xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 800f87a871282713fc5f41d00692b51b2ea6c207)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> PrintSummaryGUIDs(
44     "print-summary-global-ids", cl::init(false), cl::Hidden,
45     cl::desc(
46         "Print the global id for each value when reading the module summary"));
47 
48 namespace {
49 enum {
50   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88   void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty);
97 
98   void assignValue(Value *V, unsigned Idx);
99 
100   /// Once all constants are read, this method bulk resolves any forward
101   /// references.
102   void resolveConstantForwardRefs();
103 };
104 
105 class BitcodeReaderMetadataList {
106   unsigned NumFwdRefs;
107   bool AnyFwdRefs;
108   unsigned MinFwdRef;
109   unsigned MaxFwdRef;
110   std::vector<TrackingMDRef> MetadataPtrs;
111 
112   LLVMContext &Context;
113 public:
114   BitcodeReaderMetadataList(LLVMContext &C)
115       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
116 
117   // vector compatibility methods
118   unsigned size() const { return MetadataPtrs.size(); }
119   void resize(unsigned N) { MetadataPtrs.resize(N); }
120   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
121   void clear() { MetadataPtrs.clear(); }
122   Metadata *back() const { return MetadataPtrs.back(); }
123   void pop_back() { MetadataPtrs.pop_back(); }
124   bool empty() const { return MetadataPtrs.empty(); }
125 
126   Metadata *operator[](unsigned i) const {
127     assert(i < MetadataPtrs.size());
128     return MetadataPtrs[i];
129   }
130 
131   void shrinkTo(unsigned N) {
132     assert(N <= size() && "Invalid shrinkTo request!");
133     assert(!AnyFwdRefs && "Unexpected forward refs");
134     MetadataPtrs.resize(N);
135   }
136 
137   Metadata *getMetadataFwdRef(unsigned Idx);
138   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
139   void assignValue(Metadata *MD, unsigned Idx);
140   void tryToResolveCycles();
141   bool hasFwdRefs() const { return AnyFwdRefs; }
142 };
143 
144 class BitcodeReader : public GVMaterializer {
145   LLVMContext &Context;
146   Module *TheModule = nullptr;
147   std::unique_ptr<MemoryBuffer> Buffer;
148   std::unique_ptr<BitstreamReader> StreamFile;
149   BitstreamCursor Stream;
150   // Next offset to start scanning for lazy parsing of function bodies.
151   uint64_t NextUnreadBit = 0;
152   // Last function offset found in the VST.
153   uint64_t LastFunctionBlockBit = 0;
154   bool SeenValueSymbolTable = false;
155   uint64_t VSTOffset = 0;
156   // Contains an arbitrary and optional string identifying the bitcode producer
157   std::string ProducerIdentification;
158 
159   std::vector<Type*> TypeList;
160   BitcodeReaderValueList ValueList;
161   BitcodeReaderMetadataList MetadataList;
162   std::vector<Comdat *> ComdatList;
163   SmallVector<Instruction *, 64> InstructionList;
164 
165   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
166   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
167   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
168   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
169   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
170 
171   SmallVector<Instruction*, 64> InstsWithTBAATag;
172 
173   bool HasSeenOldLoopTags = false;
174 
175   /// The set of attributes by index.  Index zero in the file is for null, and
176   /// is thus not represented here.  As such all indices are off by one.
177   std::vector<AttributeSet> MAttributes;
178 
179   /// The set of attribute groups.
180   std::map<unsigned, AttributeSet> MAttributeGroups;
181 
182   /// While parsing a function body, this is a list of the basic blocks for the
183   /// function.
184   std::vector<BasicBlock*> FunctionBBs;
185 
186   // When reading the module header, this list is populated with functions that
187   // have bodies later in the file.
188   std::vector<Function*> FunctionsWithBodies;
189 
190   // When intrinsic functions are encountered which require upgrading they are
191   // stored here with their replacement function.
192   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
193   UpgradedIntrinsicMap UpgradedIntrinsics;
194 
195   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
196   DenseMap<unsigned, unsigned> MDKindMap;
197 
198   // Several operations happen after the module header has been read, but
199   // before function bodies are processed. This keeps track of whether
200   // we've done this yet.
201   bool SeenFirstFunctionBody = false;
202 
203   /// When function bodies are initially scanned, this map contains info about
204   /// where to find deferred function body in the stream.
205   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
206 
207   /// When Metadata block is initially scanned when parsing the module, we may
208   /// choose to defer parsing of the metadata. This vector contains info about
209   /// which Metadata blocks are deferred.
210   std::vector<uint64_t> DeferredMetadataInfo;
211 
212   /// These are basic blocks forward-referenced by block addresses.  They are
213   /// inserted lazily into functions when they're loaded.  The basic block ID is
214   /// its index into the vector.
215   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
216   std::deque<Function *> BasicBlockFwdRefQueue;
217 
218   /// Indicates that we are using a new encoding for instruction operands where
219   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
220   /// instruction number, for a more compact encoding.  Some instruction
221   /// operands are not relative to the instruction ID: basic block numbers, and
222   /// types. Once the old style function blocks have been phased out, we would
223   /// not need this flag.
224   bool UseRelativeIDs = false;
225 
226   /// True if all functions will be materialized, negating the need to process
227   /// (e.g.) blockaddress forward references.
228   bool WillMaterializeAllForwardRefs = false;
229 
230   /// True if any Metadata block has been materialized.
231   bool IsMetadataMaterialized = false;
232 
233   bool StripDebugInfo = false;
234 
235   /// Functions that need to be matched with subprograms when upgrading old
236   /// metadata.
237   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
238 
239   std::vector<std::string> BundleTags;
240 
241 public:
242   std::error_code error(BitcodeError E, const Twine &Message);
243   std::error_code error(BitcodeError E);
244   std::error_code error(const Twine &Message);
245 
246   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
247   BitcodeReader(LLVMContext &Context);
248   ~BitcodeReader() override { freeState(); }
249 
250   std::error_code materializeForwardReferencedFunctions();
251 
252   void freeState();
253 
254   void releaseBuffer();
255 
256   std::error_code materialize(GlobalValue *GV) override;
257   std::error_code materializeModule() override;
258   std::vector<StructType *> getIdentifiedStructTypes() const override;
259 
260   /// \brief Main interface to parsing a bitcode buffer.
261   /// \returns true if an error occurred.
262   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
263                                    Module *M,
264                                    bool ShouldLazyLoadMetadata = false);
265 
266   /// \brief Cheap mechanism to just extract module triple
267   /// \returns true if an error occurred.
268   ErrorOr<std::string> parseTriple();
269 
270   /// Cheap mechanism to just extract the identification block out of bitcode.
271   ErrorOr<std::string> parseIdentificationBlock();
272 
273   static uint64_t decodeSignRotatedValue(uint64_t V);
274 
275   /// Materialize any deferred Metadata block.
276   std::error_code materializeMetadata() override;
277 
278   void setStripDebugInfo() override;
279 
280 private:
281   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282   // ProducerIdentification data member, and do some basic enforcement on the
283   // "epoch" encoded in the bitcode.
284   std::error_code parseBitcodeVersion();
285 
286   std::vector<StructType *> IdentifiedStructTypes;
287   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288   StructType *createIdentifiedStructType(LLVMContext &Context);
289 
290   Type *getTypeByID(unsigned ID);
291   Value *getFnValueByID(unsigned ID, Type *Ty) {
292     if (Ty && Ty->isMetadataTy())
293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294     return ValueList.getValueFwdRef(ID, Ty);
295   }
296   Metadata *getFnMetadataByID(unsigned ID) {
297     return MetadataList.getMetadataFwdRef(ID);
298   }
299   BasicBlock *getBasicBlock(unsigned ID) const {
300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301     return FunctionBBs[ID];
302   }
303   AttributeSet getAttributes(unsigned i) const {
304     if (i-1 < MAttributes.size())
305       return MAttributes[i-1];
306     return AttributeSet();
307   }
308 
309   /// Read a value/type pair out of the specified record from slot 'Slot'.
310   /// Increment Slot past the number of slots used in the record. Return true on
311   /// failure.
312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                         unsigned InstNum, Value *&ResVal) {
314     if (Slot == Record.size()) return true;
315     unsigned ValNo = (unsigned)Record[Slot++];
316     // Adjust the ValNo, if it was encoded relative to the InstNum.
317     if (UseRelativeIDs)
318       ValNo = InstNum - ValNo;
319     if (ValNo < InstNum) {
320       // If this is not a forward reference, just return the value we already
321       // have.
322       ResVal = getFnValueByID(ValNo, nullptr);
323       return ResVal == nullptr;
324     }
325     if (Slot == Record.size())
326       return true;
327 
328     unsigned TypeNo = (unsigned)Record[Slot++];
329     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330     return ResVal == nullptr;
331   }
332 
333   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334   /// past the number of slots used by the value in the record. Return true if
335   /// there is an error.
336   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337                 unsigned InstNum, Type *Ty, Value *&ResVal) {
338     if (getValue(Record, Slot, InstNum, Ty, ResVal))
339       return true;
340     // All values currently take a single record slot.
341     ++Slot;
342     return false;
343   }
344 
345   /// Like popValue, but does not increment the Slot number.
346   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347                 unsigned InstNum, Type *Ty, Value *&ResVal) {
348     ResVal = getValue(Record, Slot, InstNum, Ty);
349     return ResVal == nullptr;
350   }
351 
352   /// Version of getValue that returns ResVal directly, or 0 if there is an
353   /// error.
354   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355                   unsigned InstNum, Type *Ty) {
356     if (Slot == Record.size()) return nullptr;
357     unsigned ValNo = (unsigned)Record[Slot];
358     // Adjust the ValNo, if it was encoded relative to the InstNum.
359     if (UseRelativeIDs)
360       ValNo = InstNum - ValNo;
361     return getFnValueByID(ValNo, Ty);
362   }
363 
364   /// Like getValue, but decodes signed VBRs.
365   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366                         unsigned InstNum, Type *Ty) {
367     if (Slot == Record.size()) return nullptr;
368     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369     // Adjust the ValNo, if it was encoded relative to the InstNum.
370     if (UseRelativeIDs)
371       ValNo = InstNum - ValNo;
372     return getFnValueByID(ValNo, Ty);
373   }
374 
375   /// Converts alignment exponent (i.e. power of two (or zero)) to the
376   /// corresponding alignment to use. If alignment is too large, returns
377   /// a corresponding error code.
378   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380   std::error_code parseModule(uint64_t ResumeBit,
381                               bool ShouldLazyLoadMetadata = false);
382   std::error_code parseAttributeBlock();
383   std::error_code parseAttributeGroupBlock();
384   std::error_code parseTypeTable();
385   std::error_code parseTypeTableBody();
386   std::error_code parseOperandBundleTags();
387 
388   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389                                unsigned NameIndex, Triple &TT);
390   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391   std::error_code parseConstants();
392   std::error_code rememberAndSkipFunctionBodies();
393   std::error_code rememberAndSkipFunctionBody();
394   /// Save the positions of the Metadata blocks and skip parsing the blocks.
395   std::error_code rememberAndSkipMetadata();
396   std::error_code parseFunctionBody(Function *F);
397   std::error_code globalCleanup();
398   std::error_code resolveGlobalAndIndirectSymbolInits();
399   std::error_code parseMetadata(bool ModuleLevel = false);
400   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
401                                        StringRef Blob,
402                                        unsigned &NextMetadataNo);
403   std::error_code parseMetadataKinds();
404   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
405   std::error_code parseMetadataAttachment(Function &F);
406   ErrorOr<std::string> parseModuleTriple();
407   std::error_code parseUseLists();
408   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
409   std::error_code initStreamFromBuffer();
410   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
411   std::error_code findFunctionInStream(
412       Function *F,
413       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
414 };
415 
416 /// Class to manage reading and parsing function summary index bitcode
417 /// files/sections.
418 class ModuleSummaryIndexBitcodeReader {
419   DiagnosticHandlerFunction DiagnosticHandler;
420 
421   /// Eventually points to the module index built during parsing.
422   ModuleSummaryIndex *TheIndex = nullptr;
423 
424   std::unique_ptr<MemoryBuffer> Buffer;
425   std::unique_ptr<BitstreamReader> StreamFile;
426   BitstreamCursor Stream;
427 
428   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
429   ///
430   /// If false, the summary section is fully parsed into the index during
431   /// the initial parse. Otherwise, if true, the caller is expected to
432   /// invoke \a readGlobalValueSummary for each summary needed, and the summary
433   /// section is thus parsed lazily.
434   bool IsLazy = false;
435 
436   /// Used to indicate whether caller only wants to check for the presence
437   /// of the global value summary bitcode section. All blocks are skipped,
438   /// but the SeenGlobalValSummary boolean is set.
439   bool CheckGlobalValSummaryPresenceOnly = false;
440 
441   /// Indicates whether we have encountered a global value summary section
442   /// yet during parsing, used when checking if file contains global value
443   /// summary section.
444   bool SeenGlobalValSummary = false;
445 
446   /// Indicates whether we have already parsed the VST, used for error checking.
447   bool SeenValueSymbolTable = false;
448 
449   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
450   /// Used to enable on-demand parsing of the VST.
451   uint64_t VSTOffset = 0;
452 
453   // Map to save ValueId to GUID association that was recorded in the
454   // ValueSymbolTable. It is used after the VST is parsed to convert
455   // call graph edges read from the function summary from referencing
456   // callees by their ValueId to using the GUID instead, which is how
457   // they are recorded in the summary index being built.
458   DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap;
459 
460   /// Map to save the association between summary offset in the VST to the
461   /// GlobalValueInfo object created when parsing it. Used to access the
462   /// info object when parsing the summary section.
463   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
464 
465   /// Map populated during module path string table parsing, from the
466   /// module ID to a string reference owned by the index's module
467   /// path string table, used to correlate with combined index
468   /// summary records.
469   DenseMap<uint64_t, StringRef> ModuleIdMap;
470 
471   /// Original source file name recorded in a bitcode record.
472   std::string SourceFileName;
473 
474 public:
475   std::error_code error(BitcodeError E, const Twine &Message);
476   std::error_code error(BitcodeError E);
477   std::error_code error(const Twine &Message);
478 
479   ModuleSummaryIndexBitcodeReader(
480       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
481       bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false);
482   ModuleSummaryIndexBitcodeReader(
483       DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false,
484       bool CheckGlobalValSummaryPresenceOnly = false);
485   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
486 
487   void freeState();
488 
489   void releaseBuffer();
490 
491   /// Check if the parser has encountered a summary section.
492   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
493 
494   /// \brief Main interface to parsing a bitcode buffer.
495   /// \returns true if an error occurred.
496   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
497                                         ModuleSummaryIndex *I);
498 
499   /// \brief Interface for parsing a summary lazily.
500   std::error_code
501   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
502                           ModuleSummaryIndex *I, size_t SummaryOffset);
503 
504 private:
505   std::error_code parseModule();
506   std::error_code parseValueSymbolTable(
507       uint64_t Offset,
508       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
509   std::error_code parseEntireSummary();
510   std::error_code parseModuleStringTable();
511   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
512   std::error_code initStreamFromBuffer();
513   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
514   GlobalValue::GUID getGUIDFromValueId(unsigned ValueId);
515   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
516 };
517 } // end anonymous namespace
518 
519 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
520                                              DiagnosticSeverity Severity,
521                                              const Twine &Msg)
522     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
523 
524 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
525 
526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
527                              std::error_code EC, const Twine &Message) {
528   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
529   DiagnosticHandler(DI);
530   return EC;
531 }
532 
533 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
534                              std::error_code EC) {
535   return error(DiagnosticHandler, EC, EC.message());
536 }
537 
538 static std::error_code error(LLVMContext &Context, std::error_code EC,
539                              const Twine &Message) {
540   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
541                Message);
542 }
543 
544 static std::error_code error(LLVMContext &Context, std::error_code EC) {
545   return error(Context, EC, EC.message());
546 }
547 
548 static std::error_code error(LLVMContext &Context, const Twine &Message) {
549   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
550                Message);
551 }
552 
553 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
554   if (!ProducerIdentification.empty()) {
555     return ::error(Context, make_error_code(E),
556                    Message + " (Producer: '" + ProducerIdentification +
557                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
558   }
559   return ::error(Context, make_error_code(E), Message);
560 }
561 
562 std::error_code BitcodeReader::error(const Twine &Message) {
563   if (!ProducerIdentification.empty()) {
564     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
565                    Message + " (Producer: '" + ProducerIdentification +
566                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
567   }
568   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
569                  Message);
570 }
571 
572 std::error_code BitcodeReader::error(BitcodeError E) {
573   return ::error(Context, make_error_code(E));
574 }
575 
576 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
577     : Context(Context), Buffer(Buffer), ValueList(Context),
578       MetadataList(Context) {}
579 
580 BitcodeReader::BitcodeReader(LLVMContext &Context)
581     : Context(Context), Buffer(nullptr), ValueList(Context),
582       MetadataList(Context) {}
583 
584 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
585   if (WillMaterializeAllForwardRefs)
586     return std::error_code();
587 
588   // Prevent recursion.
589   WillMaterializeAllForwardRefs = true;
590 
591   while (!BasicBlockFwdRefQueue.empty()) {
592     Function *F = BasicBlockFwdRefQueue.front();
593     BasicBlockFwdRefQueue.pop_front();
594     assert(F && "Expected valid function");
595     if (!BasicBlockFwdRefs.count(F))
596       // Already materialized.
597       continue;
598 
599     // Check for a function that isn't materializable to prevent an infinite
600     // loop.  When parsing a blockaddress stored in a global variable, there
601     // isn't a trivial way to check if a function will have a body without a
602     // linear search through FunctionsWithBodies, so just check it here.
603     if (!F->isMaterializable())
604       return error("Never resolved function from blockaddress");
605 
606     // Try to materialize F.
607     if (std::error_code EC = materialize(F))
608       return EC;
609   }
610   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
611 
612   // Reset state.
613   WillMaterializeAllForwardRefs = false;
614   return std::error_code();
615 }
616 
617 void BitcodeReader::freeState() {
618   Buffer = nullptr;
619   std::vector<Type*>().swap(TypeList);
620   ValueList.clear();
621   MetadataList.clear();
622   std::vector<Comdat *>().swap(ComdatList);
623 
624   std::vector<AttributeSet>().swap(MAttributes);
625   std::vector<BasicBlock*>().swap(FunctionBBs);
626   std::vector<Function*>().swap(FunctionsWithBodies);
627   DeferredFunctionInfo.clear();
628   DeferredMetadataInfo.clear();
629   MDKindMap.clear();
630 
631   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
632   BasicBlockFwdRefQueue.clear();
633 }
634 
635 //===----------------------------------------------------------------------===//
636 //  Helper functions to implement forward reference resolution, etc.
637 //===----------------------------------------------------------------------===//
638 
639 /// Convert a string from a record into an std::string, return true on failure.
640 template <typename StrTy>
641 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
642                             StrTy &Result) {
643   if (Idx > Record.size())
644     return true;
645 
646   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
647     Result += (char)Record[i];
648   return false;
649 }
650 
651 static bool hasImplicitComdat(size_t Val) {
652   switch (Val) {
653   default:
654     return false;
655   case 1:  // Old WeakAnyLinkage
656   case 4:  // Old LinkOnceAnyLinkage
657   case 10: // Old WeakODRLinkage
658   case 11: // Old LinkOnceODRLinkage
659     return true;
660   }
661 }
662 
663 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
664   switch (Val) {
665   default: // Map unknown/new linkages to external
666   case 0:
667     return GlobalValue::ExternalLinkage;
668   case 2:
669     return GlobalValue::AppendingLinkage;
670   case 3:
671     return GlobalValue::InternalLinkage;
672   case 5:
673     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
674   case 6:
675     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
676   case 7:
677     return GlobalValue::ExternalWeakLinkage;
678   case 8:
679     return GlobalValue::CommonLinkage;
680   case 9:
681     return GlobalValue::PrivateLinkage;
682   case 12:
683     return GlobalValue::AvailableExternallyLinkage;
684   case 13:
685     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
686   case 14:
687     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
688   case 15:
689     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
690   case 1: // Old value with implicit comdat.
691   case 16:
692     return GlobalValue::WeakAnyLinkage;
693   case 10: // Old value with implicit comdat.
694   case 17:
695     return GlobalValue::WeakODRLinkage;
696   case 4: // Old value with implicit comdat.
697   case 18:
698     return GlobalValue::LinkOnceAnyLinkage;
699   case 11: // Old value with implicit comdat.
700   case 19:
701     return GlobalValue::LinkOnceODRLinkage;
702   }
703 }
704 
705 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
706   switch (Val) {
707   default: // Map unknown visibilities to default.
708   case 0: return GlobalValue::DefaultVisibility;
709   case 1: return GlobalValue::HiddenVisibility;
710   case 2: return GlobalValue::ProtectedVisibility;
711   }
712 }
713 
714 static GlobalValue::DLLStorageClassTypes
715 getDecodedDLLStorageClass(unsigned Val) {
716   switch (Val) {
717   default: // Map unknown values to default.
718   case 0: return GlobalValue::DefaultStorageClass;
719   case 1: return GlobalValue::DLLImportStorageClass;
720   case 2: return GlobalValue::DLLExportStorageClass;
721   }
722 }
723 
724 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
725   switch (Val) {
726     case 0: return GlobalVariable::NotThreadLocal;
727     default: // Map unknown non-zero value to general dynamic.
728     case 1: return GlobalVariable::GeneralDynamicTLSModel;
729     case 2: return GlobalVariable::LocalDynamicTLSModel;
730     case 3: return GlobalVariable::InitialExecTLSModel;
731     case 4: return GlobalVariable::LocalExecTLSModel;
732   }
733 }
734 
735 static int getDecodedCastOpcode(unsigned Val) {
736   switch (Val) {
737   default: return -1;
738   case bitc::CAST_TRUNC   : return Instruction::Trunc;
739   case bitc::CAST_ZEXT    : return Instruction::ZExt;
740   case bitc::CAST_SEXT    : return Instruction::SExt;
741   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
742   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
743   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
744   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
745   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
746   case bitc::CAST_FPEXT   : return Instruction::FPExt;
747   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
748   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
749   case bitc::CAST_BITCAST : return Instruction::BitCast;
750   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
751   }
752 }
753 
754 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
755   bool IsFP = Ty->isFPOrFPVectorTy();
756   // BinOps are only valid for int/fp or vector of int/fp types
757   if (!IsFP && !Ty->isIntOrIntVectorTy())
758     return -1;
759 
760   switch (Val) {
761   default:
762     return -1;
763   case bitc::BINOP_ADD:
764     return IsFP ? Instruction::FAdd : Instruction::Add;
765   case bitc::BINOP_SUB:
766     return IsFP ? Instruction::FSub : Instruction::Sub;
767   case bitc::BINOP_MUL:
768     return IsFP ? Instruction::FMul : Instruction::Mul;
769   case bitc::BINOP_UDIV:
770     return IsFP ? -1 : Instruction::UDiv;
771   case bitc::BINOP_SDIV:
772     return IsFP ? Instruction::FDiv : Instruction::SDiv;
773   case bitc::BINOP_UREM:
774     return IsFP ? -1 : Instruction::URem;
775   case bitc::BINOP_SREM:
776     return IsFP ? Instruction::FRem : Instruction::SRem;
777   case bitc::BINOP_SHL:
778     return IsFP ? -1 : Instruction::Shl;
779   case bitc::BINOP_LSHR:
780     return IsFP ? -1 : Instruction::LShr;
781   case bitc::BINOP_ASHR:
782     return IsFP ? -1 : Instruction::AShr;
783   case bitc::BINOP_AND:
784     return IsFP ? -1 : Instruction::And;
785   case bitc::BINOP_OR:
786     return IsFP ? -1 : Instruction::Or;
787   case bitc::BINOP_XOR:
788     return IsFP ? -1 : Instruction::Xor;
789   }
790 }
791 
792 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
793   switch (Val) {
794   default: return AtomicRMWInst::BAD_BINOP;
795   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
796   case bitc::RMW_ADD: return AtomicRMWInst::Add;
797   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
798   case bitc::RMW_AND: return AtomicRMWInst::And;
799   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
800   case bitc::RMW_OR: return AtomicRMWInst::Or;
801   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
802   case bitc::RMW_MAX: return AtomicRMWInst::Max;
803   case bitc::RMW_MIN: return AtomicRMWInst::Min;
804   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
805   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
806   }
807 }
808 
809 static AtomicOrdering getDecodedOrdering(unsigned Val) {
810   switch (Val) {
811   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
812   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
813   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
814   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
815   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
816   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
817   default: // Map unknown orderings to sequentially-consistent.
818   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
819   }
820 }
821 
822 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
823   switch (Val) {
824   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
825   default: // Map unknown scopes to cross-thread.
826   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
827   }
828 }
829 
830 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
831   switch (Val) {
832   default: // Map unknown selection kinds to any.
