1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile); 747 Error parseEntireSummary(unsigned ID); 748 Error parseModuleStringTable(); 749 750 std::pair<ValueInfo, GlobalValue::GUID> 751 getValueInfoFromValueId(unsigned ValueId); 752 753 ModuleSummaryIndex::ModuleInfo *addThisModule(); 754 }; 755 756 } // end anonymous namespace 757 758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 759 Error Err) { 760 if (Err) { 761 std::error_code EC; 762 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 763 EC = EIB.convertToErrorCode(); 764 Ctx.emitError(EIB.message()); 765 }); 766 return EC; 767 } 768 return std::error_code(); 769 } 770 771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 772 StringRef ProducerIdentification, 773 LLVMContext &Context) 774 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 775 ValueList(Context) { 776 this->ProducerIdentification = ProducerIdentification; 777 } 778 779 Error BitcodeReader::materializeForwardReferencedFunctions() { 780 if (WillMaterializeAllForwardRefs) 781 return Error::success(); 782 783 // Prevent recursion. 784 WillMaterializeAllForwardRefs = true; 785 786 while (!BasicBlockFwdRefQueue.empty()) { 787 Function *F = BasicBlockFwdRefQueue.front(); 788 BasicBlockFwdRefQueue.pop_front(); 789 assert(F && "Expected valid function"); 790 if (!BasicBlockFwdRefs.count(F)) 791 // Already materialized. 792 continue; 793 794 // Check for a function that isn't materializable to prevent an infinite 795 // loop. When parsing a blockaddress stored in a global variable, there 796 // isn't a trivial way to check if a function will have a body without a 797 // linear search through FunctionsWithBodies, so just check it here. 798 if (!F->isMaterializable()) 799 return error("Never resolved function from blockaddress"); 800 801 // Try to materialize F. 802 if (Error Err = materialize(F)) 803 return Err; 804 } 805 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 806 807 // Reset state. 808 WillMaterializeAllForwardRefs = false; 809 return Error::success(); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // Helper functions to implement forward reference resolution, etc. 814 //===----------------------------------------------------------------------===// 815 816 static bool hasImplicitComdat(size_t Val) { 817 switch (Val) { 818 default: 819 return false; 820 case 1: // Old WeakAnyLinkage 821 case 4: // Old LinkOnceAnyLinkage 822 case 10: // Old WeakODRLinkage 823 case 11: // Old LinkOnceODRLinkage 824 return true; 825 } 826 } 827 828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 829 switch (Val) { 830 default: // Map unknown/new linkages to external 831 case 0: 832 return GlobalValue::ExternalLinkage; 833 case 2: 834 return GlobalValue::AppendingLinkage; 835 case 3: 836 return GlobalValue::InternalLinkage; 837 case 5: 838 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 839 case 6: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 841 case 7: 842 return GlobalValue::ExternalWeakLinkage; 843 case 8: 844 return GlobalValue::CommonLinkage; 845 case 9: 846 return GlobalValue::PrivateLinkage; 847 case 12: 848 return GlobalValue::AvailableExternallyLinkage; 849 case 13: 850 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 851 case 14: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 853 case 15: 854 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 855 case 1: // Old value with implicit comdat. 856 case 16: 857 return GlobalValue::WeakAnyLinkage; 858 case 10: // Old value with implicit comdat. 859 case 17: 860 return GlobalValue::WeakODRLinkage; 861 case 4: // Old value with implicit comdat. 862 case 18: 863 return GlobalValue::LinkOnceAnyLinkage; 864 case 11: // Old value with implicit comdat. 865 case 19: 866 return GlobalValue::LinkOnceODRLinkage; 867 } 868 } 869 870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 871 FunctionSummary::FFlags Flags; 872 Flags.ReadNone = RawFlags & 0x1; 873 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 874 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 875 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 876 return Flags; 877 } 878 879 /// Decode the flags for GlobalValue in the summary. 880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 881 uint64_t Version) { 882 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 883 // like getDecodedLinkage() above. Any future change to the linkage enum and 884 // to getDecodedLinkage() will need to be taken into account here as above. 885 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 886 RawFlags = RawFlags >> 4; 887 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 888 // The Live flag wasn't introduced until version 3. For dead stripping 889 // to work correctly on earlier versions, we must conservatively treat all 890 // values as live. 891 bool Live = (RawFlags & 0x2) || Version < 3; 892 bool Local = (RawFlags & 0x4); 893 894 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 895 } 896 897 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 898 switch (Val) { 899 default: // Map unknown visibilities to default. 900 case 0: return GlobalValue::DefaultVisibility; 901 case 1: return GlobalValue::HiddenVisibility; 902 case 2: return GlobalValue::ProtectedVisibility; 903 } 904 } 905 906 static GlobalValue::DLLStorageClassTypes 907 getDecodedDLLStorageClass(unsigned Val) { 908 switch (Val) { 909 default: // Map unknown values to default. 910 case 0: return GlobalValue::DefaultStorageClass; 911 case 1: return GlobalValue::DLLImportStorageClass; 912 case 2: return GlobalValue::DLLExportStorageClass; 913 } 914 } 915 916 static bool getDecodedDSOLocal(unsigned Val) { 917 switch(Val) { 918 default: // Map unknown values to preemptable. 919 case 0: return false; 920 case 1: return true; 921 } 922 } 923 924 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 925 switch (Val) { 926 case 0: return GlobalVariable::NotThreadLocal; 927 default: // Map unknown non-zero value to general dynamic. 928 case 1: return GlobalVariable::GeneralDynamicTLSModel; 929 case 2: return GlobalVariable::LocalDynamicTLSModel; 930 case 3: return GlobalVariable::InitialExecTLSModel; 931 case 4: return GlobalVariable::LocalExecTLSModel; 932 } 933 } 934 935 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 936 switch (Val) { 937 default: // Map unknown to UnnamedAddr::None. 938 case 0: return GlobalVariable::UnnamedAddr::None; 939 case 1: return GlobalVariable::UnnamedAddr::Global; 940 case 2: return GlobalVariable::UnnamedAddr::Local; 941 } 942 } 943 944 static int getDecodedCastOpcode(unsigned Val) { 945 switch (Val) { 946 default: return -1; 947 case bitc::CAST_TRUNC : return Instruction::Trunc; 948 case bitc::CAST_ZEXT : return Instruction::ZExt; 949 case bitc::CAST_SEXT : return Instruction::SExt; 950 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 951 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 952 case bitc::CAST_UITOFP : return Instruction::UIToFP; 953 case bitc::CAST_SITOFP : return Instruction::SIToFP; 954 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 955 case bitc::CAST_FPEXT : return Instruction::FPExt; 956 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 957 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 958 case bitc::CAST_BITCAST : return Instruction::BitCast; 959 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 960 } 961 } 962 963 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 964 bool IsFP = Ty->isFPOrFPVectorTy(); 965 // BinOps are only valid for int/fp or vector of int/fp types 966 if (!IsFP && !Ty->isIntOrIntVectorTy()) 967 return -1; 968 969 switch (Val) { 970 default: 971 return -1; 972 case bitc::BINOP_ADD: 973 return IsFP ? Instruction::FAdd : Instruction::Add; 974 case bitc::BINOP_SUB: 975 return IsFP ? Instruction::FSub : Instruction::Sub; 976 case bitc::BINOP_MUL: 977 return IsFP ? Instruction::FMul : Instruction::Mul; 978 case bitc::BINOP_UDIV: 979 return IsFP ? -1 : Instruction::UDiv; 980 case bitc::BINOP_SDIV: 981 return IsFP ? Instruction::FDiv : Instruction::SDiv; 982 case bitc::BINOP_UREM: 983 return IsFP ? -1 : Instruction::URem; 984 case bitc::BINOP_SREM: 985 return IsFP ? Instruction::FRem : Instruction::SRem; 986 case bitc::BINOP_SHL: 987 return IsFP ? -1 : Instruction::Shl; 988 case bitc::BINOP_LSHR: 989 return IsFP ? -1 : Instruction::LShr; 990 case bitc::BINOP_ASHR: 991 return IsFP ? -1 : Instruction::AShr; 992 case bitc::BINOP_AND: 993 return IsFP ? -1 : Instruction::And; 994 case bitc::BINOP_OR: 995 return IsFP ? -1 : Instruction::Or; 996 case bitc::BINOP_XOR: 997 return IsFP ? -1 : Instruction::Xor; 998 } 999 } 1000 1001 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1002 switch (Val) { 1003 default: return AtomicRMWInst::BAD_BINOP; 1004 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1005 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1006 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1007 case bitc::RMW_AND: return AtomicRMWInst::And; 1008 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1009 case bitc::RMW_OR: return AtomicRMWInst::Or; 1010 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1011 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1012 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1013 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1014 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1015 } 1016 } 1017 1018 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1019 switch (Val) { 1020 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1021 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1022 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1023 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1024 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1025 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1026 default: // Map unknown orderings to sequentially-consistent. 1027 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1028 } 1029 } 1030 1031 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown selection kinds to any. 1034 case bitc::COMDAT_SELECTION_KIND_ANY: 1035 return Comdat::Any; 1036 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1037 return Comdat::ExactMatch; 1038 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1039 return Comdat::Largest; 1040 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1041 return Comdat::NoDuplicates; 1042 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1043 return Comdat::SameSize; 1044 } 1045 } 1046 1047 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1048 FastMathFlags FMF; 1049 if (0 != (Val & FastMathFlags::AllowReassoc)) 1050 FMF.setAllowReassoc(); 1051 if (0 != (Val & FastMathFlags::NoNaNs)) 1052 FMF.setNoNaNs(); 1053 if (0 != (Val & FastMathFlags::NoInfs)) 1054 FMF.setNoInfs(); 1055 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1056 FMF.setNoSignedZeros(); 1057 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1058 FMF.setAllowReciprocal(); 1059 if (0 != (Val & FastMathFlags::AllowContract)) 1060 FMF.setAllowContract(true); 1061 if (0 != (Val & FastMathFlags::ApproxFunc)) 1062 FMF.setApproxFunc(); 1063 return FMF; 1064 } 1065 1066 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1067 switch (Val) { 1068 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1069 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1070 } 1071 } 1072 1073 Type *BitcodeReader::getTypeByID(unsigned ID) { 1074 // The type table size is always specified correctly. 1075 if (ID >= TypeList.size()) 1076 return nullptr; 1077 1078 if (Type *Ty = TypeList[ID]) 1079 return Ty; 1080 1081 // If we have a forward reference, the only possible case is when it is to a 1082 // named struct. Just create a placeholder for now. 1083 return TypeList[ID] = createIdentifiedStructType(Context); 1084 } 1085 1086 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1087 StringRef Name) { 1088 auto *Ret = StructType::create(Context, Name); 1089 IdentifiedStructTypes.push_back(Ret); 1090 return Ret; 1091 } 1092 1093 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1094 auto *Ret = StructType::create(Context); 1095 IdentifiedStructTypes.push_back(Ret); 1096 return Ret; 1097 } 1098 1099 //===----------------------------------------------------------------------===// 1100 // Functions for parsing blocks from the bitcode file 1101 //===----------------------------------------------------------------------===// 1102 1103 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1104 switch (Val) { 1105 case Attribute::EndAttrKinds: 1106 llvm_unreachable("Synthetic enumerators which should never get here"); 1107 1108 case Attribute::None: return 0; 1109 case Attribute::ZExt: return 1 << 0; 1110 case Attribute::SExt: return 1 << 1; 1111 case Attribute::NoReturn: return 1 << 2; 1112 case Attribute::InReg: return 1 << 3; 1113 case Attribute::StructRet: return 1 << 4; 1114 case Attribute::NoUnwind: return 1 << 5; 1115 case Attribute::NoAlias: return 1 << 6; 1116 case Attribute::ByVal: return 1 << 7; 1117 case Attribute::Nest: return 1 << 8; 1118 case Attribute::ReadNone: return 1 << 9; 1119 case Attribute::ReadOnly: return 1 << 10; 1120 case Attribute::NoInline: return 1 << 11; 1121 case Attribute::AlwaysInline: return 1 << 12; 1122 case Attribute::OptimizeForSize: return 1 << 13; 1123 case Attribute::StackProtect: return 1 << 14; 1124 case Attribute::StackProtectReq: return 1 << 15; 1125 case Attribute::Alignment: return 31 << 16; 1126 case Attribute::NoCapture: return 1 << 21; 1127 case Attribute::NoRedZone: return 1 << 22; 1128 case Attribute::NoImplicitFloat: return 1 << 23; 1129 case Attribute::Naked: return 1 << 24; 1130 case Attribute::InlineHint: return 1 << 25; 1131 case Attribute::StackAlignment: return 7 << 26; 1132 case Attribute::ReturnsTwice: return 1 << 29; 1133 case Attribute::UWTable: return 1 << 30; 1134 case Attribute::NonLazyBind: return 1U << 31; 1135 case Attribute::SanitizeAddress: return 1ULL << 32; 1136 case Attribute::MinSize: return 1ULL << 33; 1137 case Attribute::NoDuplicate: return 1ULL << 34; 1138 case Attribute::StackProtectStrong: return 1ULL << 35; 1139 case Attribute::SanitizeThread: return 1ULL << 36; 1140 case Attribute::SanitizeMemory: return 1ULL << 37; 1141 case Attribute::NoBuiltin: return 1ULL << 38; 1142 case Attribute::Returned: return 1ULL << 39; 1143 case Attribute::Cold: return 1ULL << 40; 1144 case Attribute::Builtin: return 1ULL << 41; 1145 case Attribute::OptimizeNone: return 1ULL << 42; 1146 case Attribute::InAlloca: return 1ULL << 43; 1147 case Attribute::NonNull: return 1ULL << 44; 1148 case Attribute::JumpTable: return 1ULL << 45; 1149 case Attribute::Convergent: return 1ULL << 46; 1150 case Attribute::SafeStack: return 1ULL << 47; 1151 case Attribute::NoRecurse: return 1ULL << 48; 1152 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1153 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1154 case Attribute::SwiftSelf: return 1ULL << 51; 1155 case Attribute::SwiftError: return 1ULL << 52; 1156 case Attribute::WriteOnly: return 1ULL << 53; 1157 case Attribute::Speculatable: return 1ULL << 54; 1158 case Attribute::StrictFP: return 1ULL << 55; 1159 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1160 case Attribute::Dereferenceable: 1161 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1162 break; 1163 case Attribute::DereferenceableOrNull: 1164 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1165 "format"); 1166 break; 1167 case Attribute::ArgMemOnly: 1168 llvm_unreachable("argmemonly attribute not supported in raw format"); 1169 break; 1170 case Attribute::AllocSize: 1171 llvm_unreachable("allocsize not supported in raw format"); 1172 break; 1173 } 1174 llvm_unreachable("Unsupported attribute type"); 1175 } 1176 1177 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1178 if (!Val) return; 1179 1180 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1181 I = Attribute::AttrKind(I + 1)) { 1182 if (I == Attribute::Dereferenceable || 1183 I == Attribute::DereferenceableOrNull || 1184 I == Attribute::ArgMemOnly || 1185 I == Attribute::AllocSize) 1186 continue; 1187 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1188 if (I == Attribute::Alignment) 1189 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1190 else if (I == Attribute::StackAlignment) 1191 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1192 else 1193 B.addAttribute(I); 1194 } 1195 } 1196 } 1197 1198 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1199 /// been decoded from the given integer. This function must stay in sync with 1200 /// 'encodeLLVMAttributesForBitcode'. 1201 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1202 uint64_t EncodedAttrs) { 1203 // FIXME: Remove in 4.0. 1204 1205 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1206 // the bits above 31 down by 11 bits. 1207 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1208 assert((!Alignment || isPowerOf2_32(Alignment)) && 1209 "Alignment must be a power of two."); 1210 1211 if (Alignment) 1212 B.addAlignmentAttr(Alignment); 1213 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1214 (EncodedAttrs & 0xffff)); 1215 } 1216 1217 Error BitcodeReader::parseAttributeBlock() { 1218 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1219 return error("Invalid record"); 1220 1221 if (!MAttributes.empty()) 1222 return error("Invalid multiple blocks"); 1223 1224 SmallVector<uint64_t, 64> Record; 1225 1226 SmallVector<AttributeList, 8> Attrs; 1227 1228 // Read all the records. 1229 while (true) { 1230 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1231 1232 switch (Entry.Kind) { 1233 case BitstreamEntry::SubBlock: // Handled for us already. 1234 case BitstreamEntry::Error: 1235 return error("Malformed block"); 1236 case BitstreamEntry::EndBlock: 1237 return Error::success(); 1238 case BitstreamEntry::Record: 1239 // The interesting case. 1240 break; 1241 } 1242 1243 // Read a record. 1244 Record.clear(); 1245 switch (Stream.readRecord(Entry.ID, Record)) { 1246 default: // Default behavior: ignore. 1247 break; 1248 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1249 // FIXME: Remove in 4.0. 1250 if (Record.size() & 1) 1251 return error("Invalid record"); 1252 1253 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1254 AttrBuilder B; 1255 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1256 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1257 } 1258 1259 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1260 Attrs.clear(); 1261 break; 1262 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1263 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1264 Attrs.push_back(MAttributeGroups[Record[i]]); 1265 1266 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1267 Attrs.clear(); 1268 break; 1269 } 1270 } 1271 } 1272 1273 // Returns Attribute::None on unrecognized codes. 1274 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1275 switch (Code) { 1276 default: 1277 return Attribute::None; 1278 case bitc::ATTR_KIND_ALIGNMENT: 1279 return Attribute::Alignment; 1280 case bitc::ATTR_KIND_ALWAYS_INLINE: 1281 return Attribute::AlwaysInline; 1282 case bitc::ATTR_KIND_ARGMEMONLY: 1283 return Attribute::ArgMemOnly; 1284 case bitc::ATTR_KIND_BUILTIN: 1285 return Attribute::Builtin; 1286 case bitc::ATTR_KIND_BY_VAL: 1287 return Attribute::ByVal; 1288 case bitc::ATTR_KIND_IN_ALLOCA: 1289 return Attribute::InAlloca; 1290 case bitc::ATTR_KIND_COLD: 1291 return Attribute::Cold; 1292 case bitc::ATTR_KIND_CONVERGENT: 1293 return Attribute::Convergent; 1294 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1295 return Attribute::InaccessibleMemOnly; 1296 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1297 return Attribute::InaccessibleMemOrArgMemOnly; 1298 case bitc::ATTR_KIND_INLINE_HINT: 1299 return Attribute::InlineHint; 1300 case bitc::ATTR_KIND_IN_REG: 1301 return Attribute::InReg; 1302 case bitc::ATTR_KIND_JUMP_TABLE: 1303 return Attribute::JumpTable; 1304 case bitc::ATTR_KIND_MIN_SIZE: 1305 return Attribute::MinSize; 1306 case bitc::ATTR_KIND_NAKED: 1307 return Attribute::Naked; 1308 case bitc::ATTR_KIND_NEST: 1309 return Attribute::Nest; 1310 case bitc::ATTR_KIND_NO_ALIAS: 1311 return Attribute::NoAlias; 1312 case bitc::ATTR_KIND_NO_BUILTIN: 1313 return Attribute::NoBuiltin; 1314 case bitc::ATTR_KIND_NO_CAPTURE: 1315 return Attribute::NoCapture; 1316 case bitc::ATTR_KIND_NO_DUPLICATE: 1317 return Attribute::NoDuplicate; 1318 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1319 return Attribute::NoImplicitFloat; 1320 case bitc::ATTR_KIND_NO_INLINE: 1321 return Attribute::NoInline; 1322 case bitc::ATTR_KIND_NO_RECURSE: 1323 return Attribute::NoRecurse; 1324 case bitc::ATTR_KIND_NON_LAZY_BIND: 1325 return Attribute::NonLazyBind; 1326 case bitc::ATTR_KIND_NON_NULL: 1327 return Attribute::NonNull; 1328 case bitc::ATTR_KIND_DEREFERENCEABLE: 1329 return Attribute::Dereferenceable; 1330 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1331 return Attribute::DereferenceableOrNull; 1332 case bitc::ATTR_KIND_ALLOC_SIZE: 1333 return Attribute::AllocSize; 1334 case bitc::ATTR_KIND_NO_RED_ZONE: 1335 return Attribute::NoRedZone; 1336 case bitc::ATTR_KIND_NO_RETURN: 1337 return Attribute::NoReturn; 1338 case bitc::ATTR_KIND_NO_UNWIND: 1339 return Attribute::NoUnwind; 1340 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1341 return Attribute::OptimizeForSize; 1342 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1343 return Attribute::OptimizeNone; 1344 case bitc::ATTR_KIND_READ_NONE: 1345 return Attribute::ReadNone; 1346 case bitc::ATTR_KIND_READ_ONLY: 1347 return Attribute::ReadOnly; 1348 case bitc::ATTR_KIND_RETURNED: 1349 return Attribute::Returned; 1350 case bitc::ATTR_KIND_RETURNS_TWICE: 1351 return Attribute::ReturnsTwice; 1352 case bitc::ATTR_KIND_S_EXT: 1353 return Attribute::SExt; 1354 case bitc::ATTR_KIND_SPECULATABLE: 1355 return Attribute::Speculatable; 1356 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1357 return Attribute::StackAlignment; 1358 case bitc::ATTR_KIND_STACK_PROTECT: 1359 return Attribute::StackProtect; 1360 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1361 return Attribute::StackProtectReq; 1362 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1363 return Attribute::StackProtectStrong; 1364 case bitc::ATTR_KIND_SAFESTACK: 1365 return Attribute::SafeStack; 1366 case bitc::ATTR_KIND_STRICT_FP: 1367 return Attribute::StrictFP; 1368 case bitc::ATTR_KIND_STRUCT_RET: 1369 return Attribute::StructRet; 1370 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1371 return Attribute::SanitizeAddress; 1372 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1373 return Attribute::SanitizeHWAddress; 1374 case bitc::ATTR_KIND_SANITIZE_THREAD: 1375 return Attribute::SanitizeThread; 1376 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1377 return Attribute::SanitizeMemory; 1378 case bitc::ATTR_KIND_SWIFT_ERROR: 1379 return Attribute::SwiftError; 1380 case bitc::ATTR_KIND_SWIFT_SELF: 1381 return Attribute::SwiftSelf; 1382 case bitc::ATTR_KIND_UW_TABLE: 1383 return Attribute::UWTable; 1384 case bitc::ATTR_KIND_WRITEONLY: 1385 return Attribute::WriteOnly; 1386 case bitc::ATTR_KIND_Z_EXT: 1387 return Attribute::ZExt; 1388 } 1389 } 1390 1391 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1392 unsigned &Alignment) { 1393 // Note: Alignment in bitcode files is incremented by 1, so that zero 1394 // can be used for default alignment. 