5648 // Read the index for this module. 5649 while (1) { 5650 BitstreamEntry Entry = Stream.advance(); 5651 5652 switch (Entry.Kind) { 5653 case BitstreamEntry::Error: 5654 return error("Malformed block"); 5655 case BitstreamEntry::EndBlock: 5656 return std::error_code(); 5657 5658 case BitstreamEntry::SubBlock: 5659 if (CheckGlobalValSummaryPresenceOnly) { 5660 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5661 SeenGlobalValSummary = true; 5662 // No need to parse the rest since we found the summary. 5663 return std::error_code(); 5664 } 5665 if (Stream.SkipBlock()) 5666 return error("Invalid record"); 5667 continue; 5668 } 5669 switch (Entry.ID) { 5670 default: // Skip unknown content. 5671 if (Stream.SkipBlock()) 5672 return error("Invalid record"); 5673 break; 5674 case bitc::BLOCKINFO_BLOCK_ID: 5675 // Need to parse these to get abbrev ids (e.g. for VST) 5676 if (Stream.ReadBlockInfoBlock()) 5677 return error("Malformed block"); 5678 break; 5679 case bitc::VALUE_SYMTAB_BLOCK_ID: 5680 // Should have been parsed earlier via VSTOffset, unless there 5681 // is no summary section. 5682 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5683 !SeenGlobalValSummary) && 5684 "Expected early VST parse via VSTOffset record"); 5685 if (Stream.SkipBlock()) 5686 return error("Invalid record"); 5687 break; 5688 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5689 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5690 assert(!SeenValueSymbolTable && 5691 "Already read VST when parsing summary block?"); 5692 if (std::error_code EC = 5693 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5694 return EC; 5695 SeenValueSymbolTable = true; 5696 SeenGlobalValSummary = true; 5697 if (IsLazy) { 5698 // Lazy parsing of summary info, skip it. 5699 if (Stream.SkipBlock()) 5700 return error("Invalid record"); 5701 } else if (std::error_code EC = parseEntireSummary()) 5702 return EC; 5703 break; 5704 case bitc::MODULE_STRTAB_BLOCK_ID: 5705 if (std::error_code EC = parseModuleStringTable()) 5706 return EC; 5707 break; 5708 } 5709 continue; 5710 5711 case BitstreamEntry::Record: { 5712 Record.clear(); 5713 auto BitCode = Stream.readRecord(Entry.ID, Record); 5714 switch (BitCode) { 5715 default: 5716 break; // Default behavior, ignore unknown content. 5717 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5718 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5719 SmallString<128> ValueName; 5720 if (convertToString(Record, 0, ValueName)) 5721 return error("Invalid record"); 5722 SourceFileName = ValueName.c_str(); 5723 break; 5724 } 5725 /// MODULE_CODE_HASH: [5*i32] 5726 case bitc::MODULE_CODE_HASH: { 5727 if (Record.size() != 5) 5728 return error("Invalid hash length " + Twine(Record.size()).str()); 5729 if (!TheIndex) 5730 break; 5731 if (TheIndex->modulePaths().empty()) 5732 // Does not have any summary emitted. 5733 break; 5734 if (TheIndex->modulePaths().size() != 1) 5735 return error("Don't expect multiple modules defined?"); 5736 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5737 int Pos = 0; 5738 for (auto &Val : Record) { 5739 assert(!(Val >> 32) && "Unexpected high bits set"); 5740 Hash[Pos++] = Val; 5741 } 5742 break; 5743 } 5744 /// MODULE_CODE_VSTOFFSET: [offset] 5745 case bitc::MODULE_CODE_VSTOFFSET: 5746 if (Record.size() < 1) 5747 return error("Invalid record"); 5748 VSTOffset = Record[0]; 5749 break; 5750 // GLOBALVAR: [pointer type, isconst, initid, 5751 // linkage, alignment, section, visibility, threadlocal, 5752 // unnamed_addr, externally_initialized, dllstorageclass, 5753 // comdat] 5754 case bitc::MODULE_CODE_GLOBALVAR: { 5755 if (Record.size() < 6) 5756 return error("Invalid record"); 5757 uint64_t RawLinkage = Record[3]; 5758 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5759 ValueIdToLinkageMap[ValueId++] = Linkage; 5760 break; 5761 } 5762 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5763 // alignment, section, visibility, gc, unnamed_addr, 5764 // prologuedata, dllstorageclass, comdat, prefixdata] 5765 case bitc::MODULE_CODE_FUNCTION: { 5766 if (Record.size() < 8) 5767 return error("Invalid record"); 5768 uint64_t RawLinkage = Record[3]; 5769 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5770 ValueIdToLinkageMap[ValueId++] = Linkage; 5771 break; 5772 } 5773 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5774 // dllstorageclass] 5775 case bitc::MODULE_CODE_ALIAS: { 5776 if (Record.size() < 6) 5777 return error("Invalid record"); 5778 uint64_t RawLinkage = Record[3]; 5779 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5780 ValueIdToLinkageMap[ValueId++] = Linkage; 5781 break; 5782 } 5783 } 5784 } 5785 continue; 5786 } 5787 } 5788 } 5789 5790 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5791 // objects in the index. 