833   case bitc::COMDAT_SELECTION_KIND_ANY:
834     return Comdat::Any;
835   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
836     return Comdat::ExactMatch;
837   case bitc::COMDAT_SELECTION_KIND_LARGEST:
838     return Comdat::Largest;
839   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
840     return Comdat::NoDuplicates;
841   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
842     return Comdat::SameSize;
843   }
844 }
845 
846 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
847   FastMathFlags FMF;
848   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
849     FMF.setUnsafeAlgebra();
850   if (0 != (Val & FastMathFlags::NoNaNs))
851     FMF.setNoNaNs();
852   if (0 != (Val & FastMathFlags::NoInfs))
853     FMF.setNoInfs();
854   if (0 != (Val & FastMathFlags::NoSignedZeros))
855     FMF.setNoSignedZeros();
856   if (0 != (Val & FastMathFlags::AllowReciprocal))
857     FMF.setAllowReciprocal();
858   return FMF;
859 }
860 
861 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
862   switch (Val) {
863   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
864   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
865   }
866 }
867 
868 namespace llvm {
869 namespace {
870 /// \brief A class for maintaining the slot number definition
871 /// as a placeholder for the actual definition for forward constants defs.
872 class ConstantPlaceHolder : public ConstantExpr {
873   void operator=(const ConstantPlaceHolder &) = delete;
874 
875 public:
876   // allocate space for exactly one operand
877   void *operator new(size_t s) { return User::operator new(s, 1); }
878   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
879       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
880     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
881   }
882 
883   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
884   static bool classof(const Value *V) {
885     return isa<ConstantExpr>(V) &&
886            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
887   }
888 
889   /// Provide fast operand accessors
890   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
891 };
892 } // end anonymous namespace
893 
894 // FIXME: can we inherit this from ConstantExpr?
895 template <>
896 struct OperandTraits<ConstantPlaceHolder> :
897   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
898 };
899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
900 } // end namespace llvm
901 
902 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
903   if (Idx == size()) {
904     push_back(V);
905     return;
906   }
907 
908   if (Idx >= size())
909     resize(Idx+1);
910 
911   WeakVH &OldV = ValuePtrs[Idx];
912   if (!OldV) {
913     OldV = V;
914     return;
915   }
916 
917   // Handle constants and non-constants (e.g. instrs) differently for
918   // efficiency.
919   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
920     ResolveConstants.push_back(std::make_pair(PHC, Idx));
921     OldV = V;
922   } else {
923     // If there was a forward reference to this value, replace it.
924     Value *PrevVal = OldV;
925     OldV->replaceAllUsesWith(V);
926     delete PrevVal;
927   }
928 }
929 
930 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
931                                                     Type *Ty) {
932   if (Idx >= size())
933     resize(Idx + 1);
934 
935   if (Value *V = ValuePtrs[Idx]) {
936     if (Ty != V->getType())
937       report_fatal_error("Type mismatch in constant table!");
938     return cast<Constant>(V);
939   }
940 
941   // Create and return a placeholder, which will later be RAUW'd.
942   Constant *C = new ConstantPlaceHolder(Ty, Context);
943   ValuePtrs[Idx] = C;
944   return C;
945 }
946 
947 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
948   // Bail out for a clearly invalid value. This would make us call resize(0)
949   if (Idx == UINT_MAX)
950     return nullptr;
951 
952   if (Idx >= size())
953     resize(Idx + 1);
954 
955   if (Value *V = ValuePtrs[Idx]) {
956     // If the types don't match, it's invalid.
957     if (Ty && Ty != V->getType())
958       return nullptr;
959     return V;
960   }
961 
962   // No type specified, must be invalid reference.
963   if (!Ty) return nullptr;
964 
965   // Create and return a placeholder, which will later be RAUW'd.
966   Value *V = new Argument(Ty);
967   ValuePtrs[Idx] = V;
968   return V;
969 }
970 
971 /// Once all constants are read, this method bulk resolves any forward
972 /// references.  The idea behind this is that we sometimes get constants (such
973 /// as large arrays) which reference *many* forward ref constants.  Replacing
974 /// each of these causes a lot of thrashing when building/reuniquing the
975 /// constant.  Instead of doing this, we look at all the uses and rewrite all
976 /// the place holders at once for any constant that uses a placeholder.
977 void BitcodeReaderValueList::resolveConstantForwardRefs() {
978   // Sort the values by-pointer so that they are efficient to look up with a
979   // binary search.
980   std::sort(ResolveConstants.begin(), ResolveConstants.end());
981 
982   SmallVector<Constant*, 64> NewOps;
983 
984   while (!ResolveConstants.empty()) {
985     Value *RealVal = operator[](ResolveConstants.back().second);
986     Constant *Placeholder = ResolveConstants.back().first;
987     ResolveConstants.pop_back();
988 
989     // Loop over all users of the placeholder, updating them to reference the
990     // new value.  If they reference more than one placeholder, update them all
991     // at once.
992     while (!Placeholder->use_empty()) {
993       auto UI = Placeholder->user_begin();
994       User *U = *UI;
995 
996       // If the using object isn't uniqued, just update the operands.  This
997       // handles instructions and initializers for global variables.
998       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
999         UI.getUse().set(RealVal);
1000         continue;
1001       }
1002 
1003       // Otherwise, we have a constant that uses the placeholder.  Replace that
1004       // constant with a new constant that has *all* placeholder uses updated.
1005       Constant *UserC = cast<Constant>(U);
1006       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1007            I != E; ++I) {
1008         Value *NewOp;
1009         if (!isa<ConstantPlaceHolder>(*I)) {
1010           // Not a placeholder reference.
1011           NewOp = *I;
1012         } else if (*I == Placeholder) {
1013           // Common case is that it just references this one placeholder.
1014           NewOp = RealVal;
1015         } else {
1016           // Otherwise, look up the placeholder in ResolveConstants.
1017           ResolveConstantsTy::iterator It =
1018             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1019                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1020                                                             0));
1021           assert(It != ResolveConstants.end() && It->first == *I);
1022           NewOp = operator[](It->second);
1023         }
1024 
1025         NewOps.push_back(cast<Constant>(NewOp));
1026       }
1027 
1028       // Make the new constant.
1029       Constant *NewC;
1030       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1031         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1032       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1033         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1034       } else if (isa<ConstantVector>(UserC)) {
1035         NewC = ConstantVector::get(NewOps);
1036       } else {
1037         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1038         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1039       }
1040 
1041       UserC->replaceAllUsesWith(NewC);
1042       UserC->destroyConstant();
1043       NewOps.clear();
1044     }
1045 
1046     // Update all ValueHandles, they should be the only users at this point.
1047     Placeholder->replaceAllUsesWith(RealVal);
1048     delete Placeholder;
1049   }
1050 }
1051 
1052 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1053   if (Idx == size()) {
1054     push_back(MD);
1055     return;
1056   }
1057 
1058   if (Idx >= size())
1059     resize(Idx+1);
1060 
1061   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1062   if (!OldMD) {
1063     OldMD.reset(MD);
1064     return;
1065   }
1066 
1067   // If there was a forward reference to this value, replace it.
1068   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1069   PrevMD->replaceAllUsesWith(MD);
1070   --NumFwdRefs;
1071 }
1072 
1073 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1074   if (Idx >= size())
1075     resize(Idx + 1);
1076 
1077   if (Metadata *MD = MetadataPtrs[Idx])
1078     return MD;
1079 
1080   // Track forward refs to be resolved later.
1081   if (AnyFwdRefs) {
1082     MinFwdRef = std::min(MinFwdRef, Idx);
1083     MaxFwdRef = std::max(MaxFwdRef, Idx);
1084   } else {
1085     AnyFwdRefs = true;
1086     MinFwdRef = MaxFwdRef = Idx;
1087   }
1088   ++NumFwdRefs;
1089 
1090   // Create and return a placeholder, which will later be RAUW'd.
1091   Metadata *MD = MDNode::getTemporary(Context, None).release();
1092   MetadataPtrs[Idx].reset(MD);
1093   return MD;
1094 }
1095 
1096 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1097   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1098 }
1099 
1100 void BitcodeReaderMetadataList::tryToResolveCycles() {
1101   if (!AnyFwdRefs)
1102     // Nothing to do.
1103     return;
1104 
1105   if (NumFwdRefs)
1106     // Still forward references... can't resolve cycles.
1107     return;
1108 
1109   // Resolve any cycles.
1110   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1111     auto &MD = MetadataPtrs[I];
1112     auto *N = dyn_cast_or_null<MDNode>(MD);
1113     if (!N)
1114       continue;
1115 
1116     assert(!N->isTemporary() && "Unexpected forward reference");
1117     N->resolveCycles();
1118   }
1119 
1120   // Make sure we return early again until there's another forward ref.
1121   AnyFwdRefs = false;
1122 }
1123 
1124 Type *BitcodeReader::getTypeByID(unsigned ID) {
1125   // The type table size is always specified correctly.
1126   if (ID >= TypeList.size())
1127     return nullptr;
1128 
1129   if (Type *Ty = TypeList[ID])
1130     return Ty;
1131 
1132   // If we have a forward reference, the only possible case is when it is to a
1133   // named struct.  Just create a placeholder for now.
1134   return TypeList[ID] = createIdentifiedStructType(Context);
1135 }
1136 
1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1138                                                       StringRef Name) {
1139   auto *Ret = StructType::create(Context, Name);
1140   IdentifiedStructTypes.push_back(Ret);
1141   return Ret;
1142 }
1143 
1144 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1145   auto *Ret = StructType::create(Context);
1146   IdentifiedStructTypes.push_back(Ret);
1147   return Ret;
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 //  Functions for parsing blocks from the bitcode file
1152 //===----------------------------------------------------------------------===//
1153 
1154 
1155 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1156 /// been decoded from the given integer. This function must stay in sync with
1157 /// 'encodeLLVMAttributesForBitcode'.
1158 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1159                                            uint64_t EncodedAttrs) {
1160   // FIXME: Remove in 4.0.
1161 
1162   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1163   // the bits above 31 down by 11 bits.
1164   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1165   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1166          "Alignment must be a power of two.");
1167 
1168   if (Alignment)
1169     B.addAlignmentAttr(Alignment);
1170   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1171                 (EncodedAttrs & 0xffff));
1172 }
1173 
1174 std::error_code BitcodeReader::parseAttributeBlock() {
1175   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1176     return error("Invalid record");
1177 
1178   if (!MAttributes.empty())
1179     return error("Invalid multiple blocks");
1180 
1181   SmallVector<uint64_t, 64> Record;
1182 
1183   SmallVector<AttributeSet, 8> Attrs;
1184 
1185   // Read all the records.
1186   while (1) {
1187     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1188 
1189     switch (Entry.Kind) {
1190     case BitstreamEntry::SubBlock: // Handled for us already.
1191     case BitstreamEntry::Error:
1192       return error("Malformed block");
1193     case BitstreamEntry::EndBlock:
1194       return std::error_code();
1195     case BitstreamEntry::Record:
1196       // The interesting case.
1197       break;
1198     }
1199 
1200     // Read a record.
1201     Record.clear();
1202     switch (Stream.readRecord(Entry.ID, Record)) {
1203     default:  // Default behavior: ignore.
1204       break;
1205     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1206       // FIXME: Remove in 4.0.
1207       if (Record.size() & 1)
1208         return error("Invalid record");
1209 
1210       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1211         AttrBuilder B;
1212         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1213         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1214       }
1215 
1216       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1217       Attrs.clear();
1218       break;
1219     }
1220     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1221       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1222         Attrs.push_back(MAttributeGroups[Record[i]]);
1223 
1224       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1225       Attrs.clear();
1226       break;
1227     }
1228     }
1229   }
1230 }
1231 
1232 // Returns Attribute::None on unrecognized codes.
1233 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1234   switch (Code) {
1235   default:
1236     return Attribute::None;
1237   case bitc::ATTR_KIND_ALIGNMENT:
1238     return Attribute::Alignment;
1239   case bitc::ATTR_KIND_ALWAYS_INLINE:
1240     return Attribute::AlwaysInline;
1241   case bitc::ATTR_KIND_ARGMEMONLY:
1242     return Attribute::ArgMemOnly;
1243   case bitc::ATTR_KIND_BUILTIN:
1244     return Attribute::Builtin;
1245   case bitc::ATTR_KIND_BY_VAL:
1246     return Attribute::ByVal;
1247   case bitc::ATTR_KIND_IN_ALLOCA:
1248     return Attribute::InAlloca;
1249   case bitc::ATTR_KIND_COLD:
1250     return Attribute::Cold;
1251   case bitc::ATTR_KIND_CONVERGENT:
1252     return Attribute::Convergent;
1253   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1254     return Attribute::InaccessibleMemOnly;
1255   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1256     return Attribute::InaccessibleMemOrArgMemOnly;
1257   case bitc::ATTR_KIND_INLINE_HINT:
1258     return Attribute::InlineHint;
1259   case bitc::ATTR_KIND_IN_REG:
1260     return Attribute::InReg;
1261   case bitc::ATTR_KIND_JUMP_TABLE:
1262     return Attribute::JumpTable;
1263   case bitc::ATTR_KIND_MIN_SIZE:
1264     return Attribute::MinSize;
1265   case bitc::ATTR_KIND_NAKED:
1266     return Attribute::Naked;
1267   case bitc::ATTR_KIND_NEST:
1268     return Attribute::Nest;
1269   case bitc::ATTR_KIND_NO_ALIAS:
1270     return Attribute::NoAlias;
1271   case bitc::ATTR_KIND_NO_BUILTIN:
1272     return Attribute::NoBuiltin;
1273   case bitc::ATTR_KIND_NO_CAPTURE:
1274     return Attribute::NoCapture;
1275   case bitc::ATTR_KIND_NO_DUPLICATE:
1276     return Attribute::NoDuplicate;
1277   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1278     return Attribute::NoImplicitFloat;
1279   case bitc::ATTR_KIND_NO_INLINE:
1280     return Attribute::NoInline;
1281   case bitc::ATTR_KIND_NO_RECURSE:
1282     return Attribute::NoRecurse;
1283   case bitc::ATTR_KIND_NON_LAZY_BIND:
1284     return Attribute::NonLazyBind;
1285   case bitc::ATTR_KIND_NON_NULL:
1286     return Attribute::NonNull;
1287   case bitc::ATTR_KIND_DEREFERENCEABLE:
1288     return Attribute::Dereferenceable;
1289   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1290     return Attribute::DereferenceableOrNull;
1291   case bitc::ATTR_KIND_NO_RED_ZONE:
1292     return Attribute::NoRedZone;
1293   case bitc::ATTR_KIND_NO_RETURN:
1294     return Attribute::NoReturn;
1295   case bitc::ATTR_KIND_NO_UNWIND:
1296     return Attribute::NoUnwind;
1297   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1298     return Attribute::OptimizeForSize;
1299   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1300     return Attribute::OptimizeNone;
1301   case bitc::ATTR_KIND_READ_NONE:
1302     return Attribute::ReadNone;
1303   case bitc::ATTR_KIND_READ_ONLY:
1304     return Attribute::ReadOnly;
1305   case bitc::ATTR_KIND_RETURNED:
1306     return Attribute::Returned;
1307   case bitc::ATTR_KIND_RETURNS_TWICE:
1308     return Attribute::ReturnsTwice;
1309   case bitc::ATTR_KIND_S_EXT:
1310     return Attribute::SExt;
1311   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1312     return Attribute::StackAlignment;
1313   case bitc::ATTR_KIND_STACK_PROTECT:
1314     return Attribute::StackProtect;
1315   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1316     return Attribute::StackProtectReq;
1317   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1318     return Attribute::StackProtectStrong;
1319   case bitc::ATTR_KIND_SAFESTACK:
1320     return Attribute::SafeStack;
1321   case bitc::ATTR_KIND_STRUCT_RET:
1322     return Attribute::StructRet;
1323   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1324     return Attribute::SanitizeAddress;
1325   case bitc::ATTR_KIND_SANITIZE_THREAD:
1326     return Attribute::SanitizeThread;
1327   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1328     return Attribute::SanitizeMemory;
1329   case bitc::ATTR_KIND_SWIFT_ERROR:
1330     return Attribute::SwiftError;
1331   case bitc::ATTR_KIND_SWIFT_SELF:
1332     return Attribute::SwiftSelf;
1333   case bitc::ATTR_KIND_UW_TABLE:
1334     return Attribute::UWTable;
1335   case bitc::ATTR_KIND_Z_EXT:
1336     return Attribute::ZExt;
1337   }
1338 }
1339 
1340 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1341                                                    unsigned &Alignment) {
1342   // Note: Alignment in bitcode files is incremented by 1, so that zero
1343   // can be used for default alignment.
1344   if (Exponent > Value::MaxAlignmentExponent + 1)
1345     return error("Invalid alignment value");
1346   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1347   return std::error_code();
1348 }
1349 
1350 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1351                                              Attribute::AttrKind *Kind) {
1352   *Kind = getAttrFromCode(Code);
1353   if (*Kind == Attribute::None)
1354     return error(BitcodeError::CorruptedBitcode,
1355                  "Unknown attribute kind (" + Twine(Code) + ")");
1356   return std::error_code();
1357 }
1358 
1359 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1360   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1361     return error("Invalid record");
1362 
1363   if (!MAttributeGroups.empty())
1364     return error("Invalid multiple blocks");
1365 
1366   SmallVector<uint64_t, 64> Record;
1367 
1368   // Read all the records.
1369   while (1) {
1370     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1371 
1372     switch (Entry.Kind) {
1373     case BitstreamEntry::SubBlock: // Handled for us already.
1374     case BitstreamEntry::Error:
1375       return error("Malformed block");
1376     case BitstreamEntry::EndBlock:
1377       return std::error_code();
1378     case BitstreamEntry::Record:
1379       // The interesting case.
1380       break;
1381     }
1382 
1383     // Read a record.
1384     Record.clear();
1385     switch (Stream.readRecord(Entry.ID, Record)) {
1386     default:  // Default behavior: ignore.
1387       break;
1388     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1389       if (Record.size() < 3)
1390         return error("Invalid record");
1391 
1392       uint64_t GrpID = Record[0];
1393       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1394 
1395       AttrBuilder B;
1396       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1397         if (Record[i] == 0) {        // Enum attribute
1398           Attribute::AttrKind Kind;
1399           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1400             return EC;
1401 
1402           B.addAttribute(Kind);
1403         } else if (Record[i] == 1) { // Integer attribute
1404           Attribute::AttrKind Kind;
1405           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1406             return EC;
1407           if (Kind == Attribute::Alignment)
1408             B.addAlignmentAttr(Record[++i]);
1409           else if (Kind == Attribute::StackAlignment)
1410             B.addStackAlignmentAttr(Record[++i]);
1411           else if (Kind == Attribute::Dereferenceable)
1412             B.addDereferenceableAttr(Record[++i]);
1413           else if (Kind == Attribute::DereferenceableOrNull)
1414             B.addDereferenceableOrNullAttr(Record[++i]);
1415         } else {                     // String attribute
1416           assert((Record[i] == 3 || Record[i] == 4) &&
1417                  "Invalid attribute group entry");
1418           bool HasValue = (Record[i++] == 4);
1419           SmallString<64> KindStr;
1420           SmallString<64> ValStr;
1421 
1422           while (Record[i] != 0 && i != e)
1423             KindStr += Record[i++];
1424           assert(Record[i] == 0 && "Kind string not null terminated");
1425 
1426           if (HasValue) {
1427             // Has a value associated with it.
1428             ++i; // Skip the '0' that terminates the "kind" string.
1429             while (Record[i] != 0 && i != e)
1430               ValStr += Record[i++];
1431             assert(Record[i] == 0 && "Value string not null terminated");
1432           }
1433 
1434           B.addAttribute(KindStr.str(), ValStr.str());
1435         }
1436       }
1437 
1438       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1439       break;
1440     }
1441     }
1442   }
1443 }
1444 
1445 std::error_code BitcodeReader::parseTypeTable() {
1446   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1447     return error("Invalid record");
1448 
1449   return parseTypeTableBody();
1450 }
1451 
1452 std::error_code BitcodeReader::parseTypeTableBody() {
1453   if (!TypeList.empty())
1454     return error("Invalid multiple blocks");
1455 
1456   SmallVector<uint64_t, 64> Record;
1457   unsigned NumRecords = 0;
1458 
1459   SmallString<64> TypeName;
1460 
1461   // Read all the records for this type table.
1462   while (1) {
1463     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1464 
1465     switch (Entry.Kind) {
1466     case BitstreamEntry::SubBlock: // Handled for us already.
1467     case BitstreamEntry::Error:
1468       return error("Malformed block");
1469     case BitstreamEntry::EndBlock:
1470       if (NumRecords != TypeList.size())
1471         return error("Malformed block");
1472       return std::error_code();
1473     case BitstreamEntry::Record:
1474       // The interesting case.
1475       break;
1476     }
1477 
1478     // Read a record.
1479     Record.clear();
1480     Type *ResultTy = nullptr;
1481     switch (Stream.readRecord(Entry.ID, Record)) {
1482     default:
1483       return error("Invalid value");
1484     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1485       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1486       // type list.  This allows us to reserve space.
1487       if (Record.size() < 1)
1488         return error("Invalid record");
1489       TypeList.resize(Record[0]);
1490       continue;
1491     case bitc::TYPE_CODE_VOID:      // VOID
1492       ResultTy = Type::getVoidTy(Context);
1493       break;
1494     case bitc::TYPE_CODE_HALF:     // HALF
1495       ResultTy = Type::getHalfTy(Context);
1496       break;
1497     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1498       ResultTy = Type::getFloatTy(Context);
1499       break;
1500     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1501       ResultTy = Type::getDoubleTy(Context);
1502       break;
1503     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1504       ResultTy = Type::getX86_FP80Ty(Context);
1505       break;
1506     case bitc::TYPE_CODE_FP128:     // FP128
1507       ResultTy = Type::getFP128Ty(Context);
1508       break;
1509     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1510       ResultTy = Type::getPPC_FP128Ty(Context);
1511       break;
1512     case bitc::TYPE_CODE_LABEL:     // LABEL
1513       ResultTy = Type::getLabelTy(Context);
1514       break;
1515     case bitc::TYPE_CODE_METADATA:  // METADATA
1516       ResultTy = Type::getMetadataTy(Context);
1517       break;
1518     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1519       ResultTy = Type::getX86_MMXTy(Context);
1520       break;
1521     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1522       ResultTy = Type::getTokenTy(Context);
1523       break;
1524     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1525       if (Record.size() < 1)
1526         return error("Invalid record");
1527 
1528       uint64_t NumBits = Record[0];
1529       if (NumBits < IntegerType::MIN_INT_BITS ||
1530           NumBits > IntegerType::MAX_INT_BITS)
1531         return error("Bitwidth for integer type out of range");
1532       ResultTy = IntegerType::get(Context, NumBits);
1533       break;
1534     }
1535     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1536                                     //          [pointee type, address space]
1537       if (Record.size() < 1)
1538         return error("Invalid record");
1539       unsigned AddressSpace = 0;
1540       if (Record.size() == 2)
1541         AddressSpace = Record[1];
1542       ResultTy = getTypeByID(Record[0]);
1543       if (!ResultTy ||
1544           !PointerType::isValidElementType(ResultTy))
1545         return error("Invalid type");
1546       ResultTy = PointerType::get(ResultTy, AddressSpace);
1547       break;
1548     }
1549     case bitc::TYPE_CODE_FUNCTION_OLD: {
1550       // FIXME: attrid is dead, remove it in LLVM 4.0
1551       // FUNCTION: [vararg, attrid, retty, paramty x N]
1552       if (Record.size() < 3)
1553         return error("Invalid record");
1554       SmallVector<Type*, 8> ArgTys;
1555       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1556         if (Type *T = getTypeByID(Record[i]))
1557           ArgTys.push_back(T);
1558         else
1559           break;
1560       }
1561 
1562       ResultTy = getTypeByID(Record[2]);
1563       if (!ResultTy || ArgTys.size() < Record.size()-3)
1564         return error("Invalid type");
1565 
1566       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1567       break;
1568     }
1569     case bitc::TYPE_CODE_FUNCTION: {
1570       // FUNCTION: [vararg, retty, paramty x N]
1571       if (Record.size() < 2)
1572         return error("Invalid record");
1573       SmallVector<Type*, 8> ArgTys;
1574       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1575         if (Type *T = getTypeByID(Record[i])) {
1576           if (!FunctionType::isValidArgumentType(T))
1577             return error("Invalid function argument type");
1578           ArgTys.push_back(T);
1579         }
1580         else
1581           break;
1582       }
1583 
1584       ResultTy = getTypeByID(Record[1]);
1585       if (!ResultTy || ArgTys.size() < Record.size()-2)
1586         return error("Invalid type");
1587 
1588       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1589       break;
1590     }
1591     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1592       if (Record.size() < 1)
1593         return error("Invalid record");
1594       SmallVector<Type*, 8> EltTys;
1595       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1596         if (Type *T = getTypeByID(Record[i]))
1597           EltTys.push_back(T);
1598         else
1599           break;
1600       }
1601       if (EltTys.size() != Record.size()-1)
1602         return error("Invalid type");
1603       ResultTy = StructType::get(Context, EltTys, Record[0]);
1604       break;
1605     }
1606     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1607       if (convertToString(Record, 0, TypeName))
1608         return error("Invalid record");
1609       continue;
1610 
1611     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1612       if (Record.size() < 1)
1613         return error("Invalid record");
1614 
1615       if (NumRecords >= TypeList.size())
1616         return error("Invalid TYPE table");
1617 
1618       // Check to see if this was forward referenced, if so fill in the temp.