1395 if (Exponent > Value::MaxAlignmentExponent + 1) 1396 return error("Invalid alignment value"); 1397 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1398 return Error::success(); 1399 } 1400 1401 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1402 *Kind = getAttrFromCode(Code); 1403 if (*Kind == Attribute::None) 1404 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1405 return Error::success(); 1406 } 1407 1408 Error BitcodeReader::parseAttributeGroupBlock() { 1409 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1410 return error("Invalid record"); 1411 1412 if (!MAttributeGroups.empty()) 1413 return error("Invalid multiple blocks"); 1414 1415 SmallVector<uint64_t, 64> Record; 1416 1417 // Read all the records. 1418 while (true) { 1419 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1420 1421 switch (Entry.Kind) { 1422 case BitstreamEntry::SubBlock: // Handled for us already. 1423 case BitstreamEntry::Error: 1424 return error("Malformed block"); 1425 case BitstreamEntry::EndBlock: 1426 return Error::success(); 1427 case BitstreamEntry::Record: 1428 // The interesting case. 1429 break; 1430 } 1431 1432 // Read a record. 1433 Record.clear(); 1434 switch (Stream.readRecord(Entry.ID, Record)) { 1435 default: // Default behavior: ignore. 1436 break; 1437 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1438 if (Record.size() < 3) 1439 return error("Invalid record"); 1440 1441 uint64_t GrpID = Record[0]; 1442 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1443 1444 AttrBuilder B; 1445 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1446 if (Record[i] == 0) { // Enum attribute 1447 Attribute::AttrKind Kind; 1448 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1449 return Err; 1450 1451 B.addAttribute(Kind); 1452 } else if (Record[i] == 1) { // Integer attribute 1453 Attribute::AttrKind Kind; 1454 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1455 return Err; 1456 if (Kind == Attribute::Alignment) 1457 B.addAlignmentAttr(Record[++i]); 1458 else if (Kind == Attribute::StackAlignment) 1459 B.addStackAlignmentAttr(Record[++i]); 1460 else if (Kind == Attribute::Dereferenceable) 1461 B.addDereferenceableAttr(Record[++i]); 1462 else if (Kind == Attribute::DereferenceableOrNull) 1463 B.addDereferenceableOrNullAttr(Record[++i]); 1464 else if (Kind == Attribute::AllocSize) 1465 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1466 } else { // String attribute 1467 assert((Record[i] == 3 || Record[i] == 4) && 1468 "Invalid attribute group entry"); 1469 bool HasValue = (Record[i++] == 4); 1470 SmallString<64> KindStr; 1471 SmallString<64> ValStr; 1472 1473 while (Record[i] != 0 && i != e) 1474 KindStr += Record[i++]; 1475 assert(Record[i] == 0 && "Kind string not null terminated"); 1476 1477 if (HasValue) { 1478 // Has a value associated with it. 1479 ++i; // Skip the '0' that terminates the "kind" string. 1480 while (Record[i] != 0 && i != e) 1481 ValStr += Record[i++]; 1482 assert(Record[i] == 0 && "Value string not null terminated"); 1483 } 1484 1485 B.addAttribute(KindStr.str(), ValStr.str()); 1486 } 1487 } 1488 1489 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1490 break; 1491 } 1492 } 1493 } 1494 } 1495 1496 Error BitcodeReader::parseTypeTable() { 1497 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1498 return error("Invalid record"); 1499 1500 return parseTypeTableBody(); 1501 } 1502 1503 Error BitcodeReader::parseTypeTableBody() { 1504 if (!TypeList.empty()) 1505 return error("Invalid multiple blocks"); 1506 1507 SmallVector<uint64_t, 64> Record; 1508 unsigned NumRecords = 0; 1509 1510 SmallString<64> TypeName; 1511 1512 // Read all the records for this type table. 1513 while (true) { 1514 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1515 1516 switch (Entry.Kind) { 1517 case BitstreamEntry::SubBlock: // Handled for us already. 1518 case BitstreamEntry::Error: 1519 return error("Malformed block"); 1520 case BitstreamEntry::EndBlock: 1521 if (NumRecords != TypeList.size()) 1522 return error("Malformed block"); 1523 return Error::success(); 1524 case BitstreamEntry::Record: 1525 // The interesting case. 1526 break; 1527 } 1528 1529 // Read a record. 1530 Record.clear(); 1531 Type *ResultTy = nullptr; 1532 switch (Stream.readRecord(Entry.ID, Record)) { 1533 default: 1534 return error("Invalid value"); 1535 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1536 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1537 // type list. This allows us to reserve space. 1538 if (Record.size() < 1) 1539 return error("Invalid record"); 1540 TypeList.resize(Record[0]); 1541 continue; 1542 case bitc::TYPE_CODE_VOID: // VOID 1543 ResultTy = Type::getVoidTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_HALF: // HALF 1546 ResultTy = Type::getHalfTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_FLOAT: // FLOAT 1549 ResultTy = Type::getFloatTy(Context); 1550 break; 1551 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1552 ResultTy = Type::getDoubleTy(Context); 1553 break; 1554 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1555 ResultTy = Type::getX86_FP80Ty(Context); 1556 break; 1557 case bitc::TYPE_CODE_FP128: // FP128 1558 ResultTy = Type::getFP128Ty(Context); 1559 break; 1560 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1561 ResultTy = Type::getPPC_FP128Ty(Context); 1562 break; 1563 case bitc::TYPE_CODE_LABEL: // LABEL 1564 ResultTy = Type::getLabelTy(Context); 1565 break; 1566 case bitc::TYPE_CODE_METADATA: // METADATA 1567 ResultTy = Type::getMetadataTy(Context); 1568 break; 1569 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1570 ResultTy = Type::getX86_MMXTy(Context); 1571 break; 1572 case bitc::TYPE_CODE_TOKEN: // TOKEN 1573 ResultTy = Type::getTokenTy(Context); 1574 break; 1575 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1576 if (Record.size() < 1) 1577 return error("Invalid record"); 1578 1579 uint64_t NumBits = Record[0]; 1580 if (NumBits < IntegerType::MIN_INT_BITS || 1581 NumBits > IntegerType::MAX_INT_BITS) 1582 return error("Bitwidth for integer type out of range"); 1583 ResultTy = IntegerType::get(Context, NumBits); 1584 break; 1585 } 1586 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1587 // [pointee type, address space] 1588 if (Record.size() < 1) 1589 return error("Invalid record"); 1590 unsigned AddressSpace = 0; 1591 if (Record.size() == 2) 1592 AddressSpace = Record[1]; 1593 ResultTy = getTypeByID(Record[0]); 1594 if (!ResultTy || 1595 !PointerType::isValidElementType(ResultTy)) 1596 return error("Invalid type"); 1597 ResultTy = PointerType::get(ResultTy, AddressSpace); 1598 break; 1599 } 1600 case bitc::TYPE_CODE_FUNCTION_OLD: { 1601 // FIXME: attrid is dead, remove it in LLVM 4.0 1602 // FUNCTION: [vararg, attrid, retty, paramty x N] 1603 if (Record.size() < 3) 1604 return error("Invalid record"); 1605 SmallVector<Type*, 8> ArgTys; 1606 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1607 if (Type *T = getTypeByID(Record[i])) 1608 ArgTys.push_back(T); 1609 else 1610 break; 1611 } 1612 1613 ResultTy = getTypeByID(Record[2]); 1614 if (!ResultTy || ArgTys.size() < Record.size()-3) 1615 return error("Invalid type"); 1616 1617 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1618 break; 1619 } 1620 case bitc::TYPE_CODE_FUNCTION: { 1621 // FUNCTION: [vararg, retty, paramty x N] 1622 if (Record.size() < 2) 1623 return error("Invalid record"); 1624 SmallVector<Type*, 8> ArgTys; 1625 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1626 if (Type *T = getTypeByID(Record[i])) { 1627 if (!FunctionType::isValidArgumentType(T)) 1628 return error("Invalid function argument type"); 1629 ArgTys.push_back(T); 1630 } 1631 else 1632 break; 1633 } 1634 1635 ResultTy = getTypeByID(Record[1]); 1636 if (!ResultTy || ArgTys.size() < Record.size()-2) 1637 return error("Invalid type"); 1638 1639 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1640 break; 1641 } 1642 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1643 if (Record.size() < 1) 1644 return error("Invalid record"); 1645 SmallVector<Type*, 8> EltTys; 1646 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1647 if (Type *T = getTypeByID(Record[i])) 1648 EltTys.push_back(T); 1649 else 1650 break; 1651 } 1652 if (EltTys.size() != Record.size()-1) 1653 return error("Invalid type"); 1654 ResultTy = StructType::get(Context, EltTys, Record[0]); 1655 break; 1656 } 1657 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1658 if (convertToString(Record, 0, TypeName)) 1659 return error("Invalid record"); 1660 continue; 1661 1662 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1663 if (Record.size() < 1) 1664 return error("Invalid record"); 1665 1666 if (NumRecords >= TypeList.size()) 1667 return error("Invalid TYPE table"); 1668 1669 // Check to see if this was forward referenced, if so fill in the temp. 1670 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1671 if (Res) { 1672 Res->setName(TypeName); 1673 TypeList[NumRecords] = nullptr; 1674 } else // Otherwise, create a new struct. 1675 Res = createIdentifiedStructType(Context, TypeName); 1676 TypeName.clear(); 1677 1678 SmallVector<Type*, 8> EltTys; 1679 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1680 if (Type *T = getTypeByID(Record[i])) 1681 EltTys.push_back(T); 1682 else 1683 break; 1684 } 1685 if (EltTys.size() != Record.size()-1) 1686 return error("Invalid record"); 1687 Res->setBody(EltTys, Record[0]); 1688 ResultTy = Res; 1689 break; 1690 } 1691 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1692 if (Record.size() != 1) 1693 return error("Invalid record"); 1694 1695 if (NumRecords >= TypeList.size()) 1696 return error("Invalid TYPE table"); 1697 1698 // Check to see if this was forward referenced, if so fill in the temp. 1699 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1700 if (Res) { 1701 Res->setName(TypeName); 1702 TypeList[NumRecords] = nullptr; 1703 } else // Otherwise, create a new struct with no body. 1704 Res = createIdentifiedStructType(Context, TypeName); 1705 TypeName.clear(); 1706 ResultTy = Res; 1707 break; 1708 } 1709 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1710 if (Record.size() < 2) 1711 return error("Invalid record"); 1712 ResultTy = getTypeByID(Record[1]); 1713 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1714 return error("Invalid type"); 1715 ResultTy = ArrayType::get(ResultTy, Record[0]); 1716 break; 1717 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1718 if (Record.size() < 2) 1719 return error("Invalid record"); 1720 if (Record[0] == 0) 1721 return error("Invalid vector length"); 1722 ResultTy = getTypeByID(Record[1]); 1723 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1724 return error("Invalid type"); 1725 ResultTy = VectorType::get(ResultTy, Record[0]); 1726 break; 1727 } 1728 1729 if (NumRecords >= TypeList.size()) 1730 return error("Invalid TYPE table"); 1731 if (TypeList[NumRecords]) 1732 return error( 1733 "Invalid TYPE table: Only named structs can be forward referenced"); 1734 assert(ResultTy && "Didn't read a type?"); 1735 TypeList[NumRecords++] = ResultTy; 1736 } 1737 } 1738 1739 Error BitcodeReader::parseOperandBundleTags() { 1740 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1741 return error("Invalid record"); 1742 1743 if (!BundleTags.empty()) 1744 return error("Invalid multiple blocks"); 1745 1746 SmallVector<uint64_t, 64> Record; 1747 1748 while (true) { 1749 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1750 1751 switch (Entry.Kind) { 1752 case BitstreamEntry::SubBlock: // Handled for us already. 1753 case BitstreamEntry::Error: 1754 return error("Malformed block"); 1755 case BitstreamEntry::EndBlock: 1756 return Error::success(); 1757 case BitstreamEntry::Record: 1758 // The interesting case. 1759 break; 1760 } 1761 1762 // Tags are implicitly mapped to integers by their order. 1763 1764 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1765 return error("Invalid record"); 1766 1767 // OPERAND_BUNDLE_TAG: [strchr x N] 1768 BundleTags.emplace_back(); 1769 if (convertToString(Record, 0, BundleTags.back())) 1770 return error("Invalid record"); 1771 Record.clear(); 1772 } 1773 } 1774 1775 Error BitcodeReader::parseSyncScopeNames() { 1776 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1777 return error("Invalid record"); 1778 1779 if (!SSIDs.empty()) 1780 return error("Invalid multiple synchronization scope names blocks"); 1781 1782 SmallVector<uint64_t, 64> Record; 1783 while (true) { 1784 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1785 switch (Entry.Kind) { 1786 case BitstreamEntry::SubBlock: // Handled for us already. 1787 case BitstreamEntry::Error: 1788 return error("Malformed block"); 1789 case BitstreamEntry::EndBlock: 1790 if (SSIDs.empty()) 1791 return error("Invalid empty synchronization scope names block"); 1792 return Error::success(); 1793 case BitstreamEntry::Record: 1794 // The interesting case. 1795 break; 1796 } 1797 1798 // Synchronization scope names are implicitly mapped to synchronization 1799 // scope IDs by their order. 1800 1801 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1802 return error("Invalid record"); 1803 1804 SmallString<16> SSN; 1805 if (convertToString(Record, 0, SSN)) 1806 return error("Invalid record"); 1807 1808 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1809 Record.clear(); 1810 } 1811 } 1812 1813 /// Associate a value with its name from the given index in the provided record. 1814 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1815 unsigned NameIndex, Triple &TT) { 1816 SmallString<128> ValueName; 1817 if (convertToString(Record, NameIndex, ValueName)) 1818 return error("Invalid record"); 1819 unsigned ValueID = Record[0]; 1820 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1821 return error("Invalid record"); 1822 Value *V = ValueList[ValueID]; 1823 1824 StringRef NameStr(ValueName.data(), ValueName.size()); 1825 if (NameStr.find_first_of(0) != StringRef::npos) 1826 return error("Invalid value name"); 1827 V->setName(NameStr); 1828 auto *GO = dyn_cast<GlobalObject>(V); 1829 if (GO) { 1830 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1831 if (TT.supportsCOMDAT()) 1832 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1833 else 1834 GO->setComdat(nullptr); 1835 } 1836 } 1837 return V; 1838 } 1839 1840 /// Helper to note and return the current location, and jump to the given 1841 /// offset. 1842 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1843 BitstreamCursor &Stream) { 1844 // Save the current parsing location so we can jump back at the end 1845 // of the VST read. 1846 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1847 Stream.JumpToBit(Offset * 32); 1848 #ifndef NDEBUG 1849 // Do some checking if we are in debug mode. 1850 BitstreamEntry Entry = Stream.advance(); 1851 assert(Entry.Kind == BitstreamEntry::SubBlock); 1852 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1853 #else 1854 // In NDEBUG mode ignore the output so we don't get an unused variable 1855 // warning. 1856 Stream.advance(); 1857 #endif 1858 return CurrentBit; 1859 } 1860 1861 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1862 Function *F, 1863 ArrayRef<uint64_t> Record) { 1864 // Note that we subtract 1 here because the offset is relative to one word 1865 // before the start of the identification or module block, which was 1866 // historically always the start of the regular bitcode header. 1867 uint64_t FuncWordOffset = Record[1] - 1; 1868 uint64_t FuncBitOffset = FuncWordOffset * 32; 1869 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1870 // Set the LastFunctionBlockBit to point to the last function block. 1871 // Later when parsing is resumed after function materialization, 1872 // we can simply skip that last function block. 1873 if (FuncBitOffset > LastFunctionBlockBit) 1874 LastFunctionBlockBit = FuncBitOffset; 1875 } 1876 1877 /// Read a new-style GlobalValue symbol table. 1878 Error BitcodeReader::parseGlobalValueSymbolTable() { 1879 unsigned FuncBitcodeOffsetDelta = 1880 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1881 1882 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1883 return error("Invalid record"); 1884 1885 SmallVector<uint64_t, 64> Record; 1886 while (true) { 1887 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1888 1889 switch (Entry.Kind) { 1890 case BitstreamEntry::SubBlock: 1891 case BitstreamEntry::Error: 1892 return error("Malformed block"); 1893 case BitstreamEntry::EndBlock: 1894 return Error::success(); 1895 case BitstreamEntry::Record: 1896 break; 1897 } 1898 1899 Record.clear(); 1900 switch (Stream.readRecord(Entry.ID, Record)) { 1901 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1902 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1903 cast<Function>(ValueList[Record[0]]), Record); 1904 break; 1905 } 1906 } 1907 } 1908 1909 /// Parse the value symbol table at either the current parsing location or 1910 /// at the given bit offset if provided. 1911 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1912 uint64_t CurrentBit; 1913 // Pass in the Offset to distinguish between calling for the module-level 1914 // VST (where we want to jump to the VST offset) and the function-level 1915 // VST (where we don't). 1916 if (Offset > 0) { 1917 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1918 // If this module uses a string table, read this as a module-level VST. 1919 if (UseStrtab) { 1920 if (Error Err = parseGlobalValueSymbolTable()) 1921 return Err; 1922 Stream.JumpToBit(CurrentBit); 1923 return Error::success(); 1924 } 1925 // Otherwise, the VST will be in a similar format to a function-level VST, 1926 // and will contain symbol names. 1927 } 1928 1929 // Compute the delta between the bitcode indices in the VST (the word offset 1930 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1931 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1932 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1933 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1934 // just before entering the VST subblock because: 1) the EnterSubBlock 1935 // changes the AbbrevID width; 2) the VST block is nested within the same 1936 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1937 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1938 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1939 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1940 unsigned FuncBitcodeOffsetDelta = 1941 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1942 1943 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1944 return error("Invalid record"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 Triple TT(TheModule->getTargetTriple()); 1949 1950 // Read all the records for this value table. 1951 SmallString<128> ValueName; 1952 1953 while (true) { 1954 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1955 1956 switch (Entry.Kind) { 1957 case BitstreamEntry::SubBlock: // Handled for us already. 1958 case BitstreamEntry::Error: 1959 return error("Malformed block"); 1960 case BitstreamEntry::EndBlock: 1961 if (Offset > 0) 1962 Stream.JumpToBit(CurrentBit); 1963 return Error::success(); 1964 case BitstreamEntry::Record: 1965 // The interesting case. 1966 break; 1967 } 1968 1969 // Read a record. 1970 Record.clear(); 1971 switch (Stream.readRecord(Entry.ID, Record)) { 1972 default: // Default behavior: unknown type. 1973 break; 1974 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1975 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1976 if (Error Err = ValOrErr.takeError()) 1977 return Err; 1978 ValOrErr.get(); 1979 break; 1980 } 1981 case bitc::VST_CODE_FNENTRY: { 1982 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1983 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1984 if (Error Err = ValOrErr.takeError()) 1985 return Err; 1986 Value *V = ValOrErr.get(); 1987 1988 // Ignore function offsets emitted for aliases of functions in older 1989 // versions of LLVM. 1990 if (auto *F = dyn_cast<Function>(V)) 1991 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1992 break; 1993 } 1994 case bitc::VST_CODE_BBENTRY: { 1995 if (convertToString(Record, 1, ValueName)) 1996 return error("Invalid record"); 1997 BasicBlock *BB = getBasicBlock(Record[0]); 1998 if (!BB) 1999 return error("Invalid record"); 2000 2001 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2002 ValueName.clear(); 2003 break; 2004 } 2005 } 2006 } 2007 } 2008 2009 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2010 /// encoding. 2011 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2012 if ((V & 1) == 0) 2013 return V >> 1; 2014 if (V != 1) 2015 return -(V >> 1); 2016 // There is no such thing as -0 with integers. "-0" really means MININT. 