5792 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5793 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5794 return error("Invalid record"); 5795 5796 SmallVector<uint64_t, 64> Record; 5797 5798 bool Combined = false; 5799 while (1) { 5800 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5801 5802 switch (Entry.Kind) { 5803 case BitstreamEntry::SubBlock: // Handled for us already. 5804 case BitstreamEntry::Error: 5805 return error("Malformed block"); 5806 case BitstreamEntry::EndBlock: 5807 // For a per-module index, remove any entries that still have empty 5808 // summaries. The VST parsing creates entries eagerly for all symbols, 5809 // but not all have associated summaries (e.g. it doesn't know how to 5810 // distinguish between VST_CODE_ENTRY for function declarations vs global 5811 // variables with initializers that end up with a summary). Remove those 5812 // entries now so that we don't need to rely on the combined index merger 5813 // to clean them up (especially since that may not run for the first 5814 // module's index if we merge into that). 5815 if (!Combined) 5816 TheIndex->removeEmptySummaryEntries(); 5817 return std::error_code(); 5818 case BitstreamEntry::Record: 5819 // The interesting case. 5820 break; 5821 } 5822 5823 // Read a record. The record format depends on whether this 5824 // is a per-module index or a combined index file. In the per-module 5825 // case the records contain the associated value's ID for correlation 5826 // with VST entries. In the combined index the correlation is done 5827 // via the bitcode offset of the summary records (which were saved 5828 // in the combined index VST entries). The records also contain 5829 // information used for ThinLTO renaming and importing. 5830 Record.clear(); 5831 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5832 auto BitCode = Stream.readRecord(Entry.ID, Record); 5833 switch (BitCode) { 5834 default: // Default behavior: ignore. 5835 break; 5836 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5837 // n x (valueid, callsitecount)] 5838 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5839 // numrefs x valueid, 5840 // n x (valueid, callsitecount, profilecount)] 5841 case bitc::FS_PERMODULE: 5842 case bitc::FS_PERMODULE_PROFILE: { 5843 unsigned ValueID = Record[0]; 5844 uint64_t RawLinkage = Record[1]; 5845 unsigned InstCount = Record[2]; 5846 unsigned NumRefs = Record[3]; 5847 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5848 getDecodedLinkage(RawLinkage), InstCount); 5849 // The module path string ref set in the summary must be owned by the 5850 // index's module string table. Since we don't have a module path 5851 // string table section in the per-module index, we create a single 5852 // module path string table entry with an empty (0) ID to take 5853 // ownership. 5854 FS->setModulePath( 5855 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5856 static int RefListStartIndex = 4; 5857 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5858 assert(Record.size() >= RefListStartIndex + NumRefs && 5859 "Record size inconsistent with number of references"); 5860 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5861 unsigned RefValueId = Record[I]; 5862 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5863 FS->addRefEdge(RefGUID); 5864 } 5865 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5866 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5867 ++I) { 5868 unsigned CalleeValueId = Record[I]; 5869 unsigned CallsiteCount = Record[++I]; 5870 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5871 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5872 FS->addCallGraphEdge(CalleeGUID, 5873 CalleeInfo(CallsiteCount, ProfileCount)); 5874 } 5875 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5876 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5877 assert(!Info->summary() && "Expected a single summary per VST entry"); 5878 Info->setSummary(std::move(FS)); 5879 break; 5880 } 5881 // FS_ALIAS: [valueid, linkage, valueid] 5882 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5883 // they expect all aliasee summaries to be available. 5884 case bitc::FS_ALIAS: { 5885 unsigned ValueID = Record[0]; 5886 uint64_t RawLinkage = Record[1]; 5887 unsigned AliaseeID = Record[2]; 5888 std::unique_ptr<AliasSummary> AS = 5889 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5890 // The module path string ref set in the summary must be owned by the 5891 // index's module string table. Since we don't have a module path 5892 // string table section in the per-module index, we create a single 5893 // module path string table entry with an empty (0) ID to take 5894 // ownership. 