1619       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1620       if (Res) {
1621         Res->setName(TypeName);
1622         TypeList[NumRecords] = nullptr;
1623       } else  // Otherwise, create a new struct.
1624         Res = createIdentifiedStructType(Context, TypeName);
1625       TypeName.clear();
1626 
1627       SmallVector<Type*, 8> EltTys;
1628       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1629         if (Type *T = getTypeByID(Record[i]))
1630           EltTys.push_back(T);
1631         else
1632           break;
1633       }
1634       if (EltTys.size() != Record.size()-1)
1635         return error("Invalid record");
1636       Res->setBody(EltTys, Record[0]);
1637       ResultTy = Res;
1638       break;
1639     }
1640     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1641       if (Record.size() != 1)
1642         return error("Invalid record");
1643 
1644       if (NumRecords >= TypeList.size())
1645         return error("Invalid TYPE table");
1646 
1647       // Check to see if this was forward referenced, if so fill in the temp.
1648       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1649       if (Res) {
1650         Res->setName(TypeName);
1651         TypeList[NumRecords] = nullptr;
1652       } else  // Otherwise, create a new struct with no body.
1653         Res = createIdentifiedStructType(Context, TypeName);
1654       TypeName.clear();
1655       ResultTy = Res;
1656       break;
1657     }
1658     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1659       if (Record.size() < 2)
1660         return error("Invalid record");
1661       ResultTy = getTypeByID(Record[1]);
1662       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1663         return error("Invalid type");
1664       ResultTy = ArrayType::get(ResultTy, Record[0]);
1665       break;
1666     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1667       if (Record.size() < 2)
1668         return error("Invalid record");
1669       if (Record[0] == 0)
1670         return error("Invalid vector length");
1671       ResultTy = getTypeByID(Record[1]);
1672       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1673         return error("Invalid type");
1674       ResultTy = VectorType::get(ResultTy, Record[0]);
1675       break;
1676     }
1677 
1678     if (NumRecords >= TypeList.size())
1679       return error("Invalid TYPE table");
1680     if (TypeList[NumRecords])
1681       return error(
1682           "Invalid TYPE table: Only named structs can be forward referenced");
1683     assert(ResultTy && "Didn't read a type?");
1684     TypeList[NumRecords++] = ResultTy;
1685   }
1686 }
1687 
1688 std::error_code BitcodeReader::parseOperandBundleTags() {
1689   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1690     return error("Invalid record");
1691 
1692   if (!BundleTags.empty())
1693     return error("Invalid multiple blocks");
1694 
1695   SmallVector<uint64_t, 64> Record;
1696 
1697   while (1) {
1698     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1699 
1700     switch (Entry.Kind) {
1701     case BitstreamEntry::SubBlock: // Handled for us already.
1702     case BitstreamEntry::Error:
1703       return error("Malformed block");
1704     case BitstreamEntry::EndBlock:
1705       return std::error_code();
1706     case BitstreamEntry::Record:
1707       // The interesting case.
1708       break;
1709     }
1710 
1711     // Tags are implicitly mapped to integers by their order.
1712 
1713     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1714       return error("Invalid record");
1715 
1716     // OPERAND_BUNDLE_TAG: [strchr x N]
1717     BundleTags.emplace_back();
1718     if (convertToString(Record, 0, BundleTags.back()))
1719       return error("Invalid record");
1720     Record.clear();
1721   }
1722 }
1723 
1724 /// Associate a value with its name from the given index in the provided record.
1725 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1726                                             unsigned NameIndex, Triple &TT) {
1727   SmallString<128> ValueName;
1728   if (convertToString(Record, NameIndex, ValueName))
1729     return error("Invalid record");
1730   unsigned ValueID = Record[0];
1731   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1732     return error("Invalid record");
1733   Value *V = ValueList[ValueID];
1734 
1735   StringRef NameStr(ValueName.data(), ValueName.size());
1736   if (NameStr.find_first_of(0) != StringRef::npos)
1737     return error("Invalid value name");
1738   V->setName(NameStr);
1739   auto *GO = dyn_cast<GlobalObject>(V);
1740   if (GO) {
1741     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1742       if (TT.isOSBinFormatMachO())
1743         GO->setComdat(nullptr);
1744       else
1745         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1746     }
1747   }
1748   return V;
1749 }
1750 
1751 /// Helper to note and return the current location, and jump to the given
1752 /// offset.
1753 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1754                                        BitstreamCursor &Stream) {
1755   // Save the current parsing location so we can jump back at the end
1756   // of the VST read.
1757   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1758   Stream.JumpToBit(Offset * 32);
1759 #ifndef NDEBUG
1760   // Do some checking if we are in debug mode.
1761   BitstreamEntry Entry = Stream.advance();
1762   assert(Entry.Kind == BitstreamEntry::SubBlock);
1763   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1764 #else
1765   // In NDEBUG mode ignore the output so we don't get an unused variable
1766   // warning.
1767   Stream.advance();
1768 #endif
1769   return CurrentBit;
1770 }
1771 
1772 /// Parse the value symbol table at either the current parsing location or
1773 /// at the given bit offset if provided.
1774 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1775   uint64_t CurrentBit;
1776   // Pass in the Offset to distinguish between calling for the module-level
1777   // VST (where we want to jump to the VST offset) and the function-level
1778   // VST (where we don't).
1779   if (Offset > 0)
1780     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1781 
1782   // Compute the delta between the bitcode indices in the VST (the word offset
1783   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1784   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1785   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1786   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1787   // just before entering the VST subblock because: 1) the EnterSubBlock
1788   // changes the AbbrevID width; 2) the VST block is nested within the same
1789   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1790   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1791   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1792   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1793   unsigned FuncBitcodeOffsetDelta =
1794       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1795 
1796   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1797     return error("Invalid record");
1798 
1799   SmallVector<uint64_t, 64> Record;
1800 
1801   Triple TT(TheModule->getTargetTriple());
1802 
1803   // Read all the records for this value table.
1804   SmallString<128> ValueName;
1805   while (1) {
1806     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1807 
1808     switch (Entry.Kind) {
1809     case BitstreamEntry::SubBlock: // Handled for us already.
1810     case BitstreamEntry::Error:
1811       return error("Malformed block");
1812     case BitstreamEntry::EndBlock:
1813       if (Offset > 0)
1814         Stream.JumpToBit(CurrentBit);
1815       return std::error_code();
1816     case BitstreamEntry::Record:
1817       // The interesting case.
1818       break;
1819     }
1820 
1821     // Read a record.
1822     Record.clear();
1823     switch (Stream.readRecord(Entry.ID, Record)) {
1824     default:  // Default behavior: unknown type.
1825       break;
1826     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1827       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1828       if (std::error_code EC = ValOrErr.getError())
1829         return EC;
1830       ValOrErr.get();
1831       break;
1832     }
1833     case bitc::VST_CODE_FNENTRY: {
1834       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1835       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1836       if (std::error_code EC = ValOrErr.getError())
1837         return EC;
1838       Value *V = ValOrErr.get();
1839 
1840       auto *GO = dyn_cast<GlobalObject>(V);
1841       if (!GO) {
1842         // If this is an alias, need to get the actual Function object
1843         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1844         auto *GA = dyn_cast<GlobalAlias>(V);
1845         if (GA)
1846           GO = GA->getBaseObject();
1847         assert(GO);
1848       }
1849 
1850       uint64_t FuncWordOffset = Record[1];
1851       Function *F = dyn_cast<Function>(GO);
1852       assert(F);
1853       uint64_t FuncBitOffset = FuncWordOffset * 32;
1854       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1855       // Set the LastFunctionBlockBit to point to the last function block.
1856       // Later when parsing is resumed after function materialization,
1857       // we can simply skip that last function block.
1858       if (FuncBitOffset > LastFunctionBlockBit)
1859         LastFunctionBlockBit = FuncBitOffset;
1860       break;
1861     }
1862     case bitc::VST_CODE_BBENTRY: {
1863       if (convertToString(Record, 1, ValueName))
1864         return error("Invalid record");
1865       BasicBlock *BB = getBasicBlock(Record[0]);
1866       if (!BB)
1867         return error("Invalid record");
1868 
1869       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1870       ValueName.clear();
1871       break;
1872     }
1873     }
1874   }
1875 }
1876 
1877 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1878 std::error_code
1879 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1880   if (Record.size() < 2)
1881     return error("Invalid record");
1882 
1883   unsigned Kind = Record[0];
1884   SmallString<8> Name(Record.begin() + 1, Record.end());
1885 
1886   unsigned NewKind = TheModule->getMDKindID(Name.str());
1887   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1888     return error("Conflicting METADATA_KIND records");
1889   return std::error_code();
1890 }
1891 
1892 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1893 
1894 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
1895                                                     StringRef Blob,
1896                                                     unsigned &NextMetadataNo) {
1897   // All the MDStrings in the block are emitted together in a single
1898   // record.  The strings are concatenated and stored in a blob along with
1899   // their sizes.
1900   if (Record.size() != 2)
1901     return error("Invalid record: metadata strings layout");
1902 
1903   unsigned NumStrings = Record[0];
1904   unsigned StringsOffset = Record[1];
1905   if (!NumStrings)
1906     return error("Invalid record: metadata strings with no strings");
1907   if (StringsOffset > Blob.size())
1908     return error("Invalid record: metadata strings corrupt offset");
1909 
1910   StringRef Lengths = Blob.slice(0, StringsOffset);
1911   SimpleBitstreamCursor R(*StreamFile);
1912   R.jumpToPointer(Lengths.begin());
1913 
1914   // Ensure that Blob doesn't get invalidated, even if this is reading from
1915   // a StreamingMemoryObject with corrupt data.
1916   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
1917 
1918   StringRef Strings = Blob.drop_front(StringsOffset);
1919   do {
1920     if (R.AtEndOfStream())
1921       return error("Invalid record: metadata strings bad length");
1922 
1923     unsigned Size = R.ReadVBR(6);
1924     if (Strings.size() < Size)
1925       return error("Invalid record: metadata strings truncated chars");
1926 
1927     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
1928                              NextMetadataNo++);
1929     Strings = Strings.drop_front(Size);
1930   } while (--NumStrings);
1931 
1932   return std::error_code();
1933 }
1934 
1935 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1936 /// module level metadata.
1937 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1938   IsMetadataMaterialized = true;
1939   unsigned NextMetadataNo = MetadataList.size();
1940 
1941   if (!ModuleLevel && MetadataList.hasFwdRefs())
1942     return error("Invalid metadata: fwd refs into function blocks");
1943 
1944   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1945     return error("Invalid record");
1946 
1947   SmallVector<uint64_t, 64> Record;
1948 
1949   auto getMD = [&](unsigned ID) -> Metadata * {
1950     return MetadataList.getMetadataFwdRef(ID);
1951   };
1952   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1953     if (ID)
1954       return getMD(ID - 1);
1955     return nullptr;
1956   };
1957   auto getMDString = [&](unsigned ID) -> MDString *{
1958     // This requires that the ID is not really a forward reference.  In
1959     // particular, the MDString must already have been resolved.
1960     return cast_or_null<MDString>(getMDOrNull(ID));
1961   };
1962 
1963 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1964   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1965 
1966   // Read all the records.
1967   while (1) {
1968     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1969 
1970     switch (Entry.Kind) {
1971     case BitstreamEntry::SubBlock: // Handled for us already.
1972     case BitstreamEntry::Error:
1973       return error("Malformed block");
1974     case BitstreamEntry::EndBlock:
1975       MetadataList.tryToResolveCycles();
1976       return std::error_code();
1977     case BitstreamEntry::Record:
1978       // The interesting case.
1979       break;
1980     }
1981 
1982     // Read a record.
1983     Record.clear();
1984     StringRef Blob;
1985     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
1986     bool IsDistinct = false;
1987     switch (Code) {
1988     default:  // Default behavior: ignore.
1989       break;
1990     case bitc::METADATA_NAME: {
1991       // Read name of the named metadata.
1992       SmallString<8> Name(Record.begin(), Record.end());
1993       Record.clear();
1994       Code = Stream.ReadCode();
1995 
1996       unsigned NextBitCode = Stream.readRecord(Code, Record);
1997       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1998         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1999 
2000       // Read named metadata elements.
2001       unsigned Size = Record.size();
2002       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2003       for (unsigned i = 0; i != Size; ++i) {
2004         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2005         if (!MD)
2006           return error("Invalid record");
2007         NMD->addOperand(MD);
2008       }
2009       break;
2010     }
2011     case bitc::METADATA_OLD_FN_NODE: {
2012       // FIXME: Remove in 4.0.
2013       // This is a LocalAsMetadata record, the only type of function-local
2014       // metadata.
2015       if (Record.size() % 2 == 1)
2016         return error("Invalid record");
2017 
2018       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2019       // to be legal, but there's no upgrade path.
2020       auto dropRecord = [&] {
2021         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2022       };
2023       if (Record.size() != 2) {
2024         dropRecord();
2025         break;
2026       }
2027 
2028       Type *Ty = getTypeByID(Record[0]);
2029       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2030         dropRecord();
2031         break;
2032       }
2033 
2034       MetadataList.assignValue(
2035           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2036           NextMetadataNo++);
2037       break;
2038     }
2039     case bitc::METADATA_OLD_NODE: {
2040       // FIXME: Remove in 4.0.
2041       if (Record.size() % 2 == 1)
2042         return error("Invalid record");
2043 
2044       unsigned Size = Record.size();
2045       SmallVector<Metadata *, 8> Elts;
2046       for (unsigned i = 0; i != Size; i += 2) {
2047         Type *Ty = getTypeByID(Record[i]);
2048         if (!Ty)
2049           return error("Invalid record");
2050         if (Ty->isMetadataTy())
2051           Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1]));
2052         else if (!Ty->isVoidTy()) {
2053           auto *MD =
2054               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2055           assert(isa<ConstantAsMetadata>(MD) &&
2056                  "Expected non-function-local metadata");
2057           Elts.push_back(MD);
2058         } else
2059           Elts.push_back(nullptr);
2060       }
2061       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2062       break;
2063     }
2064     case bitc::METADATA_VALUE: {
2065       if (Record.size() != 2)
2066         return error("Invalid record");
2067 
2068       Type *Ty = getTypeByID(Record[0]);
2069       if (Ty->isMetadataTy() || Ty->isVoidTy())
2070         return error("Invalid record");
2071 
2072       MetadataList.assignValue(
2073           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2074           NextMetadataNo++);
2075       break;
2076     }
2077     case bitc::METADATA_DISTINCT_NODE:
2078       IsDistinct = true;
2079       // fallthrough...
2080     case bitc::METADATA_NODE: {
2081       SmallVector<Metadata *, 8> Elts;
2082       Elts.reserve(Record.size());
2083       for (unsigned ID : Record)
2084         Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr);
2085       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2086                                           : MDNode::get(Context, Elts),
2087                                NextMetadataNo++);
2088       break;
2089     }
2090     case bitc::METADATA_LOCATION: {
2091       if (Record.size() != 5)
2092         return error("Invalid record");
2093 
2094       unsigned Line = Record[1];
2095       unsigned Column = Record[2];
2096       MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]);
2097       if (!Scope)
2098         return error("Invalid record");
2099       Metadata *InlinedAt =
2100           Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr;
2101       MetadataList.assignValue(
2102           GET_OR_DISTINCT(DILocation, Record[0],
2103                           (Context, Line, Column, Scope, InlinedAt)),
2104           NextMetadataNo++);
2105       break;
2106     }
2107     case bitc::METADATA_GENERIC_DEBUG: {
2108       if (Record.size() < 4)
2109         return error("Invalid record");
2110 
2111       unsigned Tag = Record[1];
2112       unsigned Version = Record[2];
2113 
2114       if (Tag >= 1u << 16 || Version != 0)
2115         return error("Invalid record");
2116 
2117       auto *Header = getMDString(Record[3]);
2118       SmallVector<Metadata *, 8> DwarfOps;
2119       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2120         DwarfOps.push_back(Record[I]
2121                                ? MetadataList.getMetadataFwdRef(Record[I] - 1)
2122                                : nullptr);
2123       MetadataList.assignValue(
2124           GET_OR_DISTINCT(GenericDINode, Record[0],
2125                           (Context, Tag, Header, DwarfOps)),
2126           NextMetadataNo++);
2127       break;
2128     }
2129     case bitc::METADATA_SUBRANGE: {
2130       if (Record.size() != 3)
2131         return error("Invalid record");
2132 
2133       MetadataList.assignValue(
2134           GET_OR_DISTINCT(DISubrange, Record[0],
2135                           (Context, Record[1], unrotateSign(Record[2]))),
2136           NextMetadataNo++);
2137       break;
2138     }
2139     case bitc::METADATA_ENUMERATOR: {
2140       if (Record.size() != 3)
2141         return error("Invalid record");
2142 
2143       MetadataList.assignValue(
2144           GET_OR_DISTINCT(
2145               DIEnumerator, Record[0],
2146               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2147           NextMetadataNo++);
2148       break;
2149     }
2150     case bitc::METADATA_BASIC_TYPE: {
2151       if (Record.size() != 6)
2152         return error("Invalid record");
2153 
2154       MetadataList.assignValue(
2155           GET_OR_DISTINCT(DIBasicType, Record[0],
2156                           (Context, Record[1], getMDString(Record[2]),
2157                            Record[3], Record[4], Record[5])),
2158           NextMetadataNo++);
2159       break;
2160     }
2161     case bitc::METADATA_DERIVED_TYPE: {
2162       if (Record.size() != 12)
2163         return error("Invalid record");
2164 
2165       MetadataList.assignValue(
2166           GET_OR_DISTINCT(DIDerivedType, Record[0],
2167                           (Context, Record[1], getMDString(Record[2]),
2168                            getMDOrNull(Record[3]), Record[4],
2169                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2170                            Record[7], Record[8], Record[9], Record[10],
2171                            getMDOrNull(Record[11]))),
2172           NextMetadataNo++);
2173       break;
2174     }
2175     case bitc::METADATA_COMPOSITE_TYPE: {
2176       if (Record.size() != 16)
2177         return error("Invalid record");
2178 
2179       MetadataList.assignValue(
2180           GET_OR_DISTINCT(DICompositeType, Record[0],
2181                           (Context, Record[1], getMDString(Record[2]),
2182                            getMDOrNull(Record[3]), Record[4],
2183                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2184                            Record[7], Record[8], Record[9], Record[10],
2185                            getMDOrNull(Record[11]), Record[12],
2186                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2187                            getMDString(Record[15]))),
2188           NextMetadataNo++);
2189       break;
2190     }
2191     case bitc::METADATA_SUBROUTINE_TYPE: {
2192       if (Record.size() != 3)
2193         return error("Invalid record");
2194 
2195       MetadataList.assignValue(
2196           GET_OR_DISTINCT(DISubroutineType, Record[0],
2197                           (Context, Record[1], getMDOrNull(Record[2]))),
2198           NextMetadataNo++);
2199       break;
2200     }
2201 
2202     case bitc::METADATA_MODULE: {
2203       if (Record.size() != 6)
2204         return error("Invalid record");
2205 
2206       MetadataList.assignValue(
2207           GET_OR_DISTINCT(DIModule, Record[0],
2208                           (Context, getMDOrNull(Record[1]),
2209                            getMDString(Record[2]), getMDString(Record[3]),
2210                            getMDString(Record[4]), getMDString(Record[5]))),
2211           NextMetadataNo++);
2212       break;
2213     }
2214 
2215     case bitc::METADATA_FILE: {
2216       if (Record.size() != 3)
2217         return error("Invalid record");
2218 
2219       MetadataList.assignValue(
2220           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2221                                               getMDString(Record[2]))),
2222           NextMetadataNo++);
2223       break;
2224     }
2225     case bitc::METADATA_COMPILE_UNIT: {
2226       if (Record.size() < 14 || Record.size() > 16)
2227         return error("Invalid record");
2228 
2229       // Ignore Record[0], which indicates whether this compile unit is
2230       // distinct.  It's always distinct.
2231       MetadataList.assignValue(
2232           DICompileUnit::getDistinct(
2233               Context, Record[1], getMDOrNull(Record[2]),
2234               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2235               Record[6], getMDString(Record[7]), Record[8],
2236               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2237               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2238               getMDOrNull(Record[13]),
2239               Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2240               Record.size() <= 14 ? 0 : Record[14]),
2241           NextMetadataNo++);
2242       break;
2243     }
2244     case bitc::METADATA_SUBPROGRAM: {
2245       if (Record.size() != 18 && Record.size() != 19)
2246         return error("Invalid record");
2247 
2248       bool HasFn = Record.size() == 19;
2249       DISubprogram *SP = GET_OR_DISTINCT(
2250           DISubprogram,
2251           Record[0] || Record[8], // All definitions should be distinct.
2252           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2253            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2254            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2255            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2256            Record[14], getMDOrNull(Record[15 + HasFn]),
2257            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2258       MetadataList.assignValue(SP, NextMetadataNo++);
2259 
2260       // Upgrade sp->function mapping to function->sp mapping.
2261       if (HasFn && Record[15]) {
2262         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2263           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2264             if (F->isMaterializable())
2265               // Defer until materialized; unmaterialized functions may not have
2266               // metadata.
2267               FunctionsWithSPs[F] = SP;
2268             else if (!F->empty())
2269               F->setSubprogram(SP);
2270           }
2271       }
2272       break;
2273     }
2274     case bitc::METADATA_LEXICAL_BLOCK: {
2275       if (Record.size() != 5)
2276         return error("Invalid record");
2277 
2278       MetadataList.assignValue(
2279           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2280                           (Context, getMDOrNull(Record[1]),
2281                            getMDOrNull(Record[2]), Record[3], Record[4])),
2282           NextMetadataNo++);
2283       break;
2284     }
2285     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2286       if (Record.size() != 4)
2287         return error("Invalid record");
2288 
2289       MetadataList.assignValue(
2290           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2291                           (Context, getMDOrNull(Record[1]),
2292                            getMDOrNull(Record[2]), Record[3])),
2293           NextMetadataNo++);
2294       break;
2295     }
2296     case bitc::METADATA_NAMESPACE: {
2297       if (Record.size() != 5)
2298         return error("Invalid record");
2299 
2300       MetadataList.assignValue(
2301           GET_OR_DISTINCT(DINamespace, Record[0],
2302                           (Context, getMDOrNull(Record[1]),
2303                            getMDOrNull(Record[2]), getMDString(Record[3]),
2304                            Record[4])),
2305           NextMetadataNo++);
2306       break;
2307     }
2308     case bitc::METADATA_MACRO: {
2309       if (Record.size() != 5)
2310         return error("Invalid record");
2311 
2312       MetadataList.assignValue(
2313           GET_OR_DISTINCT(DIMacro, Record[0],
2314                           (Context, Record[1], Record[2],
2315                            getMDString(Record[3]), getMDString(Record[4]))),
2316           NextMetadataNo++);
2317       break;
2318     }
2319     case bitc::METADATA_MACRO_FILE: {
2320       if (Record.size() != 5)
2321         return error("Invalid record");
2322 
2323       MetadataList.assignValue(
2324           GET_OR_DISTINCT(DIMacroFile, Record[0],
2325                           (Context, Record[1], Record[2],
2326                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2327           NextMetadataNo++);
2328       break;
2329     }
2330     case bitc::METADATA_TEMPLATE_TYPE: {
2331       if (Record.size() != 3)
2332         return error("Invalid record");
2333 
2334       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2335                                                Record[0],
2336                                                (Context, getMDString(Record[1]),
2337                                                 getMDOrNull(Record[2]))),
2338                                NextMetadataNo++);
2339       break;
2340     }
2341     case bitc::METADATA_TEMPLATE_VALUE: {
2342       if (Record.size() != 5)
2343         return error("Invalid record");
2344 
2345       MetadataList.assignValue(
2346           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2347                           (Context, Record[1], getMDString(Record[2]),
2348                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2349           NextMetadataNo++);
2350       break;
2351     }
2352     case bitc::METADATA_GLOBAL_VAR: {
2353       if (Record.size() != 11)
2354         return error("Invalid record");
2355 
2356       MetadataList.assignValue(
2357           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2358                           (Context, getMDOrNull(Record[1]),
2359                            getMDString(Record[2]), getMDString(Record[3]),
2360                            getMDOrNull(Record[4]), Record[5],
2361                            getMDOrNull(Record[6]), Record[7], Record[8],
2362                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2363           NextMetadataNo++);
2364       break;
2365     }
2366     case bitc::METADATA_LOCAL_VAR: {
2367       // 10th field is for the obseleted 'inlinedAt:' field.