2017 return 1ULL << 63; 2018 } 2019 2020 /// Resolve all of the initializers for global values and aliases that we can. 2021 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2022 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2023 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2024 IndirectSymbolInitWorklist; 2025 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2026 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2027 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2028 2029 GlobalInitWorklist.swap(GlobalInits); 2030 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2031 FunctionPrefixWorklist.swap(FunctionPrefixes); 2032 FunctionPrologueWorklist.swap(FunctionPrologues); 2033 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2034 2035 while (!GlobalInitWorklist.empty()) { 2036 unsigned ValID = GlobalInitWorklist.back().second; 2037 if (ValID >= ValueList.size()) { 2038 // Not ready to resolve this yet, it requires something later in the file. 2039 GlobalInits.push_back(GlobalInitWorklist.back()); 2040 } else { 2041 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2042 GlobalInitWorklist.back().first->setInitializer(C); 2043 else 2044 return error("Expected a constant"); 2045 } 2046 GlobalInitWorklist.pop_back(); 2047 } 2048 2049 while (!IndirectSymbolInitWorklist.empty()) { 2050 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2051 if (ValID >= ValueList.size()) { 2052 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2053 } else { 2054 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2055 if (!C) 2056 return error("Expected a constant"); 2057 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2058 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2059 return error("Alias and aliasee types don't match"); 2060 GIS->setIndirectSymbol(C); 2061 } 2062 IndirectSymbolInitWorklist.pop_back(); 2063 } 2064 2065 while (!FunctionPrefixWorklist.empty()) { 2066 unsigned ValID = FunctionPrefixWorklist.back().second; 2067 if (ValID >= ValueList.size()) { 2068 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2069 } else { 2070 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2071 FunctionPrefixWorklist.back().first->setPrefixData(C); 2072 else 2073 return error("Expected a constant"); 2074 } 2075 FunctionPrefixWorklist.pop_back(); 2076 } 2077 2078 while (!FunctionPrologueWorklist.empty()) { 2079 unsigned ValID = FunctionPrologueWorklist.back().second; 2080 if (ValID >= ValueList.size()) { 2081 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2082 } else { 2083 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2084 FunctionPrologueWorklist.back().first->setPrologueData(C); 2085 else 2086 return error("Expected a constant"); 2087 } 2088 FunctionPrologueWorklist.pop_back(); 2089 } 2090 2091 while (!FunctionPersonalityFnWorklist.empty()) { 2092 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2093 if (ValID >= ValueList.size()) { 2094 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2095 } else { 2096 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2097 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2098 else 2099 return error("Expected a constant"); 2100 } 2101 FunctionPersonalityFnWorklist.pop_back(); 2102 } 2103 2104 return Error::success(); 2105 } 2106 2107 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2108 SmallVector<uint64_t, 8> Words(Vals.size()); 2109 transform(Vals, Words.begin(), 2110 BitcodeReader::decodeSignRotatedValue); 2111 2112 return APInt(TypeBits, Words); 2113 } 2114 2115 Error BitcodeReader::parseConstants() { 2116 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2117 return error("Invalid record"); 2118 2119 SmallVector<uint64_t, 64> Record; 2120 2121 // Read all the records for this value table. 2122 Type *CurTy = Type::getInt32Ty(Context); 2123 unsigned NextCstNo = ValueList.size(); 2124 2125 while (true) { 2126 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2127 2128 switch (Entry.Kind) { 2129 case BitstreamEntry::SubBlock: // Handled for us already. 2130 case BitstreamEntry::Error: 2131 return error("Malformed block"); 2132 case BitstreamEntry::EndBlock: 2133 if (NextCstNo != ValueList.size()) 2134 return error("Invalid constant reference"); 2135 2136 // Once all the constants have been read, go through and resolve forward 2137 // references. 2138 ValueList.resolveConstantForwardRefs(); 2139 return Error::success(); 2140 case BitstreamEntry::Record: 2141 // The interesting case. 2142 break; 2143 } 2144 2145 // Read a record. 2146 Record.clear(); 2147 Type *VoidType = Type::getVoidTy(Context); 2148 Value *V = nullptr; 2149 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2150 switch (BitCode) { 2151 default: // Default behavior: unknown constant 2152 case bitc::CST_CODE_UNDEF: // UNDEF 2153 V = UndefValue::get(CurTy); 2154 break; 2155 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2156 if (Record.empty()) 2157 return error("Invalid record"); 2158 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2159 return error("Invalid record"); 2160 if (TypeList[Record[0]] == VoidType) 2161 return error("Invalid constant type"); 2162 CurTy = TypeList[Record[0]]; 2163 continue; // Skip the ValueList manipulation. 2164 case bitc::CST_CODE_NULL: // NULL 2165 V = Constant::getNullValue(CurTy); 2166 break; 2167 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2168 if (!CurTy->isIntegerTy() || Record.empty()) 2169 return error("Invalid record"); 2170 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2171 break; 2172 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2173 if (!CurTy->isIntegerTy() || Record.empty()) 2174 return error("Invalid record"); 2175 2176 APInt VInt = 2177 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2178 V = ConstantInt::get(Context, VInt); 2179 2180 break; 2181 } 2182 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2183 if (Record.empty()) 2184 return error("Invalid record"); 2185 if (CurTy->isHalfTy()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2187 APInt(16, (uint16_t)Record[0]))); 2188 else if (CurTy->isFloatTy()) 2189 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2190 APInt(32, (uint32_t)Record[0]))); 2191 else if (CurTy->isDoubleTy()) 2192 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2193 APInt(64, Record[0]))); 2194 else if (CurTy->isX86_FP80Ty()) { 2195 // Bits are not stored the same way as a normal i80 APInt, compensate. 2196 uint64_t Rearrange[2]; 2197 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2198 Rearrange[1] = Record[0] >> 48; 2199 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2200 APInt(80, Rearrange))); 2201 } else if (CurTy->isFP128Ty()) 2202 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2203 APInt(128, Record))); 2204 else if (CurTy->isPPC_FP128Ty()) 2205 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2206 APInt(128, Record))); 2207 else 2208 V = UndefValue::get(CurTy); 2209 break; 2210 } 2211 2212 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2213 if (Record.empty()) 2214 return error("Invalid record"); 2215 2216 unsigned Size = Record.size(); 2217 SmallVector<Constant*, 16> Elts; 2218 2219 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2220 for (unsigned i = 0; i != Size; ++i) 2221 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2222 STy->getElementType(i))); 2223 V = ConstantStruct::get(STy, Elts); 2224 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2225 Type *EltTy = ATy->getElementType(); 2226 for (unsigned i = 0; i != Size; ++i) 2227 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2228 V = ConstantArray::get(ATy, Elts); 2229 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2230 Type *EltTy = VTy->getElementType(); 2231 for (unsigned i = 0; i != Size; ++i) 2232 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2233 V = ConstantVector::get(Elts); 2234 } else { 2235 V = UndefValue::get(CurTy); 2236 } 2237 break; 2238 } 2239 case bitc::CST_CODE_STRING: // STRING: [values] 2240 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2241 if (Record.empty()) 2242 return error("Invalid record"); 2243 2244 SmallString<16> Elts(Record.begin(), Record.end()); 2245 V = ConstantDataArray::getString(Context, Elts, 2246 BitCode == bitc::CST_CODE_CSTRING); 2247 break; 2248 } 2249 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2250 if (Record.empty()) 2251 return error("Invalid record"); 2252 2253 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2254 if (EltTy->isIntegerTy(8)) { 2255 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2256 if (isa<VectorType>(CurTy)) 2257 V = ConstantDataVector::get(Context, Elts); 2258 else 2259 V = ConstantDataArray::get(Context, Elts); 2260 } else if (EltTy->isIntegerTy(16)) { 2261 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2262 if (isa<VectorType>(CurTy)) 2263 V = ConstantDataVector::get(Context, Elts); 2264 else 2265 V = ConstantDataArray::get(Context, Elts); 2266 } else if (EltTy->isIntegerTy(32)) { 2267 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isIntegerTy(64)) { 2273 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isHalfTy()) { 2279 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::getFP(Context, Elts); 2282 else 2283 V = ConstantDataArray::getFP(Context, Elts); 2284 } else if (EltTy->isFloatTy()) { 2285 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2286 if (isa<VectorType>(CurTy)) 2287 V = ConstantDataVector::getFP(Context, Elts); 2288 else 2289 V = ConstantDataArray::getFP(Context, Elts); 2290 } else if (EltTy->isDoubleTy()) { 2291 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2292 if (isa<VectorType>(CurTy)) 2293 V = ConstantDataVector::getFP(Context, Elts); 2294 else 2295 V = ConstantDataArray::getFP(Context, Elts); 2296 } else { 2297 return error("Invalid type for value"); 2298 } 2299 break; 2300 } 2301 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2302 if (Record.size() < 3) 2303 return error("Invalid record"); 2304 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2305 if (Opc < 0) { 2306 V = UndefValue::get(CurTy); // Unknown binop. 2307 } else { 2308 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2309 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2310 unsigned Flags = 0; 2311 if (Record.size() >= 4) { 2312 if (Opc == Instruction::Add || 2313 Opc == Instruction::Sub || 2314 Opc == Instruction::Mul || 2315 Opc == Instruction::Shl) { 2316 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2317 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2318 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2319 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2320 } else if (Opc == Instruction::SDiv || 2321 Opc == Instruction::UDiv || 2322 Opc == Instruction::LShr || 2323 Opc == Instruction::AShr) { 2324 if (Record[3] & (1 << bitc::PEO_EXACT)) 2325 Flags |= SDivOperator::IsExact; 2326 } 2327 } 2328 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2329 } 2330 break; 2331 } 2332 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2333 if (Record.size() < 3) 2334 return error("Invalid record"); 2335 int Opc = getDecodedCastOpcode(Record[0]); 2336 if (Opc < 0) { 2337 V = UndefValue::get(CurTy); // Unknown cast. 2338 } else { 2339 Type *OpTy = getTypeByID(Record[1]); 2340 if (!OpTy) 2341 return error("Invalid record"); 2342 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2343 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2344 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2345 } 2346 break; 2347 } 2348 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2349 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2350 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2351 // operands] 2352 unsigned OpNum = 0; 2353 Type *PointeeType = nullptr; 2354 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2355 Record.size() % 2) 2356 PointeeType = getTypeByID(Record[OpNum++]); 2357 2358 bool InBounds = false; 2359 Optional<unsigned> InRangeIndex; 2360 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2361 uint64_t Op = Record[OpNum++]; 2362 InBounds = Op & 1; 2363 InRangeIndex = Op >> 1; 2364 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2365 InBounds = true; 2366 2367 SmallVector<Constant*, 16> Elts; 2368 while (OpNum != Record.size()) { 2369 Type *ElTy = getTypeByID(Record[OpNum++]); 2370 if (!ElTy) 2371 return error("Invalid record"); 2372 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2373 } 2374 2375 if (PointeeType && 2376 PointeeType != 2377 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2378 ->getElementType()) 2379 return error("Explicit gep operator type does not match pointee type " 2380 "of pointer operand"); 2381 2382 if (Elts.size() < 1) 2383 return error("Invalid gep with no operands"); 2384 2385 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2386 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2387 InBounds, InRangeIndex); 2388 break; 2389 } 2390 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2391 if (Record.size() < 3) 2392 return error("Invalid record"); 2393 2394 Type *SelectorTy = Type::getInt1Ty(Context); 2395 2396 // The selector might be an i1 or an <n x i1> 2397 // Get the type from the ValueList before getting a forward ref. 2398 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2399 if (Value *V = ValueList[Record[0]]) 2400 if (SelectorTy != V->getType()) 2401 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2402 2403 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2404 SelectorTy), 2405 ValueList.getConstantFwdRef(Record[1],CurTy), 2406 ValueList.getConstantFwdRef(Record[2],CurTy)); 2407 break; 2408 } 2409 case bitc::CST_CODE_CE_EXTRACTELT 2410 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2411 if (Record.size() < 3) 2412 return error("Invalid record"); 2413 VectorType *OpTy = 2414 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2415 if (!OpTy) 2416 return error("Invalid record"); 2417 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2418 Constant *Op1 = nullptr; 2419 if (Record.size() == 4) { 2420 Type *IdxTy = getTypeByID(Record[2]); 2421 if (!IdxTy) 2422 return error("Invalid record"); 2423 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2424 } else // TODO: Remove with llvm 4.0 2425 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2426 if (!Op1) 2427 return error("Invalid record"); 2428 V = ConstantExpr::getExtractElement(Op0, Op1); 2429 break; 2430 } 2431 case bitc::CST_CODE_CE_INSERTELT 2432 : { // CE_INSERTELT: [opval, opval, opty, opval] 2433 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2434 if (Record.size() < 3 || !OpTy) 2435 return error("Invalid record"); 2436 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2437 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2438 OpTy->getElementType()); 2439 Constant *Op2 = nullptr; 2440 if (Record.size() == 4) { 2441 Type *IdxTy = getTypeByID(Record[2]); 2442 if (!IdxTy) 2443 return error("Invalid record"); 2444 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2445 } else // TODO: Remove with llvm 4.0 2446 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2447 if (!Op2) 2448 return error("Invalid record"); 2449 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2450 break; 2451 } 2452 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2453 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2454 if (Record.size() < 3 || !OpTy) 2455 return error("Invalid record"); 2456 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2457 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2458 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2459 OpTy->getNumElements()); 2460 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2461 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2462 break; 2463 } 2464 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2465 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2466 VectorType *OpTy = 2467 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2468 if (Record.size() < 4 || !RTy || !OpTy) 2469 return error("Invalid record"); 2470 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2471 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2472 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2473 RTy->getNumElements()); 2474 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2475 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2476 break; 2477 } 2478 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2479 if (Record.size() < 4) 2480 return error("Invalid record"); 2481 Type *OpTy = getTypeByID(Record[0]); 2482 if (!OpTy) 2483 return error("Invalid record"); 2484 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2485 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2486 2487 if (OpTy->isFPOrFPVectorTy()) 2488 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2489 else 2490 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2491 break; 2492 } 2493 // This maintains backward compatibility, pre-asm dialect keywords. 2494 // FIXME: Remove with the 4.0 release. 2495 case bitc::CST_CODE_INLINEASM_OLD: { 2496 if (Record.size() < 2) 2497 return error("Invalid record"); 2498 std::string AsmStr, ConstrStr; 2499 bool HasSideEffects = Record[0] & 1; 2500 bool IsAlignStack = Record[0] >> 1; 2501 unsigned AsmStrSize = Record[1]; 2502 if (2+AsmStrSize >= Record.size()) 2503 return error("Invalid record"); 2504 unsigned ConstStrSize = Record[2+AsmStrSize]; 2505 if (3+AsmStrSize+ConstStrSize > Record.size()) 2506 return error("Invalid record"); 2507 2508 for (unsigned i = 0; i != AsmStrSize; ++i) 2509 AsmStr += (char)Record[2+i]; 2510 for (unsigned i = 0; i != ConstStrSize; ++i) 2511 ConstrStr += (char)Record[3+AsmStrSize+i]; 2512 PointerType *PTy = cast<PointerType>(CurTy); 2513 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2514 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2515 break; 2516 } 2517 // This version adds support for the asm dialect keywords (e.g., 2518 // inteldialect). 2519 case bitc::CST_CODE_INLINEASM: { 2520 if (Record.size() < 2) 2521 return error("Invalid record"); 2522 std::string AsmStr, ConstrStr; 2523 bool HasSideEffects = Record[0] & 1; 2524 bool IsAlignStack = (Record[0] >> 1) & 1; 2525 unsigned AsmDialect = Record[0] >> 2; 2526 unsigned AsmStrSize = Record[1]; 2527 if (2+AsmStrSize >= Record.size()) 2528 return error("Invalid record"); 2529 unsigned ConstStrSize = Record[2+AsmStrSize]; 2530 if (3+AsmStrSize+ConstStrSize > Record.size()) 2531 return error("Invalid record"); 2532 2533 for (unsigned i = 0; i != AsmStrSize; ++i) 2534 AsmStr += (char)Record[2+i]; 2535 for (unsigned i = 0; i != ConstStrSize; ++i) 2536 ConstrStr += (char)Record[3+AsmStrSize+i]; 2537 PointerType *PTy = cast<PointerType>(CurTy); 2538 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2539 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2540 InlineAsm::AsmDialect(AsmDialect)); 2541 break; 2542 } 2543 case bitc::CST_CODE_BLOCKADDRESS:{ 2544 if (Record.size() < 3) 2545 return error("Invalid record"); 2546 Type *FnTy = getTypeByID(Record[0]); 2547 if (!FnTy) 2548 return error("Invalid record"); 2549 Function *Fn = 2550 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2551 if (!Fn) 2552 return error("Invalid record"); 2553 2554 // If the function is already parsed we can insert the block address right 2555 // away. 2556 BasicBlock *BB; 2557 unsigned BBID = Record[2]; 2558 if (!BBID) 2559 // Invalid reference to entry block. 2560 return error("Invalid ID"); 2561 if (!Fn->empty()) { 2562 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2563 for (size_t I = 0, E = BBID; I != E; ++I) { 2564 if (BBI == BBE) 2565 return error("Invalid ID"); 2566 ++BBI; 2567 } 2568 BB = &*BBI; 2569 } else { 2570 // Otherwise insert a placeholder and remember it so it can be inserted 2571 // when the function is parsed. 2572 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2573 if (FwdBBs.empty()) 2574 BasicBlockFwdRefQueue.push_back(Fn); 2575 if (FwdBBs.size() < BBID + 1) 2576 FwdBBs.resize(BBID + 1); 2577 if (!FwdBBs[BBID]) 2578 FwdBBs[BBID] = BasicBlock::Create(Context); 2579 BB = FwdBBs[BBID]; 2580 } 2581 V = BlockAddress::get(Fn, BB); 2582 break; 2583 } 2584 } 2585 2586 ValueList.assignValue(V, NextCstNo); 2587 ++NextCstNo; 2588 } 2589 } 2590 2591 Error BitcodeReader::parseUseLists() { 2592 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2593 return error("Invalid record"); 2594 2595 // Read all the records. 2596 SmallVector<uint64_t, 64> Record; 2597 2598 while (true) { 2599 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2600 2601 switch (Entry.Kind) { 2602 case BitstreamEntry::SubBlock: // Handled for us already. 2603 case BitstreamEntry::Error: 2604 return error("Malformed block"); 2605 case BitstreamEntry::EndBlock: 2606 return Error::success(); 2607 case BitstreamEntry::Record: 2608 // The interesting case. 2609 break; 2610 } 2611 2612 // Read a use list record. 2613 Record.clear(); 2614 bool IsBB = false; 2615 switch (Stream.readRecord(Entry.ID, Record)) { 2616 default: // Default behavior: unknown type. 2617 break; 2618 case bitc::USELIST_CODE_BB: 2619 IsBB = true; 2620 LLVM_FALLTHROUGH; 2621 case bitc::USELIST_CODE_DEFAULT: { 2622 unsigned RecordLength = Record.size(); 2623 if (RecordLength < 3) 2624 // Records should have at least an ID and two indexes. 2625 return error("Invalid record"); 2626 unsigned ID = Record.back(); 2627 Record.pop_back(); 2628 2629 Value *V; 2630 if (IsBB) { 2631 assert(ID < FunctionBBs.size() && "Basic block not found"); 2632 V = FunctionBBs[ID]; 2633 } else 2634 V = ValueList[ID]; 2635 unsigned NumUses = 0; 2636 SmallDenseMap<const Use *, unsigned, 16> Order; 2637 for (const Use &U : V->materialized_uses()) { 2638 if (++NumUses > Record.size()) 2639 break; 2640 Order[&U] = Record[NumUses - 1]; 2641 } 2642 if (Order.size() != Record.size() || NumUses > Record.size()) 2643 // Mismatches can happen if the functions are being materialized lazily 2644 // (out-of-order), or a value has been upgraded. 2645 break; 2646 2647 V->sortUseList([&](const Use &L, const Use &R) { 2648 return Order.lookup(&L) < Order.lookup(&R); 2649 }); 2650 break; 2651 } 2652 } 2653 } 2654 } 2655 2656 /// When we see the block for metadata, remember where it is and then skip it. 2657 /// This lets us lazily deserialize the metadata. 