5895 AS->setModulePath( 5896 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5897 5898 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5899 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5900 if (!AliaseeInfo->summary()) 5901 return error("Alias expects aliasee summary to be parsed"); 5902 AS->setAliasee(AliaseeInfo->summary()); 5903 5904 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5905 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5906 assert(!Info->summary() && "Expected a single summary per VST entry"); 5907 Info->setSummary(std::move(AS)); 5908 break; 5909 } 5910 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5911 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5912 unsigned ValueID = Record[0]; 5913 uint64_t RawLinkage = Record[1]; 5914 std::unique_ptr<GlobalVarSummary> FS = 5915 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5916 FS->setModulePath( 5917 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5918 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5919 unsigned RefValueId = Record[I]; 5920 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5921 FS->addRefEdge(RefGUID); 5922 } 5923 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5924 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5925 assert(!Info->summary() && "Expected a single summary per VST entry"); 5926 Info->setSummary(std::move(FS)); 5927 break; 5928 } 5929 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5930 // n x (valueid, callsitecount)] 5931 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5932 // numrefs x valueid, 5933 // n x (valueid, callsitecount, profilecount)] 5934 case bitc::FS_COMBINED: 5935 case bitc::FS_COMBINED_PROFILE: { 5936 uint64_t ModuleId = Record[0]; 5937 uint64_t RawLinkage = Record[1]; 5938 unsigned InstCount = Record[2]; 5939 unsigned NumRefs = Record[3]; 5940 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5941 getDecodedLinkage(RawLinkage), InstCount); 5942 FS->setModulePath(ModuleIdMap[ModuleId]); 5943 static int RefListStartIndex = 4; 5944 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5945 assert(Record.size() >= RefListStartIndex + NumRefs && 5946 "Record size inconsistent with number of references"); 5947 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5948 unsigned RefValueId = Record[I]; 5949 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5950 FS->addRefEdge(RefGUID); 5951 } 5952 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5953 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5954 ++I) { 5955 unsigned CalleeValueId = Record[I]; 5956 unsigned CallsiteCount = Record[++I]; 5957 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5958 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5959 FS->addCallGraphEdge(CalleeGUID, 5960 CalleeInfo(CallsiteCount, ProfileCount)); 5961 } 5962 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5963 assert(!Info->summary() && "Expected a single summary per VST entry"); 5964 Info->setSummary(std::move(FS)); 5965 Combined = true; 5966 break; 5967 } 5968 // FS_COMBINED_ALIAS: [modid, linkage, offset] 5969 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5970 // they expect all aliasee summaries to be available. 5971 case bitc::FS_COMBINED_ALIAS: { 5972 uint64_t ModuleId = Record[0]; 5973 uint64_t RawLinkage = Record[1]; 5974 uint64_t AliaseeSummaryOffset = Record[2]; 5975 std::unique_ptr<AliasSummary> AS = 5976 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5977 AS->setModulePath(ModuleIdMap[ModuleId]); 5978 5979 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 5980 if (!AliaseeInfo->summary()) 5981 return error("Alias expects aliasee summary to be parsed"); 5982 AS->setAliasee(AliaseeInfo->summary()); 5983 5984 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5985 assert(!Info->summary() && "Expected a single summary per VST entry"); 5986 Info->setSummary(std::move(AS)); 5987 Combined = true; 5988 break; 5989 } 5990 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5991 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5992 uint64_t ModuleId = Record[0]; 5993 uint64_t RawLinkage = Record[1]; 5994 std::unique_ptr<GlobalVarSummary> FS = 5995 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5996 FS->setModulePath(ModuleIdMap[ModuleId]); 5997 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5998 unsigned RefValueId = Record[I]; 5999 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6000 FS->addRefEdge(RefGUID); 6001 } 6002 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6003 assert(!Info->summary() && "Expected a single summary per VST entry"); 6004 Info->setSummary(std::move(FS)); 6005 Combined = true; 6006 break; 6007 } 6008 } 6009 } 6010 llvm_unreachable("Exit infinite loop"); 6011 } 6012 6013 // Parse the module string table block into the Index. 