2368       if (Record.size() < 8 || Record.size() > 10)
2369         return error("Invalid record");
2370 
2371       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2372       // DW_TAG_arg_variable.
2373       bool HasTag = Record.size() > 8;
2374       MetadataList.assignValue(
2375           GET_OR_DISTINCT(DILocalVariable, Record[0],
2376                           (Context, getMDOrNull(Record[1 + HasTag]),
2377                            getMDString(Record[2 + HasTag]),
2378                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2379                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2380                            Record[7 + HasTag])),
2381           NextMetadataNo++);
2382       break;
2383     }
2384     case bitc::METADATA_EXPRESSION: {
2385       if (Record.size() < 1)
2386         return error("Invalid record");
2387 
2388       MetadataList.assignValue(
2389           GET_OR_DISTINCT(DIExpression, Record[0],
2390                           (Context, makeArrayRef(Record).slice(1))),
2391           NextMetadataNo++);
2392       break;
2393     }
2394     case bitc::METADATA_OBJC_PROPERTY: {
2395       if (Record.size() != 8)
2396         return error("Invalid record");
2397 
2398       MetadataList.assignValue(
2399           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2400                           (Context, getMDString(Record[1]),
2401                            getMDOrNull(Record[2]), Record[3],
2402                            getMDString(Record[4]), getMDString(Record[5]),
2403                            Record[6], getMDOrNull(Record[7]))),
2404           NextMetadataNo++);
2405       break;
2406     }
2407     case bitc::METADATA_IMPORTED_ENTITY: {
2408       if (Record.size() != 6)
2409         return error("Invalid record");
2410 
2411       MetadataList.assignValue(
2412           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2413                           (Context, Record[1], getMDOrNull(Record[2]),
2414                            getMDOrNull(Record[3]), Record[4],
2415                            getMDString(Record[5]))),
2416           NextMetadataNo++);
2417       break;
2418     }
2419     case bitc::METADATA_STRING_OLD: {
2420       std::string String(Record.begin(), Record.end());
2421 
2422       // Test for upgrading !llvm.loop.
2423       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2424 
2425       Metadata *MD = MDString::get(Context, String);
2426       MetadataList.assignValue(MD, NextMetadataNo++);
2427       break;
2428     }
2429     case bitc::METADATA_STRINGS:
2430       if (std::error_code EC =
2431               parseMetadataStrings(Record, Blob, NextMetadataNo))
2432         return EC;
2433       break;
2434     case bitc::METADATA_KIND: {
2435       // Support older bitcode files that had METADATA_KIND records in a
2436       // block with METADATA_BLOCK_ID.
2437       if (std::error_code EC = parseMetadataKindRecord(Record))
2438         return EC;
2439       break;
2440     }
2441     }
2442   }
2443 #undef GET_OR_DISTINCT
2444 }
2445 
2446 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2447 std::error_code BitcodeReader::parseMetadataKinds() {
2448   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2449     return error("Invalid record");
2450 
2451   SmallVector<uint64_t, 64> Record;
2452 
2453   // Read all the records.
2454   while (1) {
2455     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2456 
2457     switch (Entry.Kind) {
2458     case BitstreamEntry::SubBlock: // Handled for us already.
2459     case BitstreamEntry::Error:
2460       return error("Malformed block");
2461     case BitstreamEntry::EndBlock:
2462       return std::error_code();
2463     case BitstreamEntry::Record:
2464       // The interesting case.
2465       break;
2466     }
2467 
2468     // Read a record.
2469     Record.clear();
2470     unsigned Code = Stream.readRecord(Entry.ID, Record);
2471     switch (Code) {
2472     default: // Default behavior: ignore.
2473       break;
2474     case bitc::METADATA_KIND: {
2475       if (std::error_code EC = parseMetadataKindRecord(Record))
2476         return EC;
2477       break;
2478     }
2479     }
2480   }
2481 }
2482 
2483 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2484 /// encoding.
2485 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2486   if ((V & 1) == 0)
2487     return V >> 1;
2488   if (V != 1)
2489     return -(V >> 1);
2490   // There is no such thing as -0 with integers.  "-0" really means MININT.
2491   return 1ULL << 63;
2492 }
2493 
2494 /// Resolve all of the initializers for global values and aliases that we can.
2495 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2496   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2497   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2498       IndirectSymbolInitWorklist;
2499   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2500   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2501   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2502 
2503   GlobalInitWorklist.swap(GlobalInits);
2504   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2505   FunctionPrefixWorklist.swap(FunctionPrefixes);
2506   FunctionPrologueWorklist.swap(FunctionPrologues);
2507   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2508 
2509   while (!GlobalInitWorklist.empty()) {
2510     unsigned ValID = GlobalInitWorklist.back().second;
2511     if (ValID >= ValueList.size()) {
2512       // Not ready to resolve this yet, it requires something later in the file.
2513       GlobalInits.push_back(GlobalInitWorklist.back());
2514     } else {
2515       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2516         GlobalInitWorklist.back().first->setInitializer(C);
2517       else
2518         return error("Expected a constant");
2519     }
2520     GlobalInitWorklist.pop_back();
2521   }
2522 
2523   while (!IndirectSymbolInitWorklist.empty()) {
2524     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2525     if (ValID >= ValueList.size()) {
2526       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2527     } else {
2528       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2529       if (!C)
2530         return error("Expected a constant");
2531       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2532       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2533         return error("Alias and aliasee types don't match");
2534       GIS->setIndirectSymbol(C);
2535     }
2536     IndirectSymbolInitWorklist.pop_back();
2537   }
2538 
2539   while (!FunctionPrefixWorklist.empty()) {
2540     unsigned ValID = FunctionPrefixWorklist.back().second;
2541     if (ValID >= ValueList.size()) {
2542       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2543     } else {
2544       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2545         FunctionPrefixWorklist.back().first->setPrefixData(C);
2546       else
2547         return error("Expected a constant");
2548     }
2549     FunctionPrefixWorklist.pop_back();
2550   }
2551 
2552   while (!FunctionPrologueWorklist.empty()) {
2553     unsigned ValID = FunctionPrologueWorklist.back().second;
2554     if (ValID >= ValueList.size()) {
2555       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2556     } else {
2557       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2558         FunctionPrologueWorklist.back().first->setPrologueData(C);
2559       else
2560         return error("Expected a constant");
2561     }
2562     FunctionPrologueWorklist.pop_back();
2563   }
2564 
2565   while (!FunctionPersonalityFnWorklist.empty()) {
2566     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2567     if (ValID >= ValueList.size()) {
2568       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2569     } else {
2570       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2571         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2572       else
2573         return error("Expected a constant");
2574     }
2575     FunctionPersonalityFnWorklist.pop_back();
2576   }
2577 
2578   return std::error_code();
2579 }
2580 
2581 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2582   SmallVector<uint64_t, 8> Words(Vals.size());
2583   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2584                  BitcodeReader::decodeSignRotatedValue);
2585 
2586   return APInt(TypeBits, Words);
2587 }
2588 
2589 std::error_code BitcodeReader::parseConstants() {
2590   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2591     return error("Invalid record");
2592 
2593   SmallVector<uint64_t, 64> Record;
2594 
2595   // Read all the records for this value table.
2596   Type *CurTy = Type::getInt32Ty(Context);
2597   unsigned NextCstNo = ValueList.size();
2598   while (1) {
2599     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2600 
2601     switch (Entry.Kind) {
2602     case BitstreamEntry::SubBlock: // Handled for us already.
2603     case BitstreamEntry::Error:
2604       return error("Malformed block");
2605     case BitstreamEntry::EndBlock:
2606       if (NextCstNo != ValueList.size())
2607         return error("Invalid constant reference");
2608 
2609       // Once all the constants have been read, go through and resolve forward
2610       // references.
2611       ValueList.resolveConstantForwardRefs();
2612       return std::error_code();
2613     case BitstreamEntry::Record:
2614       // The interesting case.
2615       break;
2616     }
2617 
2618     // Read a record.
2619     Record.clear();
2620     Value *V = nullptr;
2621     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2622     switch (BitCode) {
2623     default:  // Default behavior: unknown constant
2624     case bitc::CST_CODE_UNDEF:     // UNDEF
2625       V = UndefValue::get(CurTy);
2626       break;
2627     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2628       if (Record.empty())
2629         return error("Invalid record");
2630       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2631         return error("Invalid record");
2632       CurTy = TypeList[Record[0]];
2633       continue;  // Skip the ValueList manipulation.
2634     case bitc::CST_CODE_NULL:      // NULL
2635       V = Constant::getNullValue(CurTy);
2636       break;
2637     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2638       if (!CurTy->isIntegerTy() || Record.empty())
2639         return error("Invalid record");
2640       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2641       break;
2642     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2643       if (!CurTy->isIntegerTy() || Record.empty())
2644         return error("Invalid record");
2645 
2646       APInt VInt =
2647           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2648       V = ConstantInt::get(Context, VInt);
2649 
2650       break;
2651     }
2652     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2653       if (Record.empty())
2654         return error("Invalid record");
2655       if (CurTy->isHalfTy())
2656         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2657                                              APInt(16, (uint16_t)Record[0])));
2658       else if (CurTy->isFloatTy())
2659         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2660                                              APInt(32, (uint32_t)Record[0])));
2661       else if (CurTy->isDoubleTy())
2662         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2663                                              APInt(64, Record[0])));
2664       else if (CurTy->isX86_FP80Ty()) {
2665         // Bits are not stored the same way as a normal i80 APInt, compensate.
2666         uint64_t Rearrange[2];
2667         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2668         Rearrange[1] = Record[0] >> 48;
2669         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2670                                              APInt(80, Rearrange)));
2671       } else if (CurTy->isFP128Ty())
2672         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2673                                              APInt(128, Record)));
2674       else if (CurTy->isPPC_FP128Ty())
2675         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2676                                              APInt(128, Record)));
2677       else
2678         V = UndefValue::get(CurTy);
2679       break;
2680     }
2681 
2682     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2683       if (Record.empty())
2684         return error("Invalid record");
2685 
2686       unsigned Size = Record.size();
2687       SmallVector<Constant*, 16> Elts;
2688 
2689       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2690         for (unsigned i = 0; i != Size; ++i)
2691           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2692                                                      STy->getElementType(i)));
2693         V = ConstantStruct::get(STy, Elts);
2694       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2695         Type *EltTy = ATy->getElementType();
2696         for (unsigned i = 0; i != Size; ++i)
2697           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2698         V = ConstantArray::get(ATy, Elts);
2699       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2700         Type *EltTy = VTy->getElementType();
2701         for (unsigned i = 0; i != Size; ++i)
2702           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2703         V = ConstantVector::get(Elts);
2704       } else {
2705         V = UndefValue::get(CurTy);
2706       }
2707       break;
2708     }
2709     case bitc::CST_CODE_STRING:    // STRING: [values]
2710     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2711       if (Record.empty())
2712         return error("Invalid record");
2713 
2714       SmallString<16> Elts(Record.begin(), Record.end());
2715       V = ConstantDataArray::getString(Context, Elts,
2716                                        BitCode == bitc::CST_CODE_CSTRING);
2717       break;
2718     }
2719     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2720       if (Record.empty())
2721         return error("Invalid record");
2722 
2723       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2724       if (EltTy->isIntegerTy(8)) {
2725         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2726         if (isa<VectorType>(CurTy))
2727           V = ConstantDataVector::get(Context, Elts);
2728         else
2729           V = ConstantDataArray::get(Context, Elts);
2730       } else if (EltTy->isIntegerTy(16)) {
2731         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2732         if (isa<VectorType>(CurTy))
2733           V = ConstantDataVector::get(Context, Elts);
2734         else
2735           V = ConstantDataArray::get(Context, Elts);
2736       } else if (EltTy->isIntegerTy(32)) {
2737         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2738         if (isa<VectorType>(CurTy))
2739           V = ConstantDataVector::get(Context, Elts);
2740         else
2741           V = ConstantDataArray::get(Context, Elts);
2742       } else if (EltTy->isIntegerTy(64)) {
2743         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2744         if (isa<VectorType>(CurTy))
2745           V = ConstantDataVector::get(Context, Elts);
2746         else
2747           V = ConstantDataArray::get(Context, Elts);
2748       } else if (EltTy->isHalfTy()) {
2749         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2750         if (isa<VectorType>(CurTy))
2751           V = ConstantDataVector::getFP(Context, Elts);
2752         else
2753           V = ConstantDataArray::getFP(Context, Elts);
2754       } else if (EltTy->isFloatTy()) {
2755         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2756         if (isa<VectorType>(CurTy))
2757           V = ConstantDataVector::getFP(Context, Elts);
2758         else
2759           V = ConstantDataArray::getFP(Context, Elts);
2760       } else if (EltTy->isDoubleTy()) {
2761         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2762         if (isa<VectorType>(CurTy))
2763           V = ConstantDataVector::getFP(Context, Elts);
2764         else
2765           V = ConstantDataArray::getFP(Context, Elts);
2766       } else {
2767         return error("Invalid type for value");
2768       }
2769       break;
2770     }
2771     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2772       if (Record.size() < 3)
2773         return error("Invalid record");
2774       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2775       if (Opc < 0) {
2776         V = UndefValue::get(CurTy);  // Unknown binop.
2777       } else {
2778         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2779         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2780         unsigned Flags = 0;
2781         if (Record.size() >= 4) {
2782           if (Opc == Instruction::Add ||
2783               Opc == Instruction::Sub ||
2784               Opc == Instruction::Mul ||
2785               Opc == Instruction::Shl) {
2786             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2787               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2788             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2789               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2790           } else if (Opc == Instruction::SDiv ||
2791                      Opc == Instruction::UDiv ||
2792                      Opc == Instruction::LShr ||
2793                      Opc == Instruction::AShr) {
2794             if (Record[3] & (1 << bitc::PEO_EXACT))
2795               Flags |= SDivOperator::IsExact;
2796           }
2797         }
2798         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2799       }
2800       break;
2801     }
2802     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2803       if (Record.size() < 3)
2804         return error("Invalid record");
2805       int Opc = getDecodedCastOpcode(Record[0]);
2806       if (Opc < 0) {
2807         V = UndefValue::get(CurTy);  // Unknown cast.
2808       } else {
2809         Type *OpTy = getTypeByID(Record[1]);
2810         if (!OpTy)
2811           return error("Invalid record");
2812         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2813         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2814         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2815       }
2816       break;
2817     }
2818     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2819     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2820       unsigned OpNum = 0;
2821       Type *PointeeType = nullptr;
2822       if (Record.size() % 2)
2823         PointeeType = getTypeByID(Record[OpNum++]);
2824       SmallVector<Constant*, 16> Elts;
2825       while (OpNum != Record.size()) {
2826         Type *ElTy = getTypeByID(Record[OpNum++]);
2827         if (!ElTy)
2828           return error("Invalid record");
2829         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2830       }
2831 
2832       if (PointeeType &&
2833           PointeeType !=
2834               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2835                   ->getElementType())
2836         return error("Explicit gep operator type does not match pointee type "
2837                      "of pointer operand");
2838 
2839       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2840       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2841                                          BitCode ==
2842                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2843       break;
2844     }
2845     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2846       if (Record.size() < 3)
2847         return error("Invalid record");
2848 
2849       Type *SelectorTy = Type::getInt1Ty(Context);
2850 
2851       // The selector might be an i1 or an <n x i1>
2852       // Get the type from the ValueList before getting a forward ref.
2853       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2854         if (Value *V = ValueList[Record[0]])
2855           if (SelectorTy != V->getType())
2856             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2857 
2858       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2859                                                               SelectorTy),
2860                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2861                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2862       break;
2863     }
2864     case bitc::CST_CODE_CE_EXTRACTELT
2865         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2866       if (Record.size() < 3)
2867         return error("Invalid record");
2868       VectorType *OpTy =
2869         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2870       if (!OpTy)
2871         return error("Invalid record");
2872       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2873       Constant *Op1 = nullptr;
2874       if (Record.size() == 4) {
2875         Type *IdxTy = getTypeByID(Record[2]);
2876         if (!IdxTy)
2877           return error("Invalid record");
2878         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2879       } else // TODO: Remove with llvm 4.0
2880         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2881       if (!Op1)
2882         return error("Invalid record");
2883       V = ConstantExpr::getExtractElement(Op0, Op1);
2884       break;
2885     }
2886     case bitc::CST_CODE_CE_INSERTELT
2887         : { // CE_INSERTELT: [opval, opval, opty, opval]
2888       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2889       if (Record.size() < 3 || !OpTy)
2890         return error("Invalid record");
2891       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2892       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2893                                                   OpTy->getElementType());
2894       Constant *Op2 = nullptr;
2895       if (Record.size() == 4) {
2896         Type *IdxTy = getTypeByID(Record[2]);
2897         if (!IdxTy)
2898           return error("Invalid record");
2899         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2900       } else // TODO: Remove with llvm 4.0
2901         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2902       if (!Op2)
2903         return error("Invalid record");
2904       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2905       break;
2906     }
2907     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2908       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2909       if (Record.size() < 3 || !OpTy)
2910         return error("Invalid record");
2911       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2912       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2913       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2914                                                  OpTy->getNumElements());
2915       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2916       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2917       break;
2918     }
2919     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2920       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2921       VectorType *OpTy =
2922         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2923       if (Record.size() < 4 || !RTy || !OpTy)
2924         return error("Invalid record");
2925       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2926       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2927       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2928                                                  RTy->getNumElements());
2929       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2930       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2931       break;
2932     }
2933     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2934       if (Record.size() < 4)
2935         return error("Invalid record");
2936       Type *OpTy = getTypeByID(Record[0]);
2937       if (!OpTy)
2938         return error("Invalid record");
2939       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2940       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2941 
2942       if (OpTy->isFPOrFPVectorTy())
2943         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2944       else
2945         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2946       break;
2947     }
2948     // This maintains backward compatibility, pre-asm dialect keywords.
2949     // FIXME: Remove with the 4.0 release.
2950     case bitc::CST_CODE_INLINEASM_OLD: {
2951       if (Record.size() < 2)
2952         return error("Invalid record");
2953       std::string AsmStr, ConstrStr;
2954       bool HasSideEffects = Record[0] & 1;
2955       bool IsAlignStack = Record[0] >> 1;
2956       unsigned AsmStrSize = Record[1];
2957       if (2+AsmStrSize >= Record.size())
2958         return error("Invalid record");
2959       unsigned ConstStrSize = Record[2+AsmStrSize];
2960       if (3+AsmStrSize+ConstStrSize > Record.size())
2961         return error("Invalid record");
2962 
2963       for (unsigned i = 0; i != AsmStrSize; ++i)
2964         AsmStr += (char)Record[2+i];
2965       for (unsigned i = 0; i != ConstStrSize; ++i)
2966         ConstrStr += (char)Record[3+AsmStrSize+i];
2967       PointerType *PTy = cast<PointerType>(CurTy);
2968       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2969                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2970       break;
2971     }
2972     // This version adds support for the asm dialect keywords (e.g.,
2973     // inteldialect).
2974     case bitc::CST_CODE_INLINEASM: {
2975       if (Record.size() < 2)
2976         return error("Invalid record");
2977       std::string AsmStr, ConstrStr;
2978       bool HasSideEffects = Record[0] & 1;
2979       bool IsAlignStack = (Record[0] >> 1) & 1;
2980       unsigned AsmDialect = Record[0] >> 2;
2981       unsigned AsmStrSize = Record[1];
2982       if (2+AsmStrSize >= Record.size())
2983         return error("Invalid record");
2984       unsigned ConstStrSize = Record[2+AsmStrSize];
2985       if (3+AsmStrSize+ConstStrSize > Record.size())
2986         return error("Invalid record");
2987 
2988       for (unsigned i = 0; i != AsmStrSize; ++i)
2989         AsmStr += (char)Record[2+i];
2990       for (unsigned i = 0; i != ConstStrSize; ++i)
2991         ConstrStr += (char)Record[3+AsmStrSize+i];
2992       PointerType *PTy = cast<PointerType>(CurTy);
2993       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2994                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2995                          InlineAsm::AsmDialect(AsmDialect));
2996       break;
2997     }
2998     case bitc::CST_CODE_BLOCKADDRESS:{
2999       if (Record.size() < 3)
3000         return error("Invalid record");
3001       Type *FnTy = getTypeByID(Record[0]);
3002       if (!FnTy)
3003         return error("Invalid record");
3004       Function *Fn =
3005         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3006       if (!Fn)
3007         return error("Invalid record");
3008 
3009       // If the function is already parsed we can insert the block address right
3010       // away.
3011       BasicBlock *BB;
3012       unsigned BBID = Record[2];
3013       if (!BBID)
3014         // Invalid reference to entry block.
3015         return error("Invalid ID");
3016       if (!Fn->empty()) {
3017         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3018         for (size_t I = 0, E = BBID; I != E; ++I) {
3019           if (BBI == BBE)
3020             return error("Invalid ID");
3021           ++BBI;
3022         }
3023         BB = &*BBI;
3024       } else {
3025         // Otherwise insert a placeholder and remember it so it can be inserted
3026         // when the function is parsed.
3027         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3028         if (FwdBBs.empty())
3029           BasicBlockFwdRefQueue.push_back(Fn);
3030         if (FwdBBs.size() < BBID + 1)
3031           FwdBBs.resize(BBID + 1);
3032         if (!FwdBBs[BBID])
3033           FwdBBs[BBID] = BasicBlock::Create(Context);
3034         BB = FwdBBs[BBID];
3035       }
3036       V = BlockAddress::get(Fn, BB);
3037       break;
3038     }
3039     }
3040 
3041     ValueList.assignValue(V, NextCstNo);
3042     ++NextCstNo;
3043   }
3044 }
3045 
3046 std::error_code BitcodeReader::parseUseLists() {
3047   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3048     return error("Invalid record");
3049 
3050   // Read all the records.
3051   SmallVector<uint64_t, 64> Record;
3052   while (1) {
3053     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3054 
3055     switch (Entry.Kind) {
3056     case BitstreamEntry::SubBlock: // Handled for us already.
3057     case BitstreamEntry::Error:
3058       return error("Malformed block");
3059     case BitstreamEntry::EndBlock:
3060       return std::error_code();
3061     case BitstreamEntry::Record:
3062       // The interesting case.
3063       break;
3064     }
3065 
3066     // Read a use list record.
3067     Record.clear();
3068     bool IsBB = false;
3069     switch (Stream.readRecord(Entry.ID, Record)) {
3070     default:  // Default behavior: unknown type.
3071       break;
3072     case bitc::USELIST_CODE_BB:
3073       IsBB = true;
3074       // fallthrough
3075     case bitc::USELIST_CODE_DEFAULT: {
3076       unsigned RecordLength = Record.size();
3077       if (RecordLength < 3)
3078         // Records should have at least an ID and two indexes.
3079         return error("Invalid record");
3080       unsigned ID = Record.back();
3081       Record.pop_back();
3082 
3083       Value *V;
3084       if (IsBB) {
3085         assert(ID < FunctionBBs.size() && "Basic block not found");
3086         V = FunctionBBs[ID];
3087       } else
3088         V = ValueList[ID];
3089       unsigned NumUses = 0;
3090       SmallDenseMap<const Use *, unsigned, 16> Order;
3091       for (const Use &U : V->materialized_uses()) {
3092         if (++NumUses > Record.size())
3093           break;
3094         Order[&U] = Record[NumUses - 1];
3095       }
3096       if (Order.size() != Record.size() || NumUses > Record.size())
3097         // Mismatches can happen if the functions are being materialized lazily
3098         // (out-of-order), or a value has been upgraded.
3099         break;
3100 
3101       V->sortUseList([&](const Use &L, const Use &R) {
3102         return Order.lookup(&L) < Order.lookup(&R);
3103       });
3104       break;
3105     }
3106     }
3107   }
3108 }
3109 
3110 /// When we see the block for metadata, remember where it is and then skip it.
3111 /// This lets us lazily deserialize the metadata.
3112 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3113   // Save the current stream state.
3114   uint64_t CurBit = Stream.GetCurrentBitNo();
3115   DeferredMetadataInfo.push_back(CurBit);
3116 
3117   // Skip over the block for now.
3118   if (Stream.SkipBlock())
3119     return error("Invalid record");
3120   return std::error_code();
3121 }
3122 
3123 std::error_code BitcodeReader::materializeMetadata() {
3124   for (uint64_t BitPos : DeferredMetadataInfo) {
3125     // Move the bit stream to the saved position.
3126     Stream.JumpToBit(BitPos);
3127     if (std::error_code EC = parseMetadata(true))
3128       return EC;
3129   }
3130   DeferredMetadataInfo.clear();
3131   return std::error_code();
3132 }
3133 
3134 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3135 
3136 /// When we see the block for a function body, remember where it is and then
3137 /// skip it.  This lets us lazily deserialize the functions.