2658 Error BitcodeReader::rememberAndSkipMetadata() { 2659 // Save the current stream state. 2660 uint64_t CurBit = Stream.GetCurrentBitNo(); 2661 DeferredMetadataInfo.push_back(CurBit); 2662 2663 // Skip over the block for now. 2664 if (Stream.SkipBlock()) 2665 return error("Invalid record"); 2666 return Error::success(); 2667 } 2668 2669 Error BitcodeReader::materializeMetadata() { 2670 for (uint64_t BitPos : DeferredMetadataInfo) { 2671 // Move the bit stream to the saved position. 2672 Stream.JumpToBit(BitPos); 2673 if (Error Err = MDLoader->parseModuleMetadata()) 2674 return Err; 2675 } 2676 2677 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2678 // metadata. 2679 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2680 NamedMDNode *LinkerOpts = 2681 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2682 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2683 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2684 } 2685 2686 DeferredMetadataInfo.clear(); 2687 return Error::success(); 2688 } 2689 2690 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2691 2692 /// When we see the block for a function body, remember where it is and then 2693 /// skip it. This lets us lazily deserialize the functions. 2694 Error BitcodeReader::rememberAndSkipFunctionBody() { 2695 // Get the function we are talking about. 2696 if (FunctionsWithBodies.empty()) 2697 return error("Insufficient function protos"); 2698 2699 Function *Fn = FunctionsWithBodies.back(); 2700 FunctionsWithBodies.pop_back(); 2701 2702 // Save the current stream state. 2703 uint64_t CurBit = Stream.GetCurrentBitNo(); 2704 assert( 2705 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2706 "Mismatch between VST and scanned function offsets"); 2707 DeferredFunctionInfo[Fn] = CurBit; 2708 2709 // Skip over the function block for now. 2710 if (Stream.SkipBlock()) 2711 return error("Invalid record"); 2712 return Error::success(); 2713 } 2714 2715 Error BitcodeReader::globalCleanup() { 2716 // Patch the initializers for globals and aliases up. 2717 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2718 return Err; 2719 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2720 return error("Malformed global initializer set"); 2721 2722 // Look for intrinsic functions which need to be upgraded at some point 2723 for (Function &F : *TheModule) { 2724 MDLoader->upgradeDebugIntrinsics(F); 2725 Function *NewFn; 2726 if (UpgradeIntrinsicFunction(&F, NewFn)) 2727 UpgradedIntrinsics[&F] = NewFn; 2728 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2729 // Some types could be renamed during loading if several modules are 2730 // loaded in the same LLVMContext (LTO scenario). In this case we should 2731 // remangle intrinsics names as well. 2732 RemangledIntrinsics[&F] = Remangled.getValue(); 2733 } 2734 2735 // Look for global variables which need to be renamed. 2736 for (GlobalVariable &GV : TheModule->globals()) 2737 UpgradeGlobalVariable(&GV); 2738 2739 // Force deallocation of memory for these vectors to favor the client that 2740 // want lazy deserialization. 2741 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2742 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2743 IndirectSymbolInits); 2744 return Error::success(); 2745 } 2746 2747 /// Support for lazy parsing of function bodies. This is required if we 2748 /// either have an old bitcode file without a VST forward declaration record, 2749 /// or if we have an anonymous function being materialized, since anonymous 2750 /// functions do not have a name and are therefore not in the VST. 2751 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2752 Stream.JumpToBit(NextUnreadBit); 2753 2754 if (Stream.AtEndOfStream()) 2755 return error("Could not find function in stream"); 2756 2757 if (!SeenFirstFunctionBody) 2758 return error("Trying to materialize functions before seeing function blocks"); 2759 2760 // An old bitcode file with the symbol table at the end would have 2761 // finished the parse greedily. 2762 assert(SeenValueSymbolTable); 2763 2764 SmallVector<uint64_t, 64> Record; 2765 2766 while (true) { 2767 BitstreamEntry Entry = Stream.advance(); 2768 switch (Entry.Kind) { 2769 default: 2770 return error("Expect SubBlock"); 2771 case BitstreamEntry::SubBlock: 2772 switch (Entry.ID) { 2773 default: 2774 return error("Expect function block"); 2775 case bitc::FUNCTION_BLOCK_ID: 2776 if (Error Err = rememberAndSkipFunctionBody()) 2777 return Err; 2778 NextUnreadBit = Stream.GetCurrentBitNo(); 2779 return Error::success(); 2780 } 2781 } 2782 } 2783 } 2784 2785 bool BitcodeReaderBase::readBlockInfo() { 2786 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2787 if (!NewBlockInfo) 2788 return true; 2789 BlockInfo = std::move(*NewBlockInfo); 2790 return false; 2791 } 2792 2793 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2794 // v1: [selection_kind, name] 2795 // v2: [strtab_offset, strtab_size, selection_kind] 2796 StringRef Name; 2797 std::tie(Name, Record) = readNameFromStrtab(Record); 2798 2799 if (Record.empty()) 2800 return error("Invalid record"); 2801 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2802 std::string OldFormatName; 2803 if (!UseStrtab) { 2804 if (Record.size() < 2) 2805 return error("Invalid record"); 2806 unsigned ComdatNameSize = Record[1]; 2807 OldFormatName.reserve(ComdatNameSize); 2808 for (unsigned i = 0; i != ComdatNameSize; ++i) 2809 OldFormatName += (char)Record[2 + i]; 2810 Name = OldFormatName; 2811 } 2812 Comdat *C = TheModule->getOrInsertComdat(Name); 2813 C->setSelectionKind(SK); 2814 ComdatList.push_back(C); 2815 return Error::success(); 2816 } 2817 2818 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2819 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2820 // visibility, threadlocal, unnamed_addr, externally_initialized, 2821 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2822 // v2: [strtab_offset, strtab_size, v1] 2823 StringRef Name; 2824 std::tie(Name, Record) = readNameFromStrtab(Record); 2825 2826 if (Record.size() < 6) 2827 return error("Invalid record"); 2828 Type *Ty = getTypeByID(Record[0]); 2829 if (!Ty) 2830 return error("Invalid record"); 2831 bool isConstant = Record[1] & 1; 2832 bool explicitType = Record[1] & 2; 2833 unsigned AddressSpace; 2834 if (explicitType) { 2835 AddressSpace = Record[1] >> 2; 2836 } else { 2837 if (!Ty->isPointerTy()) 2838 return error("Invalid type for value"); 2839 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2840 Ty = cast<PointerType>(Ty)->getElementType(); 2841 } 2842 2843 uint64_t RawLinkage = Record[3]; 2844 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2845 unsigned Alignment; 2846 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2847 return Err; 2848 std::string Section; 2849 if (Record[5]) { 2850 if (Record[5] - 1 >= SectionTable.size()) 2851 return error("Invalid ID"); 2852 Section = SectionTable[Record[5] - 1]; 2853 } 2854 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2855 // Local linkage must have default visibility. 2856 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2857 // FIXME: Change to an error if non-default in 4.0. 2858 Visibility = getDecodedVisibility(Record[6]); 2859 2860 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2861 if (Record.size() > 7) 2862 TLM = getDecodedThreadLocalMode(Record[7]); 2863 2864 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2865 if (Record.size() > 8) 2866 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2867 2868 bool ExternallyInitialized = false; 2869 if (Record.size() > 9) 2870 ExternallyInitialized = Record[9]; 2871 2872 GlobalVariable *NewGV = 2873 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2874 nullptr, TLM, AddressSpace, ExternallyInitialized); 2875 NewGV->setAlignment(Alignment); 2876 if (!Section.empty()) 2877 NewGV->setSection(Section); 2878 NewGV->setVisibility(Visibility); 2879 NewGV->setUnnamedAddr(UnnamedAddr); 2880 2881 if (Record.size() > 10) 2882 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2883 else 2884 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2885 2886 ValueList.push_back(NewGV); 2887 2888 // Remember which value to use for the global initializer. 2889 if (unsigned InitID = Record[2]) 2890 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2891 2892 if (Record.size() > 11) { 2893 if (unsigned ComdatID = Record[11]) { 2894 if (ComdatID > ComdatList.size()) 2895 return error("Invalid global variable comdat ID"); 2896 NewGV->setComdat(ComdatList[ComdatID - 1]); 2897 } 2898 } else if (hasImplicitComdat(RawLinkage)) { 2899 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2900 } 2901 2902 if (Record.size() > 12) { 2903 auto AS = getAttributes(Record[12]).getFnAttributes(); 2904 NewGV->setAttributes(AS); 2905 } 2906 2907 if (Record.size() > 13) { 2908 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2909 } 2910 2911 return Error::success(); 2912 } 2913 2914 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2915 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2916 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2917 // prefixdata, personalityfn, preemption specifier] (name in VST) 2918 // v2: [strtab_offset, strtab_size, v1] 2919 StringRef Name; 2920 std::tie(Name, Record) = readNameFromStrtab(Record); 2921 2922 if (Record.size() < 8) 2923 return error("Invalid record"); 2924 Type *Ty = getTypeByID(Record[0]); 2925 if (!Ty) 2926 return error("Invalid record"); 2927 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2928 Ty = PTy->getElementType(); 2929 auto *FTy = dyn_cast<FunctionType>(Ty); 2930 if (!FTy) 2931 return error("Invalid type for value"); 2932 auto CC = static_cast<CallingConv::ID>(Record[1]); 2933 if (CC & ~CallingConv::MaxID) 2934 return error("Invalid calling convention ID"); 2935 2936 Function *Func = 2937 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2938 2939 Func->setCallingConv(CC); 2940 bool isProto = Record[2]; 2941 uint64_t RawLinkage = Record[3]; 2942 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2943 Func->setAttributes(getAttributes(Record[4])); 2944 2945 unsigned Alignment; 2946 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2947 return Err; 2948 Func->setAlignment(Alignment); 2949 if (Record[6]) { 2950 if (Record[6] - 1 >= SectionTable.size()) 2951 return error("Invalid ID"); 2952 Func->setSection(SectionTable[Record[6] - 1]); 2953 } 2954 // Local linkage must have default visibility. 2955 if (!Func->hasLocalLinkage()) 2956 // FIXME: Change to an error if non-default in 4.0. 2957 Func->setVisibility(getDecodedVisibility(Record[7])); 2958 if (Record.size() > 8 && Record[8]) { 2959 if (Record[8] - 1 >= GCTable.size()) 2960 return error("Invalid ID"); 2961 Func->setGC(GCTable[Record[8] - 1]); 2962 } 2963 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2964 if (Record.size() > 9) 2965 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2966 Func->setUnnamedAddr(UnnamedAddr); 2967 if (Record.size() > 10 && Record[10] != 0) 2968 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2969 2970 if (Record.size() > 11) 2971 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2972 else 2973 upgradeDLLImportExportLinkage(Func, RawLinkage); 2974 2975 if (Record.size() > 12) { 2976 if (unsigned ComdatID = Record[12]) { 2977 if (ComdatID > ComdatList.size()) 2978 return error("Invalid function comdat ID"); 2979 Func->setComdat(ComdatList[ComdatID - 1]); 2980 } 2981 } else if (hasImplicitComdat(RawLinkage)) { 2982 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2983 } 2984 2985 if (Record.size() > 13 && Record[13] != 0) 2986 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2987 2988 if (Record.size() > 14 && Record[14] != 0) 2989 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2990 2991 if (Record.size() > 15) { 2992 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 2993 } 2994 2995 ValueList.push_back(Func); 2996 2997 // If this is a function with a body, remember the prototype we are 2998 // creating now, so that we can match up the body with them later. 2999 if (!isProto) { 3000 Func->setIsMaterializable(true); 3001 FunctionsWithBodies.push_back(Func); 3002 DeferredFunctionInfo[Func] = 0; 3003 } 3004 return Error::success(); 3005 } 3006 3007 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3008 unsigned BitCode, ArrayRef<uint64_t> Record) { 3009 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3010 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3011 // dllstorageclass, threadlocal, unnamed_addr, 3012 // preemption specifier] (name in VST) 3013 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3014 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3015 // preemption specifier] (name in VST) 3016 // v2: [strtab_offset, strtab_size, v1] 3017 StringRef Name; 3018 std::tie(Name, Record) = readNameFromStrtab(Record); 3019 3020 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3021 if (Record.size() < (3 + (unsigned)NewRecord)) 3022 return error("Invalid record"); 3023 unsigned OpNum = 0; 3024 Type *Ty = getTypeByID(Record[OpNum++]); 3025 if (!Ty) 3026 return error("Invalid record"); 3027 3028 unsigned AddrSpace; 3029 if (!NewRecord) { 3030 auto *PTy = dyn_cast<PointerType>(Ty); 3031 if (!PTy) 3032 return error("Invalid type for value"); 3033 Ty = PTy->getElementType(); 3034 AddrSpace = PTy->getAddressSpace(); 3035 } else { 3036 AddrSpace = Record[OpNum++]; 3037 } 3038 3039 auto Val = Record[OpNum++]; 3040 auto Linkage = Record[OpNum++]; 3041 GlobalIndirectSymbol *NewGA; 3042 if (BitCode == bitc::MODULE_CODE_ALIAS || 3043 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3044 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3045 TheModule); 3046 else 3047 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3048 nullptr, TheModule); 3049 // Old bitcode files didn't have visibility field. 3050 // Local linkage must have default visibility. 3051 if (OpNum != Record.size()) { 3052 auto VisInd = OpNum++; 3053 if (!NewGA->hasLocalLinkage()) 3054 // FIXME: Change to an error if non-default in 4.0. 3055 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3056 } 3057 if (OpNum != Record.size()) 3058 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3059 else 3060 upgradeDLLImportExportLinkage(NewGA, Linkage); 3061 if (OpNum != Record.size()) 3062 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3063 if (OpNum != Record.size()) 3064 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3065 if (OpNum != Record.size()) 3066 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3067 ValueList.push_back(NewGA); 3068 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3069 return Error::success(); 3070 } 3071 3072 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3073 bool ShouldLazyLoadMetadata) { 3074 if (ResumeBit) 3075 Stream.JumpToBit(ResumeBit); 3076 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3077 return error("Invalid record"); 3078 3079 SmallVector<uint64_t, 64> Record; 3080 3081 // Read all the records for this module. 3082 while (true) { 3083 BitstreamEntry Entry = Stream.advance(); 3084 3085 switch (Entry.Kind) { 3086 case BitstreamEntry::Error: 3087 return error("Malformed block"); 3088 case BitstreamEntry::EndBlock: 3089 return globalCleanup(); 3090 3091 case BitstreamEntry::SubBlock: 3092 switch (Entry.ID) { 3093 default: // Skip unknown content. 3094 if (Stream.SkipBlock()) 3095 return error("Invalid record"); 3096 break; 3097 case bitc::BLOCKINFO_BLOCK_ID: 3098 if (readBlockInfo()) 3099 return error("Malformed block"); 3100 break; 3101 case bitc::PARAMATTR_BLOCK_ID: 3102 if (Error Err = parseAttributeBlock()) 3103 return Err; 3104 break; 3105 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3106 if (Error Err = parseAttributeGroupBlock()) 3107 return Err; 3108 break; 3109 case bitc::TYPE_BLOCK_ID_NEW: 3110 if (Error Err = parseTypeTable()) 3111 return Err; 3112 break; 3113 case bitc::VALUE_SYMTAB_BLOCK_ID: 3114 if (!SeenValueSymbolTable) { 3115 // Either this is an old form VST without function index and an 3116 // associated VST forward declaration record (which would have caused 3117 // the VST to be jumped to and parsed before it was encountered 3118 // normally in the stream), or there were no function blocks to 3119 // trigger an earlier parsing of the VST. 3120 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3121 if (Error Err = parseValueSymbolTable()) 3122 return Err; 3123 SeenValueSymbolTable = true; 3124 } else { 3125 // We must have had a VST forward declaration record, which caused 3126 // the parser to jump to and parse the VST earlier. 3127 assert(VSTOffset > 0); 3128 if (Stream.SkipBlock()) 3129 return error("Invalid record"); 3130 } 3131 break; 3132 case bitc::CONSTANTS_BLOCK_ID: 3133 if (Error Err = parseConstants()) 3134 return Err; 3135 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3136 return Err; 3137 break; 3138 case bitc::METADATA_BLOCK_ID: 3139 if (ShouldLazyLoadMetadata) { 3140 if (Error Err = rememberAndSkipMetadata()) 3141 return Err; 3142 break; 3143 } 3144 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3145 if (Error Err = MDLoader->parseModuleMetadata()) 3146 return Err; 3147 break; 3148 case bitc::METADATA_KIND_BLOCK_ID: 3149 if (Error Err = MDLoader->parseMetadataKinds()) 3150 return Err; 3151 break; 3152 case bitc::FUNCTION_BLOCK_ID: 3153 // If this is the first function body we've seen, reverse the 3154 // FunctionsWithBodies list. 3155 if (!SeenFirstFunctionBody) { 3156 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3157 if (Error Err = globalCleanup()) 3158 return Err; 3159 SeenFirstFunctionBody = true; 3160 } 3161 3162 if (VSTOffset > 0) { 3163 // If we have a VST forward declaration record, make sure we 3164 // parse the VST now if we haven't already. It is needed to 3165 // set up the DeferredFunctionInfo vector for lazy reading. 3166 if (!SeenValueSymbolTable) { 3167 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3168 return Err; 3169 SeenValueSymbolTable = true; 3170 // Fall through so that we record the NextUnreadBit below. 3171 // This is necessary in case we have an anonymous function that 3172 // is later materialized. Since it will not have a VST entry we 3173 // need to fall back to the lazy parse to find its offset. 3174 } else { 3175 // If we have a VST forward declaration record, but have already 3176 // parsed the VST (just above, when the first function body was 3177 // encountered here), then we are resuming the parse after 3178 // materializing functions. The ResumeBit points to the 3179 // start of the last function block recorded in the 3180 // DeferredFunctionInfo map. Skip it. 3181 if (Stream.SkipBlock()) 3182 return error("Invalid record"); 3183 continue; 3184 } 3185 } 3186 3187 // Support older bitcode files that did not have the function 3188 // index in the VST, nor a VST forward declaration record, as 3189 // well as anonymous functions that do not have VST entries. 3190 // Build the DeferredFunctionInfo vector on the fly. 3191 if (Error Err = rememberAndSkipFunctionBody()) 3192 return Err; 3193 3194 // Suspend parsing when we reach the function bodies. Subsequent 3195 // materialization calls will resume it when necessary. If the bitcode 3196 // file is old, the symbol table will be at the end instead and will not 3197 // have been seen yet. In this case, just finish the parse now. 3198 if (SeenValueSymbolTable) { 3199 NextUnreadBit = Stream.GetCurrentBitNo(); 3200 // After the VST has been parsed, we need to make sure intrinsic name 3201 // are auto-upgraded. 3202 return globalCleanup(); 3203 } 3204 break; 3205 case bitc::USELIST_BLOCK_ID: 3206 if (Error Err = parseUseLists()) 3207 return Err; 3208 break; 3209 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3210 if (Error Err = parseOperandBundleTags()) 3211 return Err; 3212 break; 3213 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3214 if (Error Err = parseSyncScopeNames()) 3215 return Err; 3216 break; 3217 } 3218 continue; 3219 3220 case BitstreamEntry::Record: 3221 // The interesting case. 3222 break; 3223 } 3224 3225 // Read a record. 3226 auto BitCode = Stream.readRecord(Entry.ID, Record); 3227 switch (BitCode) { 3228 default: break; // Default behavior, ignore unknown content. 3229 case bitc::MODULE_CODE_VERSION: { 3230 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3231 if (!VersionOrErr) 3232 return VersionOrErr.takeError(); 3233 UseRelativeIDs = *VersionOrErr >= 1; 3234 break; 3235 } 3236 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3237 std::string S; 3238 if (convertToString(Record, 0, S)) 3239 return error("Invalid record"); 3240 TheModule->setTargetTriple(S); 3241 break; 3242 } 3243 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3244 std::string S; 3245 if (convertToString(Record, 0, S)) 3246 return error("Invalid record"); 3247 TheModule->setDataLayout(S); 3248 break; 3249 } 3250 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3251 std::string S; 3252 if (convertToString(Record, 0, S)) 3253 return error("Invalid record"); 3254 TheModule->setModuleInlineAsm(S); 3255 break; 3256 } 3257 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3258 // FIXME: Remove in 4.0. 3259 std::string S; 3260 if (convertToString(Record, 0, S)) 3261 return error("Invalid record"); 3262 // Ignore value. 3263 break; 3264 } 3265 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3266 std::string S; 3267 if (convertToString(Record, 0, S)) 3268 return error("Invalid record"); 3269 SectionTable.push_back(S); 3270 break; 3271 } 3272 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3273 std::string S; 3274 if (convertToString(Record, 0, S)) 3275 return error("Invalid record"); 3276 GCTable.push_back(S); 3277 break; 3278 } 3279 case bitc::MODULE_CODE_COMDAT: 3280 if (Error Err = parseComdatRecord(Record)) 3281 return Err; 3282 break; 3283 case bitc::MODULE_CODE_GLOBALVAR: 3284 if (Error Err = parseGlobalVarRecord(Record)) 3285 return Err; 3286 break; 3287 case bitc::MODULE_CODE_FUNCTION: 3288 if (Error Err = parseFunctionRecord(Record)) 3289 return Err; 3290 break; 3291 case bitc::MODULE_CODE_IFUNC: 3292 case bitc::MODULE_CODE_ALIAS: 3293 case bitc::MODULE_CODE_ALIAS_OLD: 3294 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3295 return Err; 3296 break; 3297 /// MODULE_CODE_VSTOFFSET: [offset] 3298 case bitc::MODULE_CODE_VSTOFFSET: 3299 if (Record.size() < 1) 3300 return error("Invalid record"); 3301 // Note that we subtract 1 here because the offset is relative to one word 3302 // before the start of the identification or module block, which was 3303 // historically always the start of the regular bitcode header. 