6014 // This populates the ModulePathStringTable map in the index. 6015 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6016 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6017 return error("Invalid record"); 6018 6019 SmallVector<uint64_t, 64> Record; 6020 6021 SmallString<128> ModulePath; 6022 ModulePathStringTableTy::iterator LastSeenModulePath; 6023 while (1) { 6024 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6025 6026 switch (Entry.Kind) { 6027 case BitstreamEntry::SubBlock: // Handled for us already. 6028 case BitstreamEntry::Error: 6029 return error("Malformed block"); 6030 case BitstreamEntry::EndBlock: 6031 return std::error_code(); 6032 case BitstreamEntry::Record: 6033 // The interesting case. 6034 break; 6035 } 6036 6037 Record.clear(); 6038 switch (Stream.readRecord(Entry.ID, Record)) { 6039 default: // Default behavior: ignore. 6040 break; 6041 case bitc::MST_CODE_ENTRY: { 6042 // MST_ENTRY: [modid, namechar x N] 6043 uint64_t ModuleId = Record[0]; 6044 6045 if (convertToString(Record, 1, ModulePath)) 6046 return error("Invalid record"); 6047 6048 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6049 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6050 6051 ModulePath.clear(); 6052 break; 6053 } 6054 /// MST_CODE_HASH: [5*i32] 6055 case bitc::MST_CODE_HASH: { 6056 if (Record.size() != 5) 6057 return error("Invalid hash length " + Twine(Record.size()).str()); 6058 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6059 return error("Invalid hash that does not follow a module path"); 6060 int Pos = 0; 6061 for (auto &Val : Record) { 6062 assert(!(Val >> 32) && "Unexpected high bits set"); 6063 LastSeenModulePath->second.second[Pos++] = Val; 6064 } 6065 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6066 LastSeenModulePath = TheIndex->modulePaths().end(); 6067 break; 6068 } 6069 } 6070 } 6071 llvm_unreachable("Exit infinite loop"); 6072 } 6073 6074 // Parse the function info index from the bitcode streamer into the given index. 6075 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6076 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6077 TheIndex = I; 6078 6079 if (std::error_code EC = initStream(std::move(Streamer))) 6080 return EC; 6081 6082 // Sniff for the signature. 6083 if (!hasValidBitcodeHeader(Stream)) 6084 return error("Invalid bitcode signature"); 6085 6086 // We expect a number of well-defined blocks, though we don't necessarily 6087 // need to understand them all. 6088 while (1) { 6089 if (Stream.AtEndOfStream()) { 6090 // We didn't really read a proper Module block. 6091 return error("Malformed block"); 6092 } 6093 6094 BitstreamEntry Entry = 6095 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6096 6097 if (Entry.Kind != BitstreamEntry::SubBlock) 6098 return error("Malformed block"); 6099 6100 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6101 // building the function summary index. 6102 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6103 return parseModule(); 6104 6105 if (Stream.SkipBlock()) 6106 return error("Invalid record"); 6107 } 6108 } 6109 6110 // Parse the summary information at the given offset in the buffer into 6111 // the index. Used to support lazy parsing of summaries from the 6112 // combined index during importing. 6113 // TODO: This function is not yet complete as it won't have a consumer 6114 // until ThinLTO function importing is added. 6115 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6116 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6117 size_t SummaryOffset) { 6118 TheIndex = I; 6119 6120 if (std::error_code EC = initStream(std::move(Streamer))) 6121 return EC; 6122 6123 // Sniff for the signature. 6124 if (!hasValidBitcodeHeader(Stream)) 6125 return error("Invalid bitcode signature"); 6126 6127 Stream.JumpToBit(SummaryOffset); 6128 6129 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6130 6131 switch (Entry.Kind) { 6132 default: 6133 return error("Malformed block"); 6134 case BitstreamEntry::Record: 6135 // The expected case. 6136 break; 6137 } 6138 6139 // TODO: Read a record. This interface will be completed when ThinLTO 6140 // importing is added so that it can be tested. 