3138 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3139   // Get the function we are talking about.
3140   if (FunctionsWithBodies.empty())
3141     return error("Insufficient function protos");
3142 
3143   Function *Fn = FunctionsWithBodies.back();
3144   FunctionsWithBodies.pop_back();
3145 
3146   // Save the current stream state.
3147   uint64_t CurBit = Stream.GetCurrentBitNo();
3148   assert(
3149       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3150       "Mismatch between VST and scanned function offsets");
3151   DeferredFunctionInfo[Fn] = CurBit;
3152 
3153   // Skip over the function block for now.
3154   if (Stream.SkipBlock())
3155     return error("Invalid record");
3156   return std::error_code();
3157 }
3158 
3159 std::error_code BitcodeReader::globalCleanup() {
3160   // Patch the initializers for globals and aliases up.
3161   resolveGlobalAndIndirectSymbolInits();
3162   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3163     return error("Malformed global initializer set");
3164 
3165   // Look for intrinsic functions which need to be upgraded at some point
3166   for (Function &F : *TheModule) {
3167     Function *NewFn;
3168     if (UpgradeIntrinsicFunction(&F, NewFn))
3169       UpgradedIntrinsics[&F] = NewFn;
3170   }
3171 
3172   // Look for global variables which need to be renamed.
3173   for (GlobalVariable &GV : TheModule->globals())
3174     UpgradeGlobalVariable(&GV);
3175 
3176   // Force deallocation of memory for these vectors to favor the client that
3177   // want lazy deserialization.
3178   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3179   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3180       IndirectSymbolInits);
3181   return std::error_code();
3182 }
3183 
3184 /// Support for lazy parsing of function bodies. This is required if we
3185 /// either have an old bitcode file without a VST forward declaration record,
3186 /// or if we have an anonymous function being materialized, since anonymous
3187 /// functions do not have a name and are therefore not in the VST.
3188 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3189   Stream.JumpToBit(NextUnreadBit);
3190 
3191   if (Stream.AtEndOfStream())
3192     return error("Could not find function in stream");
3193 
3194   if (!SeenFirstFunctionBody)
3195     return error("Trying to materialize functions before seeing function blocks");
3196 
3197   // An old bitcode file with the symbol table at the end would have
3198   // finished the parse greedily.
3199   assert(SeenValueSymbolTable);
3200 
3201   SmallVector<uint64_t, 64> Record;
3202 
3203   while (1) {
3204     BitstreamEntry Entry = Stream.advance();
3205     switch (Entry.Kind) {
3206     default:
3207       return error("Expect SubBlock");
3208     case BitstreamEntry::SubBlock:
3209       switch (Entry.ID) {
3210       default:
3211         return error("Expect function block");
3212       case bitc::FUNCTION_BLOCK_ID:
3213         if (std::error_code EC = rememberAndSkipFunctionBody())
3214           return EC;
3215         NextUnreadBit = Stream.GetCurrentBitNo();
3216         return std::error_code();
3217       }
3218     }
3219   }
3220 }
3221 
3222 std::error_code BitcodeReader::parseBitcodeVersion() {
3223   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3224     return error("Invalid record");
3225 
3226   // Read all the records.
3227   SmallVector<uint64_t, 64> Record;
3228   while (1) {
3229     BitstreamEntry Entry = Stream.advance();
3230 
3231     switch (Entry.Kind) {
3232     default:
3233     case BitstreamEntry::Error:
3234       return error("Malformed block");
3235     case BitstreamEntry::EndBlock:
3236       return std::error_code();
3237     case BitstreamEntry::Record:
3238       // The interesting case.
3239       break;
3240     }
3241 
3242     // Read a record.
3243     Record.clear();
3244     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3245     switch (BitCode) {
3246     default: // Default behavior: reject
3247       return error("Invalid value");
3248     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3249                                              // N]
3250       convertToString(Record, 0, ProducerIdentification);
3251       break;
3252     }
3253     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3254       unsigned epoch = (unsigned)Record[0];
3255       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3256         return error(
3257           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3258           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3259       }
3260     }
3261     }
3262   }
3263 }
3264 
3265 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3266                                            bool ShouldLazyLoadMetadata) {
3267   if (ResumeBit)
3268     Stream.JumpToBit(ResumeBit);
3269   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3270     return error("Invalid record");
3271 
3272   SmallVector<uint64_t, 64> Record;
3273   std::vector<std::string> SectionTable;
3274   std::vector<std::string> GCTable;
3275 
3276   // Read all the records for this module.
3277   while (1) {
3278     BitstreamEntry Entry = Stream.advance();
3279 
3280     switch (Entry.Kind) {
3281     case BitstreamEntry::Error:
3282       return error("Malformed block");
3283     case BitstreamEntry::EndBlock:
3284       return globalCleanup();
3285 
3286     case BitstreamEntry::SubBlock:
3287       switch (Entry.ID) {
3288       default:  // Skip unknown content.
3289         if (Stream.SkipBlock())
3290           return error("Invalid record");
3291         break;
3292       case bitc::BLOCKINFO_BLOCK_ID:
3293         if (Stream.ReadBlockInfoBlock())
3294           return error("Malformed block");
3295         break;
3296       case bitc::PARAMATTR_BLOCK_ID:
3297         if (std::error_code EC = parseAttributeBlock())
3298           return EC;
3299         break;
3300       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3301         if (std::error_code EC = parseAttributeGroupBlock())
3302           return EC;
3303         break;
3304       case bitc::TYPE_BLOCK_ID_NEW:
3305         if (std::error_code EC = parseTypeTable())
3306           return EC;
3307         break;
3308       case bitc::VALUE_SYMTAB_BLOCK_ID:
3309         if (!SeenValueSymbolTable) {
3310           // Either this is an old form VST without function index and an
3311           // associated VST forward declaration record (which would have caused
3312           // the VST to be jumped to and parsed before it was encountered
3313           // normally in the stream), or there were no function blocks to
3314           // trigger an earlier parsing of the VST.
3315           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3316           if (std::error_code EC = parseValueSymbolTable())
3317             return EC;
3318           SeenValueSymbolTable = true;
3319         } else {
3320           // We must have had a VST forward declaration record, which caused
3321           // the parser to jump to and parse the VST earlier.
3322           assert(VSTOffset > 0);
3323           if (Stream.SkipBlock())
3324             return error("Invalid record");
3325         }
3326         break;
3327       case bitc::CONSTANTS_BLOCK_ID:
3328         if (std::error_code EC = parseConstants())
3329           return EC;
3330         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3331           return EC;
3332         break;
3333       case bitc::METADATA_BLOCK_ID:
3334         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3335           if (std::error_code EC = rememberAndSkipMetadata())
3336             return EC;
3337           break;
3338         }
3339         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3340         if (std::error_code EC = parseMetadata(true))
3341           return EC;
3342         break;
3343       case bitc::METADATA_KIND_BLOCK_ID:
3344         if (std::error_code EC = parseMetadataKinds())
3345           return EC;
3346         break;
3347       case bitc::FUNCTION_BLOCK_ID:
3348         // If this is the first function body we've seen, reverse the
3349         // FunctionsWithBodies list.
3350         if (!SeenFirstFunctionBody) {
3351           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3352           if (std::error_code EC = globalCleanup())
3353             return EC;
3354           SeenFirstFunctionBody = true;
3355         }
3356 
3357         if (VSTOffset > 0) {
3358           // If we have a VST forward declaration record, make sure we
3359           // parse the VST now if we haven't already. It is needed to
3360           // set up the DeferredFunctionInfo vector for lazy reading.
3361           if (!SeenValueSymbolTable) {
3362             if (std::error_code EC =
3363                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3364               return EC;
3365             SeenValueSymbolTable = true;
3366             // Fall through so that we record the NextUnreadBit below.
3367             // This is necessary in case we have an anonymous function that
3368             // is later materialized. Since it will not have a VST entry we
3369             // need to fall back to the lazy parse to find its offset.
3370           } else {
3371             // If we have a VST forward declaration record, but have already
3372             // parsed the VST (just above, when the first function body was
3373             // encountered here), then we are resuming the parse after
3374             // materializing functions. The ResumeBit points to the
3375             // start of the last function block recorded in the
3376             // DeferredFunctionInfo map. Skip it.
3377             if (Stream.SkipBlock())
3378               return error("Invalid record");
3379             continue;
3380           }
3381         }
3382 
3383         // Support older bitcode files that did not have the function
3384         // index in the VST, nor a VST forward declaration record, as
3385         // well as anonymous functions that do not have VST entries.
3386         // Build the DeferredFunctionInfo vector on the fly.
3387         if (std::error_code EC = rememberAndSkipFunctionBody())
3388           return EC;
3389 
3390         // Suspend parsing when we reach the function bodies. Subsequent
3391         // materialization calls will resume it when necessary. If the bitcode
3392         // file is old, the symbol table will be at the end instead and will not
3393         // have been seen yet. In this case, just finish the parse now.
3394         if (SeenValueSymbolTable) {
3395           NextUnreadBit = Stream.GetCurrentBitNo();
3396           return std::error_code();
3397         }
3398         break;
3399       case bitc::USELIST_BLOCK_ID:
3400         if (std::error_code EC = parseUseLists())
3401           return EC;
3402         break;
3403       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3404         if (std::error_code EC = parseOperandBundleTags())
3405           return EC;
3406         break;
3407       }
3408       continue;
3409 
3410     case BitstreamEntry::Record:
3411       // The interesting case.
3412       break;
3413     }
3414 
3415     // Read a record.
3416     auto BitCode = Stream.readRecord(Entry.ID, Record);
3417     switch (BitCode) {
3418     default: break;  // Default behavior, ignore unknown content.
3419     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3420       if (Record.size() < 1)
3421         return error("Invalid record");
3422       // Only version #0 and #1 are supported so far.
3423       unsigned module_version = Record[0];
3424       switch (module_version) {
3425         default:
3426           return error("Invalid value");
3427         case 0:
3428           UseRelativeIDs = false;
3429           break;
3430         case 1:
3431           UseRelativeIDs = true;
3432           break;
3433       }
3434       break;
3435     }
3436     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3437       std::string S;
3438       if (convertToString(Record, 0, S))
3439         return error("Invalid record");
3440       TheModule->setTargetTriple(S);
3441       break;
3442     }
3443     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3444       std::string S;
3445       if (convertToString(Record, 0, S))
3446         return error("Invalid record");
3447       TheModule->setDataLayout(S);
3448       break;
3449     }
3450     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3451       std::string S;
3452       if (convertToString(Record, 0, S))
3453         return error("Invalid record");
3454       TheModule->setModuleInlineAsm(S);
3455       break;
3456     }
3457     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3458       // FIXME: Remove in 4.0.
3459       std::string S;
3460       if (convertToString(Record, 0, S))
3461         return error("Invalid record");
3462       // Ignore value.
3463       break;
3464     }
3465     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3466       std::string S;
3467       if (convertToString(Record, 0, S))
3468         return error("Invalid record");
3469       SectionTable.push_back(S);
3470       break;
3471     }
3472     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3473       std::string S;
3474       if (convertToString(Record, 0, S))
3475         return error("Invalid record");
3476       GCTable.push_back(S);
3477       break;
3478     }
3479     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3480       if (Record.size() < 2)
3481         return error("Invalid record");
3482       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3483       unsigned ComdatNameSize = Record[1];
3484       std::string ComdatName;
3485       ComdatName.reserve(ComdatNameSize);
3486       for (unsigned i = 0; i != ComdatNameSize; ++i)
3487         ComdatName += (char)Record[2 + i];
3488       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3489       C->setSelectionKind(SK);
3490       ComdatList.push_back(C);
3491       break;
3492     }
3493     // GLOBALVAR: [pointer type, isconst, initid,
3494     //             linkage, alignment, section, visibility, threadlocal,
3495     //             unnamed_addr, externally_initialized, dllstorageclass,
3496     //             comdat]
3497     case bitc::MODULE_CODE_GLOBALVAR: {
3498       if (Record.size() < 6)
3499         return error("Invalid record");
3500       Type *Ty = getTypeByID(Record[0]);
3501       if (!Ty)
3502         return error("Invalid record");
3503       bool isConstant = Record[1] & 1;
3504       bool explicitType = Record[1] & 2;
3505       unsigned AddressSpace;
3506       if (explicitType) {
3507         AddressSpace = Record[1] >> 2;
3508       } else {
3509         if (!Ty->isPointerTy())
3510           return error("Invalid type for value");
3511         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3512         Ty = cast<PointerType>(Ty)->getElementType();
3513       }
3514 
3515       uint64_t RawLinkage = Record[3];
3516       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3517       unsigned Alignment;
3518       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3519         return EC;
3520       std::string Section;
3521       if (Record[5]) {
3522         if (Record[5]-1 >= SectionTable.size())
3523           return error("Invalid ID");
3524         Section = SectionTable[Record[5]-1];
3525       }
3526       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3527       // Local linkage must have default visibility.
3528       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3529         // FIXME: Change to an error if non-default in 4.0.
3530         Visibility = getDecodedVisibility(Record[6]);
3531 
3532       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3533       if (Record.size() > 7)
3534         TLM = getDecodedThreadLocalMode(Record[7]);
3535 
3536       bool UnnamedAddr = false;
3537       if (Record.size() > 8)
3538         UnnamedAddr = Record[8];
3539 
3540       bool ExternallyInitialized = false;
3541       if (Record.size() > 9)
3542         ExternallyInitialized = Record[9];
3543 
3544       GlobalVariable *NewGV =
3545         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3546                            TLM, AddressSpace, ExternallyInitialized);
3547       NewGV->setAlignment(Alignment);
3548       if (!Section.empty())
3549         NewGV->setSection(Section);
3550       NewGV->setVisibility(Visibility);
3551       NewGV->setUnnamedAddr(UnnamedAddr);
3552 
3553       if (Record.size() > 10)
3554         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3555       else
3556         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3557 
3558       ValueList.push_back(NewGV);
3559 
3560       // Remember which value to use for the global initializer.
3561       if (unsigned InitID = Record[2])
3562         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3563 
3564       if (Record.size() > 11) {
3565         if (unsigned ComdatID = Record[11]) {
3566           if (ComdatID > ComdatList.size())
3567             return error("Invalid global variable comdat ID");
3568           NewGV->setComdat(ComdatList[ComdatID - 1]);
3569         }
3570       } else if (hasImplicitComdat(RawLinkage)) {
3571         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3572       }
3573       break;
3574     }
3575     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3576     //             alignment, section, visibility, gc, unnamed_addr,
3577     //             prologuedata, dllstorageclass, comdat, prefixdata]
3578     case bitc::MODULE_CODE_FUNCTION: {
3579       if (Record.size() < 8)
3580         return error("Invalid record");
3581       Type *Ty = getTypeByID(Record[0]);
3582       if (!Ty)
3583         return error("Invalid record");
3584       if (auto *PTy = dyn_cast<PointerType>(Ty))
3585         Ty = PTy->getElementType();
3586       auto *FTy = dyn_cast<FunctionType>(Ty);
3587       if (!FTy)
3588         return error("Invalid type for value");
3589       auto CC = static_cast<CallingConv::ID>(Record[1]);
3590       if (CC & ~CallingConv::MaxID)
3591         return error("Invalid calling convention ID");
3592 
3593       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3594                                         "", TheModule);
3595 
3596       Func->setCallingConv(CC);
3597       bool isProto = Record[2];
3598       uint64_t RawLinkage = Record[3];
3599       Func->setLinkage(getDecodedLinkage(RawLinkage));
3600       Func->setAttributes(getAttributes(Record[4]));
3601 
3602       unsigned Alignment;
3603       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3604         return EC;
3605       Func->setAlignment(Alignment);
3606       if (Record[6]) {
3607         if (Record[6]-1 >= SectionTable.size())
3608           return error("Invalid ID");
3609         Func->setSection(SectionTable[Record[6]-1]);
3610       }
3611       // Local linkage must have default visibility.
3612       if (!Func->hasLocalLinkage())
3613         // FIXME: Change to an error if non-default in 4.0.
3614         Func->setVisibility(getDecodedVisibility(Record[7]));
3615       if (Record.size() > 8 && Record[8]) {
3616         if (Record[8]-1 >= GCTable.size())
3617           return error("Invalid ID");
3618         Func->setGC(GCTable[Record[8]-1].c_str());
3619       }
3620       bool UnnamedAddr = false;
3621       if (Record.size() > 9)
3622         UnnamedAddr = Record[9];
3623       Func->setUnnamedAddr(UnnamedAddr);
3624       if (Record.size() > 10 && Record[10] != 0)
3625         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3626 
3627       if (Record.size() > 11)
3628         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3629       else
3630         upgradeDLLImportExportLinkage(Func, RawLinkage);
3631 
3632       if (Record.size() > 12) {
3633         if (unsigned ComdatID = Record[12]) {
3634           if (ComdatID > ComdatList.size())
3635             return error("Invalid function comdat ID");
3636           Func->setComdat(ComdatList[ComdatID - 1]);
3637         }
3638       } else if (hasImplicitComdat(RawLinkage)) {
3639         Func->setComdat(reinterpret_cast<Comdat *>(1));
3640       }
3641 
3642       if (Record.size() > 13 && Record[13] != 0)
3643         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3644 
3645       if (Record.size() > 14 && Record[14] != 0)
3646         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3647 
3648       ValueList.push_back(Func);
3649 
3650       // If this is a function with a body, remember the prototype we are
3651       // creating now, so that we can match up the body with them later.
3652       if (!isProto) {
3653         Func->setIsMaterializable(true);
3654         FunctionsWithBodies.push_back(Func);
3655         DeferredFunctionInfo[Func] = 0;
3656       }
3657       break;
3658     }
3659     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3660     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3661     case bitc::MODULE_CODE_ALIAS:
3662     case bitc::MODULE_CODE_ALIAS_OLD: {
3663       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3664       if (Record.size() < (3 + (unsigned)NewRecord))
3665         return error("Invalid record");
3666       unsigned OpNum = 0;
3667       Type *Ty = getTypeByID(Record[OpNum++]);
3668       if (!Ty)
3669         return error("Invalid record");
3670 
3671       unsigned AddrSpace;
3672       if (!NewRecord) {
3673         auto *PTy = dyn_cast<PointerType>(Ty);
3674         if (!PTy)
3675           return error("Invalid type for value");
3676         Ty = PTy->getElementType();
3677         AddrSpace = PTy->getAddressSpace();
3678       } else {
3679         AddrSpace = Record[OpNum++];
3680       }
3681 
3682       auto Val = Record[OpNum++];
3683       auto Linkage = Record[OpNum++];
3684       GlobalIndirectSymbol *NewGA;
3685       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3686           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3687         NewGA = GlobalAlias::create(
3688           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3689       else
3690         llvm_unreachable("Not an alias!");
3691       // Old bitcode files didn't have visibility field.
3692       // Local linkage must have default visibility.
3693       if (OpNum != Record.size()) {
3694         auto VisInd = OpNum++;
3695         if (!NewGA->hasLocalLinkage())
3696           // FIXME: Change to an error if non-default in 4.0.
3697           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3698       }
3699       if (OpNum != Record.size())
3700         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3701       else
3702         upgradeDLLImportExportLinkage(NewGA, Linkage);
3703       if (OpNum != Record.size())
3704         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3705       if (OpNum != Record.size())
3706         NewGA->setUnnamedAddr(Record[OpNum++]);
3707       ValueList.push_back(NewGA);
3708       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3709       break;
3710     }
3711     /// MODULE_CODE_PURGEVALS: [numvals]
3712     case bitc::MODULE_CODE_PURGEVALS:
3713       // Trim down the value list to the specified size.
3714       if (Record.size() < 1 || Record[0] > ValueList.size())
3715         return error("Invalid record");
3716       ValueList.shrinkTo(Record[0]);
3717       break;
3718     /// MODULE_CODE_VSTOFFSET: [offset]
3719     case bitc::MODULE_CODE_VSTOFFSET:
3720       if (Record.size() < 1)
3721         return error("Invalid record");
3722       VSTOffset = Record[0];
3723       break;
3724     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3725     case bitc::MODULE_CODE_SOURCE_FILENAME:
3726       SmallString<128> ValueName;
3727       if (convertToString(Record, 0, ValueName))
3728         return error("Invalid record");
3729       TheModule->setSourceFileName(ValueName);
3730       break;
3731     }
3732     Record.clear();
3733   }
3734 }
3735 
3736 /// Helper to read the header common to all bitcode files.
3737 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3738   // Sniff for the signature.
3739   if (Stream.Read(8) != 'B' ||
3740       Stream.Read(8) != 'C' ||
3741       Stream.Read(4) != 0x0 ||
3742       Stream.Read(4) != 0xC ||
3743       Stream.Read(4) != 0xE ||
3744       Stream.Read(4) != 0xD)
3745     return false;
3746   return true;
3747 }
3748 
3749 std::error_code
3750 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3751                                 Module *M, bool ShouldLazyLoadMetadata) {
3752   TheModule = M;
3753 
3754   if (std::error_code EC = initStream(std::move(Streamer)))
3755     return EC;
3756 
3757   // Sniff for the signature.
3758   if (!hasValidBitcodeHeader(Stream))
3759     return error("Invalid bitcode signature");
3760 
3761   // We expect a number of well-defined blocks, though we don't necessarily
3762   // need to understand them all.
3763   while (1) {
3764     if (Stream.AtEndOfStream()) {
3765       // We didn't really read a proper Module.
3766       return error("Malformed IR file");
3767     }
3768 
3769     BitstreamEntry Entry =
3770       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3771 
3772     if (Entry.Kind != BitstreamEntry::SubBlock)
3773       return error("Malformed block");
3774 
3775     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3776       parseBitcodeVersion();
3777       continue;
3778     }
3779 
3780     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3781       return parseModule(0, ShouldLazyLoadMetadata);
3782 
3783     if (Stream.SkipBlock())
3784       return error("Invalid record");
3785   }
3786 }
3787 
3788 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3789   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3790     return error("Invalid record");
3791 
3792   SmallVector<uint64_t, 64> Record;
3793 
3794   std::string Triple;
3795   // Read all the records for this module.
3796   while (1) {
3797     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3798 
3799     switch (Entry.Kind) {
3800     case BitstreamEntry::SubBlock: // Handled for us already.
3801     case BitstreamEntry::Error:
3802       return error("Malformed block");
3803     case BitstreamEntry::EndBlock:
3804       return Triple;
3805     case BitstreamEntry::Record:
3806       // The interesting case.
3807       break;
3808     }
3809 
3810     // Read a record.
3811     switch (Stream.readRecord(Entry.ID, Record)) {
3812     default: break;  // Default behavior, ignore unknown content.
3813     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3814       std::string S;
3815       if (convertToString(Record, 0, S))
3816         return error("Invalid record");
3817       Triple = S;
3818       break;
3819     }
3820     }
3821     Record.clear();
3822   }
3823   llvm_unreachable("Exit infinite loop");
3824 }
3825 
3826 ErrorOr<std::string> BitcodeReader::parseTriple() {
3827   if (std::error_code EC = initStream(nullptr))
3828     return EC;
3829 
3830   // Sniff for the signature.
3831   if (!hasValidBitcodeHeader(Stream))
3832     return error("Invalid bitcode signature");
3833 
3834   // We expect a number of well-defined blocks, though we don't necessarily
3835   // need to understand them all.
3836   while (1) {
3837     BitstreamEntry Entry = Stream.advance();
3838 
3839     switch (Entry.Kind) {
3840     case BitstreamEntry::Error:
3841       return error("Malformed block");
3842     case BitstreamEntry::EndBlock:
3843       return std::error_code();
3844 
3845     case BitstreamEntry::SubBlock:
3846       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3847         return parseModuleTriple();
3848 
3849       // Ignore other sub-blocks.
3850       if (Stream.SkipBlock())
3851         return error("Malformed block");
3852       continue;
3853 
3854     case BitstreamEntry::Record:
3855       Stream.skipRecord(Entry.ID);
3856       continue;
3857     }
3858   }
3859 }
3860 
3861 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3862   if (std::error_code EC = initStream(nullptr))
3863     return EC;
3864 
3865   // Sniff for the signature.
3866   if (!hasValidBitcodeHeader(Stream))
3867     return error("Invalid bitcode signature");
3868 
3869   // We expect a number of well-defined blocks, though we don't necessarily
3870   // need to understand them all.
3871   while (1) {
3872     BitstreamEntry Entry = Stream.advance();
3873     switch (Entry.Kind) {
3874     case BitstreamEntry::Error:
3875       return error("Malformed block");
3876     case BitstreamEntry::EndBlock:
3877       return std::error_code();
3878 
3879     case BitstreamEntry::SubBlock:
3880       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3881         if (std::error_code EC = parseBitcodeVersion())
3882           return EC;
3883         return ProducerIdentification;
3884       }
3885       // Ignore other sub-blocks.