3304 VSTOffset = Record[0] - 1; 3305 break; 3306 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3307 case bitc::MODULE_CODE_SOURCE_FILENAME: 3308 SmallString<128> ValueName; 3309 if (convertToString(Record, 0, ValueName)) 3310 return error("Invalid record"); 3311 TheModule->setSourceFileName(ValueName); 3312 break; 3313 } 3314 Record.clear(); 3315 } 3316 } 3317 3318 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3319 bool IsImporting) { 3320 TheModule = M; 3321 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3322 [&](unsigned ID) { return getTypeByID(ID); }); 3323 return parseModule(0, ShouldLazyLoadMetadata); 3324 } 3325 3326 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3327 if (!isa<PointerType>(PtrType)) 3328 return error("Load/Store operand is not a pointer type"); 3329 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3330 3331 if (ValType && ValType != ElemType) 3332 return error("Explicit load/store type does not match pointee " 3333 "type of pointer operand"); 3334 if (!PointerType::isLoadableOrStorableType(ElemType)) 3335 return error("Cannot load/store from pointer"); 3336 return Error::success(); 3337 } 3338 3339 /// Lazily parse the specified function body block. 3340 Error BitcodeReader::parseFunctionBody(Function *F) { 3341 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3342 return error("Invalid record"); 3343 3344 // Unexpected unresolved metadata when parsing function. 3345 if (MDLoader->hasFwdRefs()) 3346 return error("Invalid function metadata: incoming forward references"); 3347 3348 InstructionList.clear(); 3349 unsigned ModuleValueListSize = ValueList.size(); 3350 unsigned ModuleMDLoaderSize = MDLoader->size(); 3351 3352 // Add all the function arguments to the value table. 3353 for (Argument &I : F->args()) 3354 ValueList.push_back(&I); 3355 3356 unsigned NextValueNo = ValueList.size(); 3357 BasicBlock *CurBB = nullptr; 3358 unsigned CurBBNo = 0; 3359 3360 DebugLoc LastLoc; 3361 auto getLastInstruction = [&]() -> Instruction * { 3362 if (CurBB && !CurBB->empty()) 3363 return &CurBB->back(); 3364 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3365 !FunctionBBs[CurBBNo - 1]->empty()) 3366 return &FunctionBBs[CurBBNo - 1]->back(); 3367 return nullptr; 3368 }; 3369 3370 std::vector<OperandBundleDef> OperandBundles; 3371 3372 // Read all the records. 3373 SmallVector<uint64_t, 64> Record; 3374 3375 while (true) { 3376 BitstreamEntry Entry = Stream.advance(); 3377 3378 switch (Entry.Kind) { 3379 case BitstreamEntry::Error: 3380 return error("Malformed block"); 3381 case BitstreamEntry::EndBlock: 3382 goto OutOfRecordLoop; 3383 3384 case BitstreamEntry::SubBlock: 3385 switch (Entry.ID) { 3386 default: // Skip unknown content. 3387 if (Stream.SkipBlock()) 3388 return error("Invalid record"); 3389 break; 3390 case bitc::CONSTANTS_BLOCK_ID: 3391 if (Error Err = parseConstants()) 3392 return Err; 3393 NextValueNo = ValueList.size(); 3394 break; 3395 case bitc::VALUE_SYMTAB_BLOCK_ID: 3396 if (Error Err = parseValueSymbolTable()) 3397 return Err; 3398 break; 3399 case bitc::METADATA_ATTACHMENT_ID: 3400 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3401 return Err; 3402 break; 3403 case bitc::METADATA_BLOCK_ID: 3404 assert(DeferredMetadataInfo.empty() && 3405 "Must read all module-level metadata before function-level"); 3406 if (Error Err = MDLoader->parseFunctionMetadata()) 3407 return Err; 3408 break; 3409 case bitc::USELIST_BLOCK_ID: 3410 if (Error Err = parseUseLists()) 3411 return Err; 3412 break; 3413 } 3414 continue; 3415 3416 case BitstreamEntry::Record: 3417 // The interesting case. 3418 break; 3419 } 3420 3421 // Read a record. 3422 Record.clear(); 3423 Instruction *I = nullptr; 3424 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3425 switch (BitCode) { 3426 default: // Default behavior: reject 3427 return error("Invalid value"); 3428 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3429 if (Record.size() < 1 || Record[0] == 0) 3430 return error("Invalid record"); 3431 // Create all the basic blocks for the function. 3432 FunctionBBs.resize(Record[0]); 3433 3434 // See if anything took the address of blocks in this function. 3435 auto BBFRI = BasicBlockFwdRefs.find(F); 3436 if (BBFRI == BasicBlockFwdRefs.end()) { 3437 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3438 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3439 } else { 3440 auto &BBRefs = BBFRI->second; 3441 // Check for invalid basic block references. 3442 if (BBRefs.size() > FunctionBBs.size()) 3443 return error("Invalid ID"); 3444 assert(!BBRefs.empty() && "Unexpected empty array"); 3445 assert(!BBRefs.front() && "Invalid reference to entry block"); 3446 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3447 ++I) 3448 if (I < RE && BBRefs[I]) { 3449 BBRefs[I]->insertInto(F); 3450 FunctionBBs[I] = BBRefs[I]; 3451 } else { 3452 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3453 } 3454 3455 // Erase from the table. 3456 BasicBlockFwdRefs.erase(BBFRI); 3457 } 3458 3459 CurBB = FunctionBBs[0]; 3460 continue; 3461 } 3462 3463 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3464 // This record indicates that the last instruction is at the same 3465 // location as the previous instruction with a location. 3466 I = getLastInstruction(); 3467 3468 if (!I) 3469 return error("Invalid record"); 3470 I->setDebugLoc(LastLoc); 3471 I = nullptr; 3472 continue; 3473 3474 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3475 I = getLastInstruction(); 3476 if (!I || Record.size() < 4) 3477 return error("Invalid record"); 3478 3479 unsigned Line = Record[0], Col = Record[1]; 3480 unsigned ScopeID = Record[2], IAID = Record[3]; 3481 3482 MDNode *Scope = nullptr, *IA = nullptr; 3483 if (ScopeID) { 3484 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3485 if (!Scope) 3486 return error("Invalid record"); 3487 } 3488 if (IAID) { 3489 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3490 if (!IA) 3491 return error("Invalid record"); 3492 } 3493 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3494 I->setDebugLoc(LastLoc); 3495 I = nullptr; 3496 continue; 3497 } 3498 3499 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3500 unsigned OpNum = 0; 3501 Value *LHS, *RHS; 3502 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3503 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3504 OpNum+1 > Record.size()) 3505 return error("Invalid record"); 3506 3507 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3508 if (Opc == -1) 3509 return error("Invalid record"); 3510 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3511 InstructionList.push_back(I); 3512 if (OpNum < Record.size()) { 3513 if (Opc == Instruction::Add || 3514 Opc == Instruction::Sub || 3515 Opc == Instruction::Mul || 3516 Opc == Instruction::Shl) { 3517 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3518 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3519 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3520 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3521 } else if (Opc == Instruction::SDiv || 3522 Opc == Instruction::UDiv || 3523 Opc == Instruction::LShr || 3524 Opc == Instruction::AShr) { 3525 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3526 cast<BinaryOperator>(I)->setIsExact(true); 3527 } else if (isa<FPMathOperator>(I)) { 3528 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3529 if (FMF.any()) 3530 I->setFastMathFlags(FMF); 3531 } 3532 3533 } 3534 break; 3535 } 3536 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3537 unsigned OpNum = 0; 3538 Value *Op; 3539 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3540 OpNum+2 != Record.size()) 3541 return error("Invalid record"); 3542 3543 Type *ResTy = getTypeByID(Record[OpNum]); 3544 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3545 if (Opc == -1 || !ResTy) 3546 return error("Invalid record"); 3547 Instruction *Temp = nullptr; 3548 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3549 if (Temp) { 3550 InstructionList.push_back(Temp); 3551 CurBB->getInstList().push_back(Temp); 3552 } 3553 } else { 3554 auto CastOp = (Instruction::CastOps)Opc; 3555 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3556 return error("Invalid cast"); 3557 I = CastInst::Create(CastOp, Op, ResTy); 3558 } 3559 InstructionList.push_back(I); 3560 break; 3561 } 3562 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3563 case bitc::FUNC_CODE_INST_GEP_OLD: 3564 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3565 unsigned OpNum = 0; 3566 3567 Type *Ty; 3568 bool InBounds; 3569 3570 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3571 InBounds = Record[OpNum++]; 3572 Ty = getTypeByID(Record[OpNum++]); 3573 } else { 3574 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3575 Ty = nullptr; 3576 } 3577 3578 Value *BasePtr; 3579 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3580 return error("Invalid record"); 3581 3582 if (!Ty) 3583 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3584 ->getElementType(); 3585 else if (Ty != 3586 cast<PointerType>(BasePtr->getType()->getScalarType()) 3587 ->getElementType()) 3588 return error( 3589 "Explicit gep type does not match pointee type of pointer operand"); 3590 3591 SmallVector<Value*, 16> GEPIdx; 3592 while (OpNum != Record.size()) { 3593 Value *Op; 3594 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3595 return error("Invalid record"); 3596 GEPIdx.push_back(Op); 3597 } 3598 3599 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3600 3601 InstructionList.push_back(I); 3602 if (InBounds) 3603 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3604 break; 3605 } 3606 3607 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3608 // EXTRACTVAL: [opty, opval, n x indices] 3609 unsigned OpNum = 0; 3610 Value *Agg; 3611 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3612 return error("Invalid record"); 3613 3614 unsigned RecSize = Record.size(); 3615 if (OpNum == RecSize) 3616 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3617 3618 SmallVector<unsigned, 4> EXTRACTVALIdx; 3619 Type *CurTy = Agg->getType(); 3620 for (; OpNum != RecSize; ++OpNum) { 3621 bool IsArray = CurTy->isArrayTy(); 3622 bool IsStruct = CurTy->isStructTy(); 3623 uint64_t Index = Record[OpNum]; 3624 3625 if (!IsStruct && !IsArray) 3626 return error("EXTRACTVAL: Invalid type"); 3627 if ((unsigned)Index != Index) 3628 return error("Invalid value"); 3629 if (IsStruct && Index >= CurTy->subtypes().size()) 3630 return error("EXTRACTVAL: Invalid struct index"); 3631 if (IsArray && Index >= CurTy->getArrayNumElements()) 3632 return error("EXTRACTVAL: Invalid array index"); 3633 EXTRACTVALIdx.push_back((unsigned)Index); 3634 3635 if (IsStruct) 3636 CurTy = CurTy->subtypes()[Index]; 3637 else 3638 CurTy = CurTy->subtypes()[0]; 3639 } 3640 3641 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3642 InstructionList.push_back(I); 3643 break; 3644 } 3645 3646 case bitc::FUNC_CODE_INST_INSERTVAL: { 3647 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3648 unsigned OpNum = 0; 3649 Value *Agg; 3650 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3651 return error("Invalid record"); 3652 Value *Val; 3653 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3654 return error("Invalid record"); 3655 3656 unsigned RecSize = Record.size(); 3657 if (OpNum == RecSize) 3658 return error("INSERTVAL: Invalid instruction with 0 indices"); 3659 3660 SmallVector<unsigned, 4> INSERTVALIdx; 3661 Type *CurTy = Agg->getType(); 3662 for (; OpNum != RecSize; ++OpNum) { 3663 bool IsArray = CurTy->isArrayTy(); 3664 bool IsStruct = CurTy->isStructTy(); 3665 uint64_t Index = Record[OpNum]; 3666 3667 if (!IsStruct && !IsArray) 3668 return error("INSERTVAL: Invalid type"); 3669 if ((unsigned)Index != Index) 3670 return error("Invalid value"); 3671 if (IsStruct && Index >= CurTy->subtypes().size()) 3672 return error("INSERTVAL: Invalid struct index"); 3673 if (IsArray && Index >= CurTy->getArrayNumElements()) 3674 return error("INSERTVAL: Invalid array index"); 3675 3676 INSERTVALIdx.push_back((unsigned)Index); 3677 if (IsStruct) 3678 CurTy = CurTy->subtypes()[Index]; 3679 else 3680 CurTy = CurTy->subtypes()[0]; 3681 } 3682 3683 if (CurTy != Val->getType()) 3684 return error("Inserted value type doesn't match aggregate type"); 3685 3686 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 3691 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3692 // obsolete form of select 3693 // handles select i1 ... in old bitcode 3694 unsigned OpNum = 0; 3695 Value *TrueVal, *FalseVal, *Cond; 3696 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3697 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3698 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3699 return error("Invalid record"); 3700 3701 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3702 InstructionList.push_back(I); 3703 break; 3704 } 3705 3706 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3707 // new form of select 3708 // handles select i1 or select [N x i1] 3709 unsigned OpNum = 0; 3710 Value *TrueVal, *FalseVal, *Cond; 3711 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3712 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3713 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3714 return error("Invalid record"); 3715 3716 // select condition can be either i1 or [N x i1] 3717 if (VectorType* vector_type = 3718 dyn_cast<VectorType>(Cond->getType())) { 3719 // expect <n x i1> 3720 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3721 return error("Invalid type for value"); 3722 } else { 3723 // expect i1 3724 if (Cond->getType() != Type::getInt1Ty(Context)) 3725 return error("Invalid type for value"); 3726 } 3727 3728 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3729 InstructionList.push_back(I); 3730 break; 3731 } 3732 3733 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3734 unsigned OpNum = 0; 3735 Value *Vec, *Idx; 3736 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3737 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3738 return error("Invalid record"); 3739 if (!Vec->getType()->isVectorTy()) 3740 return error("Invalid type for value"); 3741 I = ExtractElementInst::Create(Vec, Idx); 3742 InstructionList.push_back(I); 3743 break; 3744 } 3745 3746 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3747 unsigned OpNum = 0; 3748 Value *Vec, *Elt, *Idx; 3749 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3750 return error("Invalid record"); 3751 if (!Vec->getType()->isVectorTy()) 3752 return error("Invalid type for value"); 3753 if (popValue(Record, OpNum, NextValueNo, 3754 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3755 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3756 return error("Invalid record"); 3757 I = InsertElementInst::Create(Vec, Elt, Idx); 3758 InstructionList.push_back(I); 3759 break; 3760 } 3761 3762 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3763 unsigned OpNum = 0; 3764 Value *Vec1, *Vec2, *Mask; 3765 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3766 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3767 return error("Invalid record"); 3768 3769 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3770 return error("Invalid record"); 3771 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3772 return error("Invalid type for value"); 3773 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3774 InstructionList.push_back(I); 3775 break; 3776 } 3777 3778 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3779 // Old form of ICmp/FCmp returning bool 3780 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3781 // both legal on vectors but had different behaviour. 3782 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3783 // FCmp/ICmp returning bool or vector of bool 3784 3785 unsigned OpNum = 0; 3786 Value *LHS, *RHS; 3787 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3788 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3789 return error("Invalid record"); 3790 3791 unsigned PredVal = Record[OpNum]; 3792 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3793 FastMathFlags FMF; 3794 if (IsFP && Record.size() > OpNum+1) 3795 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3796 3797 if (OpNum+1 != Record.size()) 3798 return error("Invalid record"); 3799 3800 if (LHS->getType()->isFPOrFPVectorTy()) 3801 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3802 else 3803 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3804 3805 if (FMF.any()) 3806 I->setFastMathFlags(FMF); 3807 InstructionList.push_back(I); 3808 break; 3809 } 3810 3811 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3812 { 3813 unsigned Size = Record.size(); 3814 if (Size == 0) { 3815 I = ReturnInst::Create(Context); 3816 InstructionList.push_back(I); 3817 break; 3818 } 3819 3820 unsigned OpNum = 0; 3821 Value *Op = nullptr; 3822 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3823 return error("Invalid record"); 3824 if (OpNum != Record.size()) 3825 return error("Invalid record"); 3826 3827 I = ReturnInst::Create(Context, Op); 3828 InstructionList.push_back(I); 3829 break; 3830 } 3831 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3832 if (Record.size() != 1 && Record.size() != 3) 3833 return error("Invalid record"); 3834 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3835 if (!TrueDest) 3836 return error("Invalid record"); 3837 3838 if (Record.size() == 1) { 3839 I = BranchInst::Create(TrueDest); 3840 InstructionList.push_back(I); 3841 } 3842 else { 3843 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3844 Value *Cond = getValue(Record, 2, NextValueNo, 3845 Type::getInt1Ty(Context)); 3846 if (!FalseDest || !Cond) 3847 return error("Invalid record"); 3848 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3849 InstructionList.push_back(I); 3850 } 3851 break; 3852 } 3853 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3854 if (Record.size() != 1 && Record.size() != 2) 3855 return error("Invalid record"); 3856 unsigned Idx = 0; 3857 Value *CleanupPad = 3858 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3859 if (!CleanupPad) 3860 return error("Invalid record"); 3861 BasicBlock *UnwindDest = nullptr; 3862 if (Record.size() == 2) { 3863 UnwindDest = getBasicBlock(Record[Idx++]); 3864 if (!UnwindDest) 3865 return error("Invalid record"); 3866 } 3867 3868 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3869 InstructionList.push_back(I); 3870 break; 3871 } 3872 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3873 if (Record.size() != 2) 3874 return error("Invalid record"); 3875 unsigned Idx = 0; 3876 Value *CatchPad = 3877 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3878 if (!CatchPad) 3879 return error("Invalid record"); 3880 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3881 if (!BB) 3882 return error("Invalid record"); 3883 3884 I = CatchReturnInst::Create(CatchPad, BB); 3885 InstructionList.push_back(I); 3886 break; 3887 } 3888 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3889 // We must have, at minimum, the outer scope and the number of arguments. 3890 if (Record.size() < 2) 3891 return error("Invalid record"); 3892 3893 unsigned Idx = 0; 3894 3895 Value *ParentPad = 3896 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3897 3898 unsigned NumHandlers = Record[Idx++]; 3899 3900 SmallVector<BasicBlock *, 2> Handlers; 3901 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3902 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3903 if (!BB) 3904 return error("Invalid record"); 3905 Handlers.push_back(BB); 3906 } 3907 3908 BasicBlock *UnwindDest = nullptr; 3909 if (Idx + 1 == Record.size()) { 3910 UnwindDest = getBasicBlock(Record[Idx++]); 3911 if (!UnwindDest) 3912 return error("Invalid record"); 3913 } 3914 3915 if (Record.size() != Idx) 3916 return error("Invalid record"); 3917 3918 auto *CatchSwitch = 3919 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3920 for (BasicBlock *Handler : Handlers) 3921 CatchSwitch->addHandler(Handler); 3922 I = CatchSwitch; 3923 InstructionList.push_back(I); 3924 break; 3925 } 3926 case bitc::FUNC_CODE_INST_CATCHPAD: 3927 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3928 // We must have, at minimum, the outer scope and the number of arguments. 3929 if (Record.size() < 2) 3930 return error("Invalid record"); 3931 3932 unsigned Idx = 0; 3933 3934 Value *ParentPad = 3935 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3936 3937 unsigned NumArgOperands = Record[Idx++]; 3938 3939 SmallVector<Value *, 2> Args; 3940 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3941 Value *Val; 3942 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3943 return error("Invalid record"); 3944 Args.push_back(Val); 3945 } 3946 3947 if (Record.size() != Idx) 3948 return error("Invalid record"); 3949 3950 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3951 I = CleanupPadInst::Create(ParentPad, Args); 3952 else 3953 I = CatchPadInst::Create(ParentPad, Args); 3954 InstructionList.push_back(I); 3955 break; 3956 } 3957 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3958 // Check magic 3959 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3960 // "New" SwitchInst format with case ranges. The changes to write this 3961 // format were reverted but we still recognize bitcode that uses it. 3962 // Hopefully someday we will have support for case ranges and can use 3963 // this format again. 