6141 SmallVector<uint64_t, 64> Record; 6142 switch (Stream.readRecord(Entry.ID, Record)) { 6143 case bitc::FS_COMBINED: 6144 case bitc::FS_COMBINED_PROFILE: 6145 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6146 default: 6147 return error("Invalid record"); 6148 } 6149 6150 return std::error_code(); 6151 } 6152 6153 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6154 std::unique_ptr<DataStreamer> Streamer) { 6155 if (Streamer) 6156 return initLazyStream(std::move(Streamer)); 6157 return initStreamFromBuffer(); 6158 } 6159 6160 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6161 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6162 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6163 6164 if (Buffer->getBufferSize() & 3) 6165 return error("Invalid bitcode signature"); 6166 6167 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6168 // The magic number is 0x0B17C0DE stored in little endian. 6169 if (isBitcodeWrapper(BufPtr, BufEnd)) 6170 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6171 return error("Invalid bitcode wrapper header"); 6172 6173 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6174 Stream.init(&*StreamFile); 6175 6176 return std::error_code(); 6177 } 6178 6179 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6180 std::unique_ptr<DataStreamer> Streamer) { 6181 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6182 // see it. 6183 auto OwnedBytes = 6184 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6185 StreamingMemoryObject &Bytes = *OwnedBytes; 6186 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6187 Stream.init(&*StreamFile); 6188 6189 unsigned char buf[16]; 6190 if (Bytes.readBytes(buf, 16, 0) != 16) 6191 return error("Invalid bitcode signature"); 6192 6193 if (!isBitcode(buf, buf + 16)) 6194 return error("Invalid bitcode signature"); 6195 6196 if (isBitcodeWrapper(buf, buf + 4)) { 6197 const unsigned char *bitcodeStart = buf; 6198 const unsigned char *bitcodeEnd = buf + 16; 6199 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6200 Bytes.dropLeadingBytes(bitcodeStart - buf); 6201 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6202 } 6203 return std::error_code(); 6204 } 6205 6206 namespace { 6207 class BitcodeErrorCategoryType : public std::error_category { 6208 const char *name() const LLVM_NOEXCEPT override { 6209 return "llvm.bitcode"; 6210 } 6211 std::string message(int IE) const override { 6212 BitcodeError E = static_cast<BitcodeError>(IE); 6213 switch (E) { 6214 case BitcodeError::InvalidBitcodeSignature: 6215 return "Invalid bitcode signature"; 6216 case BitcodeError::CorruptedBitcode: 6217 return "Corrupted bitcode"; 6218 } 6219 llvm_unreachable("Unknown error type!"); 6220 } 6221 }; 6222 } // end anonymous namespace 6223 6224 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6225 6226 const std::error_category &llvm::BitcodeErrorCategory() { 6227 return *ErrorCategory; 6228 } 6229 6230 //===----------------------------------------------------------------------===// 6231 // External interface 6232 //===----------------------------------------------------------------------===// 6233 6234 static ErrorOr<std::unique_ptr<Module>> 6235 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6236 BitcodeReader *R, LLVMContext &Context, 6237 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6238 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6239 M->setMaterializer(R); 6240 6241 auto cleanupOnError = [&](std::error_code EC) { 6242 R->releaseBuffer(); // Never take ownership on error. 6243 return EC; 6244 }; 6245 6246 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6247 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6248 ShouldLazyLoadMetadata)) 6249 return cleanupOnError(EC); 6250 6251 if (MaterializeAll) { 6252 // Read in the entire module, and destroy the BitcodeReader. 6253 if (std::error_code EC = M->materializeAll()) 6254 return cleanupOnError(EC); 6255 } else { 6256 // Resolve forward references from blockaddresses. 6257 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6258 return cleanupOnError(EC); 6259 } 6260 return std::move(M); 6261 } 6262 6263 /// \brief Get a lazy one-at-time loading module from bitcode. 6264 /// 6265 /// This isn't always used in a lazy context. In particular, it's also used by 6266 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6267 /// in forward-referenced functions from block address references. 6268 /// 6269 /// \param[in] MaterializeAll Set to \c true if we should materialize 6270 /// everything. 