3886       if (Stream.SkipBlock())
3887         return error("Malformed block");
3888       continue;
3889     case BitstreamEntry::Record:
3890       Stream.skipRecord(Entry.ID);
3891       continue;
3892     }
3893   }
3894 }
3895 
3896 /// Parse metadata attachments.
3897 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3898   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3899     return error("Invalid record");
3900 
3901   SmallVector<uint64_t, 64> Record;
3902   while (1) {
3903     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3904 
3905     switch (Entry.Kind) {
3906     case BitstreamEntry::SubBlock: // Handled for us already.
3907     case BitstreamEntry::Error:
3908       return error("Malformed block");
3909     case BitstreamEntry::EndBlock:
3910       return std::error_code();
3911     case BitstreamEntry::Record:
3912       // The interesting case.
3913       break;
3914     }
3915 
3916     // Read a metadata attachment record.
3917     Record.clear();
3918     switch (Stream.readRecord(Entry.ID, Record)) {
3919     default:  // Default behavior: ignore.
3920       break;
3921     case bitc::METADATA_ATTACHMENT: {
3922       unsigned RecordLength = Record.size();
3923       if (Record.empty())
3924         return error("Invalid record");
3925       if (RecordLength % 2 == 0) {
3926         // A function attachment.
3927         for (unsigned I = 0; I != RecordLength; I += 2) {
3928           auto K = MDKindMap.find(Record[I]);
3929           if (K == MDKindMap.end())
3930             return error("Invalid ID");
3931           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3932           if (!MD)
3933             return error("Invalid metadata attachment");
3934           F.setMetadata(K->second, MD);
3935         }
3936         continue;
3937       }
3938 
3939       // An instruction attachment.
3940       Instruction *Inst = InstructionList[Record[0]];
3941       for (unsigned i = 1; i != RecordLength; i = i+2) {
3942         unsigned Kind = Record[i];
3943         DenseMap<unsigned, unsigned>::iterator I =
3944           MDKindMap.find(Kind);
3945         if (I == MDKindMap.end())
3946           return error("Invalid ID");
3947         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
3948         if (isa<LocalAsMetadata>(Node))
3949           // Drop the attachment.  This used to be legal, but there's no
3950           // upgrade path.
3951           break;
3952         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
3953         if (!MD)
3954           return error("Invalid metadata attachment");
3955 
3956         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
3957           MD = upgradeInstructionLoopAttachment(*MD);
3958 
3959         Inst->setMetadata(I->second, MD);
3960         if (I->second == LLVMContext::MD_tbaa) {
3961           InstsWithTBAATag.push_back(Inst);
3962           continue;
3963         }
3964       }
3965       break;
3966     }
3967     }
3968   }
3969 }
3970 
3971 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3972   LLVMContext &Context = PtrType->getContext();
3973   if (!isa<PointerType>(PtrType))
3974     return error(Context, "Load/Store operand is not a pointer type");
3975   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3976 
3977   if (ValType && ValType != ElemType)
3978     return error(Context, "Explicit load/store type does not match pointee "
3979                           "type of pointer operand");
3980   if (!PointerType::isLoadableOrStorableType(ElemType))
3981     return error(Context, "Cannot load/store from pointer");
3982   return std::error_code();
3983 }
3984 
3985 /// Lazily parse the specified function body block.
3986 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3987   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3988     return error("Invalid record");
3989 
3990   // Unexpected unresolved metadata when parsing function.
3991   if (MetadataList.hasFwdRefs())
3992     return error("Invalid function metadata: incoming forward references");
3993 
3994   InstructionList.clear();
3995   unsigned ModuleValueListSize = ValueList.size();
3996   unsigned ModuleMetadataListSize = MetadataList.size();
3997 
3998   // Add all the function arguments to the value table.
3999   for (Argument &I : F->args())
4000     ValueList.push_back(&I);
4001 
4002   unsigned NextValueNo = ValueList.size();
4003   BasicBlock *CurBB = nullptr;
4004   unsigned CurBBNo = 0;
4005 
4006   DebugLoc LastLoc;
4007   auto getLastInstruction = [&]() -> Instruction * {
4008     if (CurBB && !CurBB->empty())
4009       return &CurBB->back();
4010     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4011              !FunctionBBs[CurBBNo - 1]->empty())
4012       return &FunctionBBs[CurBBNo - 1]->back();
4013     return nullptr;
4014   };
4015 
4016   std::vector<OperandBundleDef> OperandBundles;
4017 
4018   // Read all the records.
4019   SmallVector<uint64_t, 64> Record;
4020   while (1) {
4021     BitstreamEntry Entry = Stream.advance();
4022 
4023     switch (Entry.Kind) {
4024     case BitstreamEntry::Error:
4025       return error("Malformed block");
4026     case BitstreamEntry::EndBlock:
4027       goto OutOfRecordLoop;
4028 
4029     case BitstreamEntry::SubBlock:
4030       switch (Entry.ID) {
4031       default:  // Skip unknown content.
4032         if (Stream.SkipBlock())
4033           return error("Invalid record");
4034         break;
4035       case bitc::CONSTANTS_BLOCK_ID:
4036         if (std::error_code EC = parseConstants())
4037           return EC;
4038         NextValueNo = ValueList.size();
4039         break;
4040       case bitc::VALUE_SYMTAB_BLOCK_ID:
4041         if (std::error_code EC = parseValueSymbolTable())
4042           return EC;
4043         break;
4044       case bitc::METADATA_ATTACHMENT_ID:
4045         if (std::error_code EC = parseMetadataAttachment(*F))
4046           return EC;
4047         break;
4048       case bitc::METADATA_BLOCK_ID:
4049         if (std::error_code EC = parseMetadata())
4050           return EC;
4051         break;
4052       case bitc::USELIST_BLOCK_ID:
4053         if (std::error_code EC = parseUseLists())
4054           return EC;
4055         break;
4056       }
4057       continue;
4058 
4059     case BitstreamEntry::Record:
4060       // The interesting case.
4061       break;
4062     }
4063 
4064     // Read a record.
4065     Record.clear();
4066     Instruction *I = nullptr;
4067     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4068     switch (BitCode) {
4069     default: // Default behavior: reject
4070       return error("Invalid value");
4071     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4072       if (Record.size() < 1 || Record[0] == 0)
4073         return error("Invalid record");
4074       // Create all the basic blocks for the function.
4075       FunctionBBs.resize(Record[0]);
4076 
4077       // See if anything took the address of blocks in this function.
4078       auto BBFRI = BasicBlockFwdRefs.find(F);
4079       if (BBFRI == BasicBlockFwdRefs.end()) {
4080         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4081           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4082       } else {
4083         auto &BBRefs = BBFRI->second;
4084         // Check for invalid basic block references.
4085         if (BBRefs.size() > FunctionBBs.size())
4086           return error("Invalid ID");
4087         assert(!BBRefs.empty() && "Unexpected empty array");
4088         assert(!BBRefs.front() && "Invalid reference to entry block");
4089         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4090              ++I)
4091           if (I < RE && BBRefs[I]) {
4092             BBRefs[I]->insertInto(F);
4093             FunctionBBs[I] = BBRefs[I];
4094           } else {
4095             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4096           }
4097 
4098         // Erase from the table.
4099         BasicBlockFwdRefs.erase(BBFRI);
4100       }
4101 
4102       CurBB = FunctionBBs[0];
4103       continue;
4104     }
4105 
4106     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4107       // This record indicates that the last instruction is at the same
4108       // location as the previous instruction with a location.
4109       I = getLastInstruction();
4110 
4111       if (!I)
4112         return error("Invalid record");
4113       I->setDebugLoc(LastLoc);
4114       I = nullptr;
4115       continue;
4116 
4117     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4118       I = getLastInstruction();
4119       if (!I || Record.size() < 4)
4120         return error("Invalid record");
4121 
4122       unsigned Line = Record[0], Col = Record[1];
4123       unsigned ScopeID = Record[2], IAID = Record[3];
4124 
4125       MDNode *Scope = nullptr, *IA = nullptr;
4126       if (ScopeID) {
4127         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4128         if (!Scope)
4129           return error("Invalid record");
4130       }
4131       if (IAID) {
4132         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4133         if (!IA)
4134           return error("Invalid record");
4135       }
4136       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4137       I->setDebugLoc(LastLoc);
4138       I = nullptr;
4139       continue;
4140     }
4141 
4142     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4143       unsigned OpNum = 0;
4144       Value *LHS, *RHS;
4145       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4146           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4147           OpNum+1 > Record.size())
4148         return error("Invalid record");
4149 
4150       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4151       if (Opc == -1)
4152         return error("Invalid record");
4153       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4154       InstructionList.push_back(I);
4155       if (OpNum < Record.size()) {
4156         if (Opc == Instruction::Add ||
4157             Opc == Instruction::Sub ||
4158             Opc == Instruction::Mul ||
4159             Opc == Instruction::Shl) {
4160           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4161             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4162           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4163             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4164         } else if (Opc == Instruction::SDiv ||
4165                    Opc == Instruction::UDiv ||
4166                    Opc == Instruction::LShr ||
4167                    Opc == Instruction::AShr) {
4168           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4169             cast<BinaryOperator>(I)->setIsExact(true);
4170         } else if (isa<FPMathOperator>(I)) {
4171           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4172           if (FMF.any())
4173             I->setFastMathFlags(FMF);
4174         }
4175 
4176       }
4177       break;
4178     }
4179     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4180       unsigned OpNum = 0;
4181       Value *Op;
4182       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4183           OpNum+2 != Record.size())
4184         return error("Invalid record");
4185 
4186       Type *ResTy = getTypeByID(Record[OpNum]);
4187       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4188       if (Opc == -1 || !ResTy)
4189         return error("Invalid record");
4190       Instruction *Temp = nullptr;
4191       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4192         if (Temp) {
4193           InstructionList.push_back(Temp);
4194           CurBB->getInstList().push_back(Temp);
4195         }
4196       } else {
4197         auto CastOp = (Instruction::CastOps)Opc;
4198         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4199           return error("Invalid cast");
4200         I = CastInst::Create(CastOp, Op, ResTy);
4201       }
4202       InstructionList.push_back(I);
4203       break;
4204     }
4205     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4206     case bitc::FUNC_CODE_INST_GEP_OLD:
4207     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4208       unsigned OpNum = 0;
4209 
4210       Type *Ty;
4211       bool InBounds;
4212 
4213       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4214         InBounds = Record[OpNum++];
4215         Ty = getTypeByID(Record[OpNum++]);
4216       } else {
4217         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4218         Ty = nullptr;
4219       }
4220 
4221       Value *BasePtr;
4222       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4223         return error("Invalid record");
4224 
4225       if (!Ty)
4226         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4227                  ->getElementType();
4228       else if (Ty !=
4229                cast<SequentialType>(BasePtr->getType()->getScalarType())
4230                    ->getElementType())
4231         return error(
4232             "Explicit gep type does not match pointee type of pointer operand");
4233 
4234       SmallVector<Value*, 16> GEPIdx;
4235       while (OpNum != Record.size()) {
4236         Value *Op;
4237         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4238           return error("Invalid record");
4239         GEPIdx.push_back(Op);
4240       }
4241 
4242       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4243 
4244       InstructionList.push_back(I);
4245       if (InBounds)
4246         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4247       break;
4248     }
4249 
4250     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4251                                        // EXTRACTVAL: [opty, opval, n x indices]
4252       unsigned OpNum = 0;
4253       Value *Agg;
4254       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4255         return error("Invalid record");
4256 
4257       unsigned RecSize = Record.size();
4258       if (OpNum == RecSize)
4259         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4260 
4261       SmallVector<unsigned, 4> EXTRACTVALIdx;
4262       Type *CurTy = Agg->getType();
4263       for (; OpNum != RecSize; ++OpNum) {
4264         bool IsArray = CurTy->isArrayTy();
4265         bool IsStruct = CurTy->isStructTy();
4266         uint64_t Index = Record[OpNum];
4267 
4268         if (!IsStruct && !IsArray)
4269           return error("EXTRACTVAL: Invalid type");
4270         if ((unsigned)Index != Index)
4271           return error("Invalid value");
4272         if (IsStruct && Index >= CurTy->subtypes().size())
4273           return error("EXTRACTVAL: Invalid struct index");
4274         if (IsArray && Index >= CurTy->getArrayNumElements())
4275           return error("EXTRACTVAL: Invalid array index");
4276         EXTRACTVALIdx.push_back((unsigned)Index);
4277 
4278         if (IsStruct)
4279           CurTy = CurTy->subtypes()[Index];
4280         else
4281           CurTy = CurTy->subtypes()[0];
4282       }
4283 
4284       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4285       InstructionList.push_back(I);
4286       break;
4287     }
4288 
4289     case bitc::FUNC_CODE_INST_INSERTVAL: {
4290                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4291       unsigned OpNum = 0;
4292       Value *Agg;
4293       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4294         return error("Invalid record");
4295       Value *Val;
4296       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4297         return error("Invalid record");
4298 
4299       unsigned RecSize = Record.size();
4300       if (OpNum == RecSize)
4301         return error("INSERTVAL: Invalid instruction with 0 indices");
4302 
4303       SmallVector<unsigned, 4> INSERTVALIdx;
4304       Type *CurTy = Agg->getType();
4305       for (; OpNum != RecSize; ++OpNum) {
4306         bool IsArray = CurTy->isArrayTy();
4307         bool IsStruct = CurTy->isStructTy();
4308         uint64_t Index = Record[OpNum];
4309 
4310         if (!IsStruct && !IsArray)
4311           return error("INSERTVAL: Invalid type");
4312         if ((unsigned)Index != Index)
4313           return error("Invalid value");
4314         if (IsStruct && Index >= CurTy->subtypes().size())
4315           return error("INSERTVAL: Invalid struct index");
4316         if (IsArray && Index >= CurTy->getArrayNumElements())
4317           return error("INSERTVAL: Invalid array index");
4318 
4319         INSERTVALIdx.push_back((unsigned)Index);
4320         if (IsStruct)
4321           CurTy = CurTy->subtypes()[Index];
4322         else
4323           CurTy = CurTy->subtypes()[0];
4324       }
4325 
4326       if (CurTy != Val->getType())
4327         return error("Inserted value type doesn't match aggregate type");
4328 
4329       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4330       InstructionList.push_back(I);
4331       break;
4332     }
4333 
4334     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4335       // obsolete form of select
4336       // handles select i1 ... in old bitcode
4337       unsigned OpNum = 0;
4338       Value *TrueVal, *FalseVal, *Cond;
4339       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4340           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4341           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4342         return error("Invalid record");
4343 
4344       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4345       InstructionList.push_back(I);
4346       break;
4347     }
4348 
4349     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4350       // new form of select
4351       // handles select i1 or select [N x i1]
4352       unsigned OpNum = 0;
4353       Value *TrueVal, *FalseVal, *Cond;
4354       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4355           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4356           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4357         return error("Invalid record");
4358 
4359       // select condition can be either i1 or [N x i1]
4360       if (VectorType* vector_type =
4361           dyn_cast<VectorType>(Cond->getType())) {
4362         // expect <n x i1>
4363         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4364           return error("Invalid type for value");
4365       } else {
4366         // expect i1
4367         if (Cond->getType() != Type::getInt1Ty(Context))
4368           return error("Invalid type for value");
4369       }
4370 
4371       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4372       InstructionList.push_back(I);
4373       break;
4374     }
4375 
4376     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4377       unsigned OpNum = 0;
4378       Value *Vec, *Idx;
4379       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4380           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4381         return error("Invalid record");
4382       if (!Vec->getType()->isVectorTy())
4383         return error("Invalid type for value");
4384       I = ExtractElementInst::Create(Vec, Idx);
4385       InstructionList.push_back(I);
4386       break;
4387     }
4388 
4389     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4390       unsigned OpNum = 0;
4391       Value *Vec, *Elt, *Idx;
4392       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4393         return error("Invalid record");
4394       if (!Vec->getType()->isVectorTy())
4395         return error("Invalid type for value");
4396       if (popValue(Record, OpNum, NextValueNo,
4397                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4398           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4399         return error("Invalid record");
4400       I = InsertElementInst::Create(Vec, Elt, Idx);
4401       InstructionList.push_back(I);
4402       break;
4403     }
4404 
4405     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4406       unsigned OpNum = 0;
4407       Value *Vec1, *Vec2, *Mask;
4408       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4409           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4410         return error("Invalid record");
4411 
4412       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4413         return error("Invalid record");
4414       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4415         return error("Invalid type for value");
4416       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4417       InstructionList.push_back(I);
4418       break;
4419     }
4420 
4421     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4422       // Old form of ICmp/FCmp returning bool
4423       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4424       // both legal on vectors but had different behaviour.
4425     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4426       // FCmp/ICmp returning bool or vector of bool
4427 
4428       unsigned OpNum = 0;
4429       Value *LHS, *RHS;
4430       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4431           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4432         return error("Invalid record");
4433 
4434       unsigned PredVal = Record[OpNum];
4435       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4436       FastMathFlags FMF;
4437       if (IsFP && Record.size() > OpNum+1)
4438         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4439 
4440       if (OpNum+1 != Record.size())
4441         return error("Invalid record");
4442 
4443       if (LHS->getType()->isFPOrFPVectorTy())
4444         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4445       else
4446         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4447 
4448       if (FMF.any())
4449         I->setFastMathFlags(FMF);
4450       InstructionList.push_back(I);
4451       break;
4452     }
4453 
4454     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4455       {
4456         unsigned Size = Record.size();
4457         if (Size == 0) {
4458           I = ReturnInst::Create(Context);
4459           InstructionList.push_back(I);
4460           break;
4461         }
4462 
4463         unsigned OpNum = 0;
4464         Value *Op = nullptr;
4465         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4466           return error("Invalid record");
4467         if (OpNum != Record.size())
4468           return error("Invalid record");
4469 
4470         I = ReturnInst::Create(Context, Op);
4471         InstructionList.push_back(I);
4472         break;
4473       }
4474     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4475       if (Record.size() != 1 && Record.size() != 3)
4476         return error("Invalid record");
4477       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4478       if (!TrueDest)
4479         return error("Invalid record");
4480 
4481       if (Record.size() == 1) {
4482         I = BranchInst::Create(TrueDest);
4483         InstructionList.push_back(I);
4484       }
4485       else {
4486         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4487         Value *Cond = getValue(Record, 2, NextValueNo,
4488                                Type::getInt1Ty(Context));
4489         if (!FalseDest || !Cond)
4490           return error("Invalid record");
4491         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4492         InstructionList.push_back(I);
4493       }
4494       break;
4495     }
4496     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4497       if (Record.size() != 1 && Record.size() != 2)
4498         return error("Invalid record");
4499       unsigned Idx = 0;
4500       Value *CleanupPad =
4501           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4502       if (!CleanupPad)
4503         return error("Invalid record");
4504       BasicBlock *UnwindDest = nullptr;
4505       if (Record.size() == 2) {
4506         UnwindDest = getBasicBlock(Record[Idx++]);
4507         if (!UnwindDest)
4508           return error("Invalid record");
4509       }
4510 
4511       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4512       InstructionList.push_back(I);
4513       break;
4514     }
4515     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4516       if (Record.size() != 2)
4517         return error("Invalid record");
4518       unsigned Idx = 0;
4519       Value *CatchPad =
4520           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4521       if (!CatchPad)
4522         return error("Invalid record");
4523       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4524       if (!BB)
4525         return error("Invalid record");
4526 
4527       I = CatchReturnInst::Create(CatchPad, BB);
4528       InstructionList.push_back(I);
4529       break;
4530     }
4531     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4532       // We must have, at minimum, the outer scope and the number of arguments.
4533       if (Record.size() < 2)
4534         return error("Invalid record");
4535 
4536       unsigned Idx = 0;
4537 
4538       Value *ParentPad =
4539           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4540 
4541       unsigned NumHandlers = Record[Idx++];
4542 
4543       SmallVector<BasicBlock *, 2> Handlers;
4544       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4545         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4546         if (!BB)
4547           return error("Invalid record");
4548         Handlers.push_back(BB);
4549       }
4550 
4551       BasicBlock *UnwindDest = nullptr;
4552       if (Idx + 1 == Record.size()) {
4553         UnwindDest = getBasicBlock(Record[Idx++]);
4554         if (!UnwindDest)
4555           return error("Invalid record");
4556       }
4557 
4558       if (Record.size() != Idx)
4559         return error("Invalid record");
4560 
4561       auto *CatchSwitch =
4562           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4563       for (BasicBlock *Handler : Handlers)
4564         CatchSwitch->addHandler(Handler);
4565       I = CatchSwitch;
4566       InstructionList.push_back(I);
4567       break;
4568     }
4569     case bitc::FUNC_CODE_INST_CATCHPAD:
4570     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4571       // We must have, at minimum, the outer scope and the number of arguments.
4572       if (Record.size() < 2)
4573         return error("Invalid record");
4574 
4575       unsigned Idx = 0;
4576 
4577       Value *ParentPad =
4578           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4579 
4580       unsigned NumArgOperands = Record[Idx++];
4581 
4582       SmallVector<Value *, 2> Args;
4583       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4584         Value *Val;
4585         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4586           return error("Invalid record");
4587         Args.push_back(Val);
4588       }
4589 
4590       if (Record.size() != Idx)
4591         return error("Invalid record");
4592 
4593       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4594         I = CleanupPadInst::Create(ParentPad, Args);
4595       else
4596         I = CatchPadInst::Create(ParentPad, Args);
4597       InstructionList.push_back(I);
4598       break;
4599     }
4600     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4601       // Check magic
4602       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4603         // "New" SwitchInst format with case ranges. The changes to write this
4604         // format were reverted but we still recognize bitcode that uses it.
4605         // Hopefully someday we will have support for case ranges and can use
4606         // this format again.
4607 
4608         Type *OpTy = getTypeByID(Record[1]);
4609         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4610 
4611         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4612         BasicBlock *Default = getBasicBlock(Record[3]);
4613         if (!OpTy || !Cond || !Default)
4614           return error("Invalid record");
4615 
4616         unsigned NumCases = Record[4];
4617 
4618         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4619         InstructionList.push_back(SI);
4620 
4621         unsigned CurIdx = 5;
4622         for (unsigned i = 0; i != NumCases; ++i) {
4623           SmallVector<ConstantInt*, 1> CaseVals;
4624           unsigned NumItems = Record[CurIdx++];
4625           for (unsigned ci = 0; ci != NumItems; ++ci) {
4626             bool isSingleNumber = Record[CurIdx++];
4627 
4628             APInt Low;
4629             unsigned ActiveWords = 1;
4630             if (ValueBitWidth > 64)
4631               ActiveWords = Record[CurIdx++];
4632             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4633                                 ValueBitWidth);
4634             CurIdx += ActiveWords;
4635 
4636             if (!isSingleNumber) {
4637               ActiveWords = 1;
4638               if (ValueBitWidth > 64)
4639                 ActiveWords = Record[CurIdx++];
4640               APInt High = readWideAPInt(
4641                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4642               CurIdx += ActiveWords;
4643 
4644               // FIXME: It is not clear whether values in the range should be
4645               // compared as signed or unsigned values. The partially
4646               // implemented changes that used this format in the past used
4647               // unsigned comparisons.
4648               for ( ; Low.ule(High); ++Low)
4649                 CaseVals.push_back(ConstantInt::get(Context, Low));
4650             } else
4651               CaseVals.push_back(ConstantInt::get(Context, Low));
4652           }
4653           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4654           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4655                  cve = CaseVals.end(); cvi != cve; ++cvi)
4656             SI->addCase(*cvi, DestBB);
4657         }
4658         I = SI;
4659         break;
4660       }
4661 
4662       // Old SwitchInst format without case ranges.
4663 
4664       if (Record.size() < 3 || (Record.size() & 1) == 0)
4665         return error("Invalid record");
4666       Type *OpTy = getTypeByID(Record[0]);
4667       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4668       BasicBlock *Default = getBasicBlock(Record[2]);
4669       if (!OpTy || !Cond || !Default)
4670         return error("Invalid record");
4671       unsigned NumCases = (Record.size()-3)/2;
4672       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4673       InstructionList.push_back(SI);
4674       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4675         ConstantInt *CaseVal =
4676           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4677         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4678         if (!CaseVal || !DestBB) {
4679           delete SI;
4680           return error("Invalid record");
4681         }
4682         SI->addCase(CaseVal, DestBB);
4683       }
4684       I = SI;
4685       break;
4686     }
4687     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4688       if (Record.size() < 2)
4689         return error("Invalid record");
4690       Type *OpTy = getTypeByID(Record[0]);
4691       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4692       if (!OpTy || !Address)
4693         return error("Invalid record");
4694       unsigned NumDests = Record.size()-2;
4695       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4696       InstructionList.push_back(IBI);
4697       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4698         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4699           IBI->addDestination(DestBB);
4700         } else {
4701           delete IBI;
4702           return error("Invalid record");
4703         }
4704       }
4705       I = IBI;
4706       break;
4707     }
4708 
4709     case bitc::FUNC_CODE_INST_INVOKE: {
4710       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4711       if (Record.size() < 4)
4712         return error("Invalid record");
4713       unsigned OpNum = 0;
4714       AttributeSet PAL = getAttributes(Record[OpNum++]);
4715       unsigned CCInfo = Record[OpNum++];
4716       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4717       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4718 
4719       FunctionType *FTy = nullptr;
4720       if (CCInfo >> 13 & 1 &&
4721           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4722         return error("Explicit invoke type is not a function type");
4723 
4724       Value *Callee;
4725       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4726         return error("Invalid record");
4727 
4728       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4729       if (!CalleeTy)
4730         return error("Callee is not a pointer");
4731       if (!FTy) {
4732         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4733         if (!FTy)
4734           return error("Callee is not of pointer to function type");
4735       } else if (CalleeTy->getElementType() != FTy)
4736         return error("Explicit invoke type does not match pointee type of "
4737                      "callee operand");
4738       if (Record.size() < FTy->getNumParams() + OpNum)
4739         return error("Insufficient operands to call");
4740 
4741       SmallVector<Value*, 16> Ops;
4742       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4743         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4744                                FTy->getParamType(i)));
4745         if (!Ops.back())
4746           return error("Invalid record");
4747       }
4748 
4749       if (!FTy->isVarArg()) {
4750         if (Record.size() != OpNum)
4751           return error("Invalid record");
4752       } else {
4753         // Read type/value pairs for varargs params.