3964 3965 Type *OpTy = getTypeByID(Record[1]); 3966 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3967 3968 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3969 BasicBlock *Default = getBasicBlock(Record[3]); 3970 if (!OpTy || !Cond || !Default) 3971 return error("Invalid record"); 3972 3973 unsigned NumCases = Record[4]; 3974 3975 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3976 InstructionList.push_back(SI); 3977 3978 unsigned CurIdx = 5; 3979 for (unsigned i = 0; i != NumCases; ++i) { 3980 SmallVector<ConstantInt*, 1> CaseVals; 3981 unsigned NumItems = Record[CurIdx++]; 3982 for (unsigned ci = 0; ci != NumItems; ++ci) { 3983 bool isSingleNumber = Record[CurIdx++]; 3984 3985 APInt Low; 3986 unsigned ActiveWords = 1; 3987 if (ValueBitWidth > 64) 3988 ActiveWords = Record[CurIdx++]; 3989 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3990 ValueBitWidth); 3991 CurIdx += ActiveWords; 3992 3993 if (!isSingleNumber) { 3994 ActiveWords = 1; 3995 if (ValueBitWidth > 64) 3996 ActiveWords = Record[CurIdx++]; 3997 APInt High = readWideAPInt( 3998 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3999 CurIdx += ActiveWords; 4000 4001 // FIXME: It is not clear whether values in the range should be 4002 // compared as signed or unsigned values. The partially 4003 // implemented changes that used this format in the past used 4004 // unsigned comparisons. 4005 for ( ; Low.ule(High); ++Low) 4006 CaseVals.push_back(ConstantInt::get(Context, Low)); 4007 } else 4008 CaseVals.push_back(ConstantInt::get(Context, Low)); 4009 } 4010 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4011 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4012 cve = CaseVals.end(); cvi != cve; ++cvi) 4013 SI->addCase(*cvi, DestBB); 4014 } 4015 I = SI; 4016 break; 4017 } 4018 4019 // Old SwitchInst format without case ranges. 4020 4021 if (Record.size() < 3 || (Record.size() & 1) == 0) 4022 return error("Invalid record"); 4023 Type *OpTy = getTypeByID(Record[0]); 4024 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4025 BasicBlock *Default = getBasicBlock(Record[2]); 4026 if (!OpTy || !Cond || !Default) 4027 return error("Invalid record"); 4028 unsigned NumCases = (Record.size()-3)/2; 4029 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4030 InstructionList.push_back(SI); 4031 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4032 ConstantInt *CaseVal = 4033 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4034 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4035 if (!CaseVal || !DestBB) { 4036 delete SI; 4037 return error("Invalid record"); 4038 } 4039 SI->addCase(CaseVal, DestBB); 4040 } 4041 I = SI; 4042 break; 4043 } 4044 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4045 if (Record.size() < 2) 4046 return error("Invalid record"); 4047 Type *OpTy = getTypeByID(Record[0]); 4048 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4049 if (!OpTy || !Address) 4050 return error("Invalid record"); 4051 unsigned NumDests = Record.size()-2; 4052 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4053 InstructionList.push_back(IBI); 4054 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4055 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4056 IBI->addDestination(DestBB); 4057 } else { 4058 delete IBI; 4059 return error("Invalid record"); 4060 } 4061 } 4062 I = IBI; 4063 break; 4064 } 4065 4066 case bitc::FUNC_CODE_INST_INVOKE: { 4067 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4068 if (Record.size() < 4) 4069 return error("Invalid record"); 4070 unsigned OpNum = 0; 4071 AttributeList PAL = getAttributes(Record[OpNum++]); 4072 unsigned CCInfo = Record[OpNum++]; 4073 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4074 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4075 4076 FunctionType *FTy = nullptr; 4077 if (CCInfo >> 13 & 1 && 4078 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4079 return error("Explicit invoke type is not a function type"); 4080 4081 Value *Callee; 4082 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4083 return error("Invalid record"); 4084 4085 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4086 if (!CalleeTy) 4087 return error("Callee is not a pointer"); 4088 if (!FTy) { 4089 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4090 if (!FTy) 4091 return error("Callee is not of pointer to function type"); 4092 } else if (CalleeTy->getElementType() != FTy) 4093 return error("Explicit invoke type does not match pointee type of " 4094 "callee operand"); 4095 if (Record.size() < FTy->getNumParams() + OpNum) 4096 return error("Insufficient operands to call"); 4097 4098 SmallVector<Value*, 16> Ops; 4099 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4100 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4101 FTy->getParamType(i))); 4102 if (!Ops.back()) 4103 return error("Invalid record"); 4104 } 4105 4106 if (!FTy->isVarArg()) { 4107 if (Record.size() != OpNum) 4108 return error("Invalid record"); 4109 } else { 4110 // Read type/value pairs for varargs params. 4111 while (OpNum != Record.size()) { 4112 Value *Op; 4113 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4114 return error("Invalid record"); 4115 Ops.push_back(Op); 4116 } 4117 } 4118 4119 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4120 OperandBundles.clear(); 4121 InstructionList.push_back(I); 4122 cast<InvokeInst>(I)->setCallingConv( 4123 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4124 cast<InvokeInst>(I)->setAttributes(PAL); 4125 break; 4126 } 4127 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4128 unsigned Idx = 0; 4129 Value *Val = nullptr; 4130 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4131 return error("Invalid record"); 4132 I = ResumeInst::Create(Val); 4133 InstructionList.push_back(I); 4134 break; 4135 } 4136 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4137 I = new UnreachableInst(Context); 4138 InstructionList.push_back(I); 4139 break; 4140 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4141 if (Record.size() < 1 || ((Record.size()-1)&1)) 4142 return error("Invalid record"); 4143 Type *Ty = getTypeByID(Record[0]); 4144 if (!Ty) 4145 return error("Invalid record"); 4146 4147 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4148 InstructionList.push_back(PN); 4149 4150 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4151 Value *V; 4152 // With the new function encoding, it is possible that operands have 4153 // negative IDs (for forward references). Use a signed VBR 4154 // representation to keep the encoding small. 4155 if (UseRelativeIDs) 4156 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4157 else 4158 V = getValue(Record, 1+i, NextValueNo, Ty); 4159 BasicBlock *BB = getBasicBlock(Record[2+i]); 4160 if (!V || !BB) 4161 return error("Invalid record"); 4162 PN->addIncoming(V, BB); 4163 } 4164 I = PN; 4165 break; 4166 } 4167 4168 case bitc::FUNC_CODE_INST_LANDINGPAD: 4169 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4170 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4171 unsigned Idx = 0; 4172 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4173 if (Record.size() < 3) 4174 return error("Invalid record"); 4175 } else { 4176 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4177 if (Record.size() < 4) 4178 return error("Invalid record"); 4179 } 4180 Type *Ty = getTypeByID(Record[Idx++]); 4181 if (!Ty) 4182 return error("Invalid record"); 4183 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4184 Value *PersFn = nullptr; 4185 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4186 return error("Invalid record"); 4187 4188 if (!F->hasPersonalityFn()) 4189 F->setPersonalityFn(cast<Constant>(PersFn)); 4190 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4191 return error("Personality function mismatch"); 4192 } 4193 4194 bool IsCleanup = !!Record[Idx++]; 4195 unsigned NumClauses = Record[Idx++]; 4196 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4197 LP->setCleanup(IsCleanup); 4198 for (unsigned J = 0; J != NumClauses; ++J) { 4199 LandingPadInst::ClauseType CT = 4200 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4201 Value *Val; 4202 4203 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4204 delete LP; 4205 return error("Invalid record"); 4206 } 4207 4208 assert((CT != LandingPadInst::Catch || 4209 !isa<ArrayType>(Val->getType())) && 4210 "Catch clause has a invalid type!"); 4211 assert((CT != LandingPadInst::Filter || 4212 isa<ArrayType>(Val->getType())) && 4213 "Filter clause has invalid type!"); 4214 LP->addClause(cast<Constant>(Val)); 4215 } 4216 4217 I = LP; 4218 InstructionList.push_back(I); 4219 break; 4220 } 4221 4222 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4223 if (Record.size() != 4) 4224 return error("Invalid record"); 4225 uint64_t AlignRecord = Record[3]; 4226 const uint64_t InAllocaMask = uint64_t(1) << 5; 4227 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4228 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4229 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4230 SwiftErrorMask; 4231 bool InAlloca = AlignRecord & InAllocaMask; 4232 bool SwiftError = AlignRecord & SwiftErrorMask; 4233 Type *Ty = getTypeByID(Record[0]); 4234 if ((AlignRecord & ExplicitTypeMask) == 0) { 4235 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4236 if (!PTy) 4237 return error("Old-style alloca with a non-pointer type"); 4238 Ty = PTy->getElementType(); 4239 } 4240 Type *OpTy = getTypeByID(Record[1]); 4241 Value *Size = getFnValueByID(Record[2], OpTy); 4242 unsigned Align; 4243 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4244 return Err; 4245 } 4246 if (!Ty || !Size) 4247 return error("Invalid record"); 4248 4249 // FIXME: Make this an optional field. 4250 const DataLayout &DL = TheModule->getDataLayout(); 4251 unsigned AS = DL.getAllocaAddrSpace(); 4252 4253 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4254 AI->setUsedWithInAlloca(InAlloca); 4255 AI->setSwiftError(SwiftError); 4256 I = AI; 4257 InstructionList.push_back(I); 4258 break; 4259 } 4260 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4261 unsigned OpNum = 0; 4262 Value *Op; 4263 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4264 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4265 return error("Invalid record"); 4266 4267 Type *Ty = nullptr; 4268 if (OpNum + 3 == Record.size()) 4269 Ty = getTypeByID(Record[OpNum++]); 4270 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4271 return Err; 4272 if (!Ty) 4273 Ty = cast<PointerType>(Op->getType())->getElementType(); 4274 4275 unsigned Align; 4276 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4277 return Err; 4278 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4279 4280 InstructionList.push_back(I); 4281 break; 4282 } 4283 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4284 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4285 unsigned OpNum = 0; 4286 Value *Op; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4288 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4289 return error("Invalid record"); 4290 4291 Type *Ty = nullptr; 4292 if (OpNum + 5 == Record.size()) 4293 Ty = getTypeByID(Record[OpNum++]); 4294 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4295 return Err; 4296 if (!Ty) 4297 Ty = cast<PointerType>(Op->getType())->getElementType(); 4298 4299 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4300 if (Ordering == AtomicOrdering::NotAtomic || 4301 Ordering == AtomicOrdering::Release || 4302 Ordering == AtomicOrdering::AcquireRelease) 4303 return error("Invalid record"); 4304 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4305 return error("Invalid record"); 4306 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4307 4308 unsigned Align; 4309 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4310 return Err; 4311 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4312 4313 InstructionList.push_back(I); 4314 break; 4315 } 4316 case bitc::FUNC_CODE_INST_STORE: 4317 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4318 unsigned OpNum = 0; 4319 Value *Val, *Ptr; 4320 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4321 (BitCode == bitc::FUNC_CODE_INST_STORE 4322 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4323 : popValue(Record, OpNum, NextValueNo, 4324 cast<PointerType>(Ptr->getType())->getElementType(), 4325 Val)) || 4326 OpNum + 2 != Record.size()) 4327 return error("Invalid record"); 4328 4329 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4330 return Err; 4331 unsigned Align; 4332 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4333 return Err; 4334 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4335 InstructionList.push_back(I); 4336 break; 4337 } 4338 case bitc::FUNC_CODE_INST_STOREATOMIC: 4339 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4340 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4341 unsigned OpNum = 0; 4342 Value *Val, *Ptr; 4343 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4344 !isa<PointerType>(Ptr->getType()) || 4345 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4346 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4347 : popValue(Record, OpNum, NextValueNo, 4348 cast<PointerType>(Ptr->getType())->getElementType(), 4349 Val)) || 4350 OpNum + 4 != Record.size()) 4351 return error("Invalid record"); 4352 4353 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4354 return Err; 4355 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4356 if (Ordering == AtomicOrdering::NotAtomic || 4357 Ordering == AtomicOrdering::Acquire || 4358 Ordering == AtomicOrdering::AcquireRelease) 4359 return error("Invalid record"); 4360 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4361 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4362 return error("Invalid record"); 4363 4364 unsigned Align; 4365 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4366 return Err; 4367 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4368 InstructionList.push_back(I); 4369 break; 4370 } 4371 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4372 case bitc::FUNC_CODE_INST_CMPXCHG: { 4373 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4374 // failureordering?, isweak?] 4375 unsigned OpNum = 0; 4376 Value *Ptr, *Cmp, *New; 4377 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4378 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4379 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4380 : popValue(Record, OpNum, NextValueNo, 4381 cast<PointerType>(Ptr->getType())->getElementType(), 4382 Cmp)) || 4383 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4384 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4385 return error("Invalid record"); 4386 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4387 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4388 SuccessOrdering == AtomicOrdering::Unordered) 4389 return error("Invalid record"); 4390 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4391 4392 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4393 return Err; 4394 AtomicOrdering FailureOrdering; 4395 if (Record.size() < 7) 4396 FailureOrdering = 4397 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4398 else 4399 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4400 4401 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4402 SSID); 4403 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4404 4405 if (Record.size() < 8) { 4406 // Before weak cmpxchgs existed, the instruction simply returned the 4407 // value loaded from memory, so bitcode files from that era will be 4408 // expecting the first component of a modern cmpxchg. 4409 CurBB->getInstList().push_back(I); 4410 I = ExtractValueInst::Create(I, 0); 4411 } else { 4412 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4413 } 4414 4415 InstructionList.push_back(I); 4416 break; 4417 } 4418 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4419 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4420 unsigned OpNum = 0; 4421 Value *Ptr, *Val; 4422 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4423 !isa<PointerType>(Ptr->getType()) || 4424 popValue(Record, OpNum, NextValueNo, 4425 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4426 OpNum+4 != Record.size()) 4427 return error("Invalid record"); 4428 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4429 if (Operation < AtomicRMWInst::FIRST_BINOP || 4430 Operation > AtomicRMWInst::LAST_BINOP) 4431 return error("Invalid record"); 4432 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4433 if (Ordering == AtomicOrdering::NotAtomic || 4434 Ordering == AtomicOrdering::Unordered) 4435 return error("Invalid record"); 4436 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4437 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4438 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4439 InstructionList.push_back(I); 4440 break; 4441 } 4442 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4443 if (2 != Record.size()) 4444 return error("Invalid record"); 4445 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4446 if (Ordering == AtomicOrdering::NotAtomic || 4447 Ordering == AtomicOrdering::Unordered || 4448 Ordering == AtomicOrdering::Monotonic) 4449 return error("Invalid record"); 4450 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4451 I = new FenceInst(Context, Ordering, SSID); 4452 InstructionList.push_back(I); 4453 break; 4454 } 4455 case bitc::FUNC_CODE_INST_CALL: { 4456 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4457 if (Record.size() < 3) 4458 return error("Invalid record"); 4459 4460 unsigned OpNum = 0; 4461 AttributeList PAL = getAttributes(Record[OpNum++]); 4462 unsigned CCInfo = Record[OpNum++]; 4463 4464 FastMathFlags FMF; 4465 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4466 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4467 if (!FMF.any()) 4468 return error("Fast math flags indicator set for call with no FMF"); 4469 } 4470 4471 FunctionType *FTy = nullptr; 4472 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4473 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4474 return error("Explicit call type is not a function type"); 4475 4476 Value *Callee; 4477 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4478 return error("Invalid record"); 4479 4480 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4481 if (!OpTy) 4482 return error("Callee is not a pointer type"); 4483 if (!FTy) { 4484 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4485 if (!FTy) 4486 return error("Callee is not of pointer to function type"); 4487 } else if (OpTy->getElementType() != FTy) 4488 return error("Explicit call type does not match pointee type of " 4489 "callee operand"); 4490 if (Record.size() < FTy->getNumParams() + OpNum) 4491 return error("Insufficient operands to call"); 4492 4493 SmallVector<Value*, 16> Args; 4494 // Read the fixed params. 4495 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4496 if (FTy->getParamType(i)->isLabelTy()) 4497 Args.push_back(getBasicBlock(Record[OpNum])); 4498 else 4499 Args.push_back(getValue(Record, OpNum, NextValueNo, 4500 FTy->getParamType(i))); 4501 if (!Args.back()) 4502 return error("Invalid record"); 4503 } 4504 4505 // Read type/value pairs for varargs params. 4506 if (!FTy->isVarArg()) { 4507 if (OpNum != Record.size()) 4508 return error("Invalid record"); 4509 } else { 4510 while (OpNum != Record.size()) { 4511 Value *Op; 4512 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4513 return error("Invalid record"); 4514 Args.push_back(Op); 4515 } 4516 } 4517 4518 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4519 OperandBundles.clear(); 4520 InstructionList.push_back(I); 4521 cast<CallInst>(I)->setCallingConv( 4522 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4523 CallInst::TailCallKind TCK = CallInst::TCK_None; 4524 if (CCInfo & 1 << bitc::CALL_TAIL) 4525 TCK = CallInst::TCK_Tail; 4526 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4527 TCK = CallInst::TCK_MustTail; 4528 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4529 TCK = CallInst::TCK_NoTail; 4530 cast<CallInst>(I)->setTailCallKind(TCK); 4531 cast<CallInst>(I)->setAttributes(PAL); 4532 if (FMF.any()) { 4533 if (!isa<FPMathOperator>(I)) 4534 return error("Fast-math-flags specified for call without " 4535 "floating-point scalar or vector return type"); 4536 I->setFastMathFlags(FMF); 4537 } 4538 break; 4539 } 4540 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4541 if (Record.size() < 3) 4542 return error("Invalid record"); 4543 Type *OpTy = getTypeByID(Record[0]); 4544 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4545 Type *ResTy = getTypeByID(Record[2]); 4546 if (!OpTy || !Op || !ResTy) 4547 return error("Invalid record"); 4548 I = new VAArgInst(Op, ResTy); 4549 InstructionList.push_back(I); 4550 break; 4551 } 4552 4553 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4554 // A call or an invoke can be optionally prefixed with some variable 4555 // number of operand bundle blocks. These blocks are read into 4556 // OperandBundles and consumed at the next call or invoke instruction. 4557 4558 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4559 return error("Invalid record"); 4560 4561 std::vector<Value *> Inputs; 4562 4563 unsigned OpNum = 1; 4564 while (OpNum != Record.size()) { 4565 Value *Op; 4566 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4567 return error("Invalid record"); 4568 Inputs.push_back(Op); 4569 } 4570 4571 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4572 continue; 4573 } 4574 } 4575 4576 // Add instruction to end of current BB. If there is no current BB, reject 4577 // this file. 4578 if (!CurBB) { 4579 I->deleteValue(); 4580 return error("Invalid instruction with no BB"); 4581 } 4582 if (!OperandBundles.empty()) { 4583 I->deleteValue(); 4584 return error("Operand bundles found with no consumer"); 4585 } 4586 CurBB->getInstList().push_back(I); 4587 4588 // If this was a terminator instruction, move to the next block. 4589 if (isa<TerminatorInst>(I)) { 4590 ++CurBBNo; 4591 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4592 } 4593 4594 // Non-void values get registered in the value table for future use. 4595 if (I && !I->getType()->isVoidTy()) 4596 ValueList.assignValue(I, NextValueNo++); 4597 } 4598 4599 OutOfRecordLoop: 4600 4601 if (!OperandBundles.empty()) 4602 return error("Operand bundles found with no consumer"); 4603 4604 // Check the function list for unresolved values. 