6271 static ErrorOr<std::unique_ptr<Module>> 6272 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6273 LLVMContext &Context, bool MaterializeAll, 6274 bool ShouldLazyLoadMetadata = false) { 6275 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6276 6277 ErrorOr<std::unique_ptr<Module>> Ret = 6278 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6279 MaterializeAll, ShouldLazyLoadMetadata); 6280 if (!Ret) 6281 return Ret; 6282 6283 Buffer.release(); // The BitcodeReader owns it now. 6284 return Ret; 6285 } 6286 6287 ErrorOr<std::unique_ptr<Module>> 6288 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6289 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6290 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6291 ShouldLazyLoadMetadata); 6292 } 6293 6294 ErrorOr<std::unique_ptr<Module>> 6295 llvm::getStreamedBitcodeModule(StringRef Name, 6296 std::unique_ptr<DataStreamer> Streamer, 6297 LLVMContext &Context) { 6298 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6299 BitcodeReader *R = new BitcodeReader(Context); 6300 6301 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6302 false); 6303 } 6304 6305 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6306 LLVMContext &Context) { 6307 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6308 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6309 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6310 // written. We must defer until the Module has been fully materialized. 6311 } 6312 6313 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6314 LLVMContext &Context) { 6315 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6316 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6317 ErrorOr<std::string> Triple = R->parseTriple(); 6318 if (Triple.getError()) 6319 return ""; 6320 return Triple.get(); 6321 } 6322 6323 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6324 LLVMContext &Context) { 6325 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6326 BitcodeReader R(Buf.release(), Context); 6327 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6328 if (ProducerString.getError()) 6329 return ""; 6330 return ProducerString.get(); 6331 } 6332 6333 // Parse the specified bitcode buffer, returning the function info index. 6334 // If IsLazy is false, parse the entire function summary into 6335 // the index. Otherwise skip the function summary section, and only create 6336 // an index object with a map from function name to function summary offset. 6337 // The index is used to perform lazy function summary reading later. 6338 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6339 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6340 DiagnosticHandlerFunction DiagnosticHandler, 6341 bool IsLazy) { 6342 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6343 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6344 6345 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6346 6347 auto cleanupOnError = [&](std::error_code EC) { 6348 R.releaseBuffer(); // Never take ownership on error. 6349 return EC; 6350 }; 6351 6352 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6353 return cleanupOnError(EC); 6354 6355 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6356 return std::move(Index); 6357 } 6358 6359 // Check if the given bitcode buffer contains a global value summary block. 6360 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6361 DiagnosticHandlerFunction DiagnosticHandler) { 6362 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6363 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6364 6365 auto cleanupOnError = [&](std::error_code EC) { 6366 R.releaseBuffer(); // Never take ownership on error. 6367 return false; 6368 }; 6369 6370 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6371 return cleanupOnError(EC); 6372 6373 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6374 return R.foundGlobalValSummary(); 6375 } 6376 6377 // This method supports lazy reading of summary data from the combined 6378 // index during ThinLTO function importing. When reading the combined index 6379 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6380 // Then this method is called for each value considered for importing, 6381 // to parse the summary information for the given value name into 6382 // the index. 6383 std::error_code llvm::readGlobalValueSummary( 6384 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6385 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6386 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6387 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6388 6389 auto cleanupOnError = [&](std::error_code EC) { 6390 R.releaseBuffer(); // Never take ownership on error. 6391 return EC; 6392 }; 6393 6394 // Lookup the given value name in the GlobalValueMap, which may 6395 // contain a list of global value infos in the case of a COMDAT. Walk through 6396 // and parse each summary info at the summary offset 6397 // recorded when parsing the value symbol table. 6398 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6399 size_t SummaryOffset = FI->bitcodeIndex(); 6400 if (std::error_code EC = 6401 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6402 return cleanupOnError(EC); 6403 } 6404 6405 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6406 return std::error_code(); 6407 } 6408