4754         while (OpNum != Record.size()) {
4755           Value *Op;
4756           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4757             return error("Invalid record");
4758           Ops.push_back(Op);
4759         }
4760       }
4761 
4762       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4763       OperandBundles.clear();
4764       InstructionList.push_back(I);
4765       cast<InvokeInst>(I)->setCallingConv(
4766           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4767       cast<InvokeInst>(I)->setAttributes(PAL);
4768       break;
4769     }
4770     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4771       unsigned Idx = 0;
4772       Value *Val = nullptr;
4773       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4774         return error("Invalid record");
4775       I = ResumeInst::Create(Val);
4776       InstructionList.push_back(I);
4777       break;
4778     }
4779     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4780       I = new UnreachableInst(Context);
4781       InstructionList.push_back(I);
4782       break;
4783     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4784       if (Record.size() < 1 || ((Record.size()-1)&1))
4785         return error("Invalid record");
4786       Type *Ty = getTypeByID(Record[0]);
4787       if (!Ty)
4788         return error("Invalid record");
4789 
4790       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4791       InstructionList.push_back(PN);
4792 
4793       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4794         Value *V;
4795         // With the new function encoding, it is possible that operands have
4796         // negative IDs (for forward references).  Use a signed VBR
4797         // representation to keep the encoding small.
4798         if (UseRelativeIDs)
4799           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4800         else
4801           V = getValue(Record, 1+i, NextValueNo, Ty);
4802         BasicBlock *BB = getBasicBlock(Record[2+i]);
4803         if (!V || !BB)
4804           return error("Invalid record");
4805         PN->addIncoming(V, BB);
4806       }
4807       I = PN;
4808       break;
4809     }
4810 
4811     case bitc::FUNC_CODE_INST_LANDINGPAD:
4812     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4813       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4814       unsigned Idx = 0;
4815       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4816         if (Record.size() < 3)
4817           return error("Invalid record");
4818       } else {
4819         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4820         if (Record.size() < 4)
4821           return error("Invalid record");
4822       }
4823       Type *Ty = getTypeByID(Record[Idx++]);
4824       if (!Ty)
4825         return error("Invalid record");
4826       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4827         Value *PersFn = nullptr;
4828         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4829           return error("Invalid record");
4830 
4831         if (!F->hasPersonalityFn())
4832           F->setPersonalityFn(cast<Constant>(PersFn));
4833         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4834           return error("Personality function mismatch");
4835       }
4836 
4837       bool IsCleanup = !!Record[Idx++];
4838       unsigned NumClauses = Record[Idx++];
4839       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4840       LP->setCleanup(IsCleanup);
4841       for (unsigned J = 0; J != NumClauses; ++J) {
4842         LandingPadInst::ClauseType CT =
4843           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4844         Value *Val;
4845 
4846         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4847           delete LP;
4848           return error("Invalid record");
4849         }
4850 
4851         assert((CT != LandingPadInst::Catch ||
4852                 !isa<ArrayType>(Val->getType())) &&
4853                "Catch clause has a invalid type!");
4854         assert((CT != LandingPadInst::Filter ||
4855                 isa<ArrayType>(Val->getType())) &&
4856                "Filter clause has invalid type!");
4857         LP->addClause(cast<Constant>(Val));
4858       }
4859 
4860       I = LP;
4861       InstructionList.push_back(I);
4862       break;
4863     }
4864 
4865     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4866       if (Record.size() != 4)
4867         return error("Invalid record");
4868       uint64_t AlignRecord = Record[3];
4869       const uint64_t InAllocaMask = uint64_t(1) << 5;
4870       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4871       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4872       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4873                                 SwiftErrorMask;
4874       bool InAlloca = AlignRecord & InAllocaMask;
4875       bool SwiftError = AlignRecord & SwiftErrorMask;
4876       Type *Ty = getTypeByID(Record[0]);
4877       if ((AlignRecord & ExplicitTypeMask) == 0) {
4878         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4879         if (!PTy)
4880           return error("Old-style alloca with a non-pointer type");
4881         Ty = PTy->getElementType();
4882       }
4883       Type *OpTy = getTypeByID(Record[1]);
4884       Value *Size = getFnValueByID(Record[2], OpTy);
4885       unsigned Align;
4886       if (std::error_code EC =
4887               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4888         return EC;
4889       }
4890       if (!Ty || !Size)
4891         return error("Invalid record");
4892       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4893       AI->setUsedWithInAlloca(InAlloca);
4894       AI->setSwiftError(SwiftError);
4895       I = AI;
4896       InstructionList.push_back(I);
4897       break;
4898     }
4899     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4900       unsigned OpNum = 0;
4901       Value *Op;
4902       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4903           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4904         return error("Invalid record");
4905 
4906       Type *Ty = nullptr;
4907       if (OpNum + 3 == Record.size())
4908         Ty = getTypeByID(Record[OpNum++]);
4909       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4910         return EC;
4911       if (!Ty)
4912         Ty = cast<PointerType>(Op->getType())->getElementType();
4913 
4914       unsigned Align;
4915       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4916         return EC;
4917       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4918 
4919       InstructionList.push_back(I);
4920       break;
4921     }
4922     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4923        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4924       unsigned OpNum = 0;
4925       Value *Op;
4926       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4927           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4928         return error("Invalid record");
4929 
4930       Type *Ty = nullptr;
4931       if (OpNum + 5 == Record.size())
4932         Ty = getTypeByID(Record[OpNum++]);
4933       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4934         return EC;
4935       if (!Ty)
4936         Ty = cast<PointerType>(Op->getType())->getElementType();
4937 
4938       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4939       if (Ordering == AtomicOrdering::NotAtomic ||
4940           Ordering == AtomicOrdering::Release ||
4941           Ordering == AtomicOrdering::AcquireRelease)
4942         return error("Invalid record");
4943       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4944         return error("Invalid record");
4945       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4946 
4947       unsigned Align;
4948       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4949         return EC;
4950       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4951 
4952       InstructionList.push_back(I);
4953       break;
4954     }
4955     case bitc::FUNC_CODE_INST_STORE:
4956     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4957       unsigned OpNum = 0;
4958       Value *Val, *Ptr;
4959       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4960           (BitCode == bitc::FUNC_CODE_INST_STORE
4961                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4962                : popValue(Record, OpNum, NextValueNo,
4963                           cast<PointerType>(Ptr->getType())->getElementType(),
4964                           Val)) ||
4965           OpNum + 2 != Record.size())
4966         return error("Invalid record");
4967 
4968       if (std::error_code EC =
4969               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4970         return EC;
4971       unsigned Align;
4972       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4973         return EC;
4974       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4975       InstructionList.push_back(I);
4976       break;
4977     }
4978     case bitc::FUNC_CODE_INST_STOREATOMIC:
4979     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4980       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4981       unsigned OpNum = 0;
4982       Value *Val, *Ptr;
4983       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4984           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4985                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4986                : popValue(Record, OpNum, NextValueNo,
4987                           cast<PointerType>(Ptr->getType())->getElementType(),
4988                           Val)) ||
4989           OpNum + 4 != Record.size())
4990         return error("Invalid record");
4991 
4992       if (std::error_code EC =
4993               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4994         return EC;
4995       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4996       if (Ordering == AtomicOrdering::NotAtomic ||
4997           Ordering == AtomicOrdering::Acquire ||
4998           Ordering == AtomicOrdering::AcquireRelease)
4999         return error("Invalid record");
5000       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5001       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5002         return error("Invalid record");
5003 
5004       unsigned Align;
5005       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5006         return EC;
5007       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5008       InstructionList.push_back(I);
5009       break;
5010     }
5011     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5012     case bitc::FUNC_CODE_INST_CMPXCHG: {
5013       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5014       //          failureordering?, isweak?]
5015       unsigned OpNum = 0;
5016       Value *Ptr, *Cmp, *New;
5017       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5018           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5019                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5020                : popValue(Record, OpNum, NextValueNo,
5021                           cast<PointerType>(Ptr->getType())->getElementType(),
5022                           Cmp)) ||
5023           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5024           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5025         return error("Invalid record");
5026       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5027       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5028           SuccessOrdering == AtomicOrdering::Unordered)
5029         return error("Invalid record");
5030       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5031 
5032       if (std::error_code EC =
5033               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5034         return EC;
5035       AtomicOrdering FailureOrdering;
5036       if (Record.size() < 7)
5037         FailureOrdering =
5038             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5039       else
5040         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5041 
5042       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5043                                 SynchScope);
5044       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5045 
5046       if (Record.size() < 8) {
5047         // Before weak cmpxchgs existed, the instruction simply returned the
5048         // value loaded from memory, so bitcode files from that era will be
5049         // expecting the first component of a modern cmpxchg.
5050         CurBB->getInstList().push_back(I);
5051         I = ExtractValueInst::Create(I, 0);
5052       } else {
5053         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5054       }
5055 
5056       InstructionList.push_back(I);
5057       break;
5058     }
5059     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5060       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5061       unsigned OpNum = 0;
5062       Value *Ptr, *Val;
5063       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5064           popValue(Record, OpNum, NextValueNo,
5065                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5066           OpNum+4 != Record.size())
5067         return error("Invalid record");
5068       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5069       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5070           Operation > AtomicRMWInst::LAST_BINOP)
5071         return error("Invalid record");
5072       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5073       if (Ordering == AtomicOrdering::NotAtomic ||
5074           Ordering == AtomicOrdering::Unordered)
5075         return error("Invalid record");
5076       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5077       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5078       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5079       InstructionList.push_back(I);
5080       break;
5081     }
5082     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5083       if (2 != Record.size())
5084         return error("Invalid record");
5085       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5086       if (Ordering == AtomicOrdering::NotAtomic ||
5087           Ordering == AtomicOrdering::Unordered ||
5088           Ordering == AtomicOrdering::Monotonic)
5089         return error("Invalid record");
5090       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5091       I = new FenceInst(Context, Ordering, SynchScope);
5092       InstructionList.push_back(I);
5093       break;
5094     }
5095     case bitc::FUNC_CODE_INST_CALL: {
5096       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5097       if (Record.size() < 3)
5098         return error("Invalid record");
5099 
5100       unsigned OpNum = 0;
5101       AttributeSet PAL = getAttributes(Record[OpNum++]);
5102       unsigned CCInfo = Record[OpNum++];
5103 
5104       FastMathFlags FMF;
5105       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5106         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5107         if (!FMF.any())
5108           return error("Fast math flags indicator set for call with no FMF");
5109       }
5110 
5111       FunctionType *FTy = nullptr;
5112       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5113           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5114         return error("Explicit call type is not a function type");
5115 
5116       Value *Callee;
5117       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5118         return error("Invalid record");
5119 
5120       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5121       if (!OpTy)
5122         return error("Callee is not a pointer type");
5123       if (!FTy) {
5124         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5125         if (!FTy)
5126           return error("Callee is not of pointer to function type");
5127       } else if (OpTy->getElementType() != FTy)
5128         return error("Explicit call type does not match pointee type of "
5129                      "callee operand");
5130       if (Record.size() < FTy->getNumParams() + OpNum)
5131         return error("Insufficient operands to call");
5132 
5133       SmallVector<Value*, 16> Args;
5134       // Read the fixed params.
5135       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5136         if (FTy->getParamType(i)->isLabelTy())
5137           Args.push_back(getBasicBlock(Record[OpNum]));
5138         else
5139           Args.push_back(getValue(Record, OpNum, NextValueNo,
5140                                   FTy->getParamType(i)));
5141         if (!Args.back())
5142           return error("Invalid record");
5143       }
5144 
5145       // Read type/value pairs for varargs params.
5146       if (!FTy->isVarArg()) {
5147         if (OpNum != Record.size())
5148           return error("Invalid record");
5149       } else {
5150         while (OpNum != Record.size()) {
5151           Value *Op;
5152           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5153             return error("Invalid record");
5154           Args.push_back(Op);
5155         }
5156       }
5157 
5158       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5159       OperandBundles.clear();
5160       InstructionList.push_back(I);
5161       cast<CallInst>(I)->setCallingConv(
5162           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5163       CallInst::TailCallKind TCK = CallInst::TCK_None;
5164       if (CCInfo & 1 << bitc::CALL_TAIL)
5165         TCK = CallInst::TCK_Tail;
5166       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5167         TCK = CallInst::TCK_MustTail;
5168       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5169         TCK = CallInst::TCK_NoTail;
5170       cast<CallInst>(I)->setTailCallKind(TCK);
5171       cast<CallInst>(I)->setAttributes(PAL);
5172       if (FMF.any()) {
5173         if (!isa<FPMathOperator>(I))
5174           return error("Fast-math-flags specified for call without "
5175                        "floating-point scalar or vector return type");
5176         I->setFastMathFlags(FMF);
5177       }
5178       break;
5179     }
5180     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5181       if (Record.size() < 3)
5182         return error("Invalid record");
5183       Type *OpTy = getTypeByID(Record[0]);
5184       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5185       Type *ResTy = getTypeByID(Record[2]);
5186       if (!OpTy || !Op || !ResTy)
5187         return error("Invalid record");
5188       I = new VAArgInst(Op, ResTy);
5189       InstructionList.push_back(I);
5190       break;
5191     }
5192 
5193     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5194       // A call or an invoke can be optionally prefixed with some variable
5195       // number of operand bundle blocks.  These blocks are read into
5196       // OperandBundles and consumed at the next call or invoke instruction.
5197 
5198       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5199         return error("Invalid record");
5200 
5201       std::vector<Value *> Inputs;
5202 
5203       unsigned OpNum = 1;
5204       while (OpNum != Record.size()) {
5205         Value *Op;
5206         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5207           return error("Invalid record");
5208         Inputs.push_back(Op);
5209       }
5210 
5211       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5212       continue;
5213     }
5214     }
5215 
5216     // Add instruction to end of current BB.  If there is no current BB, reject
5217     // this file.
5218     if (!CurBB) {
5219       delete I;
5220       return error("Invalid instruction with no BB");
5221     }
5222     if (!OperandBundles.empty()) {
5223       delete I;
5224       return error("Operand bundles found with no consumer");
5225     }
5226     CurBB->getInstList().push_back(I);
5227 
5228     // If this was a terminator instruction, move to the next block.
5229     if (isa<TerminatorInst>(I)) {
5230       ++CurBBNo;
5231       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5232     }
5233 
5234     // Non-void values get registered in the value table for future use.
5235     if (I && !I->getType()->isVoidTy())
5236       ValueList.assignValue(I, NextValueNo++);
5237   }
5238 
5239 OutOfRecordLoop:
5240 
5241   if (!OperandBundles.empty())
5242     return error("Operand bundles found with no consumer");
5243 
5244   // Check the function list for unresolved values.
5245   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5246     if (!A->getParent()) {
5247       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5248       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5249         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5250           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5251           delete A;
5252         }
5253       }
5254       return error("Never resolved value found in function");
5255     }
5256   }
5257 
5258   // Unexpected unresolved metadata about to be dropped.
5259   if (MetadataList.hasFwdRefs())
5260     return error("Invalid function metadata: outgoing forward refs");
5261 
5262   // Trim the value list down to the size it was before we parsed this function.
5263   ValueList.shrinkTo(ModuleValueListSize);
5264   MetadataList.shrinkTo(ModuleMetadataListSize);
5265   std::vector<BasicBlock*>().swap(FunctionBBs);
5266   return std::error_code();
5267 }
5268 
5269 /// Find the function body in the bitcode stream
5270 std::error_code BitcodeReader::findFunctionInStream(
5271     Function *F,
5272     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5273   while (DeferredFunctionInfoIterator->second == 0) {
5274     // This is the fallback handling for the old format bitcode that
5275     // didn't contain the function index in the VST, or when we have
5276     // an anonymous function which would not have a VST entry.
5277     // Assert that we have one of those two cases.
5278     assert(VSTOffset == 0 || !F->hasName());
5279     // Parse the next body in the stream and set its position in the
5280     // DeferredFunctionInfo map.
5281     if (std::error_code EC = rememberAndSkipFunctionBodies())
5282       return EC;
5283   }
5284   return std::error_code();
5285 }
5286 
5287 //===----------------------------------------------------------------------===//
5288 // GVMaterializer implementation
5289 //===----------------------------------------------------------------------===//
5290 
5291 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5292 
5293 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5294   if (std::error_code EC = materializeMetadata())
5295     return EC;
5296 
5297   Function *F = dyn_cast<Function>(GV);
5298   // If it's not a function or is already material, ignore the request.
5299   if (!F || !F->isMaterializable())
5300     return std::error_code();
5301 
5302   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5303   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5304   // If its position is recorded as 0, its body is somewhere in the stream
5305   // but we haven't seen it yet.
5306   if (DFII->second == 0)
5307     if (std::error_code EC = findFunctionInStream(F, DFII))
5308       return EC;
5309 
5310   // Move the bit stream to the saved position of the deferred function body.
5311   Stream.JumpToBit(DFII->second);
5312 
5313   if (std::error_code EC = parseFunctionBody(F))
5314     return EC;
5315   F->setIsMaterializable(false);
5316 
5317   if (StripDebugInfo)
5318     stripDebugInfo(*F);
5319 
5320   // Upgrade any old intrinsic calls in the function.
5321   for (auto &I : UpgradedIntrinsics) {
5322     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5323          UI != UE;) {
5324       User *U = *UI;
5325       ++UI;
5326       if (CallInst *CI = dyn_cast<CallInst>(U))
5327         UpgradeIntrinsicCall(CI, I.second);
5328     }
5329   }
5330 
5331   // Finish fn->subprogram upgrade for materialized functions.
5332   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5333     F->setSubprogram(SP);
5334 
5335   // Bring in any functions that this function forward-referenced via
5336   // blockaddresses.
5337   return materializeForwardReferencedFunctions();
5338 }
5339 
5340 std::error_code BitcodeReader::materializeModule() {
5341   if (std::error_code EC = materializeMetadata())
5342     return EC;
5343 
5344   // Promise to materialize all forward references.
5345   WillMaterializeAllForwardRefs = true;
5346 
5347   // Iterate over the module, deserializing any functions that are still on
5348   // disk.
5349   for (Function &F : *TheModule) {
5350     if (std::error_code EC = materialize(&F))
5351       return EC;
5352   }
5353   // At this point, if there are any function bodies, parse the rest of
5354   // the bits in the module past the last function block we have recorded
5355   // through either lazy scanning or the VST.
5356   if (LastFunctionBlockBit || NextUnreadBit)
5357     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5358                                                      : NextUnreadBit);
5359 
5360   // Check that all block address forward references got resolved (as we
5361   // promised above).
5362   if (!BasicBlockFwdRefs.empty())
5363     return error("Never resolved function from blockaddress");
5364 
5365   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5366   // to prevent this instructions with TBAA tags should be upgraded first.
5367   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5368     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5369 
5370   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5371   // delete the old functions to clean up. We can't do this unless the entire
5372   // module is materialized because there could always be another function body
5373   // with calls to the old function.
5374   for (auto &I : UpgradedIntrinsics) {
5375     for (auto *U : I.first->users()) {
5376       if (CallInst *CI = dyn_cast<CallInst>(U))
5377         UpgradeIntrinsicCall(CI, I.second);
5378     }
5379     if (!I.first->use_empty())
5380       I.first->replaceAllUsesWith(I.second);
5381     I.first->eraseFromParent();
5382   }
5383   UpgradedIntrinsics.clear();
5384 
5385   UpgradeDebugInfo(*TheModule);
5386   return std::error_code();
5387 }
5388 
5389 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5390   return IdentifiedStructTypes;
5391 }
5392 
5393 std::error_code
5394 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5395   if (Streamer)
5396     return initLazyStream(std::move(Streamer));
5397   return initStreamFromBuffer();
5398 }
5399 
5400 std::error_code BitcodeReader::initStreamFromBuffer() {
5401   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5402   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5403 
5404   if (Buffer->getBufferSize() & 3)
5405     return error("Invalid bitcode signature");
5406 
5407   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5408   // The magic number is 0x0B17C0DE stored in little endian.
5409   if (isBitcodeWrapper(BufPtr, BufEnd))
5410     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5411       return error("Invalid bitcode wrapper header");
5412 
5413   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5414   Stream.init(&*StreamFile);
5415 
5416   return std::error_code();
5417 }
5418 
5419 std::error_code
5420 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5421   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5422   // see it.
5423   auto OwnedBytes =
5424       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5425   StreamingMemoryObject &Bytes = *OwnedBytes;
5426   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5427   Stream.init(&*StreamFile);
5428 
5429   unsigned char buf[16];
5430   if (Bytes.readBytes(buf, 16, 0) != 16)
5431     return error("Invalid bitcode signature");
5432 
5433   if (!isBitcode(buf, buf + 16))
5434     return error("Invalid bitcode signature");
5435 
5436   if (isBitcodeWrapper(buf, buf + 4)) {
5437     const unsigned char *bitcodeStart = buf;
5438     const unsigned char *bitcodeEnd = buf + 16;
5439     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5440     Bytes.dropLeadingBytes(bitcodeStart - buf);
5441     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5442   }
5443   return std::error_code();
5444 }
5445 
5446 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5447                                                        const Twine &Message) {
5448   return ::error(DiagnosticHandler, make_error_code(E), Message);
5449 }
5450 
5451 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5452   return ::error(DiagnosticHandler,
5453                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5454 }
5455 
5456 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5457   return ::error(DiagnosticHandler, make_error_code(E));
5458 }
5459 
5460 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5461     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5462     bool IsLazy, bool CheckGlobalValSummaryPresenceOnly)
5463     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5464       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5465 
5466 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5467     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5468     bool CheckGlobalValSummaryPresenceOnly)
5469     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5470       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5471 
5472 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5473 
5474 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5475 
5476 GlobalValue::GUID
5477 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5478   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5479   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5480   return VGI->second;
5481 }
5482 
5483 GlobalValueInfo *
5484 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5485   auto I = SummaryOffsetToInfoMap.find(Offset);
5486   assert(I != SummaryOffsetToInfoMap.end());
5487   return I->second;
5488 }
5489 
5490 // Specialized value symbol table parser used when reading module index
5491 // blocks where we don't actually create global values.
5492 // At the end of this routine the module index is populated with a map
5493 // from global value name to GlobalValueInfo. The global value info contains
5494 // the function block's bitcode offset (if applicable), or the offset into the
5495 // summary section for the combined index.
5496 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5497     uint64_t Offset,
5498     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5499   assert(Offset > 0 && "Expected non-zero VST offset");
5500   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5501 
5502   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5503     return error("Invalid record");
5504 
5505   SmallVector<uint64_t, 64> Record;
5506 
5507   // Read all the records for this value table.
5508   SmallString<128> ValueName;
5509   while (1) {
5510     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5511 
5512     switch (Entry.Kind) {
5513     case BitstreamEntry::SubBlock: // Handled for us already.
5514     case BitstreamEntry::Error:
5515       return error("Malformed block");
5516     case BitstreamEntry::EndBlock:
5517       // Done parsing VST, jump back to wherever we came from.
5518       Stream.JumpToBit(CurrentBit);
5519       return std::error_code();
5520     case BitstreamEntry::Record:
5521       // The interesting case.
5522       break;
5523     }
5524 
5525     // Read a record.