4605 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4606 if (!A->getParent()) { 4607 // We found at least one unresolved value. Nuke them all to avoid leaks. 4608 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4609 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4610 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4611 delete A; 4612 } 4613 } 4614 return error("Never resolved value found in function"); 4615 } 4616 } 4617 4618 // Unexpected unresolved metadata about to be dropped. 4619 if (MDLoader->hasFwdRefs()) 4620 return error("Invalid function metadata: outgoing forward refs"); 4621 4622 // Trim the value list down to the size it was before we parsed this function. 4623 ValueList.shrinkTo(ModuleValueListSize); 4624 MDLoader->shrinkTo(ModuleMDLoaderSize); 4625 std::vector<BasicBlock*>().swap(FunctionBBs); 4626 return Error::success(); 4627 } 4628 4629 /// Find the function body in the bitcode stream 4630 Error BitcodeReader::findFunctionInStream( 4631 Function *F, 4632 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4633 while (DeferredFunctionInfoIterator->second == 0) { 4634 // This is the fallback handling for the old format bitcode that 4635 // didn't contain the function index in the VST, or when we have 4636 // an anonymous function which would not have a VST entry. 4637 // Assert that we have one of those two cases. 4638 assert(VSTOffset == 0 || !F->hasName()); 4639 // Parse the next body in the stream and set its position in the 4640 // DeferredFunctionInfo map. 4641 if (Error Err = rememberAndSkipFunctionBodies()) 4642 return Err; 4643 } 4644 return Error::success(); 4645 } 4646 4647 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4648 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4649 return SyncScope::ID(Val); 4650 if (Val >= SSIDs.size()) 4651 return SyncScope::System; // Map unknown synchronization scopes to system. 4652 return SSIDs[Val]; 4653 } 4654 4655 //===----------------------------------------------------------------------===// 4656 // GVMaterializer implementation 4657 //===----------------------------------------------------------------------===// 4658 4659 Error BitcodeReader::materialize(GlobalValue *GV) { 4660 Function *F = dyn_cast<Function>(GV); 4661 // If it's not a function or is already material, ignore the request. 4662 if (!F || !F->isMaterializable()) 4663 return Error::success(); 4664 4665 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4666 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4667 // If its position is recorded as 0, its body is somewhere in the stream 4668 // but we haven't seen it yet. 4669 if (DFII->second == 0) 4670 if (Error Err = findFunctionInStream(F, DFII)) 4671 return Err; 4672 4673 // Materialize metadata before parsing any function bodies. 4674 if (Error Err = materializeMetadata()) 4675 return Err; 4676 4677 // Move the bit stream to the saved position of the deferred function body. 4678 Stream.JumpToBit(DFII->second); 4679 4680 if (Error Err = parseFunctionBody(F)) 4681 return Err; 4682 F->setIsMaterializable(false); 4683 4684 if (StripDebugInfo) 4685 stripDebugInfo(*F); 4686 4687 // Upgrade any old intrinsic calls in the function. 4688 for (auto &I : UpgradedIntrinsics) { 4689 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4690 UI != UE;) { 4691 User *U = *UI; 4692 ++UI; 4693 if (CallInst *CI = dyn_cast<CallInst>(U)) 4694 UpgradeIntrinsicCall(CI, I.second); 4695 } 4696 } 4697 4698 // Update calls to the remangled intrinsics 4699 for (auto &I : RemangledIntrinsics) 4700 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4701 UI != UE;) 4702 // Don't expect any other users than call sites 4703 CallSite(*UI++).setCalledFunction(I.second); 4704 4705 // Finish fn->subprogram upgrade for materialized functions. 4706 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4707 F->setSubprogram(SP); 4708 4709 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4710 if (!MDLoader->isStrippingTBAA()) { 4711 for (auto &I : instructions(F)) { 4712 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4713 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4714 continue; 4715 MDLoader->setStripTBAA(true); 4716 stripTBAA(F->getParent()); 4717 } 4718 } 4719 4720 // Bring in any functions that this function forward-referenced via 4721 // blockaddresses. 4722 return materializeForwardReferencedFunctions(); 4723 } 4724 4725 Error BitcodeReader::materializeModule() { 4726 if (Error Err = materializeMetadata()) 4727 return Err; 4728 4729 // Promise to materialize all forward references. 4730 WillMaterializeAllForwardRefs = true; 4731 4732 // Iterate over the module, deserializing any functions that are still on 4733 // disk. 4734 for (Function &F : *TheModule) { 4735 if (Error Err = materialize(&F)) 4736 return Err; 4737 } 4738 // At this point, if there are any function bodies, parse the rest of 4739 // the bits in the module past the last function block we have recorded 4740 // through either lazy scanning or the VST. 4741 if (LastFunctionBlockBit || NextUnreadBit) 4742 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4743 ? LastFunctionBlockBit 4744 : NextUnreadBit)) 4745 return Err; 4746 4747 // Check that all block address forward references got resolved (as we 4748 // promised above). 4749 if (!BasicBlockFwdRefs.empty()) 4750 return error("Never resolved function from blockaddress"); 4751 4752 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4753 // delete the old functions to clean up. We can't do this unless the entire 4754 // module is materialized because there could always be another function body 4755 // with calls to the old function. 4756 for (auto &I : UpgradedIntrinsics) { 4757 for (auto *U : I.first->users()) { 4758 if (CallInst *CI = dyn_cast<CallInst>(U)) 4759 UpgradeIntrinsicCall(CI, I.second); 4760 } 4761 if (!I.first->use_empty()) 4762 I.first->replaceAllUsesWith(I.second); 4763 I.first->eraseFromParent(); 4764 } 4765 UpgradedIntrinsics.clear(); 4766 // Do the same for remangled intrinsics 4767 for (auto &I : RemangledIntrinsics) { 4768 I.first->replaceAllUsesWith(I.second); 4769 I.first->eraseFromParent(); 4770 } 4771 RemangledIntrinsics.clear(); 4772 4773 UpgradeDebugInfo(*TheModule); 4774 4775 UpgradeModuleFlags(*TheModule); 4776 return Error::success(); 4777 } 4778 4779 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4780 return IdentifiedStructTypes; 4781 } 4782 4783 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4784 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4785 StringRef ModulePath, unsigned ModuleId) 4786 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4787 ModulePath(ModulePath), ModuleId(ModuleId) {} 4788 4789 ModuleSummaryIndex::ModuleInfo * 4790 ModuleSummaryIndexBitcodeReader::addThisModule() { 4791 return TheIndex.addModule(ModulePath, ModuleId); 4792 } 4793 4794 std::pair<ValueInfo, GlobalValue::GUID> 4795 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4796 auto VGI = ValueIdToValueInfoMap[ValueId]; 4797 assert(VGI.first); 4798 return VGI; 4799 } 4800 4801 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4802 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4803 StringRef SourceFileName) { 4804 std::string GlobalId = 4805 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4806 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4807 auto OriginalNameID = ValueGUID; 4808 if (GlobalValue::isLocalLinkage(Linkage)) 4809 OriginalNameID = GlobalValue::getGUID(ValueName); 4810 if (PrintSummaryGUIDs) 4811 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4812 << ValueName << "\n"; 4813 ValueIdToValueInfoMap[ValueID] = 4814 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4815 } 4816 4817 // Specialized value symbol table parser used when reading module index 4818 // blocks where we don't actually create global values. The parsed information 4819 // is saved in the bitcode reader for use when later parsing summaries. 4820 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4821 uint64_t Offset, 4822 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4823 // With a strtab the VST is not required to parse the summary. 4824 if (UseStrtab) 4825 return Error::success(); 4826 4827 assert(Offset > 0 && "Expected non-zero VST offset"); 4828 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4829 4830 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4831 return error("Invalid record"); 4832 4833 SmallVector<uint64_t, 64> Record; 4834 4835 // Read all the records for this value table. 4836 SmallString<128> ValueName; 4837 4838 while (true) { 4839 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4840 4841 switch (Entry.Kind) { 4842 case BitstreamEntry::SubBlock: // Handled for us already. 4843 case BitstreamEntry::Error: 4844 return error("Malformed block"); 4845 case BitstreamEntry::EndBlock: 4846 // Done parsing VST, jump back to wherever we came from. 4847 Stream.JumpToBit(CurrentBit); 4848 return Error::success(); 4849 case BitstreamEntry::Record: 4850 // The interesting case. 4851 break; 4852 } 4853 4854 // Read a record. 4855 Record.clear(); 4856 switch (Stream.readRecord(Entry.ID, Record)) { 4857 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4858 break; 4859 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4860 if (convertToString(Record, 1, ValueName)) 4861 return error("Invalid record"); 4862 unsigned ValueID = Record[0]; 4863 assert(!SourceFileName.empty()); 4864 auto VLI = ValueIdToLinkageMap.find(ValueID); 4865 assert(VLI != ValueIdToLinkageMap.end() && 4866 "No linkage found for VST entry?"); 4867 auto Linkage = VLI->second; 4868 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4869 ValueName.clear(); 4870 break; 4871 } 4872 case bitc::VST_CODE_FNENTRY: { 4873 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4874 if (convertToString(Record, 2, ValueName)) 4875 return error("Invalid record"); 4876 unsigned ValueID = Record[0]; 4877 assert(!SourceFileName.empty()); 4878 auto VLI = ValueIdToLinkageMap.find(ValueID); 4879 assert(VLI != ValueIdToLinkageMap.end() && 4880 "No linkage found for VST entry?"); 4881 auto Linkage = VLI->second; 4882 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4883 ValueName.clear(); 4884 break; 4885 } 4886 case bitc::VST_CODE_COMBINED_ENTRY: { 4887 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4888 unsigned ValueID = Record[0]; 4889 GlobalValue::GUID RefGUID = Record[1]; 4890 // The "original name", which is the second value of the pair will be 4891 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4892 ValueIdToValueInfoMap[ValueID] = 4893 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4894 break; 4895 } 4896 } 4897 } 4898 } 4899 4900 // Parse just the blocks needed for building the index out of the module. 4901 // At the end of this routine the module Index is populated with a map 4902 // from global value id to GlobalValueSummary objects. 4903 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4904 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4905 return error("Invalid record"); 4906 4907 SmallVector<uint64_t, 64> Record; 4908 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4909 unsigned ValueId = 0; 4910 4911 // Read the index for this module. 4912 while (true) { 4913 BitstreamEntry Entry = Stream.advance(); 4914 4915 switch (Entry.Kind) { 4916 case BitstreamEntry::Error: 4917 return error("Malformed block"); 4918 case BitstreamEntry::EndBlock: 4919 return Error::success(); 4920 4921 case BitstreamEntry::SubBlock: 4922 switch (Entry.ID) { 4923 default: // Skip unknown content. 4924 if (Stream.SkipBlock()) 4925 return error("Invalid record"); 4926 break; 4927 case bitc::BLOCKINFO_BLOCK_ID: 4928 // Need to parse these to get abbrev ids (e.g. for VST) 4929 if (readBlockInfo()) 4930 return error("Malformed block"); 4931 break; 4932 case bitc::VALUE_SYMTAB_BLOCK_ID: 4933 // Should have been parsed earlier via VSTOffset, unless there 4934 // is no summary section. 4935 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4936 !SeenGlobalValSummary) && 4937 "Expected early VST parse via VSTOffset record"); 4938 if (Stream.SkipBlock()) 4939 return error("Invalid record"); 4940 break; 4941 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4942 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4943 assert(!SeenValueSymbolTable && 4944 "Already read VST when parsing summary block?"); 4945 // We might not have a VST if there were no values in the 4946 // summary. An empty summary block generated when we are 4947 // performing ThinLTO compiles so we don't later invoke 4948 // the regular LTO process on them. 4949 if (VSTOffset > 0) { 4950 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4951 return Err; 4952 SeenValueSymbolTable = true; 4953 } 4954 SeenGlobalValSummary = true; 4955 if (Error Err = parseEntireSummary(Entry.ID)) 4956 return Err; 4957 break; 4958 case bitc::MODULE_STRTAB_BLOCK_ID: 4959 if (Error Err = parseModuleStringTable()) 4960 return Err; 4961 break; 4962 } 4963 continue; 4964 4965 case BitstreamEntry::Record: { 4966 Record.clear(); 4967 auto BitCode = Stream.readRecord(Entry.ID, Record); 4968 switch (BitCode) { 4969 default: 4970 break; // Default behavior, ignore unknown content. 4971 case bitc::MODULE_CODE_VERSION: { 4972 if (Error Err = parseVersionRecord(Record).takeError()) 4973 return Err; 4974 break; 4975 } 4976 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4977 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4978 SmallString<128> ValueName; 4979 if (convertToString(Record, 0, ValueName)) 4980 return error("Invalid record"); 4981 SourceFileName = ValueName.c_str(); 4982 break; 4983 } 4984 /// MODULE_CODE_HASH: [5*i32] 4985 case bitc::MODULE_CODE_HASH: { 4986 if (Record.size() != 5) 4987 return error("Invalid hash length " + Twine(Record.size()).str()); 4988 auto &Hash = addThisModule()->second.second; 4989 int Pos = 0; 4990 for (auto &Val : Record) { 4991 assert(!(Val >> 32) && "Unexpected high bits set"); 4992 Hash[Pos++] = Val; 4993 } 4994 break; 4995 } 4996 /// MODULE_CODE_VSTOFFSET: [offset] 4997 case bitc::MODULE_CODE_VSTOFFSET: 4998 if (Record.size() < 1) 4999 return error("Invalid record"); 5000 // Note that we subtract 1 here because the offset is relative to one 5001 // word before the start of the identification or module block, which 5002 // was historically always the start of the regular bitcode header. 5003 VSTOffset = Record[0] - 1; 5004 break; 5005 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5006 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5007 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5008 // v2: [strtab offset, strtab size, v1] 5009 case bitc::MODULE_CODE_GLOBALVAR: 5010 case bitc::MODULE_CODE_FUNCTION: 5011 case bitc::MODULE_CODE_ALIAS: { 5012 StringRef Name; 5013 ArrayRef<uint64_t> GVRecord; 5014 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5015 if (GVRecord.size() <= 3) 5016 return error("Invalid record"); 5017 uint64_t RawLinkage = GVRecord[3]; 5018 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5019 if (!UseStrtab) { 5020 ValueIdToLinkageMap[ValueId++] = Linkage; 5021 break; 5022 } 5023 5024 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5025 break; 5026 } 5027 } 5028 } 5029 continue; 5030 } 5031 } 5032 } 5033 5034 std::vector<ValueInfo> 5035 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5036 std::vector<ValueInfo> Ret; 5037 Ret.reserve(Record.size()); 5038 for (uint64_t RefValueId : Record) 5039 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5040 return Ret; 5041 } 5042 5043 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5044 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5045 std::vector<FunctionSummary::EdgeTy> Ret; 5046 Ret.reserve(Record.size()); 5047 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5048 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5049 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5050 if (IsOldProfileFormat) { 5051 I += 1; // Skip old callsitecount field 5052 if (HasProfile) 5053 I += 1; // Skip old profilecount field 5054 } else if (HasProfile) 5055 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5056 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5057 } 5058 return Ret; 5059 } 5060 5061 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5062 // objects in the index. 5063 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5064 if (Stream.EnterSubBlock(ID)) 5065 return error("Invalid record"); 5066 SmallVector<uint64_t, 64> Record; 5067 5068 // Parse version 5069 { 5070 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5071 if (Entry.Kind != BitstreamEntry::Record) 5072 return error("Invalid Summary Block: record for version expected"); 5073 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5074 return error("Invalid Summary Block: version expected"); 5075 } 5076 const uint64_t Version = Record[0]; 5077 const bool IsOldProfileFormat = Version == 1; 5078 if (Version < 1 || Version > 4) 5079 return error("Invalid summary version " + Twine(Version) + 5080 ", 1, 2, 3 or 4 expected"); 5081 Record.clear(); 5082 5083 // Keep around the last seen summary to be used when we see an optional 5084 // "OriginalName" attachement. 5085 GlobalValueSummary *LastSeenSummary = nullptr; 5086 GlobalValue::GUID LastSeenGUID = 0; 5087 5088 // We can expect to see any number of type ID information records before 5089 // each function summary records; these variables store the information 5090 // collected so far so that it can be used to create the summary object. 5091 std::vector<GlobalValue::GUID> PendingTypeTests; 5092 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5093 PendingTypeCheckedLoadVCalls; 5094 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5095 PendingTypeCheckedLoadConstVCalls; 5096 5097 while (true) { 5098 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5099 5100 switch (Entry.Kind) { 5101 case BitstreamEntry::SubBlock: // Handled for us already. 5102 case BitstreamEntry::Error: 5103 return error("Malformed block"); 5104 case BitstreamEntry::EndBlock: 5105 return Error::success(); 5106 case BitstreamEntry::Record: 5107 // The interesting case. 5108 break; 5109 } 5110 5111 // Read a record. The record format depends on whether this 5112 // is a per-module index or a combined index file. In the per-module 5113 // case the records contain the associated value's ID for correlation 5114 // with VST entries. In the combined index the correlation is done 5115 // via the bitcode offset of the summary records (which were saved 5116 // in the combined index VST entries). The records also contain 5117 // information used for ThinLTO renaming and importing. 5118 Record.clear(); 5119 auto BitCode = Stream.readRecord(Entry.ID, Record); 5120 switch (BitCode) { 5121 default: // Default behavior: ignore. 5122 break; 5123 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5124 uint64_t ValueID = Record[0]; 5125 GlobalValue::GUID RefGUID = Record[1]; 5126 ValueIdToValueInfoMap[ValueID] = 5127 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5128 break; 5129 } 5130 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5131 // numrefs x valueid, n x (valueid)] 5132 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5133 // numrefs x valueid, 5134 // n x (valueid, hotness)] 5135 case bitc::FS_PERMODULE: 5136 case bitc::FS_PERMODULE_PROFILE: { 5137 unsigned ValueID = Record[0]; 5138 uint64_t RawFlags = Record[1]; 5139 unsigned InstCount = Record[2]; 5140 uint64_t RawFunFlags = 0; 5141 unsigned NumRefs = Record[3]; 5142 int RefListStartIndex = 4; 5143 if (Version >= 4) { 5144 RawFunFlags = Record[3]; 5145 NumRefs = Record[4]; 5146 RefListStartIndex = 5; 5147 } 5148 5149 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5150 // The module path string ref set in the summary must be owned by the 5151 // index's module string table. Since we don't have a module path 5152 // string table section in the per-module index, we create a single 5153 // module path string table entry with an empty (0) ID to take 5154 // ownership. 5155 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5156 assert(Record.size() >= RefListStartIndex + NumRefs && 5157 "Record size inconsistent with number of references"); 5158 std::vector<ValueInfo> Refs = makeRefList( 5159 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5160 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5161 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5162 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5163 IsOldProfileFormat, HasProfile); 5164 auto FS = llvm::make_unique<FunctionSummary>( 5165 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5166 std::move(Calls), std::move(PendingTypeTests), 5167 std::move(PendingTypeTestAssumeVCalls), 5168 std::move(PendingTypeCheckedLoadVCalls), 5169 std::move(PendingTypeTestAssumeConstVCalls), 5170 std::move(PendingTypeCheckedLoadConstVCalls)); 5171 PendingTypeTests.clear(); 5172 PendingTypeTestAssumeVCalls.clear(); 5173 PendingTypeCheckedLoadVCalls.clear(); 5174 PendingTypeTestAssumeConstVCalls.clear(); 5175 PendingTypeCheckedLoadConstVCalls.clear(); 5176 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5177 FS->setModulePath(addThisModule()->first()); 5178 FS->setOriginalName(VIAndOriginalGUID.second); 5179 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5180 break; 5181 } 5182 // FS_ALIAS: [valueid, flags, valueid] 5183 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5184 // they expect all aliasee summaries to be available. 5185 case bitc::FS_ALIAS: { 5186 unsigned ValueID = Record[0]; 5187 uint64_t RawFlags = Record[1]; 5188 unsigned AliaseeID = Record[2]; 5189 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5190 auto AS = llvm::make_unique<AliasSummary>(Flags); 5191 // The module path string ref set in the summary must be owned by the 5192 // index's module string table. Since we don't have a module path 5193 // string table section in the per-module index, we create a single 5194 // module path string table entry with an empty (0) ID to take 5195 // ownership. 