5526     Record.clear();
5527     switch (Stream.readRecord(Entry.ID, Record)) {
5528     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5529       break;
5530     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5531       if (convertToString(Record, 1, ValueName))
5532         return error("Invalid record");
5533       unsigned ValueID = Record[0];
5534       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5535           llvm::make_unique<GlobalValueInfo>();
5536       assert(!SourceFileName.empty());
5537       auto VLI = ValueIdToLinkageMap.find(ValueID);
5538       assert(VLI != ValueIdToLinkageMap.end() &&
5539              "No linkage found for VST entry?");
5540       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5541           ValueName, VLI->second, SourceFileName);
5542       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5543       if (PrintSummaryGUIDs)
5544         dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n";
5545       TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo));
5546       ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID;
5547       ValueName.clear();
5548       break;
5549     }
5550     case bitc::VST_CODE_FNENTRY: {
5551       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5552       if (convertToString(Record, 2, ValueName))
5553         return error("Invalid record");
5554       unsigned ValueID = Record[0];
5555       uint64_t FuncOffset = Record[1];
5556       assert(!IsLazy && "Lazy summary read only supported for combined index");
5557       std::unique_ptr<GlobalValueInfo> FuncInfo =
5558           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5559       assert(!SourceFileName.empty());
5560       auto VLI = ValueIdToLinkageMap.find(ValueID);
5561       assert(VLI != ValueIdToLinkageMap.end() &&
5562              "No linkage found for VST entry?");
5563       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5564           ValueName, VLI->second, SourceFileName);
5565       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5566       if (PrintSummaryGUIDs)
5567         dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n";
5568       TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo));
5569       ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID;
5570 
5571       ValueName.clear();
5572       break;
5573     }
5574     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5575       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5576       unsigned ValueID = Record[0];
5577       uint64_t GlobalValSummaryOffset = Record[1];
5578       GlobalValue::GUID GlobalValGUID = Record[2];
5579       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5580           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5581       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5582       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5583       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5584       break;
5585     }
5586     case bitc::VST_CODE_COMBINED_ENTRY: {
5587       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5588       unsigned ValueID = Record[0];
5589       GlobalValue::GUID RefGUID = Record[1];
5590       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5591       break;
5592     }
5593     }
5594   }
5595 }
5596 
5597 // Parse just the blocks needed for building the index out of the module.
5598 // At the end of this routine the module Index is populated with a map
5599 // from global value name to GlobalValueInfo. The global value info contains
5600 // either the parsed summary information (when parsing summaries
5601 // eagerly), or just to the summary record's offset
5602 // if parsing lazily (IsLazy).
5603 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5604   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5605     return error("Invalid record");
5606 
5607   SmallVector<uint64_t, 64> Record;
5608   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5609   unsigned ValueId = 0;
5610 
5611   // Read the index for this module.
5612   while (1) {
5613     BitstreamEntry Entry = Stream.advance();
5614 
5615     switch (Entry.Kind) {
5616     case BitstreamEntry::Error:
5617       return error("Malformed block");
5618     case BitstreamEntry::EndBlock:
5619       return std::error_code();
5620 
5621     case BitstreamEntry::SubBlock:
5622       if (CheckGlobalValSummaryPresenceOnly) {
5623         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5624           SeenGlobalValSummary = true;
5625           // No need to parse the rest since we found the summary.
5626           return std::error_code();
5627         }
5628         if (Stream.SkipBlock())
5629           return error("Invalid record");
5630         continue;
5631       }
5632       switch (Entry.ID) {
5633       default: // Skip unknown content.
5634         if (Stream.SkipBlock())
5635           return error("Invalid record");
5636         break;
5637       case bitc::BLOCKINFO_BLOCK_ID:
5638         // Need to parse these to get abbrev ids (e.g. for VST)
5639         if (Stream.ReadBlockInfoBlock())
5640           return error("Malformed block");
5641         break;
5642       case bitc::VALUE_SYMTAB_BLOCK_ID:
5643         // Should have been parsed earlier via VSTOffset, unless there
5644         // is no summary section.
5645         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5646                 !SeenGlobalValSummary) &&
5647                "Expected early VST parse via VSTOffset record");
5648         if (Stream.SkipBlock())
5649           return error("Invalid record");
5650         break;
5651       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5652         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5653         assert(!SeenValueSymbolTable &&
5654                "Already read VST when parsing summary block?");
5655         if (std::error_code EC =
5656                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5657           return EC;
5658         SeenValueSymbolTable = true;
5659         SeenGlobalValSummary = true;
5660         if (IsLazy) {
5661           // Lazy parsing of summary info, skip it.
5662           if (Stream.SkipBlock())
5663             return error("Invalid record");
5664         } else if (std::error_code EC = parseEntireSummary())
5665           return EC;
5666         break;
5667       case bitc::MODULE_STRTAB_BLOCK_ID:
5668         if (std::error_code EC = parseModuleStringTable())
5669           return EC;
5670         break;
5671       }
5672       continue;
5673 
5674     case BitstreamEntry::Record: {
5675         Record.clear();
5676         auto BitCode = Stream.readRecord(Entry.ID, Record);
5677         switch (BitCode) {
5678         default:
5679           break; // Default behavior, ignore unknown content.
5680         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5681         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5682           SmallString<128> ValueName;
5683           if (convertToString(Record, 0, ValueName))
5684             return error("Invalid record");
5685           SourceFileName = ValueName.c_str();
5686           break;
5687         }
5688         /// MODULE_CODE_HASH: [5*i32]
5689         case bitc::MODULE_CODE_HASH: {
5690           if (Record.size() != 5)
5691             return error("Invalid hash length " + Twine(Record.size()).str());
5692           if (!TheIndex)
5693             break;
5694           if (TheIndex->modulePaths().empty())
5695             // Does not have any summary emitted.
5696             break;
5697           if (TheIndex->modulePaths().size() != 1)
5698             return error("Don't expect multiple modules defined?");
5699           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5700           int Pos = 0;
5701           for (auto &Val : Record) {
5702             assert(!(Val >> 32) && "Unexpected high bits set");
5703             Hash[Pos++] = Val;
5704           }
5705           break;
5706         }
5707         /// MODULE_CODE_VSTOFFSET: [offset]
5708         case bitc::MODULE_CODE_VSTOFFSET:
5709           if (Record.size() < 1)
5710             return error("Invalid record");
5711           VSTOffset = Record[0];
5712           break;
5713         // GLOBALVAR: [pointer type, isconst, initid,
5714         //             linkage, alignment, section, visibility, threadlocal,
5715         //             unnamed_addr, externally_initialized, dllstorageclass,
5716         //             comdat]
5717         case bitc::MODULE_CODE_GLOBALVAR: {
5718           if (Record.size() < 6)
5719             return error("Invalid record");
5720           uint64_t RawLinkage = Record[3];
5721           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5722           ValueIdToLinkageMap[ValueId++] = Linkage;
5723           break;
5724         }
5725         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5726         //             alignment, section, visibility, gc, unnamed_addr,
5727         //             prologuedata, dllstorageclass, comdat, prefixdata]
5728         case bitc::MODULE_CODE_FUNCTION: {
5729           if (Record.size() < 8)
5730             return error("Invalid record");
5731           uint64_t RawLinkage = Record[3];
5732           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5733           ValueIdToLinkageMap[ValueId++] = Linkage;
5734           break;
5735         }
5736         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5737         // dllstorageclass]
5738         case bitc::MODULE_CODE_ALIAS: {
5739           if (Record.size() < 6)
5740             return error("Invalid record");
5741           uint64_t RawLinkage = Record[3];
5742           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5743           ValueIdToLinkageMap[ValueId++] = Linkage;
5744           break;
5745         }
5746         }
5747       }
5748       continue;
5749     }
5750   }
5751 }
5752 
5753 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5754 // objects in the index.
5755 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5756   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5757     return error("Invalid record");
5758 
5759   SmallVector<uint64_t, 64> Record;
5760 
5761   bool Combined = false;
5762   while (1) {
5763     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5764 
5765     switch (Entry.Kind) {
5766     case BitstreamEntry::SubBlock: // Handled for us already.
5767     case BitstreamEntry::Error:
5768       return error("Malformed block");
5769     case BitstreamEntry::EndBlock:
5770       // For a per-module index, remove any entries that still have empty
5771       // summaries. The VST parsing creates entries eagerly for all symbols,
5772       // but not all have associated summaries (e.g. it doesn't know how to
5773       // distinguish between VST_CODE_ENTRY for function declarations vs global
5774       // variables with initializers that end up with a summary). Remove those
5775       // entries now so that we don't need to rely on the combined index merger
5776       // to clean them up (especially since that may not run for the first
5777       // module's index if we merge into that).
5778       if (!Combined)
5779         TheIndex->removeEmptySummaryEntries();
5780       return std::error_code();
5781     case BitstreamEntry::Record:
5782       // The interesting case.
5783       break;
5784     }
5785 
5786     // Read a record. The record format depends on whether this
5787     // is a per-module index or a combined index file. In the per-module
5788     // case the records contain the associated value's ID for correlation
5789     // with VST entries. In the combined index the correlation is done
5790     // via the bitcode offset of the summary records (which were saved
5791     // in the combined index VST entries). The records also contain
5792     // information used for ThinLTO renaming and importing.
5793     Record.clear();
5794     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5795     auto BitCode = Stream.readRecord(Entry.ID, Record);
5796     switch (BitCode) {
5797     default: // Default behavior: ignore.
5798       break;
5799     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5800     //                n x (valueid, callsitecount)]
5801     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5802     //                        numrefs x valueid,
5803     //                        n x (valueid, callsitecount, profilecount)]
5804     case bitc::FS_PERMODULE:
5805     case bitc::FS_PERMODULE_PROFILE: {
5806       unsigned ValueID = Record[0];
5807       uint64_t RawLinkage = Record[1];
5808       unsigned InstCount = Record[2];
5809       unsigned NumRefs = Record[3];
5810       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5811           getDecodedLinkage(RawLinkage), InstCount);
5812       // The module path string ref set in the summary must be owned by the
5813       // index's module string table. Since we don't have a module path
5814       // string table section in the per-module index, we create a single
5815       // module path string table entry with an empty (0) ID to take
5816       // ownership.
5817       FS->setModulePath(
5818           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5819       static int RefListStartIndex = 4;
5820       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5821       assert(Record.size() >= RefListStartIndex + NumRefs &&
5822              "Record size inconsistent with number of references");
5823       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5824         unsigned RefValueId = Record[I];
5825         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5826         FS->addRefEdge(RefGUID);
5827       }
5828       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5829       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5830            ++I) {
5831         unsigned CalleeValueId = Record[I];
5832         unsigned CallsiteCount = Record[++I];
5833         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5834         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5835         FS->addCallGraphEdge(CalleeGUID,
5836                              CalleeInfo(CallsiteCount, ProfileCount));
5837       }
5838       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5839       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5840       assert(!Info->summary() && "Expected a single summary per VST entry");
5841       Info->setSummary(std::move(FS));
5842       break;
5843     }
5844     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5845     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5846       unsigned ValueID = Record[0];
5847       uint64_t RawLinkage = Record[1];
5848       std::unique_ptr<GlobalVarSummary> FS =
5849           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5850       FS->setModulePath(
5851           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5852       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5853         unsigned RefValueId = Record[I];
5854         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5855         FS->addRefEdge(RefGUID);
5856       }
5857       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5858       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5859       assert(!Info->summary() && "Expected a single summary per VST entry");
5860       Info->setSummary(std::move(FS));
5861       break;
5862     }
5863     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5864     //               n x (valueid, callsitecount)]
5865     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5866     //                       numrefs x valueid,
5867     //                       n x (valueid, callsitecount, profilecount)]
5868     case bitc::FS_COMBINED:
5869     case bitc::FS_COMBINED_PROFILE: {
5870       uint64_t ModuleId = Record[0];
5871       uint64_t RawLinkage = Record[1];
5872       unsigned InstCount = Record[2];
5873       unsigned NumRefs = Record[3];
5874       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5875           getDecodedLinkage(RawLinkage), InstCount);
5876       FS->setModulePath(ModuleIdMap[ModuleId]);
5877       static int RefListStartIndex = 4;
5878       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5879       assert(Record.size() >= RefListStartIndex + NumRefs &&
5880              "Record size inconsistent with number of references");
5881       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5882         unsigned RefValueId = Record[I];
5883         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5884         FS->addRefEdge(RefGUID);
5885       }
5886       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5887       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5888            ++I) {
5889         unsigned CalleeValueId = Record[I];
5890         unsigned CallsiteCount = Record[++I];
5891         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5892         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5893         FS->addCallGraphEdge(CalleeGUID,
5894                              CalleeInfo(CallsiteCount, ProfileCount));
5895       }
5896       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5897       assert(!Info->summary() && "Expected a single summary per VST entry");
5898       Info->setSummary(std::move(FS));
5899       Combined = true;
5900       break;
5901     }
5902     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
5903     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5904       uint64_t ModuleId = Record[0];
5905       uint64_t RawLinkage = Record[1];
5906       std::unique_ptr<GlobalVarSummary> FS =
5907           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5908       FS->setModulePath(ModuleIdMap[ModuleId]);
5909       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5910         unsigned RefValueId = Record[I];
5911         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5912         FS->addRefEdge(RefGUID);
5913       }
5914       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5915       assert(!Info->summary() && "Expected a single summary per VST entry");
5916       Info->setSummary(std::move(FS));
5917       Combined = true;
5918       break;
5919     }
5920     }
5921   }
5922   llvm_unreachable("Exit infinite loop");
5923 }
5924 
5925 // Parse the  module string table block into the Index.
5926 // This populates the ModulePathStringTable map in the index.
5927 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5928   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5929     return error("Invalid record");
5930 
5931   SmallVector<uint64_t, 64> Record;
5932 
5933   SmallString<128> ModulePath;
5934   ModulePathStringTableTy::iterator LastSeenModulePath;
5935   while (1) {
5936     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5937 
5938     switch (Entry.Kind) {
5939     case BitstreamEntry::SubBlock: // Handled for us already.
5940     case BitstreamEntry::Error:
5941       return error("Malformed block");
5942     case BitstreamEntry::EndBlock:
5943       return std::error_code();
5944     case BitstreamEntry::Record:
5945       // The interesting case.
5946       break;
5947     }
5948 
5949     Record.clear();
5950     switch (Stream.readRecord(Entry.ID, Record)) {
5951     default: // Default behavior: ignore.
5952       break;
5953     case bitc::MST_CODE_ENTRY: {
5954       // MST_ENTRY: [modid, namechar x N]
5955       uint64_t ModuleId = Record[0];
5956 
5957       if (convertToString(Record, 1, ModulePath))
5958         return error("Invalid record");
5959 
5960       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
5961       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
5962 
5963       ModulePath.clear();
5964       break;
5965     }
5966     /// MST_CODE_HASH: [5*i32]
5967     case bitc::MST_CODE_HASH: {
5968       if (Record.size() != 5)
5969         return error("Invalid hash length " + Twine(Record.size()).str());
5970       if (LastSeenModulePath == TheIndex->modulePaths().end())
5971         return error("Invalid hash that does not follow a module path");
5972       int Pos = 0;
5973       for (auto &Val : Record) {
5974         assert(!(Val >> 32) && "Unexpected high bits set");
5975         LastSeenModulePath->second.second[Pos++] = Val;
5976       }
5977       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
5978       LastSeenModulePath = TheIndex->modulePaths().end();
5979       break;
5980     }
5981     }
5982   }
5983   llvm_unreachable("Exit infinite loop");
5984 }
5985 
5986 // Parse the function info index from the bitcode streamer into the given index.
5987 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
5988     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
5989   TheIndex = I;
5990 
5991   if (std::error_code EC = initStream(std::move(Streamer)))
5992     return EC;
5993 
5994   // Sniff for the signature.
5995   if (!hasValidBitcodeHeader(Stream))
5996     return error("Invalid bitcode signature");
5997 
5998   // We expect a number of well-defined blocks, though we don't necessarily
5999   // need to understand them all.
6000   while (1) {
6001     if (Stream.AtEndOfStream()) {
6002       // We didn't really read a proper Module block.
6003       return error("Malformed block");
6004     }
6005 
6006     BitstreamEntry Entry =
6007         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6008 
6009     if (Entry.Kind != BitstreamEntry::SubBlock)
6010       return error("Malformed block");
6011 
6012     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6013     // building the function summary index.
6014     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6015       return parseModule();
6016 
6017     if (Stream.SkipBlock())
6018       return error("Invalid record");
6019   }
6020 }
6021 
6022 // Parse the summary information at the given offset in the buffer into
6023 // the index. Used to support lazy parsing of summaries from the
6024 // combined index during importing.
6025 // TODO: This function is not yet complete as it won't have a consumer
6026 // until ThinLTO function importing is added.
6027 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6028     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6029     size_t SummaryOffset) {
6030   TheIndex = I;
6031 
6032   if (std::error_code EC = initStream(std::move(Streamer)))
6033     return EC;
6034 
6035   // Sniff for the signature.
6036   if (!hasValidBitcodeHeader(Stream))
6037     return error("Invalid bitcode signature");
6038 
6039   Stream.JumpToBit(SummaryOffset);
6040 
6041   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6042 
6043   switch (Entry.Kind) {
6044   default:
6045     return error("Malformed block");
6046   case BitstreamEntry::Record:
6047     // The expected case.
6048     break;
6049   }
6050 
6051   // TODO: Read a record. This interface will be completed when ThinLTO
6052   // importing is added so that it can be tested.
6053   SmallVector<uint64_t, 64> Record;
6054   switch (Stream.readRecord(Entry.ID, Record)) {
6055   case bitc::FS_COMBINED:
6056   case bitc::FS_COMBINED_PROFILE:
6057   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6058   default:
6059     return error("Invalid record");
6060   }
6061 
6062   return std::error_code();
6063 }
6064 
6065 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6066     std::unique_ptr<DataStreamer> Streamer) {
6067   if (Streamer)
6068     return initLazyStream(std::move(Streamer));
6069   return initStreamFromBuffer();
6070 }
6071 
6072 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6073   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6074   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6075 
6076   if (Buffer->getBufferSize() & 3)
6077     return error("Invalid bitcode signature");
6078 
6079   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6080   // The magic number is 0x0B17C0DE stored in little endian.
6081   if (isBitcodeWrapper(BufPtr, BufEnd))
6082     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6083       return error("Invalid bitcode wrapper header");
6084 
6085   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6086   Stream.init(&*StreamFile);
6087 
6088   return std::error_code();
6089 }
6090 
6091 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6092     std::unique_ptr<DataStreamer> Streamer) {
6093   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6094   // see it.
6095   auto OwnedBytes =
6096       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6097   StreamingMemoryObject &Bytes = *OwnedBytes;
6098   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6099   Stream.init(&*StreamFile);
6100 
6101   unsigned char buf[16];
6102   if (Bytes.readBytes(buf, 16, 0) != 16)
6103     return error("Invalid bitcode signature");
6104 
6105   if (!isBitcode(buf, buf + 16))
6106     return error("Invalid bitcode signature");
6107 
6108   if (isBitcodeWrapper(buf, buf + 4)) {
6109     const unsigned char *bitcodeStart = buf;
6110     const unsigned char *bitcodeEnd = buf + 16;
6111     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6112     Bytes.dropLeadingBytes(bitcodeStart - buf);
6113     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6114   }
6115   return std::error_code();
6116 }
6117 
6118 namespace {
6119 class BitcodeErrorCategoryType : public std::error_category {
6120   const char *name() const LLVM_NOEXCEPT override {
6121     return "llvm.bitcode";
6122   }
6123   std::string message(int IE) const override {
6124     BitcodeError E = static_cast<BitcodeError>(IE);
6125     switch (E) {
6126     case BitcodeError::InvalidBitcodeSignature:
6127       return "Invalid bitcode signature";
6128     case BitcodeError::CorruptedBitcode:
6129       return "Corrupted bitcode";
6130     }
6131     llvm_unreachable("Unknown error type!");
6132   }
6133 };
6134 } // end anonymous namespace
6135 
6136 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6137 
6138 const std::error_category &llvm::BitcodeErrorCategory() {
6139   return *ErrorCategory;
6140 }
6141 
6142 //===----------------------------------------------------------------------===//
6143 // External interface
6144 //===----------------------------------------------------------------------===//
6145 
6146 static ErrorOr<std::unique_ptr<Module>>
6147 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6148                      BitcodeReader *R, LLVMContext &Context,
6149                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6150   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6151   M->setMaterializer(R);
6152 
6153   auto cleanupOnError = [&](std::error_code EC) {
6154     R->releaseBuffer(); // Never take ownership on error.
6155     return EC;
6156   };
6157 
6158   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6159   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6160                                                ShouldLazyLoadMetadata))
6161     return cleanupOnError(EC);
6162 
6163   if (MaterializeAll) {
6164     // Read in the entire module, and destroy the BitcodeReader.
6165     if (std::error_code EC = M->materializeAll())
6166       return cleanupOnError(EC);
6167   } else {
6168     // Resolve forward references from blockaddresses.
6169     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6170       return cleanupOnError(EC);
6171   }
6172   return std::move(M);
6173 }
6174 
6175 /// \brief Get a lazy one-at-time loading module from bitcode.
6176 ///
6177 /// This isn't always used in a lazy context.  In particular, it's also used by
6178 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6179 /// in forward-referenced functions from block address references.
6180 ///
6181 /// \param[in] MaterializeAll Set to \c true if we should materialize
6182 /// everything.
6183 static ErrorOr<std::unique_ptr<Module>>
6184 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6185                          LLVMContext &Context, bool MaterializeAll,
6186                          bool ShouldLazyLoadMetadata = false) {
6187   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6188 
6189   ErrorOr<std::unique_ptr<Module>> Ret =
6190       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6191                            MaterializeAll, ShouldLazyLoadMetadata);
6192   if (!Ret)
6193     return Ret;
6194 
6195   Buffer.release(); // The BitcodeReader owns it now.
6196   return Ret;
6197 }
6198 
6199 ErrorOr<std::unique_ptr<Module>>
6200 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6201                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6202   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6203                                   ShouldLazyLoadMetadata);
6204 }
6205 
6206 ErrorOr<std::unique_ptr<Module>>
6207 llvm::getStreamedBitcodeModule(StringRef Name,
6208                                std::unique_ptr<DataStreamer> Streamer,
6209                                LLVMContext &Context) {
6210   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6211   BitcodeReader *R = new BitcodeReader(Context);
6212 
6213   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6214                               false);
6215 }
6216 
6217 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6218                                                         LLVMContext &Context) {
6219   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6220   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6221   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6222   // written.  We must defer until the Module has been fully materialized.
6223 }
6224 
6225 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6226                                          LLVMContext &Context) {
6227   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6228   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6229   ErrorOr<std::string> Triple = R->parseTriple();
6230   if (Triple.getError())
6231     return "";
6232   return Triple.get();
6233 }
6234 
6235 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6236                                            LLVMContext &Context) {
6237   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6238   BitcodeReader R(Buf.release(), Context);
6239   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6240   if (ProducerString.getError())
6241     return "";
6242   return ProducerString.get();
6243 }
6244 
6245 // Parse the specified bitcode buffer, returning the function info index.
6246 // If IsLazy is false, parse the entire function summary into
6247 // the index. Otherwise skip the function summary section, and only create
6248 // an index object with a map from function name to function summary offset.
6249 // The index is used to perform lazy function summary reading later.
6250 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6251 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6252                             DiagnosticHandlerFunction DiagnosticHandler,
6253                             bool IsLazy) {
6254   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6255   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
6256 
6257   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6258 
6259   auto cleanupOnError = [&](std::error_code EC) {
6260     R.releaseBuffer(); // Never take ownership on error.
6261     return EC;
6262   };
6263 
6264   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6265     return cleanupOnError(EC);
6266 
6267   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6268   return std::move(Index);
6269 }
6270 
6271 // Check if the given bitcode buffer contains a global value summary block.
6272 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6273                                  DiagnosticHandlerFunction DiagnosticHandler) {
6274   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6275   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
6276 
6277   auto cleanupOnError = [&](std::error_code EC) {
6278     R.releaseBuffer(); // Never take ownership on error.
6279     return false;
6280   };
6281 
6282   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6283     return cleanupOnError(EC);
6284 
6285   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6286   return R.foundGlobalValSummary();
6287 }
6288 
6289 // This method supports lazy reading of summary data from the combined
6290 // index during ThinLTO function importing. When reading the combined index
6291 // file, getModuleSummaryIndex is first invoked with IsLazy=true.
6292 // Then this method is called for each value considered for importing,
6293 // to parse the summary information for the given value name into
6294 // the index.
6295 std::error_code llvm::readGlobalValueSummary(
6296     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6297     StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) {
6298   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6299   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6300 
6301   auto cleanupOnError = [&](std::error_code EC) {
6302     R.releaseBuffer(); // Never take ownership on error.
6303     return EC;
6304   };
6305 
6306   // Lookup the given value name in the GlobalValueMap, which may
6307   // contain a list of global value infos in the case of a COMDAT. Walk through
6308   // and parse each summary info at the summary offset
6309   // recorded when parsing the value symbol table.
6310   for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) {
6311     size_t SummaryOffset = FI->bitcodeIndex();
6312     if (std::error_code EC =
6313             R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset))
6314       return cleanupOnError(EC);
6315   }
6316 
6317   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6318   return std::error_code();
6319 }
6320