5196 AS->setModulePath(addThisModule()->first()); 5197 5198 GlobalValue::GUID AliaseeGUID = 5199 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5200 auto AliaseeInModule = 5201 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5202 if (!AliaseeInModule) 5203 return error("Alias expects aliasee summary to be parsed"); 5204 AS->setAliasee(AliaseeInModule); 5205 AS->setAliaseeGUID(AliaseeGUID); 5206 5207 auto GUID = getValueInfoFromValueId(ValueID); 5208 AS->setOriginalName(GUID.second); 5209 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5210 break; 5211 } 5212 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5213 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5214 unsigned ValueID = Record[0]; 5215 uint64_t RawFlags = Record[1]; 5216 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5217 std::vector<ValueInfo> Refs = 5218 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5219 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5220 FS->setModulePath(addThisModule()->first()); 5221 auto GUID = getValueInfoFromValueId(ValueID); 5222 FS->setOriginalName(GUID.second); 5223 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5224 break; 5225 } 5226 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5227 // numrefs x valueid, n x (valueid)] 5228 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5229 // numrefs x valueid, n x (valueid, hotness)] 5230 case bitc::FS_COMBINED: 5231 case bitc::FS_COMBINED_PROFILE: { 5232 unsigned ValueID = Record[0]; 5233 uint64_t ModuleId = Record[1]; 5234 uint64_t RawFlags = Record[2]; 5235 unsigned InstCount = Record[3]; 5236 uint64_t RawFunFlags = 0; 5237 unsigned NumRefs = Record[4]; 5238 int RefListStartIndex = 5; 5239 5240 if (Version >= 4) { 5241 RawFunFlags = Record[4]; 5242 NumRefs = Record[5]; 5243 RefListStartIndex = 6; 5244 } 5245 5246 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5247 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5248 assert(Record.size() >= RefListStartIndex + NumRefs && 5249 "Record size inconsistent with number of references"); 5250 std::vector<ValueInfo> Refs = makeRefList( 5251 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5252 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5253 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5254 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5255 IsOldProfileFormat, HasProfile); 5256 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5257 auto FS = llvm::make_unique<FunctionSummary>( 5258 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5259 std::move(Edges), std::move(PendingTypeTests), 5260 std::move(PendingTypeTestAssumeVCalls), 5261 std::move(PendingTypeCheckedLoadVCalls), 5262 std::move(PendingTypeTestAssumeConstVCalls), 5263 std::move(PendingTypeCheckedLoadConstVCalls)); 5264 PendingTypeTests.clear(); 5265 PendingTypeTestAssumeVCalls.clear(); 5266 PendingTypeCheckedLoadVCalls.clear(); 5267 PendingTypeTestAssumeConstVCalls.clear(); 5268 PendingTypeCheckedLoadConstVCalls.clear(); 5269 LastSeenSummary = FS.get(); 5270 LastSeenGUID = VI.getGUID(); 5271 FS->setModulePath(ModuleIdMap[ModuleId]); 5272 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5273 break; 5274 } 5275 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5276 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5277 // they expect all aliasee summaries to be available. 5278 case bitc::FS_COMBINED_ALIAS: { 5279 unsigned ValueID = Record[0]; 5280 uint64_t ModuleId = Record[1]; 5281 uint64_t RawFlags = Record[2]; 5282 unsigned AliaseeValueId = Record[3]; 5283 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5284 auto AS = llvm::make_unique<AliasSummary>(Flags); 5285 LastSeenSummary = AS.get(); 5286 AS->setModulePath(ModuleIdMap[ModuleId]); 5287 5288 auto AliaseeGUID = 5289 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5290 auto AliaseeInModule = 5291 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5292 AS->setAliasee(AliaseeInModule); 5293 AS->setAliaseeGUID(AliaseeGUID); 5294 5295 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5296 LastSeenGUID = VI.getGUID(); 5297 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5298 break; 5299 } 5300 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5301 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5302 unsigned ValueID = Record[0]; 5303 uint64_t ModuleId = Record[1]; 5304 uint64_t RawFlags = Record[2]; 5305 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5306 std::vector<ValueInfo> Refs = 5307 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5308 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5309 LastSeenSummary = FS.get(); 5310 FS->setModulePath(ModuleIdMap[ModuleId]); 5311 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5312 LastSeenGUID = VI.getGUID(); 5313 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5314 break; 5315 } 5316 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5317 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5318 uint64_t OriginalName = Record[0]; 5319 if (!LastSeenSummary) 5320 return error("Name attachment that does not follow a combined record"); 5321 LastSeenSummary->setOriginalName(OriginalName); 5322 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5323 // Reset the LastSeenSummary 5324 LastSeenSummary = nullptr; 5325 LastSeenGUID = 0; 5326 break; 5327 } 5328 case bitc::FS_TYPE_TESTS: 5329 assert(PendingTypeTests.empty()); 5330 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5331 Record.end()); 5332 break; 5333 5334 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5335 assert(PendingTypeTestAssumeVCalls.empty()); 5336 for (unsigned I = 0; I != Record.size(); I += 2) 5337 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5338 break; 5339 5340 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5341 assert(PendingTypeCheckedLoadVCalls.empty()); 5342 for (unsigned I = 0; I != Record.size(); I += 2) 5343 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5344 break; 5345 5346 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5347 PendingTypeTestAssumeConstVCalls.push_back( 5348 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5349 break; 5350 5351 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5352 PendingTypeCheckedLoadConstVCalls.push_back( 5353 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5354 break; 5355 5356 case bitc::FS_CFI_FUNCTION_DEFS: { 5357 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5358 for (unsigned I = 0; I != Record.size(); I += 2) 5359 CfiFunctionDefs.insert( 5360 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5361 break; 5362 } 5363 case bitc::FS_CFI_FUNCTION_DECLS: { 5364 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5365 for (unsigned I = 0; I != Record.size(); I += 2) 5366 CfiFunctionDecls.insert( 5367 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5368 break; 5369 } 5370 } 5371 } 5372 llvm_unreachable("Exit infinite loop"); 5373 } 5374 5375 // Parse the module string table block into the Index. 5376 // This populates the ModulePathStringTable map in the index. 5377 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5378 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5379 return error("Invalid record"); 5380 5381 SmallVector<uint64_t, 64> Record; 5382 5383 SmallString<128> ModulePath; 5384 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5385 5386 while (true) { 5387 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5388 5389 switch (Entry.Kind) { 5390 case BitstreamEntry::SubBlock: // Handled for us already. 5391 case BitstreamEntry::Error: 5392 return error("Malformed block"); 5393 case BitstreamEntry::EndBlock: 5394 return Error::success(); 5395 case BitstreamEntry::Record: 5396 // The interesting case. 5397 break; 5398 } 5399 5400 Record.clear(); 5401 switch (Stream.readRecord(Entry.ID, Record)) { 5402 default: // Default behavior: ignore. 5403 break; 5404 case bitc::MST_CODE_ENTRY: { 5405 // MST_ENTRY: [modid, namechar x N] 5406 uint64_t ModuleId = Record[0]; 5407 5408 if (convertToString(Record, 1, ModulePath)) 5409 return error("Invalid record"); 5410 5411 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5412 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5413 5414 ModulePath.clear(); 5415 break; 5416 } 5417 /// MST_CODE_HASH: [5*i32] 5418 case bitc::MST_CODE_HASH: { 5419 if (Record.size() != 5) 5420 return error("Invalid hash length " + Twine(Record.size()).str()); 5421 if (!LastSeenModule) 5422 return error("Invalid hash that does not follow a module path"); 5423 int Pos = 0; 5424 for (auto &Val : Record) { 5425 assert(!(Val >> 32) && "Unexpected high bits set"); 5426 LastSeenModule->second.second[Pos++] = Val; 5427 } 5428 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5429 LastSeenModule = nullptr; 5430 break; 5431 } 5432 } 5433 } 5434 llvm_unreachable("Exit infinite loop"); 5435 } 5436 5437 namespace { 5438 5439 // FIXME: This class is only here to support the transition to llvm::Error. It 5440 // will be removed once this transition is complete. Clients should prefer to 5441 // deal with the Error value directly, rather than converting to error_code. 5442 class BitcodeErrorCategoryType : public std::error_category { 5443 const char *name() const noexcept override { 5444 return "llvm.bitcode"; 5445 } 5446 5447 std::string message(int IE) const override { 5448 BitcodeError E = static_cast<BitcodeError>(IE); 5449 switch (E) { 5450 case BitcodeError::CorruptedBitcode: 5451 return "Corrupted bitcode"; 5452 } 5453 llvm_unreachable("Unknown error type!"); 5454 } 5455 }; 5456 5457 } // end anonymous namespace 5458 5459 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5460 5461 const std::error_category &llvm::BitcodeErrorCategory() { 5462 return *ErrorCategory; 5463 } 5464 5465 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5466 unsigned Block, unsigned RecordID) { 5467 if (Stream.EnterSubBlock(Block)) 5468 return error("Invalid record"); 5469 5470 StringRef Strtab; 5471 while (true) { 5472 BitstreamEntry Entry = Stream.advance(); 5473 switch (Entry.Kind) { 5474 case BitstreamEntry::EndBlock: 5475 return Strtab; 5476 5477 case BitstreamEntry::Error: 5478 return error("Malformed block"); 5479 5480 case BitstreamEntry::SubBlock: 5481 if (Stream.SkipBlock()) 5482 return error("Malformed block"); 5483 break; 5484 5485 case BitstreamEntry::Record: 5486 StringRef Blob; 5487 SmallVector<uint64_t, 1> Record; 5488 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5489 Strtab = Blob; 5490 break; 5491 } 5492 } 5493 } 5494 5495 //===----------------------------------------------------------------------===// 5496 // External interface 5497 //===----------------------------------------------------------------------===// 5498 5499 Expected<std::vector<BitcodeModule>> 5500 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5501 auto FOrErr = getBitcodeFileContents(Buffer); 5502 if (!FOrErr) 5503 return FOrErr.takeError(); 5504 return std::move(FOrErr->Mods); 5505 } 5506 5507 Expected<BitcodeFileContents> 5508 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5509 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5510 if (!StreamOrErr) 5511 return StreamOrErr.takeError(); 5512 BitstreamCursor &Stream = *StreamOrErr; 5513 5514 BitcodeFileContents F; 5515 while (true) { 5516 uint64_t BCBegin = Stream.getCurrentByteNo(); 5517 5518 // We may be consuming bitcode from a client that leaves garbage at the end 5519 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5520 // the end that there cannot possibly be another module, stop looking. 5521 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5522 return F; 5523 5524 BitstreamEntry Entry = Stream.advance(); 5525 switch (Entry.Kind) { 5526 case BitstreamEntry::EndBlock: 5527 case BitstreamEntry::Error: 5528 return error("Malformed block"); 5529 5530 case BitstreamEntry::SubBlock: { 5531 uint64_t IdentificationBit = -1ull; 5532 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5533 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5534 if (Stream.SkipBlock()) 5535 return error("Malformed block"); 5536 5537 Entry = Stream.advance(); 5538 if (Entry.Kind != BitstreamEntry::SubBlock || 5539 Entry.ID != bitc::MODULE_BLOCK_ID) 5540 return error("Malformed block"); 5541 } 5542 5543 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5544 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5545 if (Stream.SkipBlock()) 5546 return error("Malformed block"); 5547 5548 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5549 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5550 Buffer.getBufferIdentifier(), IdentificationBit, 5551 ModuleBit}); 5552 continue; 5553 } 5554 5555 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5556 Expected<StringRef> Strtab = 5557 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5558 if (!Strtab) 5559 return Strtab.takeError(); 5560 // This string table is used by every preceding bitcode module that does 5561 // not have its own string table. A bitcode file may have multiple 5562 // string tables if it was created by binary concatenation, for example 5563 // with "llvm-cat -b". 5564 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5565 if (!I->Strtab.empty()) 5566 break; 5567 I->Strtab = *Strtab; 5568 } 5569 // Similarly, the string table is used by every preceding symbol table; 5570 // normally there will be just one unless the bitcode file was created 5571 // by binary concatenation. 5572 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5573 F.StrtabForSymtab = *Strtab; 5574 continue; 5575 } 5576 5577 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5578 Expected<StringRef> SymtabOrErr = 5579 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5580 if (!SymtabOrErr) 5581 return SymtabOrErr.takeError(); 5582 5583 // We can expect the bitcode file to have multiple symbol tables if it 5584 // was created by binary concatenation. In that case we silently 5585 // ignore any subsequent symbol tables, which is fine because this is a 5586 // low level function. The client is expected to notice that the number 5587 // of modules in the symbol table does not match the number of modules 5588 // in the input file and regenerate the symbol table. 5589 if (F.Symtab.empty()) 5590 F.Symtab = *SymtabOrErr; 5591 continue; 5592 } 5593 5594 if (Stream.SkipBlock()) 5595 return error("Malformed block"); 5596 continue; 5597 } 5598 case BitstreamEntry::Record: 5599 Stream.skipRecord(Entry.ID); 5600 continue; 5601 } 5602 } 5603 } 5604 5605 /// \brief Get a lazy one-at-time loading module from bitcode. 5606 /// 5607 /// This isn't always used in a lazy context. In particular, it's also used by 5608 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5609 /// in forward-referenced functions from block address references. 5610 /// 5611 /// \param[in] MaterializeAll Set to \c true if we should materialize 5612 /// everything. 5613 Expected<std::unique_ptr<Module>> 5614 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5615 bool ShouldLazyLoadMetadata, bool IsImporting) { 5616 BitstreamCursor Stream(Buffer); 5617 5618 std::string ProducerIdentification; 5619 if (IdentificationBit != -1ull) { 5620 Stream.JumpToBit(IdentificationBit); 5621 Expected<std::string> ProducerIdentificationOrErr = 5622 readIdentificationBlock(Stream); 5623 if (!ProducerIdentificationOrErr) 5624 return ProducerIdentificationOrErr.takeError(); 5625 5626 ProducerIdentification = *ProducerIdentificationOrErr; 5627 } 5628 5629 Stream.JumpToBit(ModuleBit); 5630 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5631 Context); 5632 5633 std::unique_ptr<Module> M = 5634 llvm::make_unique<Module>(ModuleIdentifier, Context); 5635 M->setMaterializer(R); 5636 5637 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5638 if (Error Err = 5639 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5640 return std::move(Err); 5641 5642 if (MaterializeAll) { 5643 // Read in the entire module, and destroy the BitcodeReader. 5644 if (Error Err = M->materializeAll()) 5645 return std::move(Err); 5646 } else { 5647 // Resolve forward references from blockaddresses. 5648 if (Error Err = R->materializeForwardReferencedFunctions()) 5649 return std::move(Err); 5650 } 5651 return std::move(M); 5652 } 5653 5654 Expected<std::unique_ptr<Module>> 5655 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5656 bool IsImporting) { 5657 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5658 } 5659 5660 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5661 // We don't use ModuleIdentifier here because the client may need to control the 5662 // module path used in the combined summary (e.g. when reading summaries for 5663 // regular LTO modules). 5664 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5665 StringRef ModulePath, uint64_t ModuleId) { 5666 BitstreamCursor Stream(Buffer); 5667 Stream.JumpToBit(ModuleBit); 5668 5669 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5670 ModulePath, ModuleId); 5671 return R.parseModule(); 5672 } 5673 5674 // Parse the specified bitcode buffer, returning the function info index. 5675 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5676 BitstreamCursor Stream(Buffer); 5677 Stream.JumpToBit(ModuleBit); 5678 5679 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5680 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5681 ModuleIdentifier, 0); 5682 5683 if (Error Err = R.parseModule()) 5684 return std::move(Err); 5685 5686 return std::move(Index); 5687 } 5688 5689 // Check if the given bitcode buffer contains a global value summary block. 5690 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5691 BitstreamCursor Stream(Buffer); 5692 Stream.JumpToBit(ModuleBit); 5693 5694 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5695 return error("Invalid record"); 5696 5697 while (true) { 5698 BitstreamEntry Entry = Stream.advance(); 5699 5700 switch (Entry.Kind) { 5701 case BitstreamEntry::Error: 5702 return error("Malformed block"); 5703 case BitstreamEntry::EndBlock: 5704 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5705 5706 case BitstreamEntry::SubBlock: 5707 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5708 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5709 5710 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5711 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5712 5713 // Ignore other sub-blocks. 5714 if (Stream.SkipBlock()) 5715 return error("Malformed block"); 5716 continue; 5717 5718 case BitstreamEntry::Record: 5719 Stream.skipRecord(Entry.ID); 5720 continue; 5721 } 5722 } 5723 } 5724 5725 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5726 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5727 if (!MsOrErr) 5728 return MsOrErr.takeError(); 5729 5730 if (MsOrErr->size() != 1) 5731 return error("Expected a single module"); 5732 5733 return (*MsOrErr)[0]; 5734 } 5735 5736 Expected<std::unique_ptr<Module>> 5737 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5738 bool ShouldLazyLoadMetadata, bool IsImporting) { 5739 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5740 if (!BM) 5741 return BM.takeError(); 5742 5743 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5744 } 5745 5746 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5747 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5748 bool ShouldLazyLoadMetadata, bool IsImporting) { 5749 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5750 IsImporting); 5751 if (MOrErr) 5752 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5753 return MOrErr; 5754 } 5755 5756 Expected<std::unique_ptr<Module>> 5757 BitcodeModule::parseModule(LLVMContext &Context) { 5758 return getModuleImpl(Context, true, false, false); 5759 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5760 // written. We must defer until the Module has been fully materialized. 5761 } 5762 5763 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5764 LLVMContext &Context) { 5765 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5766 if (!BM) 5767 return BM.takeError(); 5768 5769 return BM->parseModule(Context); 5770 } 5771 5772 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5773 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5774 if (!StreamOrErr) 5775 return StreamOrErr.takeError(); 5776 5777 return readTriple(*StreamOrErr); 5778 } 5779 5780 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5781 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5782 if (!StreamOrErr) 5783 return StreamOrErr.takeError(); 5784 5785 return hasObjCCategory(*StreamOrErr); 5786 } 5787 5788 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5789 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5790 if (!StreamOrErr) 5791 return StreamOrErr.takeError(); 5792 5793 return readIdentificationCode(*StreamOrErr); 5794 } 5795 5796 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5797 ModuleSummaryIndex &CombinedIndex, 5798 uint64_t ModuleId) { 5799 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5800 if (!BM) 5801 return BM.takeError(); 5802 5803 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5804 } 5805 5806 Expected<std::unique_ptr<ModuleSummaryIndex>> 5807 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5808 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5809 if (!BM) 5810 return BM.takeError(); 5811 5812 return BM->getSummary(); 5813 } 5814 5815 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5816 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5817 if (!BM) 5818 return BM.takeError(); 5819 5820 return BM->getLTOInfo(); 5821 } 5822 5823 Expected<std::unique_ptr<ModuleSummaryIndex>> 5824 llvm::getModuleSummaryIndexForFile(StringRef Path, 5825 bool IgnoreEmptyThinLTOIndexFile) { 5826 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5827 MemoryBuffer::getFileOrSTDIN(Path); 5828 if (!FileOrErr) 5829 return errorCodeToError(FileOrErr.getError()); 5830 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5831 return nullptr; 5832 return getModuleSummaryIndex(**FileOrErr); 5833 } 5834